1
|
D’aes J, Fraiture MA, Bogaerts B, Van Laere Y, De Keersmaecker SC, Roosens NH, Vanneste K. Metagenomics-based tracing of genetically modified microorganism contaminations in commercial fermentation products. FOOD CHEMISTRY. MOLECULAR SCIENCES 2025; 10:100236. [PMID: 39834589 PMCID: PMC11743831 DOI: 10.1016/j.fochms.2024.100236] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/06/2024] [Revised: 12/16/2024] [Accepted: 12/19/2024] [Indexed: 01/22/2025]
Abstract
Genetically modified microorganisms (GMM) are frequently employed for the production of microbial fermentation products such as food enzymes. Although presence of the GMM or its recombinant DNA in the final product is not authorized, contaminations occur frequently. Insight into the contamination source of a GMM is of crucial importance to allow the competent authorities to take appropriate action. The aim of this study was to explore the feasibility of a metagenomic shotgun sequencing approach to investigate microbial contamination in fermentation products, focusing on source tracing of GMM strains using innovative strain deconvolution and phylogenomic approaches. In most cases, analysis of 16 GMM-contaminated food enzyme products supported finding the same GM producer strains in different products, while often multiple GMM contaminations per product were detected. Presence of AMR genes in the samples was strongly associated with GMM contamination, emphasizing the potential public health risk. Additionally, a variety of other microbial contaminations were detected, identifying a group of samples with a conspicuously similar contamination profile, which suggested that these samples originated from the same production facility or batch. Together, these findings highlight the need for guidelines and quality control for traceability of these products to ensure the safety of consumers. This study demonstrates the added value of metagenomics to obtain insight in the microbial contamination profiles, as well as their underlying relationships, in commercial microbial fermentation products. The proposed approach may be applied to other types of microbial fermentation products and/or to other (genetically modified) producer strains.
Collapse
Affiliation(s)
- Jolien D’aes
- Sciensano, Transversal activities in Applied Genomics (TAG), J. Wytsmanstraat 14, 1050 Brussels, Belgium
| | - Marie-Alice Fraiture
- Sciensano, Transversal activities in Applied Genomics (TAG), J. Wytsmanstraat 14, 1050 Brussels, Belgium
| | - Bert Bogaerts
- Sciensano, Transversal activities in Applied Genomics (TAG), J. Wytsmanstraat 14, 1050 Brussels, Belgium
| | - Yari Van Laere
- Sciensano, Transversal activities in Applied Genomics (TAG), J. Wytsmanstraat 14, 1050 Brussels, Belgium
- UGent, Department of Plant Biotechnology & Bioinformatics, Technologiepark 71 9052 Zwijnaarde, Belgium
| | | | - Nancy H.C. Roosens
- Sciensano, Transversal activities in Applied Genomics (TAG), J. Wytsmanstraat 14, 1050 Brussels, Belgium
| | - Kevin Vanneste
- Sciensano, Transversal activities in Applied Genomics (TAG), J. Wytsmanstraat 14, 1050 Brussels, Belgium
| |
Collapse
|
2
|
Zhou N, Zheng Q, Liu Y, Huang Z, Feng Y, Chen Y, Hu F, Zheng H. Strain diversity and host specificity of the gut symbiont Gilliamella in Apis mellifera, Apis cerana and Bombus terrestris. Microbiol Res 2025; 293:128048. [PMID: 39813751 DOI: 10.1016/j.micres.2025.128048] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2024] [Revised: 12/15/2024] [Accepted: 01/02/2025] [Indexed: 01/18/2025]
Abstract
Social bees, with their specialized gut microbiota and societal transmission between individuals, provide an ideal model for studying host-gut microbiota interactions. While the functional disparities arising from strain-level diversity of gut symbionts and their effects on host health have been studied in Apis mellifera and bumblebees, studies focusing on host-specific investigations of individual strains across different honeybee hosts remain relatively unexplored. In this study, the complete genomic sequences of 17 strains of Gilliamella from A. mellifera, Apis cerana and Bombus terrestris were analyzed. The analysis revealed that the strains of A. mellifera display a more expansive genomic and functional content compared to the strains of A. cerana and B. terrestris. Phylogenetic analysis showed a deep divergence among the Gilliamella strains from different hosts. Additionally, biochemistry tests and antibiotic susceptibility tests revealed that gut strains from A. mellifera exhibited a more extensive pathway for carbohydrate metabolism and a greater resistance to antibiotics than gut strains from A. cerana and B. terrestris. Strains from A. mellifera and A. cerana showed higher colonization efficiency and competitive ability whithin their respective host species, indicating a higher degree of host-specific adaptation of local gut microbiota. In addition, colonization by A. mellifera-derived strain triggers a stronger transcriptional response in the host than A. cerana-derived strain. The variation in the number of differentially expressed genes and the involvement of distinct signaling pathways across these two host species suggest species-specific adaptations to Gilliamella strains. These findings suggest that despite occupying similar niches in the bee gut, strain-level variations can influence microbial functions, and their impact on host physiological functions may vary across different strains.
Collapse
Affiliation(s)
- Nihong Zhou
- College of Animal Sciences, Zhejiang University, Hangzhou 310058, China
| | - Qiulan Zheng
- College of Animal Sciences, Zhejiang University, Hangzhou 310058, China
| | - Yao Liu
- College of Animal Sciences, Zhejiang University, Hangzhou 310058, China
| | - Zhichu Huang
- College of Animal Sciences, Zhejiang University, Hangzhou 310058, China
| | - Ye Feng
- Institute of Translational Medicine, Zhejiang University, Hangzhou 310058, China
| | - Yanping Chen
- Bee Research Laboratory, USDA-ARS, Beltsville, MD, USA
| | - Fuliang Hu
- College of Animal Sciences, Zhejiang University, Hangzhou 310058, China
| | - Huoqing Zheng
- College of Animal Sciences, Zhejiang University, Hangzhou 310058, China.
| |
Collapse
|
3
|
Akhoon BA, Qiao Q, Stewart A, Chen J, Rodriguez Lopez CM, Corbin KR. Pangenomic analysis of the bacterial cellulose-producing genera Komagataeibacter and Novacetimonas. Int J Biol Macromol 2025; 298:139980. [PMID: 39826720 DOI: 10.1016/j.ijbiomac.2025.139980] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2024] [Revised: 12/06/2024] [Accepted: 01/15/2025] [Indexed: 01/22/2025]
Abstract
Bacterial cellulose holds significant commercial potential due to its unique structural and chemical properties, making it suitable for applications in electronics, medicine, and pharmaceuticals. However, large-scale BC production remains limited by challenges related to bacterial performance. In this study, we compared 79 microbial genomes from three genera-Komagataeibacter, Novacetimonas, and Gluconacetobacter-to investigate their pangenomes, genetic diversity, and evolutionary relationships. Through comparative genomic and phylogenetic analyses, we identified distinct genome compositions and evolutionary patterns that differ from previous reports. The role of horizontal gene transfer in shaping the genetic diversity and adaptability of these bacteria was also explored. Key determinants in BC production, such as variations in the bacterial cellulose biosynthesis (bcs) operon, carbohydrate uptake genes, and carbohydrate-active enzymes, were examined. Additionally, several biosynthetic gene clusters, including Linocin M18 and sactipeptides, which encode for antimicrobial peptides known as bacteriocins, were identified. These findings reveal new aspects of the genetic diversity in cellulose-producing bacteria and present a comprehensive genomic toolkit that will support future efforts to optimize BC production and improve microbial performance for commercial applications.
Collapse
Affiliation(s)
- Bashir A Akhoon
- Department of Horticulture, Martin-Gatton College of Agriculture, Food and Environment, University of Kentucky, Lexington, KY, USA
| | - Qi Qiao
- Department of Horticulture, Martin-Gatton College of Agriculture, Food and Environment, University of Kentucky, Lexington, KY, USA; College of Public Health, University of Kentucky, Lexington, KY, USA
| | - Alexander Stewart
- Department of Ecology and Evolutionary Biology, University of Arizona, Tucson, AZ, USA
| | - Jin Chen
- Department of Internal Medicine and Department of Computer Science, Institute for Biomedical Informatics, University of Kentucky, Lexington, KY, USA; The University of Alabama at Birmingham, School of Medicine - Nephrology, Birmingham, AL, USA
| | - Carlos M Rodriguez Lopez
- Department of Horticulture, Martin-Gatton College of Agriculture, Food and Environment, University of Kentucky, Lexington, KY, USA; Environmental Epigenetics and Genetics Group, Department of Horticulture, Martin-Gatton College of Agriculture, Food and Environment, University of Kentucky, Lexington, KY, USA
| | - Kendall R Corbin
- Department of Horticulture, Martin-Gatton College of Agriculture, Food and Environment, University of Kentucky, Lexington, KY, USA.
| |
Collapse
|
4
|
Li Y, Zhang Y, Liu X, Zhou X, Ye T, Fu Q, Du M, Lu Q, Zheng Y, Wang D. Per- and polyfluoroalkyl substances exacerbate the prevalence of plasmid-borne antibiotic resistance genes by enhancing natural transformation, in vivo stability, and expression in bacteria. WATER RESEARCH 2025; 272:122972. [PMID: 39706060 DOI: 10.1016/j.watres.2024.122972] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/24/2024] [Revised: 12/02/2024] [Accepted: 12/12/2024] [Indexed: 12/23/2024]
Abstract
Per- and polyfluoroalkyl substances (PFAS) as emerging pollutants are ubiquitous and disrupt biological processes across water boundaries. Their coexistence with antibiotic resistance genes (ARGs) in water matrix is associated with the spread of ARGs via conjugative transfer, posing a threat to public health. However, their role in natural transformation-where microorganisms actively take up extracellular ARGs (eARGs)-and the subsequent persistence and expression of ARGs after transformation remains poorly understood. Here, we demonstrated that environmentally relevant concentrations (0.1-10 µg/L) of perfluorooctanoic acid (PFOA) and perfluorooctanesulfonic acid (PFOS), two typical PFAS, increased transformation frequencies by 2.54- and 3.26-fold, respectively. This increase was driven by increased cell envelope permeability, biofilm formation, reactive oxygen species (ROS) production, and upregulation of DNA uptake genes. At higher concentrations (100 µg/L), PFAS inhibited transformation. Nevertheless, PFOA and PFOS at all tested concentrations promoted long-term plasmid in vivo stability, reducing plasmid loss rates from 68.5% to 6% and 38.7%, respectively. Furthermore, they induced ARGs expression in transformants by up to 1.33- and 1.37-fold. Our findings revealed that PFOA and PFOS impacted the spread, persistence, and expression of ARGs, from extracellular uptake to intracellular activity in bacteria. These results highlight the underestimated environmental health risks posed by PFAS and underscore the intricate chemical and biological co-contamination in aquatic ecosystems and wastewater treatment.
Collapse
Affiliation(s)
- Yingbin Li
- College of Environmental Science and Engineering and Key Laboratory of Environmental Biology and Pollution Control (Ministry of Education), Hunan University, Changsha 410082, China
| | - Yunxuan Zhang
- State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Biology, Hunan University, Changsha 410082, China
| | - Xuran Liu
- College of Environmental Science and Engineering and Key Laboratory of Environmental Biology and Pollution Control (Ministry of Education), Hunan University, Changsha 410082, China.
| | - Xiangming Zhou
- College of Environmental Science and Engineering and Key Laboratory of Environmental Biology and Pollution Control (Ministry of Education), Hunan University, Changsha 410082, China
| | - Tao Ye
- College of Environmental Science and Engineering and Key Laboratory of Environmental Biology and Pollution Control (Ministry of Education), Hunan University, Changsha 410082, China
| | - Qizi Fu
- College of Environmental Science and Engineering and Key Laboratory of Environmental Biology and Pollution Control (Ministry of Education), Hunan University, Changsha 410082, China
| | - Mingting Du
- College of Environmental Science and Engineering and Key Laboratory of Environmental Biology and Pollution Control (Ministry of Education), Hunan University, Changsha 410082, China
| | - Qi Lu
- College of Environmental Science and Engineering and Key Laboratory of Environmental Biology and Pollution Control (Ministry of Education), Hunan University, Changsha 410082, China
| | - Yuyang Zheng
- College of Environmental Science and Engineering and Key Laboratory of Environmental Biology and Pollution Control (Ministry of Education), Hunan University, Changsha 410082, China
| | - Dongbo Wang
- College of Environmental Science and Engineering and Key Laboratory of Environmental Biology and Pollution Control (Ministry of Education), Hunan University, Changsha 410082, China.
| |
Collapse
|
5
|
Wu J, Niu L, Li Y, Zheng J, Wang L, Zhu D. Stability characteristics of bacterial and protistan communities along an estuarine continuum: Diversity, composition and co-occurrence networks. ENVIRONMENTAL RESEARCH 2025; 269:120920. [PMID: 39848524 DOI: 10.1016/j.envres.2025.120920] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/25/2024] [Revised: 01/19/2025] [Accepted: 01/20/2025] [Indexed: 01/25/2025]
Abstract
Estuarine ecosystems have been threatened by increasing anthropogenic and natural pressures, yet the integral understanding of their stability characteristics of microbial communities at taxonomic, habitat, and spatial scales remains limited. In this study, the Mulan River estuary in southeastern China was selected to compare the stability characteristics of bacterial and protistan communities in water and sediments over three hydrological periods, and to explore their spatial variations along the estuarine continuum from river to ocean. The potential driving mechanisms of stability characteristics were also explored. Results revealed that the estuarine ecosystem displayed varied stability at taxonomic, habitat, and spatial scales, separately. On the whole, protistan communities had a lower stability than bacterial communities in both water and sediments, with the higher coefficients of variation in alpha diversity (av. 0.82), the higher Bray-Curtis distances of community compositions (av. 0.98), and the lower robustness of networks (av. 0.23). Compared to the sediments, the lower stabilities of two taxa in water were also indicated via the above three indices. Along the estuarine continuum, the stability of bacterial communities in the middle reach was lowest, but the stability of protistan communities was lowest in the up reach. The null model and network analysis suggested that the assembly processes with stronger variable selection and homogeneous selection, coupled with higher positive interaction (r > 0.7) of microbial communities jointly accounted for the lower stabilities in the up and middle estuarine reaches. The partial least squares path model suggested that total nitrogen, total phosphorus, and dissolved oxygen controlled the community stability by influencing microbial assembly and interaction in the up and middle reaches. This study provides new insights on the varied stability characteristics of different microbial communities along the estuarine continuum, which are helpful for maintaining estuarine ecological function and formulating management strategies.
Collapse
Affiliation(s)
- Jianming Wu
- College of Harbour, Coastal and Offshore Engineering, Hohai University, Nanjing 210098, China; Research Institute of Mulan Ecological River, Putian 351100, China
| | - Lihua Niu
- Research Institute of Mulan Ecological River, Putian 351100, China; Key Laboratory of Integrated Regulation and Resource Development on Shallow Lakes, Ministry of Education, College of Environment, Hohai University, Nanjing 210098, China.
| | - Yi Li
- Research Institute of Mulan Ecological River, Putian 351100, China; Key Laboratory of Integrated Regulation and Resource Development on Shallow Lakes, Ministry of Education, College of Environment, Hohai University, Nanjing 210098, China
| | - Jinhai Zheng
- College of Harbour, Coastal and Offshore Engineering, Hohai University, Nanjing 210098, China; Research Institute of Mulan Ecological River, Putian 351100, China
| | - Longfei Wang
- Research Institute of Mulan Ecological River, Putian 351100, China; Key Laboratory of Integrated Regulation and Resource Development on Shallow Lakes, Ministry of Education, College of Environment, Hohai University, Nanjing 210098, China
| | - Danni Zhu
- College of Hydrology and Water Resources, Hohai University, Nanjing 210098, China
| |
Collapse
|
6
|
Xu Y, Yu W, Wang X, Tao K, Bian Z, Wang H, Wei Y. Impact of low-dose free chlorine on the conjugative transfer of antibiotic resistance genes in wastewater effluents: Identifying key environmental factors for predictive modeling. JOURNAL OF HAZARDOUS MATERIALS 2025; 485:136824. [PMID: 39667151 DOI: 10.1016/j.jhazmat.2024.136824] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/21/2024] [Revised: 10/13/2024] [Accepted: 12/07/2024] [Indexed: 12/14/2024]
Abstract
Reclaimed water disinfection results in the coexistence of antibiotic resistance genes (ARGs) and low-dose free chlorine in receiving environments. However, the impact of low-dose free chlorine on ARGs conjugative transfer and the key factors influencing the transfer under complex environmental conditions remain unclear, hindering the establishment of an effective monitoring system for resistance pollution in reclaimed water. This study investigated ARGs conjugative transfer under the influence of free chlorine at environmentally relevant concentrations and key interactive factors using machine learning models. The results showed that low-dose free chlorine (0.05-0.3 mg/L) promoted ARGs conjugative transfer, with 0.15 mg/L having a greater promoting effect than free chlorine concentrations of 0.05 and 0.3 mg/L. Additionally, different exposure patterns of low-dose chlorine affected ARGs conjugative transfer, with intermittent exposure posing a higher risk of ARGs dissemination. SVM linear model performed best in predicting ARGs conjugative transfer (RMSE=0.012, R2=0.975), and the SHapley Additive Explanations (SHAP) method revealed that key factors such as HCO3-, SAA, NO3-, and HA had positive SHAP values, indicating a positive influence on ARGs transfer under low-dose chlorine, making them the key features for predicting the ARGs conjugative transfer under the low-dose chlorine exposure. This study also revealed potential mechanisms of ARGs transfer under continuous low-dose free chlorine exposure, including intracellular reactive oxygen species (ROS), enzyme activity, cell membrane permeability, and gene expression. The integration of the machine learning model and post-hoc interpretation methods clarified the key drivers of ARGs conjugative transfer in reclaimed water-replenished environments, providing new insights for the safe reuse of reclaimed water and the development of river monitoring indicators.
