1
|
Fan M, Ren Y, Zhu Y, Zhang H, Li S, Liu C, Lv H, Chu L, Hou Z, Zhang Y, Pan H, Cui X, Chen W. Borosilicate bioactive glass synergizing low-dose antibiotic loaded implants to combat bacteria through ATP disruption and oxidative stress to sequentially achieve osseointegration. Bioact Mater 2025; 44:184-204. [PMID: 39502840 PMCID: PMC11535878 DOI: 10.1016/j.bioactmat.2024.10.009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2024] [Revised: 10/08/2024] [Accepted: 10/09/2024] [Indexed: 11/08/2024] Open
Abstract
Bone infection is a catastrophe in clinical orthopedics. Despite being the standard therapy for osteomyelitis, antibiotic-loaded polymethyl methacrylate (PMMA) cement has low efficiency against bacteria in biofilms. Furthermore, high-dose antibiotic-loaded implants carry risks of bacterial resistance, tissue toxicity, and impairment of local tissue healing. By incorporating borosilicate bioactive glass (BSG) into low-dose gentamicin sulfate (GS)-loaded PMMA cement, an intelligent strategy that synergistically eradicates bacteria and sequentially promotes osseointegration, was devised. Results showed that BSG did not compromises the handling properties of the cement, but actually endowed it with an ionic and alkaline microenvironment, thereby damaging the integrity of bacterial cell walls and membranes, inhibiting ATP synthesis by disrupting the respiratory chain in cell membranes and glycogen metabolism, and elevating reactive oxygen species (ROS) levels by weakening antioxidant components (peroxisomes and carotenoids). These antibacterial characteristics of BSG synergistically reinforced the effectiveness of GS, which was far below the actual clinical dosage, achieving efficient bacterial killing and biofilm clearance by binding to the 30S subunit of ribosomes. Furthermore, the released GS and the ionic and alkaline microenvironment from the implants fostered the osteogenic activity of hBMSCs in vitro and coordinately enhanced osseointegration in vivo. Collectively, this study underscores that BSG incorporation offers a promising strategy for reducing antibiotic dosage while simultaneously enhancing the antibacterial activity and osteogenesis of implants. This approach holds potential for resolving the conflict between bacterial resistance and bone infection.
Collapse
Affiliation(s)
- Mengke Fan
- Department of Orthopaedic Surgery the Hebei Medical University Third Hospital, Orthopaedic Research Institution of Hebei Province, NHC Key Laboratory of Intelligent Orthopaedic Equipment, Engineering Research Center of Orthopedic Minimally Invasive Intelligent Equipment of Ministry of Education, Key Laboratory of Biomechanics of Hebei Province, No.139 Ziqiang Road, Shijiazhuang, 050051, PR China
- Shenzhen Key Laboratory of Marine Biomedical Materials, CAS-HK Joint Lab of Biomaterials, The Key Laboratory of Biomedical Imaging Science and System, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, 518055, PR China
| | - Youliang Ren
- Department of Orthopaedics, Second Affiliated Hospital of Chongqing Medical University, 76 Linjiang Road, Yuzhong Distinct, Chongqing, 400010, PR China
- Department of Orthopaedics, Guizhou Provincial People's Hospital, Guiyang, 550000, PR China
| | - Yanbin Zhu
- Department of Orthopaedic Surgery the Hebei Medical University Third Hospital, Orthopaedic Research Institution of Hebei Province, NHC Key Laboratory of Intelligent Orthopaedic Equipment, Engineering Research Center of Orthopedic Minimally Invasive Intelligent Equipment of Ministry of Education, Key Laboratory of Biomechanics of Hebei Province, No.139 Ziqiang Road, Shijiazhuang, 050051, PR China
| | - Hao Zhang
- Shenzhen Key Laboratory of Marine Biomedical Materials, CAS-HK Joint Lab of Biomaterials, The Key Laboratory of Biomedical Imaging Science and System, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, 518055, PR China
- Shenzhen Healthemes Biotechnology Co., Ltd., Shenzhen, PR China
| | - Shuaijie Li
- Shenzhen Key Laboratory of Marine Biomedical Materials, CAS-HK Joint Lab of Biomaterials, The Key Laboratory of Biomedical Imaging Science and System, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, 518055, PR China
| | - Chunyu Liu
- Shenzhen Key Laboratory of Marine Biomedical Materials, CAS-HK Joint Lab of Biomaterials, The Key Laboratory of Biomedical Imaging Science and System, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, 518055, PR China
- Shenzhen Healthemes Biotechnology Co., Ltd., Shenzhen, PR China
| | - Hongzhi Lv
- Department of Orthopaedic Surgery the Hebei Medical University Third Hospital, Orthopaedic Research Institution of Hebei Province, NHC Key Laboratory of Intelligent Orthopaedic Equipment, Engineering Research Center of Orthopedic Minimally Invasive Intelligent Equipment of Ministry of Education, Key Laboratory of Biomechanics of Hebei Province, No.139 Ziqiang Road, Shijiazhuang, 050051, PR China
| | - Lei Chu
- Department of Orthopaedics, Second Affiliated Hospital of Chongqing Medical University, 76 Linjiang Road, Yuzhong Distinct, Chongqing, 400010, PR China
| | - Zhiyong Hou
- Department of Orthopaedic Surgery the Hebei Medical University Third Hospital, Orthopaedic Research Institution of Hebei Province, NHC Key Laboratory of Intelligent Orthopaedic Equipment, Engineering Research Center of Orthopedic Minimally Invasive Intelligent Equipment of Ministry of Education, Key Laboratory of Biomechanics of Hebei Province, No.139 Ziqiang Road, Shijiazhuang, 050051, PR China
| | - Yingze Zhang
- Department of Orthopaedic Surgery the Hebei Medical University Third Hospital, Orthopaedic Research Institution of Hebei Province, NHC Key Laboratory of Intelligent Orthopaedic Equipment, Engineering Research Center of Orthopedic Minimally Invasive Intelligent Equipment of Ministry of Education, Key Laboratory of Biomechanics of Hebei Province, No.139 Ziqiang Road, Shijiazhuang, 050051, PR China
| | - Haobo Pan
- Shenzhen Key Laboratory of Marine Biomedical Materials, CAS-HK Joint Lab of Biomaterials, The Key Laboratory of Biomedical Imaging Science and System, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, 518055, PR China
- Shenzhen Healthemes Biotechnology Co., Ltd., Shenzhen, PR China
| | - Xu Cui
- Shenzhen Key Laboratory of Marine Biomedical Materials, CAS-HK Joint Lab of Biomaterials, The Key Laboratory of Biomedical Imaging Science and System, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, 518055, PR China
- Shenzhen Healthemes Biotechnology Co., Ltd., Shenzhen, PR China
| | - Wei Chen
- Department of Orthopaedic Surgery the Hebei Medical University Third Hospital, Orthopaedic Research Institution of Hebei Province, NHC Key Laboratory of Intelligent Orthopaedic Equipment, Engineering Research Center of Orthopedic Minimally Invasive Intelligent Equipment of Ministry of Education, Key Laboratory of Biomechanics of Hebei Province, No.139 Ziqiang Road, Shijiazhuang, 050051, PR China
| |
Collapse
|
2
|
Li Y, Li J, Zhong Y, Zhang Q, Wu Y, Huang J, Pang K, Zhou Y, Xiao T, Wu Z, Sun W, He C. pH-responsive and nanoenzyme-loaded artificial nanocells relieved osteomyelitis efficiently by synergistic chemodynamic and cuproptosis therapy. Biomaterials 2025; 313:122762. [PMID: 39178559 DOI: 10.1016/j.biomaterials.2024.122762] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2024] [Revised: 08/03/2024] [Accepted: 08/17/2024] [Indexed: 08/26/2024]
Abstract
Osteomyelitis is an osseous infectious disease that primarily affects children and the elderly with high morbidity and recurrence. The conventional treatments of osteomyelitis contain long-term and high-dose systemic antibiotics with debridements, which are not effective and lead to antibiotic resistance with serious side/adverse effects in many cases. Hence, developing novel antibiotic-free interventions against osteomyelitis (especially antibiotic-resistant bacterial infection) is urgent and anticipated. Here, a bone mesenchymal stem cell membrane-constructed nanocell (CFE@CM) was fabricated against osteomyelitis with the characteristics of acid-responsiveness, hydrogen peroxide self-supplying, enhanced chemodynamic therapeutic efficacy, bone marrow targeting and cuproptosis induction. Notably, mRNA sequencing was applied to unveil the underlying biological mechanisms and found that the biological processes related to copper ion binding, oxidative phosphorylation, peptide biosynthesis and metabolism, etc., were disturbed by CFE@CM in bacteria. This work provided an innovative antibiotic-free strategy against osteomyelitis through copper-enhanced Fenton reaction and distinct cuproptosis, promising to complement the current insufficient therapeutic regimen in clinic.
