1
|
Bazzoli DG, Mahmoodi N, Verrill TA, Overton TW, Mendes PM. Nanovibrational Stimulation of Escherichia coli Mitigates Surface Adhesion by Altering Cell Membrane Potential. ACS NANO 2024. [PMID: 39436348 DOI: 10.1021/acsnano.4c11000] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/23/2024]
Abstract
Mechanical forces shape living matter from the macro- to the microscale as both eukaryotic and prokaryotic cells are force wielders and sensors. However, whereas such forces have been used to control mechanically dependent behaviors in mammalian cells, we lack the same level of understanding in bacteria. Surface adhesion, the initial stages of biofilm formation and surface biofouling, is a mechanically dependent process, which makes it an ideal target for mechano-control. In this study, we employed nanometer surface vibrations to mechanically stimulate bacteria and investigate their effect on adhesion. We discovered that vibrational stimulation at the nanoscale consistently reduces surface adhesion by altering cell membrane potential. Our findings identify a link between bacteria electrophysiology and surface adhesion and provide evidence that the nanometric mechanical "tickling" of bacteria can inhibit surface adhesion.
Collapse
Affiliation(s)
- Dario G Bazzoli
- School of Chemical Engineering, University of Birmingham, Birmingham B15 2TT, U.K
| | - Nasim Mahmoodi
- School of Chemical Engineering, University of Birmingham, Birmingham B15 2TT, U.K
| | - Terri-Anne Verrill
- School of Chemical Engineering, University of Birmingham, Birmingham B15 2TT, U.K
| | - Tim W Overton
- School of Chemical Engineering, University of Birmingham, Birmingham B15 2TT, U.K
| | - Paula M Mendes
- School of Chemical Engineering, University of Birmingham, Birmingham B15 2TT, U.K
| |
Collapse
|
2
|
Ramachandran A, Stone HA, Gitai Z. Free-swimming bacteria transcriptionally respond to shear flow. Proc Natl Acad Sci U S A 2024; 121:e2406688121. [PMID: 39383001 PMCID: PMC11494325 DOI: 10.1073/pnas.2406688121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2024] [Accepted: 08/30/2024] [Indexed: 10/11/2024] Open
Abstract
Surface-attached cells can sense and respond to shear flow, but planktonic (free-swimming) cells are typically assumed to be oblivious to any flow that carries them. Here, we find that planktonic bacteria can transcriptionally respond to flow, inducing expression changes that are beneficial in flow. Specifically, we use microfluidic experiments and quantitative modeling to show that in the presence of flow, planktonic Pseudomonas aeruginosa induce shear rate-dependent genes that promote growth in low-oxygen environments. Untangling this mechanism revealed that in flow, motile P. aeruginosa spatially redistribute, leading to cell density changes that activate quorum sensing, which in turn enhances the oxygen uptake rate. In diffusion-limited environments, including those commonly encountered by bacteria, flow-induced cell density gradients also independently generate oxygen gradients that alter gene expression. Mutants deficient in this flow-responsive mechanism exhibit decreased fitness in flow, suggesting that this dynamic coupling of biological and mechanical processes can be physiologically significant.
Collapse
Affiliation(s)
- Ashwin Ramachandran
- Department of Molecular Biology, Princeton University, Princeton, NJ08544
- Department of Mechanical and Aerospace Engineering, Princeton University, Princeton, NJ08544
| | - Howard A. Stone
- Department of Mechanical and Aerospace Engineering, Princeton University, Princeton, NJ08544
| | - Zemer Gitai
- Department of Molecular Biology, Princeton University, Princeton, NJ08544
| |
Collapse
|
3
|
Janvier X, Jansen S, Prenom C, Khodabux N, Zuttion F, Duclairoir-Poc C, Cupferman S, Khodr A. Preventing bacterial adhesion to skin by altering their physicochemical cell surface properties specifically. NPJ Biofilms Microbiomes 2024; 10:94. [PMID: 39349508 PMCID: PMC11442763 DOI: 10.1038/s41522-024-00568-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2024] [Accepted: 09/15/2024] [Indexed: 10/02/2024] Open
Abstract
The adhesion of bacteria to surfaces is associated with physicochemical and biological interactions. The present investigations provide new results about the differential adhesion levels of skin bacteria using a representative 3D skin model which mainly relies on the different physicochemical properties of the respective surfaces. Modulation of the adhesion of bacteria and thus their colonization, may occur by adjusting the physicochemical properties of the epidermal and bacterial surfaces. Lewis acid and hydrophobicity were the most strongly correlated parameters with the antiadhesion properties of the tested compounds. Modulation of physicochemical properties appears to be the primary driver of reduced Staphylococcus aureus adhesion in this study, with no significant changes observed in the expression of genes associated with classical adhesion pathways.
Collapse
Affiliation(s)
| | | | | | | | | | - Cécile Duclairoir-Poc
- Bacterial Communication and Anti-infectious Strategies (CBSA), UR4312, Rouen-Normandy University, Evreux, France
| | | | - Ahmad Khodr
- L'Oréal Research & Innovation, Chevilly-Larue, France.
| |
Collapse
|
4
|
Nickerson CA, McLean RJC, Barrila J, Yang J, Thornhill SG, Banken LL, Porterfield DM, Poste G, Pellis NR, Ott CM. Microbiology of human spaceflight: microbial responses to mechanical forces that impact health and habitat sustainability. Microbiol Mol Biol Rev 2024; 88:e0014423. [PMID: 39158275 PMCID: PMC11426028 DOI: 10.1128/mmbr.00144-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/20/2024] Open
Abstract
SUMMARYUnderstanding the dynamic adaptive plasticity of microorganisms has been advanced by studying their responses to extreme environments. Spaceflight research platforms provide a unique opportunity to study microbial characteristics in new extreme adaptational modes, including sustained exposure to reduced forces of gravity and associated low fluid shear force conditions. Under these conditions, unexpected microbial responses occur, including alterations in virulence, antibiotic and stress resistance, biofilm formation, metabolism, motility, and gene expression, which are not observed using conventional experimental approaches. Here, we review biological and physical mechanisms that regulate microbial responses to spaceflight and spaceflight analog environments from both the microbe and host-microbe perspective that are relevant to human health and habitat sustainability. We highlight instrumentation and technology used in spaceflight microbiology experiments, their limitations, and advances necessary to enable next-generation research. As spaceflight experiments are relatively rare, we discuss ground-based analogs that mimic aspects of microbial responses to reduced gravity in spaceflight, including those that reduce mechanical forces of fluid flow over cell surfaces which also simulate conditions encountered by microorganisms during their terrestrial lifecycles. As spaceflight mission durations increase with traditional astronauts and commercial space programs send civilian crews with underlying health conditions, microorganisms will continue to play increasingly critical roles in health and habitat sustainability, thus defining a new dimension of occupational health. The ability of microorganisms to adapt, survive, and evolve in the spaceflight environment is important for future human space endeavors and provides opportunities for innovative biological and technological advances to benefit life on Earth.
Collapse
Affiliation(s)
- Cheryl A. Nickerson
- School of Life Sciences, Arizona State University, Tempe, Arizona, USA
- Biodesign Center for Fundamental and Applied Microbiomics, Arizona State University, Tempe, Arizona, USA
| | | | - Jennifer Barrila
- Biodesign Center for Fundamental and Applied Microbiomics, Arizona State University, Tempe, Arizona, USA
| | - Jiseon Yang
- Biodesign Center for Fundamental and Applied Microbiomics, Arizona State University, Tempe, Arizona, USA
| | | | - Laura L. Banken
- School of Life Sciences, Arizona State University, Tempe, Arizona, USA
- Biodesign Center for Fundamental and Applied Microbiomics, Arizona State University, Tempe, Arizona, USA
| | - D. Marshall Porterfield
- Department of Agricultural & Biological Engineering, Purdue University, West Lafayette, Indiana, USA
| | - George Poste
- Complex Adaptive Systems Initiative, Arizona State University, Tempe, Arizona, USA
| | | | - C. Mark Ott
- Biomedical Research and Environmental Sciences Division, NASA Johnson Space Center, Houston, Texas, USA
| |
Collapse
|
5
|
Monk T, Dennler N, Ralph N, Rastogi S, Afshar S, Urbizagastegui P, Jarvis R, van Schaik A, Adamatzky A. Electrical Signaling Beyond Neurons. Neural Comput 2024; 36:1939-2029. [PMID: 39141803 DOI: 10.1162/neco_a_01696] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2023] [Accepted: 05/21/2024] [Indexed: 08/16/2024]
Abstract
Neural action potentials (APs) are difficult to interpret as signal encoders and/or computational primitives. Their relationships with stimuli and behaviors are obscured by the staggering complexity of nervous systems themselves. We can reduce this complexity by observing that "simpler" neuron-less organisms also transduce stimuli into transient electrical pulses that affect their behaviors. Without a complicated nervous system, APs are often easier to understand as signal/response mechanisms. We review examples of nonneural stimulus transductions in domains of life largely neglected by theoretical neuroscience: bacteria, protozoans, plants, fungi, and neuron-less animals. We report properties of those electrical signals-for example, amplitudes, durations, ionic bases, refractory periods, and particularly their ecological purposes. We compare those properties with those of neurons to infer the tasks and selection pressures that neurons satisfy. Throughout the tree of life, nonneural stimulus transductions time behavioral responses to environmental changes. Nonneural organisms represent the presence or absence of a stimulus with the presence or absence of an electrical signal. Their transductions usually exhibit high sensitivity and specificity to a stimulus, but are often slow compared to neurons. Neurons appear to be sacrificing the specificity of their stimulus transductions for sensitivity and speed. We interpret cellular stimulus transductions as a cell's assertion that it detected something important at that moment in time. In particular, we consider neural APs as fast but noisy detection assertions. We infer that a principal goal of nervous systems is to detect extremely weak signals from noisy sensory spikes under enormous time pressure. We discuss neural computation proposals that address this goal by casting neurons as devices that implement online, analog, probabilistic computations with their membrane potentials. Those proposals imply a measurable relationship between afferent neural spiking statistics and efferent neural membrane electrophysiology.
Collapse
Affiliation(s)
- Travis Monk
- International Centre for Neuromorphic Systems, MARCS Institute, Western Sydney University, Sydney, NSW 2747, Australia
| | - Nik Dennler
- International Centre for Neuromorphic Systems, MARCS Institute, Western Sydney University, Sydney, NSW 2747, Australia
- Biocomputation Group, University of Hertfordshire, Hatfield, Hertfordshire AL10 9AB, U.K.
| | - Nicholas Ralph
- International Centre for Neuromorphic Systems, MARCS Institute, Western Sydney University, Sydney, NSW 2747, Australia
| | - Shavika Rastogi
- International Centre for Neuromorphic Systems, MARCS Institute, Western Sydney University, Sydney, NSW 2747, Australia
- Biocomputation Group, University of Hertfordshire, Hatfield, Hertfordshire AL10 9AB, U.K.
| | - Saeed Afshar
- International Centre for Neuromorphic Systems, MARCS Institute, Western Sydney University, Sydney, NSW 2747, Australia
| | - Pablo Urbizagastegui
- International Centre for Neuromorphic Systems, MARCS Institute, Western Sydney University, Sydney, NSW 2747, Australia
| | - Russell Jarvis
- International Centre for Neuromorphic Systems, MARCS Institute, Western Sydney University, Sydney, NSW 2747, Australia
| | - André van Schaik
- International Centre for Neuromorphic Systems, MARCS Institute, Western Sydney University, Sydney, NSW 2747, Australia
| | - Andrew Adamatzky
- Unconventional Computing Laboratory, University of the West of England, Bristol BS16 1QY, U.K.
| |
Collapse
|
6
|
Squyres GR, Newman DK. Biofilms as more than the sum of their parts: lessons from developmental biology. Curr Opin Microbiol 2024; 82:102537. [PMID: 39241276 DOI: 10.1016/j.mib.2024.102537] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2024] [Revised: 08/09/2024] [Accepted: 08/11/2024] [Indexed: 09/09/2024]
Abstract
Although our understanding of both bacterial cell physiology and the complex behaviors exhibited by bacterial biofilms is expanding rapidly, we cannot yet sum the behaviors of individual cells to understand or predict biofilm behavior. This is both because cell physiology in biofilms is different from planktonic growth and because cell behavior in biofilms is spatiotemporally patterned. We use developmental biology as a guide to examine this phenotypic patterning, discussing candidate cues that may encode spatiotemporal information and possible roles for phenotypic patterning in biofilms. We consider other questions that arise from the comparison between biofilm and eukaryotic development, including what defines normal biofilm development and the nature of biofilm cell types and fates. We conclude by discussing what biofilm development can tell us about developmental processes, emphasizing the additional challenges faced by bacteria in biofilm development compared with their eukaryotic counterparts.
Collapse
Affiliation(s)
- Georgia R Squyres
- Division of Biology and Biological Engineering, Caltech, Pasadena, CA 91125, USA
| | - Dianne K Newman
- Division of Biology and Biological Engineering, Caltech, Pasadena, CA 91125, USA; Division of Geological and Planetary Sciences, Caltech, Pasadena, CA 91125, USA.
| |
Collapse
|
7
|
Wang Z, Xie N, Liang X, Shu Q, Hong Y, Shi H, Wang J, Fan D, Liu N, Xu F. Gut mechanoimmunology: Shaping immune response through physical cues. Phys Life Rev 2024; 50:13-26. [PMID: 38821019 DOI: 10.1016/j.plrev.2024.05.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2024] [Accepted: 05/13/2024] [Indexed: 06/02/2024]
Abstract
The gut immune system embodies a complex interplay between the gut mucosal barrier, the host's immune cells, and gut microbiota. These components exist within a dynamic environment characterized by a variety of physical cues, e.g., compression, tension, shear stress, stiffness, and viscoelasticity. The physical cues can be modified under specific pathological conditions. Given their dynamic nature, comprehending the specific effects of these physical cues on the gut immune system is critical for pathological and therapeutic studies of intestinal immune-related diseases. This review aims to discuss how physical cues influence gut immunology by affecting the gut mucosal barrier, host immune cells, and gut microbiota, defining this concept as gut mechanoimmunology. This review seeks to highlight that an enhanced understanding of gut mechanoimmunology carries therapeutic implications, not only for intestinal diseases but also for extraintestinal diseases.