Collapse
Affiliation(s)
- Ye Xu
- College of Environmental Science and Engineering, Beijing Forestry University, Beijing 100083, PR China
| | - Wenchao Yu
- College of Environmental Science and Engineering, Beijing Forestry University, Beijing 100083, PR China.
| | - Xiaowen Wang
- College of Environmental Science and Engineering, Beijing Forestry University, Beijing 100083, PR China
| | - Kang Tao
- College of Environmental Science and Engineering, Beijing Forestry University, Beijing 100083, PR China
| | - Zhaoyong Bian
- College of Water Sciences, Beijing Normal University, Beijing 100875, PR China
| | - Hui Wang
- College of Environmental Science and Engineering, Beijing Forestry University, Beijing 100083, PR China.
| | - Yuansong Wei
- Laboratory of Water Pollution Control Technology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, PR China
| |
Collapse
|
7
|
Wijaya AJ, Anžel A, Richard H, Hattab G. Current state and future prospects of Horizontal Gene Transfer detection. NAR Genom Bioinform 2025; 7:lqaf005. [PMID: 39935761 PMCID: PMC11811736 DOI: 10.1093/nargab/lqaf005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2024] [Revised: 12/26/2024] [Accepted: 02/04/2025] [Indexed: 02/13/2025] Open
Abstract
Artificial intelligence (AI) has been shown to be beneficial in a wide range of bioinformatics applications. Horizontal Gene Transfer (HGT) is a driving force of evolutionary changes in prokaryotes. It is widely recognized that it contributes to the emergence of antimicrobial resistance (AMR), which poses a particularly serious threat to public health. Many computational approaches have been developed to study and detect HGT. However, the application of AI in this field has not been investigated. In this work, we conducted a review to provide information on the current trend of existing computational approaches for detecting HGT and to decipher the use of AI in this field. Here, we show a growing interest in HGT detection, characterized by a surge in the number of computational approaches, including AI-based approaches, in recent years. We organize existing computational approaches into a hierarchical structure of computational groups based on their computational methods and show how each computational group evolved. We make recommendations and discuss the challenges of HGT detection in general and the adoption of AI in particular. Moreover, we provide future directions for the field of HGT detection.
Collapse
Affiliation(s)
- Andre Jatmiko Wijaya
- Center for Artificial Intelligent in Public Health Research (ZKI-PH), Robert Koch Institute, Nordufer 20, 13353 Berlin, Germany
- Department of Mathematics and Computer Science, Freie Universität, Arnimallee 14, 14195 Berlin, Germany
- Genome Competence Center (MF1), Robert Koch Institute, Nordufer 20, 13353 Berlin, Germany
| | - Aleksandar Anžel
- Center for Artificial Intelligent in Public Health Research (ZKI-PH), Robert Koch Institute, Nordufer 20, 13353 Berlin, Germany
| | - Hugues Richard
- Genome Competence Center (MF1), Robert Koch Institute, Nordufer 20, 13353 Berlin, Germany
| | - Georges Hattab
- Center for Artificial Intelligent in Public Health Research (ZKI-PH), Robert Koch Institute, Nordufer 20, 13353 Berlin, Germany
- Department of Mathematics and Computer Science, Freie Universität, Arnimallee 14, 14195 Berlin, Germany
| |
Collapse
|
8
|
Liu Y, Zhou Z, Xu J, Li S, Xiao Y, Yu X, Wang T, Zeng J, Li L. Engineering an Mn(II)-oxidizing Pseudomonas whole-cell catalyst chassis to efficiently biosynthesize 2,5-furandicarboxylic acid from hydroxymethylfurfural. BIORESOURCE TECHNOLOGY 2025; 419:132036. [PMID: 39756661 DOI: 10.1016/j.biortech.2025.132036] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/12/2024] [Revised: 12/16/2024] [Accepted: 01/03/2025] [Indexed: 01/07/2025]
Abstract
2,5-Furandicarboxylic acid (FDCA) is a high-value chemical extensively used in the production of bio-based polymers, but bioconversion of furan derivatives like 5-hydroxymethylfurfural (HMF) into FDCA remains challenging owing to substrate cytotoxicity. Here, we engineered an Mn(II)-oxidizing Pseudomonas sp. MB04B for efficient FDCA biosynthesis from HMF. We deleted 4.6 % of the MB04B genome to generate the engineered MB04C-6 chassis, then introduced two exogenous gene cassettes, PMP00-hmfH and PJ23119-hmfH'. Using the resulting MB04C-6/pHMF as a whole-cell catalyst, optimizing the reaction system, and incorporating CaCO3 increased the FDCA yield by approximately 63.4-fold compared to MB04C-6. We also enhanced the CRISPR-associated transposases system for single-step chromosomal integration of exogenous genes. The optimal chassis strain MB04S-HMF8, rapidly produced 97 mmol/L FDCA from 100 mmol/L HMF in 12 h, with an FDCA production rate of 1.26 g L-1h-1, showcasing its potential as a robust, cost-effective, and environmentally sustainable whole-cell biocatalyst for industrial-scale FDCA production.
Collapse
Affiliation(s)
- Yongxuan Liu
- National Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan 430070, China
| | - Zhicheng Zhou
- National Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan 430070, China
| | - Jingjing Xu
- National Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan 430070, China
| | - Shiwei Li
- National Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan 430070, China
| | - Yu Xiao
- National Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan 430070, China
| | - Xun Yu
- Key Laboratory of Fermentation Engineering (Ministry of Education), Hubei University of Technology, Wuhan 430068, China
| | - Tan Wang
- National Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan 430070, China
| | - Jie Zeng
- National Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan 430070, China
| | - Lin Li
- National Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan 430070, China.
| |
Collapse
|
9
|
Wang Y, Ge J, Xian W, Tang Z, Xue B, Yu J, Yao YF, Liu H, Qiu J, Liu X. Phosphorylation of the prokaryotic histone-like protein H-NS modulates bacterial virulence in Salmonella Typhimurium. Microbiol Res 2025; 292:128041. [PMID: 39736215 DOI: 10.1016/j.micres.2024.128041] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2024] [Revised: 10/29/2024] [Accepted: 12/23/2024] [Indexed: 01/01/2025]
Abstract
H-NS is a prokaryotic histone-like protein that binds to bacterial chromosomal DNA with important regulatory roles in gene expression. Unlike histone proteins, hitherto post-translational modifications of H-NS are still largely uncharacterized, especially in bacterial pathogens. Salmonella Typhimurium is a primary enteric pathogen and its virulence is mainly dependent on specialized type III secretion systems (T3SSs), which were evolutionarily acquired via horizontal gene transfer. Previous studies have shown that H-NS plays a critical role in silencing foreign T3SS genes. Here, we found that H-NS is phosphorylated at multiple residues in S. Typhimurium, including S45, Y61, S78, S84, T86, and T106. Notably, we demonstrated that phosphorylation of H-NS S78 promotes its dissociation from DNA via a mechanism dependent on dimer formation, thereby leading to transcriptional activation of target genes. Functionally, phosphoryl-H-NS contributes to the expression of T3SS-associated proteins and hence increases bacterial virulence during infection. Therefore, our study reveals a novel mechanism by which covalent modifications of prokaryotic histone-like proteins regulate bacterial virulence of an important human pathogen.
Collapse
Affiliation(s)
- Ying Wang
- Department of Microbiology and Infectious Disease Center, NHC Key Laboratory of Medical Immunology, School of Basic Medical Sciences, Peking University Health Science Center, Beijing 100191, China
| | - Jinli Ge
- State Key Laboratory for Diagnosis and Treatment of Severe Zoonotic Infectious Diseases, Key Laboratory for Zoonosis Research of the Ministry of Education, College of Veterinary Medicine, Jilin University, Changchun 130062, China
| | - Wei Xian
- Department of Microbiology and Infectious Disease Center, NHC Key Laboratory of Medical Immunology, School of Basic Medical Sciences, Peking University Health Science Center, Beijing 100191, China
| | - Zhiheng Tang
- Department of Microbiology and Infectious Disease Center, NHC Key Laboratory of Medical Immunology, School of Basic Medical Sciences, Peking University Health Science Center, Beijing 100191, China
| | - Baoshuai Xue
- State Key Laboratory for Diagnosis and Treatment of Severe Zoonotic Infectious Diseases, Key Laboratory for Zoonosis Research of the Ministry of Education, College of Veterinary Medicine, Jilin University, Changchun 130062, China
| | - Jingchen Yu
- Laboratory of Bacterial Pathogenesis, Shanghai Institute of Immunology, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Yu-Feng Yao
- Laboratory of Bacterial Pathogenesis, Shanghai Institute of Immunology, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Huwei Liu
- College of Life Sciences, Wuchang University of Technology, Wuhan, China
| | - Jiazhang Qiu
- State Key Laboratory for Diagnosis and Treatment of Severe Zoonotic Infectious Diseases, Key Laboratory for Zoonosis Research of the Ministry of Education, College of Veterinary Medicine, Jilin University, Changchun 130062, China.
| | - Xiaoyun Liu
- Department of Microbiology and Infectious Disease Center, NHC Key Laboratory of Medical Immunology, School of Basic Medical Sciences, Peking University Health Science Center, Beijing 100191, China; Department of Infectious Diseases, Peking University Third Hospital, Beijing, 100191, China.
| |
Collapse
|
10
|
Aljohni MS, Harun-Ur-Rashid M, Selim S. Emerging threats: Antimicrobial resistance in extended-spectrum beta-lactamase and carbapenem-resistant Escherichia coli. Microb Pathog 2025; 200:107275. [PMID: 39798725 DOI: 10.1016/j.micpath.2024.107275] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2024] [Revised: 12/26/2024] [Accepted: 12/31/2024] [Indexed: 01/15/2025]
Abstract
Antimicrobial resistance (AMR) in Escherichia coli strains, particularly those producing Extended-Spectrum Beta-Lactamase (ESBL) and Carbapenemase (CR-Ec), represents a serious global health threat. These resistant strains have been associated with increased morbidity, mortality, and healthcare costs, as they limit the effectiveness of standard antibiotic therapies. The prevalence of ESBL- and CR-Ec-producing strains continues to rise, driven by the overuse and misuse of antibiotics in healthcare and agricultural settings, and facilitated by global interconnectedness through international travel, trade, and food distribution. This review article examines the molecular mechanisms behind ESBL and CR resistance, focusing on the key genes involved in these processes, such as blaCTX-M, blaKPC, and blaNDM, and the clinical challenges posed by these strains. Additionally, the public health impact, including the spread of infections in hospital and community environments, is highlighted. The discussion emphasizes the urgent need for improved diagnostic tools, robust surveillance systems, and innovative therapeutic strategies. Emerging treatments, including phage therapy and novel antibiotic combinations, show promise in addressing these challenges and offer potential breakthroughs in combating resistant strains. Lastly, the review calls for stronger antimicrobial stewardship and policy reforms to mitigate the spread of resistant E. coli strains and protect global public health. Effective intervention at multiple levels, from diagnostics to policy, is critical to controlling the threat posed by AMR.
Collapse
Affiliation(s)
- Mamdouh S Aljohni
- Department of Clinical Laboratory Sciences, College of Applied Medical Sciences, Jouf University, Sakaka, 72388, Saudi Arabia.
| | - Mohammad Harun-Ur-Rashid
- Department of Chemistry, International University of Business Agriculture and Technology (IUBAT), Dhaka, 1230, Bangladesh.
| | - Samy Selim
- Department of Clinical Laboratory Sciences, College of Applied Medical Sciences, Jouf University, Sakaka, 72388, Saudi Arabia.
| |
Collapse
|
11
|
Salamzade R, Kalan LR. Context matters: assessing the impacts of genomic background and ecology on microbial biosynthetic gene cluster evolution. mSystems 2025:e0153824. [PMID: 39992097 DOI: 10.1128/msystems.01538-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/25/2025] Open
Abstract
Encoded within many microbial genomes, biosynthetic gene clusters (BGCs) underlie the synthesis of various secondary metabolites that often mediate ecologically important functions. Several studies and bioinformatics methods developed over the past decade have advanced our understanding of both microbial pangenomes and BGC evolution. In this minireview, we first highlight challenges in broad evolutionary analysis of BGCs, including delineation of BGC boundaries and clustering of BGCs across genomes. We further summarize key findings from microbial comparative genomics studies on BGC conservation across taxa and habitats and discuss the potential fitness effects of BGCs in different settings. Afterward, recent research showing the importance of genomic context on the production of secondary metabolites and the evolution of BGCs is highlighted. These studies draw parallels to recent, broader, investigations on gene-to-gene associations within microbial pangenomes. Finally, we describe mechanisms by which microbial pangenomes and BGCs evolve, ranging from the acquisition or origination of entire BGCs to micro-evolutionary trends of individual biosynthetic genes. An outlook on how expansions in the biosynthetic capabilities of some taxa might support theories that open pangenomes are the result of adaptive evolution is also discussed. We conclude with remarks about how future work leveraging longitudinal metagenomics across diverse ecosystems is likely to significantly improve our understanding on the evolution of microbial genomes and BGCs.
Collapse
Affiliation(s)
- Rauf Salamzade
- Department of Medical Microbiology and Immunology, School of Medicine and Public Health, University of Wisconsin-Madison, Madison, Wisconsin, USA
- Microbiology Doctoral Training Program, University of Wisconsin-Madison, Madison, Wisconsin, USA
| | - Lindsay R Kalan
- Department of Medical Microbiology and Immunology, School of Medicine and Public Health, University of Wisconsin-Madison, Madison, Wisconsin, USA
- M.G. DeGroote Institute for Infectious Disease Research, David Braley Center for Antibiotic Discovery, McMaster University, Hamilton, Ontario, Canada
- Department of Biochemistry and Biomedical Sciences, McMaster University, Hamilton, Ontario, Canada
| |
Collapse
|
12
|
Li S, Liu Y, Zhang Y, Huang P, Bartlam M, Wang Y. Stereoselective behavior of naproxen chiral enantiomers in promoting horizontal transfer of antibiotic resistance genes. JOURNAL OF HAZARDOUS MATERIALS 2025; 489:137692. [PMID: 40007369 DOI: 10.1016/j.jhazmat.2025.137692] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/04/2024] [Revised: 01/13/2025] [Accepted: 02/19/2025] [Indexed: 02/27/2025]
Abstract
Antibiotic resistance poses a global threat to public health, with recent studies highlighting the role of non-antibiotic pharmaceuticals in the transmission of antibiotic resistance genes (ARGs). This study provides insights into the comprehensive profile, horizontal gene transfer potential, hosts, and public health risks associated with antibiotic resistomes in river ecosystems exposed to chiral naproxen (NAP). Our findings demonstrate that NAP stress selectively enriches ARGs and mobile genetic elements (MGEs), thereby bolstering bacterial resistance to specific antibiotics. Importantly, the spatial variation of NAP chiral enantiomers influences the enantioselective response of bacterial communities to antibiotics. While (S)-NAP and (R)-NAP exhibit differing degrees of horizontal transfer potential, (S/R)-NAP notably facilitates microbial aggregation and DNA transport via type IV secretion system (T4SS)-related functional genes, promoting the conjugation of sul1. Moreover, (S/R)-NAP promotes the horizontal transfer of ARGs by stimulating ROS production and altering cell membrane permeability. Chiral NAP exposure induces pathogens to acquire ARGs and accelerates the proliferation of Burkholderia. ARG-Rank analysis indicates that the health risk posed by (R)-NAP exposure surpasses that of (S)-NAP, with the highest risk observed when both enantiomers are present. This study elucidates the horizontal transfer and transmission mechanisms of ARGs under chiral NAP stress, underscoring the potential health hazards associated with NAP chiral enantiomers.
Collapse
Affiliation(s)
- Shuhan Li
- Key Laboratory of Pollution Processes and Environmental Criteria (Ministry of Education), Nankai International Advanced Research Institute (Shenzhen Futian), Tianjin Key Laboratory of Environmental Remediation and Pollution Control, College of Environmental Science and Engineering, Nankai University, Tianjin 300350, China
| | - Yu Liu
- Key Laboratory of Pollution Processes and Environmental Criteria (Ministry of Education), Nankai International Advanced Research Institute (Shenzhen Futian), Tianjin Key Laboratory of Environmental Remediation and Pollution Control, College of Environmental Science and Engineering, Nankai University, Tianjin 300350, China
| | - Yi Zhang
- Key Laboratory of Pollution Processes and Environmental Criteria (Ministry of Education), Nankai International Advanced Research Institute (Shenzhen Futian), Tianjin Key Laboratory of Environmental Remediation and Pollution Control, College of Environmental Science and Engineering, Nankai University, Tianjin 300350, China
| | - Pan Huang
- Key Laboratory of Pollution Processes and Environmental Criteria (Ministry of Education), Nankai International Advanced Research Institute (Shenzhen Futian), Tianjin Key Laboratory of Environmental Remediation and Pollution Control, College of Environmental Science and Engineering, Nankai University, Tianjin 300350, China
| | - Mark Bartlam
- State Key Laboratory of Medicinal Chemical Biology, Nankai International Advanced Research Institute (Shenzhen Futian), College of Life Sciences, Nankai University, Tianjin 300350, China.
| | - Yingying Wang
- Key Laboratory of Pollution Processes and Environmental Criteria (Ministry of Education), Nankai International Advanced Research Institute (Shenzhen Futian), Tianjin Key Laboratory of Environmental Remediation and Pollution Control, College of Environmental Science and Engineering, Nankai University, Tianjin 300350, China.
| |
Collapse
|
13
|
Bautista E, Estrada E, Deyell J, Sun M, La Spada AR, Sim S. Antibacterial Polymers Based on Two Orthogonal Binding Motifs Coalesce with Bacterial Matter. ACS APPLIED BIO MATERIALS 2025. [PMID: 39977622 DOI: 10.1021/acsabm.4c01872] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/22/2025]
Abstract
Addressing the growing concern about antibiotic-resistant bacteria, we have developed a series of polymers exhibiting intrinsic antibacterial activities with a dual-targeting system that induces physical lysis upon copolymer coalescence with bacterial matter. These polymers are equipped with two orthogonal binding motifs that form electrostatic interactions and dynamic covalent complexes on bacterial surfaces and exhibit potent antibacterial activity against Gram-positive and Gram-negative bacteria. The effect of the chemical composition and architecture of copolymers incorporating phenylboronic acid and quaternary ammonium groups on the antimicrobial activities was systematically examined. This work expands the current chemical repertoire to combat antimicrobial resistance by intrinsically antibacterial polymers with a unique mode of action.
