1
|
Wu Y, Zhang X, Sun L, Zhao Y, Chen X, Zhong W, He T, Guo Y, Wang D, Chen H, Zeng F, Wu S, Zhao Y. Visible-Light-Absorbing Photosensitizer Nanostructures for Treatment of Pathogenic Bacteria and Induction of Systemic Acquired Resistance. ACS NANO 2024. [PMID: 39719043 DOI: 10.1021/acsnano.4c16026] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/26/2024]
Abstract
Induction of systemic acquired resistance (SAR) in plants to control bacterial diseases has become an effective solution to the problems of agrochemical resistance and ecological environment damage caused by long-term and large-scale use of traditional bactericides. However, current SAR-inducing compounds are often unable to rapidly eliminate pathogenic bacteria in infected plant tissues to prevent further spread of the disease, severely restraining the potential for extensive application in agriculture. Herein, we address the limitations by developing a series of visible-light-absorbing aggregation-induced emission photosensitizers suitable for agricultural use. The photosensitizer (MTSQ2) is modulated by molecular engineering to have optimal optical properties, reactive oxygen species (ROS) generation efficiency, and bacterial targeting affinity, thereby exhibiting an effective antibacterial photodynamic activity against the phytopathogenic bacteria Pseudomonas syringae pv tomato DC3000 in the model plant Arabidopsis thaliana under white light illumination. Moreover, the ROS produced in situ by MTSQ2 can further regulate the ROS-AzA-G3P signaling pathway, thus allowing to induce SAR throughout the plant to prevent secondary infections. The current study can provide a feasible strategy for developing desirable photosensitizers to achieve sustainable management of plant diseases.
Collapse
Affiliation(s)
- Yinglong Wu
- School of Chemistry, Chemical Engineering and Biotechnology, Nanyang Technological University, 21 Nanyang Link, Singapore 637371, Singapore
| | - Xiaodong Zhang
- School of Chemistry, Chemical Engineering and Biotechnology, Nanyang Technological University, 21 Nanyang Link, Singapore 637371, Singapore
| | - Lihe Sun
- Biomedical Division, State Key Laboratory of Luminescent Materials and Devices, College of Materials Science and Engineering, South China University of Technology, 381 Wushan Road, Guangzhou 510640, China
| | - Yue Zhao
- School of Chemistry, Chemical Engineering and Biotechnology, Nanyang Technological University, 21 Nanyang Link, Singapore 637371, Singapore
| | - Xiaokai Chen
- School of Chemistry, Chemical Engineering and Biotechnology, Nanyang Technological University, 21 Nanyang Link, Singapore 637371, Singapore
| | - Wenbin Zhong
- School of Chemistry, Chemical Engineering and Biotechnology, Nanyang Technological University, 21 Nanyang Link, Singapore 637371, Singapore
| | - Ting He
- School of Chemistry, Chemical Engineering and Biotechnology, Nanyang Technological University, 21 Nanyang Link, Singapore 637371, Singapore
| | - Yi Guo
- School of Chemistry, Chemical Engineering and Biotechnology, Nanyang Technological University, 21 Nanyang Link, Singapore 637371, Singapore
| | - Dongdong Wang
- School of Chemistry, Chemical Engineering and Biotechnology, Nanyang Technological University, 21 Nanyang Link, Singapore 637371, Singapore
| | - Hongzhong Chen
- School of Chemistry, Chemical Engineering and Biotechnology, Nanyang Technological University, 21 Nanyang Link, Singapore 637371, Singapore
| | - Fang Zeng
- Biomedical Division, State Key Laboratory of Luminescent Materials and Devices, College of Materials Science and Engineering, South China University of Technology, 381 Wushan Road, Guangzhou 510640, China
| | - Shuizhu Wu
- Biomedical Division, State Key Laboratory of Luminescent Materials and Devices, College of Materials Science and Engineering, South China University of Technology, 381 Wushan Road, Guangzhou 510640, China
| | - Yanli Zhao
- School of Chemistry, Chemical Engineering and Biotechnology, Nanyang Technological University, 21 Nanyang Link, Singapore 637371, Singapore
| |
Collapse
|
2
|
Yan Y, Wang H, Bi Y, Song F. Rice E3 ubiquitin ligases: From key modulators of host immunity to potential breeding applications. PLANT COMMUNICATIONS 2024; 5:101128. [PMID: 39245936 DOI: 10.1016/j.xplc.2024.101128] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/22/2024] [Revised: 08/17/2024] [Accepted: 09/04/2024] [Indexed: 09/10/2024]
Abstract
To combat pathogen attacks, plants have developed a highly advanced immune system, which requires tight regulation to initiate robust defense responses while simultaneously preventing autoimmunity. The ubiquitin-proteasome system (UPS), which is responsible for degrading excess or misfolded proteins, has vital roles in ensuring strong and effective immune responses. E3 ligases, as key UPS components, play extensively documented roles in rice immunity by modulating the ubiquitination and degradation of downstream substrates involved in various immune signaling pathways. Here, we summarize the crucial roles of rice E3 ligases in both pathogen/microbe/damage-associated molecular pattern-triggered immunity and effector-triggered immunity, highlight the molecular mechanisms by which E3 ligases function in rice immune signaling, and emphasize the functions of E3 ligases as targets of pathogen effectors for pathogenesis. We also discuss potential strategies for application of immunity-associated E3 ligases in breeding of disease-resistant rice varieties without growth penalty. This review provides a comprehensive and updated understanding of the sophisticated and interconnected regulatory functions of E3 ligases in rice immunity and in balancing immunity with growth and development.
Collapse
Affiliation(s)
- Yuqing Yan
- National Key Laboratory for Rice Biology and Breeding, Institute of Biotechnology, Zhejiang University, Hangzhou 310058, China; Ministry of Agriculture Key Laboratory of Molecular Biology of Crop Pathogens and Insect Pests, Institute of Biotechnology, Zhejiang University, Hangzhou 310058, China; Key Laboratory of Biology of Crop Pathogens and Insects of Zhejiang Province, Institute of Biotechnology, Zhejiang University, Hangzhou 310058, China
| | - Hui Wang
- National Key Laboratory for Rice Biology and Breeding, Institute of Biotechnology, Zhejiang University, Hangzhou 310058, China; Ministry of Agriculture Key Laboratory of Molecular Biology of Crop Pathogens and Insect Pests, Institute of Biotechnology, Zhejiang University, Hangzhou 310058, China; Key Laboratory of Biology of Crop Pathogens and Insects of Zhejiang Province, Institute of Biotechnology, Zhejiang University, Hangzhou 310058, China
| | - Yan Bi
- National Key Laboratory for Rice Biology and Breeding, Institute of Biotechnology, Zhejiang University, Hangzhou 310058, China; Ministry of Agriculture Key Laboratory of Molecular Biology of Crop Pathogens and Insect Pests, Institute of Biotechnology, Zhejiang University, Hangzhou 310058, China; Key Laboratory of Biology of Crop Pathogens and Insects of Zhejiang Province, Institute of Biotechnology, Zhejiang University, Hangzhou 310058, China
| | - Fengming Song
- National Key Laboratory for Rice Biology and Breeding, Institute of Biotechnology, Zhejiang University, Hangzhou 310058, China; Ministry of Agriculture Key Laboratory of Molecular Biology of Crop Pathogens and Insect Pests, Institute of Biotechnology, Zhejiang University, Hangzhou 310058, China; Key Laboratory of Biology of Crop Pathogens and Insects of Zhejiang Province, Institute of Biotechnology, Zhejiang University, Hangzhou 310058, China.
| |
Collapse
|
3
|
Huang Y, Peng B, Li C, Wu Y, Zeng Z, Tariq M, Jiang L, Li SX, Wu D. Gatifloxacin hydrochloride confers broad-spectrum antibacterial activity against phytopathogenic bacteria. Front Microbiol 2024; 15:1504243. [PMID: 39687870 PMCID: PMC11648225 DOI: 10.3389/fmicb.2024.1504243] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2024] [Accepted: 11/04/2024] [Indexed: 12/18/2024] Open
Abstract
Bacterial diseases pose significant threats to agriculture and natural ecosystems, causing substantial crop losses and impacting food security. Until now, there has been a less efficient control strategy against some bacterial diseases such as bacterial wilt, caused by Ralstonia solanacearum. In this study, we screened a library of 58 microorganism-derived natural products for their antibacterial activity against R. solanacearum. Gatifloxacin hydrochloride exhibited the best inhibitory effect with an inhibition rate of 95% at 0.0625 mg/L. Further experiments demonstrate that gatifloxacin hydrochloride inhibits R. solanacearum growth in a concentration-dependent manner, with the minimum inhibitory concentration of 0.125 mg/L. Treatment with 0.5 mg/L of gatifloxacin hydrochloride killed more than 95% of bacteria. Gatifloxacin hydrochloride significantly inhibited biofilm formation by R. solanacearum. Gatifloxacin hydrochloride also shows good antibacterial activity against Pseudomonas syringae pv. tomato DC3000 and Xanthomonas campestris pv. vesicatoria. Exogenous application of gatifloxacin hydrochloride suppressed disease development caused by R. solanacearum and P. syringae. In summary, our results demonstrate the great potential of microorganism-derived compounds as broad-spectrum antibacterial compounds, providing alternative ways for the efficient control of bacterial plant diseases.
Collapse
Affiliation(s)
- Yanxia Huang
- Hunan Key Laboratory of Plant Functional Genomics and Developmental Regulation, College of Biology, Hunan University, Changsha, China
| | - Bin Peng
- Hunan Key Laboratory of Plant Functional Genomics and Developmental Regulation, College of Biology, Hunan University, Changsha, China
| | - Chenhui Li
- Hunan Engineering Technology Research Center for Bioactive Substance Discovery of Chinese Medicine, School of Pharmacy, Hunan University of Chinese Medicine, Changsha, China
| | - Yuqin Wu
- Hunan Key Laboratory of Plant Functional Genomics and Developmental Regulation, College of Biology, Hunan University, Changsha, China
| | - Zixian Zeng
- Hunan Engineering Technology Research Center for Bioactive Substance Discovery of Chinese Medicine, School of Pharmacy, Hunan University of Chinese Medicine, Changsha, China
| | - Moh Tariq
- Hunan Key Laboratory of Plant Functional Genomics and Developmental Regulation, College of Biology, Hunan University, Changsha, China
| | - Lin Jiang
- Hunan Engineering Technology Research Center for Bioactive Substance Discovery of Chinese Medicine, School of Pharmacy, Hunan University of Chinese Medicine, Changsha, China
| | - Shun-xiang Li
- Hunan Engineering Technology Research Center for Bioactive Substance Discovery of Chinese Medicine, School of Pharmacy, Hunan University of Chinese Medicine, Changsha, China
| | - Dousheng Wu
- Hunan Key Laboratory of Plant Functional Genomics and Developmental Regulation, College of Biology, Hunan University, Changsha, China
| |
Collapse
|
4
|
Popović Milovanović T, Greer S, Iličić R, Jelušić A, Bown D, Hussain M, Harrison J, Grant M, Vicente JG, Studholme DJ. Genome sequence data for 61 isolates of Xanthomonas campestris pv. campestris from Brassica crops in Serbia. Access Microbiol 2024; 6:000870.v3. [PMID: 39697997 PMCID: PMC11653112 DOI: 10.1099/acmi.0.000870.v3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2024] [Accepted: 09/17/2024] [Indexed: 12/20/2024] Open
Abstract
This Technical Resource describes genome sequencing data for 61 isolates of the bacterial pathogen Xanthomonas campestris pv. campestris collected from Brassica and Raphanus crops between 2010 and 2021 in Serbia. We present the raw sequencing reads and annotated contig-level genome assemblies and determine the races of ten isolates. The data can be used to test hypotheses and phylogeographic analyses and inform the design of informative molecular markers for population genetics studies. When combined with phenotypic data, they could be used to dissect relationships between genotypes and phenotypes such as host range and virulence. Finally, these genome sequences expand our inventory of plasmids known to reside in this pathogen.
Collapse
Affiliation(s)
| | - Shannon Greer
- School of Life Sciences, University of Warwick, Coventry, UK
| | - Renata Iličić
- Faculty of Agriculture, University of Novi Sad, Novi Sad, Serbia
| | - Aleksandra Jelušić
- Institute for Multidisciplinary Research, University of Belgrade, Belgrade, Serbia
| | - Daisy Bown
- School of Life Sciences, University of Warwick, Coventry, UK
| | | | | | - Murray Grant
- School of Life Sciences, University of Warwick, Coventry, UK
| | - Joana G. Vicente
- School of Life Sciences, University of Warwick, Coventry, UK
- Fera Science, York, UK
| | | |
Collapse
|
5
|
Huang CJ, Wu TL, Wu YL, Wang RS, Lin YC. Comparative genomic analysis uncovered phylogenetic diversity, evolution of virulence factors, and horizontal gene transfer events in tomato bacterial spot Xanthomonas euvesicatoria. Front Microbiol 2024; 15:1487917. [PMID: 39564482 PMCID: PMC11573517 DOI: 10.3389/fmicb.2024.1487917] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2024] [Accepted: 10/09/2024] [Indexed: 11/21/2024] Open
Abstract
Introduction Bacterial spot, caused by diverse xanthomonads classified into four lineages within three species, poses a significant threat to global pepper and tomato production. In Taiwan, tomato bacterial spot xanthomonads phylogenetically related to an atypical Xanthomonas euvesicatoria pv. perforans (Xep) strain NI1 from Nigeria were found. Methods To investigate the genetic structure of Taiwanese Xep strains and determine the phylogenetic position of the atypical strains, we completed high-quality, gap-free, circularized genomes of seven Taiwanese Xep strains and performed comparative genomic analyses with genomes of X. euvesicatoria pathovars. Average nucleotide identity, core genome analysis, and phylogenomic analysis were conducted. Results Three sequenced strains were identified as typical Xep, while four clustered with the atypical strain NI1, forming a distinct genomovar within X. euvesicatoria, proposed as X. euvesicatoria genomovar taiwanensis (Xet). This new lineage likely originated in Taiwan and spread to Nigeria through global seed trade. At the genomovar level, chromosomes remained conserved among Taiwanese strains, while plasmids likely contributed to bacterial virulence, avirulence, and field fitness. Gap-free genomes revealed associations between the evolution of type III effectors, horizontal gene transfer events, plasmid diversity, and recombination. Discussion This study highlights the critical roles of horizontal gene transfer and plasmids in shaping the genetic makeup, evolution, and environmental adaptation of plant pathogenic xanthomonads. The identification of a new genomovar, X. euvesicatoria genomovar taiwanensis, provides insights into the diversity and global spread of bacterial spot pathogens through seed trade.
Collapse
Affiliation(s)
- Chien-Jui Huang
- Department of Plant Medicine, National Chiayi University, Chiayi, Taiwan
| | - Ting-Li Wu
- Biotechnology Center in Southern Taiwan, Academia Sinica, Tainan, Taiwan
- Agriltural Biotechnology Research Center, Academia Sinica, Taipei, Taiwan
| | - Yu-Lin Wu
- Biotechnology Center in Southern Taiwan, Academia Sinica, Tainan, Taiwan
- Agriltural Biotechnology Research Center, Academia Sinica, Taipei, Taiwan
| | - Ruei-Shiuan Wang
- Biotechnology Center in Southern Taiwan, Academia Sinica, Tainan, Taiwan
- Agriltural Biotechnology Research Center, Academia Sinica, Taipei, Taiwan
| | - Yao-Cheng Lin
- Biotechnology Center in Southern Taiwan, Academia Sinica, Tainan, Taiwan
- Agriltural Biotechnology Research Center, Academia Sinica, Taipei, Taiwan
| |
Collapse
|
6
|
Asif M, Xie X, Zhao Z. Virulence regulation in plant-pathogenic bacteria by host-secreted signals. Microbiol Res 2024; 288:127883. [PMID: 39208525 DOI: 10.1016/j.micres.2024.127883] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2024] [Revised: 08/07/2024] [Accepted: 08/17/2024] [Indexed: 09/04/2024]
Abstract
Bacterial pathogens manipulate host signaling pathways and evade host defenses using effector molecules, coordinating their deployment to ensure successful infection. However, host-derived metabolites as signals, and their critical role in regulating bacterial virulence requires further insights. Effective regulation of virulence, which is essential for pathogenic bacteria, involves controlling factors that enable colonization, defense evasion, and tissue damage. This regulation is dynamic, influenced by environmental cues including signals from host plants like exudates. Plant exudates, comprising of diverse compounds released by roots and tissues, serve as rich chemical signals affecting the behavior and virulence of associated bacteria. Plant nutrients act as signaling molecules that are sensed through membrane-localized receptors and intracellular response mechanisms in bacteria. This review explains how different bacteria detect and answer to secreted chemical signals, regulating virulence gene expression. Our main emphasis is exploring the recognition process of host-originated signaling molecules through molecular sensors on cellular membranes and intracellular signaling pathways. This review encompasses insights into how bacterial strains individually coordinate their virulence in response to various distinct host-derived signals that can positively or negatively regulate their virulence. Furthermore, we explained the interruption of plant defense with the perception of host metabolites to dampen pathogen virulence. The intricate interplay between pathogens and plant signals, particularly in how pathogens recognize host metabolic signals to regulate virulence genes, portrays a crucial initial interaction leading to profound influences on infection outcomes. This work will greatly aid researchers in developing new strategies for preventing and treating infections.
Collapse
Affiliation(s)
- Muhammad Asif
- Department of Plant Pathology, College of Agriculture, Guizhou University, Guiyang 550025, China
| | - Xin Xie
- Department of Plant Pathology, College of Agriculture, Guizhou University, Guiyang 550025, China
| | - Zhibo Zhao
- Department of Plant Pathology, College of Agriculture, Guizhou University, Guiyang 550025, China.
| |
Collapse
|
7
|
Hou M, Leng C, Zhu J, Yang M, Yin Y, Xing Y, Chen J. Alpine and subalpine plant microbiome mediated plants adapt to the cold environment: A systematic review. ENVIRONMENTAL MICROBIOME 2024; 19:82. [PMID: 39487507 PMCID: PMC11529171 DOI: 10.1186/s40793-024-00614-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/16/2024] [Accepted: 09/02/2024] [Indexed: 11/04/2024]
Abstract
With global climate change, ecosystems are affected, some of which are more vulnerable than others, such as alpine ecosystems. Microbes play an important role in environmental change in global ecosystems. Plants and microbes are tightly associated, and symbiotic or commensal microorganisms are crucial for plants to respond to stress, particularly for alpine plants. The current study of alpine and subalpine plant microbiome only stays at the community structure scale, but its ecological function and mechanism to help plants to adapt to the harsh environments have not received enough attention. Therefore, it is essential to systematically understand the structure, functions and mechanisms of the microbial community of alpine and subalpine plants, which will be helpful for the conservation of alpine and subalpine plants using synthetic microbial communities in the future. This review mainly summarizes the research progress of the alpine plant microbiome and its mediating mechanism of plant cold adaptation from the following three perspectives: (1) Microbiome community structure and their unique taxa of alpine and subalpine plants; (2) The role of alpine and subalpine plant microbiome in plant adaptation to cold stress; (3) Mechanisms by which the microbiome of alpine and subalpine plants promotes plant adaptation to low-temperature environments. Finally, we also discussed the future application of high-throughput technologies in the development of microbial communities for alpine and subalpine plants. The existing knowledge could improve our understanding of the important role of microbes in plant adaptation to harsh environments. In addition, perspective further studies on microbes' function confirmation and microbial manipulations in microbiome engineering were also discussed.