Collapse
Affiliation(s)
- Ziwei Wang
- Department of Gastroenterology, The Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China; Shaanxi Key Laboratory of Gastrointestinal Motility Disorders, Xi'an Jiaotong University, Xi'an, China; The Key Laboratory of Biomedical Information Engineering of Ministry of Education, School of Life Science and Technology, Xi'an Jiaotong University, Xi'an, China; Bioinspired Engineering and Biomechanics Center (BEBC), Xi'an Jiaotong University, Xi'an, China
| | - Ning Xie
- Department of Gastroenterology, The Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China; Shaanxi Key Laboratory of Gastrointestinal Motility Disorders, Xi'an Jiaotong University, Xi'an, China; The Key Laboratory of Biomedical Information Engineering of Ministry of Education, School of Life Science and Technology, Xi'an Jiaotong University, Xi'an, China; Bioinspired Engineering and Biomechanics Center (BEBC), Xi'an Jiaotong University, Xi'an, China
| | - Xiru Liang
- Department of Gastroenterology, The Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China; Shaanxi Key Laboratory of Gastrointestinal Motility Disorders, Xi'an Jiaotong University, Xi'an, China
| | - Qiuai Shu
- Department of Gastroenterology, The Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China; Shaanxi Key Laboratory of Gastrointestinal Motility Disorders, Xi'an Jiaotong University, Xi'an, China
| | - Yijie Hong
- Department of Gastroenterology, The Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China; Shaanxi Key Laboratory of Gastrointestinal Motility Disorders, Xi'an Jiaotong University, Xi'an, China
| | - Haitao Shi
- Department of Gastroenterology, The Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China; Shaanxi Key Laboratory of Gastrointestinal Motility Disorders, Xi'an Jiaotong University, Xi'an, China
| | - Jinhai Wang
- Department of Gastroenterology, The Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China; Shaanxi Key Laboratory of Gastrointestinal Motility Disorders, Xi'an Jiaotong University, Xi'an, China
| | - Daiming Fan
- State Key Laboratory of Holistic Integrative Management of Gastrointestinal Cancers and National Clinical Research Center for Digestive Diseases, Xijing Hospital of Digestive Diseases, Fourth Military Medical University, Xi'an, China.
| | - Na Liu
- Department of Gastroenterology, Hainan General Hospital (Hainan Affiliated Hospital of Hainan Medical University), Haikou, China.
| | - Feng Xu
- The Key Laboratory of Biomedical Information Engineering of Ministry of Education, School of Life Science and Technology, Xi'an Jiaotong University, Xi'an, China; Bioinspired Engineering and Biomechanics Center (BEBC), Xi'an Jiaotong University, Xi'an, China.
| |
Collapse
|
8
|
Li M, Xiong L, Chen W, Li Y, Khan A, Powell CA, Chen B, Zhang M. VirB11, a traffic ATPase, mediated flagella assembly and type IV pilus morphogenesis to control the motility and virulence of Xanthomonas albilineans. MOLECULAR PLANT PATHOLOGY 2024; 25:e70001. [PMID: 39223938 PMCID: PMC11369208 DOI: 10.1111/mpp.70001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/17/2024] [Revised: 07/29/2024] [Accepted: 08/13/2024] [Indexed: 09/04/2024]
Abstract
Xanthomonas albilineans (Xal) is a gram-negative bacterial pathogen responsible for developing sugarcane leaf scald disease, which engenders significant economic losses within the sugarcane industry. In the current study, homologous recombination exchange was carried out to induce mutations within the virB/D4-like type IV secretion system (T4SS) genes of Xal. The results revealed that the virB11-deletion mutant (ΔvirB11) exhibited a loss in swimming and twitching motility. Application of transmission electron microscopy analysis further demonstrated that the ΔvirB11 failed to develop flagella formation and type IV pilus morphology and exhibited reduced swarming behaviour and virulence. However, these alterations had no discernible impact on bacterial growth. Comparative transcriptome analysis between the wild-type Xal JG43 and the deletion-mutant ΔvirB11 revealed 123 differentially expressed genes (DEGs), of which 28 and 10 DEGs were notably associated with flagellar assembly and chemotaxis, respectively. In light of these findings, we postulate that virB11 plays an indispensable role in regulating the processes related to motility and chemotaxis in Xal.
Collapse
Affiliation(s)
- Meilin Li
- Guangxi Key Laboratory for Sugarcane Biology & State Key Laboratory of Conservation and Utilization for Subtropical Agri‐Biological ResourcesGuangxi UniversityNanningGuangxiChina
| | - Liya Xiong
- Guangxi Key Laboratory for Sugarcane Biology & State Key Laboratory of Conservation and Utilization for Subtropical Agri‐Biological ResourcesGuangxi UniversityNanningGuangxiChina
| | - Wenhan Chen
- Guangxi Key Laboratory for Sugarcane Biology & State Key Laboratory of Conservation and Utilization for Subtropical Agri‐Biological ResourcesGuangxi UniversityNanningGuangxiChina
| | - YiSha Li
- Guangxi Key Laboratory for Sugarcane Biology & State Key Laboratory of Conservation and Utilization for Subtropical Agri‐Biological ResourcesGuangxi UniversityNanningGuangxiChina
| | - Abdullah Khan
- Guangxi Key Laboratory for Sugarcane Biology & State Key Laboratory of Conservation and Utilization for Subtropical Agri‐Biological ResourcesGuangxi UniversityNanningGuangxiChina
| | | | - Baoshan Chen
- Guangxi Key Laboratory for Sugarcane Biology & State Key Laboratory of Conservation and Utilization for Subtropical Agri‐Biological ResourcesGuangxi UniversityNanningGuangxiChina
| | - Muqing Zhang
- Guangxi Key Laboratory for Sugarcane Biology & State Key Laboratory of Conservation and Utilization for Subtropical Agri‐Biological ResourcesGuangxi UniversityNanningGuangxiChina
| |
Collapse
|
9
|
Wang Z, Li S, Zhang S, Zhang T, Wu Y, Liu A, Wang K, Ji X, Cao H, Zhang Y, Tan EK, Wang Y, Wang Y, Liu W. Hosts manipulate lifestyle switch and pathogenicity heterogeneity of opportunistic pathogens in the single-cell resolution. eLife 2024; 13:RP96789. [PMID: 39190452 PMCID: PMC11349298 DOI: 10.7554/elife.96789] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/28/2024] Open
Abstract
Host-microbe interactions are virtually bidirectional, but how the host affects their microbiome is poorly understood. Here, we report that the host is a critical modulator to regulate the lifestyle switch and pathogenicity heterogeneity of the opportunistic pathogens Serratia marcescens utilizing the Drosophila and bacterium model system. First, we find that Drosophila larvae efficiently outcompete S. marcescens and typically drive a bacterial switch from pathogenicity to commensalism toward the fly. Furthermore, Drosophila larvae reshape the transcriptomic and metabolic profiles of S. marcescens characterized by a lifestyle switch. More importantly, the host alters pathogenicity and heterogeneity of S. marcescens in the single-cell resolution. Finally, we find that larvae-derived AMPs are required to recapitulate the response of S. marcescens to larvae. Altogether, our findings provide an insight into the pivotal roles of the host in harnessing the life history and heterogeneity of symbiotic bacterial cells, advancing knowledge of the reciprocal relationships between the host and pathogen.
Collapse
Affiliation(s)
- Ziguang Wang
- School of Plant Protection; Anhui Province Key Laboratory of Crop Integrated Pest Management; Anhui Province Key Laboratory of Resource Insect Biology and Innovative Utilization, Anhui Agricultural UniversityHefeiChina
- College of Life Sciences, Nankai UniversityTianjinChina
- First Clinical Medical College, Mudanjiang Medical CollegeMudanjiangChina
| | - Shuai Li
- Bioinformatics Center, College of Biology, Hunan UniversityChangshaChina
| | - Sheng Zhang
- School of Plant Protection; Anhui Province Key Laboratory of Crop Integrated Pest Management; Anhui Province Key Laboratory of Resource Insect Biology and Innovative Utilization, Anhui Agricultural UniversityHefeiChina
| | - Tianyu Zhang
- Liangzhu Laboratory, Zhejiang UniversityHangzhouChina
| | - Yujie Wu
- School of Plant Protection; Anhui Province Key Laboratory of Crop Integrated Pest Management; Anhui Province Key Laboratory of Resource Insect Biology and Innovative Utilization, Anhui Agricultural UniversityHefeiChina
| | - Anqi Liu
- School of Plant Protection; Anhui Province Key Laboratory of Crop Integrated Pest Management; Anhui Province Key Laboratory of Resource Insect Biology and Innovative Utilization, Anhui Agricultural UniversityHefeiChina
| | - Kui Wang
- School of Plant Protection; Anhui Province Key Laboratory of Crop Integrated Pest Management; Anhui Province Key Laboratory of Resource Insect Biology and Innovative Utilization, Anhui Agricultural UniversityHefeiChina
| | - Xiaowen Ji
- School of Plant Protection; Anhui Province Key Laboratory of Crop Integrated Pest Management; Anhui Province Key Laboratory of Resource Insect Biology and Innovative Utilization, Anhui Agricultural UniversityHefeiChina
| | - Haiqun Cao
- School of Plant Protection; Anhui Province Key Laboratory of Crop Integrated Pest Management; Anhui Province Key Laboratory of Resource Insect Biology and Innovative Utilization, Anhui Agricultural UniversityHefeiChina
| | - Yinglao Zhang
- School of Plant Protection; Anhui Province Key Laboratory of Crop Integrated Pest Management; Anhui Province Key Laboratory of Resource Insect Biology and Innovative Utilization, Anhui Agricultural UniversityHefeiChina
| | - Eng King Tan
- Department of Neurology, National Neuroscience Institute, Singapore General Hospital CampusSingaporeSingapore
| | | | - Yirong Wang
- Bioinformatics Center, College of Biology, Hunan UniversityChangshaChina
| | - Wei Liu
- School of Plant Protection; Anhui Province Key Laboratory of Crop Integrated Pest Management; Anhui Province Key Laboratory of Resource Insect Biology and Innovative Utilization, Anhui Agricultural UniversityHefeiChina
| |
Collapse
|
10
|
Jain S, Chakravortty D, Basu S. Interfacial Stresses within Droplets and Channels Influence Bacterial Physiology: A Perspective. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2024; 40:17161-17169. [PMID: 39101817 DOI: 10.1021/acs.langmuir.4c01923] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/06/2024]
Abstract
Bacterial cells frequently experience fluid motion in their natural environments, like water bodies, aerosols, fomites, human capillaries, etc., a phenomenon that researchers have largely overlooked. Nevertheless, some reports have suggested that the interfacial stresses caused by fluid motion inside evaporating droplets or shear flows within capillaries may trigger physiological and morphological changes in the bacterial cells. Remarkably, the virulence of bacterial cells exhibits significant alterations in response to fluctuations in stress levels and external environmental factors. The dynamics of bacterial systems are analogous to colloidal systems but with the distinction that bacterial systems exhibit responsiveness, necessitating thorough exploration in dynamic environments. In this perspective, we discuss the important issue pertaining to bacterial survival, virulence, and disease transmission. Furthermore, we delineate a pathway and underscore emerging opportunities that demand exploration to unveil new avenues in the domains of bacterial pathogenicity, drug development, and strategies for disease mitigation.
Collapse
Affiliation(s)
- Siddhant Jain
- Department of Mechanical Engineering, Indian Institute of Science, Bengaluru 560012, India
| | - Dipshikha Chakravortty
- Department of Microbiology and Cell Biology, Indian Institute of Science, Bengaluru 560012, India
| | - Saptarshi Basu
- Department of Mechanical Engineering, Indian Institute of Science, Bengaluru 560012, India
| |
Collapse
|
11
|
Mookherjee A, Mitra M, Sason G, Jose PA, Martinenko M, Pietrokovski S, Jurkevitch E. Flagellar stator genes control a trophic shift from obligate to facultative predation and biofilm formation in a bacterial predator. mBio 2024; 15:e0071524. [PMID: 39037271 PMCID: PMC11323537 DOI: 10.1128/mbio.00715-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2024] [Accepted: 06/13/2024] [Indexed: 07/23/2024] Open
Abstract
The bacterial predator Bdellovibrio bacteriovorus is considered to be obligatorily prey (host)-dependent (H-D), and thus unable to form biofilms. However, spontaneous host-independent (H-I) variants grow axenically and can form robust biofilms. A screen of 350 H-I mutants revealed that single mutations in stator genes fliL or motA were sufficient to generate flagellar motility-defective H-I strains able to adhere to surfaces but unable to develop biofilms. The variants showed large transcriptional shifts in genes related to flagella, prey-invasion, and cyclic-di-GMP (CdG), as well as large changes in CdG cellular concentration relative to the H-D parent. The introduction of the parental fliL allele resulted in a full reversion to the H-D phenotype, but we propose that specific interactions between stator proteins prevented functional complementation by fliL paralogs. In contrast, specific mutations in a pilus-associated protein (Bd0108) mutant background were necessary for biofilm formation, including secretion of extracellular DNA (eDNA), proteins, and polysaccharides matrix components. Remarkably, fliL disruption strongly reduced biofilm development. All H-I variants grew similarly without prey, showed a strain-specific reduction in predatory ability in prey suspensions, but maintained similar high efficiency in prey biofilms. Population-wide allele sequencing suggested additional routes to host independence. Thus, stator and invasion pole-dependent signaling control the H-D and the H-I biofilm-forming phenotypes, with single mutations overriding prey requirements, and enabling shifts from obligate to facultative predation, with potential consequences on community dynamics. Our findings on the facility and variety of changes leading to facultative predation also challenge the concept of Bdellovibrio and like organisms being obligate predators. IMPORTANCE The ability of bacteria to form biofilms is a central research theme in biology, medicine, and the environment. We show that cultures of the obligate (host-dependent) "solitary" predatory bacterium Bdellovibrio bacteriovorus, which cannot replicate without prey, can use various genetic routes to spontaneously yield host-independent (H-I) variants that grow axenically (as a single species, in the absence of prey) and exhibit various surface attachment phenotypes, including biofilm formation. These routes include single mutations in flagellar stator genes that affect biofilm formation, provoke motor instability and large motility defects, and disrupt cyclic-di-GMP intracellular signaling. H-I strains also exhibit reduced predatory efficiency in suspension but high efficiency in prey biofilms. These changes override the requirements for prey, enabling a shift from obligate to facultative predation, with potential consequences on community dynamics.
Collapse
Affiliation(s)
- Abhirup Mookherjee
- Department of Plant Pathology and Microbiology, Faculty of Agriculture, Food and Environment, The Hebrew University of Jerusalem, Rehovot, Israel
| | - Mohor Mitra
- Department of Plant Pathology and Microbiology, Faculty of Agriculture, Food and Environment, The Hebrew University of Jerusalem, Rehovot, Israel
| | - Gal Sason
- Department of Plant Pathology and Microbiology, Faculty of Agriculture, Food and Environment, The Hebrew University of Jerusalem, Rehovot, Israel
| | - Polpass Arul Jose
- Department of Plant Pathology and Microbiology, Faculty of Agriculture, Food and Environment, The Hebrew University of Jerusalem, Rehovot, Israel
| | - Maria Martinenko
- Department of Plant Pathology and Microbiology, Faculty of Agriculture, Food and Environment, The Hebrew University of Jerusalem, Rehovot, Israel
| | - Shmuel Pietrokovski
- Department of Molecular Genetics, Weizmann Institute of Science, Rehovot, Israel
| | - Edouard Jurkevitch
- Department of Plant Pathology and Microbiology, Faculty of Agriculture, Food and Environment, The Hebrew University of Jerusalem, Rehovot, Israel
| |
Collapse
|
12
|
de Souza Heidel BL, Benson J, O'Keane S, Dodge AG, Wackett LP, Aksan A. A Model for Mechanical Stress Limited Bacterial Growth and Resporulation in Confinement. ACS APPLIED MATERIALS & INTERFACES 2024; 16:41800-41809. [PMID: 39088721 DOI: 10.1021/acsami.4c04354] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/03/2024]
Abstract
In this study, we propose a self-limiting growth model forBacillus subtilisspores confined within porous polyacrylamide (PA) hydrogels. We observed thatB. subtilisspores germinate into vegetative cells within the hydrogel matrix, forming spherical colonies. These colonies expand until the mechanical stress they exert on their environment surpasses the yield stress of the hydrogel, leading to formation of a nonpermeable layer that halts nutrient diffusion and forces the bacteria to resporulate. These novel observations suggest a model to explain why bacterial growth in confined environments and material interfaces may be limited, providing insight for natural phenomena and biotechnological applications involving bacterial encapsulation.