Collapse
Affiliation(s)
- Esteban Bautista
- Department of Chemistry, University of California Irvine, Irvine, California 92697, United States
| | - Eduardo Estrada
- Department of Chemistry, University of California Irvine, Irvine, California 92697, United States
| | - Jacob Deyell
- Department of Pathology & Laboratory Medicine, University of California Irvine, Irvine, California 92697, United States
- Department of Neurology, University of California Irvine, Irvine, California 92697, United States
- Department of Biological Chemistry, University of California Irvine, Irvine, California 92697, United States
- Department of Neurobiology & Behavior, University of California Irvine, Irvine, California 92697, United States
- UCI Center for Neurotherapeutics, University of California Irvine, Irvine, California 92697, United States
| | - Melody Sun
- Department of Chemistry, University of California Irvine, Irvine, California 92697, United States
| | - Albert R La Spada
- Department of Pathology & Laboratory Medicine, University of California Irvine, Irvine, California 92697, United States
- Department of Neurology, University of California Irvine, Irvine, California 92697, United States
- Department of Biological Chemistry, University of California Irvine, Irvine, California 92697, United States
- Department of Neurobiology & Behavior, University of California Irvine, Irvine, California 92697, United States
- UCI Center for Neurotherapeutics, University of California Irvine, Irvine, California 92697, United States
| | - Seunghyun Sim
- Department of Chemistry, University of California Irvine, Irvine, California 92697, United States
- Department of Chemical and Biomolecular Engineering, University of California Irvine, Irvine, California 92697, United States
- Department of Biomedical Engineering, University of California Irvine, Irvine, California 92697, United States
| |
Collapse
|
14
|
Adeniji AA, Chukwuneme CF, Conceição EC, Ayangbenro AS, Wilkinson E, Maasdorp E, de Oliveira T, Babalola OO. Unveiling novel features and phylogenomic assessment of indigenous Priestia megaterium AB-S79 using comparative genomics. Microbiol Spectr 2025:e0146624. [PMID: 39969228 DOI: 10.1128/spectrum.01466-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2024] [Accepted: 12/12/2024] [Indexed: 02/20/2025] Open
Abstract
Priestia megaterium strain AB-S79 isolated from active gold mine soil previously expressed in vitro heavy metal resistance and has a 5.7 Mb genome useful for biotechnological exploitation. This study used web-based bioinformatic resources to analyze P. megaterium AB-S79 genomic relatedness, decipher its secondary metabolite biosynthetic gene clusters (BGCs), and better comprehend its taxa. Genes were highly conserved across the 14 P. megaterium genomes examined here. The pangenome reflected a total of 61,397 protein-coding genes, 59,745 homolog protein family hits, and 1,652 singleton protein family hits. There were also 7,735 protein families, including 1,653 singleton families and 6,082 homolog families. OrthoVenn3 comparison of AB-S79 protein sequences with 13 other P. megaterium strains, 7 other Priestia spp., and 6 other Bacillus spp. highlighted AB-S79's unique genomic and evolutionary trait. antiSMASH identified two key transcription factor binding site regulators in AB-S79's genome: zinc-responsive repressor (Zur) and antibiotic production activator (AbrC3), plus putative enzymes for the biosynthesis of terpenes and ranthipeptides. AB-S79 also harbors BGCs for two unique siderophores (synechobactins and schizokinens), phosphonate, dienelactone hydrolase family protein, and phenazine biosynthesis protein (phzF), which is significant for this study. Phosphonate particularly showed specificity for the P. megaterium sp. validating the effect of gene family expansion and contraction. P. megaterium AB-S79 looks to be a viable source for value-added compounds. Thus, this study contributes to the theoretical framework for the systematic metabolic and genetic exploitation of the P. megaterium sp., particularly the value-yielding strains. IMPORTANCE This study explores microbial natural product discovery using genome mining, focusing on Priestia megaterium. Key findings highlight the potential of P. megaterium, particularly strain AB-S79, for biotechnological applications. The research shows a limited output of P. megaterium genome sequences from Africa, emphasizing the importance of the native strain AB-S79. Additionally, the study underlines the strain's diverse metabolic capabilities, reinforcing its suitability as a model for microbial cell factories and its foundational role in future biotechnological exploitation.
Collapse
Affiliation(s)
- Adetomiwa Ayodele Adeniji
- Centre for Epidemic Response & Innovation, School of Data Science & Computational Thinking, Stellenbosch University, Cape Town, South Africa
- Food Security & Safety Focus Area, Faculty of Natural & Agricultural Sciences, North-West University, Mmabatho, South Africa
| | - Chinenyenwa Fortune Chukwuneme
- Department of Natural Sciences, Faculty of Applied & Computer Sciences, Vaal University of Technology, Vanderbijlpark, South Africa
| | - Emilyn Costa Conceição
- SAMRC Centre for Tuberculosis Research, Division of Molecular Biology & Human Genetics, Faculty of Medicine & Health Sciences, Stellenbosch University, Cape Town, South Africa
| | - Ayansina Segun Ayangbenro
- Food Security & Safety Focus Area, Faculty of Natural & Agricultural Sciences, North-West University, Mmabatho, South Africa
| | - Eduan Wilkinson
- Centre for Epidemic Response & Innovation, School of Data Science & Computational Thinking, Stellenbosch University, Cape Town, South Africa
| | - Elizna Maasdorp
- SAMRC Centre for Tuberculosis Research, Division of Immunology, Faculty of Medicine & Health Sciences, Stellenbosch University, Cape Town, South Africa
| | - Tulio de Oliveira
- Centre for Epidemic Response & Innovation, School of Data Science & Computational Thinking, Stellenbosch University, Cape Town, South Africa
| | - Olubukola Oluranti Babalola
- Food Security & Safety Focus Area, Faculty of Natural & Agricultural Sciences, North-West University, Mmabatho, South Africa
- Department of Life Sciences, Faculty of Natural Sciences, Imperial College, Berkshire, United Kingdom
| |
Collapse
|
15
|
Du W, Chen S, Jiang R, Zhou H, Li Y, Ouyang D, Gong Y, Yao Z, Ye X. Inferring Staphylococcus aureus host species and cross-species transmission from a genome-based model. BMC Genomics 2025; 26:149. [PMID: 39962395 PMCID: PMC11834299 DOI: 10.1186/s12864-025-11331-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2024] [Accepted: 02/05/2025] [Indexed: 02/20/2025] Open
Abstract
BACKGROUND Staphylococcus aureus is an important pathogen that can colonize humans and various animals. However, the host-associated determinants of S. aureus remain uncertain, which leads to difficulties in inferring its host species and cross-species transmission. We performed a 3-stage genome-wide association study (discovery, confirming, and validation) to compare genetic variation between pig and human S. aureus, aiming to elucidate the host-specific genetic elements (k-mers). RESULTS After 3-stage association analyses, we found a subset of 20 consensus-significant host-associated k-mers, which are significantly overrepresented in a specific host. Surprisingly for host prediction, both the final model with the top 5 k-mers and the simplest model with only the most important k-mer achieved a high classification accuracy of 98%, giving a simple target for predicting host species and cross-species transmission of S. aureus. The final classifier with the top 5 k-mers revealed that 97.5% of S. aureus isolates from livestock-exposed workers were predicted as pig origin, suggesting a high cross-species transmission risk. The time-based phylogeny inferred the cross-species transmission directions, indicating that ST9 can cross-species spread from animals to humans while ST59 can cross-species spread in the opposite direction. CONCLUSION Our findings provide novel insights into host-associated determinants and an accurate model for inferring S. aureus host species and cross-species transmission.
Collapse
Affiliation(s)
- Wenyin Du
- Laboratory of Molecular Epidemiology, School of Public Health, Guangdong Pharmaceutical University, Guangzhou, Guangdong, China
| | - Sitong Chen
- Laboratory of Molecular Epidemiology, School of Public Health, Guangdong Pharmaceutical University, Guangzhou, Guangdong, China
| | - Rong Jiang
- Laboratory of Molecular Epidemiology, School of Public Health, Guangdong Pharmaceutical University, Guangzhou, Guangdong, China
| | - Huiliu Zhou
- Laboratory of Molecular Epidemiology, School of Public Health, Guangdong Pharmaceutical University, Guangzhou, Guangdong, China
| | - Yuehe Li
- Laboratory of Molecular Epidemiology, School of Public Health, Guangdong Pharmaceutical University, Guangzhou, Guangdong, China
| | - Dejia Ouyang
- Laboratory of Molecular Epidemiology, School of Public Health, Guangdong Pharmaceutical University, Guangzhou, Guangdong, China
| | - Yajie Gong
- Laboratory of Molecular Epidemiology, School of Public Health, Guangdong Pharmaceutical University, Guangzhou, Guangdong, China
| | - Zhenjiang Yao
- Laboratory of Molecular Epidemiology, School of Public Health, Guangdong Pharmaceutical University, Guangzhou, Guangdong, China
| | - Xiaohua Ye
- Laboratory of Molecular Epidemiology, School of Public Health, Guangdong Pharmaceutical University, Guangzhou, Guangdong, China.
| |
Collapse
|
16
|
Breidenstein A, Svedberg D, Ter Beek J, Berntsson RPA. Advances in Protein Structure Prediction Highlight Unexpected Commonalities Between Gram-positive and Gram-negative Conjugative T4SSs. J Mol Biol 2025; 437:168924. [PMID: 39746464 DOI: 10.1016/j.jmb.2024.168924] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2024] [Revised: 12/20/2024] [Accepted: 12/20/2024] [Indexed: 01/04/2025]
Abstract
Despite recent advances in our understanding of the structure and function of conjugative Type 4 Secretion Systems (T4SSs), there is still only very scarce data available for the ones from Gram-positive (G+) bacteria. This is a problem, as conjugative T4SSs are main drivers for the spread of antibiotic resistance genes and virulence factors. Here, we aim to increase our understanding of G+ systems, by using bioinformatic approaches to identify proteins that are conserved in all conjugative T4SS machineries and reviewing the current knowledge available for these components. We then combine this information with the most recent advances in structure prediction technologies to propose a structural model for a G+ T4SS from the model system encoded on pCF10. By doing so, we show that conjugative G+ T4SSs likely have more in common with their Gram-negative counterparts than previously expected, and we highlight the potential of predicted structural models to serve as a starting point for experimental design.
Collapse
Affiliation(s)
- Annika Breidenstein
- Department of Medical Biochemistry and Biophysics, Umeå University, SE-90187 Umeå, Sweden; Wallenberg Centre for Molecular Medicine & Umeå Centre for Microbial Research, Umeå University, Umeå, Sweden
| | - Dennis Svedberg
- Department of Medical Biochemistry and Biophysics, Umeå University, SE-90187 Umeå, Sweden; Wallenberg Centre for Molecular Medicine & Umeå Centre for Microbial Research, Umeå University, Umeå, Sweden
| | - Josy Ter Beek
- Department of Medical Biochemistry and Biophysics, Umeå University, SE-90187 Umeå, Sweden; Wallenberg Centre for Molecular Medicine & Umeå Centre for Microbial Research, Umeå University, Umeå, Sweden.
| | - Ronnie P-A Berntsson
- Department of Medical Biochemistry and Biophysics, Umeå University, SE-90187 Umeå, Sweden; Wallenberg Centre for Molecular Medicine & Umeå Centre for Microbial Research, Umeå University, Umeå, Sweden.
| |
Collapse
|
17
|
Ke F, Liu AK, Zhang QY. Extra peptidase of a cyanophage confers its stronger lytic effect on bloom-forming Microcystis aeruginosa. Int J Biol Macromol 2025; 304:140979. [PMID: 39952513 DOI: 10.1016/j.ijbiomac.2025.140979] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2024] [Revised: 01/11/2025] [Accepted: 02/11/2025] [Indexed: 02/17/2025]
Abstract
Microcystis covers important cyanobacteria species that causes harmful algal blooms. Cyanophages are viruses that infect and lyse cyanobacteria and have been considered as potential cyanobacteria control strategy. Present study isolated two cyanophage strains, MaMV-CH01 (CH01) and MaMV-CH02 (CH02), infecting M. aeruginosa. Growth curves showed that CH01 has a stronger proliferation ability and host cell lysis capability than CH02. Combined with genomic, gene structure and function analysis, as well as biologic testing including infectivity, we confirmed that there is widespread horizontal gene transfer between the cyanophages and cyanobacteria, enabling the cyanophages to carry a series of auxiliary metabolic genes (AMG) related to host's metabolism. Moreover, compared with CH02, the cyanophage CH01 carrying extra AMG, a peptidase encoding gene (82R), exhibited stronger lytic activity against its host. Expression of CH01 82R in vitro showed strong bacteriostatic activity. Further, testing the cyanophage's ability to form plaques showed that the CH01(AMG+), which encodes the aforementioned peptidase, can form larger plaques, with an area of about threefold than that formed by CH02(AMG-). Above results indicated that the cyanophages with specific peptidase possessed stronger algicidal efficiency, which provided a direction for finding efficient cyanophages to regulate the population of bloom-forming cyanobacteria.
Collapse
Affiliation(s)
- Fei Ke
- Institute of Hydrobiology, College of Modern Agriculture Sciences, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Wuhan, China
| | - An-Kun Liu
- Institute of Hydrobiology, College of Modern Agriculture Sciences, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Wuhan, China
| | - Qi-Ya Zhang
- Institute of Hydrobiology, College of Modern Agriculture Sciences, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Wuhan, China.
| |
Collapse
|
18
|
Torrance EL, Diop A, Bobay LM. Homologous recombination shapes the architecture and evolution of bacterial genomes. Nucleic Acids Res 2025; 53:gkae1265. [PMID: 39718992 DOI: 10.1093/nar/gkae1265] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2024] [Revised: 10/16/2024] [Accepted: 12/11/2024] [Indexed: 12/26/2024] Open
Abstract
Homologous recombination is a key evolutionary force that varies considerably across bacterial species. However, how the landscape of homologous recombination varies across genes and within individual genomes has only been studied in a few species. Here, we used Approximate Bayesian Computation to estimate the recombination rate along the genomes of 145 bacterial species. Our results show that homologous recombination varies greatly along bacterial genomes and shapes many aspects of genome architecture and evolution. The genomic landscape of recombination presents several key signatures: rates are highest near the origin of replication in most species, patterns of recombination generally appear symmetrical in both replichores (i.e. replicational halves of circular chromosomes) and most species have genomic hotspots of recombination. Furthermore, many closely related species share conserved landscapes of recombination across orthologs indicating that recombination landscapes are conserved over significant evolutionary distances. We show evidence that recombination drives the evolution of GC-content through increasing the effectiveness of selection and not through biased gene conversion, thereby contributing to an ongoing debate. Finally, we demonstrate that the rate of recombination varies across gene function and that many hotspots of recombination are associated with adaptive and mobile regions often encoding genes involved in pathogenicity.
Collapse
Affiliation(s)
- Ellis L Torrance
- Department of Biology, University of North Carolina Greensboro, Greensboro, NC 27412, USA
- Systems Biology Dept., Sandia National Laboratories, Livermore, CA 9455, USA
| | - Awa Diop
- Dept. of Biological Sciences, North Carolina State University, Raleigh, NC 27695, USA
| | - Louis-Marie Bobay
- Dept. of Biological Sciences, North Carolina State University, Raleigh, NC 27695, USA
| |
Collapse
|
19
|
Blake KS, Xue YP, Gillespie VJ, Fishbein SRS, Tolia NH, Wencewicz TA, Dantas G. The tetracycline resistome is shaped by selection for specific resistance mechanisms by each antibiotic generation. Nat Commun 2025; 16:1452. [PMID: 39920134 PMCID: PMC11806011 DOI: 10.1038/s41467-025-56425-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2024] [Accepted: 01/14/2025] [Indexed: 02/09/2025] Open
Abstract
The history of clinical resistance to tetracycline antibiotics is characterized by cycles whereby the deployment of a new generation of drug molecules is quickly followed by the discovery of a new mechanism of resistance. This suggests mechanism-specific selection by each tetracycline generation; however, the evolutionary dynamics of this remain unclear. Here, we evaluate 24 recombinant Escherichia coli strains expressing tetracycline resistance genes from each mechanism (efflux pumps, ribosomal protection proteins, and enzymatic inactivation) in the context of each tetracycline generation. We employ a high-throughput barcode sequencing protocol that can discriminate between strains in mixed culture and quantify their relative abundances. We find that each mechanism is preferentially selected for by specific antibiotic generations, leading to their expansion. Remarkably, the minimum inhibitory concentration associated with individual genes is secondary to resistance mechanism for inter-mechanism relative fitness, but it does explain intra-mechanism relative fitness. These patterns match the history of clinical deployment of tetracycline drugs and resistance discovery in pathogens.
Collapse
Affiliation(s)
- Kevin S Blake
- The Edison Family Center for Genome Sciences and Systems Biology, Washington University School of Medicine, St. Louis, MO, USA
- Department of Pathology and Immunology, Division of Laboratory and Genomic Medicine, Washington University School of Medicine, St. Louis, MO, USA
| | - Yao-Peng Xue
- The Edison Family Center for Genome Sciences and Systems Biology, Washington University School of Medicine, St. Louis, MO, USA
| | - Vincent J Gillespie
- The Edison Family Center for Genome Sciences and Systems Biology, Washington University School of Medicine, St. Louis, MO, USA
| | - Skye R S Fishbein
- The Edison Family Center for Genome Sciences and Systems Biology, Washington University School of Medicine, St. Louis, MO, USA
- Department of Pathology and Immunology, Division of Laboratory and Genomic Medicine, Washington University School of Medicine, St. Louis, MO, USA
| | - Niraj H Tolia
- Host-Pathogen Interactions and Structural Vaccinology Section, Laboratory of Malaria Immunology and Vaccinology, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, USA.
| | - Timothy A Wencewicz
- Department of Chemistry, Washington University in St. Louis, St. Louis, MO, USA.
| | - Gautam Dantas
- The Edison Family Center for Genome Sciences and Systems Biology, Washington University School of Medicine, St. Louis, MO, USA.
- Department of Pathology and Immunology, Division of Laboratory and Genomic Medicine, Washington University School of Medicine, St. Louis, MO, USA.
- Department of Molecular Microbiology, Washington University School of Medicine, St. Louis, MO, USA.
- Department of Biomedical Engineering, Washington University in St. Louis, St. Louis, MO, USA.
- Department of Pediatrics, Washington University School of Medicine, St. Louis, MO, USA.
| |
Collapse
|
20
|
Lv H, Sun J, Guo Y, Hang G, Wu Q, Sun Z, Zhang H. Isolation of Enterococcus hirae From Fresh White Yak Milk in Ledu District, Qinghai Province, China: A Comparative Genomic Analysis. Curr Microbiol 2025; 82:111. [PMID: 39899041 DOI: 10.1007/s00284-024-04044-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2024] [Accepted: 12/17/2024] [Indexed: 02/04/2025]
Abstract
Yak milk is a widely consumed dairy product rich in lactic acid bacteria. Although Enterococcus hirae (E. hirae) is commonly found in dairy products and other foods, there is limited information available on its genetic makeup in yak milk. In the present study, 10 E. hirae strains isolated and identified from fresh white yak milk samples, along with 442 E. hirae strains obtained from the NCBI database (totaling 452 strains), were subjected to comparative genomic analysis. The findings of this study revealed that E. hirae has an open pan-genomic structure that allows for its high adaptability and environmental plasticity. Notably, E. hirae isolates from fresh white yak milk had smaller genomes, encoded more functional genes, and had fewer copies of genes encoding carbohydrate-active enzymes involved in the degradation of oligosaccharide metabolism and autolysin synthesis (CE1, GH73, GH23, and GT4 families) than those from animal and human isolates (P < 0.05). Additionally, fresh white yak milk isolates carried only three intrinsic bacteriocins and lacked virulence factors, CRISPR-Cas systems, and resistance genes linked to pathogenicity, which may be attributed to their specialization in the milk-derived environment. This study provides new insights into the genetic and functional gene diversity of E. hirae and how it adapts to milk-derived habitats.