Collapse
Affiliation(s)
- Mengyan Hou
- Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences & Peking Union Medical College, No.151, Malianwa North Road, Haidian District, Beijing, 100193, People's Republic of China
| | - Chunyan Leng
- Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences & Peking Union Medical College, No.151, Malianwa North Road, Haidian District, Beijing, 100193, People's Republic of China
| | - Jun Zhu
- Xinjiang Institute of Chinese and Ethnic Medicine, Urumqi, 830002, People's Republic of China
| | - Mingshu Yang
- Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences & Peking Union Medical College, No.151, Malianwa North Road, Haidian District, Beijing, 100193, People's Republic of China
| | - Yifei Yin
- Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences & Peking Union Medical College, No.151, Malianwa North Road, Haidian District, Beijing, 100193, People's Republic of China
| | - Yongmei Xing
- Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences & Peking Union Medical College, No.151, Malianwa North Road, Haidian District, Beijing, 100193, People's Republic of China
| | - Juan Chen
- Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences & Peking Union Medical College, No.151, Malianwa North Road, Haidian District, Beijing, 100193, People's Republic of China.
- School of Pharmacy, Shandong Second Medical University, Weifang, 261053, People's Republic of China.
| |
Collapse
|
8
|
Thomas BO, Lechner SL, Ross HC, Joris BR, Glick BR, Stegelmeier AA. Friends and Foes: Bacteria of the Hydroponic Plant Microbiome. PLANTS (BASEL, SWITZERLAND) 2024; 13:3069. [PMID: 39519984 PMCID: PMC11548230 DOI: 10.3390/plants13213069] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/19/2024] [Revised: 10/16/2024] [Accepted: 10/28/2024] [Indexed: 11/16/2024]
Abstract
Hydroponic greenhouses and vertical farms provide an alternative crop production strategy in regions that experience low temperatures, suboptimal sunlight, or inadequate soil quality. However, hydroponic systems are soilless and, therefore, have vastly different bacterial microbiota than plants grown in soil. This review highlights some of the most prevalent plant growth-promoting bacteria (PGPB) and destructive phytopathogenic bacteria that dominate hydroponic systems. A complete understanding of which bacteria increase hydroponic crop yields and ways to mitigate crop loss from disease are critical to advancing microbiome research. The section focussing on plant growth-promoting bacteria highlights putative biological pathways for growth promotion and evidence of increased crop productivity in hydroponic systems by these organisms. Seven genera are examined in detail, including Pseudomonas, Bacillus, Azospirillum, Azotobacter, Rhizobium, Paenibacillus, and Paraburkholderia. In contrast, the review of hydroponic phytopathogens explores the mechanisms of disease, studies of disease incidence in greenhouse crops, and disease control strategies. Economically relevant diseases caused by Xanthomonas, Erwinia, Agrobacterium, Ralstonia, Clavibacter, Pectobacterium, and Pseudomonas are discussed. The conditions that make Pseudomonas both a friend and a foe, depending on the species, environment, and gene expression, provide insights into the complexity of plant-bacterial interactions. By amalgamating information on both beneficial and pathogenic bacteria in hydroponics, researchers and greenhouse growers can be better informed on how bacteria impact modern crop production systems.
Collapse
Affiliation(s)
- Brianna O. Thomas
- Department of Biology, University of Waterloo, 200 University Avenue West, Waterloo, ON N2L 3G1, Canada (B.R.G.)
| | - Shelby L. Lechner
- Department of Biology, University of Waterloo, 200 University Avenue West, Waterloo, ON N2L 3G1, Canada (B.R.G.)
| | - Hannah C. Ross
- Ceragen Inc., 151 Charles St W, Suite 199, Kitchener, ON N2G 1H6, Canada (B.R.J.)
| | - Benjamin R. Joris
- Ceragen Inc., 151 Charles St W, Suite 199, Kitchener, ON N2G 1H6, Canada (B.R.J.)
| | - Bernard R. Glick
- Department of Biology, University of Waterloo, 200 University Avenue West, Waterloo, ON N2L 3G1, Canada (B.R.G.)
| | | |
Collapse
|
9
|
Xu S, Hong L, Wu T, Liu X, Ding Z, Liu L, Shao Q, Zheng Y, Xing B. Insight into saffron associated microbiota from different origins and explore the endophytes for enhancement of bioactive compounds. Food Chem 2024; 456:140006. [PMID: 38870814 DOI: 10.1016/j.foodchem.2024.140006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2024] [Revised: 05/31/2024] [Accepted: 06/06/2024] [Indexed: 06/15/2024]
Abstract
Crocus sativus L. is a perennial crop for its valuable active compounds. Plant-associated microbes impact on the quality and efficacy of medicinal herbs by promoting bioactive components accumulation. However, how microbes influence the accumulation of bioactive components in saffron have not been well studied. Here, the microbiome in C. sativus derived from 3 core production areas were deciphered by 16S rDNA sequencing and the relationship between endophytes and bioactive ingredients were further investigated. The main results are as follows: (1) Both Comamonadaceae and Burkholderiaceae were positively correlated with the content of bioactive components in the stigmas. (2) The synthesis of crocin was positively correlated with Xanthomonadaceae, negatively correlated with Lachnospiraceae and Prevotellaceae. Therefore, further investigation is required to determine whether Xanthomonadaceae plays an unknown function in the synthesis of crocin. These findings provide guidelines for disentangling the function of endophytes in the production of bioactive ingredients and thus for microbe-mediated breeding.
Collapse
Affiliation(s)
- Sirui Xu
- State Key Laboratory of Subtropical Silviculture, Zhejiang A & F University, Hangzhou 311300, China; Zhejiang Provincial Key Laboratory of Resources Protection and Innovation of Traditional Chinese Medicine, Zhejiang A & F University, Hangzhou 311300, China
| | - Liang Hong
- State Key Laboratory of Subtropical Silviculture, Zhejiang A & F University, Hangzhou 311300, China; Zhejiang Provincial Key Laboratory of Resources Protection and Innovation of Traditional Chinese Medicine, Zhejiang A & F University, Hangzhou 311300, China
| | - Tong Wu
- State Key Laboratory of Subtropical Silviculture, Zhejiang A & F University, Hangzhou 311300, China; Zhejiang Provincial Key Laboratory of Resources Protection and Innovation of Traditional Chinese Medicine, Zhejiang A & F University, Hangzhou 311300, China
| | - Xinting Liu
- State Key Laboratory of Subtropical Silviculture, Zhejiang A & F University, Hangzhou 311300, China; Zhejiang Provincial Key Laboratory of Resources Protection and Innovation of Traditional Chinese Medicine, Zhejiang A & F University, Hangzhou 311300, China
| | - Zihan Ding
- State Key Laboratory of Subtropical Silviculture, Zhejiang A & F University, Hangzhou 311300, China; Zhejiang Provincial Key Laboratory of Resources Protection and Innovation of Traditional Chinese Medicine, Zhejiang A & F University, Hangzhou 311300, China
| | - Li Liu
- State Key Laboratory of Subtropical Silviculture, Zhejiang A & F University, Hangzhou 311300, China; Zhejiang Provincial Key Laboratory of Resources Protection and Innovation of Traditional Chinese Medicine, Zhejiang A & F University, Hangzhou 311300, China
| | - Qingsong Shao
- State Key Laboratory of Subtropical Silviculture, Zhejiang A & F University, Hangzhou 311300, China; Zhejiang Provincial Key Laboratory of Resources Protection and Innovation of Traditional Chinese Medicine, Zhejiang A & F University, Hangzhou 311300, China
| | - Ying Zheng
- State Key Laboratory of Subtropical Silviculture, Zhejiang A & F University, Hangzhou 311300, China; Zhejiang Provincial Key Laboratory of Resources Protection and Innovation of Traditional Chinese Medicine, Zhejiang A & F University, Hangzhou 311300, China.
| | - Bingcong Xing
- State Key Laboratory of Subtropical Silviculture, Zhejiang A & F University, Hangzhou 311300, China; Zhejiang Provincial Key Laboratory of Resources Protection and Innovation of Traditional Chinese Medicine, Zhejiang A & F University, Hangzhou 311300, China.
| |
Collapse
|
10
|
Kumari D, Prasad BD, Dwivedi P, Sahni S, Kumar M, Alamri S, Adil MF, Alakeel KA. Comprehensive analysis of transcription factor binding sites and expression profiling of rice pathogenesis related genes ( OsPR1). FRONTIERS IN PLANT SCIENCE 2024; 15:1463147. [PMID: 39524559 PMCID: PMC11543534 DOI: 10.3389/fpls.2024.1463147] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/11/2024] [Accepted: 09/10/2024] [Indexed: 11/16/2024]
Abstract
Pathogenesis-related (PR) proteins, found in plants, play a crucial role in responding to both biotic and abiotic stresses and are categorized into 17 distinct families based on their properties and functions. We have conducted a phylogenetic analysis of OsPR1 genes (rice PR1 genes) in conjunction with 58 putative PR1 genes identified in Brachypodium distachyon, Hordeum vulgare, Brassica rapa, and Zea mays through BLASTP predictions. We extensively investigated the responses of the remaining 11 rice PR1 genes, using OsPR1a as a reference, under various stress conditions, including phytohormone treatments (salicylic acid and brassinosteroid [BR]), wounding, and heat stress (HS). In rice, of the 32 predicted OsPR1 genes, 12 have been well-characterized for their roles in disease resistance, while the functions of the remaining genes have not been studied extensively. In our study, we selected an additional 11 OsPR1 genes for further analysis and constructed a phylogenetic tree based on the presence of a 10-amino-acid-long conserved motif within these proteins. The phylogenetic analysis revealed that both OsPR1a from earlier studies and OsPR1-74 from our current study belong to the same clade. These genes consistently exhibit upregulation in response to diverse stress treatments such as biotic stress and abiotic stresses such as heat, drought, and salinity, indicating their potential roles in enhancing stress tolerance in rice. Significantly, this study delves into the previously unexplored role of OsPR1 genes in responding to Brassinosteroid (BR) and heat stress (HS) treatments, confirming their involvement in stress responses through qRT-PCR analysis. We found that seven genes were upregulated by EBR treatment. During heat stress (HS), six and seven genes were upregulated at 1hand 4h HS, respectively. The remaining genes OsPR1-22 and OsPR1-75 were upregulated at 1h but downregulated at 4h HS and under EBR treatment. In contrast, OsPR1-76 was upregulated at both 1h and 4h HS, but downregulated under EBR treatment. Promoters of PR1 genes in rice and other crops are rich in transcription factor binding sites (TFBSs) and feature a conserved Cysteine-rich secretory protein (SCP or CAP) motif. This study advances our understanding of PR1 gene regulation and its potential to enhance stress tolerance in rice.
Collapse
Affiliation(s)
- Diksha Kumari
- Department of Plant Physiology, Institute of Agricultural Sciences, Banaras Hindu University, Varanasi, UP, India
| | - Bishun Deo Prasad
- Department of Agricultural Biotechnology & Molecular Biology, College of Basic Sciences and Humanities (CBS&H), Dr. Rajendra Prasad Central Agricultural University, Pusa, Samastipur, Bihar, India
| | - Padmanabh Dwivedi
- Department of Plant Physiology, Institute of Agricultural Sciences, Banaras Hindu University, Varanasi, UP, India
| | - Sangita Sahni
- Department of Plant Pathology, Tirhut College of Agriculture (TCA), Dr. Rajendra Prasad Central Agricultural University, Pusa, Samastipur, Bihar, India
| | - Mankesh Kumar
- Department of Plant Breeding & Genetics, Bihar Agricultural University, Sabour, Bhagalpur, Bihar, India
| | - Saud Alamri
- Department of Botany and Microbiology, College of Science, King Saud University, Riyadh, Saudi Arabia
| | - Muhammad Faheem Adil
- Zhejiang Key Laboratory of Crop Germplasm Resource, Department of Agronomy, College of Agriculture and Biotechnology, Zhejiang University, Hangzhou, China
| | - Khaled A. Alakeel
- Department: Advanced Agricultural & Food Technologies Institute, Sustainability and Environment Sector, King Abdulaziz City for Science and Technology, Riyadh, Saudi Arabia
| |
Collapse
|
11
|
Jaiswal G, Rana R, Nayak PK, Chouhan R, Gandhi SG, Patel HK, Patil PB. Luteibacter sahnii sp. nov., A Novel Yellow-Colored Xanthomonadin Pigment Producing Probiotic Bacterium from Healthy Rice Seed Microbiome. Curr Microbiol 2024; 81:424. [PMID: 39446145 DOI: 10.1007/s00284-024-03950-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2024] [Accepted: 10/15/2024] [Indexed: 10/25/2024]
Abstract
To explore the rice seed microbiome, our objective was to isolate novel strains of Xanthomonas, a plant-associated bacterium with diverse lifestyles. Four isolates, anticipated to be Xanthomonas based on morphological features of yellow colonies, were obtained from healthy rice seeds. Phylo-taxono-genomic analysis revealed that these isolates formed monophyletic lineages belonging to a novel species within the genus Luteibacter. Pairwise ortho Average Nucleotide Identity and digital DNA-DNA hybridization confirmed their distinct species status. We propose Luteibacter sahnii sp. nov. as a novel species, with PPL193T = MTCC 13290T = ICMP 24807T = CFBP 9144T as the type strain and PPL201, PPL552, and PPL554 as other constituent members. The fatty acid profile of the type strain is dominated by branched fatty acids like Iso-C15:0, consistent with other members of the genus. The novel species displays non-pathogenic attributes and exhibits plant probiotic properties, protecting rice plants from the leaf blight pathogen X. oryzae pv. oryzae. Production of Indole-3-Acetic Acid (IAA) and genomic regions encoding anti-microbial peptides emphasize its potential contributions to plant hosts. This study underscores the importance of employing a combination of phenotypic and genotypic methods in culturomics to enhance our understanding of rice seed microbiome diversity.
Collapse
Affiliation(s)
- Gagandeep Jaiswal
- Bacterial Genomics and Evolution Laboratory, CSIR-Institute of Microbial Technology, Chandigarh, India
- The Academy of Scientific and Innovative Research, Ghaziabad, India
| | - Rekha Rana
- Bacterial Genomics and Evolution Laboratory, CSIR-Institute of Microbial Technology, Chandigarh, India
- The Academy of Scientific and Innovative Research, Ghaziabad, India
| | - Praveen Kumar Nayak
- The Academy of Scientific and Innovative Research, Ghaziabad, India
- CSIR-Centre for Cellular and Molecular Biology, Hyderabad, India
| | - Rekha Chouhan
- CSIR-Indian Institute of Integrative Medicine, Jammu, India
| | - Sumit G Gandhi
- The Academy of Scientific and Innovative Research, Ghaziabad, India
- CSIR-Indian Institute of Integrative Medicine, Jammu, India
| | - Hitendra K Patel
- The Academy of Scientific and Innovative Research, Ghaziabad, India
- CSIR-Centre for Cellular and Molecular Biology, Hyderabad, India
| | - Prabhu B Patil
- Bacterial Genomics and Evolution Laboratory, CSIR-Institute of Microbial Technology, Chandigarh, India.
- The Academy of Scientific and Innovative Research, Ghaziabad, India.
| |
Collapse
|
12
|
Hu X, Zhang X, Sun W, Liu C, Deng P, Cao Y, Zhang C, Xu N, Zhang T, Zhang Y, Liu JJ, Wang H. Systematic discovery of DNA-binding tandem repeat proteins. Nucleic Acids Res 2024; 52:10464-10489. [PMID: 39189466 PMCID: PMC11417379 DOI: 10.1093/nar/gkae710] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2024] [Revised: 07/30/2024] [Accepted: 08/07/2024] [Indexed: 08/28/2024] Open
Abstract
Tandem repeat proteins (TRPs) are widely distributed and bind to a wide variety of ligands. DNA-binding TRPs such as zinc finger (ZNF) and transcription activator-like effector (TALE) play important roles in biology and biotechnology. In this study, we first conducted an extensive analysis of TRPs in public databases, and found that the enormous diversity of TRPs is largely unexplored. We then focused our efforts on identifying novel TRPs possessing DNA-binding capabilities. We established a protein language model for DNA-binding protein prediction (PLM-DBPPred), and predicted a large number of DNA-binding TRPs. A subset was then selected for experimental screening, leading to the identification of 11 novel DNA-binding TRPs, with six showing sequence specificity. Notably, members of the STAR (Short TALE-like Repeat proteins) family can be programmed to target specific 9 bp DNA sequences with high affinity. Leveraging this property, we generated artificial transcription factors using reprogrammed STAR proteins and achieved targeted activation of endogenous gene sets. Furthermore, the members of novel families such as MOON (Marine Organism-Originated DNA binding protein) and pTERF (prokaryotic mTERF-like protein) exhibit unique features and distinct DNA-binding characteristics, revealing interesting biological clues. Our study expands the diversity of DNA-binding TRPs, and demonstrates that a systematic approach greatly enhances the discovery of new biological insights and tools.
Collapse
Affiliation(s)
- Xiaoxuan Hu
- Key Laboratory of Organ Regeneration and Reconstruction, State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China
- University of Chinese Academy of Sciences, Beijing 100049, China
- Institute for Stem Cell and Regeneration, Chinese Academy of Sciences, Beijing 100101, China
| | - Xuechun Zhang
- Key Laboratory of Organ Regeneration and Reconstruction, State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China
- University of Chinese Academy of Sciences, Beijing 100049, China
- Institute for Stem Cell and Regeneration, Chinese Academy of Sciences, Beijing 100101, China
| | - Wen Sun
- Key Laboratory of Organ Regeneration and Reconstruction, State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China
- Institute for Stem Cell and Regeneration, Chinese Academy of Sciences, Beijing 100101, China
- Beijing Institute for Stem Cell and Regenerative Medicine, Beijing 100101, China
| | - Chunhong Liu
- Key Laboratory of Organ Regeneration and Reconstruction, State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China
- University of Chinese Academy of Sciences, Beijing 100049, China
- Institute for Stem Cell and Regeneration, Chinese Academy of Sciences, Beijing 100101, China
| | - Pujuan Deng
- State Key Laboratory of Membrane Biology, Beijing Frontier Research Center for Biological Structure, School of Life Sciences, Tsinghua University, Beijing 100084, China
- Tsinghua-Peking Center for Life Sciences, Tsinghua University, Beijing 100084, China
| | - Yuanwei Cao
- Key Laboratory of Organ Regeneration and Reconstruction, State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China
- University of Chinese Academy of Sciences, Beijing 100049, China
- Institute for Stem Cell and Regeneration, Chinese Academy of Sciences, Beijing 100101, China
| | - Chenze Zhang
- National Key Laboratory of Efficacy and Mechanism on Chinese Medicine for Metabolic Diseases, Beijing University of Chinese Medicine, Beijing 100029, China
| | - Ning Xu
- Key Laboratory of Organ Regeneration and Reconstruction, State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China
- University of Chinese Academy of Sciences, Beijing 100049, China
- Institute for Stem Cell and Regeneration, Chinese Academy of Sciences, Beijing 100101, China
| | - Tongtong Zhang
- Key Laboratory of Organ Regeneration and Reconstruction, State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China
- University of Chinese Academy of Sciences, Beijing 100049, China
- Institute for Stem Cell and Regeneration, Chinese Academy of Sciences, Beijing 100101, China
| | - Yong E Zhang
- University of Chinese Academy of Sciences, Beijing 100049, China
- Key Laboratory of Zoological Systematics and Evolution, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China
| | - Jun-Jie Gogo Liu
- State Key Laboratory of Membrane Biology, Beijing Frontier Research Center for Biological Structure, School of Life Sciences, Tsinghua University, Beijing 100084, China
- Tsinghua-Peking Center for Life Sciences, Tsinghua University, Beijing 100084, China
| | - Haoyi Wang
- Key Laboratory of Organ Regeneration and Reconstruction, State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China
- University of Chinese Academy of Sciences, Beijing 100049, China
- Institute for Stem Cell and Regeneration, Chinese Academy of Sciences, Beijing 100101, China
- Beijing Institute for Stem Cell and Regenerative Medicine, Beijing 100101, China
| |
Collapse
|
13
|
Wang J, Liao Z, Jin X, Liao L, Zhang Y, Zhang R, Zhao X, Qin H, Chen J, He Y, Zhuang C, Tang J, Huang S. Xanthomonas oryzae pv. oryzicola effector Tal10a directly activates rice OsHXK5 expression to facilitate pathogenesis. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2024; 119:2423-2436. [PMID: 38995679 DOI: 10.1111/tpj.16929] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/08/2024] [Revised: 04/17/2024] [Accepted: 07/01/2024] [Indexed: 07/13/2024]
Abstract
Bacterial leaf streak (BLS), caused by Xanthomonas oryzae pv. oryzicola (Xoc), is a major bacterial disease in rice. Transcription activator-like effectors (TALEs) from Xanthomonas can induce host susceptibility (S) genes and facilitate infection. However, knowledge of the function of Xoc TALEs in promoting bacterial virulence is limited. In this study, we demonstrated the importance of Tal10a for the full virulence of Xoc. Through computational prediction and gene expression analysis, we identified the hexokinase gene OsHXK5 as a host target of Tal10a. Tal10a directly binds to the gene promoter region and activates the expression of OsHXK5. CRISPR/Cas9-mediated gene editing in the effector binding element (EBE) of OsHXK5 significantly increases rice resistance to Xoc, while OsHXK5 overexpression enhances the susceptibility of rice plants and impairs rice defense responses. Moreover, simultaneous editing of the promoters of OsSULTR3;6 and OsHXK5 confers robust resistance to Xoc in rice. Taken together, our findings highlight the role of Tal10a in targeting OsHXK5 to promote infection and suggest that OsHXK5 represents a potential target for engineering rice resistance to Xoc.