Collapse
Affiliation(s)
- Yuanhui Li
- Department of Orthopedic Surgery, Guangzhou Key Laboratory of Spine Disease Prevention and Treatment, Guangdong Provincial Engineering Research Center for Biomedical Engineering, Guangdong Provincial Key Laboratory of Major Obstetric Diseases, Guangdong Provincial Clinical Research Center for Obstetrics and Gynecology, The Third Affiliated Hospital, Guangzhou Medical University, Guangzhou, 510150, China
| | - Jian Li
- Department of Orthopedic Surgery, Guangzhou Key Laboratory of Spine Disease Prevention and Treatment, Guangdong Provincial Engineering Research Center for Biomedical Engineering, Guangdong Provincial Key Laboratory of Major Obstetric Diseases, Guangdong Provincial Clinical Research Center for Obstetrics and Gynecology, The Third Affiliated Hospital, Guangzhou Medical University, Guangzhou, 510150, China
| | - Yuxuan Zhong
- Department of Orthopedic Surgery, Guangzhou Key Laboratory of Spine Disease Prevention and Treatment, Guangdong Provincial Engineering Research Center for Biomedical Engineering, Guangdong Provincial Key Laboratory of Major Obstetric Diseases, Guangdong Provincial Clinical Research Center for Obstetrics and Gynecology, The Third Affiliated Hospital, Guangzhou Medical University, Guangzhou, 510150, China
| | - Qingshun Zhang
- Department of Orthopedic Surgery, Guangzhou Key Laboratory of Spine Disease Prevention and Treatment, Guangdong Provincial Engineering Research Center for Biomedical Engineering, Guangdong Provincial Key Laboratory of Major Obstetric Diseases, Guangdong Provincial Clinical Research Center for Obstetrics and Gynecology, The Third Affiliated Hospital, Guangzhou Medical University, Guangzhou, 510150, China
| | - Yuchun Wu
- Department of Orthopedic Surgery, Guangzhou Key Laboratory of Spine Disease Prevention and Treatment, Guangdong Provincial Engineering Research Center for Biomedical Engineering, Guangdong Provincial Key Laboratory of Major Obstetric Diseases, Guangdong Provincial Clinical Research Center for Obstetrics and Gynecology, The Third Affiliated Hospital, Guangzhou Medical University, Guangzhou, 510150, China
| | - Jinpeng Huang
- Department of Orthopedic Surgery, Guangzhou Key Laboratory of Spine Disease Prevention and Treatment, Guangdong Provincial Engineering Research Center for Biomedical Engineering, Guangdong Provincial Key Laboratory of Major Obstetric Diseases, Guangdong Provincial Clinical Research Center for Obstetrics and Gynecology, The Third Affiliated Hospital, Guangzhou Medical University, Guangzhou, 510150, China
| | - Kaicheng Pang
- Department of Orthopedic Surgery, Guangzhou Key Laboratory of Spine Disease Prevention and Treatment, Guangdong Provincial Engineering Research Center for Biomedical Engineering, Guangdong Provincial Key Laboratory of Major Obstetric Diseases, Guangdong Provincial Clinical Research Center for Obstetrics and Gynecology, The Third Affiliated Hospital, Guangzhou Medical University, Guangzhou, 510150, China
| | - Yuanyue Zhou
- Department of Orthopedic Surgery, Guangzhou Key Laboratory of Spine Disease Prevention and Treatment, Guangdong Provincial Engineering Research Center for Biomedical Engineering, Guangdong Provincial Key Laboratory of Major Obstetric Diseases, Guangdong Provincial Clinical Research Center for Obstetrics and Gynecology, The Third Affiliated Hospital, Guangzhou Medical University, Guangzhou, 510150, China
| | - Tong Xiao
- Department of Orthopedic Surgery, Guangzhou Key Laboratory of Spine Disease Prevention and Treatment, Guangdong Provincial Engineering Research Center for Biomedical Engineering, Guangdong Provincial Key Laboratory of Major Obstetric Diseases, Guangdong Provincial Clinical Research Center for Obstetrics and Gynecology, The Third Affiliated Hospital, Guangzhou Medical University, Guangzhou, 510150, China
| | - Zenghui Wu
- Department of Orthopedic Surgery, Guangzhou Key Laboratory of Spine Disease Prevention and Treatment, Guangdong Provincial Engineering Research Center for Biomedical Engineering, Guangdong Provincial Key Laboratory of Major Obstetric Diseases, Guangdong Provincial Clinical Research Center for Obstetrics and Gynecology, The Third Affiliated Hospital, Guangzhou Medical University, Guangzhou, 510150, China.
| | - Wei Sun
- Department of Obstetrics and Gynecology, Guangdong Provincial Key Laboratory of Major Obstetric Diseases, Guangdong Provincial Clinical Research Center for Obstetrics and Gynecology, Guangdong-Hong Kong-Macao Greater Bay Area Higher Education Joint Laboratory of Maternal-Fetal Medicine, The Third Affiliated Hospital, Guangzhou Medical University, Guangzhou, 510150, China.
| | - Chao He
- Department of Orthopedic Surgery, Guangzhou Key Laboratory of Spine Disease Prevention and Treatment, Guangdong Provincial Engineering Research Center for Biomedical Engineering, Guangdong Provincial Key Laboratory of Major Obstetric Diseases, Guangdong Provincial Clinical Research Center for Obstetrics and Gynecology, The Third Affiliated Hospital, Guangzhou Medical University, Guangzhou, 510150, China.
| |
Collapse
|
3
|
Borah A, Srivastava A. Impact of extracellular enzymes on Staphylococcus aureus host tissue adaptation and infection. APMIS 2025; 133:e13502. [PMID: 39604200 DOI: 10.1111/apm.13502] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2024] [Accepted: 11/06/2024] [Indexed: 11/29/2024]
Abstract
Staphylococcus aureus is a multi-host pathogen that can colonize and infect both humans and livestock in a tissue-specific manner. This amazing feature of the pathogen is mainly facilitated by the surplus virulence agents produced upon necessity and favorable environmental factors. These factors are adept at damaging cellular barriers, manipulating host immune factors, and circumventing the host complement system. The delicate balance between the timely release of virulent factors and the regulation of their production underscores the significance of the exoenzyme network. Moreover, the intricate relationship between the pathogen and host tissue highlights the importance of understanding tissue-specific phenotypes for effective therapeutic strategies. Here, we provide a review on the diverse role played by the extracellular enzymes of S. aureus in tissue-specific infection and systemic colonization leading to distinctive diseased conditions. The article highlights the need to study the role of staphylococcal exoenzymes in various systemic invasions, their impact on the deterioration of host tissue, and the regulation of S. aureus virulence factors.
Collapse
Affiliation(s)
- Atlanta Borah
- Biotechnology Research Innovation Council-National Institute of Animal Biotechnology (BRIC-NIAB), Hyderabad, Telangana, India
| | - Anand Srivastava
- Biotechnology Research Innovation Council-National Institute of Animal Biotechnology (BRIC-NIAB), Hyderabad, Telangana, India
| |
Collapse
|
4
|
Wu H, Chen C, Li J, Yu D, Wu X, Huang H, Tang Z, Wu Q, Yan S, Wang N, Wang M, Wei F, Yu Y, Wang D, Shi M, Yue X, Cao P, Zheng Z, Li X, Guo B, Shi L, Guo Z. Engineered Magneto-Piezoelectric Nanoparticles-Enhanced Scaffolds Disrupt Biofilms and Activate Oxidative Phosphorylation in Icam1 + Macrophages for Infectious Bone Defect Regeneration. ACS NANO 2024. [PMID: 39690461 DOI: 10.1021/acsnano.4c13562] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/19/2024]
Abstract
Infectious bone defects pose significant clinical challenges due to persistent infection and impaired bone healing. Icam1+ macrophages were identified as crucial and previously unrecognized regulators in the repair of bone defects, where impaired oxidative phosphorylation within this macrophage subset represents a significant barrier to effective bone regeneration. To address this challenge, dual-responsive iron-doped barium titanate (BFTO) nanoparticles were synthesized with magnetic and ultrasonic properties. These nanoparticles were further loaded with the anti-inflammatory agent curcumin and coated with engineered mesenchymal stem cell membranes (EMM) modified with γ3 peptide, creating BFTO-Cur@EMM nanoparticles specifically designed to target Icam1+ macrophages. These nanoparticles were shown to disrupt bacterial biofilms under alternating magnetic fields (AMF) and to activate oxidative phosphorylation and osteogenic immune responses in Icam1+ macrophages via low-intensity pulsed ultrasound (LIPUS). Transcriptomic sequencing and validation experiments demonstrated that this approach activates oxidative phosphorylation (OXPHOS) by stimulating the JAK2-STAT3 pathway and inhibiting the MAPK-JNK pathway, thereby promoting the polarization of Icam1+ macrophages toward a pro-reparative phenotype and enhancing the secretion of pro-angiogenic and osteogenic cytokines. These nanoparticles were subsequently integrated into quaternized chitosan (QCS) and tricalcium phosphate (TCP) to create a bioink for three-dimensional (3D) printing anti-infection QT/BFTO-Cur@EMM bone repair scaffolds. In vivo studies indicated that these scaffolds significantly improved the healing of infectious bone defects without causing thermal damage to surrounding tissues. This work highlights the potential of this material and the targeting of Icam1+ macrophages as an effective strategy for simultaneously controlling infection and promoting bone regeneration.