Collapse
Affiliation(s)
- Beatriz L de Souza Heidel
- Bioencapsulation Laboratory, Department of Mechanical Engineering, University of Minnesota, Minneapolis, Minnesota 55455, United States
| | - Joey Benson
- Bioencapsulation Laboratory, Department of Mechanical Engineering, University of Minnesota, Minneapolis, Minnesota 55455, United States
| | - Sophie O'Keane
- Bioencapsulation Laboratory, Department of Mechanical Engineering, University of Minnesota, Minneapolis, Minnesota 55455, United States
| | - Anthony G Dodge
- Department of Biochemistry, Molecular Biology and Biophysics, University of Minnesota, St. Paul, Minnesota 55108, United States
| | - Lawrence P Wackett
- Department of Biochemistry, Molecular Biology and Biophysics, University of Minnesota, St. Paul, Minnesota 55108, United States
- The BioTechnology Institute, University of Minnesota, St. Paul, Minnesota 55108, United States
| | - Alptekin Aksan
- Bioencapsulation Laboratory, Department of Mechanical Engineering, University of Minnesota, Minneapolis, Minnesota 55455, United States
- The BioTechnology Institute, University of Minnesota, St. Paul, Minnesota 55108, United States
| |
Collapse
|
13
|
Blondel M, Machet C, Wildemann B, Abidine Y, Swider P. Mechanobiology of bacterial biofilms: Implications for orthopedic infection. J Orthop Res 2024; 42:1861-1869. [PMID: 38432991 DOI: 10.1002/jor.25822] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/21/2023] [Revised: 02/14/2024] [Accepted: 02/19/2024] [Indexed: 03/05/2024]
Abstract
Postoperative bacterial infections are prevalent complications in both human and veterinary orthopedic surgery, particularly when a biofilm develops. These infections often result in delayed healing, early revision, permanent functional loss, and, in severe cases, amputation. The diagnosis and treatment pose significant challenges, and bacterial biofilm further amplifies the therapeutic difficulty as it confers protection against the host immune system and against antibiotics which are usually administered as a first-line therapeutic option. However, the inappropriate use of antibiotics has led to the emergence of numerous multidrug-resistant organisms, which largely compromise the already imperfect treatment efficiency. In this context, the study of bacterial biofilm formation allows to better target antibiotic use and to evaluate alternative therapeutic strategies. Exploration of the roles played by mechanical factors on biofilm development is of particular interest, especially because cartilage and bone tissues are reactive environments that are subjected to mechanical load. This review delves into the current landscape of biofilm mechanobiology, exploring the role of mechanical factors on biofilm development through a multiscale prism starting from bacterial microscopic scale to reach biofilm mesoscopic size and finally the macroscopic scale of the fracture site or bone-implant interface.
Collapse
Affiliation(s)
- Margaux Blondel
- Small Animal Surgery Department, Lyon University, VetAgro Sup, Marcy l'Etoile, France
| | - Camille Machet
- National Veterinary School of Toulouse, Toulouse, France
| | - Britt Wildemann
- Experimental Trauma Surgery, Department of Trauma, Hand and Reconstructive Surgery, Jena University Hospital, Friedrich Schiller University Jena, Jena, Germany
| | - Yara Abidine
- Institut de Mécanique des Fluides (IMFT), CNRS & Toulouse University, Toulouse, France
| | - Pascal Swider
- Institut de Mécanique des Fluides (IMFT), CNRS & Toulouse University, Toulouse, France
| |
Collapse
|
14
|
Geiger CJ, Wong GCL, O'Toole GA. A bacterial sense of touch: T4P retraction motor as a means of surface sensing by Pseudomonas aeruginosa PA14. J Bacteriol 2024; 206:e0044223. [PMID: 38832786 PMCID: PMC11270903 DOI: 10.1128/jb.00442-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/05/2024] Open
Abstract
Most microbial cells found in nature exist in matrix-covered, surface-attached communities known as biofilms. This mode of growth is initiated by the ability of the microbe to sense a surface on which to grow. The opportunistic pathogen Pseudomonas aeruginosa (Pa) PA14 utilizes a single polar flagellum and type 4 pili (T4P) to sense surfaces. For Pa, T4P-dependent "twitching" motility is characterized by effectively pulling the cell across a surface through a complex process of cooperative binding, pulling, and unbinding. T4P retraction is powered by hexameric ATPases. Pa cells that have engaged a surface increase production of the second messenger cyclic AMP (cAMP) over multiple generations via the Pil-Chp system. This rise in cAMP allows cells and their progeny to become better adapted for surface attachment and activates virulence pathways through the cAMP-binding transcription factor Vfr. While many studies have focused on mechanisms of T4P twitching and regulation of T4P production and function by the Pil-Chp system, the mechanism by which Pa senses and relays a surface-engagement signal to the cell is still an open question. Here we review the current state of the surface sensing literature for Pa, with a focus on T4P, and propose an integrated model of surface sensing whereby the retraction motor PilT senses and relays the signal to the Pil-Chp system via PilJ to drive cAMP production and adaptation to a surface lifestyle.
Collapse
Affiliation(s)
- C. J. Geiger
- Department of Microbiology and Immunology, Geisel School of Medicine at Dartmouth, Hanover, New Hampshire, USA
| | - G. C. L. Wong
- Department of Bioengineering, University of California, Los Angeles, Los Angeles, California, USA
- Department of Chemistry and Biochemistry, University of California, Los Angeles, Los Angeles, California, USA
- California NanoSystems Institute, University of California, Los Angeles, Los Angeles, California, USA
| | - G. A. O'Toole
- Department of Microbiology and Immunology, Geisel School of Medicine at Dartmouth, Hanover, New Hampshire, USA
| |
Collapse
|
15
|
Hubert A, Tabuteau H, Farasin J, Loncar A, Dufresne A, Méheust Y, Le Borgne T. Fluid flow drives phenotypic heterogeneity in bacterial growth and adhesion on surfaces. Nat Commun 2024; 15:6161. [PMID: 39039040 PMCID: PMC11263347 DOI: 10.1038/s41467-024-49997-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2020] [Accepted: 06/25/2024] [Indexed: 07/24/2024] Open
Abstract
Bacteria often thrive in surface-attached communities, where they can form biofilms affording them multiple advantages. In this sessile form, fluid flow is a key component of their environments, renewing nutrients and transporting metabolic products and signaling molecules. It also controls colonization patterns and growth rates on surfaces, through bacteria transport, attachment and detachment. However, the current understanding of bacterial growth on surfaces neglects the possibility that bacteria may modulate their division behavior as a response to flow. Here, we employed single-cell imaging in microfluidic experiments to demonstrate that attached Escherichia coli cells can enter a growth arrest state while simultaneously enhancing their adhesion underflow. Despite utilizing clonal populations, we observed a non-uniform response characterized by bistable dynamics, with co-existing subpopulations of non-dividing and actively dividing bacteria. As the proportion of non-dividing bacteria increased with the applied flow rate, it resulted in a reduction in the average growth rate of bacterial populations on flow-exposed surfaces. Dividing bacteria exhibited asymmetric attachment, whereas non-dividing counterparts adhered to the surface via both cell poles. Hence, this phenotypic diversity allows bacterial colonies to combine enhanced attachment with sustained growth, although at a reduced rate, which may be a significant advantage in fluctuating flow conditions.
Collapse
Affiliation(s)
- Antoine Hubert
- Géosciences Rennes, UMR 6118 University of Rennes and CNRS, Rennes, France
| | - Hervé Tabuteau
- Institut de Physique de Rennes, UMR 6251 University of Rennes and CNRS, Rennes, France.
| | - Julien Farasin
- Géosciences Rennes, UMR 6118 University of Rennes and CNRS, Rennes, France
| | - Aleksandar Loncar
- Géosciences Rennes, UMR 6118 University of Rennes and CNRS, Rennes, France
| | - Alexis Dufresne
- ECOBIO, UMR 6553 University of Rennes and CNRS, Rennes, France
| | - Yves Méheust
- Géosciences Rennes, UMR 6118 University of Rennes and CNRS, Rennes, France
| | - Tanguy Le Borgne
- Géosciences Rennes, UMR 6118 University of Rennes and CNRS, Rennes, France.
| |
Collapse
|
16
|
Freckelton ML, Nedved BT, Hadfield MG. Bacterial envelope polysaccharide cues settlement and metamorphosis in the biofouling tubeworm Hydroides elegans. Commun Biol 2024; 7:883. [PMID: 39030323 PMCID: PMC11271524 DOI: 10.1038/s42003-024-06585-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2023] [Accepted: 07/15/2024] [Indexed: 07/21/2024] Open
Abstract
Metamorphosis for many marine invertebrates is triggered by external cues, commonly produced by bacteria. For larvae of Hydroides elegans, lipopolysaccharide (LPS) from the biofilm-dwelling bacterium Cellulophaga lytica induces metamorphosis. To determine whether bacterial LPS is a common metamorphosis-inducing factor for this species, we compare larval responses to LPS from 3 additional inductive Gram-negative marine biofilm bacteria with commercially available LPS from 3 bacteria not known to induce metamorphosis. LPS from all the inductive bacteria trigger metamorphosis, while LPS from non-inductive isolated marine bacteria do not. We then ask, which part of the LPS is the inductive element, the lipid (Lipid-A) or the polysaccharide (O-antigen), and find it is the latter for all four inductive bacteria. Finally, we examine the LPS subunits from two strains of the same bacterial species, one inductive and the other not, and find the LPS and O-antigen to be inductive from only the inductive bacterial strain.
Collapse
Affiliation(s)
| | - Brian T Nedved
- Kewalo Marine Laboratory, University of Hawai'i, Honolulu, HI, 96813, USA
| | - Michael G Hadfield
- Kewalo Marine Laboratory, University of Hawai'i, Honolulu, HI, 96813, USA.
| |
Collapse
|
17
|
Yang Y, Li M. Side-view optical microscopy-assisted atomic force microscopy for thickness-dependent nanobiomechanics. NANOSCALE ADVANCES 2024; 6:3306-3319. [PMID: 38933861 PMCID: PMC11197429 DOI: 10.1039/d4na00153b] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/22/2024] [Accepted: 04/06/2024] [Indexed: 06/28/2024]
Abstract
The mechanical properties of biomaterials play an important role in regulating life processes, and thus accurately delineating the mechanical properties of biomaterials is critical to understand their functionality. Particularly, atomic force microscopy (AFM) has become a powerful and standard tool for characterizing and analyzing the nanomechanical properties of biomaterials, and providing a capability to visualize the thickness of the specimen during AFM-based force spectroscopy experiments benefits the biomedical applications of AFM. Here, we present a study of side-view optical microscopy-assisted AFM based on the integration of AFM and a detachable side-view optical microscopy module, which is able to image in real time the AFM indentation process from the side-view perspective and consequently facilitates the utilization of AFM-based indentation assay to precisely detect the mechanical properties of a specimen by taking its thickness into account. The effectiveness of side-view optical microscopy-assisted AFM was confirmed on four different types of biomaterial systems, including microfabricated structures, hydrogels, living cells, and cell spheroids, and the experimental results significantly show that the mechanical properties of samples at the micro/nanoscale are closely related to their thickness, vividly illustrating side-view optical microscopy-assisted AFM as a promising approach for accurate nanomechanics of biomaterial systems. The study provides additional possibilities for measuring the thickness-dependent nanomechanical properties of biomaterials by AFM, which will enable AFM-based force spectroscopy technology to address more biological issues with enhanced precision and will benefit the field of mechanobiology.
Collapse
Affiliation(s)
- Yanqi Yang
- State Key Laboratory of Robotics, Shenyang Institute of Automation, Chinese Academy of Sciences Shenyang 110016 China
- Institutes for Robotics and Intelligent Manufacturing, Chinese Academy of Sciences Shenyang 110169 China
- University of Chinese Academy of Sciences Beijing 100049 China
| | - Mi Li
- State Key Laboratory of Robotics, Shenyang Institute of Automation, Chinese Academy of Sciences Shenyang 110016 China
- Institutes for Robotics and Intelligent Manufacturing, Chinese Academy of Sciences Shenyang 110169 China
- University of Chinese Academy of Sciences Beijing 100049 China
| |
Collapse
|
18
|
Liu YN, Liu XW. Nanoscale Spatiotemporal Dynamics of Microbial Adhesion: Unveiling Stepwise Transitions with Plasmonic Imaging. ACS NANO 2024; 18:16002-16010. [PMID: 38837910 DOI: 10.1021/acsnano.4c04354] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/07/2024]
Abstract
Understanding bacterial adhesion at the nanoscale is crucial for elucidating biofilm formation, enhancing biosensor performance, and designing advanced biomaterials. However, the dynamics of the critical transition from reversible to irreversible adhesion has remained elusive due to analytical constraints. Here, we probed this adhesion transition, unveiling nanoscale, step-like bacterial approaches to substrates using a plasmonic imaging technique. This method reveals the discontinuous nature of adhesion, emphasizing the complex interplay between bacterial extracellular polymeric substances (EPS) and substrates. Our findings not only deepen our understanding of bacterial adhesion but also have significant implications for the development of theoretical models for biofilm management. By elucidating these nanoscale step-like adhesion processes, our work provides avenues for the application of nanotechnology in biosensing, biofilm control, and the creation of biomimetic materials.
Collapse
Affiliation(s)
- Yi-Nan Liu
- Hefei National Laboratory for Physical Sciences at the Microscale, Chinese Academy of Sciences Key Laboratory of Urban Pollutant Conversion, Department of Environmental Science and Engineering, University of Science and Technology of China, Hefei 230026, China
| | - Xian-Wei Liu
- Hefei National Laboratory for Physical Sciences at the Microscale, Chinese Academy of Sciences Key Laboratory of Urban Pollutant Conversion, Department of Environmental Science and Engineering, University of Science and Technology of China, Hefei 230026, China
- Department of Applied Chemistry, University of Science and Technology of China, Hefei 230026, China
| |
Collapse
|
19
|
Lee K, Han J. Analysis of the urine flow characteristics inside catheters for intermittent catheter selection. Sci Rep 2024; 14:13273. [PMID: 38858470 PMCID: PMC11164700 DOI: 10.1038/s41598-024-64395-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2023] [Accepted: 06/07/2024] [Indexed: 06/12/2024] Open
Abstract
In this study, we conducted a numerical analysis on catheter sizes using computational fluid dynamics to assess urinary flow rates during intermittent catheterization (IC). The results revealed that the fluid (urine) movement within a catheter is driven by intravesical pressure, with friction against the catheter walls being the main hindrance to fluid movement. Higher-viscosity fluids experienced increased friction with increasing intravesical pressure, resulting in reduced fluid velocity, whereas lower-viscosity fluids experienced reduced friction under similar pressure, leading to increased fluid velocity. Regarding urine characteristics, the results indicated that bacteriuria, with lower viscosity, exhibited higher flow rates, whereas glucosuria exhibited the lowest flow rates. Additionally, velocity gradients decreased with increasing catheter diameters, reducing friction and enhancing fluid speed, while the friction increased with decreasing diameters, reducing fluid velocity. These findings confirm that flow rates increased with larger catheter sizes. Furthermore, in terms of specific gravity, the results showed that a 12Fr catheter did not meet the ISO-suggested average flow rate (50 cc/min). The significance of this study lies in its application of fluid dynamics to nursing, examining urinary flow characteristics in catheterization. It is expected to aid nurses in selecting appropriate catheters for intermittent catheterization based on urinary test results.