Collapse
Affiliation(s)
- Jiuxiang Wang
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, College of Life Science and Technology, Guangxi University, 100 Daxue Road, Nanning, 530004, Guangxi, China
| | - Zhouxiang Liao
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, College of Life Science and Technology, Guangxi University, 100 Daxue Road, Nanning, 530004, Guangxi, China
- School of Public Health, Guangxi Medical University, Nanning, 530021, China
| | - Xia Jin
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, College of Life Science and Technology, Guangxi University, 100 Daxue Road, Nanning, 530004, Guangxi, China
| | - Lindong Liao
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, College of Life Science and Technology, Guangxi University, 100 Daxue Road, Nanning, 530004, Guangxi, China
| | - Yaqi Zhang
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, College of Life Science and Technology, Guangxi University, 100 Daxue Road, Nanning, 530004, Guangxi, China
| | - Rongbo Zhang
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, College of Life Science and Technology, Guangxi University, 100 Daxue Road, Nanning, 530004, Guangxi, China
| | - Xiyao Zhao
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, College of Life Science and Technology, Guangxi University, 100 Daxue Road, Nanning, 530004, Guangxi, China
| | - Huajun Qin
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, College of Life Science and Technology, Guangxi University, 100 Daxue Road, Nanning, 530004, Guangxi, China
| | - Jianghong Chen
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, College of Life Science and Technology, Guangxi University, 100 Daxue Road, Nanning, 530004, Guangxi, China
| | - Yongqiang He
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, College of Life Science and Technology, Guangxi University, 100 Daxue Road, Nanning, 530004, Guangxi, China
- National Demonstration Center for Experimental Plant Science Education, College of Agriculture, Guangxi University, Nanning, 530004, Guangxi, China
| | - Chuxiong Zhuang
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, College of Life Sciences, South China Agricultural University, Guangzhou, 510642, China
| | - Jiliang Tang
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, College of Life Science and Technology, Guangxi University, 100 Daxue Road, Nanning, 530004, Guangxi, China
| | - Sheng Huang
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, College of Life Science and Technology, Guangxi University, 100 Daxue Road, Nanning, 530004, Guangxi, China
| |
Collapse
|
14
|
Gonçalves C, Harrison MC, Steenwyk JL, Opulente DA, LaBella AL, Wolters JF, Zhou X, Shen XX, Groenewald M, Hittinger CT, Rokas A. Diverse signatures of convergent evolution in cactus-associated yeasts. PLoS Biol 2024; 22:e3002832. [PMID: 39312572 PMCID: PMC11449361 DOI: 10.1371/journal.pbio.3002832] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2024] [Revised: 10/03/2024] [Accepted: 09/05/2024] [Indexed: 09/25/2024] Open
Abstract
Many distantly related organisms have convergently evolved traits and lifestyles that enable them to live in similar ecological environments. However, the extent of phenotypic convergence evolving through the same or distinct genetic trajectories remains an open question. Here, we leverage a comprehensive dataset of genomic and phenotypic data from 1,049 yeast species in the subphylum Saccharomycotina (Kingdom Fungi, Phylum Ascomycota) to explore signatures of convergent evolution in cactophilic yeasts, ecological specialists associated with cacti. We inferred that the ecological association of yeasts with cacti arose independently approximately 17 times. Using a machine learning-based approach, we further found that cactophily can be predicted with 76% accuracy from both functional genomic and phenotypic data. The most informative feature for predicting cactophily was thermotolerance, which we found to be likely associated with altered evolutionary rates of genes impacting the cell envelope in several cactophilic lineages. We also identified horizontal gene transfer and duplication events of plant cell wall-degrading enzymes in distantly related cactophilic clades, suggesting that putatively adaptive traits evolved independently through disparate molecular mechanisms. Notably, we found that multiple cactophilic species and their close relatives have been reported as emerging human opportunistic pathogens, suggesting that the cactophilic lifestyle-and perhaps more generally lifestyles favoring thermotolerance-might preadapt yeasts to cause human disease. This work underscores the potential of a multifaceted approach involving high-throughput genomic and phenotypic data to shed light onto ecological adaptation and highlights how convergent evolution to wild environments could facilitate the transition to human pathogenicity.
Collapse
Affiliation(s)
- Carla Gonçalves
- Department of Biological Sciences, Vanderbilt University, Nashville, Tennessee, United States of America
- Evolutionary Studies Initiative, Vanderbilt University, Nashville, Tennessee, United States of America
- Associate Laboratory i4HB—Institute for Health and Bioeconomy and UCIBIO—Applied Molecular Biosciences Unit, Department of Life Sciences, NOVA School of Science and Technology, Universidade NOVA de Lisboa, Caparica, Portugal
- UCIBIO-i4HB, Departamento de Ciências da Vida, Faculdade de Ciências e Tecnologia, Universidade Nova de Lisboa, Caparica, Portugal
| | - Marie-Claire Harrison
- Department of Biological Sciences, Vanderbilt University, Nashville, Tennessee, United States of America
- Evolutionary Studies Initiative, Vanderbilt University, Nashville, Tennessee, United States of America
| | - Jacob L. Steenwyk
- Department of Biological Sciences, Vanderbilt University, Nashville, Tennessee, United States of America
- Evolutionary Studies Initiative, Vanderbilt University, Nashville, Tennessee, United States of America
- Howards Hughes Medical Institute and the Department of Molecular and Cell Biology, University of California, Berkeley, Berkeley, California, United States of America
| | - Dana A. Opulente
- Laboratory of Genetics, DOE Great Lakes Bioenergy Research Center, Center for Genomic Science Innovation, J. F. Crow Institute for the Study of Evolution, Wisconsin Energy Institute, University of Wisconsin-Madison, Madison, Wisconsin, United States of America
- Biology Department, Villanova University, Villanova, Pennsylvania, United States of America
| | - Abigail L. LaBella
- Department of Biological Sciences, Vanderbilt University, Nashville, Tennessee, United States of America
- Evolutionary Studies Initiative, Vanderbilt University, Nashville, Tennessee, United States of America
- Department of Bioinformatics and Genomics, University of North Carolina at Charlotte, Charlotte, North Carolina, United States of America
| | - John F. Wolters
- Laboratory of Genetics, DOE Great Lakes Bioenergy Research Center, Center for Genomic Science Innovation, J. F. Crow Institute for the Study of Evolution, Wisconsin Energy Institute, University of Wisconsin-Madison, Madison, Wisconsin, United States of America
| | - Xiaofan Zhou
- Department of Biological Sciences, Vanderbilt University, Nashville, Tennessee, United States of America
- Evolutionary Studies Initiative, Vanderbilt University, Nashville, Tennessee, United States of America
- Guangdong Province Key Laboratory of Microbial Signals and Disease Control, Integrative Microbiology Research Center, South China Agricultural University, Guangzhou, China
| | - Xing-Xing Shen
- Department of Biological Sciences, Vanderbilt University, Nashville, Tennessee, United States of America
- Evolutionary Studies Initiative, Vanderbilt University, Nashville, Tennessee, United States of America
- College of Agriculture and Biotechnology and Centre for Evolutionary & Organismal Biology, Zhejiang University, Hangzhou, China
| | | | - Chris Todd Hittinger
- Laboratory of Genetics, DOE Great Lakes Bioenergy Research Center, Center for Genomic Science Innovation, J. F. Crow Institute for the Study of Evolution, Wisconsin Energy Institute, University of Wisconsin-Madison, Madison, Wisconsin, United States of America
| | - Antonis Rokas
- Department of Biological Sciences, Vanderbilt University, Nashville, Tennessee, United States of America
- Evolutionary Studies Initiative, Vanderbilt University, Nashville, Tennessee, United States of America
| |
Collapse
|
15
|
Song K, Li R, Cui Y, Chen B, Zhou L, Han W, Jiang B, He Y. The phytopathogen Xanthomonas campestris senses and effluxes salicylic acid via a sensor HepR and an RND family efflux pump to promote virulence in host plants. MLIFE 2024; 3:430-444. [PMID: 39359673 PMCID: PMC11442134 DOI: 10.1002/mlf2.12140] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/27/2023] [Revised: 04/22/2024] [Accepted: 06/06/2024] [Indexed: 10/04/2024]
Abstract
Salicylic acid (SA) plays an essential role in plant defense against biotrophic and semi-biotrophic pathogens. Following pathogen recognition, SA biosynthesis dramatically increases at the infection site of the host plant. The manner in which pathogens sense and tolerate the onslaught of SA stress to survive in the plant following infection remains to be understood. The objective of this work was to determine how the model phytopathogen Xanthomonas campestris pv. campestris (Xcc) senses and effluxes SA during infection inside host plants. First, RNA-Seq analysis identified an SA-responsive operon Xcc4167-Xcc4171, encoding a MarR family transcription factor HepR and an RND (resistance-nodulation-cell division) family efflux pump HepABCD in Xcc. Electrophoretic mobility shift assays and DNase I footprint analysis revealed that HepR negatively regulated hepABCD expression by specifically binding to an AT-rich region of the promoter of the hepRABCD operon, Phep. Second, isothermal titration calorimetry and further genetic analysis suggest that HepR is a novel SA sensor. SA binding released HepR from its cognate promoter Phep and then induced the expression of hepABCD. Third, the RND family efflux pump HepABCD was responsible for SA efflux. The hepRABCD cluster was also involved in the regulation of culture pH and quorum sensing signal diffusible signaling factor turnover. Finally, the hepRABCD cluster was transcribed during the XC1 infection of Chinese radish and was required for the full virulence of Xcc in Chinese radish and cabbage. These findings suggest that the ability of Xcc to co-opt the plant defense signal SA to activate the multidrug efflux pump may have evolved to ensure Xcc survival and virulence in susceptible host plants.
Collapse
Affiliation(s)
- Kai Song
- State Key Laboratory of Microbial Metabolism, Joint International Research Laboratory of Metabolic and Developmental Sciences, School of Life Sciences and BiotechnologyShanghai Jiao Tong UniversityShanghaiChina
| | - Ruifang Li
- Guangxi Key Laboratory of Biology for Crop Diseases and Insect Pests, Plant Protection Research InstituteGuangxi Academy of Agricultural SciencesNanningChina
| | - Ying Cui
- State Key Laboratory of Microbial Metabolism, Joint International Research Laboratory of Metabolic and Developmental Sciences, School of Life Sciences and BiotechnologyShanghai Jiao Tong UniversityShanghaiChina
| | - Bo Chen
- State Key Laboratory of Microbial Metabolism, Joint International Research Laboratory of Metabolic and Developmental Sciences, School of Life Sciences and BiotechnologyShanghai Jiao Tong UniversityShanghaiChina
| | - Lian Zhou
- Zhiyuan Innovative Research CenterShanghai Jiao Tong UniversityShanghaiChina
| | - Wenying Han
- State Key Laboratory for Conservation and Utilization of Subtropical Agro‐bioresources, College of Life Science and TechnologyGuangxi UniversityNanningChina
| | - Bo‐Le Jiang
- State Key Laboratory for Conservation and Utilization of Subtropical Agro‐bioresources, College of Life Science and TechnologyGuangxi UniversityNanningChina
| | - Ya‐Wen He
- State Key Laboratory of Microbial Metabolism, Joint International Research Laboratory of Metabolic and Developmental Sciences, School of Life Sciences and BiotechnologyShanghai Jiao Tong UniversityShanghaiChina
| |
Collapse
|
16
|
Roeschlin RA, Azad SM, Grove RP, Chuan A, García L, Niñoles R, Uviedo F, Villalobos L, Massimino ME, Marano MR, Boch J, Gadea J. Designer TALEs enable discovery of cell death-inducer genes. PLANT PHYSIOLOGY 2024; 195:2985-2996. [PMID: 38723194 PMCID: PMC11288752 DOI: 10.1093/plphys/kiae230] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/04/2023] [Accepted: 03/26/2024] [Indexed: 08/02/2024]
Abstract
Transcription activator-like effectors (TALEs) in plant-pathogenic Xanthomonas bacteria activate expression of plant genes and support infection or cause a resistance response. PthA4AT is a TALE with a particularly short DNA-binding domain harboring only 7.5 repeats which triggers cell death in Nicotiana benthamiana; however, the genetic basis for this remains unknown. To identify possible target genes of PthA4AT that mediate cell death in N. benthamiana, we exploited the modularity of TALEs to stepwise enhance their specificity and reduce potential target sites. Substitutions of individual repeats suggested that PthA4AT-dependent cell death is sequence specific. Stepwise addition of repeats to the C-terminal or N-terminal end of the repeat region narrowed the sequence requirements in promoters of target genes. Transcriptome profiling and in silico target prediction allowed the isolation of two cell death inducer genes, which encode a patatin-like protein and a bifunctional monodehydroascorbate reductase/carbonic anhydrase protein. These two proteins are not linked to known TALE-dependent resistance genes. Our results show that the aberrant expression of different endogenous plant genes can cause a cell death reaction, which supports the hypothesis that TALE-dependent executor resistance genes can originate from various plant processes. Our strategy further demonstrates the use of TALEs to scan genomes for genes triggering cell death and other relevant phenotypes.
Collapse
Affiliation(s)
- Roxana A Roeschlin
- Instituto de Biología Molecular y Celular de Rosario (IBR)-Consejo Nacional de Investigaciones Científicas y Tecnológicas (CONICET), Ocampo y Esmeralda S/n, S2002LRK, Rosario, Argentina
| | - Sepideh M Azad
- Instituto de Biología Molecular y celular de Plantas (IBMCP), Universidad Politécnica de Valencia-CSIC, Ingeniero Fausto Elio S/N., 46022, Valencia, España
| | - René P Grove
- Institute of Plant Genetics, Leibniz Universität Hannover, 30419 Hannover, Germany
| | - Ana Chuan
- Instituto de Biología Molecular y celular de Plantas (IBMCP), Universidad Politécnica de Valencia-CSIC, Ingeniero Fausto Elio S/N., 46022, Valencia, España
| | - Lucila García
- Instituto de Biología Molecular y Celular de Rosario (IBR)-Consejo Nacional de Investigaciones Científicas y Tecnológicas (CONICET), Ocampo y Esmeralda S/n, S2002LRK, Rosario, Argentina
- Área Virología, Facultad de Ciencias Bioquímicas y Farmacéuticas, Universidad Nacional de Rosario (UNR), Suipacha 590, S2002LRK, Rosario, Argentina
| | - Regina Niñoles
- Instituto de Biología Molecular y celular de Plantas (IBMCP), Universidad Politécnica de Valencia-CSIC, Ingeniero Fausto Elio S/N., 46022, Valencia, España
| | - Facundo Uviedo
- Instituto de Biología Molecular y Celular de Rosario (IBR)-Consejo Nacional de Investigaciones Científicas y Tecnológicas (CONICET), Ocampo y Esmeralda S/n, S2002LRK, Rosario, Argentina
| | - Liara Villalobos
- Instituto de Biología Molecular y Celular de Rosario (IBR)-Consejo Nacional de Investigaciones Científicas y Tecnológicas (CONICET), Ocampo y Esmeralda S/n, S2002LRK, Rosario, Argentina
| | - Maria E Massimino
- Instituto de Biología Molecular y celular de Plantas (IBMCP), Universidad Politécnica de Valencia-CSIC, Ingeniero Fausto Elio S/N., 46022, Valencia, España
| | - María R Marano
- Instituto de Biología Molecular y Celular de Rosario (IBR)-Consejo Nacional de Investigaciones Científicas y Tecnológicas (CONICET), Ocampo y Esmeralda S/n, S2002LRK, Rosario, Argentina
- Área Virología, Facultad de Ciencias Bioquímicas y Farmacéuticas, Universidad Nacional de Rosario (UNR), Suipacha 590, S2002LRK, Rosario, Argentina
| | - Jens Boch
- Institute of Plant Genetics, Leibniz Universität Hannover, 30419 Hannover, Germany
| | - José Gadea
- Instituto de Biología Molecular y celular de Plantas (IBMCP), Universidad Politécnica de Valencia-CSIC, Ingeniero Fausto Elio S/N., 46022, Valencia, España
| |
Collapse
|
17
|
Dey R, Raghuwanshi R. An insight into pathogenicity and virulence gene content of Xanthomonas spp. and its biocontrol strategies. Heliyon 2024; 10:e34275. [PMID: 39092245 PMCID: PMC11292268 DOI: 10.1016/j.heliyon.2024.e34275] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2023] [Revised: 06/24/2024] [Accepted: 07/07/2024] [Indexed: 08/04/2024] Open
Abstract
The genus Xanthomonas primarily serves as a plant pathogen, targeting a diverse range of economically significant crops on a global scale. Xanthomonas spp. utilizes a collection of toxins, adhesins, and protein effectors as part of their toolkit to thrive in their surroundings, and establish themselves within plant hosts. The bacterial secretion systems (Type 1 to Type 6) assist in delivering the effector proteins to their intended destinations. These secretion systems are specialized multi-protein complexes responsible for transporting proteins into the extracellular milieu or directly into host cells. The potent virulence and systematic infection system result in rapid dissemination of the bacteria, posing significant challenges in management due to complexities and substantial loss incurred. Consequently, there has been a notable increase in the utilization of chemical pesticides, leading to bioaccumulation and raising concerns about adverse health effects. Biological control mechanisms through beneficial microorganism (Bacillus, Pseudomonas, Trichoderma, Burkholderia, AMF, etc.) have proven to be an appropriate alternative in integrative pest management system. This review details the pathogenicity and virulence factors of Xanthomonas, as well as its control strategies. It also encourages the use of biological control agents, which promotes sustainable and environmentally friendly agricultural practices.