Collapse
Affiliation(s)
- Hao Wu
- Department of Orthopaedics, Tangdu Hospital, Fourth Military Medical University, Xi'an, Shaanxi 710038, P. R. China
| | - Changcheng Chen
- Department of Orthopaedics, Tangdu Hospital, Fourth Military Medical University, Xi'an, Shaanxi 710038, P. R. China
| | - Jiangfeng Li
- Institute of Burn Research, Southwest Hospital & State key Laboratory of Trauma and Chemical Poisoning, Third Military Medical University (Army Medical University), Chongqing 400038, P. R. China
| | - Dongmei Yu
- Department of Orthopaedics, Tangdu Hospital, Fourth Military Medical University, Xi'an, Shaanxi 710038, P. R. China
| | - Xun Wu
- Department of Neurosurgery, Tangdu Hospital, Fourth Military Medical University, Xi'an, Shaanxi 710038, P. R. China
| | - Hai Huang
- Department of Orthopaedics, Tangdu Hospital, Fourth Military Medical University, Xi'an, Shaanxi 710038, P. R. China
| | - Zhen Tang
- Department of Orthopaedics, Tangdu Hospital, Fourth Military Medical University, Xi'an, Shaanxi 710038, P. R. China
| | - Qi Wu
- Department of Orthopaedics, Tangdu Hospital, Fourth Military Medical University, Xi'an, Shaanxi 710038, P. R. China
| | - Shichao Yan
- Department of Orthopaedics, Tangdu Hospital, Fourth Military Medical University, Xi'an, Shaanxi 710038, P. R. China
| | - Ning Wang
- Department of Orthopaedics, Tangdu Hospital, Fourth Military Medical University, Xi'an, Shaanxi 710038, P. R. China
| | - Mo Wang
- Department of Orthopaedics, Tangdu Hospital, Fourth Military Medical University, Xi'an, Shaanxi 710038, P. R. China
| | - Feilong Wei
- Department of Orthopaedics, Tangdu Hospital, Fourth Military Medical University, Xi'an, Shaanxi 710038, P. R. China
| | - Yunlong Yu
- Institute of Burn Research, Southwest Hospital & State key Laboratory of Trauma and Chemical Poisoning, Third Military Medical University (Army Medical University), Chongqing 400038, P. R. China
| | - Duan Wang
- Orthopaedic Research Institute, Department of Orthopaedics, West China Hospital, Sichuan University, Chengdu 610041, P. R. China
| | - Mengting Shi
- Department of Orthopaedics, Tangdu Hospital, Fourth Military Medical University, Xi'an, Shaanxi 710038, P. R. China
| | - Xusong Yue
- Department of Orthopaedics, Tangdu Hospital, Fourth Military Medical University, Xi'an, Shaanxi 710038, P. R. China
| | - Pengfei Cao
- Department of Orthopaedics, Tangdu Hospital, Fourth Military Medical University, Xi'an, Shaanxi 710038, P. R. China
| | - Zenghui Zheng
- Department of Orthopaedics, Tangdu Hospital, Fourth Military Medical University, Xi'an, Shaanxi 710038, P. R. China
| | - Xiaokang Li
- Department of Orthopaedics, Tangdu Hospital, Fourth Military Medical University, Xi'an, Shaanxi 710038, P. R. China
| | - Baolin Guo
- State Key Laboratory for Mechanical Behavior of Materials, and Frontier Institute of Science and Technology, and Key Laboratory of Shaanxi Province for Craniofacial Precision Medicine Research, College of Stomatology, Xi'an Jiaotong University, Xi'an 710049, P. R. China
| | - Lei Shi
- Department of Orthopaedics, Xijing Hospital, Fourth Military Medical University, Xi'an, Shaanxi 710032, P. R. China
| | - Zheng Guo
- Department of Orthopaedics, Tangdu Hospital, Fourth Military Medical University, Xi'an, Shaanxi 710038, P. R. China
| |
Collapse
|
5
|
Maimaiti Z, Liu L. Exploring the Microbial Landscape of Bone and Joint Infections: An Analysis Using 16S rRNA Metagenome Sequencing. Infect Drug Resist 2024; 17:5557-5566. [PMID: 39691489 PMCID: PMC11651062 DOI: 10.2147/idr.s482931] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2024] [Accepted: 12/02/2024] [Indexed: 12/19/2024] Open
Abstract
Background Bone and joint infections (BJIs) are challenging to diagnose. This study evaluated the utility of 16S rRNA gene sequencing in diagnosing BJIs, comparing it with conventional bacterial culture to explore microbial diversity in orthopedic infections. Methods Thirty patients with BJIs were enrolled from January 2019 to September 2020 at a single orthopedic center. Diagnoses were based on the Musculoskeletal Infection Society standards. DNA extraction, 16S rRNA sequencing, and microbial composition analysis were performed. Conventional bacterial culture results were compared with metagenomics detection, and associations with blood routine and biochemical test factors were analyzed. Results The study enrolled 30 patients with BJIs. Traditional bacterial culture successfully identified pathogens in 60% (18/30) of cases, predominantly Staphylococcus aureus. In contrast, 16S rRNA metagenomics sequencing revealed distinct microorganisms in all cases, it unveiled a diverse microbial landscape. The correlation between bacterial culture and metagenomics detection showcased both concordance and discrepancies. Consistency of detection between the two methods showed that metagenomics detection detected the same genus or species in 14 (87.5%) of the 16 samples identified as species by bacterial culture. In nearly half of the patients with negative cultures, pathogenic microorganisms were detected, highlighting the capability of 16S rRNA sequencing to identify microorganisms, even in samples with negative or unidentified culture results. Moreover, no significant correlation was observed between bacterial culture, metagenomics detection and the factors of blood routine and biochemical test. Conclusion This study deepens our understanding of the microbial complexity in BJIs. While traditional culture methods are cost-effective and practical, 16S rRNA gene sequencing proves valuable for complementary microbial analysis, particularly when traditional methods fail or rapid identification is critical. This emerging diagnostic approach can enhance the accuracy and speed of pathogen identification, enabling more effective interventions in the management of BJIs.
Collapse
Affiliation(s)
- Zulipikaer Maimaiti
- Department of Orthopedics, Beijing Luhe Hospital, Capital Medical University, Beijing, 101149, People’s Republic of China
| | - Liang Liu
- Department of Orthopedics, Beijing Luhe Hospital, Capital Medical University, Beijing, 101149, People’s Republic of China
| |
Collapse
|
6
|
Sekar A, Fan Y, Tierney P, McCanne M, Jones P, Malick F, Kannambadi D, Wannomae KK, Inverardi N, Muratoglu OK, Oral E. Investigating the Translational Value of Periprosthetic Joint Infection Models to Determine the Risk and Severity of Staphylococcal Biofilms. ACS Infect Dis 2024; 10:4156-4166. [PMID: 39630924 DOI: 10.1021/acsinfecdis.4c00409] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/07/2024]
Abstract
With the advent of antibiotic-eluting polymeric materials for targeting recalcitrant infections, using preclinical models to study biofilms are crucial for improving the treatment efficacy in periprosthetic joint infections. The stratification of risk and severity of infections is needed to develop an effective clinical dosing framework with better treatment outcomes. We use in vivo and in vitro implant-associated infection models to demonstrate that methicillin-sensitive and resistant Staphylococcus aureus (MSSA and MRSA) have model-dependent distinct implant and peri-implant tissue colonization patterns. The maturity of biofilms and the location (implant vs tissue) were found to influence the antibiotic susceptibility evolution profiles of MSSA and MRSA, and the models could capture the differing host-microbe interactions in vivo. Gene expression studies revealed the molecular heterogeneity of colonizing bacterial populations. The comparison and stratification of the risk and severity of infection across different preclinical models provided in this study can guide clinical dosing to prevent or treat PJI effectively.
Collapse
Affiliation(s)
- Amita Sekar
- Harris Orthopaedics laboratory, Massachusetts General Hospital, Boston, Massachusetts 02114, United States
- Department of Orthopaedic Surgery, Harvard Medical School, Boston, Massachusetts 02115, United States
| | - Yingfang Fan
- Harris Orthopaedics laboratory, Massachusetts General Hospital, Boston, Massachusetts 02114, United States
- Department of Orthopaedic Surgery, Harvard Medical School, Boston, Massachusetts 02115, United States
| | - Peyton Tierney
- Harris Orthopaedics laboratory, Massachusetts General Hospital, Boston, Massachusetts 02114, United States
| | - Madeline McCanne
- Harris Orthopaedics laboratory, Massachusetts General Hospital, Boston, Massachusetts 02114, United States
| | - Parker Jones
- Harris Orthopaedics laboratory, Massachusetts General Hospital, Boston, Massachusetts 02114, United States
| | - Fawaz Malick
- Harris Orthopaedics laboratory, Massachusetts General Hospital, Boston, Massachusetts 02114, United States
| | - Devika Kannambadi
- Harris Orthopaedics laboratory, Massachusetts General Hospital, Boston, Massachusetts 02114, United States
| | - Keith K Wannomae
- Harris Orthopaedics laboratory, Massachusetts General Hospital, Boston, Massachusetts 02114, United States
| | - Nicoletta Inverardi
- Harris Orthopaedics laboratory, Massachusetts General Hospital, Boston, Massachusetts 02114, United States
- Department of Orthopaedic Surgery, Harvard Medical School, Boston, Massachusetts 02115, United States
| | - Orhun K Muratoglu
- Harris Orthopaedics laboratory, Massachusetts General Hospital, Boston, Massachusetts 02114, United States
- Department of Orthopaedic Surgery, Harvard Medical School, Boston, Massachusetts 02115, United States
| | - Ebru Oral
- Harris Orthopaedics laboratory, Massachusetts General Hospital, Boston, Massachusetts 02114, United States
- Department of Orthopaedic Surgery, Harvard Medical School, Boston, Massachusetts 02115, United States
| |
Collapse
|
7
|
Shi T, Wu Q, Ruan Z, Luo Z, Wang W, Guo Z, Ma Y, Wang X, Chu G, Lin H, Ge M, Chen Y. Resensitizing β-Lactams by Reprogramming Purine Metabolism in Small Colony Variant for Osteomyelitis Treatment. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2024:e2410781. [PMID: 39656854 DOI: 10.1002/advs.202410781] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/04/2024] [Revised: 11/27/2024] [Indexed: 12/17/2024]
Abstract
Small colony variant (SCV) is strongly linked to antibiotic resistance and the persistence of osteomyelitis. However, the intrinsic phenotypic instability of SCV has hindered a thorough investigation of its pathogenic mechanisms. In this study, phenotypically stable SCV strains are successfully recovered from clinical specimens, characterized by elevated drug resistance and reduced immunogenicity. Multi-omics analysis revealed that the acquired high drug resistance is associated with altered flux in the purine metabolism pathway, attributable to mutations in the hypoxanthine phosphoribosyltransferase (hpt) gene. Furthermore, this study innovatively discovered that lonidamine, an inhibitor of cellular energy metabolism, can effectively mitigate SCV resistance to β-lactam antibiotics, thereby facilitating its eradication. The underlying mechanism involves the reprogramming of purine metabolism. Therefore, a co-delivery system for lonidamine and oxacillin is constructed with amino-modified dendritic mesoporous silica as a carrier, which showed high efficacy and safety in combating SCV both in vitro and in vivo experiments. Overall, this study elucidated the pathogenic mechanisms of a class of clinically isolated SCV isolates with hpt mutations and provided a paradigm for treating SCV-associated osteomyelitis by reprogramming purine metabolism.