Collapse
Affiliation(s)
- Huimin Lv
- Key Laboratory of Dairy Biotechnology and Engineering (IMAU), College of Food Science and Engineering, Ministry of Education, Inner Mongolia Agricultural University, 306 Zhaowuda Road, Inner Mongolia Autonomous Region, Hohhot, People's Republic of China
- Key Laboratory of Dairy Products Processing, Ministry of Agriculture and Rural Affairs, Inner Mongolia Agricultural University, Hohhot, People's Republic of China
- Inner Mongolia Key Laboratory of Dairy Biotechnology and Engineering, Inner Mongolia Agricultural University, Hohhot, People's Republic of China
| | - Jiaqi Sun
- Key Laboratory of Dairy Biotechnology and Engineering (IMAU), College of Food Science and Engineering, Ministry of Education, Inner Mongolia Agricultural University, 306 Zhaowuda Road, Inner Mongolia Autonomous Region, Hohhot, People's Republic of China
- Key Laboratory of Dairy Products Processing, Ministry of Agriculture and Rural Affairs, Inner Mongolia Agricultural University, Hohhot, People's Republic of China
- Inner Mongolia Key Laboratory of Dairy Biotechnology and Engineering, Inner Mongolia Agricultural University, Hohhot, People's Republic of China
| | - Yuanyuan Guo
- Key Laboratory of Dairy Biotechnology and Engineering (IMAU), College of Food Science and Engineering, Ministry of Education, Inner Mongolia Agricultural University, 306 Zhaowuda Road, Inner Mongolia Autonomous Region, Hohhot, People's Republic of China
- Key Laboratory of Dairy Products Processing, Ministry of Agriculture and Rural Affairs, Inner Mongolia Agricultural University, Hohhot, People's Republic of China
- Inner Mongolia Key Laboratory of Dairy Biotechnology and Engineering, Inner Mongolia Agricultural University, Hohhot, People's Republic of China
| | - Guoxuan Hang
- Key Laboratory of Dairy Biotechnology and Engineering (IMAU), College of Food Science and Engineering, Ministry of Education, Inner Mongolia Agricultural University, 306 Zhaowuda Road, Inner Mongolia Autonomous Region, Hohhot, People's Republic of China
- Key Laboratory of Dairy Products Processing, Ministry of Agriculture and Rural Affairs, Inner Mongolia Agricultural University, Hohhot, People's Republic of China
- Inner Mongolia Key Laboratory of Dairy Biotechnology and Engineering, Inner Mongolia Agricultural University, Hohhot, People's Republic of China
| | - Qiong Wu
- Key Laboratory of Dairy Biotechnology and Engineering (IMAU), College of Food Science and Engineering, Ministry of Education, Inner Mongolia Agricultural University, 306 Zhaowuda Road, Inner Mongolia Autonomous Region, Hohhot, People's Republic of China
- Key Laboratory of Dairy Products Processing, Ministry of Agriculture and Rural Affairs, Inner Mongolia Agricultural University, Hohhot, People's Republic of China
- Inner Mongolia Key Laboratory of Dairy Biotechnology and Engineering, Inner Mongolia Agricultural University, Hohhot, People's Republic of China
| | - Zhihong Sun
- Key Laboratory of Dairy Biotechnology and Engineering (IMAU), College of Food Science and Engineering, Ministry of Education, Inner Mongolia Agricultural University, 306 Zhaowuda Road, Inner Mongolia Autonomous Region, Hohhot, People's Republic of China
- Key Laboratory of Dairy Products Processing, Ministry of Agriculture and Rural Affairs, Inner Mongolia Agricultural University, Hohhot, People's Republic of China
- Collaborative Innovative Center for Lactic Acid Bacteria and Fermented Dairy Products, Ministry of Education, Inner Mongolia Agricultural University, Hohhot, People's Republic of China
| | - Heping Zhang
- Key Laboratory of Dairy Biotechnology and Engineering (IMAU), College of Food Science and Engineering, Ministry of Education, Inner Mongolia Agricultural University, 306 Zhaowuda Road, Inner Mongolia Autonomous Region, Hohhot, People's Republic of China.
- Key Laboratory of Dairy Products Processing, Ministry of Agriculture and Rural Affairs, Inner Mongolia Agricultural University, Hohhot, People's Republic of China.
- Collaborative Innovative Center for Lactic Acid Bacteria and Fermented Dairy Products, Ministry of Education, Inner Mongolia Agricultural University, Hohhot, People's Republic of China.
| |
Collapse
|
21
|
Colinet D, Haon M, Drula E, Boyer M, Grisel S, Belliardo C, Koutsovoulos GD, Berrin JG, Danchin EGJ. Functional Carbohydrate-Active Enzymes Acquired by Horizontal Gene Transfer from Plants in the Whitefly Bemisia tabaci. Genome Biol Evol 2025; 17:evaf012. [PMID: 39862048 PMCID: PMC11800479 DOI: 10.1093/gbe/evaf012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2024] [Revised: 01/09/2025] [Accepted: 01/16/2025] [Indexed: 01/27/2025] Open
Abstract
Carbohydrate-active enzymes involved in the degradation of plant cell walls and/or the assimilation of plant carbohydrates for energy uptake are widely distributed in microorganisms. In contrast, they are less frequent in animals, although there are exceptions, including examples of carbohydrate-active enzymes acquired by horizontal gene transfer from bacteria or fungi in several of phytophagous arthropods and plant-parasitic nematodes. Although the whitefly Bemisia tabaci is a major agricultural pest, knowledge of horizontal gene transfer-acquired carbohydrate-active enzymes in this phloem-feeding insect of the Hemiptera order (subfamily Aleyrodinae) is still lacking. We performed a comprehensive and accurate detection of horizontal gene transfer candidates in B. tabaci and identified 136 horizontal gene transfer events, 14 of which corresponding to carbohydrate-active enzymes. The B. tabaci horizontal gene transfer-acquired carbohydrate-active enzymes were not only of bacterial or fungal origin, but some were also acquired from plants. Biochemical analysis revealed that members of the glycoside hydrolase families 17 and 152 acquired from plants are functional beta-glucanases with different substrate specificities, suggesting distinct roles. These two carbohydrate-active enzymes are the first characterized glycoside hydrolase families 17 and 152 glucanases in an animal. We identified a lower number of horizontal gene transfer events in the related Aleyrodinae Trialeurodes vaporariorum, with only three horizontal gene transfer-acquired carbohydrate-active enzymes, including a glycoside hydrolase family 152 glucanase, with phylogenetic analysis suggesting a unique horizontal gene transfer event in the ancestor of the Aleyrodinae. Another glycoside hydrolase family 152 carbohydrate-active enzyme, most likely independently acquired from plants, was also identified in two plant cell-feeding insects of the Thysanoptera order, highlighting the importance of plant-acquired carbohydrate-active enzymes in the biology of piercing-sucking insects.
Collapse
Affiliation(s)
- Dominique Colinet
- Institut Sophia Agrobiotech, INRAE, Université Côte d'Azur, CNRS, Sophia Antipolis, France
| | - Mireille Haon
- INRAE, Aix Marseille Université, BBF, Biodiversité et Biotechnologie Fongiques, Marseille, France
- INRAE, Aix Marseille Université, 3PE Platform, Marseille, France
| | - Elodie Drula
- INRAE, Aix Marseille Université, BBF, Biodiversité et Biotechnologie Fongiques, Marseille, France
- Architecture et Fonction des Macromolécules Biologiques (AFMB), CNRS, Aix Marseille Université, Marseille, France
| | - Mathilde Boyer
- Institut Sophia Agrobiotech, INRAE, Université Côte d'Azur, CNRS, Sophia Antipolis, France
| | - Sacha Grisel
- INRAE, Aix Marseille Université, BBF, Biodiversité et Biotechnologie Fongiques, Marseille, France
- INRAE, Aix Marseille Université, 3PE Platform, Marseille, France
| | - Carole Belliardo
- Institut Sophia Agrobiotech, INRAE, Université Côte d'Azur, CNRS, Sophia Antipolis, France
| | | | - Jean-Guy Berrin
- INRAE, Aix Marseille Université, BBF, Biodiversité et Biotechnologie Fongiques, Marseille, France
- INRAE, Aix Marseille Université, 3PE Platform, Marseille, France
| | - Etienne G J Danchin
- Institut Sophia Agrobiotech, INRAE, Université Côte d'Azur, CNRS, Sophia Antipolis, France
| |
Collapse
|
22
|
Feng YJ, Zhao W, Li YL, Shen YJ, Sun YC, Meng XY, Li J, Wu W, Zhang GX, Liu MY, Wang Y, Zeng QD, Li CL, Han DJ, Zheng WJ. Genome-wide identification of wheat USP gene family and functional dissection of TaUSP85 involved in heat tolerance. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2025; 219:109359. [PMID: 39657425 DOI: 10.1016/j.plaphy.2024.109359] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/01/2024] [Revised: 11/22/2024] [Accepted: 11/27/2024] [Indexed: 12/12/2024]
Abstract
A collection of conserved proteins known as universal stress protein (USP) is present in a wide range of species, including plants, fungi, bacteria, and animals. USPs are named for their ability to respond to a variety of stress conditions, such as heat stroke, osmotic stress, nutrient limitation, and exposure to toxins or antibiotics. While the USP response to different stress conditions in plants has been reported, little is known about the USP family in wheat (Triticum aestivum L.). In wheat, we identified 88 USP genes distributed across 21 chromosomes classified into four subfamilies. Phylogenetic tree and synteny analysis across multiple species revealed a highly conserved evolution of the USP family between monocots and dicots. Based on comparative analysis of protein domains, gene structure and conserved motifs, TaUSPs showed significant differences among the four subfamilies. Furthermore, expression pattern analysis of TaUSPs showed significant differences among various tissues and under different abiotic stress conditions. We further conducted transformation experiments with the TaUSP85 gene, which significantly enhanced yeast thermotolerance. Silencing of TaUSP85 through VIGS experiments in wheat resulted in significant wilting, decreased chlorophyll content, and increased MDA accumulation compared to control plants. The silenced plant lines had much more ROS accumulation than the control group, as determined by the findings of DAB and NBT staining. The interaction proteins TaUSP1 and TaUSP11 of TaUSP85 were screened by yeast two-hybrid and their interaction relationship was further verified by LCI. Overall, our findings enhance the comprehension of the USP gene family in wheat and provide a valuable resource for further investigation of these genes in wheat and related cereal crops.
Collapse
Affiliation(s)
- Yong-Jia Feng
- State Key Laboratory for Crop Stress Resistance and High-Efficiency Production, College of Agronomy, Northwest A&F University, YangLing, 712100, Shaanxi, China
| | - Wen Zhao
- State Key Laboratory for Crop Stress Resistance and High-Efficiency Production, College of Agronomy, Northwest A&F University, YangLing, 712100, Shaanxi, China
| | - Yun-Li Li
- State Key Laboratory for Crop Stress Resistance and High-Efficiency Production, College of Agronomy, Northwest A&F University, YangLing, 712100, Shaanxi, China
| | - You-Jia Shen
- State Key Laboratory for Crop Stress Resistance and High-Efficiency Production, College of Agronomy, Northwest A&F University, YangLing, 712100, Shaanxi, China
| | - Yu-Chen Sun
- State Key Laboratory for Crop Stress Resistance and High-Efficiency Production, College of Agronomy, Northwest A&F University, YangLing, 712100, Shaanxi, China
| | - Xiang-Yu Meng
- State Key Laboratory for Crop Stress Resistance and High-Efficiency Production, College of Agronomy, Northwest A&F University, YangLing, 712100, Shaanxi, China
| | - Jie Li
- State Key Laboratory for Crop Stress Resistance and High-Efficiency Production, College of Agronomy, Northwest A&F University, YangLing, 712100, Shaanxi, China
| | - Wei Wu
- State Key Laboratory for Crop Stress Resistance and High-Efficiency Production, College of Agronomy, Northwest A&F University, YangLing, 712100, Shaanxi, China
| | - Guo-Xin Zhang
- State Key Laboratory for Crop Stress Resistance and High-Efficiency Production, College of Agronomy, Northwest A&F University, YangLing, 712100, Shaanxi, China
| | - Meng-Yuan Liu
- State Key Laboratory for Crop Stress Resistance and High-Efficiency Production, College of Agronomy, Northwest A&F University, YangLing, 712100, Shaanxi, China
| | - Yu Wang
- State Key Laboratory for Crop Stress Resistance and High-Efficiency Production, College of Agronomy, Northwest A&F University, YangLing, 712100, Shaanxi, China
| | - Qing-Dong Zeng
- State Key Laboratory for Crop Stress Resistance and High-Efficiency Production, College of Plant Protection, Northwest A&F University, YangLing, 712100, Shaanxi, China
| | - Chun-Lian Li
- State Key Laboratory for Crop Stress Resistance and High-Efficiency Production, College of Agronomy, Northwest A&F University, YangLing, 712100, Shaanxi, China
| | - De-Jun Han
- State Key Laboratory for Crop Stress Resistance and High-Efficiency Production, College of Agronomy, Northwest A&F University, YangLing, 712100, Shaanxi, China
| | - Wei-Jun Zheng
- State Key Laboratory for Crop Stress Resistance and High-Efficiency Production, College of Agronomy, Northwest A&F University, YangLing, 712100, Shaanxi, China.
| |
Collapse
|
23
|
Sanchez VA, Renner T, Baker LJ, Hendry TA. Genome evolution following an ecological shift in nectar-dwelling Acinetobacter. mSphere 2025; 10:e0101024. [PMID: 39723821 PMCID: PMC11774029 DOI: 10.1128/msphere.01010-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2024] [Accepted: 12/10/2024] [Indexed: 12/28/2024] Open
Abstract
The bacterial genus Acinetobacter includes species found in environmental habitats like soil and water, as well as taxa adapted to be host-associated or pathogenic. High genetic diversity may allow for this habitat flexibility, but the specific genes underlying switches between habitats are poorly understood. One lineage of Acinetobacter has undergone a substantial habitat change by evolving from a presumed soil-dwelling ancestral state to thrive in floral nectar. Here, we compared the genomes of floral-dwelling and pollinator-associated Acinetobacter, including newly described species, with genomes from relatives found in other environments to determine the genomic changes associated with this ecological shift. Following one evolutionary origin of floral nectar adaptation, nectar-dwelling Acinetobacter taxa have undergone reduction in genome size compared with relatives and have experienced dynamic gene gains and losses as they diversified. Gene content changes suggest a shift to metabolism of monosaccharides rather than diverse carbohydrates, and scavenging of nitrogen sources, which we predict to be beneficial in nectar environments. Gene gains appear to result from duplication events, evolutionary divergence, and horizontal gene transfer. Most notably, nectar-dwelling Acinetobacter acquired the ability to degrade pectin from plant pathogens, and the genes underlying this ability have duplicated and are under selection within the clade. We hypothesize that this ability was a key trait for adaptation to floral nectar, as it could improve access to nutrients in the nutritionally unbalanced habitat of nectar. These results identify the genomic changes and traits coinciding with a dramatic habitat switch from soil to floral nectar. IMPORTANCE Many bacteria, including the genus Acinetobacter, commonly evolve to exploit new habitats. However, the genetic changes that underlie habitat switches are often unknown. Floral nectar is home to specialized microbes that can grow in this nutritionally unbalanced habitat. Several specialized Acinetobacter species evolved from soil-dwelling relatives to become common and abundant in floral nectar. Here, we investigate the genomic adaptations required to successfully colonize a novel habitat like floral nectar. We performed comparative genomics analyses between nectar-dwelling Acinetobacter and Acinetobacter species from other environments, like soil and water. We find that although gene loss coincided with the switch to living in nectar, gains of specific genes from other bacteria may have been particularly important for this ecological change. Acinetobacter living in nectar gained genes for degrading pectin, a plant polysaccharide, which may improve access to nutrients in their environment. These findings shed light on how evolutionary novelty evolves in bacteria.
Collapse
Affiliation(s)
| | - Tanya Renner
- Department of Entomology, The Pennsylvania State University, University Park, Pennsylvania, USA
| | - Lydia J. Baker
- Department of Microbiology, Cornell University, Ithaca, New York, USA
| | - Tory A. Hendry
- Department of Microbiology, Cornell University, Ithaca, New York, USA
| |
Collapse
|
24
|
Wang D, Zhou X, Fu Q, Li Y, Ni BJ, Liu X. Understanding bacterial ecology to combat antibiotic resistance dissemination. Trends Biotechnol 2025:S0167-7799(24)00394-9. [PMID: 39855970 DOI: 10.1016/j.tibtech.2024.12.011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2024] [Revised: 11/29/2024] [Accepted: 12/27/2024] [Indexed: 01/27/2025]
Abstract
The dissemination of antibiotic resistance from environmental sources is a growing concern. Despite the widespread occurrence of antibiotic resistance transmission events, there are actually multiple obstacles in the ecosystem that restrict the flow of bacteria and genes, in particular nonnegligible biological barriers. How these ecological factors help combat the dissemination of antibiotic resistance and relevant antibiotic resistance-diminishing organisms (ARDOs) deserves further exploration. This review summarizes the factors that influence the growth, metabolism, and environmental adaptation of antibiotic-resistant bacteria (ARB) and restrict the horizontal gene transfer (HGT) of antibiotic resistance genes (ARGs). Additionally, this review discusses the achievements in the application of ARDOs to improve biotechnology for wastewater and solid waste remediation while highlighting current challenges limiting their broader implementation.