Collapse
Affiliation(s)
- Kyeongeun Lee
- College of Nursing Science, Kyung Hee University, Seoul, Republic of Korea
| | - Jeongwon Han
- College of Nursing Science, Kyung Hee University, Seoul, Republic of Korea.
| |
Collapse
|
20
|
Shuppara AM, Padron GC, Sharma A, Modi Z, Koch MD, Sanfilippo JE. Fluid flow overcomes antimicrobial resistance by boosting delivery. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.05.08.591722. [PMID: 38766052 PMCID: PMC11100760 DOI: 10.1101/2024.05.08.591722] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/22/2024]
Abstract
Antimicrobial resistance is an emerging global threat to humanity. As resistance outpaces development, new perspectives are required. For decades, scientists have prioritized chemical optimization, while largely ignoring the physical process of delivery. Here, we used biophysical simulations and microfluidic experiments to explore how fluid flow delivers antimicrobials into communities of the highly resistant pathogen Pseudomonas aeruginosa . We discover that increasing flow overcomes bacterial resistance towards three chemically distinct antimicrobials: hydrogen peroxide, gentamicin, and carbenicillin. Without flow, resistant P. aeruginosa cells generate local zones of depletion by neutralizing all three antimicrobials through degradation or chemical modification. As flow increases, delivery overwhelms neutralization, allowing antimicrobials to regain effectiveness against resistant bacteria. Additionally, we discover that cells on the edge of a community shield internal cells, and cell-cell shielding is abolished in higher flow regimes. Collectively, our quantitative experiments reveal the unexpected result that physical flow and chemical dosage are equally important to antimicrobial effectiveness. Thus, our results should inspire the incorporation of flow into the discovery, development, and implementation of antimicrobials, and could represent a new strategy to combat antimicrobial resistance.
Collapse
|
21
|
Li C, Nijjer J, Feng L, Zhang Q, Yan J, Zhang S. Agent-based modeling of stress anisotropy driven nematic ordering in growing biofilms. SOFT MATTER 2024; 20:3401-3410. [PMID: 38563244 DOI: 10.1039/d3sm01535a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/04/2024]
Abstract
Living active collectives have evolved with remarkable self-patterning capabilities to adapt to the physical and biological constraints crucial for their growth and survival. However, the intricate process by which complex multicellular patterns emerge from a single founder cell remains elusive. In this study, we utilize an agent-based model, validated through single-cell microscopy imaging, to track the three-dimensional (3D) morphodynamics of cells within growing bacterial biofilms encased by agarose gels. The confined growth conditions give rise to a spatiotemporally heterogeneous stress landscape within the biofilm. In the core of the biofilm, where high hydrostatic and low shear stresses prevail, cell packing appears disordered. In contrast, near the gel-cell interface, a state of high shear stress and low hydrostatic stress emerges, driving nematic ordering, albeit with a time delay inherent to shear stress relaxation. Strikingly, we observe a robust spatiotemporal correlation between stress anisotropy and nematic ordering within these confined biofilms. This correlation suggests a mechanism whereby stress anisotropy plays a pivotal role in governing the spatial organization of cells. The reciprocity between stress anisotropy and cell ordering in confined biofilms opens new avenues for innovative 3D mechanically guided patterning techniques for living active collectives, which hold significant promise for a wide array of environmental and biomedical applications.
Collapse
Affiliation(s)
- Changhao Li
- Department of Engineering Science and Mechanics, Pennsylvania State University, University Park, PA, USA.
| | - Japinder Nijjer
- Department of Molecular, Cellular and Developmental Biology, Yale University, New Haven, CT, USA.
| | - Luyi Feng
- Department of Engineering Science and Mechanics, Pennsylvania State University, University Park, PA, USA.
| | - Qiuting Zhang
- Department of Molecular, Cellular and Developmental Biology, Yale University, New Haven, CT, USA.
| | - Jing Yan
- Department of Molecular, Cellular and Developmental Biology, Yale University, New Haven, CT, USA.
- Quantitative Biology Institute, Yale University, New Haven, CT, USA
| | - Sulin Zhang
- Department of Engineering Science and Mechanics, Pennsylvania State University, University Park, PA, USA.
- Department of Biomedical Engineering, Pennsylvania State University, University Park, PA, USA
- Department of Material Science and Engineering, Pennsylvania State University, University Park, PA, USA
| |
Collapse
|
22
|
Hancock AM, Datta SS. Interplay between environmental yielding and dynamic forcing modulates bacterial growth. Biophys J 2024; 123:957-967. [PMID: 38454600 PMCID: PMC11052696 DOI: 10.1016/j.bpj.2024.03.008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2023] [Revised: 02/22/2024] [Accepted: 03/04/2024] [Indexed: 03/09/2024] Open
Abstract
Many bacterial habitats-ranging from gels and tissues in the body to cell-secreted exopolysaccharides in biofilms-are rheologically complex, undergo dynamic external forcing, and have unevenly distributed nutrients. How do these features jointly influence how the resident cells grow and proliferate? Here, we address this question by studying the growth of Escherichia coli dispersed in granular hydrogel matrices with defined and highly tunable structural and rheological properties, under different amounts of external forcing imposed by mechanical shaking, and in both aerobic and anaerobic conditions. Our experiments establish a general principle: that the balance between the yield stress of the environment that the cells inhabit, σy, and the external stress imposed on the environment, σ, modulates bacterial growth by altering transport of essential nutrients to the cells. In particular, when σy<σ, the environment is easily fluidized and mixed over large scales, providing nutrients to the cells and sustaining complete cellular growth. By contrast, when σy>σ, the elasticity of the environment suppresses large-scale fluid mixing, limiting nutrient availability and arresting cellular growth. Our work thus reveals a new mechanism, beyond effects that change cellular behavior via local forcing, by which the rheology of the environment may modulate microbial physiology in diverse natural and industrial settings.
Collapse
Affiliation(s)
- Anna M Hancock
- Chemical and Biological Engineering, Princeton University, Princeton, New Jersey
| | - Sujit S Datta
- Chemical and Biological Engineering, Princeton University, Princeton, New Jersey.
| |
Collapse
|
23
|
Harcombe WR. Taking mechanomicrobiology from local to global. Biophys J 2024; 123:929-930. [PMID: 38461369 PMCID: PMC11052689 DOI: 10.1016/j.bpj.2024.03.014] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/29/2024] [Revised: 03/07/2024] [Accepted: 03/07/2024] [Indexed: 03/11/2024] Open
Affiliation(s)
- W R Harcombe
- Ecology, Evolution and Behavior, University of Minnesota, St. Paul, Minnesota.
| |
Collapse
|
24
|
Liu Y, Lo JHY, Nunes JK, Stone HA, Shum HC. High-throughput measurement of elastic moduli of microfibers by rope coiling. Proc Natl Acad Sci U S A 2024; 121:e2303679121. [PMID: 38478687 PMCID: PMC10962939 DOI: 10.1073/pnas.2303679121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2023] [Accepted: 02/05/2024] [Indexed: 03/27/2024] Open
Abstract
There are many fields where it is of interest to measure the elastic moduli of tiny fragile fibers, such as filamentous bacteria, actin filaments, DNA, carbon nanotubes, and functional microfibers. The elastic modulus is typically deduced from a sophisticated tensile test under a microscope, but the throughput is low and limited by the time-consuming and skill-intensive sample loading/unloading. Here, we demonstrate a simple microfluidic method enabling the high-throughput measurement of the elastic moduli of microfibers by rope coiling using a localized compression, where sample loading/unloading are not needed between consecutive measurements. The rope coiling phenomenon occurs spontaneously when a microfiber flows from a small channel into a wide channel. The elastic modulus is determined by measuring either the buckling length or the coiling radius. The throughput of this method, currently 3,300 fibers per hour, is a thousand times higher than that of a tensile tester. We demonstrate the feasibility of the method by testing a nonuniform fiber with axially varying elastic modulus. We also demonstrate its capability for in situ inline measurement in a microfluidic production line. We envisage that high-throughput measurements may facilitate potential applications such as screening or sorting by mechanical properties and real-time control during production of microfibers.
Collapse
Affiliation(s)
- Yuan Liu
- Department of Mechanical Engineering, University of Hong Kong, Hong Kong SAR, China
| | - Jack H. Y. Lo
- Center for Integrative Petroleum Research, College of Petroleum Engineering and Geosciences, King Fahd University of Petroleum and Minerals, Dhahran31261, Saudi Arabia
| | - Janine K. Nunes
- Department of Mechanical and Aerospace Engineering, Princeton University, Princeton, NJ08544
| | - Howard A. Stone
- Department of Mechanical and Aerospace Engineering, Princeton University, Princeton, NJ08544
| | - Ho Cheung Shum
- Department of Mechanical Engineering, University of Hong Kong, Hong Kong SAR, China
| |
Collapse
|
25
|
Landoulsi J. Surface (bio)-functionalization of metallic materials: How to cope with real interfaces? Adv Colloid Interface Sci 2024; 325:103054. [PMID: 38359674 DOI: 10.1016/j.cis.2023.103054] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2023] [Revised: 11/21/2023] [Accepted: 11/22/2023] [Indexed: 02/17/2024]
Abstract
Metallic materials are an important class of biomaterials used in various medical devices, owing to a suitable combination of their mechanical properties. The (bio)-functionalization of their surfaces is frequently performed for biocompatibility requirements, as it offers a powerful way to control their interaction with biological systems. This is particularly important when physicochemical processes and biological events, mainly involving proteins and cells, are initiated at the host-material interface. This review addresses the state of "real interfaces" in the context of (bio)-functionalization of metallic materials, and the necessity to cope with it to avoid frequent improper evaluation of the procedure used. This issue is, indeed, well-recognized but often neglected and emerges from three main issues: (i) ubiquity of surface contamination with organic compounds, (ii) reactivity of metallic surfaces in biological medium, and (iii) discrepancy in (bio)-functionalization procedures between expectations and reality. These disturb the assessment of the strategies adopted for surface modifications and limit the possibilities to provide guidelines for their improvements. For this purpose, X-ray photoelectrons spectroscopy (XPS) comes to the rescue. Based on significant progresses made in methodological developments, and through a large amount of data compiled to generate statistically meaningful information, and to insure selectivity, precision and accuracy, the state of "real interfaces" is explored in depth, while looking after the two main constituents: (i) the bio-organic adlayer, in which the discrimination between the compounds of interest (anchoring molecules, coupling agents, proteins, etc) and organic contaminants can be made, and (ii) the metallic surface, which undergoes dynamic processes due to their reactivity. Moreover, through one of the widespread (bio)-functionalization strategy, given as a case study, a particular attention is devoted to describe the state of the interface at different stages (composition, depth distribution of contaminants and (bio)compounds of interest) and the mode of protein retention. It is highlighted, in particular, that the occurrence or improvement of bioactivity does not demonstrate that the chemical schemes worked in reality. These aspects are particularly essential to make progress on the way to choose the suitable (bio)-functionalization strategy and to provide guidelines to improve its efficiency.
Collapse
Affiliation(s)
- Jessem Landoulsi
- Sorbonne Université, CNRS, Laboratoire de Réactivité de Surface, 4 place Jussieu, F-75005 Paris, France; Laboratoire de Biomécanique & Bioingénierie, CNRS, Université de Technologie de Compiègne, 20529 F-60205 Compiègne Cedex, France.
| |
Collapse
|
26
|
Chen Y, Topo EJ, Nan B, Chen J. Mathematical modeling of mechanosensitive reversal control in Myxococcus xanthus. Front Microbiol 2024; 14:1294631. [PMID: 38260904 PMCID: PMC10803039 DOI: 10.3389/fmicb.2023.1294631] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2023] [Accepted: 12/11/2023] [Indexed: 01/24/2024] Open
Abstract
Adjusting motility patterns according to environmental cues is important for bacterial survival. Myxococcus xanthus, a bacterium moving on surfaces by gliding and twitching mechanisms, modulates the reversal frequency of its front-back polarity in response to mechanical cues like substrate stiffness and cell-cell contact. In this study, we propose that M. xanthus's gliding machinery senses environmental mechanical cues during force generation and modulates cell reversal accordingly. To examine our hypothesis, we expand an existing mathematical model for periodic polarity reversal in M. xanthus, incorporating the experimental data on the intracellular dynamics of the gliding machinery and the interaction between the gliding machinery and a key polarity regulator. The model successfully reproduces the dependence of cell reversal frequency on substrate stiffness observed in M. xanthus gliding. We further propose reversal control networks between the gliding and twitching motility machineries to explain the opposite reversal responses observed in wild type M. xanthus cells that possess both motility mechanisms. These results provide testable predictions for future experimental investigations. In conclusion, our model suggests that the gliding machinery in M. xanthus can function as a mechanosensor, which transduces mechanical cues into a cell reversal signal.
Collapse
Affiliation(s)
- Yirui Chen
- Department of Biological Sciences, Virginia Tech, Blacksburg, VA, United States
- Genetics, Bioinformatics and Computational Biology Graduate Program, Virginia Tech, Blacksburg, VA, United States
| | - Elias J. Topo
- Department of Biology, Texas A&M University, College Station, TX, United States
| | - Beiyan Nan
- Department of Biology, Texas A&M University, College Station, TX, United States
| | - Jing Chen
- Department of Biological Sciences, Virginia Tech, Blacksburg, VA, United States
- Fralin Life Sciences Institute, Virginia Tech, Blacksburg, VA, United States
- Center for Soft Matter and Biological Physics, Virginia Tech, Blacksburg, VA, United States
| |
Collapse
|
27
|
Speare L, Zhao L, Pavelsky MN, Jackson A, Smith S, Tyagi B, Sharpe GC, Woo M, Satkowiak L, Bolton T, Gifford SM, Septer AN. Flagella are required to coordinately activate competition and host colonization factors in response to a mechanical signal. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2023.12.31.573711. [PMID: 38260499 PMCID: PMC10802311 DOI: 10.1101/2023.12.31.573711] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/24/2024]
Abstract
Bacteria employ antagonistic strategies to eliminate competitors of an ecological niche. Contact-dependent mechanisms, such as the type VI secretion system (T6SS), are prevalent in host-associated bacteria, yet we know relatively little about how T6SS+ strains make contact with competitors in highly viscous environments, such as host mucus. To better understand how cells respond to and contact one another in such environments, we performed a genome-wide transposon mutant screen of the T6SS-wielding beneficial bacterial symbiont, Vibrio fischeri, and identified two sets of genes that are conditionally required for killing. LPS/capsule and flagellar-associated genes do not affect T6SS directly and are therefore not required for interbacterial killing when cell contact is forced yet are necessary for killing in high-viscosity liquid (hydrogel) where cell-cell contact must be biologically mediated. Quantitative transcriptomics revealed that V. fischeri significantly increases expression of both T6SS genes and cell surface modification factors upon transition from low- to high-viscosity media. Consistent with coincubation and fluorescence microscopy data, flagella are not required for T6SS expression in hydrogel. However, flagella play a key role in responding to the physical environment by promoting expression of the surface modification genes identified in our screen, as well as additional functional pathways important for host colonization including uptake of host-relevant iron and carbon sources, and nitric oxide detoxification enzymes. Our findings suggest that flagella may act as a mechanosensor for V. fischeri to coordinately activate competitive strategies and host colonization factors, underscoring the significance of the physical environment in directing complex bacterial behaviors.