Collapse
Affiliation(s)
- Tingwang Shi
- Department of Orthopedic Surgery, Shanghai Institute of Microsurgery on Extremities, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, 600 Yishan Road, Shanghai, 200233, China
| | - Qiong Wu
- Department of Laboratory Medicine, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, 600 Yishan Road, Shanghai, 200233, China
| | - Zesong Ruan
- Department of Orthopedic Surgery, Shanghai Institute of Microsurgery on Extremities, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, 600 Yishan Road, Shanghai, 200233, China
| | - Zhiyuan Luo
- Department of Orthopedic Surgery, Shanghai Institute of Microsurgery on Extremities, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, 600 Yishan Road, Shanghai, 200233, China
| | - Wenbo Wang
- Department of Orthopedic Surgery, Shanghai Institute of Microsurgery on Extremities, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, 600 Yishan Road, Shanghai, 200233, China
| | - Zhao Guo
- Department of Orthopedic Surgery, Shanghai Institute of Microsurgery on Extremities, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, 600 Yishan Road, Shanghai, 200233, China
| | - Yihong Ma
- Department of Orthopedic Surgery, Shanghai Institute of Microsurgery on Extremities, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, 600 Yishan Road, Shanghai, 200233, China
| | - Xin Wang
- Department of Orthopedic Surgery, Shanghai Institute of Microsurgery on Extremities, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, 600 Yishan Road, Shanghai, 200233, China
| | - Guangyu Chu
- Department of Orthopedic Surgery, Spine Lab, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, 310003, China
- Joslin-Beth Israel Deaconess Foot Center and The Rongxiang Xu, MD, Center for Regenerative Therapeutics, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, 02215, USA
| | - Han Lin
- Shanghai Institute of Ceramics Chinese Academy of Sciences, Research Unit of Nanocatalytic Medicine in Specific Therapy for Serious Disease, Chinese Academy of Medical Sciences, Shanghai, 200050, China
| | - Min Ge
- Department of Electrical and Electronic Engineering, The University of Hong Kong, Pokfulam Road, Hong Kong, 999077, China
| | - Yunfeng Chen
- Department of Orthopedic Surgery, Shanghai Institute of Microsurgery on Extremities, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, 600 Yishan Road, Shanghai, 200233, China
| |
Collapse
|
8
|
Kates SL, Owen JR, Beck CA, Muthukrishnan G, Daiss JL, Golladay GJ. Dilution of humoral immunity: Results from a natural history study of healthy total knee arthroplasty patients. J Orthop Res 2024; 42:2835-2843. [PMID: 39054760 DOI: 10.1002/jor.25942] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/17/2024] [Revised: 05/07/2024] [Accepted: 05/10/2024] [Indexed: 07/27/2024]
Abstract
The incidence of prosthetic joint infection (PJI) following elective primary total knee arthroplasty (TKA) is very low but serious risk remains. To identify unknown risk factors, we completed a natural history study of IgG specific for Staphylococcus aureus antigens previously phenotyped as protective (anti-Atl) and pathogenic (anti-Isd). Twenty-five male and 25 female optimized patients 50-85 years of age and BMI 24-39 undergoing primary TKA were prospectively enrolled. Blood sampling was performed preoperatively, postoperative Day 1, and at 2, 6, and 12 weeks, to assess serum cytokine, anti-staphylococcal IgG levels and anti-tetanus toxoid IgG measured via custom Luminex assay. Clinical, demographic, and PROMIS-10 data were collected with outcomes to 2 years postop. All participants completed the study and 2-year follow-up. No patients were readmitted or noted to develop a surgical site infection or serious adverse event, and patient-reported outcomes were improved. Serology revealed a highly significant decrease in six out of eight antibody titers against specific S. aureus antigens on Day 1 (p < 0.0001), five of which normalized to preoperative levels within 2 weeks. These changes were commensurate with a decrease and recovery of anti-tetanus toxoid titers, and a 20% drop in hemoglobin 13.8 ± 1.7 at preop to 11.1 ± 1.8 mg/dL on Day 1 (p < 0.0001). After TKA, a significant decrease in humoral immunity commensurate with blood loss and hemodilution was recorded. This decrease in circulating anti-staphylococcal antibodies in the early postop period may represent a periprosthetic joint infection risk factor for patients.
Collapse
Affiliation(s)
- Stephen L Kates
- Department of Orthopaedic Surgery, Virginia Commonwealth University, Richmond, Virginia, USA
| | - John R Owen
- Department of Orthopaedic Surgery, Virginia Commonwealth University, Richmond, Virginia, USA
| | - Christopher A Beck
- Center for Musculoskeletal Research, University of Rochester Medical Center, Rochester, New York, USA
| | | | - John L Daiss
- Center for Musculoskeletal Research, University of Rochester Medical Center, Rochester, New York, USA
| | - Gregory J Golladay
- Department of Orthopaedic Surgery, Virginia Commonwealth University, Richmond, Virginia, USA
| |
Collapse
|
9
|
Dong Q, Zhou J, Feng M, Kong L, Fang B, Zhang Z. A review of bacterial and osteoclast differentiation in bone infection. Microb Pathog 2024; 197:107102. [PMID: 39505086 DOI: 10.1016/j.micpath.2024.107102] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2024] [Revised: 10/18/2024] [Accepted: 11/03/2024] [Indexed: 11/08/2024]
Abstract
Bone infections are characterized by bacterial invasion of the bone microenvironment and subsequent bone structure deterioration. This holds significance because osteoclasts, which are the only cells responsible for bone resorption, are abnormally stimulated during bone infections. Multiple communication factors secreted by bone stromal cells regulate the membrane of osteoclast progenitor cells, thereby maintaining bone homeostasis through the expression of many types of receptors. During infection, the immunoinflammatory response triggered by bacterial invasion and multiple virulence factors of bacterial origin can disrupt osteoclast homeostasis. Therefore, clarifying the pathways through which bacteria affect osteoclasts can offer a theoretical basis for preventing and treating bone infections. This review summarizes studies investigating bone destruction caused by different bacterial infections. In conclusion, bacteria can affect osteoclast metabolic activity through multiple pathways, including direct contact, release of virulence factors, induction of immunoinflammatory responses, influence on bone stromal cell metabolism, and intracellular infections.
Collapse
Affiliation(s)
- Qi Dong
- Department of Spinal Surgery, Honghui Hospital, Xi'an Jiaotong University, Xi'an, 710054, China
| | - Jiuqin Zhou
- Department of Infectious Disease of Honghui Hospital, Xi'an Jiaotong University, Xi'an, 710054, China
| | - Mingzhe Feng
- Department of Spinal Surgery, Honghui Hospital, Xi'an Jiaotong University, Xi'an, 710054, China
| | - Lingqiang Kong
- Department of Orthopedics, the Central Hospital Affiliated to Shaoxing University, Shaoxing, 312030, China.
| | - Bin Fang
- Department of Orthopedics, the First Affiliated Hospital of Zhejiang Chinese Medical University (Zhejiang Provincial Hospital of Chinese Medicine), Hangzhou, 310000, China.
| | - Zhen Zhang
- Department of Spinal Surgery, Honghui Hospital, Xi'an Jiaotong University, Xi'an, 710054, China.
| |
Collapse
|
10
|
Xian C, Liu Y, Zhou L, Ding T, Chen J, Wang T, Gao J, Hao X, Bi L. Optimal ultrasonic treatment frequency and duration parameters were used to detect the pathogenic bacteria of orthopedic implant-associated infection by ultrasonic oscillation. J Infect Chemother 2024; 30:1237-1243. [PMID: 38823678 DOI: 10.1016/j.jiac.2024.05.013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2023] [Revised: 03/27/2024] [Accepted: 05/29/2024] [Indexed: 06/03/2024]
Abstract
INTRUDUCTON The most accurate method for detecting the pathogen of orthopedic implant-associated infections (OIAIs) is sonication fluid (SF). However, the frequency and duration of ultrasound significantly influence the number and activity of microorganisms. Currently, there is no consensus on the selection of these two parameters. Through this study, the choice of these two parameters is clarified. METHODS We established five ultrasonic groups (40kHz/10min, 40kHz/5min, 40 kHz/1min, 20kHz/5min, and 10kHz/5min) based on previous literature. OIAIs models were then developed and applied to ultrasound group treatment. Subsequently, we evaluated the efficiency of bacteria removal by conducting SEM and crystal violet staining. The number of live bacteria in the SF was determined using plate colony count and live/dead bacteria staining. RESULTS The results of crystal violet staining revealed that both the 40kHz/5min group and the 40kHz/10min group exhibited a significantly higher bacterial clearance rate compared to the other groups. However, there was no significant difference between the two groups. Additionally, the results of plate colony count and fluorescence staining of live and dead bacteria indicated that the number of live bacteria in the 40kHz/5min SF group was significantly higher than in the other groups. CONCLUSION 40kHz/5min ultrasound is the most beneficial for the detection of pathogenic bacteria on the surface of orthopedic implants.