Collapse
Affiliation(s)
- Riddha Dey
- Department of Botany, Mahila Mahavidyalaya, Banaras Hindu University, Varanasi, 221005, Uttar Pradesh, India
| | - Richa Raghuwanshi
- Department of Botany, Mahila Mahavidyalaya, Banaras Hindu University, Varanasi, 221005, Uttar Pradesh, India
| |
Collapse
|
18
|
Motouchi S, Komba S, Nakai H, Nakajima M. Discovery of Anomer-Inverting Transglycosylase: Cyclic Glucohexadecaose-Producing Enzyme from Xanthomonas, a Phytopathogen. J Am Chem Soc 2024; 146:17738-17746. [PMID: 38957137 PMCID: PMC11228985 DOI: 10.1021/jacs.4c02579] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2024] [Revised: 06/05/2024] [Accepted: 06/07/2024] [Indexed: 07/04/2024]
Abstract
Various Xanthomonas species cause well-known plant diseases. Among various pathogenic factors, the role of α-1,6-cyclized β-1,2-glucohexadecaose (CβG16α) produced by Xanthomonas campestris pv. campestris was previously shown to be vital for infecting model organisms, Arabidopsis thaliana and Nicotiana benthamiana. However, enzymes responsible for biosynthesizing CβG16α are essentially unknown, which limits the generation of agrichemicals that inhibit CβG16α synthesis. In this study, we discovered that OpgD from X. campestris pv. campestris converts linear β-1,2-glucan to CβG16α. Structural and functional analyses revealed OpgD from X. campestris pv. campestris possesses an anomer-inverting transglycosylation mechanism, which is unprecedented among glycoside hydrolase family enzymes.
Collapse
Affiliation(s)
- Sei Motouchi
- Department
of Applied Biological Science, Faculty of Science and Technology, Tokyo University of Science, 2641 Yamazaki, Noda, Chiba 278-8510, Japan
| | - Shiro Komba
- Division
of Food Processing and Biomaterials Biomaterials Development Group,
Institute of Food Research, National Agriculture
and Food Research Organization, 2-1-12, Kannondai, Tsukuba, Ibaraki 305-8642, Japan
| | - Hiroyuki Nakai
- Faculty
of Agriculture, Niigata University, 8050 Ikarashi 2-no-cho, Nishi-ku, Niigata 950-2181, Japan
| | - Masahiro Nakajima
- Department
of Applied Biological Science, Faculty of Science and Technology, Tokyo University of Science, 2641 Yamazaki, Noda, Chiba 278-8510, Japan
| |
Collapse
|
19
|
Shi Y, Cheng T, Cheang QW, Zhao X, Xu Z, Liang Z, Xu L, Wang J. A cyclic di-GMP-binding adaptor protein interacts with a N5-glutamine methyltransferase to regulate the pathogenesis in Xanthomonas citri subsp. citri. MOLECULAR PLANT PATHOLOGY 2024; 25:e13496. [PMID: 39011828 PMCID: PMC11250160 DOI: 10.1111/mpp.13496] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/22/2023] [Revised: 06/04/2024] [Accepted: 07/03/2024] [Indexed: 07/17/2024]
Abstract
The second messenger cyclic diguanylate monophosphate (c-di-GMP) regulates a wide range of bacterial behaviours through diverse mechanisms and binding receptors. Single-domain PilZ proteins, the most widespread and abundant known c-di-GMP receptors in bacteria, act as trans-acting adaptor proteins that enable c-di-GMP to control signalling pathways with high specificity. This study identifies a single-domain PilZ protein, XAC3402 (renamed N5MapZ), from the phytopathogen Xanthomonas citri subsp. citri (Xcc), which modulates Xcc virulence by directly interacting with the methyltransferase HemK. Through yeast two-hybrid, co-immunoprecipitation and immunofluorescent staining, we demonstrated that N5MapZ and HemK interact directly under both in vitro and in vivo conditions, with the strength of the protein-protein interaction decreasing at high c-di-GMP concentrations. This finding distinguishes N5MapZ from other characterized single-domain PilZ proteins, as it was previously known that c-di-GMP enhances the interaction between those single-domain PilZs and their protein partners. This observation is further supported by the fact that the c-di-GMP binding-defective mutant N5MapZR10A can interact with HemK to inhibit the methylation of the class 1 translation termination release factor PrfA. Additionally, we found that HemK plays an important role in Xcc pathogenesis, as the deletion of hemK leads to extensive phenotypic changes, including reduced virulence in citrus plants, decreased motility, production of extracellular enzymes and stress tolerance. Gene expression analysis has revealed that c-di-GMP and the HemK-mediated pathway regulate the expression of multiple virulence effector proteins, uncovering a novel regulatory mechanism through which c-di-GMP regulates Xcc virulence by mediating PrfA methylation via the single-domain PilZ adaptor protein N5MapZ.
Collapse
Affiliation(s)
- Yu Shi
- Integrative Microbiology Research Centre, Guangdong Province Key Laboratory of Microbial Signals and Disease ControlSouth China Agricultural UniversityGuangzhouChina
- Guangdong Provincial Key Laboratory of Utilization and Conservation of Food and Medicinal Resources in Northern RegionShaoguan UniversityShaoguanChina
| | - Tianfang Cheng
- Integrative Microbiology Research Centre, Guangdong Province Key Laboratory of Microbial Signals and Disease ControlSouth China Agricultural UniversityGuangzhouChina
| | - Qing Wei Cheang
- School of Biological SciencesNanyang Technological UniversitySingaporeSingapore
| | - Xiaoyan Zhao
- Integrative Microbiology Research Centre, Guangdong Province Key Laboratory of Microbial Signals and Disease ControlSouth China Agricultural UniversityGuangzhouChina
| | - Zeling Xu
- Integrative Microbiology Research Centre, Guangdong Province Key Laboratory of Microbial Signals and Disease ControlSouth China Agricultural UniversityGuangzhouChina
| | - Zhao‐Xun Liang
- School of Biological SciencesNanyang Technological UniversitySingaporeSingapore
| | - Linghui Xu
- Integrative Microbiology Research Centre, Guangdong Province Key Laboratory of Microbial Signals and Disease ControlSouth China Agricultural UniversityGuangzhouChina
| | - Junxia Wang
- Integrative Microbiology Research Centre, Guangdong Province Key Laboratory of Microbial Signals and Disease ControlSouth China Agricultural UniversityGuangzhouChina
| |
Collapse
|
20
|
Okoh EB, Payne M, Lan R, Riegler M, Chapman TA, Bogema DR. A Multilocus Sequence Typing Scheme for Rapid Identification of Xanthomonas citri Based on Whole-Genome Sequencing Data. PHYTOPATHOLOGY 2024; 114:1480-1489. [PMID: 38669587 DOI: 10.1094/phyto-12-23-0490-r] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/28/2024]
Abstract
Xanthomonas citri is a plant-pathogenic bacterium associated with a diverse range of host plant species. It has undergone substantial reclassification and currently consists of 14 different subspecies or pathovars that are responsible for a wide range of plant diseases. Whole-genome sequencing (WGS) provides a cutting-edge advantage over other diagnostic techniques in epidemiological and evolutionary studies of X. citri because it has a higher discriminatory power and is replicable across laboratories. WGS also allows for the improvement of multilocus sequence typing (MLST) schemes. In this study, we used genome sequences of Xanthomonas isolates from the NCBI RefSeq database to develop a seven-gene MLST scheme that yielded 19 sequence types (STs) that correlated with phylogenetic clades of X. citri subspecies or pathovars. Using this MLST scheme, we examined 2,911 Xanthomonas species assemblies from NCBI GenBank and identified 15 novel STs from 37 isolates that were misclassified in NCBI. In total, we identified 545 X. citri assemblies from GenBank with 95% average nucleotide identity to the X. citri type strain, and all were classified as one of the 34 STs. All MLST classifications correlated with a phylogenetic position inferred from alignments using 92 conserved genes. We observed several instances where strains from different pathovars formed closely related monophyletic clades and shared the same ST, indicating that further investigation of the validity of these pathovars is required. Our MLST scheme described here is a robust tool for rapid classification of X. citri pathovars using WGS and a powerful method for further comprehensive taxonomic revision of X. citri pathovars.
Collapse
Affiliation(s)
- Efenaide B Okoh
- Hawkesbury Institute for the Environment, Western Sydney University, Locked Bag 1797, Penrith, NSW 2751, Australia
- Elizabeth Macarthur Agricultural Institute, NSW Department of Primary Industries, Menangle, NSW 2568, Australia
| | - Michael Payne
- School of Biotechnology and Biomolecular Science, University of New South Wales, Sydney, NSW, Australia
| | - Ruiting Lan
- School of Biotechnology and Biomolecular Science, University of New South Wales, Sydney, NSW, Australia
| | - Markus Riegler
- Hawkesbury Institute for the Environment, Western Sydney University, Locked Bag 1797, Penrith, NSW 2751, Australia
| | - Toni A Chapman
- Elizabeth Macarthur Agricultural Institute, NSW Department of Primary Industries, Menangle, NSW 2568, Australia
| | - Daniel R Bogema
- Elizabeth Macarthur Agricultural Institute, NSW Department of Primary Industries, Menangle, NSW 2568, Australia
| |
Collapse
|
21
|
Timilsina S, Kaur A, Sharma A, Ramamoorthy S, Vallad GE, Wang N, White FF, Potnis N, Goss EM, Jones JB. Xanthomonas as a Model System for Studying Pathogen Emergence and Evolution. PHYTOPATHOLOGY 2024; 114:1433-1446. [PMID: 38648116 DOI: 10.1094/phyto-03-24-0084-rvw] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/25/2024]
Abstract
In this review, we highlight studies in which whole-genome sequencing, comparative genomics, and population genomics have provided unprecedented insights into past and ongoing pathogen evolution. These include new understandings of the adaptive evolution of secretion systems and their effectors. We focus on Xanthomonas pathosystems that have seen intensive study and improved our understanding of pathogen emergence and evolution, particularly in the context of host specialization: citrus canker, bacterial blight of rice, and bacterial spot of tomato and pepper. Across pathosystems, pathogens appear to follow a pattern of bursts of evolution and diversification that impact host adaptation. There remains a need for studies on the mechanisms of host range evolution and genetic exchange among closely related but differentially host-specialized species and to start moving beyond the study of specific strain and host cultivar pairwise interactions to thinking about these pathosystems in a community context.
Collapse
Affiliation(s)
- Sujan Timilsina
- Department of Plant Pathology, University of Florida, Gainesville, FL 32611
| | - Amandeep Kaur
- Department of Plant Pathology, University of Florida, Gainesville, FL 32611
| | - Anuj Sharma
- Department of Horticultural Sciences, Gulf Coast Research and Education Center, University of Florida, Wimauma, FL 33598
| | | | - Gary E Vallad
- Department of Plant Pathology, Gulf Coast Research and Education Center, University of Florida, Wimauma, FL 33598
| | - Nian Wang
- Department of Microbiology and Cell Science, Citrus Research and Education Center, University of Florida, Lake Alfred, FL 33850
| | - Frank F White
- Department of Plant Pathology, University of Florida, Gainesville, FL 32611
| | - Neha Potnis
- Department of Entomology and Plant Pathology, Auburn University, Auburn, AL 36849
| | - Erica M Goss
- Department of Plant Pathology, University of Florida, Gainesville, FL 32611
- Emerging Pathogens Institute, University of Florida, Gainesville, FL 32610
| | - Jeffrey B Jones
- Department of Plant Pathology, University of Florida, Gainesville, FL 32611
| |
Collapse
|
22
|
Hameed A, Zeeshan M, Binyamin R, Alam MW, Ali S, Zaheer MS, Ali H, Riaz MW, Ali HH, Elshikh MS, Alarjani KM. Molecular characterization of Pectobacterium atrosepticum infecting potato and its management through chemicals. PeerJ 2024; 12:e17518. [PMID: 38952990 PMCID: PMC11216208 DOI: 10.7717/peerj.17518] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2023] [Accepted: 05/15/2024] [Indexed: 07/03/2024] Open
Abstract
Potato farming is a vital component of food security and the economic stability especially in the under developing countries but it faces many challenges in production, blackleg disease caused by Pectobacterium atrosepticum (Pa) is one of the main reason for damaging crop yield of the potato. Effective management strategies are essential to control these losses and to get sustainable potato crop yield. This study was focused on characterizing the Pa and the investigating new chemical options for its management. The research was involved a systematic survey across the three district of Punjab, Pakistan (Khanewal, Okara, and Multan) to collect samples exhibiting the black leg symptoms. These samples were analyzed in the laboratory where gram-negative bacteria were isolated and identified through biochemical and pathogenicity tests for Pa. DNA sequencing further confirmed these isolates of Pa strains. Six different chemicals were tested to control blackleg problem in both vitro and vivo at different concentrations. In vitro experiment, Cordate demonstrated the highest efficacy with a maximum inhibition zones of 17.139 mm, followed by Air One (13.778 mm), Profiler (10.167 mm), Blue Copper (7.7778 mm), Spot Fix (7.6689 mm), and Strider (7.0667 mm). In vivo, Cordate maintained its effectiveness with the lowest disease incidence of 14.76%, followed by Blue Copper (17.49%), Air One (16.98%), Spot Fix (20.67%), Profiler (21.45%), Strider (24.99%), and the control group (43.00%). The results highlight Cordate's potential as a most effective chemical against Pa, offering promising role for managing blackleg disease in potato and to improve overall productivity.
Collapse
Affiliation(s)
- Akhtar Hameed
- Institute of Plant Protection, MNS-University of Agriculture Multan, Multan, Punjab, Pakistan
| | - Muhammad Zeeshan
- Institute of Plant Protection, MNS-University of Agriculture Multan, Multan, Punjab, Pakistan
| | - Rana Binyamin
- Institute of Plant Protection, MNS-University of Agriculture Multan, Multan, Punjab, Pakistan
| | | | - Subhan Ali
- Institute of Plant Protection, MNS-University of Agriculture Multan, Multan, Punjab, Pakistan
| | - Muhammad Saqlain Zaheer
- Department of Agricultural Engineering, Khwaja Fareed University of Engineering and Information Technology, Rahim Yar Khan, Pakistan
| | - Habib Ali
- Department of Agricultural Engineering, Khwaja Fareed University of Engineering and Information Technology, Rahim Yar Khan, Pakistan
| | - Muhammad Waheed Riaz
- State Key Laboratory of Wheat Breeding, Group of Wheat Quality and Molecular Breeding, College of Agronomy, Shandong Agricultural University, Tai’an, Shandong, China
| | - Hafiz Haider Ali
- Crop, Soil, and Environmental Sciences, University of Arkansas, Fayetteville, AR, USA
- Department of Agriculture, Government College University Lahore, Lahore, Pakistan
| | - Mohamed Soliman Elshikh
- Department of Botany and Microbiology, College of Science, King Saud University, Riyadh, Saudi Arabia
| | - Khaloud Mohammed Alarjani
- Department of Botany and Microbiology, College of Science, King Saud University, Riyadh, Saudi Arabia
| |
Collapse
|
23
|
Mendoza-Mendoza A, Esquivel-Naranjo EU, Soth S, Whelan H, Alizadeh H, Echaide-Aquino JF, Kandula D, Hampton JG. Uncovering the multifaceted properties of 6-pentyl-alpha-pyrone for control of plant pathogens. FRONTIERS IN PLANT SCIENCE 2024; 15:1420068. [PMID: 38957597 PMCID: PMC11217547 DOI: 10.3389/fpls.2024.1420068] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 04/19/2024] [Accepted: 05/27/2024] [Indexed: 07/04/2024]
Abstract
Some volatile organic compounds (VOCs) produced by microorganisms have the ability to inhibit the growth and development of plant pathogens, induce the activation of plant defenses, and promote plant growth. Among them, 6-pentyl-alpha-pyrone (6-PP), a ketone produced by Trichoderma fungi, has emerged as a focal point of interest. 6-PP has been isolated and characterized from thirteen Trichoderma species and is the main VOC produced, often accounting for >50% of the total VOCs emitted. This review examines abiotic and biotic interactions regulating the production of 6-PP by Trichoderma, and the known effects of 6-PP on plant pathogens through direct and indirect mechanisms including induced systemic resistance. While there are many reports of 6-PP activity against plant pathogens, the vast majority have been from laboratory studies involving only 6-PP and the pathogen, rather than glasshouse or field studies including a host plant in the system. Biopesticides based on 6-PP may well provide an eco-friendly, sustainable management tool for future agricultural production. However, before this can happen, challenges including demonstrating disease control efficacy in the field, developing efficient delivery systems, and determining cost-effective application rates must be overcome before 6-PP's potential for pathogen control can be turned into reality.
Collapse
Affiliation(s)
| | - Edgardo Ulises Esquivel-Naranjo
- Faculty of Agriculture and Life Sciences, Lincoln University, Christchurch, New Zealand
- Unit for Basic and Applied Microbiology, Faculty of Natural Sciences, Autonomous University of Queretaro, Queretaro, Mexico
| | - Sereyboth Soth
- Faculty of Agriculture and Life Sciences, Lincoln University, Christchurch, New Zealand
| | - Helen Whelan
- Faculty of Agriculture and Life Sciences, Lincoln University, Christchurch, New Zealand
| | - Hossein Alizadeh
- Faculty of Agriculture and Life Sciences, Lincoln University, Christchurch, New Zealand
| | | | - Diwakar Kandula
- Faculty of Agriculture and Life Sciences, Lincoln University, Christchurch, New Zealand
| | - John G. Hampton
- Faculty of Agriculture and Life Sciences, Lincoln University, Christchurch, New Zealand
| |
Collapse
|
24
|
Baldino KD, Scott JC, Dung JKS. The Alternative Host with the Most: Understanding the Ecology of Xanthomonas hortorum pv. carotae on Noncarrot Crops in Central Oregon. PLANT DISEASE 2024; 108:1755-1761. [PMID: 38213121 DOI: 10.1094/pdis-08-23-1631-re] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/13/2024]
Abstract
Bacterial blight of carrot, caused by Xanthomonas hortorum pv. carotae (Xhc), is an economically important disease in carrot (Daucus carota subsp. sativus) seed production. The objectives of this study were to determine if Xhc was present on noncarrot crops grown in central Oregon and, if detected, evaluate its ability to colonize alternative hosts. Surveys of three carrot seed fields and adjacent fields of rye (Secale cereale), alfalfa (Medicago sativa), parsley root (Petroselinum crispum var. tuberosum), and Kentucky bluegrass (Poa pratensis) demonstrated that Xhc was present on noncarrot crops. Greenhouse experiments were conducted to determine the ability of Xhc to colonize crops cultivated in the region. Carrot, alfalfa, curly parsley (Petroselinum crispum), Kentucky bluegrass, mint (Mentha × piperita), parsley root, roughstalk bluegrass (Poa trivialis), and wheat (Triticum aestivum) plants were spray-inoculated with Xhc and destructively sampled at 1, 7, 14, and 28 or 25 days post-inoculation. Xhc populations were quantified using viability quantitative PCR and dilution plating. A significant (P ≤ 0.03) effect of crop was observed at 1, 14, and 28 or 25 days in both experiments. While carrot hosted the most Xhc at the final timepoint, other crops supported epiphytic Xhc populations including wheat and both bluegrasses. Mint, parsley root, and alfalfa hosted the least Xhc. Bacterial blight symptoms were observed on carrots but not on noncarrot crops. This suggests that crops grown in central Oregon have the potential to be asymptomatically colonized by Xhc and may serve as reservoirs of the pathogen in carrot seed production systems.