Collapse
Affiliation(s)
- Lauren Speare
- Department of Earth, Marine & Environmental Sciences, University of North Carolina, Chapel Hill, NC
- Department of Microbiology, Oregon State University, Corvallis, OR
| | - Liang Zhao
- Department of Earth, Marine & Environmental Sciences, University of North Carolina, Chapel Hill, NC
| | - Morgan N. Pavelsky
- Department of Earth, Marine & Environmental Sciences, University of North Carolina, Chapel Hill, NC
| | - Aundre Jackson
- Department of Earth, Marine & Environmental Sciences, University of North Carolina, Chapel Hill, NC
| | - Stephanie Smith
- Department of Earth, Marine & Environmental Sciences, University of North Carolina, Chapel Hill, NC
| | - Bhavyaa Tyagi
- Department of Earth, Marine & Environmental Sciences, University of North Carolina, Chapel Hill, NC
| | - Garrett C. Sharpe
- Department of Earth, Marine & Environmental Sciences, University of North Carolina, Chapel Hill, NC
| | - Madison Woo
- Department of Earth, Marine & Environmental Sciences, University of North Carolina, Chapel Hill, NC
| | - Lizzie Satkowiak
- Department of Earth, Marine & Environmental Sciences, University of North Carolina, Chapel Hill, NC
| | - Trinity Bolton
- Department of Chemistry, Morgan State University, Baltimore, MD
| | - Scott M. Gifford
- Department of Earth, Marine & Environmental Sciences, University of North Carolina, Chapel Hill, NC
| | - Alecia N. Septer
- Department of Earth, Marine & Environmental Sciences, University of North Carolina, Chapel Hill, NC
| |
Collapse
|
28
|
Wei J, Yang Y, Li M. Single-cell force spectroscopy of fluid flow-tuned cell adhesion for dissecting hemodynamics in tumor metastasis. NANOSCALE 2023; 16:360-372. [PMID: 38063483 DOI: 10.1039/d3nr04439d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/22/2023]
Abstract
Cell adhesion plays an important role in regulating the metastasis of cancer cells, and atomic force microscopy (AFM)-based single-cell force spectroscopy (SCFS) has become an important method to directly measure the adhesion forces of individual cells. Particularly, bodily fluid flow environments strongly affect the functions and behaviors of metastatic cells for successful dissemination. Nevertheless, the interactions between fluidic flow medium environment and cell adhesion remain poorly understood. In this work, AFM-based SCFS was exploited to examine the effects of fluidic flow environment on cellular adhesion. A fluidic cell culture medium device was used to simulate the fluidic flow environment experienced by cancer cells during metastasis, which was combined with AFM-based SCFS assay. A single living cancer cell was attached to the AFM tipless cantilever to prepare the single-cell probe for performing SCFS experiments on the mesothelial cells grown under the fluidic flow medium conditions, and the effects of experimental parameters (retraction speed, contact time, loading force) on the measured cellular adhesion forces were analyzed. Experimental results of SCFS assay show that cellular adhesion forces significantly decrease after growth in fluidic flow medium, whereas cellular adhesion forces increase after growth in static culture medium. Experiments performed with the use of spherical probes coated with cell adhesion-associated biomolecules also show the weakening of cell adhesion after growth in fluidic flow cell culture medium, which was subsequently confirmed by the confocal fluorescence microscopy experiments of cell adhesion molecules, vividly illustrating the remarkable effects of fluidic flow environment on cellular adhesion. The study provides a new approach to detect adhesion force dynamics involved in the interactions between cells and the fluidic flow environment at the single-cell level, which will facilitate dissecting the role of hemodynamics in tumor metastasis.
Collapse
Affiliation(s)
- Jiajia Wei
- State Key Laboratory of Robotics, Shenyang Institute of Automation, Chinese Academy of Sciences, Shenyang 110016, China.
- Institutes for Robotics and Intelligent Manufacturing, Chinese Academy of Sciences, Shenyang 110169, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Yanqi Yang
- State Key Laboratory of Robotics, Shenyang Institute of Automation, Chinese Academy of Sciences, Shenyang 110016, China.
- Institutes for Robotics and Intelligent Manufacturing, Chinese Academy of Sciences, Shenyang 110169, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Mi Li
- State Key Laboratory of Robotics, Shenyang Institute of Automation, Chinese Academy of Sciences, Shenyang 110016, China.
- Institutes for Robotics and Intelligent Manufacturing, Chinese Academy of Sciences, Shenyang 110169, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| |
Collapse
|
29
|
Bonn L, Ardaševa A, Doostmohammadi A. Elasticity tunes mechanical stress localization around active topological defects. SOFT MATTER 2023; 20:115-123. [PMID: 38050783 DOI: 10.1039/d3sm01113e] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/06/2023]
Abstract
Mechanical stresses are increasingly found to be associated with various biological functionalities. At the same time, topological defects are being identified across a diverse range of biological systems and are points of localized mechanical stress. It is therefore important to ask how mechanical stress localization around topological defects is controlled. Here, we use continuum simulations of nonequilibrium, fluctuating and active nematics to explore the patterns of stress localization, as well as their extent and intensity around topological defects. We find that by increasing the orientational elasticity of the material, the isotropic stress pattern around topological defects is changed substantially, from a stress dipole characterized by symmetric compression-tension regions around the core of the defect, to a localized stress monopole at the defect position. Moreover, we show that elastic anisotropy alters the extent and intensity of the stresses, and can result in the dominance of tension or compression around defects. Finally, including both nonequilibrium fluctuations and active stress generation, we find that the elastic constant tunes the relative effect of each, leading to the flipping of tension and compression regions around topological defects. This flipping of the tension-compression regions only by changing the elastic constant presents an interesting, simple, way of switching the dynamic behavior in active matter by changing a passive material property. We expect these findings to motivate further exploration tuning stresses in active biological materials by varying material properties of the constituent units.
Collapse
Affiliation(s)
- Lasse Bonn
- Niels Bohr Institute, University of Copenhagen, Blegdamsvej 17, Copenhagen, Denmark.
| | - Aleksandra Ardaševa
- Niels Bohr Institute, University of Copenhagen, Blegdamsvej 17, Copenhagen, Denmark.
| | - Amin Doostmohammadi
- Niels Bohr Institute, University of Copenhagen, Blegdamsvej 17, Copenhagen, Denmark.
| |
Collapse
|
30
|
Cho DH, Aguayo S, Cartagena-Rivera AX. Atomic force microscopy-mediated mechanobiological profiling of complex human tissues. Biomaterials 2023; 303:122389. [PMID: 37988897 PMCID: PMC10842832 DOI: 10.1016/j.biomaterials.2023.122389] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2023] [Revised: 10/30/2023] [Accepted: 11/04/2023] [Indexed: 11/23/2023]
Abstract
Tissue mechanobiology is an emerging field with the overarching goal of understanding the interplay between biophysical and biochemical responses affecting development, physiology, and disease. Changes in mechanical properties including stiffness and viscosity have been shown to describe how cells and tissues respond to mechanical cues and modify critical biological functions. To quantitatively characterize the mechanical properties of tissues at physiologically relevant conditions, atomic force microscopy (AFM) has emerged as a highly versatile biomechanical technology. In this review, we describe the fundamental principles of AFM, typical AFM modalities used for tissue mechanics, and commonly used elastic and viscoelastic contact mechanics models to characterize complex human tissues. Furthermore, we discuss the application of AFM-based mechanobiology to characterize the mechanical responses within complex human tissues to track their developmental, physiological/functional, and diseased states, including oral, hearing, and cancer-related tissues. Finally, we discuss the current outlook and challenges to further advance the field of tissue mechanobiology. Altogether, AFM-based tissue mechanobiology provides a mechanistic understanding of biological processes governing the unique functions of tissues.
Collapse
Affiliation(s)
- David H Cho
- Section on Mechanobiology, National Institute of Biomedical Imaging and Bioengineering, National Institutes of Health, Bethesda, MD, USA
| | - Sebastian Aguayo
- Dentistry School, Faculty of Medicine, Pontificia Universidad Católica de Chile, Santiago, Chile; Schools of Engineering, Medicine, and Biological Sciences, Institute for Biological and Medical Engineering, Pontificia Universidad Católica de Chile, Santiago, Chile
| | - Alexander X Cartagena-Rivera
- Section on Mechanobiology, National Institute of Biomedical Imaging and Bioengineering, National Institutes of Health, Bethesda, MD, USA.
| |
Collapse
|
31
|
Nijjer J, Li C, Kothari M, Henzel T, Zhang Q, Tai JSB, Zhou S, Cohen T, Zhang S, Yan J. Biofilms as self-shaping growing nematics. NATURE PHYSICS 2023; 19:1936-1944. [PMID: 39055904 PMCID: PMC11271743 DOI: 10.1038/s41567-023-02221-1] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/07/2022] [Accepted: 08/23/2023] [Indexed: 07/28/2024]
Abstract
Active nematics are the nonequilibrium analogue of passive liquid crystals. They consist of anisotropic units that consume free energy to drive emergent behaviour. Like liquid crystal molecules in displays, ordering and dynamics in active nematics are sensitive to boundary conditions. However, unlike passive liquid crystals, active nematics have the potential to regulate their boundaries through self-generated stresses. Here, we show how a three-dimensional, living nematic can actively shape itself and its boundary to regulate its internal architecture through growth-induced stresses, using bacterial biofilms confined by a hydrogel as a model system. We show that biofilms exhibit a sharp transition in shape from domes to lenses upon changing environmental stiffness or cell-substrate friction, which is explained by a theoretical model that considers the competition between confinement and interfacial forces. The growth mode defines the progression of the boundary, which in turn determines the trajectories and spatial distribution of cell lineages. We further demonstrate that the evolving boundary and corresponding stress anisotropy define the orientational ordering of cells and the emergence of topological defects in the biofilm interior. Our findings may provide strategies for the development of programmed microbial consortia with emergent material properties.
Collapse
Affiliation(s)
- Japinder Nijjer
- Department of Molecular, Cellular and Developmental Biology, Yale University, New Haven, CT, USA
| | - Changhao Li
- Department of Engineering Science and Mechanics, Pennsylvania State University, University Park, PA, USA
| | - Mrityunjay Kothari
- Department of Civil and Environmental Engineering, Massachusetts Institute of Technology, Cambridge, MA, USA
- Department of Mechanical Engineering, University of New Hampshire, Durham, NH, USA
| | - Thomas Henzel
- Department of Civil and Environmental Engineering, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Qiuting Zhang
- Department of Molecular, Cellular and Developmental Biology, Yale University, New Haven, CT, USA
| | - Jung-Shen B Tai
- Department of Molecular, Cellular and Developmental Biology, Yale University, New Haven, CT, USA
| | - Shuang Zhou
- Department of Physics, University of Massachusetts Amherst, Amherst, MA, USA
| | - Tal Cohen
- Department of Civil and Environmental Engineering, Massachusetts Institute of Technology, Cambridge, MA, USA
- Department of Mechanical Engineering, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Sulin Zhang
- Department of Engineering Science and Mechanics, Pennsylvania State University, University Park, PA, USA
- Department of Biomedical Engineering, Pennsylvania State University, University Park, PA, USA
| | - Jing Yan
- Department of Molecular, Cellular and Developmental Biology, Yale University, New Haven, CT, USA
- Quantitative Biology Institute, Yale University, New Haven, CT, USA
| |
Collapse
|
32
|
Viljoen A, Dufrêne YF. Mechanobiology: How pathogens use mechanics to modulate host interactions. Cell 2023; 186:4994-4995. [PMID: 37949055 DOI: 10.1016/j.cell.2023.09.018] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2023] [Revised: 09/18/2023] [Accepted: 09/18/2023] [Indexed: 11/12/2023]
Abstract
Mechanobiology explores how cells sense and respond to mechanical cues and how mechanics guide cell function, physiology, and disease. In this issue of Cell, Thacker and colleagues reveal how the tuberculosis-causing pathogen exploits the mechanical behavior of cord-like structures to promote infection, impacting immune response, antibiotic susceptibility, and treatment strategies.
Collapse
Affiliation(s)
- Albertus Viljoen
- Louvain Institute of Biomolecular Science and Technology, UCLouvain, Croix du Sud, 4-5, bte L7.07.07, B-1348 Louvain-la-Neuve, Belgium.
| | - Yves F Dufrêne
- Louvain Institute of Biomolecular Science and Technology, UCLouvain, Croix du Sud, 4-5, bte L7.07.07, B-1348 Louvain-la-Neuve, Belgium.
| |
Collapse
|
33
|
McLaughlin M, Fiebig A, Crosson S. XRE transcription factors conserved in Caulobacter and φCbK modulate adhesin development and phage production. PLoS Genet 2023; 19:e1011048. [PMID: 37972151 PMCID: PMC10688885 DOI: 10.1371/journal.pgen.1011048] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2023] [Revised: 11/30/2023] [Accepted: 11/03/2023] [Indexed: 11/19/2023] Open
Abstract
The xenobiotic response element (XRE) family of transcription factors (TFs), which are commonly encoded by bacteria and bacteriophage, regulate diverse features of bacterial cell physiology and impact phage infection dynamics. Through a pangenome analysis of Caulobacter species isolated from soil and aquatic ecosystems, we uncovered an apparent radiation of a paralogous XRE TF gene cluster, several of which have established functions in the regulation of holdfast adhesin development and biofilm formation in C. crescentus. We further discovered related XRE TFs throughout the class Alphaproteobacteria and its phages, including the φCbK Caulophage, suggesting that members of this cluster impact host-phage interactions. Here we show that a closely related group of XRE transcription factors encoded by both C. crescentus and φCbK can physically interact and function to control the transcription of a common gene set, influencing processes including holdfast development and the production of φCbK virions. The φCbK-encoded XRE paralog, tgrL, is highly expressed at the earliest stages of infection and can directly inhibit transcription of host genes including hfiA, a potent holdfast inhibitor, and gafYZ, an activator of prophage-like gene transfer agents (GTAs). XRE proteins encoded from the C. crescentus chromosome also directly repress gafYZ transcription, revealing a functionally redundant set of host regulators that may protect against spurious production of GTA particles and inadvertent cell lysis. Deleting the C. crescentus XRE transcription factors reduced φCbK burst size, while overexpressing these host genes or φCbK tgrL rescued this burst defect. We conclude that this XRE TF gene cluster, shared by C. crescentus and φCbK, plays an important role in adhesion regulation under phage-free conditions, and influences host-phage dynamics during infection.