Collapse
Affiliation(s)
- Chunxing Xian
- Department of Orthopaedics, The First Affiliated Hospital of Air Force Medical University, Xian, China.
| | - Yanwu Liu
- Department of Orthopaedics, The First Affiliated Hospital of Air Force Medical University, Xian, China
| | - Lei Zhou
- Department of Clinical Laboratory, The First Affiliated Hospital of Air Force Medical University, Xian, China
| | - Ting Ding
- Department of Clinical Laboratory, The First Affiliated Hospital of Air Force Medical University, Xian, China
| | - Jingdi Chen
- Department of Orthopaedics, The First Affiliated Hospital of Air Force Medical University, Xian, China
| | - Taoran Wang
- Department of Orthopaedics, The First Affiliated Hospital of Air Force Medical University, Xian, China
| | - Jiakai Gao
- Department of Orthopaedics, The First Affiliated Hospital of Air Force Medical University, Xian, China
| | - Xiaotian Hao
- Department of Orthopaedics, The First Affiliated Hospital of Air Force Medical University, Xian, China
| | - Long Bi
- Department of Orthopaedics, The First Affiliated Hospital of Air Force Medical University, Xian, China.
| |
Collapse
|
11
|
Naik A, Kale AA, Rajwade JM. Sensing the future: A review on emerging technologies for assessing and monitoring bone health. BIOMATERIALS ADVANCES 2024; 165:214008. [PMID: 39213957 DOI: 10.1016/j.bioadv.2024.214008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/24/2024] [Revised: 08/19/2024] [Accepted: 08/25/2024] [Indexed: 09/04/2024]
Abstract
Bone health is crucial at all stages of life. Several medical conditions and changes in lifestyle affect the growth, structure, and functions of bones. This may lead to the development of bone degenerative disorders, such as osteoporosis, osteoarthritis, rheumatoid arthritis, etc., which are major public health concerns worldwide. Accurate and reliable measurement and monitoring of bone health are important aspects for early diagnosis and interventions to prevent such disorders. Significant progress has recently been made in developing new sensing technologies that offer non-invasive, low-cost, and accurate measurements of bone health. In this review, we have described bone remodeling processes and common bone disorders. We have also compiled information on the bone turnover markers for their use as biomarkers in biosensing devices to monitor bone health. Second, this review details biosensing technology for bone health assessment, including the latest developments in various non-invasive techniques, including dual-energy X-ray absorptiometry, magnetic resonance imaging, computed tomography, and biosensors. Further, we have also discussed the potential of emerging technologies, such as biosensors based on nano- and micro-electromechanical systems and application of artificial intelligence in non-invasive techniques for improving bone health assessment. Finally, we have summarized the advantages and limitations of each technology and described clinical applications for detecting bone disorders and monitoring treatment outcomes. Overall, this review highlights the potential of emerging technologies for improving bone health assessment with the potential to revolutionize clinical practice and improve patient outcomes. The review highlights key challenges and future directions for biosensor research that pave the way for continued innovations to improve diagnosis, monitoring, and treatment of bone-related diseases.
Collapse
Affiliation(s)
- Amruta Naik
- Department of Biosciences and Technology, School of Science and Environmental Studies, Dr. Vishwanath Karad MIT World Peace University, Pune 411038, Maharashtra, India.
| | - Anup A Kale
- Department of Biosciences and Technology, School of Science and Environmental Studies, Dr. Vishwanath Karad MIT World Peace University, Pune 411038, Maharashtra, India
| | - Jyutika M Rajwade
- Nanobioscience Group, Agharkar Research Institute, Pune 411004, Maharashtra, India.
| |
Collapse
|
12
|
Zhang Y, Xu T, Li T, Chen H, Xu G, Hu W, Li Y, Dong Y, Liu Z, Han B. A three-phase strategy of bionic drug reservoir scaffold by 3D printing and layer-by-layer modification for chronic relapse management in traumatic osteomyelitis. Mater Today Bio 2024; 29:101356. [PMID: 39687799 PMCID: PMC11648807 DOI: 10.1016/j.mtbio.2024.101356] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2024] [Revised: 11/11/2024] [Accepted: 11/21/2024] [Indexed: 12/18/2024] Open
Abstract
We have developed a novel three-phase strategy for osteomyelitis treatment, structured into three distinct phases: the "strong antimicrobial" phase, the "monitoring and osteogenesis" phase and the "bone repair" phase. To implement this staged therapeutic strategy, we engineered a bionic drug reservoir scaffold carrying a dual-drug combination of antimicrobial peptides (AMPs) and simvastatin (SV). The scaffold integrated a bilayer gel drug-carrying structure, based on an induced membrane and combined with a 3D-printed rigid bone graft using a layer-by-layer modification strategy. The mechanical strength of the composite scaffold (73.40 ± 22.44 MPa) is comparable to that of cancellous bone. This scaffold enables controlled, sequential drug release through a spatial structure design and nanoparticle drug-carrying strategy. AMPs are released rapidly, with the release efficiency of 74.90 ± 8.19 % at 14 days (pH = 7.2), thus enabling rapid antimicrobial therapy. Meanwhile, SV is released over a prolonged period, with a release efficiency of 98.98 ± 0.05 % over 40 days in vitro simulations, promoting sustained osteogenesis and facilitating the treatment of intracellular infections by activating macrophage extracellular traps (METs). The antimicrobial, osteogenic and immunomodulatory effects of the scaffolds were verified through in vitro and in vivo experiments. It was demonstrated that composite scaffolds were able to combat the chronic recurrence of osteomyelitis after debridement, by providing rapid sterilization, stimulating METs formation, and supporting osteogenic repair.
Collapse
Affiliation(s)
- Yutong Zhang
- School of Pharmaceutical Sciences, Jilin University, Changchun, 130021, China
| | - Tongtong Xu
- Department of Prosthodontics, Hospital of Stomatology, Jilin University, Changchun, 130021, China
| | - Tieshu Li
- School of Pharmaceutical Sciences, Jilin University, Changchun, 130021, China
- Changchun University of Chinese Medicine, Changchun, 130117, China
- Affiliated Hospital of Yangzhou University, Yangzhou, 225009, China
| | - Hening Chen
- School of Pharmaceutical Sciences, Jilin University, Changchun, 130021, China
| | - Guangzhe Xu
- Changchun University of Chinese Medicine, Changchun, 130117, China
| | - Wenxin Hu
- School of Pharmaceutical Sciences, Jilin University, Changchun, 130021, China
| | - Yongting Li
- School of Pharmaceutical Sciences, Jilin University, Changchun, 130021, China
| | - Yue Dong
- School of Pharmaceutical Sciences, Jilin University, Changchun, 130021, China
| | - Zhihui Liu
- Department of Prosthodontics, Hospital of Stomatology, Jilin University, Changchun, 130021, China
| | - Bing Han
- School of Pharmaceutical Sciences, Jilin University, Changchun, 130021, China
| |
Collapse
|
13
|
Schwabe SA, Booth S, Caldwell S. Chronic non-bacterial osteomyelitis of the mandible - orthodontic considerations and management: A case report. J Orthod 2024; 51:415-423. [PMID: 39663636 DOI: 10.1177/14653125241235194] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2024]
Abstract
This case report describes the orthodontic management of a case of chronic non-bacterial osteomyelitis (CNO) of the mandible, a rare non-infective variant of osteomyelitis that exhibits a marked predilection in children and adolescents. The patient presented with a unilateral facial swelling associated with fluctuating pain. Radiographic examination, along with tissue biopsy and culture, as well as multispecialty input, led to confirmation of the diagnosis. There was no clear aetiological factor and pharmacological, symptomatic management was indicated. CNO requires multidisciplinary input, with good interspecialty communication and discussion, for an accurate diagnosis. Orthodontic management should be considered on a case-by-case basis, with tailored aims appropriate for each patient.
Collapse
Affiliation(s)
| | - Sean Booth
- Department of Radiology, Royal Manchester Children's Hospital, Manchester, UK
| | - Susi Caldwell
- Department of Orthodontics, Wythenshawe Hospital, Manchester, UK
| |
Collapse
|
14
|
Yan N, Zhou H, Jin P, Li T, Liu Q, Ning H, Ma Z, Feng L, Jin T, Deng Y, Wu Z. A Multifunctional Cobalt-Containing Implant for Treating Biofilm Infections and Promoting Osteointegration in Infected Bone Defects Through Macrophage-Mediated Immunomodulation. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2024:e2409200. [PMID: 39587976 DOI: 10.1002/advs.202409200] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/06/2024] [Revised: 10/26/2024] [Indexed: 11/27/2024]
Abstract
Treating bone infections and ensuring bone recovery is one of the major global problems facing modern orthopedics. Prolonged antibiotic use may increase the risk of antimicrobial resistance, and inflammation caused by biofilms can obstruct tissue healing, making bone infection treatment even more challenging. The optimal treatment strategy combines immune response modification to promote osteogenesis with effective bacterial infection removal that does not require long-term antibiotic use. A one-step plasma immersion ion implantation approach is used to create titanium alloy implants incorporating cobalt. According to experimental findings, cobalt-containing titanium implants exhibit improved antibacterial activity by efficiently disrupting biofilm formations and reducing Methicillin-resistant Staphylococcus aureus adherence by over 80%. Additionally, the implants exhibit superior anti-inflammatory and osseointegration properties. RNA sequencing analysis reveals the potential mechanism of Co2+ in regulating the polarization of macrophages toward the anti-inflammatory M2 phenotype, which is crucial for creating an immune environment conducive to bone healing. Concurrently, these implants promote osteogenic differentiation while suppressing osteoclast activity, further supporting bone repair. Overall, without exogenous recombinant proteins or antibiotics, the implants effectively eradicate infections and expedite bone repair, offering a novel therapeutic strategy for complex skeletal diseases with clinical promise.