Collapse
Affiliation(s)
- Katelyn D Baldino
- Oregon State University, Central Oregon Agriculture Research and Extension Center, Madras, OR 97741
| | - Jeness C Scott
- Oregon State University, Central Oregon Agriculture Research and Extension Center, Madras, OR 97741
| | - Jeremiah K S Dung
- Oregon State University, Central Oregon Agriculture Research and Extension Center, Madras, OR 97741
| |
Collapse
|
25
|
Wang Z, Dai Q, Su D, Zhang Z, Tian Y, Tong J, Chen S, Yan C, Yang J, Cui X. Comparative analysis of the microbiomes of strawberry wild species Fragaria nilgerrensis and cultivated variety Akihime using amplicon-based next-generation sequencing. Front Microbiol 2024; 15:1377782. [PMID: 38873161 PMCID: PMC11169695 DOI: 10.3389/fmicb.2024.1377782] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2024] [Accepted: 05/07/2024] [Indexed: 06/15/2024] Open
Abstract
Fragaria nilgerrensis is a wild strawberry species widely distributed in southwest China and has strong ecological adaptability. Akihime (F. × ananassa Duch. cv. Akihime) is one of the main cultivated strawberry varieties in China and is prone to infection with a variety of diseases. In this study, high-throughput sequencing was used to analyze and compare the soil and root microbiomes of F. nilgerrensis and Akihime. Results indicate that the wild species F. nilgerrensis showed higher microbial diversity in nonrhizosphere soil and rhizosphere soil and possessed a more complex microbial network structure compared with the cultivated variety Akihime. Genera such as Bradyrhizobium and Anaeromyxobacter, which are associated with nitrogen fixation and ammonification, and Conexibacter, which is associated with ecological toxicity resistance, exhibited higher relative abundances in the rhizosphere and nonrhizosphere soil samples of F. nilgerrensis compared with those of Akihime. Meanwhile, the ammonia-oxidizing archaea Candidatus Nitrososphaera and Candidatus Nitrocosmicus showed the opposite tendencies. We also found that the relative abundances of potential pathogenic genera and biocontrol bacteria in the Akihime samples were higher than those in the F. nilgerrensis samples. The relative abundances of Blastococcus, Nocardioides, Solirubrobacter, and Gemmatimonas, which are related to pesticide degradation, and genus Variovorax, which is associated with root growth regulation, were also significantly higher in the Akihime samples than in the F. nilgerrensis samples. Moreover, the root endophytic microbiomes of both strawberry species, especially the wild F. nilgerrensis, were mainly composed of potential biocontrol and beneficial bacteria, making them important sources for the isolation of these bacteria. This study is the first to compare the differences in nonrhizosphere and rhizosphere soils and root endogenous microorganisms between wild and cultivated strawberries. The findings have great value for the research of microbiomes, disease control, and germplasm innovation of strawberry.
Collapse
Affiliation(s)
- Zongneng Wang
- Yunnan Institute of Microbiology, School of Life Sciences, Yunnan University, Kunming, China
- State Key Laboratory for Conservation and Utilization of Bio-Resources in Yunnan, Yunnan University, Kunming, China
| | - Qingzhong Dai
- Yunnan Institute of Microbiology, School of Life Sciences, Yunnan University, Kunming, China
- State Key Laboratory for Conservation and Utilization of Bio-Resources in Yunnan, Yunnan University, Kunming, China
| | - Daifa Su
- Yunnan Institute of Microbiology, School of Life Sciences, Yunnan University, Kunming, China
- State Key Laboratory for Conservation and Utilization of Bio-Resources in Yunnan, Yunnan University, Kunming, China
| | | | - Yunxia Tian
- Kunming Academy of Agricultural Science, Kunming, China
| | - Jiangyun Tong
- Kunming Academy of Agricultural Science, Kunming, China
| | - Shanyan Chen
- Kunming Academy of Agricultural Science, Kunming, China
| | - Congwen Yan
- Yunnan Institute of Microbiology, School of Life Sciences, Yunnan University, Kunming, China
- State Key Laboratory for Conservation and Utilization of Bio-Resources in Yunnan, Yunnan University, Kunming, China
| | - Junyu Yang
- Yunnan Institute of Microbiology, School of Life Sciences, Yunnan University, Kunming, China
- Yunnan International Joint Laboratory of Virology and Immunology, Kunming, China
| | - Xiaolong Cui
- Yunnan Institute of Microbiology, School of Life Sciences, Yunnan University, Kunming, China
- State Key Laboratory for Conservation and Utilization of Bio-Resources in Yunnan, Yunnan University, Kunming, China
| |
Collapse
|
26
|
Greer SF, Rabiey M, Studholme DJ, Grant M. The potential of bacteriocins and bacteriophages to control bacterial disease of crops with a focus on Xanthomonas spp. J R Soc N Z 2024; 55:302-326. [PMID: 39677383 PMCID: PMC11639067 DOI: 10.1080/03036758.2024.2345315] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2024] [Accepted: 04/02/2024] [Indexed: 12/17/2024]
Abstract
Crop production plays a crucial role in ensuring global food security and maintaining economic stability. The presence of bacterial phytopathogens, particularly Xanthomonas species (a key focus of this review), poses significant threats to crops, leading to substantial economic losses. Current control strategies, such as the use of chemicals and antibiotics, face challenges such as environmental impact and the development of antimicrobial resistance. This review discusses the potential of bacteriocins, bacterial-derived proteinaceous antimicrobials and bacteriophages, viruses that target bacteria as sustainable alternatives for effectively managing Xanthomonas diseases. We focus on the diversity of bacteriocins found within xanthomonads by identifying and predicting the structures of candidate bacteriocin genes from publicly available genome sequences using BAGEL4 and AlphaFold. Harnessing the power of bacteriocins and bacteriophages has great potential as an eco-friendly and sustainable approach for precision control of Xanthomonas diseases in agriculture. However, realising the full potential of these natural antimicrobials requires continued research, field trials and collaboration among scientists, regulators and farmers. This collective effort is crucial to establishing these alternatives as promising substitutes for traditional disease management methods.
Collapse
Affiliation(s)
- Shannon F. Greer
- School of Life Sciences, University of Warwick, Innovation Campus, Stratford-upon-Avon, UK
| | - Mojgan Rabiey
- School of Life Sciences, University of Warwick, Innovation Campus, Stratford-upon-Avon, UK
- School of Life Sciences, University of Warwick, Gibbet Hill Campus, Coventry, UK
| | | | - Murray Grant
- School of Life Sciences, University of Warwick, Innovation Campus, Stratford-upon-Avon, UK
- School of Life Sciences, University of Warwick, Gibbet Hill Campus, Coventry, UK
| |
Collapse
|
27
|
Jones JDG, Staskawicz BJ, Dangl JL. The plant immune system: From discovery to deployment. Cell 2024; 187:2095-2116. [PMID: 38670067 DOI: 10.1016/j.cell.2024.03.045] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2024] [Revised: 03/08/2024] [Accepted: 03/25/2024] [Indexed: 04/28/2024]
Abstract
Plant diseases cause famines, drive human migration, and present challenges to agricultural sustainability as pathogen ranges shift under climate change. Plant breeders discovered Mendelian genetic loci conferring disease resistance to specific pathogen isolates over 100 years ago. Subsequent breeding for disease resistance underpins modern agriculture and, along with the emergence and focus on model plants for genetics and genomics research, has provided rich resources for molecular biological exploration over the last 50 years. These studies led to the identification of extracellular and intracellular receptors that convert recognition of extracellular microbe-encoded molecular patterns or intracellular pathogen-delivered virulence effectors into defense activation. These receptor systems, and downstream responses, define plant immune systems that have evolved since the migration of plants to land ∼500 million years ago. Our current understanding of plant immune systems provides the platform for development of rational resistance enhancement to control the many diseases that continue to plague crop production.
Collapse
Affiliation(s)
- Jonathan D G Jones
- Sainsbury Lab, University of East Anglia, Colney Lane, Norwich NR4 7UH, UK.
| | - Brian J Staskawicz
- Department of Plant and Microbial Biology and Innovative Genomics Institute, University of California, Berkeley, Berkeley, CA 94720, USA
| | - Jeffery L Dangl
- Department of Biology, University of North Carolina at Chapel Hill and Howard Hughes Medical Institute, Chapel Hill, NC 27599, USA
| |
Collapse
|
28
|
Liu L, Li Y, Wang Q, Xu X, Yan J, Wang Y, Wang Y, Shah SMA, Peng Y, Zhu Z, Xu Z, Chen G. Constructed Rice Tracers Identify the Major Virulent Transcription Activator-Like Effectors of the Bacterial Leaf Blight Pathogen. RICE (NEW YORK, N.Y.) 2024; 17:30. [PMID: 38656724 PMCID: PMC11043257 DOI: 10.1186/s12284-024-00704-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/02/2024] [Accepted: 03/26/2024] [Indexed: 04/26/2024]
Abstract
Xanthomonas oryzae pv. oryzae (Xoo) injects major transcription activator-like effectors (TALEs) into plant cells to activate susceptibility (S) genes for promoting bacterial leaf blight in rice. Numerous resistance (R) genes have been used to construct differential cultivars of rice to identify races of Xoo, but the S genes were rarely considered. Different edited lines of rice cv. Kitaake were constructed using CRISPR/Cas9 gene-editing, including single, double and triple edits in the effector-binding elements (EBEs) located in the promoters of rice S genes OsSWEET11a, OsSWEET13 and OsSWEET14. The near-isogenic lines (NILs) were used as tracers to detect major TALEs (PthXo1, PthXo2, PthXo3 and their variants) in 50 Xoo strains. The pathotypes produced on the tracers determined six major TALE types in the 50 Xoo strains. The presence of the major TALEs in Xoo strains was consistent with the expression of S genes in the tracers, and it was also by known genome sequences. The EBE editing had little effect on agronomic traits, which was conducive to balancing yield and resistance. The rice-tracers generated here provide a valuable tool to track major TALEs of Xoo in Asia which then shows what rice cultivars are needed to combat Xoo in the field.
Collapse
Affiliation(s)
- Linlin Liu
- Shanghai Collaborative Innovation Center of Agri-Seeds/State Key Laboratory of Microbial Metabolism, School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Ying Li
- Shanghai Collaborative Innovation Center of Agri-Seeds/State Key Laboratory of Microbial Metabolism, School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Qi Wang
- Shanghai Collaborative Innovation Center of Agri-Seeds/State Key Laboratory of Microbial Metabolism, School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Xiameng Xu
- Shanghai Collaborative Innovation Center of Agri-Seeds/State Key Laboratory of Microbial Metabolism, School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Jiali Yan
- Shanghai Collaborative Innovation Center of Agri-Seeds/State Key Laboratory of Microbial Metabolism, School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Yong Wang
- Shanghai Collaborative Innovation Center of Agri-Seeds/State Key Laboratory of Microbial Metabolism, School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Yijie Wang
- Shanghai Collaborative Innovation Center of Agri-Seeds/State Key Laboratory of Microbial Metabolism, School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Syed Mashab Ali Shah
- Shanghai Collaborative Innovation Center of Agri-Seeds/State Key Laboratory of Microbial Metabolism, School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Yongzheng Peng
- Shanghai Collaborative Innovation Center of Agri-Seeds/State Key Laboratory of Microbial Metabolism, School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Zhangfei Zhu
- Shanghai Collaborative Innovation Center of Agri-Seeds/State Key Laboratory of Microbial Metabolism, School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Zhengyin Xu
- Shanghai Collaborative Innovation Center of Agri-Seeds/State Key Laboratory of Microbial Metabolism, School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai, 200240, China.
| | - Gongyou Chen
- Shanghai Collaborative Innovation Center of Agri-Seeds/State Key Laboratory of Microbial Metabolism, School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai, 200240, China.
| |
Collapse
|
29
|
Islam T, Haque MA, Barai HR, Istiaq A, Kim JJ. Antibiotic Resistance in Plant Pathogenic Bacteria: Recent Data and Environmental Impact of Unchecked Use and the Potential of Biocontrol Agents as an Eco-Friendly Alternative. PLANTS (BASEL, SWITZERLAND) 2024; 13:1135. [PMID: 38674544 PMCID: PMC11054394 DOI: 10.3390/plants13081135] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/11/2024] [Revised: 04/15/2024] [Accepted: 04/17/2024] [Indexed: 04/28/2024]
Abstract
The economic impact of phytopathogenic bacteria on agriculture is staggering, costing billions of US dollars globally. Pseudomonas syringae is the top most phytopathogenic bacteria, having more than 60 pathovars, which cause bacteria speck in tomatoes, halo blight in beans, and so on. Although antibiotics or a combination of antibiotics are used to manage infectious diseases in plants, they are employed far less in agriculture compared to human and animal populations. Moreover, the majority of antibiotics used in plants are immediately washed away, leading to environmental damage to ecosystems and food chains. Due to the serious risk of antibiotic resistance (AR) and the potential for environmental contamination with antibiotic residues and resistance genes, the use of unchecked antibiotics against phytopathogenic bacteria is not advisable. Despite the significant concern regarding AR in the world today, there are inadequate and outdated data on the AR of phytopathogenic bacteria. This review presents recent AR data on plant pathogenic bacteria (PPB), along with their environmental impact. In light of these findings, we suggest the use of biocontrol agents as a sustainable, eco-friendly, and effective alternative to controlling phytopathogenic bacteria.
Collapse
Affiliation(s)
- Tarequl Islam
- Department of Microbiology, Noakhali Science and Technology University, Sonapur, Noakhali 3814, Bangladesh;
| | - Md Azizul Haque
- Department of Biotechnology, Yeungnam University, Gyeongsan 38541, Gyeongbuk, Republic of Korea;
| | - Hasi Rani Barai
- School of Mechanical and IT Engineering, Yeungnam University, Gyeongsan 38541, Gyeongbuk, Republic of Korea;
| | - Arif Istiaq
- Department of Pediatrics, Division of Genetics and Genomic Medicine, Washington University School of Medicine, St Louis, MO 63110-1010, USA
| | - Jong-Joo Kim
- Department of Biotechnology, Yeungnam University, Gyeongsan 38541, Gyeongbuk, Republic of Korea;
| |
Collapse
|
30
|
Ji C, Guo J, Ma Y, Xu X, Zang T, Liu S, An Z, Yang M, He X, Zheng W. Application Progress of Culturomics in the Isolated Culture of Rhizobacteria: A Review. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2024; 72:7586-7595. [PMID: 38530921 DOI: 10.1021/acs.jafc.3c08885] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/28/2024]
Abstract
Comprehending the structure and function of rhizobacteria components and their regulation are crucial for sustainable agricultural management. However, obtaining comprehensive species information for most bacteria in the natural environment, particularly rhizobacteria, presents a challenge using traditional culture methods. To obtain diverse and pure cultures of rhizobacteria, this study primarily reviews the evolution of rhizobacteria culturomics and associated culture methods. Furthermore, it explores new strategies for enhancing the application of culturomics, providing valuable insights into efficiently enriching and isolate target bacterial strains/groups from the environment. The findings will help improve rhizobacteria's culturability and enrich the functional bacterial library.
Collapse
Affiliation(s)
- Chao Ji
- Tianjin Key Laboratory of Animal and Plant Resistance, College of Life Sciences, Tianjin Normal University, Tianjin, 300387, China
| | - Junli Guo
- Tianjin Key Laboratory of Animal and Plant Resistance, College of Life Sciences, Tianjin Normal University, Tianjin, 300387, China
| | - Ying Ma
- Tianjin Key Laboratory of Animal and Plant Resistance, College of Life Sciences, Tianjin Normal University, Tianjin, 300387, China
| | - Xiangfu Xu
- Tianjin Key Laboratory of Animal and Plant Resistance, College of Life Sciences, Tianjin Normal University, Tianjin, 300387, China
| | - Tongyu Zang
- Tianjin Key Laboratory of Animal and Plant Resistance, College of Life Sciences, Tianjin Normal University, Tianjin, 300387, China
| | - Sentao Liu
- Tianjin Key Laboratory of Animal and Plant Resistance, College of Life Sciences, Tianjin Normal University, Tianjin, 300387, China
| | - Zhenzhen An
- Tianjin Key Laboratory of Animal and Plant Resistance, College of Life Sciences, Tianjin Normal University, Tianjin, 300387, China
| | - Min Yang
- State Key Laboratory for Conservation and Utilization of Bio-Resources in Yunnan, National Engineering Research Center for Applied Technology of Agricultural Biodiversity, College of Plant Protection, Yunnan Agricultural University, Kunming, Yunnan 650201, China
| | - Xiahong He
- State Key Laboratory for Conservation and Utilization of Bio-Resources in Yunnan, National Engineering Research Center for Applied Technology of Agricultural Biodiversity, College of Plant Protection, Yunnan Agricultural University, Kunming, Yunnan 650201, China
- Key Laboratory for Forest Resources Conservation and Utilization in the Southwest Mountains of China, Ministry of Education, Southwest Landscape Architecture Engineering Research Center of National Forestry and Grassland Administration, Southwest Forestry University, Kunming, Yunnan 650224, China
| | - Wenjie Zheng
- Tianjin Key Laboratory of Animal and Plant Resistance, College of Life Sciences, Tianjin Normal University, Tianjin, 300387, China
- State Key Laboratory for Conservation and Utilization of Bio-Resources in Yunnan, National Engineering Research Center for Applied Technology of Agricultural Biodiversity, College of Plant Protection, Yunnan Agricultural University, Kunming, Yunnan 650201, China
- Key Laboratory for Forest Resources Conservation and Utilization in the Southwest Mountains of China, Ministry of Education, Southwest Landscape Architecture Engineering Research Center of National Forestry and Grassland Administration, Southwest Forestry University, Kunming, Yunnan 650224, China
| |
Collapse
|
31
|
Chuang SC, Dobhal S, Alvarez AM, Arif M. Three new species, Xanthomonas hawaiiensis sp. nov., Stenotrophomonas aracearum sp. nov., and Stenotrophomonas oahuensis sp. nov., isolated from the Araceae family. Front Microbiol 2024; 15:1356025. [PMID: 38655077 PMCID: PMC11035887 DOI: 10.3389/fmicb.2024.1356025] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2023] [Accepted: 03/18/2024] [Indexed: 04/26/2024] Open
Abstract
Xanthomonas and Stenotrophomonas are closely related genera in the family Lysobacteraceae. In our previous study of aroid-associated bacterial strains, most strains isolated from anthurium and other aroids were reclassified as X. phaseoli and other Xanthomonas species. However, two strains isolated from Spathiphyllum and Colocasia were phylogenetically distant from other strains in the Xanthomonas clade and two strains isolated from Anthurium clustered within the Stenotrophomonas clade. Phylogenetic trees based on 16S rRNA and nine housekeeping genes placed the former strains with the type strain of X. sacchari from sugarcane and the latter strains with the type strain of S. bentonitica from bentonite. In pairwise comparisons with type strains, the overall genomic relatedness indices required delineation of new species; digital DNA-DNA hybridization and average nucleotide identity values were lower than 70 and 95%, respectively. Hence, three new species are proposed: S. aracearum sp. nov. and S. oahuensis sp. nov. for two strains from anthurium and X. hawaiiensis sp. nov. for the strains from spathiphyllum and colocasia, respectively. The genome size of X. hawaiiensis sp. nov. is ~4.88 Mbp and higher than S. aracearum sp. nov. (4.33 Mbp) and S. oahuensis sp. nov. (4.68 Mbp). Gene content analysis revealed 425 and 576 core genes present in 40 xanthomonads and 25 stenotrophomonads, respectively. The average number of unique genes in Stenotrophomonas spp. was higher than in Xanthomonas spp., implying higher genetic diversity in Stenotrophomonas.