Collapse
Affiliation(s)
- Maeve McLaughlin
- Department of Microbiology and Molecular Genetics, Michigan State University, East Lansing, Michigan, United States of America
| | - Aretha Fiebig
- Department of Microbiology and Molecular Genetics, Michigan State University, East Lansing, Michigan, United States of America
| | - Sean Crosson
- Department of Microbiology and Molecular Genetics, Michigan State University, East Lansing, Michigan, United States of America
| |
Collapse
|
34
|
Wang L, Wong YC, Correira JM, Wancura M, Geiger CJ, Webster SS, Touhami A, Butler BJ, O'Toole GA, Langford RM, Brown KA, Dortdivanlioglu B, Webb L, Cosgriff-Hernandez E, Gordon VD. The accumulation and growth of Pseudomonas aeruginosa on surfaces is modulated by surface mechanics via cyclic-di-GMP signaling. NPJ Biofilms Microbiomes 2023; 9:78. [PMID: 37816780 PMCID: PMC10564899 DOI: 10.1038/s41522-023-00436-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2023] [Accepted: 09/12/2023] [Indexed: 10/12/2023] Open
Abstract
Attachment of bacteria onto a surface, consequent signaling, and accumulation and growth of the surface-bound bacterial population are key initial steps in the formation of pathogenic biofilms. While recent reports have hinted that surface mechanics may affect the accumulation of bacteria on that surface, the processes that underlie bacterial perception of surface mechanics and modulation of accumulation in response to surface mechanics remain largely unknown. We use thin and thick hydrogels coated on glass to create composite materials with different mechanics (higher elasticity for thin composites; lower elasticity for thick composites) but with the same surface adhesivity and chemistry. The mechanical cue stemming from surface mechanics is elucidated using experiments with the opportunistic human pathogen Pseudomonas aeruginosa combined with finite-element modeling. Adhesion to thin composites results in greater changes in mechanical stress and strain in the bacterial envelope than does adhesion to thick composites with identical surface chemistry. Using quantitative microscopy, we find that adhesion to thin composites also results in higher cyclic-di-GMP levels, which in turn result in lower motility and less detachment, and thus greater accumulation of bacteria on the surface than does adhesion to thick composites. Mechanics-dependent c-di-GMP production is mediated by the cell-surface-exposed protein PilY1. The biofilm lag phase, which is longer for bacterial populations on thin composites than on thick composites, is also mediated by PilY1. This study shows clear evidence that bacteria actively regulate differential accumulation on surfaces of different stiffnesses via perceiving varied mechanical stress and strain upon surface engagement.
Collapse
Affiliation(s)
- Liyun Wang
- Department of Physics, Center for Nonlinear Dynamics, The University of Texas at Austin, Austin, TX, 78712, USA
| | - Yu-Chern Wong
- Department of Physics, Center for Nonlinear Dynamics, The University of Texas at Austin, Austin, TX, 78712, USA
- Department of Mechanical Engineering, The University of Texas at Austin, Austin, TX, 78712, USA
| | - Joshua M Correira
- Department of Chemistry, The University of Texas at Austin, Austin, TX, 78712, USA
| | - Megan Wancura
- Department of Chemistry, The University of Texas at Austin, Austin, TX, 78712, USA
| | - Chris J Geiger
- Geisel School of Medicine at Dartmouth, Hanover, NH, 03755, USA
| | | | - Ahmed Touhami
- Department of Physics and Astronomy University of Texas Rio Grande Valley, One West University Blvd, Brownsville, TX, 78520, USA
| | - Benjamin J Butler
- Surfaces, Microstructure and Fracture Group, Cavendish Laboratory, University of Cambridge, Cambridge, CB3 0HE, UK
| | | | - Richard M Langford
- Surfaces, Microstructure and Fracture Group, Cavendish Laboratory, University of Cambridge, Cambridge, CB3 0HE, UK
| | - Katherine A Brown
- Surfaces, Microstructure and Fracture Group, Cavendish Laboratory, University of Cambridge, Cambridge, CB3 0HE, UK
- Oden Institute for Computational Engineering & Sciences, The University of Texas at Austin, Austin, TX, 78712, USA
| | - Berkin Dortdivanlioglu
- Department of Civil, Architectural, and Environmental Engineering, The University of Texas at Austin, Austin, TX, 78712, USA
| | - Lauren Webb
- Department of Chemistry, The University of Texas at Austin, Austin, TX, 78712, USA
| | | | - Vernita D Gordon
- Department of Physics, Center for Nonlinear Dynamics, The University of Texas at Austin, Austin, TX, 78712, USA.
- LaMontagne Center for Infectious Disease, The University of Texas at Austin, Austin, TX, 78712, USA.
- Interdisciplinary Life Sciences Graduate Program, The University of Texas at Austin, Austin, TX, 78712, USA.
| |
Collapse
|
35
|
Prinz Setter O, Jiang X, Segal E. Rising to the surface: capturing and detecting bacteria by rationally-designed surfaces. Curr Opin Biotechnol 2023; 83:102969. [PMID: 37494819 DOI: 10.1016/j.copbio.2023.102969] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2023] [Revised: 06/27/2023] [Accepted: 06/27/2023] [Indexed: 07/28/2023]
Abstract
Analytical microbiology has made substantial progress since its conception, starting from potato slices, through selective agar media, to engineered surfaces modified with capture probes. While the latter represents the dominant approach in designing sensors for bacteria detection, the importance of sensor surface properties is frequently ignored. Herein, we highlight their significant role in the complex process of bacterial transition from planktonic to sessile, representing the first and critical step in bacteria detection. We present the main surface features and discuss their effect on the bio-solid interface and the resulting sensing capabilities for both flat and particulate systems. The concepts of rationally-designed surfaces for enhanced bacterial detection are presented with recent examples of sensors (capture probe-free) relying solely on surface cues.
Collapse
Affiliation(s)
- Ofer Prinz Setter
- Department of Biotechnology and Food Engineering, Technion - Israel Institute of Technology, Technion City, 3200003 Haifa, Israel
| | - Xin Jiang
- Department of Biotechnology and Food Engineering, Technion - Israel Institute of Technology, Technion City, 3200003 Haifa, Israel
| | - Ester Segal
- Department of Biotechnology and Food Engineering, Technion - Israel Institute of Technology, Technion City, 3200003 Haifa, Israel; The Russel Berrie Nanotechnology Institute, Technion - Israel Institute of Technology, Technion City, 3200003 Haifa, Israel.
| |
Collapse
|
36
|
Nakane D. Rheotaxis in Mycoplasma gliding. Microbiol Immunol 2023; 67:389-395. [PMID: 37430383 DOI: 10.1111/1348-0421.13090] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2023] [Revised: 06/22/2023] [Accepted: 06/23/2023] [Indexed: 07/12/2023]
Abstract
This review describes the upstream-directed movement in the small parasitic bacterium Mycoplasma. Many Mycoplasma species exhibit gliding motility, a form of biological motion over surfaces without the aid of general surface appendages such as flagella. The gliding motility is characterized by a constant unidirectional movement without changes in direction or backward motion. Unlike flagellated bacteria, Mycoplasma lacks the general chemotactic signaling system to control their moving direction. Therefore, the physiological role of directionless travel in Mycoplasma gliding remains unclear. Recently, high-precision measurements under an optical microscope have revealed that three species of Mycoplasma exhibited rheotaxis, that is, the direction of gliding motility is lead upstream by the water flow. This intriguing response appears to be optimized for the flow patterns encountered at host surfaces. This review provides a comprehensive overview of the morphology, behavior, and habitat of Mycoplasma gliding, and discusses the possibility that the rheotaxis is ubiquitous among them.
Collapse
Affiliation(s)
- Daisuke Nakane
- Department of Engineering Science, Graduate School of Informatics and Engineering, Tokyo, Japan
| |
Collapse
|
37
|
McLaughlin M, Fiebig A, Crosson S. XRE Transcription Factors Conserved in Caulobacter and φCbK Modulate Adhesin Development and Phage Production. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.08.20.554034. [PMID: 37645952 PMCID: PMC10462132 DOI: 10.1101/2023.08.20.554034] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/31/2023]
Abstract
Upon infection, transcriptional shifts in both a host bacterium and its invading phage determine host and viral fitness. The xenobiotic response element (XRE) family of transcription factors (TFs), which are commonly encoded by bacteria and phages, regulate diverse features of bacterial cell physiology and impact phage infection dynamics. Through a pangenome analysis of Caulobacter species isolated from soil and aquatic ecosystems, we uncovered an apparent radiation of a paralogous XRE TF gene cluster, several of which have established functions in the regulation of holdfast adhesin development and biofilm formation in C. crescentus. We further discovered related XRE TFs across the class Alphaproteobacteria and its phages, including the φCbK Caulophage, suggesting that members of this gene cluster impact host-phage interactions. Here we show that that a closely related group of XRE proteins, encoded by both C. crescentus and φCbK, can form heteromeric associations and control the transcription of a common gene set, influencing processes including holdfast development and the production of φCbK virions. The φCbK XRE paralog, tgrL, is highly expressed at the earliest stages of infection and can directly repress transcription of hfiA, a potent holdfast inhibitor, and gafYZ, a transcriptional activator of prophage-like gene transfer agents (GTAs) encoded on the C. crescentus chromosome. XRE proteins encoded from the C. crescentus chromosome also directly repress gafYZ transcription, revealing a functionally redundant set of host regulators that may protect against spurious production of GTA particles and inadvertent cell lysis. Deleting host XRE transcription factors reduced φCbK burst size, while overexpressing these genes or φCbK tgrL rescued this burst defect. We conclude that an XRE TF gene cluster, shared by C. crescentus and φCbK, plays an important role in adhesion regulation under phage-free conditions, and influences host-phage dynamics during infection.
Collapse
Affiliation(s)
- Maeve McLaughlin
- Department of Microbiology and Molecular Genetics, Michigan State University, East Lansing, MI, USA
| | - Aretha Fiebig
- Department of Microbiology and Molecular Genetics, Michigan State University, East Lansing, MI, USA
| | - Sean Crosson
- Department of Microbiology and Molecular Genetics, Michigan State University, East Lansing, MI, USA
| |
Collapse
|
38
|
Feng Y, Li M. Micropipette-assisted atomic force microscopy for single-cell 3D manipulations and nanomechanical measurements. NANOSCALE 2023; 15:13346-13358. [PMID: 37526589 DOI: 10.1039/d3nr02404k] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/02/2023]
Abstract
Mechanical cues play a crucial role in regulating physiological and pathological processes, and atomic force microscopy (AFM) has become an important and standard tool for measuring the mechanical properties of single cells. In particular, providing a capability to manipulate cells in a three-dimensional (3D) space benefits enhancing the applications of AFM measurements in cell biology. Here, we present the complementary integration of AFM and micropipette micromanipulation, which allows precise 3D manipulations and nanomechanical measurements of single living cells. A micropipette micromanipulation system under the guidance of optical microscopy was established to isolate single living cells, and polydimethylsiloxane (PDMS) micropillar substrates were used to physically immobilize the isolated living cells for downstream AFM detection. The viscoelastic properties (Young's modulus, relaxation time, viscosity) of cells were quantitatively measured by AFM-based indentation assay. The effectiveness of micropipette-assisted AFM in single-cell analysis was confirmed on both living animal suspended cells and living animal adherent cells, showing dramatic changes in cell mechanics in different states and revealing the dynamics of single cells grown on micropillar arrays. The study demonstrates the great potential of a micropipette to aid AFM in single-cell manipulations for better accessing the mechanical cues involved in cellular processes, which will allow additional studies of single-cell mechanics and will benefit the field of mechanobiology.
Collapse
Affiliation(s)
- Yaqi Feng
- State Key Laboratory of Robotics, Shenyang Institute of Automation, Chinese Academy of Sciences, Shenyang 110016, China.
- Institutes for Robotics and Intelligent Manufacturing, Chinese Academy of Sciences, Shenyang 110169, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Mi Li
- State Key Laboratory of Robotics, Shenyang Institute of Automation, Chinese Academy of Sciences, Shenyang 110016, China.
- Institutes for Robotics and Intelligent Manufacturing, Chinese Academy of Sciences, Shenyang 110169, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| |
Collapse
|
39
|
Odermatt PD, Nussbaum P, Monnappa S, Talà L, Li Z, Sivabalasarma S, Albers SV, Persat A. Archaeal type IV pili stabilize Haloferax volcanii biofilms in flow. Curr Biol 2023; 33:3265-3271.e4. [PMID: 37473762 DOI: 10.1016/j.cub.2023.06.055] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2023] [Revised: 05/01/2023] [Accepted: 06/20/2023] [Indexed: 07/22/2023]
Abstract
Multicellular communities of contiguous cells attached to solid surfaces called biofilms represent a common microbial strategy to improve resilience in adverse environments.1,2,3 While bacterial biofilms have been under intense investigation, whether archaeal biofilms follow similar assembly rules remains unknown.4,5Haloferax volcanii is an extremely halophilic euryarchaeon that commonly colonizes salt crust surfaces. H. volcanii produces long and thin appendages called type IV pili (T4Ps). These play a role in surface attachment and biofilm formation in both archaea and bacteria. In this study, we employed biophysical experiments to identify the function of T4Ps in H. volcanii biofilm morphogenesis. H. volcanii expresses not one but six types of major pilin subunits that are predicted to compose T4Ps. Non-invasive imaging of T4Ps in live cells using interferometric scattering (iSCAT) microscopy reveals that piliation varies across mutants expressing single major pilin isoforms. T4Ps are necessary to secure attachment of single cells to surfaces, and the adhesive strength of pilin mutants correlates with their level of piliation. In flow, H. volcanii forms clonal biofilms that extend in three dimensions. Notably, the expression of PilA2, a single pilin isoform, is sufficient to maintain levels of piliation, surface attachment, and biofilm formation that are indistinguishable from the wild type. Furthermore, we discovered that fluid flow stabilizes biofilm integrity; as in the absence of flow, biofilms tend to lose cohesion and disperse in a density-dependent manner. Overall, our results demonstrate that T4P-surface and possibly T4P-T4P interactions promote biofilm formation and integrity and that flow is a key factor regulating archaeal biofilm formation.
Collapse
Affiliation(s)
- Pascal D Odermatt
- Global Health Institute and Institute for Bioengineering, School of Life Sciences, EPFL, 1015 Lausanne, Switzerland
| | - Phillip Nussbaum
- Molecular Biology of Archaea, Faculty of Biology, University of Freiburg, 79104 Freiburg, Germany
| | - Sourabh Monnappa
- Global Health Institute and Institute for Bioengineering, School of Life Sciences, EPFL, 1015 Lausanne, Switzerland
| | - Lorenzo Talà
- Global Health Institute and Institute for Bioengineering, School of Life Sciences, EPFL, 1015 Lausanne, Switzerland
| | - Zhengqun Li
- Molecular Biology of Archaea, Faculty of Biology, University of Freiburg, 79104 Freiburg, Germany
| | - Shamphavi Sivabalasarma
- Molecular Biology of Archaea, Faculty of Biology, University of Freiburg, 79104 Freiburg, Germany
| | - Sonja-Verena Albers
- Molecular Biology of Archaea, Faculty of Biology, University of Freiburg, 79104 Freiburg, Germany.
| | - Alexandre Persat
- Global Health Institute and Institute for Bioengineering, School of Life Sciences, EPFL, 1015 Lausanne, Switzerland.
| |
Collapse
|
40
|
Geiger CJ, O’Toole GA. Evidence for the Type IV Pilus Retraction Motor PilT as a Component of the Surface Sensing System in Pseudomonas aeruginosa. J Bacteriol 2023; 205:e0017923. [PMID: 37382531 PMCID: PMC10367593 DOI: 10.1128/jb.00179-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2023] [Accepted: 06/07/2023] [Indexed: 06/30/2023] Open
Abstract
Biofilm formation begins when bacteria contacting a surface induce cellular changes to become better adapted for surface growth. One of the first changes to occur for Pseudomonas aeruginosa after surface contact is an increase in the nucleotide second messenger 3',5'-cyclic AMP (cAMP). It has been demonstrated that this increase in intracellular cAMP is dependent on functional type IV pili (T4P) relaying a signal to the Pil-Chp system, but the mechanism by which this signal is transduced remains poorly understood. Here, we investigate the role of the type IV pilus retraction motor PilT in sensing a surface and relaying that signal to cAMP production. We show that mutations in PilT, and in particular those impacting the ATPase activity of this motor protein, reduce surface-dependent cAMP production. We identify a novel interaction between PilT and PilJ, a member of the Pil-Chp system, and propose a new model whereby P. aeruginosa uses its PilT retraction motor to sense a surface and to relay that signal via PilJ to increased production of cAMP. We discuss these findings in light of current T4P-dependent surface sensing models for P. aeruginosa. IMPORTANCE T4P are cellular appendages that allow P. aeruginosa to sense a surface, leading to the production of cAMP. This second messenger not only activates virulence pathways but leads to further surface adaptation and irreversible attachment of cells. Here, we demonstrate the importance of the retraction motor PilT in surface sensing. We also present a new surface sensing model in P. aeruginosa whereby the T4P retraction motor PilT senses and transmits the surface signal, likely via its ATPase domain and interaction with PilJ, to mediate production of the second messenger cAMP.