Collapse
Affiliation(s)
- Nongyang Yan
- Institute of Advanced Technology, University of Science and Technology of China, No. 5089 Wangjiang West Road, Hefei, Anhui, 230031, China
| | - Hao Zhou
- Department of Spine Surgery, The Third Xiangya Hospital, Central South University, No. 138 Tongzi Road, Changsha, Hunan, 410013, China
| | - Penghe Jin
- Department of Spine Surgery, The Third Xiangya Hospital, Central South University, No. 138 Tongzi Road, Changsha, Hunan, 410013, China
| | - Tengfei Li
- Institute of Advanced Technology, University of Science and Technology of China, No. 5089 Wangjiang West Road, Hefei, Anhui, 230031, China
| | - Qi Liu
- School of Nuclear Science and Technology, University of Science and Technology of China, No. 96 Jinzhai Road, Hefei, Anhui, 230026, China
| | - Hao Ning
- Department of Spine Surgery, The Third Xiangya Hospital, Central South University, No. 138 Tongzi Road, Changsha, Hunan, 410013, China
| | - Zhixin Ma
- Comprehensive supervision office, Anhui provincial Health Commission, 435 Tunbrook Road, Hefei, 230032, China
| | - Linfei Feng
- School of Nuclear Science and Technology, University of Science and Technology of China, No. 96 Jinzhai Road, Hefei, Anhui, 230026, China
- Department of Oral and Maxillofacial Surgery, The First Affiliated Hospital of Anhui Medical University, No. 218 Jixi Avenue, Heifei, Anhui, 230032, China
| | - Tao Jin
- School of Nuclear Science and Technology, University of Science and Technology of China, No. 96 Jinzhai Road, Hefei, Anhui, 230026, China
| | - Youwen Deng
- Department of Spine Surgery, The Third Xiangya Hospital, Central South University, No. 138 Tongzi Road, Changsha, Hunan, 410013, China
| | - Zhengwei Wu
- Institute of Advanced Technology, University of Science and Technology of China, No. 5089 Wangjiang West Road, Hefei, Anhui, 230031, China
- School of Nuclear Science and Technology, University of Science and Technology of China, No. 96 Jinzhai Road, Hefei, Anhui, 230026, China
| |
Collapse
|
15
|
Mu W, Lizcano JD, Xu B, Li S, Zhang X, Parvizi J, Cao L. Dynamics of Synovial Fluid Markers Following Single-Stage Exchange and Debridement, Antibiotics, and Implant Retention Procedure with Topical Antibiotic Infusion in Treating Periprosthetic Joint Infection. J Arthroplasty 2024:S0883-5403(24)01261-0. [PMID: 39603366 DOI: 10.1016/j.arth.2024.11.045] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/05/2024] [Revised: 11/13/2024] [Accepted: 11/19/2024] [Indexed: 11/29/2024] Open
Abstract
INTRODUCTION Periprosthetic joint infection (PJI) is a severe complication following total joint arthroplasty (TJA). This study aimed to investigate the dynamics of synovial fluid markers following single-stage exchange arthroplasty or debridement combined with antibiotics and implant retention (DAIR) with topical antibiotic infusion for PJI. METHODS This retrospective study analyzed patient records at a tertiary hospital from March 1, 2018, to May 1, 2023. Patients who received single-stage exchange arthroplasty or DAIR followed by intra-articular antibiotic infusion for PJI were included. Basic demographic details, comorbidities, Charlson Comorbidity Index (CCI) scores, microorganism profile, presence of sinus tract, and antibiotic treatment type were collected. Synovial fluid samples were collected preoperatively and postoperatively every two days for 14 days to quantify synovial white blood cell (WBC) count and polymorphonuclear cell percentage (PMN%). RESULTS The study included 140 patients who had a mean age of 63 years and a mean body mass index (BMI) of 25. The results showed a steady decrease in synovial WBC count from preoperative levels to Day 14 postoperative. Patients who had successful outcomes had significantly higher preoperative WBC counts compared to those who had a treatment failure. The synovial PMN% initially increased postoperatively, peaking at days one to two, and then gradually declined. Patients who had successful outcomes showed a faster decline in PMN% compared to those who had persistent infections. Different bacteria exhibited varying preoperative synovial WBC counts and PMN%, but these differences were not statistically significant. CONCLUSION Monitoring synovial WBC count and PMN% can help distinguish between normal postoperative inflammation and persistent infection. Higher preoperative synovial WBC counts are associated with successful outcomes, suggesting their potential role in predicting treatment success. Future research with larger sample sizes is necessary to further validate these findings and improve the management and diagnosis of PJI.
Collapse
Affiliation(s)
- Wenbo Mu
- Department of Orthopaedics, First Affiliated Hospital of Xinjiang Medical University, 137 South LiYuShan Road, Urumqi, Xinjiang 830054, China; Rothman Orthopaedic Institute at Thomas Jefferson University, Philadelphia, Pennsylvania
| | - Juan D Lizcano
- Rothman Orthopaedic Institute at Thomas Jefferson University, Philadelphia, Pennsylvania
| | - Boyong Xu
- Department of Orthopaedics, First Affiliated Hospital of Xinjiang Medical University, 137 South LiYuShan Road, Urumqi, Xinjiang 830054, China
| | - Siyu Li
- Department of Orthopaedics, First Affiliated Hospital of Xinjiang Medical University, 137 South LiYuShan Road, Urumqi, Xinjiang 830054, China
| | - Xiaogang Zhang
- Department of Orthopaedics, First Affiliated Hospital of Xinjiang Medical University, 137 South LiYuShan Road, Urumqi, Xinjiang 830054, China
| | - Javad Parvizi
- International Joint Center, Acibadem University Hospital, Istanbul, Turkey
| | - Li Cao
- Department of Orthopaedics, First Affiliated Hospital of Xinjiang Medical University, 137 South LiYuShan Road, Urumqi, Xinjiang 830054, China; Key Laboratory of High Incidence Disease Research in Xingjiang (Xinjiang Medical University), Ministry of Education, 137 South LiYuShan Road, Urumqi, Xinjiang 830054, China; Xinjiang Clinical Research Center for Orthopedics, 137 South LiYuShan Road, Urumqi, Xinjiang 830054, China.
| |
Collapse
|
16
|
Zeng H, Miao W, Liang S, Wang W, Zhang J. Recurrent septic arthritis caused by Gemella morbillorum: a case report and literature review. BMC Infect Dis 2024; 24:1332. [PMID: 39578760 PMCID: PMC11583576 DOI: 10.1186/s12879-024-10207-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2024] [Accepted: 11/11/2024] [Indexed: 11/24/2024] Open
Abstract
Gemella morbillorum is a gram-positive coccus that is part of the normal microbiota of the human oral cavity and gastrointestinal tract. It is an opportunistic pathogen that can cause invasive infections, including septic arthritis. Septic arthritis caused by Gemella morbillorum is relatively rare, but when it occurs, it can lead to severe joint damage and other complications if not promptly diagnosed and treated. Here, we report a case of recurrent septic arthritis caused by Gemella morbillorum.
Collapse
Affiliation(s)
- Haiquan Zeng
- Jinan University, Guangzhou, Guangdong, 510632, China
- Guangzhou Red Cross Hospital of Jinan University, Guangzhou, Guangdong, 510220, China
| | - Weijin Miao
- Jinan University, Guangzhou, Guangdong, 510632, China
- Guangzhou Red Cross Hospital of Jinan University, Guangzhou, Guangdong, 510220, China
| | - Shaohua Liang
- Guangzhou Red Cross Hospital of Jinan University, Guangzhou, Guangdong, 510220, China.
| | - Wen Wang
- Jinan University, Guangzhou, Guangdong, 510632, China.
- Guangzhou Red Cross Hospital of Jinan University, Guangzhou, Guangdong, 510220, China.
| | - Jinli Zhang
- Guangzhou Red Cross Hospital of Jinan University, Guangzhou, Guangdong, 510220, China
| |
Collapse
|
17
|
Zhang Y, Zhang M, Li M, Miao M, Shou D, Tong P. Icariin-Enhanced Osteoclast-Derived Exosomes Promote Repair of Infected Bone Defects by Regulating Osteoclast and Osteoblast Communication. Int J Nanomedicine 2024; 19:12389-12407. [PMID: 39588260 PMCID: PMC11587802 DOI: 10.2147/ijn.s483621] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2024] [Accepted: 11/08/2024] [Indexed: 11/27/2024] Open
Abstract
Background Infected bone defects pose a challenging clinical issue due to an imbalance of osteoclasts (OC) and osteoblasts (OB). Exosomes are crucial for intercellular signaling of OC and OB in bone repair. Icariin, has been shown to regulate the balance between OC and OB. However, the specific mechanisms by which icariin influences exosomes derived from osteoclasts, and subsequently impacts osteoblast activity, remain unclear. This study aims to investigate the effects of icariin-treated osteoclast-derived exosomes (ICA-OC-Exo) on osteoblast function and bone repair in cases of infected bone defects. Methods We investigated the exosome profile and localization of multivesicular bodies (MVB) and quantification of intraluminal vesicles (ILVs) in osteoclasts by using transmission electron microscopy. Additionally, the expressions of Rab27A and MITF, which are associated with exosome release, were determined through immunofluorescence staining and Western blot. The profiling of exosomal miRNA expression was conducted via miRNA-sequencing. The effects of ICA-OC-Exo on osteoblast differentiation were determined using RT-qPCR, Western blot, alkaline phosphatase staining. Additionally, ICA-OC-Exo was administered into the localized bone defect of the infected bone rat models, and bone formation was assessed using Micro-CT. Results Icariin increased the presence of MVBs in the cytoplasm through modulation of the MITF/Rab27A signaling pathway, resulting in higher number of ICA-OC-Exo compared to OC-Exo. Additionally, miR-331-3p expression in ICA-OC-Exo was found to be elevated compared to OC-Exo. ICA-OC-Exo was observed to stimulate osteoblast function by targeting FGF23, reducing DKK1, and subsequently upregulating ALP. In the in vivo study, ICA-OC-Exo exhibited the capacity to enhance bone healing at the site of a local bone defect following anti-infection treatment. Conclusion Icariin enhanced the quantification of OC-Exo and the expression of miRNA-331-3p in OC-Exo, leading to the regulation of osteoblast function via activation of the miRNA-331-3p/FGF23/DKK1 pathway. ICA-OC-Exo demonstrated potential clinical applicability in bone repair of infected bone defects.