Collapse
Affiliation(s)
| | | | | | - Mohammad Arif
- Department of Plant and Environmental Protection Sciences, University of Hawaiʻi at Mānoa, Honolulu, HI, United States
| |
Collapse
|
32
|
Pena MM, Bhandari R, Bowers RM, Weis K, Newberry E, Wagner N, Pupko T, Jones JB, Woyke T, Vinatzer BA, Jacques MA, Potnis N. Genetic and Functional Diversity Help Explain Pathogenic, Weakly Pathogenic, and Commensal Lifestyles in the Genus Xanthomonas. Genome Biol Evol 2024; 16:evae074. [PMID: 38648506 PMCID: PMC11032200 DOI: 10.1093/gbe/evae074] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/29/2024] [Indexed: 04/25/2024] Open
Abstract
The genus Xanthomonas has been primarily studied for pathogenic interactions with plants. However, besides host and tissue-specific pathogenic strains, this genus also comprises nonpathogenic strains isolated from a broad range of hosts, sometimes in association with pathogenic strains, and other environments, including rainwater. Based on their incapacity or limited capacity to cause symptoms on the host of isolation, nonpathogenic xanthomonads can be further characterized as commensal and weakly pathogenic. This study aimed to understand the diversity and evolution of nonpathogenic xanthomonads compared to their pathogenic counterparts based on their cooccurrence and phylogenetic relationship and to identify genomic traits that form the basis of a life history framework that groups xanthomonads by ecological strategies. We sequenced genomes of 83 strains spanning the genus phylogeny and identified eight novel species, indicating unexplored diversity. While some nonpathogenic species have experienced a recent loss of a type III secretion system, specifically the hrp2 cluster, we observed an apparent lack of association of the hrp2 cluster with lifestyles of diverse species. We performed association analysis on a large data set of 337 Xanthomonas strains to explain how xanthomonads may have established association with the plants across the continuum of lifestyles from commensals to weak pathogens to pathogens. Presence of distinct transcriptional regulators, distinct nutrient utilization and assimilation genes, transcriptional regulators, and chemotaxis genes may explain lifestyle-specific adaptations of xanthomonads.
Collapse
Affiliation(s)
- Michelle M Pena
- Department of Entomology and Plant Pathology, Auburn University, Auburn, AL, USA
- Present address: Department of Plant Pathology, University of Georgia, Tifton, GA, USA
| | - Rishi Bhandari
- Department of Entomology and Plant Pathology, Auburn University, Auburn, AL, USA
| | - Robert M Bowers
- DOE Joint Genome Institute, Lawrence Berkeley National Laboratory, Berkeley, CA, USA
| | - Kylie Weis
- Department of Entomology and Plant Pathology, Auburn University, Auburn, AL, USA
| | - Eric Newberry
- Department of Entomology and Plant Pathology, Auburn University, Auburn, AL, USA
| | - Naama Wagner
- The Shmunis School of Biomedicine and Cancer Research, Tel-Aviv University, Tel Aviv, Israel
| | - Tal Pupko
- The Shmunis School of Biomedicine and Cancer Research, Tel-Aviv University, Tel Aviv, Israel
| | - Jeffrey B Jones
- Department of Plant Pathology, University of Florida, Gainesville, FL, USA
| | - Tanja Woyke
- DOE Joint Genome Institute, Lawrence Berkeley National Laboratory, Berkeley, CA, USA
- Life and Environmental Sciences, University of California Merced, Merced, CA, USA
| | - Boris A Vinatzer
- School of Plant and Environmental Sciences, Virginia Tech, Blacksburg, VA, USA
| | - Marie-Agnès Jacques
- Institut Agro, INRAE, IRHS, SFR QUASAV, University of Angers, Angers F-49000, France
| | - Neha Potnis
- Department of Entomology and Plant Pathology, Auburn University, Auburn, AL, USA
| |
Collapse
|
33
|
Fernandes AS, Campos KF, de Assis JCS, Gonçalves OS, Queiroz MVD, Bazzolli DMS, Santana MF. Investigating the impact of insertion sequences and transposons in the genomes of the most significant phytopathogenic bacteria. Microb Genom 2024; 10. [PMID: 38568199 DOI: 10.1099/mgen.0.001219] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/05/2024] Open
Abstract
Genetic variability in phytopathogens is one of the main problems encountered for effective plant disease control. This fact may be related to the presence of transposable elements (TEs), but little is known about their role in host genomes. Here, we performed the most comprehensive analysis of insertion sequences (ISs) and transposons (Tns) in the genomes of the most important bacterial plant pathogens. A total of 35 692 ISs and 71 transposons were identified in 270 complete genomes. The level of pathogen-host specialization was found to be a significant determinant of the element distribution among the species. Some Tns were identified as carrying virulence factors, such as genes encoding effector proteins of the type III secretion system and resistance genes for the antimicrobial streptomycin. Evidence for IS-mediated ectopic recombination was identified in Xanthomonas genomes. Moreover, we found that IS elements tend to be inserted in regions near virulence and fitness genes, such ISs disrupting avirulence genes in X. oryzae genomes. In addition, transcriptome analysis under different stress conditions revealed differences in the expression of genes encoding transposases in the Ralstonia solanacearum, X. oryzae, and P. syringae species. Lastly, we also investigated the role of Tns in regulation via small noncoding regulatory RNAs and found these elements may target plant-cell transcriptional activators. Taken together, the results indicate that TEs may have a fundamental role in variability and virulence in plant pathogenic bacteria.
Collapse
|
34
|
Pena MM, Martins TZ, Teper D, Zamuner C, Alves HA, Ferreira H, Wang N, Ferro MIT, Ferro JA. EnvC Homolog Encoded by Xanthomonas citri subsp. citri Is Necessary for Cell Division and Virulence. Microorganisms 2024; 12:691. [PMID: 38674634 PMCID: PMC11051873 DOI: 10.3390/microorganisms12040691] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2023] [Revised: 03/16/2024] [Accepted: 03/21/2024] [Indexed: 04/28/2024] Open
Abstract
Peptidoglycan hydrolases are enzymes responsible for breaking the peptidoglycan present in the bacterial cell wall, facilitating cell growth, cell division and peptidoglycan turnover. Xanthomonas citri subsp. citri (X. citri), the causal agent of citrus canker, encodes an Escherichia coli M23 peptidase EnvC homolog. EnvC is a LytM factor essential for cleaving the septal peptidoglycan, thereby facilitating the separation of daughter cells. In this study, the investigation focused on EnvC contribution to the virulence and cell separation of X. citri. It was observed that disruption of the X. citri envC gene (ΔenvC) led to a reduction in virulence. Upon inoculation into leaves of Rangpur lime (Citrus limonia Osbeck), the X. citri ΔenvC exhibited a delayed onset of citrus canker symptoms compared with the wild-type X. citri. Mutant complementation restored the wild-type phenotype. Sub-cellular localization confirmed that X. citri EnvC is a periplasmic protein. Moreover, the X. citri ΔenvC mutant exhibited elongated cells, indicating a defect in cell division. These findings support the role of EnvC in the regulation of cell wall organization, cell division, and they clarify the role of this peptidase in X. citri virulence.
Collapse
Affiliation(s)
- Michelle M. Pena
- Agricultural and Livestock Microbiology Graduation Program, School of Agricultural and Veterinarian Sciences, São Paulo State University (UNESP), Jaboticabal 14884-900, SP, Brazil; (M.M.P.); (T.Z.M.)
| | - Thaisa Z. Martins
- Agricultural and Livestock Microbiology Graduation Program, School of Agricultural and Veterinarian Sciences, São Paulo State University (UNESP), Jaboticabal 14884-900, SP, Brazil; (M.M.P.); (T.Z.M.)
| | - Doron Teper
- Department of Plant Pathology and Weed Research, Institute of Plant Protection Agricultural Research Organization (ARO), Volcani Institute, Rishon LeZion 7505101, Israel;
| | - Caio Zamuner
- Biochemistry Building, Institute of Biosciences, São Paulo State University (UNESP), Rio Claro 13506-900, SP, Brazil; (C.Z.); (H.F.)
| | - Helen A. Alves
- Department of Agricultural, Livestock and Environmental Biotechnology, School of Agricultural and Veterinary Sciences, São Paulo State University (UNESP), Jaboticabal 14884-900, SP, Brazil; (H.A.A.); (M.I.T.F.)
| | - Henrique Ferreira
- Biochemistry Building, Institute of Biosciences, São Paulo State University (UNESP), Rio Claro 13506-900, SP, Brazil; (C.Z.); (H.F.)
| | - Nian Wang
- Citrus Research and Education Center, Department of Microbiology and Cell Science, Institute of Food and Agricultural Sciences, University of Florida, Lake Alfred, FL 33850, USA;
| | - Maria Inês T. Ferro
- Department of Agricultural, Livestock and Environmental Biotechnology, School of Agricultural and Veterinary Sciences, São Paulo State University (UNESP), Jaboticabal 14884-900, SP, Brazil; (H.A.A.); (M.I.T.F.)
| | - Jesus A. Ferro
- Department of Agricultural, Livestock and Environmental Biotechnology, School of Agricultural and Veterinary Sciences, São Paulo State University (UNESP), Jaboticabal 14884-900, SP, Brazil; (H.A.A.); (M.I.T.F.)
| |
Collapse
|
35
|
Zou L, Mo S, Jia C, Pang J, Chang X, Chen J. The tumoral microbiome of pancreatic intraductal papillary mucinous neoplasm: A single-center retrospective cohort study. J Gastroenterol Hepatol 2024; 39:496-505. [PMID: 38111357 DOI: 10.1111/jgh.16437] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/09/2023] [Revised: 10/18/2023] [Accepted: 11/14/2023] [Indexed: 12/20/2023]
Abstract
BACKGROUND AND AIM Pancreatic intraductal papillary mucinous neoplasm (IPMN) is one of the most common precancerous lesions of pancreatic carcinoma. Studies have found that the tumoral microbiome has an important influence on pancreatic carcinoma. However, the tumoral microbiome of IPMNs has rarely been explored. METHODS Tumoral microbiome gene sequencing was carried out using 16 specimens of IPMN and 45 specimens of IPMN with associated invasive carcinoma (IPMN-IC) by 2bRAD sequencing for microbiome. The profile of the tumoral microbiome was summarized. Associations of the tumoral microbiome with disease grade, histological subtype, and prognosis were analyzed. RESULTS A total of 598 species of microbes were identified, comprising 228 genera, 109 families, 60 orders, 29 classes, 14 phyla, and 2 kingdoms. The genus Pseudomonas was detected more frequently and had higher relative abundance in IPMN-ICs; Alcaligenes faecalis was detected with higher relative abundance in IPMNs. Bifidobacterium pseudolongum had a higher relative abundance in the IPMN-IC group, regardless of histological subtype. Moreover, among patients with IPMN-ICs, those with a high relative abundance of B. pseudolongum had better overall survival than those with a low relative abundance. Patients who were positive for Staphylococcus aureus or Mycolicibacillus koreensis had shorter survival. The presence of S. aureus was an independent risk factor for poor prognosis. CONCLUSIONS There are enriching tumoral microbes in IPMN. The tumoral microbiome of IPMN is different from that of IPMN-IC.
Collapse
Affiliation(s)
- Long Zou
- Department of Pathology, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Shengwei Mo
- Department of Pathology, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Congwei Jia
- Department of Pathology, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Junyi Pang
- Department of Pathology, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Xiaoyan Chang
- Department of Pathology, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Jie Chen
- Department of Pathology, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| |
Collapse
|
36
|
Saikh SR, Mushtaque MA, Pramanick A, Prasad JK, Roy D, Saha S, Das SK. Fog caused distinct diversity of airborne bacterial communities enriched with pathogens over central Indo-Gangetic plain in India. Heliyon 2024; 10:e26370. [PMID: 38420377 PMCID: PMC10901028 DOI: 10.1016/j.heliyon.2024.e26370] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2023] [Revised: 11/30/2023] [Accepted: 02/12/2024] [Indexed: 03/02/2024] Open
Abstract
Fog causes enhancement of bacterial loading in the atmosphere. Current study represents the impact of occurrences of fog on the alteration of diversity of airborne bacteria and their network computed from metagenomic data of airborne samples collected at Arthauli (25.95°N, 85.10°E) situated at central Indo-Gangetic Plain (IGP) during 1-14 January 2021. A distinct bacterial diversity with a complex network is identified in foggy condition due to the enrichment of unique types of bacteria. Present investigation highlights a statistically significant enrichment of airborne pathogenic bacteria found in a unique ecosystem within air evolved due to the occurrences of fog over central IGP. In the foggy network, Cutibacterium, an opportunistic pathogen, is identified to be interacting maximum (21 edges) with other bacteria with statistically significant copresence relation, which are responsible for various infections for human beings. A 40-60% increase (p < 0.01) in the abundance of pathogenic bacteria for respiratory and skin diseases is noticed in fog period. Among the fog-enriched bacteria, Cutibacterium, Herbaspirillum, Paenibacillus, and Tsukamurella are examples of opportunistic bacteria causing various respiratory diseases, while Paenibacillus can even cause skin cancer and acute lymphoblastic leukemia.
Collapse
Affiliation(s)
- Shahina Raushan Saikh
- Department of Physical Sciences, Bose Institute, Kolkata, India
- Department of Life Science & Bio-technology, Jadavpur University, Kolkata, India
| | | | | | | | - Dibakar Roy
- Department of Biological Sciences, Bose Institute, Kolkata, India
| | - Sudipto Saha
- Department of Biological Sciences, Bose Institute, Kolkata, India
| | - Sanat Kumar Das
- Department of Physical Sciences, Bose Institute, Kolkata, India
| |
Collapse
|
37
|
Cui JR, Zhou B, Tang YJ, Zhou JY, Ren L, Liu F, Hoffmann AA, Hong XY. A new spider mite elicitor triggers plant defence and promotes resistance to herbivores. JOURNAL OF EXPERIMENTAL BOTANY 2024; 75:1493-1509. [PMID: 37952109 DOI: 10.1093/jxb/erad452] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/01/2023] [Accepted: 11/09/2023] [Indexed: 11/14/2023]
Abstract
Herbivore-associated elicitors (HAEs) are active molecules produced by herbivorous insects. Recognition of HAEs by plants induces defence that resist herbivore attacks. We previously demonstrated that the tomato red spider mite Tetranychus evansi triggered defence in Nicotiana benthamiana. However, our knowledge of HAEs from T. evansi remains limited. Here, we characterize a novel HAE, Te16, from T. evansi and dissect its function in mite-plant interactions. We investigate the effects of Te16 on spider mites and plants by heterologous expression, virus-induced gene silencing assay, and RNA interference. Te16 induces cell death, reactive oxygen species (ROS) accumulation, callose deposition, and jasmonate (JA)-related responses in N. benthamiana leaves. Te16-mediated cell death requires a calcium signalling pathway, cytoplasmic localization, the plant co-receptor BAK1, and the signalling components SGT1 and HSP90. The active region of Te16-induced cell death is located at amino acids 114-293. Moreover, silencing Te16 gene in T. evansi reduces spider mite survival and hatchability, but expressing Te16 in N. benthamiana leaves enhances plant resistance to herbivores. Finally, Te16 gene is specific to Tetranychidae species and is highly conserved in activating plant immunity. Our findings reveal a novel salivary protein produced by spider mites that elicits plant defence and resistance to insects, providing valuable clues for pest management.
Collapse
Affiliation(s)
- Jia-Rong Cui
- College of Plant Protection, Nanjing Agricultural University, Nanjing, Jiangsu 210095, China
| | - Bin Zhou
- College of Plant Protection, Nanjing Agricultural University, Nanjing, Jiangsu 210095, China
| | - Yi-Jing Tang
- College of Plant Protection, Nanjing Agricultural University, Nanjing, Jiangsu 210095, China
| | - Jia-Yi Zhou
- College of Plant Protection, Nanjing Agricultural University, Nanjing, Jiangsu 210095, China
| | - Lu Ren
- College of Plant Protection, Nanjing Agricultural University, Nanjing, Jiangsu 210095, China
| | - Fan Liu
- College of Plant Protection, Nanjing Agricultural University, Nanjing, Jiangsu 210095, China
| | - Ary A Hoffmann
- School of BioSciences, Bio21 Institute, The University of Melbourne, Parkville, VIC 3010, Australia
| | - Xiao-Yue Hong
- College of Plant Protection, Nanjing Agricultural University, Nanjing, Jiangsu 210095, China
| |
Collapse
|
38
|
Roman-Reyna V, Sharma A, Toth H, Konkel Z, Omiotek N, Murthy S, Faith S, Slot J, Peduto Hand F, Goss EM, Jacobs JM. Live tracking of a plant pathogen outbreak reveals rapid and successive, multidecade plasmid reduction. mSystems 2024; 9:e0079523. [PMID: 38275768 PMCID: PMC10878067 DOI: 10.1128/msystems.00795-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2023] [Accepted: 12/15/2023] [Indexed: 01/27/2024] Open
Abstract
Quickly understanding the genomic changes that lead to pathogen emergence is necessary to launch mitigation efforts and reduce harm. In this study, we tracked in real time a 2022 bacterial plant disease outbreak in U.S. geraniums (Pelargonium × hortorum) caused by Xhp2022, a novel lineage of Xanthomonas hortorum. Genomes from 31 Xhp2022 isolates from seven states showed limited chromosomal variation and all contained a single plasmid (p93). Time tree and single nucleotide polymorphism whole-genome analysis estimated that Xhp2022 emerged within the last decade. The phylogenomic analysis determined that p93 resulted from the cointegration of three plasmids (p31, p45, and p66) found sporadically across isolates from previous outbreaks. Although p93 had a 49 kb nucleotide reduction, it retained putative fitness genes, which became predominant in the 2022 outbreak. Overall, we demonstrated, through rapid whole-genome sequencing and analysis, a recent, traceable event of genome reduction for niche adaptation typically observed over millennia in obligate and fastidious pathogens.IMPORTANCEThe geranium industry, valued at $4 million annually, faces an ongoing Xanthomonas hortorum pv. pelargonii (Xhp) pathogen outbreak. To track and describe the outbreak, we compared the genome structure across historical and globally distributed isolates. Our research revealed Xhp population has not had chromosome rearrangements since 1974 and has three distinct plasmids. In 2012, we found all three plasmids in individual Xhp isolates. However, in 2022, the three plasmids co-integrated into one plasmid named p93. p93 retained putative fitness genes but lost extraneous genomic material. Our findings show that the 2022 strain group of the bacterial plant pathogen Xanthomonas hortorum underwent a plasmid reduction. We also observed several Xanthomonas species from different years, hosts, and continents have similar plasmids to p93, possibly due to shared agricultural settings. We noticed parallels between genome efficiency and reduction that we see across millennia with obligate parasites with increased niche specificity.