Collapse
Affiliation(s)
- C. J. Geiger
- Department of Microbiology and Immunology, Geisel School of Medicine at Dartmouth, Hanover, New Hampshire, USA
| | - G. A. O’Toole
- Department of Microbiology and Immunology, Geisel School of Medicine at Dartmouth, Hanover, New Hampshire, USA
| |
Collapse
|
41
|
Xu N, Zhou Z, Chen B, Zhang Z, Zhang J, Li Y, Lu T, Sun L, Peijnenburg WJGM, Qian H. Effect of chlorpyrifos on freshwater microbial community and metabolic capacity of zebrafish. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2023; 262:115230. [PMID: 37413963 DOI: 10.1016/j.ecoenv.2023.115230] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/03/2023] [Revised: 06/30/2023] [Accepted: 07/02/2023] [Indexed: 07/08/2023]
Abstract
Chlorpyrifos is a widely used organophosphorus insecticide because of its high efficiency and overall effectiveness, and it is commonly detected in aquatic ecosystems. However, at present, the impact of chlorpyrifos on the aquatic micro-ecological environment is still poorly understood. Here, we established aquatic microcosm systems treated with 0.2 and 2.0 µg/L chlorpyrifos, and employed omics biotechnology, including metagenomics and 16S rRNA gene sequencing, to investigate the effect of chlorpyrifos on the composition and functional potential of the aquatic and zebrafish intestinal microbiomes after 7 d and 14 d chlorpyrifos treatment. After 14 d chlorpyrifos treatment, the aquatic microbial community was adversely affected in terms of its composition, structure, and stability, while its diversity showed only a slight impact. Most functions, especially capacities for environmental information processing and metabolism, were destroyed by chlorpyrifos treatment for 14 d. We observed that chlorpyrifos increased the number of risky antibiotic resistance genes and aggravated the growth of human pathogens. Although no clear effects on the structure of the zebrafish intestinal microbial community were observed, chlorpyrifos treatment did alter the metabolic capacity of the zebrafish. Our study highlights the ecological risk of chlorpyrifos to the aquatic environment and provides a theoretical basis for the rational use of pesticides in agricultural production.
Collapse
Affiliation(s)
- Nuohan Xu
- College of Environment, Zhejiang University of Technology, Hangzhou 310032, PR China
| | - Zhigao Zhou
- College of Environment, Zhejiang University of Technology, Hangzhou 310032, PR China; Zhejiang Province Institute of Architectural Design and Research, Hangzhou 310000, PR China
| | - Bingfeng Chen
- College of Environment, Zhejiang University of Technology, Hangzhou 310032, PR China
| | - Zhenyan Zhang
- College of Environment, Zhejiang University of Technology, Hangzhou 310032, PR China
| | - Jinfeng Zhang
- College of Environment, Zhejiang University of Technology, Hangzhou 310032, PR China
| | - Yan Li
- College of Environment, Zhejiang University of Technology, Hangzhou 310032, PR China
| | - Tao Lu
- College of Environment, Zhejiang University of Technology, Hangzhou 310032, PR China
| | - Liwei Sun
- College of Environment, Zhejiang University of Technology, Hangzhou 310032, PR China
| | - W J G M Peijnenburg
- Institute of Environmental Sciences (CML), Leiden University, RA Leiden 2300, the Netherlands; National Institute of Public Health and the Environment (RIVM), Center for Safety of Substances and Products, P.O. Box 1, Bilthoven, the Netherlands
| | - Haifeng Qian
- College of Environment, Zhejiang University of Technology, Hangzhou 310032, PR China.
| |
Collapse
|
42
|
Cruz-Bautista R, Ruíz-Villafán B, Romero-Rodríguez A, Rodríguez-Sanoja R, Sánchez S. Trends in the two-component system's role in the synthesis of antibiotics by Streptomyces. Appl Microbiol Biotechnol 2023:10.1007/s00253-023-12623-z. [PMID: 37341754 DOI: 10.1007/s00253-023-12623-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2023] [Revised: 05/30/2023] [Accepted: 06/05/2023] [Indexed: 06/22/2023]
Abstract
Despite the advances in understanding the regulatory networks for secondary metabolite production in Streptomyces, the participation of the two-component systems (TCS) in this process still requires better characterization. These sensing systems and their responses to environmental stimuli have been described by evaluating mutant strains with techniques that allow in-depth regulatory responses. However, defining the stimulus that triggers their activation is still a task. The transmembrane nature of the sensor kinases and the high content of GC in the streptomycetes represent significant challenges in their study. In some examples, adding elements to the assay medium has determined the respective ligand. However, a complete TCS description and characterization requires specific amounts of the involved proteins that are most difficult to obtain. The availability of enough sensor histidine kinase concentrations could facilitate the identification of the ligand-protein interaction, and besides would allow the establishment of its phosphorylation mechanisms and determine their tridimensional structure. Similarly, the advances in the development of bioinformatics tools and novel experimental techniques also promise to accelerate the TCSs description and provide knowledge on their participation in the regulation processes of secondary metabolite formation. This review aims to summarize the recent advances in the study of TCSs involved in antibiotic biosynthesis and to discuss alternatives to continue their characterization. KEY POINTS: • TCSs are the environmental signal transducers more abundant in nature. • The Streptomyces have some of the highest number of TCSs found in bacteria. • The study of signal transduction between SHKs and RRs domains is a big challenge.
Collapse
Affiliation(s)
- Rodrigo Cruz-Bautista
- Instituto de Investigaciones Biomédicas, Universidad Nacional Autónoma de México, Ciudad Universitaria, CdMx, 04510, Mexico City, Mexico.
| | - Beatriz Ruíz-Villafán
- Instituto de Investigaciones Biomédicas, Universidad Nacional Autónoma de México, Ciudad Universitaria, CdMx, 04510, Mexico City, Mexico
| | - Alba Romero-Rodríguez
- Instituto de Investigaciones Biomédicas, Universidad Nacional Autónoma de México, Ciudad Universitaria, CdMx, 04510, Mexico City, Mexico
| | - Romina Rodríguez-Sanoja
- Instituto de Investigaciones Biomédicas, Universidad Nacional Autónoma de México, Ciudad Universitaria, CdMx, 04510, Mexico City, Mexico
| | - Sergio Sánchez
- Instituto de Investigaciones Biomédicas, Universidad Nacional Autónoma de México, Ciudad Universitaria, CdMx, 04510, Mexico City, Mexico.
| |
Collapse
|
43
|
Wang C, Paiva TO, Motta C, Speziale P, Pietrocola G, Dufrêne YF. Catch Bond-Mediated Adhesion Drives Staphylococcus aureus Host Cell Invasion. NANO LETTERS 2023. [PMID: 37267288 DOI: 10.1021/acs.nanolett.3c01387] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/04/2023]
Abstract
Various viruses and pathogenic bacteria interact with annexin A2 to invade mammalian cells. Here, we show that Staphylococcus aureus engages in extremely strong catch bonds for host cell invasion. By means of single-molecule atomic force microscopy, we find that bacterial surface-located clumping factors bind annexin A2 with extraordinary strength, indicating that these bonds are extremely resilient to mechanical tension. By determining the lifetimes of the complexes under increasing mechanical stress, we demonstrate that the adhesins form catch bonds with their ligand that are capable to sustain forces of 1500-1700 pN. The force-dependent adhesion mechanism identified here provides a molecular framework to explain how S. aureus pathogens tightly attach to host cells during invasion and shows promise for the design of new therapeutics against intracellular S. aureus.
Collapse
Affiliation(s)
- Can Wang
- Louvain Institute of Biomolecular Science and Technology, UCLouvain, Croix du Sud, 4-5, bte L7.07.07, B-1348 Louvain-la-Neuve, Belgium
| | - Telmo O Paiva
- Louvain Institute of Biomolecular Science and Technology, UCLouvain, Croix du Sud, 4-5, bte L7.07.07, B-1348 Louvain-la-Neuve, Belgium
| | - Chiara Motta
- Department of Molecular Medicine, Biochemistry Unit, University of Pavia, Viale Taramelli 3/b, 27100 Pavia, Italy
| | - Pietro Speziale
- Department of Molecular Medicine, Biochemistry Unit, University of Pavia, Viale Taramelli 3/b, 27100 Pavia, Italy
| | - Giampiero Pietrocola
- Department of Molecular Medicine, Biochemistry Unit, University of Pavia, Viale Taramelli 3/b, 27100 Pavia, Italy
| | - Yves F Dufrêne
- Louvain Institute of Biomolecular Science and Technology, UCLouvain, Croix du Sud, 4-5, bte L7.07.07, B-1348 Louvain-la-Neuve, Belgium
| |
Collapse
|
44
|
Sugianto W, Altin-Yavuzarslan G, Tickman BI, Kiattisewee C, Yuan SF, Brooks SM, Wong J, Alper HS, Nelson A, Carothers JM. Gene expression dynamics in input-responsive engineered living materials programmed for bioproduction. Mater Today Bio 2023; 20:100677. [PMID: 37273790 PMCID: PMC10239009 DOI: 10.1016/j.mtbio.2023.100677] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2023] [Revised: 05/14/2023] [Accepted: 05/19/2023] [Indexed: 06/06/2023] Open
Abstract
Engineered living materials (ELMs) fabricated by encapsulating microbes in hydrogels have great potential as bioreactors for sustained bioproduction. While long-term metabolic activity has been demonstrated in these systems, the capacity and dynamics of gene expression over time is not well understood. Thus, we investigate the long-term gene expression dynamics in microbial ELMs constructed using different microbes and hydrogel matrices. Through direct gene expression measurements of engineered E. coli in F127-bisurethane methacrylate (F127-BUM) hydrogels, we show that inducible, input-responsive genetic programs in ELMs can be activated multiple times and maintained for multiple weeks. Interestingly, the encapsulated bacteria sustain inducible gene expression almost 10 times longer than free-floating, planktonic cells. These ELMs exhibit dynamic responsiveness to repeated induction cycles, with up to 97% of the initial gene expression capacity retained following a subsequent induction event. We demonstrate multi-week bioproduction cycling by implementing inducible CRISPR transcriptional activation (CRISPRa) programs that regulate the expression of enzymes in a pteridine biosynthesis pathway. ELMs fabricated from engineered S. cerevisiae in bovine serum albumin (BSA) - polyethylene glycol diacrylate (PEGDA) hydrogels were programmed to express two different proteins, each under the control of a different chemical inducer. We observed scheduled bioproduction switching between betaxanthin pigment molecules and proteinase A in S. cerevisiae ELMs over the course of 27 days under continuous cultivation. Overall, these results suggest that the capacity for long-term genetic expression may be a general property of microbial ELMs. This work establishes approaches for implementing dynamic, input-responsive genetic programs to tailor ELM functions for a wide range of advanced applications.
Collapse
Affiliation(s)
- Widianti Sugianto
- Department of Chemical Engineering, University of Washington, Seattle, WA, 98195, United States
- Molecular Engineering & Sciences Institute, University of Washington, Seattle, WA, 98195, United States
- Center for Synthetic Biology, University of Washington, Seattle, WA, 98195, United States
| | - Gokce Altin-Yavuzarslan
- Molecular Engineering & Sciences Institute, University of Washington, Seattle, WA, 98195, United States
- Department of Chemistry, University of Washington, Seattle, WA, 98195, United States
| | - Benjamin I. Tickman
- Department of Chemical Engineering, University of Washington, Seattle, WA, 98195, United States
- Molecular Engineering & Sciences Institute, University of Washington, Seattle, WA, 98195, United States
- Center for Synthetic Biology, University of Washington, Seattle, WA, 98195, United States
| | - Cholpisit Kiattisewee
- Molecular Engineering & Sciences Institute, University of Washington, Seattle, WA, 98195, United States
- Center for Synthetic Biology, University of Washington, Seattle, WA, 98195, United States
| | - Shuo-Fu Yuan
- Institute for Cellular and Molecular Biology, University of Texas at Austin, Austin, TX, 78712, United States
| | - Sierra M. Brooks
- McKetta Department of Chemical Engineering, University of Texas at Austin, Austin, TX, 78712, United States
| | - Jitkanya Wong
- Department of Chemistry, University of Washington, Seattle, WA, 98195, United States
| | - Hal S. Alper
- Institute for Cellular and Molecular Biology, University of Texas at Austin, Austin, TX, 78712, United States
- McKetta Department of Chemical Engineering, University of Texas at Austin, Austin, TX, 78712, United States
| | - Alshakim Nelson
- Molecular Engineering & Sciences Institute, University of Washington, Seattle, WA, 98195, United States
- Department of Chemistry, University of Washington, Seattle, WA, 98195, United States
| | - James M. Carothers
- Department of Chemical Engineering, University of Washington, Seattle, WA, 98195, United States
- Molecular Engineering & Sciences Institute, University of Washington, Seattle, WA, 98195, United States
- Center for Synthetic Biology, University of Washington, Seattle, WA, 98195, United States
| |
Collapse
|
45
|
Asp ME, Thanh MTH, Dutta S, Comstock JA, Welch RD, Patteson AE. Mechanobiology as a tool for addressing the genotype-to-phenotype problem in microbiology. BIOPHYSICS REVIEWS 2023; 4:021304. [PMID: 38504926 PMCID: PMC10903382 DOI: 10.1063/5.0142121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/11/2023] [Accepted: 04/03/2023] [Indexed: 03/21/2024]
Abstract
The central hypothesis of the genotype-phenotype relationship is that the phenotype of a developing organism (i.e., its set of observable attributes) depends on its genome and the environment. However, as we learn more about the genetics and biochemistry of living systems, our understanding does not fully extend to the complex multiscale nature of how cells move, interact, and organize; this gap in understanding is referred to as the genotype-to-phenotype problem. The physics of soft matter sets the background on which living organisms evolved, and the cell environment is a strong determinant of cell phenotype. This inevitably leads to challenges as the full function of many genes, and the diversity of cellular behaviors cannot be assessed without wide screens of environmental conditions. Cellular mechanobiology is an emerging field that provides methodologies to understand how cells integrate chemical and physical environmental stress and signals, and how they are transduced to control cell function. Biofilm forming bacteria represent an attractive model because they are fast growing, genetically malleable and can display sophisticated self-organizing developmental behaviors similar to those found in higher organisms. Here, we propose mechanobiology as a new area of study in prokaryotic systems and describe its potential for unveiling new links between an organism's genome and phenome.