Collapse
Affiliation(s)
- Dongbo Wang
- College of Environmental Science and Engineering and Key Laboratory of Environmental Biology and Pollution Control (Ministry of Education), Hunan University, Changsha 410082, PR China
| | - Xiangming Zhou
- College of Environmental Science and Engineering and Key Laboratory of Environmental Biology and Pollution Control (Ministry of Education), Hunan University, Changsha 410082, PR China
| | - Qizi Fu
- College of Environmental Science and Engineering and Key Laboratory of Environmental Biology and Pollution Control (Ministry of Education), Hunan University, Changsha 410082, PR China.
| | - Yingbin Li
- College of Environmental Science and Engineering and Key Laboratory of Environmental Biology and Pollution Control (Ministry of Education), Hunan University, Changsha 410082, PR China
| | - Bing-Jie Ni
- School of Civil and Environmental Engineering, University of New South Wales, Sydney, New South Wales 2052, Australia
| | - Xuran Liu
- School of Civil and Environmental Engineering, University of New South Wales, Sydney, New South Wales 2052, Australia.
| |
Collapse
|
25
|
Calderón-Osorno M, Rojas-Villalta D, Lejzerowicz F, Cortés J, Arias-Andres M, Rojas-Jimenez K. The influence of depth on the global deep-sea plasmidome. Sci Rep 2025; 15:2959. [PMID: 39849009 PMCID: PMC11757743 DOI: 10.1038/s41598-025-86098-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2024] [Accepted: 01/08/2025] [Indexed: 01/25/2025] Open
Abstract
Plasmids play a crucial role in facilitating genetic exchange and enhancing the adaptability of microbial communities. Despite their importance, environmental plasmids remain understudied, particularly those in fragile and underexplored ecosystems such as the deep-sea. In this paper we implemented a bioinformatics pipeline to study the composition, diversity, and functional attributes of plasmid communities (plasmidome) in 81 deep-sea metagenomes from the Tara and Malaspina expeditions, sampled from the Pacific, Atlantic, and Indian Oceans at depths ranging from 270 to 4005 m. We observed an association between depth and plasmid traits, with the 270-1000 m range (mesopelagic samples) exhibiting the highest number of plasmids and the largest plasmid sizes. Plasmids of Alphaproteobacteria and Gammaproteobacteria were predominant across the oceans, particularly in this depth range, which also showed the highest species diversity and abundance of metabolic pathways, including aromatic compound degradation. Surprisingly, relatively few antibiotic resistance genes were found in the deep-sea ecosystem, with most being found in the mesopelagic layer. These included classes such as beta-lactamase, biocide resistance, and aminoglycosides. Our study also identified the MOBP and MOBQ relaxase families as prevalent across various taxonomic classes. This research underscores the importance of studying the plasmidome independently from the chromosomal context. Our limited understanding of the deep-sea's microbial ecology, especially its plasmidome, necessitates caution in human activities like mining. Such activities could have unforeseen impacts on this largely unexplored ecosystem.
Collapse
Affiliation(s)
- Melany Calderón-Osorno
- Costa Rica National High Technology Center (CeNAT), Pavas, San José, 10108, Costa Rica.
- Maestría académica en Biología con enfásis en genética y biología molecular, University of Costa Rica, San Pedro, San José, 11501-20260, Costa Rica.
| | - Dorian Rojas-Villalta
- Costa Rica National High Technology Center (CeNAT), Pavas, San José, 10108, Costa Rica
| | - Franck Lejzerowicz
- Section for Aquatic Biology and Toxicology, University of Oslo, Blindernveien 31, 0371, Oslo, Norway
| | - Jorge Cortés
- Centro de Investigación en Ciencias del Mar y Limnología (CIMAR), University of Costa Rica, San Pedro, San José, 11501-20260, Costa Rica
- Biology School, University of Costa Rica, San Pedro, San José, 11501-20260, Costa Rica
| | - Maria Arias-Andres
- Central American Institute for Studies on Toxic Substances, Universidad Nacional, Campus Omar Dengo, Heredia, 86-3000, Costa Rica
| | - Keilor Rojas-Jimenez
- Biology School, University of Costa Rica, San Pedro, San José, 11501-20260, Costa Rica.
| |
Collapse
|
26
|
Seddon C, David S, Wong JLC, Ishimoto N, He S, Bradshaw J, Low WW, Frankel G, Beis K. Cryo-EM structure and evolutionary history of the conjugation surface exclusion protein TraT. Nat Commun 2025; 16:659. [PMID: 39809778 PMCID: PMC11733297 DOI: 10.1038/s41467-025-55834-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2024] [Accepted: 12/23/2024] [Indexed: 01/16/2025] Open
Abstract
Conjugation plays a major role in dissemination of antimicrobial resistance genes. Following transfer of IncF-like plasmids, recipients become refractory to a second wave of conjugation with the same plasmid via entry (TraS) and surface (TraT) exclusion mechanisms. Here, we show that TraT from the pKpQIL and F plasmids (TraTpKpQIL and TraTF) exhibits plasmid surface exclusion specificity. The cryo-EM structures of TraTpKpQIL and TraTF reveal that they oligomerise into decameric champagne bottle cork-like structures, which are anchored to the outer membrane via a diacylglycerol and palmitic acid modified α-helical barrel domain. Unexpectedly, we identify chromosomal TraT homologues from multiple Gram-negative phyla which form numerous divergent lineages in a phylogenetic tree of TraT sequences. Plasmid-associated TraT sequences are found in multiple distinct lineages, including two separate clades incorporating TraT from Enterobacteriaceae IncF/F-like and Legionellaceae F-like plasmids. These findings suggest that different plasmid backbones have acquired and co-opted TraT on independent occasions.
Collapse
Affiliation(s)
- Chloe Seddon
- Department of Life Sciences, Imperial College London, London, SW7 2AZ, UK
- Rutherford Appleton Laboratory, Research Complex at Harwell, Didcot, Oxfordshire, OX11 0FA, UK
| | - Sophia David
- Centre for Genomic Pathogen Surveillance, Pandemic Sciences Institute, University of Oxford, Oxford, OX3 7DQ, UK
| | - Joshua L C Wong
- Department of Life Sciences, Imperial College London, London, SW7 2AZ, UK
| | - Naito Ishimoto
- Department of Life Sciences, Imperial College London, London, SW7 2AZ, UK
- Rutherford Appleton Laboratory, Research Complex at Harwell, Didcot, Oxfordshire, OX11 0FA, UK
| | - Shan He
- Department of Life Sciences, Imperial College London, London, SW7 2AZ, UK
| | - Jonathan Bradshaw
- Department of Life Sciences, Imperial College London, London, SW7 2AZ, UK
| | - Wen Wen Low
- Department of Life Sciences, Imperial College London, London, SW7 2AZ, UK
- Department of Biochemistry, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
| | - Gad Frankel
- Department of Life Sciences, Imperial College London, London, SW7 2AZ, UK.
| | - Konstantinos Beis
- Department of Life Sciences, Imperial College London, London, SW7 2AZ, UK.
- Rutherford Appleton Laboratory, Research Complex at Harwell, Didcot, Oxfordshire, OX11 0FA, UK.
| |
Collapse
|
27
|
Wang C, Zhao R, Yang W, Jiang W, Tang H, Du S, Chen X. Cell-to-Cell Natural Transformation Mediated Efficient Plasmid Transfer Between Bacillus Species. Int J Mol Sci 2025; 26:621. [PMID: 39859334 PMCID: PMC11765539 DOI: 10.3390/ijms26020621] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2024] [Revised: 01/09/2025] [Accepted: 01/11/2025] [Indexed: 01/27/2025] Open
Abstract
Horizontal gene transfer (HGT) plays a pivotal role in bacterial evolution, shaping the genetic diversity of bacterial populations. It can occur through mechanisms such as conjugation, transduction, and natural transformation. Bacillus subtilis, a model Gram-positive bacterium, serves not only as a robust system for studying HGT but also as a versatile organism with established industrial applications, such as producing industrial enzymes, antibiotics, and essential metabolites. In this study, we characterize a novel method of plasmid transfer, termed Cell-to-Cell Natural Transformation for Plasmid Transfer (CTCNT-P), which efficiently facilitates plasmid transfer between naturally competent B. subtilis strains. This method involves co-culturing donor and recipient cells under antibiotic stress and achieves significantly higher efficiency compared to traditional methods such as Spizizen medium or electroporation-mediated transformation. Importantly, we demonstrate that CTCNT-P is applicable for plasmid transformation in wild B. subtilis isolates from natural environments and other Bacillus species, including Bacillus amyloliquefaciens, Bacillus licheniformis, and Bacillus thuringiensis. The simplicity and efficiency of CTCNT-P highlight its strong potential for industrial applications, including genetic modification of wild Bacillus strains for synthetic biology and the development of biocontrol agents.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Xiangdong Chen
- State Key Laboratory of Virology, College of Life Sciences, Wuhan University, Wuhan 430072, China; (C.W.)
| |
Collapse
|
28
|
González Ojeda I, Palace SG, Martinez PP, Azarian T, Grant LR, Hammitt LL, Hanage WP, Lipsitch M. Linkage-based ortholog refinement in bacterial pangenomes with CLARC. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2025:2024.12.18.629228. [PMID: 39763808 PMCID: PMC11702680 DOI: 10.1101/2024.12.18.629228] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Indexed: 01/18/2025]
Abstract
Bacterial genomes exhibit significant variation in gene content and sequence identity. Pangenome analyses explore this diversity by classifying genes into core and accessory clusters of orthologous groups (COGs). However, strict sequence identity cutoffs can misclassify divergent alleles as different genes, inflating accessory gene counts. CLARC (Connected Linkage and Alignment Redefinition of COGs) [https://github.com/IndraGonz/CLARC] improves pangenome analyses by condensing accessory COGs using functional annotation and linkage information. Through this approach, orthologous groups are consolidated into more practical units of selection. Analyzing 8,000+ Streptococcus pneumoniae genomes, CLARC reduced accessory gene estimates by more than 30% and improved evolutionary predictions based on accessory gene frequencies. By refining COG definitions, CLARC offers critical insights into bacterial evolution, aiding genetic studies across diverse populations.
Collapse
Affiliation(s)
- Indra González Ojeda
- Center for Communicable Disease Dynamics, Department of Epidemiology, T.H. Chan School of Public Health, Harvard University, Boston, Massachusetts, USA
- Harvard Biophysics Graduate Program, Graduate School of Arts and Sciences, Harvard University, Boston, Massachusetts, USA
| | - Samantha G Palace
- Center for Communicable Disease Dynamics, Department of Epidemiology, T.H. Chan School of Public Health, Harvard University, Boston, Massachusetts, USA
- Department of Immunology and Infectious Diseases, T.H. Chan School of Public Health, Harvard University, Boston, Massachusetts, USA
| | - Pamela P Martinez
- Department of Microbiology, University of Illinois Urbana-Champaign, Champaign, Illinois, USA
| | - Taj Azarian
- Burnett School of Biomedical Sciences, University of Central Florida, Orlando, Florida, USA
| | - Lindsay R Grant
- Department of International Health, Johns Hopkins Bloomberg School of Public Health, Baltimore, Maryland, USA
| | - Laura L Hammitt
- Department of International Health, Johns Hopkins Bloomberg School of Public Health, Baltimore, Maryland, USA
| | - William P Hanage
- Center for Communicable Disease Dynamics, Department of Epidemiology, T.H. Chan School of Public Health, Harvard University, Boston, Massachusetts, USA
| | - Marc Lipsitch
- Center for Communicable Disease Dynamics, Department of Epidemiology, T.H. Chan School of Public Health, Harvard University, Boston, Massachusetts, USA
- Department of Immunology and Infectious Diseases, T.H. Chan School of Public Health, Harvard University, Boston, Massachusetts, USA
| |
Collapse
|
29
|
Yao Z, Xie T, Deng H, Xiao S, Yang T. Directed Evolution of Microbial Communities in Fermented Foods: Strategies, Mechanisms, and Challenges. Foods 2025; 14:216. [PMID: 39856881 PMCID: PMC11764801 DOI: 10.3390/foods14020216] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2024] [Revised: 12/21/2024] [Accepted: 01/10/2025] [Indexed: 01/27/2025] Open
Abstract
Directed Evolution of Microbial Communities (DEMC) offers a promising approach to enhance the functional attributes of microbial consortia in fermented foods by mimicking natural selection processes. This review details the application of DEMC in fermented foods, focusing on optimizing community traits to improve both fermentation efficiency and the sensory quality of the final products. We outline the core techniques used in DEMC, including the strategic construction of initial microbial communities, the systematic introduction of stress factors to induce desirable traits, and the use of artificial selection to cultivate superior communities. Additionally, we explore the integration of genomic tools and dynamic community analysis to understand and guide the evolutionary trajectories of these communities. While DEMC shows substantial potential for refining fermented food products, it faces challenges such as maintaining genetic diversity and functional stability of the communities. Looking ahead, the integration of advanced omics technologies and computational modeling is anticipated to significantly enhance the predictability and control of microbial community evolution in food fermentation processes. By systematically improving the selection and management of microbial traits, DEMC serves as a crucial tool for enhancing the quality and consistency of fermented foods, directly contributing to more robust and efficient food production systems.
Collapse
Affiliation(s)
| | | | | | | | - Tao Yang
- College of Food Science and Engineering, Central South University of Forestry and Technology, Changsha 410004, China
| |
Collapse
|
30
|
Liu Y, Gong C, Hu Y, Han H, Tian T, Luo Y, Yang X, Xie W, Wu Q, Wang S, Guo Z, Zhang Y. Silencing of the plant-derived horizontally transferred gene BtSC5DL effectively controls Bemisia tabaci MED. PEST MANAGEMENT SCIENCE 2025. [PMID: 39797530 DOI: 10.1002/ps.8638] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/12/2024] [Revised: 12/18/2024] [Accepted: 12/20/2024] [Indexed: 01/13/2025]
Abstract
BACKGROUND The whitefly Bemisia tabaci is a notorious agricultural pest known for its ability to cause significant crop damage through direct feeding and virus transmission. Its remarkable adaptability and reproductive capacity are linked to its ability to acquire and integrate horizontally transferred genes (HTGs) into its genome. These HTGs increase the physiological and metabolic capacities of this pest, including cholesterol synthesis, which is critical for its survival and reproductive success. Among these genes, we identified a plant-derived B. tabaci Δ7-sterol C5-desaturase-like gene (BtSC5DL), which plays a pivotal role in B. tabaci cholesterol metabolism and reproductive biology. RESULTS In this study, we cloned and identified the BtSC5DL gene from B. tabaci Mediterranean (MED). Bioinformatics and molecular analyses revealed that BtSC5DL was transferred from plants to B. tabaci millions of years ago and is now stably expressed in this species. Silencing BtSC5DL through dsRNA feeding resulted in significant reductions in egg production and cholesterol content in B. tabaci MED. Furthermore, virus-induced gene silencing (VIGS) experiments confirmed that long-term suppression of BtSC5DL had a notable ability to control whitefly populations. CONCLUSION Our results demonstrate the crucial role of BtSC5DL in cholesterol biosynthesis in B. tabaci MED and suggest that the acquisition of this gene significantly enhances the reproductive capacity of this species. These findings provide a theoretical basis for the development of RNA interference (RNAi)-based pest control strategies targeting BtSC5DL, offering a potential new approach for the effective management of whitefly populations in agricultural settings. © 2025 Society of Chemical Industry.
Collapse
Affiliation(s)
- Yifan Liu
- College of Plant Protection, Hunan Agricultural University, Changsha, China
- State Key Laboratory of Vegetable Biobreeding, Department of Plant Protection, Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Cheng Gong
- State Key Laboratory of Vegetable Biobreeding, Department of Plant Protection, Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing, China
- College of Plant Protection, Yangzhou University, Yangzhou, China
| | - Yuan Hu
- State Key Laboratory of Vegetable Biobreeding, Department of Plant Protection, Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Haolin Han
- State Key Laboratory of Vegetable Biobreeding, Department of Plant Protection, Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Tian Tian
- State Key Laboratory of Vegetable Biobreeding, Department of Plant Protection, Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Yili Luo
- State Key Laboratory of Vegetable Biobreeding, Department of Plant Protection, Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Xin Yang
- State Key Laboratory of Vegetable Biobreeding, Department of Plant Protection, Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Wen Xie
- State Key Laboratory of Vegetable Biobreeding, Department of Plant Protection, Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Qingjun Wu
- State Key Laboratory of Vegetable Biobreeding, Department of Plant Protection, Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Shaoli Wang
- State Key Laboratory of Vegetable Biobreeding, Department of Plant Protection, Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Zhaojiang Guo
- State Key Laboratory of Vegetable Biobreeding, Department of Plant Protection, Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Youjun Zhang
- College of Plant Protection, Hunan Agricultural University, Changsha, China
- State Key Laboratory of Vegetable Biobreeding, Department of Plant Protection, Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing, China
| |
Collapse
|
31
|
Passarelli-Araujo H, Venancio TM, Hanage WP. Relating ecological diversity to genetic discontinuity across bacterial species. Genome Biol 2025; 26:8. [PMID: 39794865 PMCID: PMC11720962 DOI: 10.1186/s13059-024-03443-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2024] [Accepted: 11/21/2024] [Indexed: 01/13/2025] Open
Abstract
BACKGROUND Genetic discontinuity represents abrupt breaks in genomic identity among species. Advances in genome sequencing have enhanced our ability to track and characterize genetic discontinuity in bacterial populations. However, exploring the degree to which bacterial diversity exists as a continuum or sorted into discrete and readily defined species remains a challenge in microbial ecology. Here, we aim to quantify the genetic discontinuity ( δ ) and investigate how this metric is related to ecology. RESULTS We harness a dataset comprising 210,129 genomes to systematically explore genetic discontinuity patterns across several distantly related species, finding clear breakpoints which vary depending on the taxa in question. By delving into pangenome characteristics, we uncover a significant association between pangenome saturation and genetic discontinuity. Closed pangenomes are associated with more pronounced breaks, exemplified by Mycobacterium tuberculosis. Additionally, through a machine learning approach, we detect key features such as gene conservation patterns and functional annotations that significantly impact genetic discontinuity prediction. CONCLUSIONS Our study clarifies bacterial genetic patterns and their ecological impacts, enhancing the delineation of species boundaries and deepening our understanding of microbial diversity.
Collapse
Affiliation(s)
- Hemanoel Passarelli-Araujo
- Center for Communicable Disease Dynamics, Department of Epidemiology, Harvard TH Chan School of Public Health, Boston, MA, USA.
- Departamento de Bioquímica E Imunologia, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Belo Horizonte, MG, Brazil.
| | - Thiago M Venancio
- Laboratório de Química e Função de Proteínas e Peptídeos, Centro de Biociências e Biotecnologia, Universidade Estadual do Norte Fluminense Darcy Ribeiro, Campos Dos Goytacazes, RJ, Brazil.
| | - William P Hanage
- Center for Communicable Disease Dynamics, Department of Epidemiology, Harvard TH Chan School of Public Health, Boston, MA, USA
| |
Collapse
|
32
|
Tang Y, Yang C, Zhao J, Heng H, Peng M, Sun L, Dai L, Chan EWC, Chen S. LTX-315 is a novel broad-spectrum antimicrobial peptide against clinical multidrug-resistant bacteria. J Adv Res 2025:S2090-1232(24)00621-0. [PMID: 39793961 DOI: 10.1016/j.jare.2024.12.044] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2024] [Revised: 12/17/2024] [Accepted: 12/28/2024] [Indexed: 01/13/2025] Open
Abstract
INTRODUCTION Infections stemming from multidrug-resistant bacteria present a substantial threat to public health today. Discovering or synthesizing novel compounds is crucial to alleviate this pressing situation. OBJECTIVE The main purpose of this study is to verify the antibacterial activity of LTX-315 and explore its primary action mode. METHODS Through antibacterial phenotype assay screening, we obtained a potent compound named LTX-315 from diverse drug libraries, 10,926 compounds in total. Then, the bactericidal effect and its action mode were explored through biochemical and chemistry methods such as atime-killing curve, scanning electronic microscopy, isothermal titration calorimetry analysis, and nuclear magnetic resonance. Finally, the efficacy in vivo of LTX-315 against drug-resistant bacteria was proved through amice infection model. RESULTS In this study, LTX-315, an oncolytic peptide, was discovered to effectively eliminate gram-positive and gram-negative pathogens, even for those multidrug-resistant strains. Through strong electrostatic interactions, LTX-315 can bind to the membrane component phosphatidylglycerol (PG) with extremely high affinity (nanomolar level). Strikingly, in contrast to the typical electrostatic interactions of antibacterial peptides, the indole group of LTX-315, situated near the alkyl chain, exhibits significantly enhanced recognition and interaction with PG due to the hydrophobic effect of the alkyl chain. Furthermore, it exerts various impacts on cell membranes, including damaging integrity, increasing permeability, and decreasing membrane fluidity. Additionally, microscopy revealed significant cell disintegration. The influence, in turn, disrupts several physiological activities inside cells, such as increasing the reactive oxygen species level, ultimately leading to cell death. Finally, the efficacy of LTX-315 in vivo against multidrug-resistant and hypervirulent Klebsiella pneumoniae was demonstrated. CONCLUSION The unique mechanism of LTX-315 involves high-affinity binding to PG and subsequent membrane disruption, providing a novel approach against multidrug-resistant bacteria compared to conventional antibiotics. As a potential candidate, it shows promise in effectively treating bacterial infections, particularly those caused by drug-resistant bacteria, thereby addressing the escalating challenge of antibiotic resistance worldwide.