Collapse
Affiliation(s)
- Veronica Roman-Reyna
- Department of Plant Pathology, The Ohio State University, Columbus, Ohio, USA
- Infectious Diseases Institute, The Ohio State University, Columbus, Ohio, USA
| | - Anuj Sharma
- Department of Plant Pathology, University of Florida, Gainesville, Florida, USA
| | - Hannah Toth
- Department of Plant Pathology, The Ohio State University, Columbus, Ohio, USA
- Infectious Diseases Institute, The Ohio State University, Columbus, Ohio, USA
| | - Zachary Konkel
- Department of Plant Pathology, The Ohio State University, Columbus, Ohio, USA
| | - Nicolle Omiotek
- Department of Plant Pathology, The Ohio State University, Columbus, Ohio, USA
- Infectious Diseases Institute, The Ohio State University, Columbus, Ohio, USA
| | - Shashanka Murthy
- Applied Microbiology Services Laboratory, The Ohio State University, Columbus, Ohio, USA
| | - Seth Faith
- Infectious Diseases Institute, The Ohio State University, Columbus, Ohio, USA
- Applied Microbiology Services Laboratory, The Ohio State University, Columbus, Ohio, USA
| | - Jason Slot
- Department of Plant Pathology, The Ohio State University, Columbus, Ohio, USA
| | | | - Erica M. Goss
- Department of Plant Pathology, University of Florida, Gainesville, Florida, USA
- Emerging Pathogens Institute, University of Florida, Gainesville, Florida, USA
| | - Jonathan M. Jacobs
- Department of Plant Pathology, The Ohio State University, Columbus, Ohio, USA
- Infectious Diseases Institute, The Ohio State University, Columbus, Ohio, USA
| |
Collapse
|
39
|
Xu Z, Xu X, Li Y, Liu L, Wang Q, Wang Y, Wang Y, Yan J, Cheng G, Zou L, Zhu B, Chen G. Tal6b/AvrXa27A, a hidden TALE targeting the susceptibility gene OsSWEET11a and the resistance gene Xa27 in rice. PLANT COMMUNICATIONS 2024; 5:100721. [PMID: 37735868 PMCID: PMC10873877 DOI: 10.1016/j.xplc.2023.100721] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/05/2023] [Revised: 07/12/2023] [Accepted: 09/14/2023] [Indexed: 09/23/2023]
Abstract
Xanthomonas oryzae pv. oryzae (Xoo) secretes transcription activator-like effectors (TALEs) to activate rice susceptibility (S) genes, causing bacterial blight (BB), as well as resistance (R) genes, leading to defense against BB. This activation follows a gene-for-gene paradigm that results in an arms race between the TALE of the pathogen and effector-binding elements (EBEs) in the promoters of host genes. In this study, we characterized a novel TALE, designated Tal6b/AvrXa27A, that activates the rice S gene OsSWEET11a and the rice R gene Xa27. Tal6b/AvrXa27A is a member of the AvrXa27/TalAO class and contains 16 repeat variable diresidues (RVDs); one RVD is altered and one is deleted in Tal6b/AvrXa27A compared with AvrXa27, a known avirulence (avr) effector of Xa27. Tal6b/AvrXa27A can transcriptionally activate the expression of Xa27 and OsSWEET11a via EBEs in their corresponding promoters, leading to effector-triggered immunity and susceptibility, respectively. The 16 RVDs in Tal6b/AvrXa27A have no obvious similarity to the 24 RVDs in the effector PthXo1, but EBETal6b and EBEPthXo1 are overlapped in the OsSWEET11a promoter. Tal6b/AvrXa27A is prevalent among Asian Xoo isolates, but PthXo1 has only been reported in the Philippine strain PXO99A. Genome editing of EBETal6b in the OsSWEET11a promoter further confirmed the requirement for OsSWEET11a expression in Tal6b/AvrXa27A-dependent susceptibility to Xoo. Moreover, Tal6b/AvrXa27A resulted in higher transcription of Xa27 than of OsSWEET11a, which led to a strong, rapid resistance response that blocked disease development. These findings suggest that Tal6b/AvrXa27A has a dual function: triggering resistance by activating Xa27 gene expression as an avirulence factor and inducing transcription of the S gene OsSWEET11a, resulting in virulence. Intriguingly, Tal6b/AvrXa27A, but not AvrXa27, can bind to the promoter of OsSWEET11a. The underlying recognition mechanism for this binding remains unclear but appears to deviate from the currently accepted TALE code.
Collapse
Affiliation(s)
- Zhengyin Xu
- Shanghai Collaborative Innovation Center of Agri-Seeds, School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Xiameng Xu
- Shanghai Collaborative Innovation Center of Agri-Seeds, School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Ying Li
- Shanghai Collaborative Innovation Center of Agri-Seeds, School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Linlin Liu
- Shanghai Collaborative Innovation Center of Agri-Seeds, School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Qi Wang
- Shanghai Collaborative Innovation Center of Agri-Seeds, School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Yijie Wang
- Shanghai Collaborative Innovation Center of Agri-Seeds, School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Yong Wang
- Shanghai Collaborative Innovation Center of Agri-Seeds, School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Jiali Yan
- Shanghai Collaborative Innovation Center of Agri-Seeds, School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Guanyun Cheng
- Shanghai Collaborative Innovation Center of Agri-Seeds, School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Lifang Zou
- Shanghai Collaborative Innovation Center of Agri-Seeds, School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Bo Zhu
- Shanghai Collaborative Innovation Center of Agri-Seeds, School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Gongyou Chen
- Shanghai Collaborative Innovation Center of Agri-Seeds, School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai 200240, China; State Key Laboratory of Microbial Metabolism, Shanghai Jiao Tong University, Shanghai 200240, China.
| |
Collapse
|
40
|
Martins PMM, Granato LM, Morgan T, Nalin JL, Takita MA, Alfenas-Zerbini P, de Souza AA. Analysis of CRISPR-Cas loci distribution in Xanthomonas citri and its possible control by the quorum sensing system. FEMS Microbiol Lett 2024; 371:fnae005. [PMID: 38244227 DOI: 10.1093/femsle/fnae005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2023] [Revised: 10/04/2023] [Accepted: 01/18/2024] [Indexed: 01/22/2024] Open
Abstract
Xanthomonas is an important genus of plant-associated bacteria that causes significant yield losses of economically important crops worldwide. Different approaches have assessed genetic diversity and evolutionary interrelationships among the Xanthomonas species. However, information from clustered regularly interspaced short palindromic repeats (CRISPRs) has yet to be explored. In this work, we analyzed the architecture of CRISPR-Cas loci and presented a sequence similarity-based clustering of conserved Cas proteins in different species of Xanthomonas. Although absent in many investigated genomes, Xanthomonas harbors subtype I-C and I-F CRISPR-Cas systems. The most represented species, Xanthomonas citri, presents a great diversity of genome sequences with an uneven distribution of the CRISPR-Cas systems among the subspecies/pathovars. Only X. citri subsp. citri and X. citri pv. punicae have these systems, exclusively of subtype I-C system. Moreover, the most likely targets of the X. citri CRISPR spacers are viruses (phages). At the same time, few are plasmids, indicating that CRISPR/Cas system is possibly a mechanism to control the invasion of foreign DNA. We also showed in X. citri susbp. citri that the cas genes are regulated by the diffusible signal factor, the quorum sensing (QS) signal molecule, according to cell density increases, and under environmental stress like starvation. These results suggest that the regulation of CRISPR-Cas by QS occurs to activate the gene expression only during phage infection or due to environmental stresses, avoiding a possible reduction in fitness. Although more studies are needed, CRISPR-Cas systems may have been selected in the Xanthomonas genus throughout evolution, according to the cost-benefit of protecting against biological threats and fitness maintenance in challenging conditions.
Collapse
Affiliation(s)
| | - Laís Moreira Granato
- Citrus Research Center "Sylvio Moreira", Agronomic Institute (IAC), Cordeiropolis-SP 13490-970, Brazil
| | - Túlio Morgan
- Department of Microbiology, Institute of Biotechnology Applied to Agriculture (BIOAGRO), Federal University of Viçosa, Viçosa-MG 36570-900, Brazil
| | - Julia Lopes Nalin
- Citrus Research Center "Sylvio Moreira", Agronomic Institute (IAC), Cordeiropolis-SP 13490-970, Brazil
| | - Marco Aurélio Takita
- Citrus Research Center "Sylvio Moreira", Agronomic Institute (IAC), Cordeiropolis-SP 13490-970, Brazil
| | - Poliane Alfenas-Zerbini
- Department of Microbiology, Institute of Biotechnology Applied to Agriculture (BIOAGRO), Federal University of Viçosa, Viçosa-MG 36570-900, Brazil
| | - Alessandra Alves de Souza
- Citrus Research Center "Sylvio Moreira", Agronomic Institute (IAC), Cordeiropolis-SP 13490-970, Brazil
| |
Collapse
|
41
|
Wang Y, Jia X, Li Y, Ma S, Ma C, Xin D, Wang J, Chen Q, Liu C. NopAA and NopD Signaling Association-Related Gene GmNAC27 Promotes Nodulation in Soybean ( Glycine max). Int J Mol Sci 2023; 24:17498. [PMID: 38139327 PMCID: PMC10744329 DOI: 10.3390/ijms242417498] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2023] [Revised: 12/02/2023] [Accepted: 12/12/2023] [Indexed: 12/24/2023] Open
Abstract
Rhizobia secrete effectors that are essential for the effective establishment of their symbiotic interactions with leguminous host plants. However, the signaling pathways governing rhizobial type III effectors have yet to be sufficiently characterized. In the present study, the type III effectors, NopAA and NopD, which perhaps have signaling pathway crosstalk in the regulation of plant defense responses, have been studied together for the first time during nodulation. Initial qRT-PCR experiments were used to explore the impact of NopAA and NopD on marker genes associated with symbiosis and defense responses. The effects of these effectors on nodulation were then assessed by generating bacteria in which both NopAA and NopD were mutated. RNA-sequencing analyses of soybean roots were further utilized to assess signaling crosstalk between NopAA and NopD. NopAA mutant and NopD mutant were both found to repress GmPR1, GmPR2, and GmPR5 expression in these roots. The two mutants also significantly reduced nodules dry weight and the number of nodules and infection threads, although these changes were not significantly different from those observed following inoculation with double-mutant (HH103ΩNopAA&NopD). NopAA and NopD co-mutant inoculation was primarily found to impact the plant-pathogen interaction pathway. Common differentially expressed genes (DEGs) associated with both NopAA and NopD were enriched in the plant-pathogen interaction, plant hormone signal transduction, and MAPK signaling pathways, and no further changes in these common DEGs were noted in response to inoculation with HH103ΩNopAA&NopD. Glyma.13G279900 (GmNAC27) was ultimately identified as being significantly upregulated in the context of HH103ΩNopAA&NopD inoculation, serving as a positive regulator of nodulation. These results provide new insight into the synergistic impact that specific effectors can have on the establishment of symbiosis and the responses of host plant proteins.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | - Qingshan Chen
- Key Laboratory of Soybean Biology in Chinese Ministry of Education, National Key Laboratory of Smart Farm Technology and System, College of Agriculture, Northeast Agricultural University, Harbin 150030, China; (Y.W.); (X.J.); (Y.L.); (S.M.); (C.M.); (D.X.); (J.W.)
| | - Chunyan Liu
- Key Laboratory of Soybean Biology in Chinese Ministry of Education, National Key Laboratory of Smart Farm Technology and System, College of Agriculture, Northeast Agricultural University, Harbin 150030, China; (Y.W.); (X.J.); (Y.L.); (S.M.); (C.M.); (D.X.); (J.W.)
| |
Collapse
|
42
|
Goettelmann F, Koebnik R, Roman-Reyna V, Studer B, Kölliker R. High genomic plasticity and unique features of Xanthomonas translucens pv. graminis revealed through comparative analysis of complete genome sequences. BMC Genomics 2023; 24:741. [PMID: 38053038 DOI: 10.1186/s12864-023-09855-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2023] [Accepted: 11/28/2023] [Indexed: 12/07/2023] Open
Abstract
BACKGROUND Xanthomonas translucens pv. graminis (Xtg) is a major bacterial pathogen of economically important forage grasses, causing severe yield losses. So far, genomic resources for this pathovar consisted mostly of draft genome sequences, and only one complete genome sequence was available, preventing comprehensive comparative genomic analyses. Such comparative analyses are essential in understanding the mechanisms involved in the virulence of pathogens and to identify virulence factors involved in pathogenicity. RESULTS In this study, we produced high-quality, complete genome sequences of four strains of Xtg, complementing the recently obtained complete genome sequence of the Xtg pathotype strain. These genomic resources allowed for a comprehensive comparative analysis, which revealed a high genomic plasticity with many chromosomal rearrangements, although the strains were highly related. A high number of transposases were exclusively found in Xtg and corresponded to 413 to 457 insertion/excision transposable elements per strain. These mobile genetic elements are likely to be involved in the observed genomic plasticity and may play an important role in the adaptation of Xtg. The pathovar was found to lack a type IV secretion system, and it possessed the smallest set of type III effectors in the species. However, three XopE and XopX family effectors were found, while in the other pathovars of the species two or less were present. Additional genes that were specific to the pathovar were identified, including a unique set of minor pilins of the type IV pilus, 17 TonB-dependent receptors (TBDRs), and 11 plant cell wall degradative enzymes. CONCLUSION These results suggest a high adaptability of Xtg, conferred by the abundance of mobile genetic elements, which could play a crucial role in pathogen adaptation. The large amount of such elements in Xtg compared to other pathovars of the species could, at least partially, explain its high virulence and broad host range. Conserved features that were specific to Xtg were identified, and further investigation will help to determine genes that are essential to pathogenicity and host adaptation of Xtg.
Collapse
Affiliation(s)
- Florian Goettelmann
- Molecular Plant Breeding, Institute of Agricultural Sciences, ETH Zurich, Zurich, Switzerland
| | - Ralf Koebnik
- Plant Health Institute of Montpellier, University of Montpellier, CIRAD, INRAE, Institut Agro, IRD, Montpellier, France
| | - Veronica Roman-Reyna
- Department of Plant Pathology and Environmental Microbiology, The Pennsylvania State University, University Park, PA, USA
| | - Bruno Studer
- Molecular Plant Breeding, Institute of Agricultural Sciences, ETH Zurich, Zurich, Switzerland
| | - Roland Kölliker
- Molecular Plant Breeding, Institute of Agricultural Sciences, ETH Zurich, Zurich, Switzerland.
| |
Collapse
|
43
|
Wang Z, Solanki MK, Kumar A, Solanki AC, Pang F, Ba ZX, Niu JQ, Ren ZX. Promoting plant resilience against stress by engineering root microenvironment with Streptomyces inoculants. Microbiol Res 2023; 277:127509. [PMID: 37788547 DOI: 10.1016/j.micres.2023.127509] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2023] [Revised: 09/24/2023] [Accepted: 09/26/2023] [Indexed: 10/05/2023]
Abstract
Plant growth is directly influenced by biotic and abiotic stress factors resulting from environmental changes. Plant growth-promoting rhizobacteria (PGPR) have become a crucial area of research aimed at addressing these challenges. However, a knowledge gap exists regarding how PGPR impacts the microenvironments surrounding plant roots. The purpose of this study is to elucidate the effects of two distinct PGPR strains, Streptomyces griseorubiginosus BTU6 (known for its resistance to smut disease) and S. chartreusis WZS021, on sugarcane roots. Additionally, we compare the resultant modifications in the physicochemical characteristics of the rhizospheric soil and root architecture. The results reveal that following the inoculation of S. chartreusis WZS021, there was a significant increase in the active chemicals associated with nitrogen metabolism in sugarcane roots. This enhancement led to a substantial enrichment of nitrogen-cycling microbes like Pseudomonas and Gemmatimona. This finding supports earlier research indicating that S. chartreusis WZS021 enhances sugarcane's capacity to utilize nitrogen effectively. Furthermore, after treatment with S. chartreusis, Aspergillus became the predominant strain among endophytic fungi, resulting in alterations to their community structure that conferred drought resistance. In contrast, the relative abundance of Xanthomonas in the root environment decreased following inoculation with S. griseorubiginosus. Instead, Gemmatimona became more prevalent, creating a favorable environment for plants to bolster their resistance against disease. Notably, inoculations with S. chartreusis WZS021 and S. griseorubiginosus BTU6 led to substantial changes in the chemical composition, enzymatic activity, and microbial community composition in the soil surrounding sugarcane roots. However, there were distinct differences in the specific alterations induced by each strain. These findings enhance plant resilience to stress by shedding light on PGPR-mediated modifications in root microenvironments.
Collapse
Affiliation(s)
- Zhen Wang
- Guangxi Key Laboratory of Agricultural Resources Chemistry and Biotechnology, Agricultural College, Yulin Normal University, Yulin 537000, China
| | - Manoj Kumar Solanki
- Department of Life Sciences and Biological Sciences, IES University, Bhopal, Madhya Pradesh, India; Plant Cytogenetics and Molecular Biology Group, Institute of Biology, Biotechnology and Environmental Protection, Faculty of Natural Sciences, University of Silesia in Katowice, Katowice, Poland
| | - Ajay Kumar
- Amity Institute of Biotechnology, Amity University, Sector-125, Noida, Uttar Pradesh 201313, India
| | - Anjali Chandrol Solanki
- Department of Agriculture, Mansarover Global University, Bhopal, Madhya Pradesh 462042, India
| | - Fei Pang
- Guangxi Key Laboratory of Agricultural Resources Chemistry and Biotechnology, Agricultural College, Yulin Normal University, Yulin 537000, China
| | - Zi-Xuan Ba
- Guangxi Key Laboratory of Agricultural Resources Chemistry and Biotechnology, Agricultural College, Yulin Normal University, Yulin 537000, China
| | - Jun-Qi Niu
- Guangxi Key Laboratory of Agricultural Resources Chemistry and Biotechnology, Agricultural College, Yulin Normal University, Yulin 537000, China.
| | - Zhen-Xin Ren
- Guangxi Key Laboratory of Agricultural Resources Chemistry and Biotechnology, Agricultural College, Yulin Normal University, Yulin 537000, China.
| |
Collapse
|
44
|
Shi Y, Xiong LT, Li H, Li WL, O'Neill Rothenberg D, Liao LS, Deng X, Song GP, Cui ZN. Derivative of cinnamic acid inhibits T3SS of Xanthomonas oryzae pv. oryzae through the HrpG-HrpX regulatory cascade. Bioorg Chem 2023; 141:106871. [PMID: 37734193 DOI: 10.1016/j.bioorg.2023.106871] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2023] [Revised: 09/14/2023] [Accepted: 09/16/2023] [Indexed: 09/23/2023]
Abstract
Bacterial leaf blight (BLB) caused by Xanthomonas oryzae pv. oryzae (Xoo) has a significant impact on rice yield and quality worldwide. Traditionally, bactericide application has been commonly used to control this devastating disease. However, the overuse of fungicides has led to a number of problems such as the development of resistance and environmental pollution. Therefore, the development of new methods and approaches for disease control are still urgent. In this paper, a series of cinnamic acid derivatives were designed and synthesized, and three novel T3SS inhibitors A10, A12 and A20 were discovered. Novel T3SS inhibitors A10, A12 and A20 significantly inhibited the hpa1 promoter activity without affecting Xoo growth. Further studies revealed that the title compounds A10, A12 and A20 significantly impaired hypersensitivity in non-host plant tobacco leaves, while applications on rice significantly reduced symptoms of bacterial leaf blight. RT-PCR showed that compound A20 inhibited the expression of T3SS-related genes. In summary, this work exemplifies the potential of the title compound as an inhibitor of T3SS and its efficacy in the control of bacterial leaf blight.