Collapse
Affiliation(s)
- Yang Zhang
- Institute of Orthopaedics and Traumatology, The First Affiliated Hospital of Zhejiang Chinese Medical University (Zhejiang Provincial Hospital of Chinese Medicine), Hangzhou, 310053, People’s Republic of China
| | - Minjie Zhang
- School of Pharmaceutical Sciences, Zhejiang Chinese Medical University, Hangzhou, 310053, People’s Republic of China
| | - Mengying Li
- School of Pharmaceutical Sciences, Zhejiang Chinese Medical University, Hangzhou, 310053, People’s Republic of China
| | - Maomao Miao
- School of Pharmaceutical Sciences, Zhejiang Chinese Medical University, Hangzhou, 310053, People’s Republic of China
| | - Dan Shou
- School of Pharmaceutical Sciences, Zhejiang Chinese Medical University, Hangzhou, 310053, People’s Republic of China
| | - Peijian Tong
- Institute of Orthopaedics and Traumatology, The First Affiliated Hospital of Zhejiang Chinese Medical University (Zhejiang Provincial Hospital of Chinese Medicine), Hangzhou, 310053, People’s Republic of China
| |
Collapse
|
18
|
Yuan Y, Li H, Song Y, Zhang D, Wang Z, Yi X, Qi B, Zhang X, Jiang P, Yu A. Drug-Free "Triboelectric Immunotherapy" Activating Immunity for Osteomyelitis Treatment and Recurrence Prevention. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2024; 36:e2408473. [PMID: 39212208 DOI: 10.1002/adma.202408473] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/14/2024] [Revised: 08/07/2024] [Indexed: 09/04/2024]
Abstract
Treatment of osteomyelitis is clinically challenging with low therapeutic efficacy and high risk of recurrence owing to the immunosuppressive microenvironment. Existing therapies are limited by drug concentration and single regulatory effect on the immune network, and emphasize the role of anti-inflammatory effects in reducing osteoclast rather than the role of proinflammatory effects in accelerating infection clearance, which is not conducive to complete bacteria elimination and recurrence prevention. Herein, a direct-current triboelectric nanogenerator (DC-TENG) is established to perform antibacterial effects and modulate immunological properties of infectious microenvironments of osteomyelitis through electrical stimulation, namely triboelectric immunotherapy. Seeing from the results, the triboelectric immunotherapy successfully activates polarization to proinflammatory (M1) macrophages in vitro, accompanied by satisfying direct antibacterial effects. The antibacterial and osteogenic abilities of triboelectric immunotherapy are verified in rat cranial osteomyelitis models. The effects on the polarization and differentiation of immune-related cells in vivo are investigated by establishing in situ tibial osteomyelitis models and immunosurveillance models in C57 mice respectively, indicating the ability of activating immunity and producing immunological memory for in situ infection and secondary recurrence, thus accelerating healing and preventing relapse. This study provides an efficient, long-acting, multifunctional, and wearable triboelectric immunotherapy strategy for drug-free osteomyelitis treatment systems.
Collapse
Affiliation(s)
- Ying Yuan
- Department of Orthopedics Trauma and Microsurgery, Zhongnan Hospital of Wuhan University, Wuhan, 430071, China
- Key Laboratory of Biomedical Polymers of Ministry of Education & Department of Chemistry, Wuhan University, Wuhan, 430072, China
| | - Haimei Li
- School of Pharmaceutical Sciences, Wuhan University, Wuhan, 430071, P. R. China
- Key Laboratory of Combinatorial Biosynthesis and Drug Discovery (MOE), Wuhan University, Wuhan, 430072, China
| | - Yuchen Song
- Department of Orthopedics Trauma and Microsurgery, Zhongnan Hospital of Wuhan University, Wuhan, 430071, China
| | - Dong Zhang
- Department of Orthopedics Trauma and Microsurgery, Zhongnan Hospital of Wuhan University, Wuhan, 430071, China
- Key Laboratory of Biomedical Polymers of Ministry of Education & Department of Chemistry, Wuhan University, Wuhan, 430072, China
| | - Zheng Wang
- Department of Orthopedics Trauma and Microsurgery, Zhongnan Hospital of Wuhan University, Wuhan, 430071, China
| | - Xinzeyu Yi
- Department of Orthopedics Trauma and Microsurgery, Zhongnan Hospital of Wuhan University, Wuhan, 430071, China
| | - Baiwen Qi
- Department of Orthopedics Trauma and Microsurgery, Zhongnan Hospital of Wuhan University, Wuhan, 430071, China
| | - Xianzheng Zhang
- Department of Orthopedics Trauma and Microsurgery, Zhongnan Hospital of Wuhan University, Wuhan, 430071, China
- Key Laboratory of Biomedical Polymers of Ministry of Education & Department of Chemistry, Wuhan University, Wuhan, 430072, China
| | - Peng Jiang
- Department of Orthopedics Trauma and Microsurgery, Zhongnan Hospital of Wuhan University, Wuhan, 430071, China
- School of Pharmaceutical Sciences, Wuhan University, Wuhan, 430071, P. R. China
- Key Laboratory of Combinatorial Biosynthesis and Drug Discovery (MOE), Wuhan University, Wuhan, 430072, China
| | - Aixi Yu
- Department of Orthopedics Trauma and Microsurgery, Zhongnan Hospital of Wuhan University, Wuhan, 430071, China
| |
Collapse
|
19
|
Xie Z, Cao ZM, Yang Y, Lu YL, Qing LM, Wu PF, Tang JY. Clinical effect of free chimeric anterolateral thigh flap and chimeric thoracodorsal artery perforator flap in chronic osteomyelitis. J Plast Reconstr Aesthet Surg 2024; 98:272-280. [PMID: 39305535 DOI: 10.1016/j.bjps.2024.09.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2024] [Revised: 08/01/2024] [Accepted: 09/01/2024] [Indexed: 11/05/2024]
Abstract
BACKGROUND Chronic osteomyelitis poses a formidable challenge for orthopedic practitioners in clinical practice. Chimeric perforator flap is a commonly used repair method for chronic osteomyelitis. The purpose of this study was to compare the clinical efficacy of chimeric anterolateral thigh flap (C-ALTP) and chimeric thoracodorsal artery perforator flap (C-TDAP) for the treatment of chronic osteomyelitis. METHODS A retrospective analysis was performed on patients with chronic osteomyelitis of the lower extremity who underwent two kinds of treatment with chimeric perforator flaps from January 2014 to March 2022. The preoperative basic data and the operative and postoperative basic information of the two groups were collected and statistically analyzed. RESULTS Sixty-six patients were included in this study, and both groups achieved satisfactory aesthetic and functional results. Intraoperative results showed that the intraoperative blood loss and flap acquisition time in the C-TDAP group were less than those in the C-ALTP group. The incidence of postoperative complications in the donor and recipient sites in the C-TDAP group was significantly lower than that in the C-ALTP group, which led to a high reoperation rate in the C-ALTP group. Long-term follow-up showed that the wound healing time and weight-bearing walking time in the C-TDAP group were less than those in the C-ALTP group. CONCLUSIONS Chimeric perforator flaps can effectively be used to treat osteomyelitis with composite tissue defects, eliminate inflammation of the affected limbs, and promote wound healing. However, C-TDAP flaps have more reliable healing effects on wounds and donor sites, and have fewer complications. LEVEL OF EVIDENCE III, Case-control study.
Collapse
Affiliation(s)
- Zheng Xie
- Department of Orthopedics, Xiangya Hospital, Central South University, 87 Xiangya Road, Changsha 410008, Hunan, China
| | - Zhe-Ming Cao
- Department of Orthopedics, Xiangya Hospital, Central South University, 87 Xiangya Road, Changsha 410008, Hunan, China
| | - Yan Yang
- Department of Orthopedics, Xiangya Hospital, Central South University, 87 Xiangya Road, Changsha 410008, Hunan, China
| | - Yi-Lei Lu
- Department of Orthopedics, Xiangya Hospital, Central South University, 87 Xiangya Road, Changsha 410008, Hunan, China
| | - Li-Ming Qing
- Department of Orthopedics, Xiangya Hospital, Central South University, 87 Xiangya Road, Changsha 410008, Hunan, China
| | - Pan-Feng Wu
- Department of Orthopedics, Xiangya Hospital, Central South University, 87 Xiangya Road, Changsha 410008, Hunan, China.
| | - Ju-Yu Tang
- Department of Orthopedics, Xiangya Hospital, Central South University, 87 Xiangya Road, Changsha 410008, Hunan, China.
| |
Collapse
|
20
|
Bell RD, Cann EA, Mishra B, Valencia M, Zhang Q, Huang M, Yang X, Carli A, Bostrom M, Ivashkiv LB. Staphyloccocus aureus biofilm, in absence of planktonic bacteria, produces factors that activate counterbalancing inflammatory and immune-suppressive genes in human monocytes. J Orthop Res 2024; 42:2582-2592. [PMID: 38922976 PMCID: PMC11481048 DOI: 10.1002/jor.25919] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/15/2023] [Revised: 04/25/2024] [Accepted: 05/31/2024] [Indexed: 06/28/2024]
Abstract
Staphyloccocus aureus (S. aureus) is a major bacterial pathogen in orthopedic periprosthetic joint infection (PJI). S. aureus forms biofilms that promote persistent infection by shielding bacteria from immune cells and inducing an antibiotic-tolerant metabolic state. We developed an in vitro system to study S. aureus biofilm interactions with primary human monocytes in the absence of planktonic bacteria. In line with previous in vivo data, S. aureus biofilm induced expression of inflammatory genes such as TNF and IL1B, and their anti-inflammatory counter-regulator IL10. S. aureus biofilm also activated expression of PD-1 ligands, and IL-1RA, molecules that have the potential to suppress T cell function or differentiation of protective Th17 cells. Gene induction did not require monocyte:biofilm contact and was mediated by a soluble factor(s) produced by biofilm-encased bacteria that was heat resistant and >3 kD in size. Activation of suppressive genes by biofilm was sensitive to suppression by Jak kinase inhibition. These results support an evolving paradigm that biofilm plays an active role in modulating immune responses, and suggest this occurs via production of a soluble vita-pathogen-associated molecular pattern, a molecule that signals microbial viability. Induction of T cell suppressive genes by S. aureus biofilm provides insights into mechanisms that can suppress T cell immunity in PJI.