Collapse
Affiliation(s)
- Yang Tang
- Department of Infectious Diseases and Public Health, Jockey Club College of Veterinary Medicine and Life Sciences, City University of Hong Kong, Kowloon, Hong Kong; State Key Laboratory of Chemical Biology and Drug Discovery and the Department of Food Science and Nutrition, The Hong Kong Polytechnic University, Hung Hom, Kowloon, Hong Kong
| | - Chen Yang
- Department of Infectious Diseases and Public Health, Jockey Club College of Veterinary Medicine and Life Sciences, City University of Hong Kong, Kowloon, Hong Kong; State Key Laboratory of Chemical Biology and Drug Discovery and the Department of Food Science and Nutrition, The Hong Kong Polytechnic University, Hung Hom, Kowloon, Hong Kong
| | - Jiamin Zhao
- State Key Laboratory of Chemical Biology and Drug Discovery and the Department of Food Science and Nutrition, The Hong Kong Polytechnic University, Hung Hom, Kowloon, Hong Kong
| | - Heng Heng
- Department of Infectious Diseases and Public Health, Jockey Club College of Veterinary Medicine and Life Sciences, City University of Hong Kong, Kowloon, Hong Kong; State Key Laboratory of Chemical Biology and Drug Discovery and the Department of Food Science and Nutrition, The Hong Kong Polytechnic University, Hung Hom, Kowloon, Hong Kong
| | - Mingxiu Peng
- Shenzhen Key Laboratory for Food Biological Safety Control, Food Safety and Technology Research Centre, The Hong Kong PolyU Shenzhen Research Institute, Shenzhen, PR China
| | - Liang Sun
- City University of Hong Kong, Shenzhen Research Institute, Nanshan, PR China
| | - Liang Dai
- Department of Physics, City University of Hong Kong, Kowloon, Hong Kong
| | - Edward Wai-Chi Chan
- State Key Laboratory of Chemical Biology and Drug Discovery and the Department of Food Science and Nutrition, The Hong Kong Polytechnic University, Hung Hom, Kowloon, Hong Kong
| | - Sheng Chen
- State Key Laboratory of Chemical Biology and Drug Discovery and the Department of Food Science and Nutrition, The Hong Kong Polytechnic University, Hung Hom, Kowloon, Hong Kong; Shenzhen Key Laboratory for Food Biological Safety Control, Food Safety and Technology Research Centre, The Hong Kong PolyU Shenzhen Research Institute, Shenzhen, PR China.
| |
Collapse
|
33
|
Liu F, Wang SH, Cheewangkoon R, Zhao RL. Uneven distribution of prokaryote-derived horizontal gene transfer in fungi: a lifestyle-dependent phenomenon. mBio 2025; 16:e0285524. [PMID: 39611838 PMCID: PMC11708051 DOI: 10.1128/mbio.02855-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2024] [Accepted: 11/08/2024] [Indexed: 11/30/2024] Open
Abstract
Horizontal gene transfer (HGT) in fungi is less understood despite its significance in prokaryotes. In this study, we systematically searched for HGT events in 829 representative fungal genomes. Using a combination of sequence similarity and phylogeny-based approaches, we detected 20,093 prokaryotic-derived transferred genes across 750 fungal genomes, via 8,815 distinct HGT events. Notably, our analysis revealed that eight lifestyle-related traits significantly influence HGT diversity in fungi. For instance, parasites exhibited the highest estimated number of HGT-acquired genes, followed by saprotrophs, with symbionts showing the lowest. HGT-acquired genes were predominantly associated with metabolism and cellular functions and underwent purifying selection. Moreover, horizontally transferred genes with introns have significantly higher expression levels compared to intron-lacking genes, suggesting a probable role of intron gains in the adaptation of HGT-acquired genes. Overall, our findings highlight the influence of lifestyle on HGT diversity in fungi and underscore the substantial contribution of HGT to fungal adaptation. IMPORTANCE This study sheds new light on the role of horizontal gene transfer (HGT) in fungi, an area that has remained relatively unexplored compared to its well-established prevalence in bacteria. By analyzing 829 fungal genomes, we identified over 20,000 genes that fungi acquired from prokaryotes, revealing the significant impact of HGT on fungal evolution. Our findings highlight that fungal lifestyle traits, such as being parasitic or saprotrophic, play a key role in determining the extent of HGT, with parasites showing the highest gene acquisition rates. We also uncovered unique patterns of HGT occurrence based on fungal morphology and reproduction. Importantly, genes with introns, which are more highly expressed, appear to play a crucial role in fungal adaptation. This research deepens our understanding of how HGT contributes to the metabolic diversity and ecological success of fungi, and it underscores the broader significance of gene transfer in shaping fungal evolution.
Collapse
Affiliation(s)
- Fei Liu
- State Key Laboratory of Mycology, Institute of Microbiology, Chinese Academy of Sciences, Beijing, China
- Department of Entomology and Plant Pathology, Faculty of Agriculture, Chiang Mai University, Chiang Mai, Thailand
| | - Shi-Hui Wang
- State Key Laboratory of Mycology, Institute of Microbiology, Chinese Academy of Sciences, Beijing, China
- Department of Biology, Faculty of Science, Chiang Mai University, Chiang Mai, Thailand
| | - Ratchadawan Cheewangkoon
- Department of Entomology and Plant Pathology, Faculty of Agriculture, Chiang Mai University, Chiang Mai, Thailand
| | - Rui-Lin Zhao
- State Key Laboratory of Mycology, Institute of Microbiology, Chinese Academy of Sciences, Beijing, China
- College of Life Science, University of Chinese Academy of Sciences, Beijing, China
| |
Collapse
|
34
|
Grandel NE, Alexander AM, Peng X, Palamountain C, Alnahhas RN, Hirning AJ, Josić K, Bennett MR. Long-term homeostasis in microbial consortia via auxotrophic cross-feeding. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2025:2025.01.08.631749. [PMID: 39829869 PMCID: PMC11741367 DOI: 10.1101/2025.01.08.631749] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/22/2025]
Abstract
Synthetic microbial consortia are collections of multiple strains or species of engineered organisms living in a shared ecosystem. Because they can separate metabolic tasks among different strains, synthetic microbial consortia have myriad applications in developing biomaterials, biomanufacturing, and biotherapeutics. However, synthetic consortia often require burdensome control mechanisms to ensure that the members of the community remain at the correct proportions. This is especially true in continuous culture systems in which slight differences in growth rates can lead to extinctions. Here, we present a simple method for controlling consortia proportions using cross-feeding in continuous auxotrophic co-culture. We use mutually auxotrophic E. coli with different essential gene deletions and regulate the growth rates of members of the consortium via cross-feeding of the missing nutrients in each strain. We demonstrate precise regulation of the co-culture steady-state ratio by exogenous addition of the missing nutrients. We also model the co-culture's behavior using a system of ordinary differential equations that enable us to predict its response to changes in nutrient concentrations. Our work provides a powerful tool for consortia proportion control with minimal metabolic costs to the constituent strains.
Collapse
|
35
|
Ferreira C, Burgsdorf I, Perez T, Ramírez G, Lalzar M, Huchon D, Steindler L. Comparative genomics analyses of Actinobacteriota identify Golgi phosphoprotein 3 (GPP34) as a widespread ancient protein family associated with sponge symbiosis. MICROBIOME 2025; 13:4. [PMID: 39762949 PMCID: PMC11706023 DOI: 10.1186/s40168-024-01963-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/18/2024] [Accepted: 11/01/2024] [Indexed: 01/11/2025]
Abstract
BACKGROUND Sponges harbor microbial communities that play crucial roles in host health and ecology. However, the genetic adaptations that enable these symbiotic microorganisms to thrive within the sponge environment are still being elucidated. To understand these genetic adaptations, we conducted a comparative genomics analysis on 350 genomes of Actinobacteriota, a phylum commonly associated with sponges. RESULTS Our analysis uncovered several differences between symbiotic and free-living bacteria, including an increased abundance of genes encoding prokaryotic defense systems (PDSs) and eukaryotic-like proteins (ELPs) in symbionts. Furthermore, we identified GPP34 as a novel symbiosis-related gene family, found in two symbiotic Actinobacteriota clades, but not in their closely related free-living relatives. Analyses of a broader set of microbes showed that members of the GPP34 family are also found in sponge symbionts across 16 additional bacterial phyla. While GPP34 proteins were thought to be restricted to eukaryotes, our phylogenetic analysis shows that the GPP34 domain is found in all three domains of life, suggesting its ancient origin. We also show that the GPP34 family includes genes with two main structures: a short form that includes only the GPP34 domain and a long form that encompasses a GPP34 domain coupled with a cytochrome P450 domain, which is exclusive to sponge symbiotic bacteria. CONCLUSIONS Given previous studies showing that GPP34 is a phosphatidylinositol-4-phosphate (PI4P)-binding protein in eukaryotes and that other PI4P-binding proteins from bacterial pathogens can interfere with phagolysosome maturation, we propose that symbionts employ GPP34 to modulate phagocytosis to colonize and persist within sponge hosts. Video Abstract.
Collapse
Affiliation(s)
- Cláudia Ferreira
- Department of Marine Biology, Leon H. Charney School of Marine Sciences, University of Haifa, Haifa, Israel
| | - Ilia Burgsdorf
- Department of Marine Biology, Leon H. Charney School of Marine Sciences, University of Haifa, Haifa, Israel
| | - Tzipora Perez
- Department of Marine Biology, Leon H. Charney School of Marine Sciences, University of Haifa, Haifa, Israel
| | - Gustavo Ramírez
- Department of Marine Biology, Leon H. Charney School of Marine Sciences, University of Haifa, Haifa, Israel
- Department of Biological Sciences, California State University, Los Angeles, CA, USA
| | - Maya Lalzar
- Bioinformatic Services Unit, Faculty of Natural Sciences, University of Haifa, Haifa, Israel
| | - Dorothée Huchon
- George S. Wise Faculty of Life Sciences, School of Zoology, Tel Aviv University, Tel Aviv, Israel
- The Steinhardt Museum of Natural History and National Research Center, Tel Aviv University, Tel Aviv, Israel
| | - Laura Steindler
- Department of Marine Biology, Leon H. Charney School of Marine Sciences, University of Haifa, Haifa, Israel.
| |
Collapse
|
36
|
Farrell AA, Nesbø CL, Zhaxybayeva O. Bacterial Growth Temperature as a Horizontally Acquired Polygenic Trait. Genome Biol Evol 2025; 17:evae277. [PMID: 39724170 PMCID: PMC11719638 DOI: 10.1093/gbe/evae277] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2024] [Revised: 11/28/2024] [Accepted: 12/08/2024] [Indexed: 12/28/2024] Open
Abstract
Evolutionary events leading to organismal preference for a specific growth temperature, as well as genes whose products are needed for a proper function at that temperature, are poorly understood. Using 64 bacteria from phylum Thermotogota as a model system, we examined how optimal growth temperature changed throughout Thermotogota history. We inferred that Thermotogota's last common ancestor was a thermophile and that some Thermotogota evolved the mesophilic and hyperthermophilic lifestyles secondarily. By modeling gain and loss of genes throughout Thermotogota history and by reconstructing their phylogenies, we demonstrated that adaptations to lower and higher growth temperature involve both the acquisition of necessary genes and loss of unnecessary genes. Via a pangenome-wide association study, we correlated presence/absence of 68 genes with specific optimal growth temperature intervals. While some of these genes are poorly characterized, most are involved in metabolism of amino acids, nucleotides, carbohydrates, and lipids, as well as in signal transduction and regulation of transcription. Most of the 68 genes have a history of horizontal gene transfer with other bacteria and archaea that often grow at similar temperatures, suggesting that parallel acquisitions of genes likely promote independent adaptations of different Thermotogota species to specific growth temperatures.
Collapse
Affiliation(s)
- Anne A Farrell
- Department of Biological Sciences, Dartmouth College, Hanover, NH, USA
| | - Camilla L Nesbø
- Department of Chemical Engineering and Applied Chemistry, University of Toronto, Toronto, Ontario, Canada
- Department of Biological Sciences, University of Alberta, Edmonton, Alberta, Canada
| | - Olga Zhaxybayeva
- Department of Biological Sciences, Dartmouth College, Hanover, NH, USA
- Department of Computer Science, Dartmouth College, Hanover, NH, USA
| |
Collapse
|
37
|
Molari M, Shaw LP, Neher RA. Quantifying the Evolutionary Dynamics of Structure and Content in Closely Related E. coli Genomes. Mol Biol Evol 2025; 42:msae272. [PMID: 39750749 PMCID: PMC11739808 DOI: 10.1093/molbev/msae272] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2024] [Revised: 12/11/2024] [Accepted: 12/27/2024] [Indexed: 01/04/2025] Open
Abstract
Bacterial genomes primarily diversify via gain, loss, and rearrangement of genetic material in their flexible accessory genome. Yet the dynamics of accessory genome evolution are very poorly understood, in contrast to the core genome where diversification is readily described by mutations and homologous recombination. Here, we tackle this problem for the case of very closely related genomes. We comprehensively describe genome evolution within n=222 genomes of Escherichia coli ST131, which likely shared a common ancestor around 100 years ago. After removing putative recombinant diversity, the total length of the phylogeny is 6,000 core genome substitutions. Within this diversity, we find 22 modifications to core genome synteny and estimate around 2,000 structural changes within the accessory genome, i.e. one structural change for every three core genome substitutions. Sixty-three percent of loci with structural diversity could be resolved into individual gain and loss events with 10-fold more gains than losses, demonstrating a dominance of gains due to insertion sequences and prophage integration. Our results suggest the majority of synteny changes and insertions in our dataset are likely deleterious and only persist for a short time before being removed by purifying selection.
Collapse
Affiliation(s)
- Marco Molari
- Swiss Institute of Bioinformatics, Basel, Switzerland
- Biozentrum, University of Basel, Basel, Switzerland
| | - Liam P Shaw
- Department of Biology, University of Oxford, Oxford, UK
- Department of Biosciences, University of Durham, Durham, UK
| | - Richard A Neher
- Swiss Institute of Bioinformatics, Basel, Switzerland
- Biozentrum, University of Basel, Basel, Switzerland
| |
Collapse
|
38
|
Wu Y, Xin Y, Yang X, Song K, Zhang Q, Zhao H, Li C, Jin Y, Guo Y, Tan Y, Song Y, Tian H, Qi Z, Yang R, Cui Y. Hotspots of genetic change in Yersinia pestis. Nat Commun 2025; 16:388. [PMID: 39755708 DOI: 10.1038/s41467-024-55581-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2024] [Accepted: 12/10/2024] [Indexed: 01/06/2025] Open
Abstract
The relative contributions of mutation rate variation, selection, and recombination in shaping genomic variation in bacterial populations remain poorly understood. Here we analyze 3318 Yersinia pestis genomes, spanning nearly a century and including 2336 newly sequenced strains, to shed light on the patterns of genetic diversity and variation distribution at the population level. We identify 45 genomic regions ("hot regions", HRs) that, although comprising a minor fraction of the genome, are hotbeds of genetic variation. These HRs are distributed non-randomly across Y. pestis phylogenetic lineages and are primarily linked to regulatory genes, underscoring their potential functional significance. We explore various factors contributing to the shaping and maintenance of HRs, including genomic context, homologous recombination, mutation rate variation and natural selection. Our findings suggest that positive selection is likely the primary driver behind the emergence of HRs, but not the sole force, as evidenced by the pronounced trend of variation purging within these regions.