Collapse
|
46
|
Duan JL, Wu L, Zhang P, Ma JY, Sun XD, Liu XY, Geng FS, Liu MY, Sun YC, Cai C, Yan Z, Yuan XZ. In Situ Probing of the Intrinsic Adhesion Strength of Single Anaerobic Microbial Cells. Anal Chem 2023; 95:8325-8331. [PMID: 37191948 DOI: 10.1021/acs.analchem.3c00795] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/17/2023]
Abstract
Probing the single-cell mechanobiology in situ is imperative for microbial processes in the medical, industrial, and agricultural realms, but it remains a challenge. Herein, we present a single-cell force microscopy method that can be used to measure microbial adhesion strength under anaerobic conditions in situ. This method integrates atomic force microscopy with an anaerobic liquid cell and inverted fluorescence microscopy. We obtained the nanomechanical measurements of the single anaerobic bacterium Ethanoligenens harbinense YUAN-3 and the methanogenic archaeon Methanosarcina acetivorans C2A and their nanoscale adhesion forces in the presence of sulfoxaflor, a successor of neonicotinoid pesticides. This study presents a new tool for in situ single-cell force measurements of various anoxic and anaerobic species and provides new perspectives for evaluating the potential environmental risk of neonicotinoid applications in ecosystems.
Collapse
Affiliation(s)
- Jian-Lu Duan
- Shandong Key Laboratory of Environmental Processes and Health, School of Environmental Science and Engineering, Shandong University, Qingdao, Shandong 266237, P. R. China
| | - Lei Wu
- Shandong Key Laboratory of Environmental Processes and Health, School of Environmental Science and Engineering, Shandong University, Qingdao, Shandong 266237, P. R. China
| | - Ping Zhang
- Key Laboratory of Marine Drugs, Ministry of Education, School of Medicine and Pharmacy, Ocean University of China, Qingdao, Shandong 266003, China
| | - Jing-Ya Ma
- Shandong Key Laboratory of Environmental Processes and Health, School of Environmental Science and Engineering, Shandong University, Qingdao, Shandong 266237, P. R. China
| | - Xiao-Dong Sun
- Shandong Key Laboratory of Environmental Processes and Health, School of Environmental Science and Engineering, Shandong University, Qingdao, Shandong 266237, P. R. China
| | - Xiao-Yu Liu
- Shandong Key Laboratory of Environmental Processes and Health, School of Environmental Science and Engineering, Shandong University, Qingdao, Shandong 266237, P. R. China
| | - Fan-Shu Geng
- Shandong Key Laboratory of Environmental Processes and Health, School of Environmental Science and Engineering, Shandong University, Qingdao, Shandong 266237, P. R. China
| | - Mei-Yan Liu
- Shandong Key Laboratory of Environmental Processes and Health, School of Environmental Science and Engineering, Shandong University, Qingdao, Shandong 266237, P. R. China
| | - Yu-Chen Sun
- Shandong Key Laboratory of Environmental Processes and Health, School of Environmental Science and Engineering, Shandong University, Qingdao, Shandong 266237, P. R. China
| | - Chao Cai
- Key Laboratory of Marine Drugs, Ministry of Education, School of Medicine and Pharmacy, Ocean University of China, Qingdao, Shandong 266003, China
| | - Zhen Yan
- Shandong Key Laboratory of Environmental Processes and Health, School of Environmental Science and Engineering, Shandong University, Qingdao, Shandong 266237, P. R. China
- Sino-French Research Institute for Ecology and Environment (ISFREE), Shandong University, Qingdao, Shandong 266237, P. R. China
| | - Xian-Zheng Yuan
- Shandong Key Laboratory of Environmental Processes and Health, School of Environmental Science and Engineering, Shandong University, Qingdao, Shandong 266237, P. R. China
- Sino-French Research Institute for Ecology and Environment (ISFREE), Shandong University, Qingdao, Shandong 266237, P. R. China
| |
Collapse
|
47
|
Geiger CJ, O'Toole GA. Evidence for the Type IV Pili Retraction Motor PilT as a Component of the Surface Sensing System in Pseudomonas aeruginosa. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.05.02.539127. [PMID: 37205505 PMCID: PMC10187167 DOI: 10.1101/2023.05.02.539127] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/21/2023]
Abstract
Biofilm formation begins when bacteria contacting a surface induce cellular changes to become better adapted for surface growth. One of the first changes to occur for Pseudomonas aeruginosa after surface contact is an increase in the nucleotide second messenger 3',5'-cyclic adenosine monophosphate (cAMP). It has been demonstrated that this increase in intracellular cAMP is dependent on functional Type IV pili (T4P) relaying a signal to the Pil-Chp system, but the mechanism by which this signal is transduced remains poorly understood. Here, we investigate the role of the Type IV pili retraction motor PilT in sensing a surface and relaying that signal to cAMP production. We show that mutations affecting the structure of PilT and in particular ATPase activity of this motor protein, reduce surface-dependent cAMP production. We identify a novel interaction between PilT and PilJ, a member of the Pil-Chp system, and propose a new model whereby P. aeruginosa uses its retraction motor to sense a surface and to relay that signal via PilJ to increased production of cAMP. We discuss these findings in light of current TFP-dependent surface sensing models for P. aeruginosa . Importance T4P are cellular appendages that allow P. aeruginosa to sense a surface leading to the production of cAMP. This second messenger not only activates virulence pathways but leads to further surface adaptation and irreversible attachment of cells. Here, we demonstrate the importance of the retraction motor PilT in surface sensing. We also present a new surface sensing model in P. aeruginosa whereby the T4P retraction motor PilT senses and transmits the surface signal, likely via its ATPase domain and interaction with PilJ, to mediate production of the second messenger cAMP.
Collapse
Affiliation(s)
- C J Geiger
- Department of Microbiology and Immunology, Geisel School of Medicine at Dartmouth
| | - G A O'Toole
- Department of Microbiology and Immunology, Geisel School of Medicine at Dartmouth
| |
Collapse
|
48
|
Cont A, Vermeil J, Persat A. Material Substrate Physical Properties Control Pseudomonas aeruginosa Biofilm Architecture. mBio 2023; 14:e0351822. [PMID: 36786569 PMCID: PMC10127718 DOI: 10.1128/mbio.03518-22] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2022] [Accepted: 01/17/2023] [Indexed: 02/15/2023] Open
Abstract
In the wild, bacteria are most frequently found in the form of multicellular structures called biofilms. Biofilms grow at the surface of abiotic and living materials with wide-ranging mechanical properties. The opportunistic pathogen Pseudomonas aeruginosa forms biofilms on indwelling medical devices and on soft tissues, including burn wounds and the airway mucosa. Despite the critical role of substrates in the foundation of biofilms, we still lack a clear understanding of how material mechanics regulate their architecture and the physiology of resident bacteria. Here, we demonstrate that physical properties of hydrogel material substrates define P. aeruginosa biofilm architecture. We show that hydrogel mesh size regulates twitching motility, a surface exploration mechanism priming biofilms, ultimately controlling the organization of single cells in the multicellular community. The resulting architectural transitions increase P. aeruginosa's tolerance to colistin, a last-resort antibiotic. In addition, mechanical regulation of twitching motility affects P. aeruginosa clonal lineages, so that biofilms are more mixed on relatively denser materials. Our results thereby establish material properties as a factor that dramatically affects biofilm architecture, antibiotic efficacy, and evolution of the resident population. IMPORTANCE The biofilm lifestyle is the most widespread survival strategy in the bacterial world. Pseudomonas aeruginosa biofilms cause chronic infections and are highly recalcitrant to antimicrobials. The genetic requirements allowing P. aeruginosa to grow into biofilms are known, but not the physical stimuli that regulate their formation. Despite colonizing biological tissues, investigations of biofilms on soft materials are limited. In this work, we show that biofilms take unexpected forms when growing on soft substrates. The physical properties of the material shape P. aeruginosa biofilms by regulating surface-specific twitching motility. Physical control of biofilm morphogenesis ultimately influences the resilience of biofilms to antimicrobials, linking physical environment with tolerance to treatment. Altogether, our work established that the physical properties of a surface are a critical environmental regulator of biofilm biogenesis and evolution.
Collapse
Affiliation(s)
- Alice Cont
- Institute of Bioengineering and Global Health Institute, School of Life Sciences, Ecole Polytechnique Fédérale de Lausanne, Lausanne, Switzerland
| | - Joseph Vermeil
- Institute of Bioengineering and Global Health Institute, School of Life Sciences, Ecole Polytechnique Fédérale de Lausanne, Lausanne, Switzerland
| | - Alexandre Persat
- Institute of Bioengineering and Global Health Institute, School of Life Sciences, Ecole Polytechnique Fédérale de Lausanne, Lausanne, Switzerland
| |
Collapse
|
49
|
Abstract
Bacteria thrive in environments rich in fluid flow, such as the gastrointestinal tract, bloodstream, aquatic systems, and the urinary tract. Despite the importance of flow, how flow affects bacterial life is underappreciated. In recent years, the combination of approaches from biology, physics, and engineering has led to a deeper understanding of how bacteria interact with flow. Here, we highlight the wide range of bacterial responses to flow, including changes in surface adhesion, motility, surface colonization, quorum sensing, virulence factor production, and gene expression. To emphasize the diversity of flow responses, we focus our review on how flow affects four ecologically distinct bacterial species: Escherichia coli, Staphylococcus aureus, Caulobacter crescentus, and Pseudomonas aeruginosa. Additionally, we present experimental approaches to precisely study bacteria in flow, discuss how only some flow responses are triggered by shear force, and provide perspective on flow-sensitive bacterial signaling.
Collapse
Affiliation(s)
- Gilberto C. Padron
- Department of Biochemistry, University of Illinois at Urbana-Champaign, Urbana, Illinois, USA
| | - Alexander M. Shuppara
- Department of Biochemistry, University of Illinois at Urbana-Champaign, Urbana, Illinois, USA
| | - Jessica-Jae S. Palalay
- Department of Biochemistry, University of Illinois at Urbana-Champaign, Urbana, Illinois, USA
| | - Anuradha Sharma
- Department of Biochemistry, University of Illinois at Urbana-Champaign, Urbana, Illinois, USA
| | - Joseph E. Sanfilippo
- Department of Biochemistry, University of Illinois at Urbana-Champaign, Urbana, Illinois, USA
| |
Collapse
|
50
|
Huang X, Nero T, Weerasekera R, Matej KH, Hinbest A, Jiang Z, Lee RF, Wu L, Chak C, Nijjer J, Gibaldi I, Yang H, Gamble N, Ng WL, Malaker SA, Sumigray K, Olson R, Yan J. Vibrio cholerae biofilms use modular adhesins with glycan-targeting and nonspecific surface binding domains for colonization. Nat Commun 2023; 14:2104. [PMID: 37055389 PMCID: PMC10102183 DOI: 10.1038/s41467-023-37660-0] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2023] [Accepted: 03/24/2023] [Indexed: 04/15/2023] Open
Abstract
Bacterial biofilms are formed on environmental surfaces and host tissues, and facilitate host colonization and antibiotic resistance by human pathogens. Bacteria often express multiple adhesive proteins (adhesins), but it is often unclear whether adhesins have specialized or redundant roles. Here, we show how the model biofilm-forming organism Vibrio cholerae uses two adhesins with overlapping but distinct functions to achieve robust adhesion to diverse surfaces. Both biofilm-specific adhesins Bap1 and RbmC function as a "double-sided tape": they share a β-propeller domain that binds to the biofilm matrix exopolysaccharide, but have distinct environment-facing domains. Bap1 adheres to lipids and abiotic surfaces, while RbmC mainly mediates binding to host surfaces. Furthermore, both adhesins contribute to adhesion in an enteroid monolayer colonization model. We expect that similar modular domains may be utilized by other pathogens, and this line of research can potentially lead to new biofilm-removal strategies and biofilm-inspired adhesives.
Collapse
Affiliation(s)
- Xin Huang
- Department of Molecular, Cellular and Developmental Biology, Yale University, New Haven, CT, USA
- Department of Chemistry, Yale University, New Haven, CT, USA
| | - Thomas Nero
- Department of Molecular, Cellular and Developmental Biology, Yale University, New Haven, CT, USA
| | - Ranjuna Weerasekera
- Department of Molecular Biology and Biochemistry, Molecular Biophysics Program, Wesleyan University, Middletown, CT, USA
| | - Katherine H Matej
- Department of Molecular, Cellular and Developmental Biology, Yale University, New Haven, CT, USA
| | - Alex Hinbest
- Department of Molecular Biology and Biochemistry, Molecular Biophysics Program, Wesleyan University, Middletown, CT, USA
| | - Zhaowei Jiang
- Department of Molecular, Cellular and Developmental Biology, Yale University, New Haven, CT, USA
| | - Rebecca F Lee
- Department of Genetics, Yale School of Medicine, New Haven, CT, USA
| | - Longjun Wu
- Department of Ecology and Evolutionary Biology, Yale University, New Haven, CT, USA
- Department of Ocean Science and Hong Kong Branch of the Southern Marine Science and Engineering Guangdong Laboratory (Guangzhou), The Hong Kong University of Science and Technology, Hong Kong SAR, Guangzhou, Hong Kong SAR
| | - Cecilia Chak
- Department of Molecular, Cellular and Developmental Biology, Yale University, New Haven, CT, USA
| | - Japinder Nijjer
- Department of Molecular, Cellular and Developmental Biology, Yale University, New Haven, CT, USA
| | - Isabella Gibaldi
- Department of Molecular Biology and Biochemistry, Molecular Biophysics Program, Wesleyan University, Middletown, CT, USA
| | - Hang Yang
- Department of Molecular Biology and Biochemistry, Molecular Biophysics Program, Wesleyan University, Middletown, CT, USA
| | - Nathan Gamble
- Department of Molecular Biology and Biochemistry, Molecular Biophysics Program, Wesleyan University, Middletown, CT, USA
| | - Wai-Leung Ng
- Department of Molecular Biology and Microbiology, Tufts University School of Medicine, Boston, MA, USA
| | - Stacy A Malaker
- Department of Chemistry, Yale University, New Haven, CT, USA
| | - Kaelyn Sumigray
- Department of Genetics, Yale School of Medicine, New Haven, CT, USA
- Yale Stem Cell Center, Yale School of Medicine, New Haven, CT, USA
- Yale Cancer Center, Yale School of Medicine, New Haven, CT, USA
| | - Rich Olson
- Department of Molecular Biology and Biochemistry, Molecular Biophysics Program, Wesleyan University, Middletown, CT, USA.
| | - Jing Yan
- Department of Molecular, Cellular and Developmental Biology, Yale University, New Haven, CT, USA.
- Quantitative Biology Institute, Yale University, New Haven, CT, USA.
| |
Collapse
|