Collapse
Affiliation(s)
- Yu Shi
- National Key Laboratory of Green Pesticide, Integrative Microbiology Research Centre, Guangdong Province Key Laboratory of Microbial Signals and Disease Control, College of Plant Protection, South China Agricultural University, Guangzhou 510642, China; Henry Fok School of Biology and Agriculture, Shaoguan University, Shaoguan 512005, China
| | - Lan-Tu Xiong
- National Key Laboratory of Green Pesticide, Integrative Microbiology Research Centre, Guangdong Province Key Laboratory of Microbial Signals and Disease Control, College of Plant Protection, South China Agricultural University, Guangzhou 510642, China
| | - Hui Li
- College of Materials and Energy, South China Agricultural University, Guangzhou, 510642, China
| | - Wen-Long Li
- National Key Laboratory of Green Pesticide, Integrative Microbiology Research Centre, Guangdong Province Key Laboratory of Microbial Signals and Disease Control, College of Plant Protection, South China Agricultural University, Guangzhou 510642, China
| | | | - Li-Sheng Liao
- National Key Laboratory of Green Pesticide, Integrative Microbiology Research Centre, Guangdong Province Key Laboratory of Microbial Signals and Disease Control, College of Plant Protection, South China Agricultural University, Guangzhou 510642, China
| | - Xin Deng
- Department of Biomedical Sciences, City University of Hong Kong, Kowloon Tong, Hong Kong SAR 999077, China; Shenzhen Research Institute, City University of Hong Kong, Shenzhen 518057, China
| | - Gao-Peng Song
- College of Materials and Energy, South China Agricultural University, Guangzhou, 510642, China.
| | - Zi-Ning Cui
- National Key Laboratory of Green Pesticide, Integrative Microbiology Research Centre, Guangdong Province Key Laboratory of Microbial Signals and Disease Control, College of Plant Protection, South China Agricultural University, Guangzhou 510642, China.
| |
Collapse
|
45
|
Cabezón E, Valenzuela-Gómez F, Arechaga I. Primary architecture and energy requirements of Type III and Type IV secretion systems. Front Cell Infect Microbiol 2023; 13:1255852. [PMID: 38089815 PMCID: PMC10711112 DOI: 10.3389/fcimb.2023.1255852] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2023] [Accepted: 11/08/2023] [Indexed: 12/18/2023] Open
Abstract
Many pathogens use Type III and Type IV protein secretion systems to secrete virulence factors from the bacterial cytosol into host cells. These systems operate through a one-step mechanism. The secreted substrates (protein or nucleo-protein complexes in the case of Type IV conjugative systems) are guided to the base of the secretion channel, where they are directly delivered into the host cell in an ATP-dependent unfolded state. Despite the numerous disparities between these secretion systems, here we have focused on the structural and functional similarities between both systems. In particular, on the structural similarity shared by one of the main ATPases (EscN and VirD4 in Type III and Type IV secretion systems, respectively). Interestingly, these ATPases also exhibit a structural resemblance to F1-ATPases, which suggests a common mechanism for substrate secretion. The correlation between structure and function of essential components in both systems can provide significant insights into the molecular mechanisms involved. This approach is of great interest in the pursuit of identifying inhibitors that can effectively target these systems.
Collapse
Affiliation(s)
- Elena Cabezón
- Departamento de Biología Molecular and Instituto de Biomedicina y Biotecnología de Cantabria (IBBTEC), Universidad de Cantabria- CSIC, Santander, Spain
| | | | - Ignacio Arechaga
- Departamento de Biología Molecular and Instituto de Biomedicina y Biotecnología de Cantabria (IBBTEC), Universidad de Cantabria- CSIC, Santander, Spain
| |
Collapse
|
46
|
Xie Q, Wei B, Zhan Z, He Q, Wu K, Chen Y, Liu S, He C, Niu X, Li C, Tang C, Tao J. Arabidopsis membrane protein AMAR1 interaction with type III effector XopAM triggers a hypersensitive response. PLANT PHYSIOLOGY 2023; 193:2768-2787. [PMID: 37648267 DOI: 10.1093/plphys/kiad478] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/04/2023] [Revised: 06/07/2023] [Accepted: 07/27/2023] [Indexed: 09/01/2023]
Abstract
The efficient infection of plants by the bacteria Xanthomonas campestris pv. campestris (Xcc) depends on its type III effectors (T3Es). Although the functions of AvrE family T3Es have been reported in some bacteria, the member XopAM in Xcc has not been studied. As XopAM has low sequence similarity to reported AvrE-T3Es and different reports have shown that these T3Es have different targets in hosts, we investigated the functions of XopAM in the Xcc-plant interaction. Deletion of xopAM from Xcc reduced its virulence in cruciferous crops but increased virulence in Arabidopsis (Arabidopsis thaliana) Col-0, indicating that XopAM may perform opposite functions depending on the host species. We further found that XopAM is a lipase that may target the cytomembrane and that this activity might be enhanced by its membrane-targeted protein XOPAM-ACTIVATED RESISTANCE 1 (AMAR1) in Arabidopsis Col-0. The binding of XopAM to AMAR1 induced an intense hypersensitive response that restricted Xcc proliferation. Our results showed that the roles of XopAM in Xcc infection are not the same as those of other AvrE-T3Es, indicating that the functions of this type of T3E have differentiated during long-term bacterium‒host interactions.
Collapse
Affiliation(s)
- Qingbiao Xie
- Hainan Key Laboratory for Sustainable Utilization of Tropical Bioresources, School of Tropical Agriculture and Forestry, Hainan University, Haikou 570228, China
| | - Bingzheng Wei
- Hainan Key Laboratory for Sustainable Utilization of Tropical Bioresources, School of Tropical Agriculture and Forestry, Hainan University, Haikou 570228, China
| | - Zhaohong Zhan
- Hainan Key Laboratory for Sustainable Utilization of Tropical Bioresources, School of Tropical Agriculture and Forestry, Hainan University, Haikou 570228, China
| | - Qiguang He
- Rubber Research Institute, Chinese Academy of Tropical Agricultural Science, Haikou 571101, China
| | - Kejian Wu
- Hainan Key Laboratory for Sustainable Utilization of Tropical Bioresources, School of Tropical Agriculture and Forestry, Hainan University, Haikou 570228, China
| | - Yu Chen
- Hainan Key Laboratory for Sustainable Utilization of Tropical Bioresources, School of Tropical Agriculture and Forestry, Hainan University, Haikou 570228, China
| | - Shiyao Liu
- Sanya Nanfan Research Institute, Hainan University, Sanya 572024, China
| | - Chaozu He
- Hainan Key Laboratory for Sustainable Utilization of Tropical Bioresources, School of Tropical Agriculture and Forestry, Hainan University, Haikou 570228, China
- Sanya Nanfan Research Institute, Hainan University, Sanya 572024, China
- Hainan Yazhou Bay Seed Laboratory, Sanya 572025, China
| | - Xiaolei Niu
- Hainan Key Laboratory for Sustainable Utilization of Tropical Bioresources, School of Tropical Agriculture and Forestry, Hainan University, Haikou 570228, China
- Sanya Nanfan Research Institute, Hainan University, Sanya 572024, China
| | - Chunxia Li
- Hainan Key Laboratory for Sustainable Utilization of Tropical Bioresources, School of Tropical Agriculture and Forestry, Hainan University, Haikou 570228, China
- Hainan Yazhou Bay Seed Laboratory, Sanya 572025, China
| | - Chaorong Tang
- Hainan Key Laboratory for Sustainable Utilization of Tropical Bioresources, School of Tropical Agriculture and Forestry, Hainan University, Haikou 570228, China
| | - Jun Tao
- Hainan Key Laboratory for Sustainable Utilization of Tropical Bioresources, School of Tropical Agriculture and Forestry, Hainan University, Haikou 570228, China
- Hainan Yazhou Bay Seed Laboratory, Sanya 572025, China
| |
Collapse
|
47
|
Heiden N, Roman-Reyna V, Curland RD, Dill-Macky R, Jacobs JM. Comparative Genomics of Barley-Infecting Xanthomonas translucens Shows Overall Genetic Similarity but Globally Distributed Virulence Factor Diversity. PHYTOPATHOLOGY 2023; 113:2056-2061. [PMID: 35727947 DOI: 10.1094/phyto-04-22-0113-sc] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/05/2023]
Abstract
Xanthomonas translucens pv. translucens (Xtt) is a global barley patho-gen and a concern for resistance breeding and regulation. Long-read whole genome sequences allow in-depth understanding of pathogen diversity. We have completed long-read PacBio sequencing of two Minnesotan Xtt strains and an in-depth analysis of available Xtt genomes. We found that average nucleotide identity (ANI)-based approaches organize Xtt strains different from the previous standard multilocus sequencing analysis approach. According to ANI, Xtt forms a separate clade from X. translucens pv. undulosa and consists of three main groups which are represented on multiple continents. Some virulence factors, such as 17 Type III-secreted effectors, are highly conserved and offer potential targets for the elicitation of broad resistance. However, there is a high degree of variation in virulence factors, meaning that germplasm should be screened for resistance with a diverse panel of Xtt.
Collapse
Affiliation(s)
- Nathaniel Heiden
- Department of Plant Pathology, The Ohio State University, Columbus, OH 43210
- Infectious Diseases Institute, The Ohio State University, Columbus, OH 43210
| | - Veronica Roman-Reyna
- Department of Plant Pathology, The Ohio State University, Columbus, OH 43210
- Infectious Diseases Institute, The Ohio State University, Columbus, OH 43210
| | - Rebecca D Curland
- Department of Plant Pathology, University of Minnesota, St. Paul, MN 55108
| | - Ruth Dill-Macky
- Department of Plant Pathology, University of Minnesota, St. Paul, MN 55108
| | - Jonathan M Jacobs
- Department of Plant Pathology, The Ohio State University, Columbus, OH 43210
- Infectious Diseases Institute, The Ohio State University, Columbus, OH 43210
| |
Collapse
|
48
|
Heiden N, Broders KA, Hutin M, Castro MO, Roman-Reyna V, Toth H, Jacobs JM. Bacterial Leaf Streak Diseases of Plants: Symptom Convergence in Monocot Plants by Distant Pathogenic Xanthomonas Species. PHYTOPATHOLOGY 2023; 113:2048-2055. [PMID: 37996392 DOI: 10.1094/phyto-05-23-0155-ia] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/25/2023]
Abstract
Bacterial leaf streak (BLS) is a disease of monocot plants caused by Xanthomonas translucens on small grains, X. vasicola on maize and sorghum, and X. oryzae on rice. These three pathogens cause remarkably similar symptomology in their host plants. Despite causing similar symptoms, BLS pathogens are dispersed throughout the larger Xanthomonas phylogeny. Each aforementioned species includes strain groups that do not cause BLS and instead cause vascular disease. In this commentary, we hypothesize that strains of X. translucens, X. vasicola, and X. oryzae convergently evolved to cause BLS due to shared evolutionary pressures. We examined the diversity of secreted effectors, which may be important virulence factors for BLS pathogens and their evolution. We discuss evidence that differences in gene regulation and abilities to manipulate plant hormones may also separate BLS pathogens from other Xanthomonas species or pathovars. BLS is becoming an increasing issue across the three pathosystems. Overall, we hope that a better understanding of conserved mechanisms used by BLS pathogens will enable researchers to translate findings across production systems and guide approaches to control this (re)emerging threat.
Collapse
Affiliation(s)
- Nathaniel Heiden
- Department of Plant Pathology, The Ohio State University, Columbus, OH 43210, U.S.A
- Infectious Diseases Institute, The Ohio State University, Columbus, OH 43210, U.S.A
| | - Kirk A Broders
- U.S. Department of Agriculture-Agricultural Research Service, National Center for Agricultural Utilization Research, Mycotoxin Prevention and Applied Microbiology Research Unit, Peoria, IL 61604, U.S.A
| | - Mathilde Hutin
- Plant Health Institute of Montpellier, University of Montpellier, IRD, CIRAD, INRAE, Institut Agro, Montpellier, France
| | - Mary Ortiz Castro
- Horticulture and Extension Programs, Colorado State University, Castle Rock, CO 80106, U.S.A
| | - Verónica Roman-Reyna
- Department of Plant Pathology, The Ohio State University, Columbus, OH 43210, U.S.A
- Infectious Diseases Institute, The Ohio State University, Columbus, OH 43210, U.S.A
- Department of Plant Pathology and Environmental Microbiology, Pennsylvania State University, University Park, PA 16802, U.S.A
| | - Hannah Toth
- Department of Plant Pathology, The Ohio State University, Columbus, OH 43210, U.S.A
- Infectious Diseases Institute, The Ohio State University, Columbus, OH 43210, U.S.A
| | - Jonathan M Jacobs
- Department of Plant Pathology, The Ohio State University, Columbus, OH 43210, U.S.A
- Infectious Diseases Institute, The Ohio State University, Columbus, OH 43210, U.S.A
| |
Collapse
|
49
|
Bootrak D, Rongsayamanont W, Jaidumrong T, Rongsayamanont C. Effect of phosphorylated polyvinyl alcohol matrix size of cell entrapment on partial nitrification of ammonia in wastewater. ENVIRONMENTAL TECHNOLOGY 2023; 44:4033-4045. [PMID: 35549830 DOI: 10.1080/09593330.2022.2078231] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/23/2021] [Accepted: 04/12/2022] [Indexed: 06/15/2023]
Abstract
Partial nitrification is known as first and critical step for autotrophic nitrogen removal in high strength nitrogenous wastewater. Phosphorylated polyvinyl alcohol gel entrapment was used for suppressing oxygen to nitrite-oxidizing bacteria (NOB) in the gel matrix. The study investigated the effect of the size of gel matrix on partial nitrification. Results show that ammonia-oxidizing bacteria (AOB) proportion in the inoculum rather than the size of gel matrix governed ammonia oxidation. Nitrite oxidation depended on the size of gel matrix not the relative proportions of NOB and AOB in the inoculum. Larger size of gel matrix lead to less in situ oxygen penetration and available for NOB resulting in higher nitrite accumulation. This finding gains a better understanding of using suitable inoculum to control partial nitrification that is beneficial for the preparation of anaerobic ammonium oxidation-suited effluent.
Collapse
Affiliation(s)
- Darak Bootrak
- Faculty of Environmental Management, Prince of Songkla University, Songkhla, Thailand
| | | | - Tunyakamon Jaidumrong
- Faculty of Environmental Management, Prince of Songkla University, Songkhla, Thailand
| | - Chaiwat Rongsayamanont
- Faculty of Environmental Management, Prince of Songkla University, Songkhla, Thailand
- Environmental Assessment and Technology for Hazardous Waste Management Research Center, Faculty of Environmental Management, Prince of Songkla University, Songkhla, Thailand
| |
Collapse
|
50
|
Shah SMA, Khojasteh M, Wang Q, Haq F, Xu X, Li Y, Zou L, Osdaghi E, Chen G. Comparative Transcriptomic Analysis of Wheat Cultivars in Response to Xanthomonas translucens pv. cerealis and Its T2SS, T3SS, and TALEs Deficient Strains. PHYTOPATHOLOGY 2023; 113:2073-2082. [PMID: 37414408 DOI: 10.1094/phyto-02-23-0049-sa] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/08/2023]
Abstract
Xanthomonas translucens pv. cerealis causes bacterial leaf streak disease on small grain cereals. Type II and III secretion systems (T2SS and T3SS) play a pivotal role in the pathogenicity of the bacterium, while no data are available on the transcriptomic profile of wheat cultivars infected with either wild type (WT) or mutants of the pathogen. In this study, WT, TAL-effector mutants, and T2SS/T3SS mutants of X. translucens pv. cerealis strain NXtc01 were evaluated for their effect on the transcriptomic profile of two wheat cultivars, 'Chinese Spring' and 'Yangmai-158', using Illumina RNA-sequencing technology. RNA-Seq data showed that the number of differentially expressed genes (DEGs) was higher in Yangmai-158 than in Chinese Spring, suggesting higher susceptibility of Yangmai-158 to the pathogen. In T2SS, most suppressed DEGs were related to transferase, synthase, oxidase, WRKY, and bHLH transcription factors. The gspD mutants showed significantly decreased disease development in wheat, suggesting an active contribution of T2SS in virulence. Moreover, the gspD mutant restored full virulence and its multiplication in planta by addition of gspD in trans. In the T3SS-deficient strain, downregulated DEGs were associated with cytochrome, peroxidases, kinases, phosphatases, WRKY, and ethylene-responsive transcription factors. In contrast, upregulated DEGs were trypsin inhibitors, cell number regulators, and calcium transporter. Transcriptomic analyses coupled with quantitative real-time-PCR indicated that some genes are upregulated in Δtal1/Δtal2 compared with the tal-free strain, but no direct interaction was observed. These results provide novel insight into wheat transcriptomes in response to X. translucens infection and pave the way for understanding host-pathogen interactions.
Collapse
Affiliation(s)
- Syed Mashab Ali Shah
- School of Agriculture and Biology/State Key Laboratory of Microbial Metabolism, Shanghai Jiao Tong University, Shanghai 200240, China
- School of Agriculture and Biology/Key Laboratory of Urban Agriculture by Ministry of Agriculture of China, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Moein Khojasteh
- School of Agriculture and Biology/State Key Laboratory of Microbial Metabolism, Shanghai Jiao Tong University, Shanghai 200240, China
- School of Agriculture and Biology/Key Laboratory of Urban Agriculture by Ministry of Agriculture of China, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Qi Wang
- School of Agriculture and Biology/State Key Laboratory of Microbial Metabolism, Shanghai Jiao Tong University, Shanghai 200240, China
- School of Agriculture and Biology/Key Laboratory of Urban Agriculture by Ministry of Agriculture of China, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Fazal Haq
- School of Agriculture and Biology/State Key Laboratory of Microbial Metabolism, Shanghai Jiao Tong University, Shanghai 200240, China
- School of Agriculture and Biology/Key Laboratory of Urban Agriculture by Ministry of Agriculture of China, Shanghai Jiao Tong University, Shanghai 200240, China
- Institute for Integrative Biology of the Cell (I2BC), CEA, CNRS, University Paris-Saclay, 91198 Gif-sur-Yvette, France
| | - Xiameng Xu
- School of Agriculture and Biology/State Key Laboratory of Microbial Metabolism, Shanghai Jiao Tong University, Shanghai 200240, China
- School of Agriculture and Biology/Key Laboratory of Urban Agriculture by Ministry of Agriculture of China, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Ying Li
- School of Agriculture and Biology/State Key Laboratory of Microbial Metabolism, Shanghai Jiao Tong University, Shanghai 200240, China
- School of Agriculture and Biology/Key Laboratory of Urban Agriculture by Ministry of Agriculture of China, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Lifang Zou
- School of Agriculture and Biology/State Key Laboratory of Microbial Metabolism, Shanghai Jiao Tong University, Shanghai 200240, China
- School of Agriculture and Biology/Key Laboratory of Urban Agriculture by Ministry of Agriculture of China, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Ebrahim Osdaghi
- Department of Plant Protection, University of Tehran, Karaj, Iran
| | - Gongyou Chen
- School of Agriculture and Biology/State Key Laboratory of Microbial Metabolism, Shanghai Jiao Tong University, Shanghai 200240, China
- School of Agriculture and Biology/Key Laboratory of Urban Agriculture by Ministry of Agriculture of China, Shanghai Jiao Tong University, Shanghai 200240, China
| |
Collapse
|