Collapse
Affiliation(s)
- Yarong Wu
- State Key Laboratory of Pathogen and Biosecurity, Academy of Military Medical Sciences, Beijing, China
| | - Youquan Xin
- Key Laboratory of National Health Commission on Plague Control and Prevention, Key Laboratory for Plague Prevention and Control of Qinghai Province, Qinghai Institute for Endemic Disease Prevention and Control, Xining, China
| | - Xiaoyan Yang
- Key Laboratory of National Health Commission on Plague Control and Prevention, Key Laboratory for Plague Prevention and Control of Qinghai Province, Qinghai Institute for Endemic Disease Prevention and Control, Xining, China
| | - Kai Song
- State Key Laboratory of Pathogen and Biosecurity, Academy of Military Medical Sciences, Beijing, China
| | - Qingwen Zhang
- Key Laboratory of National Health Commission on Plague Control and Prevention, Key Laboratory for Plague Prevention and Control of Qinghai Province, Qinghai Institute for Endemic Disease Prevention and Control, Xining, China
| | - Haihong Zhao
- Key Laboratory of National Health Commission on Plague Control and Prevention, Key Laboratory for Plague Prevention and Control of Qinghai Province, Qinghai Institute for Endemic Disease Prevention and Control, Xining, China
| | - Cunxiang Li
- Key Laboratory of National Health Commission on Plague Control and Prevention, Key Laboratory for Plague Prevention and Control of Qinghai Province, Qinghai Institute for Endemic Disease Prevention and Control, Xining, China
| | - Yong Jin
- Key Laboratory of National Health Commission on Plague Control and Prevention, Key Laboratory for Plague Prevention and Control of Qinghai Province, Qinghai Institute for Endemic Disease Prevention and Control, Xining, China
| | - Yan Guo
- State Key Laboratory of Pathogen and Biosecurity, Academy of Military Medical Sciences, Beijing, China
| | - Yafang Tan
- State Key Laboratory of Pathogen and Biosecurity, Academy of Military Medical Sciences, Beijing, China
| | - Yajun Song
- State Key Laboratory of Pathogen and Biosecurity, Academy of Military Medical Sciences, Beijing, China
| | - Huaiyu Tian
- State Key Laboratory of Remote Sensing Science, Center for Global Change and Public Health, Beijing Normal University, Beijing, China
| | - Zhizhen Qi
- Key Laboratory of National Health Commission on Plague Control and Prevention, Key Laboratory for Plague Prevention and Control of Qinghai Province, Qinghai Institute for Endemic Disease Prevention and Control, Xining, China.
| | - Ruifu Yang
- State Key Laboratory of Pathogen and Biosecurity, Academy of Military Medical Sciences, Beijing, China.
| | - Yujun Cui
- State Key Laboratory of Pathogen and Biosecurity, Academy of Military Medical Sciences, Beijing, China.
| |
Collapse
|
39
|
Roberts Kingman GA, Kipness JL, Rothschild LJ. Raiding nature's genetic toolbox for UV-C resistance by functional metagenomics. Sci Rep 2025; 15:223. [PMID: 39747236 PMCID: PMC11695868 DOI: 10.1038/s41598-024-83952-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2024] [Accepted: 12/18/2024] [Indexed: 01/04/2025] Open
Abstract
As we assess the habitability of other worlds, we are limited by being able to only study terrestrial life adapted to terrestrial conditions. The environments found on Earth, though tremendously diverse, do not approach the multitude of potentially habitable environments beyond Earth, and so limited terrestrial adaptive capabilities tell us little about the fundamental biochemical boundaries of life. One approach to this problem is to use experimental laboratory evolution to adapt microbes to these novel environmental conditions. This approach can be dramatically improved through functional metagenomics, large-scale introduction of foreign genetic material to screen for phenotypes in a new host organism. This takes advantage of Earth's immense biological diversity with high-throughput screening for genetic tools that can facilitate adaptation. We address a key gap in functional metagenomics work by exploring the impact of the experimental parameters chosen for functional metagenomics libraries. Experimental design dictates both fragment size and copy number, and we show that both can have outsized effects on the resultant phenotypes in non-intuitive ways. These results highlight the potential of functional metagenomics for adapting life rapidly to challenging new environments, with important implications in both astrobiology and bioindustry, while also emphasizing the impacts of decisions in experimental design.
Collapse
Affiliation(s)
| | - Justin L Kipness
- Department of Cell Biology & Biochemistry, Brown University, Providence, RI, USA
| | - Lynn J Rothschild
- NASA Ames Research Center, Planetary Systems Branch, Moffett Field, CA, USA.
| |
Collapse
|
40
|
Hsu TY, Nzabarushimana E, Wong D, Luo C, Beiko RG, Langille M, Huttenhower C, Nguyen LH, Franzosa EA. Profiling lateral gene transfer events in the human microbiome using WAAFLE. Nat Microbiol 2025; 10:94-111. [PMID: 39747694 DOI: 10.1038/s41564-024-01881-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2023] [Accepted: 11/13/2024] [Indexed: 01/04/2025]
Abstract
Lateral gene transfer (LGT), also known as horizontal gene transfer, facilitates genomic diversification in microbial populations. While previous work has surveyed LGT in human-associated microbial isolate genomes, the landscape of LGT arising in personal microbiomes is not well understood, as there are no widely adopted methods to characterize LGT from complex communities. Here we developed, benchmarked and validated a computational algorithm (WAAFLE or Workflow to Annotate Assemblies and Find LGT Events) to profile LGT from assembled metagenomes. WAAFLE prioritizes specificity while maintaining high sensitivity for intergenus LGT. Applying WAAFLE to >2,000 human metagenomes from diverse body sites, we identified >100,000 high-confidence previously uncharacterized LGT (~2 per microbial genome-equivalent). These were enriched for mobile elements, as well as restriction-modification functions associated with the destruction of foreign DNA. LGT frequency was influenced by biogeography, phylogenetic similarity of involved pairs (for example, Fusobacterium periodonticum and F. nucleatum) and donor abundance. These forces manifest as networks in which hub taxa donate unequally with phylogenetic neighbours. Our findings suggest that human microbiome LGT may be more ubiquitous than previously described.
Collapse
Affiliation(s)
- Tiffany Y Hsu
- Harvard T.H. Chan School of Public Health, Boston, MA, USA
| | - Etienne Nzabarushimana
- Harvard T.H. Chan School of Public Health, Boston, MA, USA
- Massachusetts General Hospital and Harvard Medical School, Boston, MA, USA
| | - Dennis Wong
- Faculty of Computer Science, Dalhousie University, Halifax, Nova Scotia, Canada
| | - Chengwei Luo
- The Broad Institute of MIT and Harvard, Cambridge, MA, USA
| | - Robert G Beiko
- Faculty of Computer Science, Dalhousie University, Halifax, Nova Scotia, Canada
| | - Morgan Langille
- Department of Pharmacology, Dalhousie University, Halifax, Nova Scotia, Canada
| | - Curtis Huttenhower
- Harvard T.H. Chan School of Public Health, Boston, MA, USA
- The Broad Institute of MIT and Harvard, Cambridge, MA, USA
| | - Long H Nguyen
- Harvard T.H. Chan School of Public Health, Boston, MA, USA.
- Massachusetts General Hospital and Harvard Medical School, Boston, MA, USA.
| | - Eric A Franzosa
- Harvard T.H. Chan School of Public Health, Boston, MA, USA.
- The Broad Institute of MIT and Harvard, Cambridge, MA, USA.
| |
Collapse
|
41
|
Gluck-Thaler E, Shaikh MA, Wood CW. Multivariate Divergence in Wild Microbes: No Evidence for Evolution along a Genetic Line of Least Resistance. Am Nat 2025; 205:107-124. [PMID: 39718788 DOI: 10.1086/733184] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2024]
Abstract
AbstractTrait evolution depends both on the direct fitness effects of specific traits and on indirect selection arising from genetically correlated traits. Although well established in plants and animals, the role of trait correlations in microbial evolution remains a major open question. Here, we tested whether genetic correlations in a suite of metabolic traits are conserved between two sister lineages of fungal endophytes and whether phenotypic divergence between lineages occurred in the direction of the multivariate trait combination containing the most genetic variance within lineages (i.e., the genetic lines of least resistance). We found that while one lineage grew faster across nearly all substrates, lineages differed in their mean response to specific substrates and in their overall multivariate metabolic trait means. The structure of the genetic variance-covariance (G) matrix was conserved between lineages, yet to our surprise divergence in metabolic phenotypes between lineages was nearly orthogonal to the major axis of genetic variation within lineages, indicating that divergence did not occur along the genetic lines of least resistance. Our findings suggest that the evolutionary genetics of trait correlations in microorganisms warrant further research and highlight the extensive functional variation that exists at very fine taxonomic scales in host-associated microbial communities.
Collapse
|
42
|
Zhang J, Cheng L, Li H, Chen X, Zhang L, Shan T, Wang J, Chen D, Shen J, Zhou X, Gou L, Zhang L, Zhou X, Ren B. Challenges of quaternary ammonium antimicrobial agents: Mechanisms, resistance, persistence and impacts on the microecology. THE SCIENCE OF THE TOTAL ENVIRONMENT 2025; 958:178020. [PMID: 39689472 DOI: 10.1016/j.scitotenv.2024.178020] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/24/2024] [Revised: 12/07/2024] [Accepted: 12/07/2024] [Indexed: 12/19/2024]
Abstract
Quaternary ammonium compounds (QACs) served as broad spectrum antimicrobial agents are widely applied for surface disinfection, skin and mucous disinfection, and mouthwash. The daily applications of QACs have significantly increased, especially during the COVID-19 pandemic. However, the environmental residues of QACs have demonstrated harmful impacts on the environment, leading to an increase in environmental contamination, resistant microbes and disruption of microecology. The actions of QACs were related to their cationic character, which can impact the negatively charged cell membranes, but the details are still unclear. Moreover, bacteria with lower sensitivity and resistant pathogens have been detected in clinics and environments, while QACs were also reported to induce the formation of bacterial persisters. Even worse, the resistant bacteria even showed co-resistance and cross-resistance with traditional antibiotics, decreasing therapeutic effectiveness, and disrupting the microecology homeostasis. Unfortunately, the resistance and persistence mechanisms of QACs and the effects of QACs on microecology are still not clear, which even neglected during their daily usages. Therefore, we summarized and discussed current understandings on the antimicrobial actions, resistance, persistence and impacts on the microecology to highlight the challenges in the QACs applications and discuss the possible strategies for overcoming their drawbacks.
Collapse
Affiliation(s)
- Jiaxin Zhang
- State Key Laboratory of Oral Diseases, National Center for Stomatology, National Clinical Research Center for Oral Diseases, West China School of Stomatology, Sichuan University, Chengdu 610041, Sichuan, China; Department of Operative Dentistry and Endodontics, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, Sichuan, China
| | - Lei Cheng
- State Key Laboratory of Oral Diseases, National Center for Stomatology, National Clinical Research Center for Oral Diseases, West China School of Stomatology, Sichuan University, Chengdu 610041, Sichuan, China; Department of Operative Dentistry and Endodontics, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, Sichuan, China
| | - Hao Li
- State Key Laboratory of Oral Diseases, National Center for Stomatology, National Clinical Research Center for Oral Diseases, West China School of Stomatology, Sichuan University, Chengdu 610041, Sichuan, China; Department of Operative Dentistry and Endodontics, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, Sichuan, China; Department of Endodontics, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, College of Stomatology, Shanghai Jiao Tong University, 500 Quxi Road, Shanghai 200011, China; National Center for Stomatology, National Clinical Research Center for Oral Diseases, Shanghai Key Laboratory of Stomatology, No. 639, Zhizaoju Road, Shanghai 200011, China
| | - Xi Chen
- State Key Laboratory of Oral Diseases, National Center for Stomatology, National Clinical Research Center for Oral Diseases, West China School of Stomatology, Sichuan University, Chengdu 610041, Sichuan, China; Department of Operative Dentistry and Endodontics, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, Sichuan, China
| | - Lin Zhang
- State Key Laboratory of Oral Diseases, National Center for Stomatology, National Clinical Research Center for Oral Diseases, West China School of Stomatology, Sichuan University, Chengdu 610041, Sichuan, China; Department of Operative Dentistry and Endodontics, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, Sichuan, China
| | - Tiantian Shan
- State Key Laboratory of Oral Diseases, National Center for Stomatology, National Clinical Research Center for Oral Diseases, West China School of Stomatology, Sichuan University, Chengdu 610041, Sichuan, China; Department of Operative Dentistry and Endodontics, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, Sichuan, China
| | - Jiannan Wang
- State Key Laboratory of Oral Diseases, National Center for Stomatology, National Clinical Research Center for Oral Diseases, West China School of Stomatology, Sichuan University, Chengdu 610041, Sichuan, China
| | - Ding Chen
- State Key Laboratory of Oral Diseases, National Center for Stomatology, National Clinical Research Center for Oral Diseases, West China School of Stomatology, Sichuan University, Chengdu 610041, Sichuan, China
| | - Jiawei Shen
- State Key Laboratory of Oral Diseases, National Center for Stomatology, National Clinical Research Center for Oral Diseases, West China School of Stomatology, Sichuan University, Chengdu 610041, Sichuan, China
| | - Xinxuan Zhou
- State Key Laboratory of Oral Diseases, National Center for Stomatology, National Clinical Research Center for Oral Diseases, West China School of Stomatology, Sichuan University, Chengdu 610041, Sichuan, China
| | - Lichen Gou
- State Key Laboratory of Oral Diseases, National Center for Stomatology, National Clinical Research Center for Oral Diseases, West China School of Stomatology, Sichuan University, Chengdu 610041, Sichuan, China
| | - Lixin Zhang
- State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, Shanghai 200237, China
| | - Xuedong Zhou
- State Key Laboratory of Oral Diseases, National Center for Stomatology, National Clinical Research Center for Oral Diseases, West China School of Stomatology, Sichuan University, Chengdu 610041, Sichuan, China
| | - Biao Ren
- State Key Laboratory of Oral Diseases, National Center for Stomatology, National Clinical Research Center for Oral Diseases, West China School of Stomatology, Sichuan University, Chengdu 610041, Sichuan, China.
| |
Collapse
|
43
|
Tsoumtsa Meda L, Lagarde J, Guillier L, Roussel S, Douarre PE. Using GWAS and Machine Learning to Identify and Predict Genetic Variants Associated with Foodborne Bacteria Phenotypic Traits. Methods Mol Biol 2025; 2852:223-253. [PMID: 39235748 DOI: 10.1007/978-1-0716-4100-2_16] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/06/2024]
Abstract
One of the main challenges in food microbiology is to prevent the risk of outbreaks by avoiding the distribution of food contaminated by bacteria. This requires constant monitoring of the circulating strains throughout the food production chain. Bacterial genomes contain signatures of natural evolution and adaptive markers that can be exploited to better understand the behavior of pathogen in the food industry. The monitoring of foodborne strains can therefore be facilitated by the use of these genomic markers capable of rapidly providing essential information on isolated strains, such as the source of contamination, risk of illness, potential for biofilm formation, and tolerance or resistance to biocides. The increasing availability of large genome datasets is enhancing the understanding of the genetic basis of complex traits such as host adaptation, virulence, and persistence. Genome-wide association studies have shown very promising results in the discovery of genomic markers that can be integrated into rapid detection tools. In addition, machine learning has successfully predicted phenotypes and classified important traits. Genome-wide association and machine learning tools have therefore the potential to support decision-making circuits intending at reducing the burden of foodborne diseases. The aim of this chapter review is to provide knowledge on the use of these two methods in food microbiology and to recommend their use in the field.
Collapse
Affiliation(s)
- Landry Tsoumtsa Meda
- ACTALIA, La Roche-sur-Foron, France
- ANSES, Salmonella and Listeria Unit (USEL), University of Paris-Est, Maisons-Alfort Laboratory for Food Safety, Maisons-Alfort, France
| | - Jean Lagarde
- ANSES, Salmonella and Listeria Unit (USEL), University of Paris-Est, Maisons-Alfort Laboratory for Food Safety, Maisons-Alfort, France
- INRAE, Unit of Process Optimisation in Food, Agriculture and the Environment (UR OPAALE), Rennes, France
| | | | - Sophie Roussel
- ANSES, Salmonella and Listeria Unit (USEL), University of Paris-Est, Maisons-Alfort Laboratory for Food Safety, Maisons-Alfort, France
| | - Pierre-Emmanuel Douarre
- ANSES, Salmonella and Listeria Unit (USEL), University of Paris-Est, Maisons-Alfort Laboratory for Food Safety, Maisons-Alfort, France.
| |
Collapse
|
44
|
Hu Y, Tang R, Jin S, Guan J, Meng X, Dan Z, Wang R, Ou HY, Lu J. Molecular characterization of ST15 carbapenem-resistant Klebsiella pneumoniae isolated in a single patient. J Glob Antimicrob Resist 2025; 40:72-80. [PMID: 39631626 DOI: 10.1016/j.jgar.2024.11.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2024] [Revised: 11/03/2024] [Accepted: 11/10/2024] [Indexed: 12/07/2024] Open
Abstract
BACKGROUND The carbapenem-resistant Klebsiella pneumoniae (CRKP) poses a serious threat to antibiotic applicability and public health. During treatment, K. pneumoniae (KP) frequently exhibits shifts in drug-resistant phenotypes, complicating clinical treatment as it transitions from sensitivity to resistance. In this study, we analysed the clinical and molecular characteristics of drug resistance changes in KP strains isolated from a single patient, and the potential mechanisms underlying these resistance changes. METHODS Antimicrobial susceptibility test and string test were conducted to evaluate the resistant and virulent characterization of the strains. Pulsed-field gel electrophoresis (PFGE) was used to investigate the homology relationship between the strains. The whole genome sequencing and phylogenetic analysis of 9 representative isolates was also performed. The transfer ability of the drug-resistant plasmid was studied by plasmid conjugation experiment. The transconjugants were verified by polymerase chain reaction amplification of specific genes, antimicrobial susceptibility test and PFGE. RESULTS Our results revealed that 9 KP strains, isolated from the same patient, exhibited 'resistance-sensitivity-resistance-sensitivity' alternately to carbapenems. The differences in DNA fingerprint bands among the nine KP isolates were ≤3, which can be classified as the same PFGE type. Phylogenetic analysis showed that these 9 strains constituted a distinct branch within the phylogenetic tree. All nine KP strains belonged to the ST15-KL19 clone. Six of the strains were classified as CRKP, all of which carried 11 drug resistance genes: oqxB, oqxA, fosA6, aac(3)-lld, blaSHV-28, blaKPC-2, blaOXA-1, mph(A), tet(A), catB3 and aac(6')-lb-cr, mediating drug resistance to quinolones, fosfomycin, aminoglycosides, β-lactam, carbapenems, macrolides and chloramphenicol, belonging to multi-drug resistant bacteria. The carbapenem-resistant plasmid p2-KP3762-1 was found to transfer within species, from CRKP to hypervirulent KPRJF293HA, carbapenem-sensitive KP KP3657 and Escherichia coli C600 at a frequency of (1.19 ± 1.58) ×10-6, (1.09 ± 1.38) ×10-7 and (10.9 ± 9.53) ×10-6 respectively, resulting in the dissemination of carbapenem resistance genes. CONCLUSIONS In this study, KP strains isolated from a single patient exhibited an alternating phenotype of resistant-sensitive-resistant-sensitive to carbapenems. The 9 KP isolates share a high degree of genetic similarity. The plasmid p2-KP3762-1, harbouring the carbapenem resistance gene blaKPC-2, may undergo inter-strain and inter-clone transfer via conjugation in the patient during treatment. Furthermore, our findings suggest that the pathogens in this patient are likely to have a common ancestral origin.
Collapse
Affiliation(s)
- Yongjin Hu
- Department of Critical Care Medicine, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Rong Tang
- Department of Clinical Laboratory, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Shanshan Jin
- Department of Critical Care Medicine, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Jiahao Guan
- School of Life Sciences & Biotechnology, Shanghai Jiao Tong University, Shanghai, China
| | - Xiaoxiao Meng
- Department of Critical Care Medicine, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Zengpeijie Dan
- Department of Critical Care Medicine, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Ruilan Wang
- Department of Critical Care Medicine, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Hong-Yu Ou
- School of Life Sciences & Biotechnology, Shanghai Jiao Tong University, Shanghai, China
| | - Jian Lu
- Department of Critical Care Medicine, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China; Department of Critical Care Medicine, Shanghai United Family Hospital, Shanghai, China.
| |
Collapse
|
45
|
Khatiebi S, Kiprotich K, Onyando Z, Mwaura J, Wekesa C, Chi CN, Mulambalah C, Okoth P. High-Throughput Shotgun Metagenomics of Microbial Footprints Uncovers a Cocktail of Noxious Antibiotic Resistance Genes in the Winam Gulf of Lake Victoria, Kenya. J Trop Med 2024; 2024:7857069. [PMID: 39741524 PMCID: PMC11685326 DOI: 10.1155/jotm/7857069] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2024] [Revised: 11/22/2024] [Accepted: 12/02/2024] [Indexed: 01/03/2025] Open
Abstract
Background: A diverse range of pollutants, including heavy metals, agrochemicals, pharmaceutical residues, illicit drugs, personal care products, and other anthropogenic contaminants, pose a significant threat to aquatic ecosystems. The Winam Gulf of Lake Victoria, heavily impacted by surrounding human activities, faces potential contamination from these pollutants. However, studies exploring the presence of antibiotic resistance genes (ARGs) in the lake remain limited. In the current study, a shotgun metagenomics approach was employed to identify ARGs and related pathways. Genomic DNA was extracted from water and sediment samples and sequenced using the high-throughput Illumina NovaSeq platform. Additionally, phenotypic antibiotic resistance was assessed using the disk diffusion method with commonly used antibiotics. Results: The analysis of metagenomes sequences from the Gulf ecosystem and Comprehensive Antibiotic Resistance Database (CARD) revealed worrying levels of ARGs in the lake. The study reported nine ARGs from the 37 high-risk resistant gene families previously documented by the World Health Organization (WHO). Proteobacteria had the highest relative abundance of antibiotic resistance (53%), Bacteriodes (4%), Verrucomicrobia (2%), Planctomycetes Chloroflexi, Firmicutes (2%), and other unclassified bacteria (39%). Genes that target protection, replacement, change, and antibiotic-resistant efflux were listed in order of dominance. Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway analysis revealed antibiotic resistance to beta-lactamase and vancomycin. Phenotypic resistance to vancomycin, tetracycline, sulfamethoxazole, erythromycin, trimethoprim, tetracycline, and penicillin was reported through the zone of inhibition. Conclusions: This study highlights that the Winam Gulf of Lake Victoria in Kenya harbors a diverse array of antibiotic-resistant genes, including those conferring multidrug resistance. These findings suggest that the Gulf could be serving as a reservoir for more antibiotic-resistant genes, posing potential risks to both human health and aquatic biodiversity. The insights gained from this research can guide policy development for managing antibiotic resistance in Kenya.
Collapse
Affiliation(s)
- Sandra Khatiebi
- Department of Biological Sciences, School of Natural and Applied Sciences, Masinde Muliro University of Science and Technology, P.O. Box 190, Kakamega 50100, Kenya
| | - Kelvin Kiprotich
- Department of Biological Sciences, School of Natural and Applied Sciences, Masinde Muliro University of Science and Technology, P.O. Box 190, Kakamega 50100, Kenya
- Department of Soil Sciences, Faculty of Agrisciences, Stellenbosch University, Private Bag X1, Matieland, Stellenbosch 7602, South Africa
| | - Zedekiah Onyando
- Department of Biological Sciences, School of Natural and Applied Sciences, Masinde Muliro University of Science and Technology, P.O. Box 190, Kakamega 50100, Kenya
| | - John Mwaura
- Department of Biological Sciences, School of Natural and Applied Sciences, Masinde Muliro University of Science and Technology, P.O. Box 190, Kakamega 50100, Kenya
| | - Clabe Wekesa
- Department of Biochemistry, Max Planck Institute for Chemical Ecology, Jena 8 07745, Germany
| | - Celestine N. Chi
- Department of Medical Biochemistry and Microbiology, Uppsala University, P.O. Box 582751 23, Uppsala, Sweden
| | - Chrispinus Mulambalah
- Department of Medical Microbiology and Parasitology, School of Medicine, Masinde Muliro University of Science and Technology, P.O. Box 190, Kakamega 50100, Kenya
| | - Patrick Okoth
- Department of Biological Sciences, School of Natural and Applied Sciences, Masinde Muliro University of Science and Technology, P.O. Box 190, Kakamega 50100, Kenya
| |
Collapse
|
46
|
Afkhami H, Yarahmadi A, Bostani S, Yarian N, Haddad MS, Lesani SS, Aghaei SS, Zolfaghari MR. Converging frontiers in cancer treatment: the role of nanomaterials, mesenchymal stem cells, and microbial agents-challenges and limitations. Discov Oncol 2024; 15:818. [PMID: 39707033 DOI: 10.1007/s12672-024-01590-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/23/2024] [Accepted: 11/14/2024] [Indexed: 12/23/2024] Open
Abstract
Globally, people widely recognize cancer as one of the most lethal diseases due to its high mortality rates and lack of effective treatment options. Ongoing research into cancer therapies remains a critical area of inquiry, holding significant social relevance. Currently used treatment, such as chemotherapy, radiation, or surgery, often suffers from other problems like damaging side effects, inaccuracy, and the lack of ability to clear tumors. Conventional cancer therapies are usually imprecise and ineffective and usually develop resistance to treatments and cancer recurs. Cancer patients need fresh and innovative treatment that can reduce side effects while maximizing effectiveness. In recent decades several breakthroughs in these, and other areas of medical research, have paved the way for new avenues of fighting cancer including more focused and more effective alternatives. This study reviews exciting possibilities for mesenchymal stem cells (MSCs), nanomaterials, and microbial agents in the modern realm of cancer treatment. Nanoparticles (NPs) have demonstrated surprisingly high potential. They improve drug delivery systems (DDS) significantly, enhance imaging techniques remarkably, and target cancer cells selectively while protecting healthy tissues. MSCs play a double role in tissue repair and are a vehicle for novel cancer treatments such as gene treatments or NPs loaded with therapeutic agents. Additionally, therapies utilizing microbial agents, particularly those involving bacteria, offer an inventive approach to cancer treatment. This review investigates the potential of nanomaterials, MSCs, and microbial agents in addressing the shortcomings of conventional cancer therapies. We will also discuss the challenges and limitations of using these therapeutic approaches.
Collapse
Affiliation(s)
- Hamed Afkhami
- Cellular and Molecular Research Center, Qom University of Medical Sciences, Qom, Iran
- Nervous System Stem Cells Research Center, Semnan University of Medical Sciences, Semnan, Iran
- Department of Medical Microbiology, Faculty of Medicine, Shahed University, Tehran, Iran
| | - Aref Yarahmadi
- Department of Biology, Khorramabad Branch, Islamic Azad University, Khorramabad, Iran
| | - Shoroq Bostani
- Department of Microbiology, Qom Branch, Islamic Azad University, Qom, Iran
| | - Nahid Yarian
- Department of Microbiology, Qom Branch, Islamic Azad University, Qom, Iran
| | | | - Shima Sadat Lesani
- Department of Microbiology, Qom Branch, Islamic Azad University, Qom, Iran
| | | | | |
Collapse
|
47
|
Li X, Cai S, Xu M. Nanoscale zero-valent iron alleviated horizontal transfer of antibiotic resistance genes in soil: The important role of extracellular polymeric substances. JOURNAL OF HAZARDOUS MATERIALS 2024; 480:135902. [PMID: 39303615 DOI: 10.1016/j.jhazmat.2024.135902] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/12/2024] [Revised: 08/23/2024] [Accepted: 09/17/2024] [Indexed: 09/22/2024]
Abstract
Extracellular polymeric substances (EPS) are tightly related to the horizontal gene transfer (HGT) of antibiotic resistance genes (ARGs), but often neglected in soil. In this study, nanoscale zero-valent iron (nZVI) was utilized for attenuation of ARGs in contaminated soil, with an emphasis on its effects on EPS secretion and HGT. Results showed during soil microbe cultivation exposed to tetracycline, more EPS was secreted and significant increase of tet was observed due to facilitated HGT. Notably, copies of EPS-tet accounted for 71.39 % of the total tet, implying vital effects of EPS on ARGs proliferation. When co-exposed to nZVI, EPS secretion was decreased by 38.36-71.46 %, for that nZVI could alleviate the microbial oxidative stress exerted by tetracycline resulting in downregulation of genes expression related to the c-di-GMP signaling system. Meanwhile, the abundance of EPS-tet was obviously reduced from 7.04 to 5.12-6.47 log unit, directly causing decrease of total tet from 7.19 to 5.68-6.69 log unit. For the reduced tet, it was mainly due to decreased EPS secretion induced by nZVI resulting in inhibition of HGT especially transformation of the EPS-tet. This work gives an inspiration for attenuation of ARGs dissemination in soil through an EPS regulation strategy.
Collapse
Affiliation(s)
- Xu Li
- Guangdong Provincial Key Laboratory of Microbial Culture Collection and Application, State Key Laboratory of Applied Microbiology Southern China, Institute of Microbiology, Guangdong Academy of Sciences, Guangzhou 510070, China; Guangdong Provincial Key Laboratory of Environmental Protection Microbiology and Regional Ecological Security, Guangzhou 510070, China
| | - Shujie Cai
- Guangdong Provincial Key Laboratory of Microbial Culture Collection and Application, State Key Laboratory of Applied Microbiology Southern China, Institute of Microbiology, Guangdong Academy of Sciences, Guangzhou 510070, China; Guangdong Provincial Key Laboratory of Environmental Protection Microbiology and Regional Ecological Security, Guangzhou 510070, China
| | - Meiying Xu
- Guangdong Provincial Key Laboratory of Microbial Culture Collection and Application, State Key Laboratory of Applied Microbiology Southern China, Institute of Microbiology, Guangdong Academy of Sciences, Guangzhou 510070, China; Guangdong Provincial Key Laboratory of Environmental Protection Microbiology and Regional Ecological Security, Guangzhou 510070, China.
| |
Collapse
|
48
|
Ormsby MJ, Woodford L, Fellows R, White HL, Quilliam RS. Rapid colonisation of environmental plastic waste by pathogenic bacteria drives adaptive phenotypic changes. JOURNAL OF HAZARDOUS MATERIALS 2024; 480:136359. [PMID: 39504769 DOI: 10.1016/j.jhazmat.2024.136359] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/20/2024] [Revised: 10/16/2024] [Accepted: 10/28/2024] [Indexed: 11/08/2024]
Abstract
Microbial biofilms on environmental plastic pollution can serve as a reservoir for both pathogenic and commensal bacteria. Associating with this 'plastisphere', provides a mechanism for the wider dissemination of pathogens within the environment and a greater potential for human exposure. For pathogens to bind to environmental plastic waste they need to be in close contact with it; therefore, understanding how rapidly pathogens can bind to plastics and the temporal colonisation dynamics of the continual cycling between the plastisphere and the environment are important factors for quantifying the persistence of human pathogens. Using simulated environmental conditions, we demonstrate that pathogenic E. coli O157 can rapidly colonise plastics (within 30 min) and persist for extended periods (at least 21 days), at concentrations sufficient to cause human infection. Importantly, repeated colonisation and dissociation cycles of E. coli O157 from the plastisphere leads to an enhanced capacity for persistence and the emergence of variants with increased virulence traits, including improved biofilm formation and antibiotic tolerance. This phenotypic adaptation to repeated colonisation of environmental plastic surfaces could be selecting for more persistent and virulent strains of pathogens, and hence increase the co-pollutant risks associated with plastic pollution.
Collapse
Affiliation(s)
- Michael J Ormsby
- Biological and Environmental Sciences, Faculty of Natural Sciences, University of Stirling, Stirling FK9 4LA. UK.
| | - Luke Woodford
- Biological and Environmental Sciences, Faculty of Natural Sciences, University of Stirling, Stirling FK9 4LA. UK
| | - Rosie Fellows
- Biological and Environmental Sciences, Faculty of Natural Sciences, University of Stirling, Stirling FK9 4LA. UK
| | - Hannah L White
- Biological and Environmental Sciences, Faculty of Natural Sciences, University of Stirling, Stirling FK9 4LA. UK
| | - Richard S Quilliam
- Biological and Environmental Sciences, Faculty of Natural Sciences, University of Stirling, Stirling FK9 4LA. UK
| |
Collapse
|
49
|
Ha EJ, Hong SM, Choi KS, Kwon HJ. Evolution and zoonotic risk of O1:K1 and O2:K1 avian pathogenic Escherichia coli. Microbes Infect 2024:105462. [PMID: 39645189 DOI: 10.1016/j.micinf.2024.105462] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2024] [Revised: 11/20/2024] [Accepted: 11/24/2024] [Indexed: 12/09/2024]
Abstract
The O1 and O2 serogroups of avian pathogenic E. coli (APEC) and human extraintestinal pathogenic E. coli (huExPEC) are closely related, but their evolutionary relationships need to be further elucidated. This study classified nineteen O1 and O2 APEC into rpoB sequence types (RSTs) and compared them with reference huExPEC using molecular prophage typing, virulence and antibiotic resistance gene profiling, and comparative genomics. Most O1:K1 and O2:K1 APEC (73.7 %) were classified as RST46-1 and RST47-9. RST47-9 is unique to Korean O1 APEC and likely derives from RST46-1 APEC. The six APEC showed high genome coverage/identity with the Korean RST46-1 huExPEC. Based on RST network and comparative genomics, we hypothesized that the O1 antigen first appeared in RST19-1 and O2 in RST24-1 E. coli in humans. Then, O1 and O2-antigen horizontally transferred to human RST46-1, where a unique K1 capsule (K1-cps) first appeared. The Korean APEC and huExPEC share evolutionary CRISPR spacers but differ in molecular antibiograms and prophage contents. Thus, RST46-1 huExPEC transmitted and evolved in poultry. The zoonotic risks remain unknown, but the substantial virulence of the RST46-1 APEC indicates that the reverse zoonotic risk of huExPEC in poultry is alarming.
Collapse
Affiliation(s)
- Eun-Jin Ha
- Laboratory of Avian Diseases, College of Veterinary Medicine and BK21 PLUS for Veterinary Science, Seoul National University, Seoul, 088026, Republic of Korea; Research Institute for Veterinary Science, College of Veterinary Medicine, Seoul, 08826, Republic of Korea
| | - Seung-Min Hong
- Laboratory of Avian Diseases, College of Veterinary Medicine and BK21 PLUS for Veterinary Science, Seoul National University, Seoul, 088026, Republic of Korea; Research Institute for Veterinary Science, College of Veterinary Medicine, Seoul, 08826, Republic of Korea
| | - Kang-Seuk Choi
- Laboratory of Avian Diseases, College of Veterinary Medicine and BK21 PLUS for Veterinary Science, Seoul National University, Seoul, 088026, Republic of Korea; Research Institute for Veterinary Science, College of Veterinary Medicine, Seoul, 08826, Republic of Korea.
| | - Hyuk-Joon Kwon
- Research Institute for Veterinary Science, College of Veterinary Medicine, Seoul, 08826, Republic of Korea; Laboratory of Poultry Medicine, Department of Farm Animal Medicine, College of Veterinary Medicine and BK21 PLUS for Veterinary Science, Seoul National University, Seoul, 08826, Republic of Korea; Farm Animal Clinical Training and Research Center (FACTRC), GBST, Seoul National University, Pyeongchang, 25354, Republic of Korea; GeNiner Inc., Seoul, 08826, Republic of Korea.
| |
Collapse
|
50
|
Wang J, Li P, Di X, Lu H, Wei H, Zhi S, Fewer DP, He S, Liu L. Phylogenomic analysis uncovers an unexpected capacity for the biosynthesis of secondary metabolites in Pseudoalteromonas. Eur J Med Chem 2024; 279:116840. [PMID: 39244863 DOI: 10.1016/j.ejmech.2024.116840] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2024] [Revised: 08/07/2024] [Accepted: 08/24/2024] [Indexed: 09/10/2024]
Abstract
Pseudoalteromonas is a genus of marine bacteria and a promising source of natural products with antibacterial, antifungal, and antifouling bioactivities. To accelerate the exploration of new compounds from this genus, we applied the gene-first approach to study 632 public Pseudoalteromonas genomes. We identified 3968 biosynthetic gene clusters (BGCs) involved in the biosynthesis of secondary metabolites and classified them into 995 gene cluster families (GCFs). Surprisingly, only 9 GCFs (0.9 %) included an experimentally identified reference biosynthetic gene cluster from the Minimum Information about a Biosynthetic Gene cluster database (MIBiG), suggesting a striking novelty of secondary metabolites in Pseudoalteromonas. Bioinformatic analysis of the biosynthetic diversity encoded in the identified BGCs uncovered six dominant species of this genus, P. citrea, P. flavipulchra, P. luteoviolacea, P. maricaloris, P. piscicida, and P. rubra, that encoded more than 17 BGCs on average. Moreover, each species exhibited a species-specific distribution of BGC. However, a deep analysis revealed two BGCs conserved across five of the six dominant species. These BGCS encoded an unknown lanthipeptide and the siderophore myxochelin B implying an essential role of antibiotics for Pseudoalteromonas. We chemically profiled 11 strains from the 6 dominant species and identified four new antibiotics, korormicins L-O (1-4), from P. citrea WJX-3. Our results highlight the unexplored biosynthetic potential for bioactive compounds in Pseudoalteromonas and provide an important guideline for targeting exploration.
Collapse
Affiliation(s)
- Jingxuan Wang
- Li Dak Sum Yip Yio Chin Kenneth Li Marine Biopharmaceutical Research Center, Health Science Center, Ningbo University, Ningbo, Zhejiang, 315211, China
| | - Peng Li
- Li Dak Sum Yip Yio Chin Kenneth Li Marine Biopharmaceutical Research Center, Health Science Center, Ningbo University, Ningbo, Zhejiang, 315211, China
| | - Xue Di
- Li Dak Sum Yip Yio Chin Kenneth Li Marine Biopharmaceutical Research Center, Health Science Center, Ningbo University, Ningbo, Zhejiang, 315211, China
| | - Hongmei Lu
- Li Dak Sum Yip Yio Chin Kenneth Li Marine Biopharmaceutical Research Center, Health Science Center, Ningbo University, Ningbo, Zhejiang, 315211, China
| | - Huamao Wei
- College of Food Science and Engineering, Ningbo University, Ningbo, Zhejiang, 315832, China
| | - Shuai Zhi
- School of Public Health, Ningbo University, Ningbo, Zhejiang, 315000, China
| | - David P Fewer
- Department of Microbiology, University of Helsinki, Pienaari 9, FI-00014 Helsinki, Finland
| | - Shan He
- Li Dak Sum Yip Yio Chin Kenneth Li Marine Biopharmaceutical Research Center, Health Science Center, Ningbo University, Ningbo, Zhejiang, 315211, China; Ningbo Institute of Marine Medicine, Peking University, Ningbo, Zhejiang 315800, China
| | - Liwei Liu
- Li Dak Sum Yip Yio Chin Kenneth Li Marine Biopharmaceutical Research Center, Health Science Center, Ningbo University, Ningbo, Zhejiang, 315211, China.
| |
Collapse
|