Collapse
Affiliation(s)
- Richard D Bell
- Research Institute and Arthritis and Tissue Degeneration Program, Hospital for Special Surgery
| | - E. Abrefi Cann
- Research Institute and Arthritis and Tissue Degeneration Program, Hospital for Special Surgery
| | - Bikash Mishra
- Immunology and Microbial Pathogenesis Program, Weill Cornell Medicine
| | - Melanie Valencia
- Research Institute and Arthritis and Tissue Degeneration Program, Hospital for Special Surgery
| | - Qiong Zhang
- Research Institute and Arthritis and Tissue Degeneration Program, Hospital for Special Surgery
| | - Mary Huang
- Research Institute and Arthritis and Tissue Degeneration Program, Hospital for Special Surgery
| | - Xu Yang
- Research Institute and Arthritis and Tissue Degeneration Program, Hospital for Special Surgery
| | - Alberto Carli
- Department of Orthopedic Surgery, Hospital for Special Surgery
| | - Mathias Bostrom
- Department of Orthopedic Surgery, Hospital for Special Surgery
| | - Lionel B Ivashkiv
- Research Institute and Arthritis and Tissue Degeneration Program, Hospital for Special Surgery
- Immunology and Microbial Pathogenesis Program, Weill Cornell Medicine
| |
Collapse
|
21
|
Kates SL, Owen JR, Xie C, Ren Y, Muthukrishnan G, Schwarz EM. Vaccines: Do they have a role in orthopedic trauma? Injury 2024; 55 Suppl 6:111631. [PMID: 39482036 DOI: 10.1016/j.injury.2024.111631] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/26/2024] [Revised: 05/20/2024] [Accepted: 05/24/2024] [Indexed: 11/03/2024]
Abstract
Although vaccines have been hailed as one of the greatest advances in medicine based on their unparalleled cost-effectiveness in eradicating life-threatening infectious diseases, their role in orthopedic trauma-related infections is unclear. This is largely because vaccines are primarily made against pathogens that cause communicable diseases rather than opportunistic infections secondary to trauma, and most successful vaccines are against viruses rather than biofilm forming bacteria. Nonetheless, the tremendous costs to patients and healthcare systems warrant orthopedic trauma vaccine research, which has been a focal topic in recent international consensus meetings on musculoskeletal infection. This subject was also covered at the 2023 Osteosynthesis and Trauma Care Foundation (OTCF) meeting in Rome, Italy, and the purpose of this supplement article is to (1) highlight the osteoimmunology, animal models, translational research and clinical pilots that were discussed, (2) the proposed future directions that could lead to diagnostics and prognostics that are critically needed for evidence-based decision making, and (3) vaccines and passive-immunization strategies that could potentially be utilized to treat patients with orthopedic infections.
Collapse
Affiliation(s)
- Stephen L Kates
- Department of Orthopaedic Surgery, Virginia Commonwealth University, Richmond, VA, USA
| | - John R Owen
- Department of Orthopaedic Surgery, Virginia Commonwealth University, Richmond, VA, USA
| | - Chao Xie
- Center for Musculoskeletal Research, University of Rochester Medical Center, Rochester, NY, USA
| | - Youliang Ren
- Center for Musculoskeletal Research, University of Rochester Medical Center, Rochester, NY, USA
| | | | - Edward M Schwarz
- Center for Musculoskeletal Research, University of Rochester Medical Center, Rochester, NY, USA.
| |
Collapse
|
22
|
Li S, Yue Y, Wang W, Han M, Wan X, Li Q, Chen X, Cao J, Zhang Y, Li J, Li J, Cheng L, Yang J, Wang D, Zhou Z. Ultrasound-Activated Probiotics Vesicles Coating for Titanium Implant Infections Through Bacterial Cuproptosis-Like Death and Immunoregulation. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2024; 36:e2405953. [PMID: 39101293 DOI: 10.1002/adma.202405953] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/25/2024] [Revised: 07/09/2024] [Indexed: 08/06/2024]
Abstract
Implant-associated infections (IAIs) are the main cause of prosthetic implant failure. Bacterial biofilms prevent antibiotic penetration, and the unique metabolic conditions in hypoxic biofilm microenvironment may limit the efficacy of conventional antibiotic treatment. Escaping survival bacteria may not be continually eradicated, resulting in the recurrence of IAIs. Herein, a sonosensitive metal-organic framework of Cu-TCPP (tetrakis(4-carboxyphenyl) porphyrin) nanosheets and tinidazole doped probiotic-derived membrane vesicles (OMVs) with high-penetration sonodynamic therapy (SDT), bacterial metabolic state interference, and bacterial cuproptosis-like death to eradicate IAIs is proposed. The Cu-TCPP can convert O2 to toxic 1O2 through SDT in the normoxic conditions, enhancing the hypoxic microenvironment and activating the antibacterial activity of tinidazole. The released Cu(II) under ultrasound can be converted to Cu(I) by exogenous poly(tannic acid) (pTA) and endogenous glutathione. The disruption of the bacterial membrane by SDT can enhance the Cu(I) transporter activity. Transcriptomics indicate that the SDT-enhanced Cu(I) overload and hypoxia-activated therapy hinder the tricarboxylic acid cycle (TCA), leading to bacterial cuproptosis-like death. Moreover, the OMVs-activated therapy can polarize macrophages to a M2-like phenotype and facilitate bone repair. The sonodynamic biofilm microenvironment modulation strategy, whereby the hypoxia-enhanced microenvironment is potentiated to synergize SDT with OMVs-activated therapy, provides an effective strategy for antibacterial and osteogenesis performance.
Collapse
Affiliation(s)
- Shuoyuan Li
- Orthopaedic Research Institute, Department of Orthopaedics, West China Hospital, Sichuan University, Chengdu, 610041, China
| | - Yan Yue
- Orthopaedic Research Institute, Department of Orthopaedics, West China Hospital, Sichuan University, Chengdu, 610041, China
| | - Wenqi Wang
- Orthopaedic Research Institute, Department of Orthopaedics, West China Hospital, Sichuan University, Chengdu, 610041, China
| | - Mingyue Han
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, 610041, China
| | - Xufeng Wan
- Orthopaedic Research Institute, Department of Orthopaedics, West China Hospital, Sichuan University, Chengdu, 610041, China
| | - Qiaochu Li
- Department of orthopedics, the First Affiliated Hospital, Chongqing Medical University, Chongqing, 400016, China
| | - Xiaoting Chen
- Animal Experimental Center, West China Hospital, Sichuan University, Chengdu, 610041, China
| | - Jian Cao
- Orthopaedic Research Institute, Department of Orthopaedics, West China Hospital, Sichuan University, Chengdu, 610041, China
| | - Yangming Zhang
- Orthopaedic Research Institute, Department of Orthopaedics, West China Hospital, Sichuan University, Chengdu, 610041, China
| | - Jiyao Li
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, 610041, China
| | - Jianshu Li
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, 610041, China
| | - Lei Cheng
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, 610041, China
| | - Jiaojiao Yang
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, 610041, China
| | - Duan Wang
- Orthopaedic Research Institute, Department of Orthopaedics, West China Hospital, Sichuan University, Chengdu, 610041, China
| | - Zongke Zhou
- Orthopaedic Research Institute, Department of Orthopaedics, West China Hospital, Sichuan University, Chengdu, 610041, China
| |
Collapse
|
23
|
Jensen LK, Hartmann KT, Witzmann F, Asbach P, Stewart PS. Bone infection evolution. Injury 2024; 55 Suppl 6:111826. [PMID: 39482026 DOI: 10.1016/j.injury.2024.111826] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/05/2024] [Revised: 08/15/2024] [Accepted: 08/16/2024] [Indexed: 11/03/2024]
Abstract
The present minireview aims to provide a context for imagination of the timespan for bone infection evolution from the origin of cellular bone tissue to modern orthopedic surgery. From a phylogenetic osteomyelitis-bracketing perspective, and due to the time of osteocyte origin, bacteria might have been able to infect the skeleton for approximately 400 million years. Thereby, bone infections happened simultaneously with central expansions of the immune system and development of terrestrial bone structure. This co-evolution might aid in explaining the many immune evasion strategies seen in the field of bone infections. Bone infection patients with long disease-free periods followed by sudden recurrence and anamnesis of long-term and low-grade infections indicate that bacteria can perform silent parasitism within bone tissue (parasitism; one organism lives on another organism, the host, causing it harm and is structurally adapted to it). The silence seems to be disturbed by immunosuppression and the present minireview shows that a compromised immune system has been associated with bone infection development across all species in the phylogenetic tree. Orthopedic surgery, including arthroplasty and osteosynthesis, favor introduction of bacteria and prosthesis/implant related infections are thus anthropogenic infections (anthropogenic; resulting from the influence of human beings on nature). In that light it is important to remember that the skeleton and immune system have not evolved for millions of years to protect titanium alloys and other metals, commonly used for orthopedic devices from bacterial invasion. Therefore, these relatively new orthopedic infection types must be seen as distinct with unique implant/prosthesis related pathophysiology and immunology.
Collapse
Affiliation(s)
- Louise Kruse Jensen
- Department of Veterinary and Animal Science, Faculty of Health and Medical Science, University of Copenhagen, Denmark.
| | - Katrine Top Hartmann
- Department of Veterinary and Animal Science, Faculty of Health and Medical Science, University of Copenhagen, Denmark
| | - Florian Witzmann
- Museum für Naturkunde, Leibniz-Institut für Evolutions- und Biodiversitätsforschung, Berlin, Germany
| | - Patrick Asbach
- Department of Radiology, Charité - Universitätsmedizin Berlin, Germany
| | - Philip S Stewart
- Department of Chemical and Biological Engineering, Center for Biofilm Engineering, Montana State University, Bozeman, MT, USA
| |
Collapse
|
24
|
Li M, Zhao P, Wang J, Zhang X, Li J. Functional antimicrobial peptide-loaded 3D scaffolds for infected bone defect treatment with AI and multidimensional printing. MATERIALS HORIZONS 2024. [PMID: 39484845 DOI: 10.1039/d4mh01124d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/03/2024]
Abstract
Infection is the most prevalent complication of fractures, particularly in open fractures, and often leads to severe consequences. The emergence of bacterial resistance has significantly exacerbated the burden of infection in clinical practice, making infection control a significant treatment challenge for infectious bone defects. The implantation of a structural stent is necessary to treat large bone defects despite the increased risk of infection. Therefore, there is a need for the development of novel antibacterial therapies. The advancement in antibacterial biomaterials and new antimicrobial drugs offers fresh perspectives on antibacterial treatment. Although antimicrobial 3D scaffolds are currently under intense research focus, relying solely on material properties or antibiotic action remains insufficient. Antimicrobial peptides (AMPs) are one of the most promising new antibacterial therapy approaches. This review discusses the underlying mechanisms behind infectious bone defects and presents research findings on antimicrobial peptides, specifically emphasizing their mechanisms and optimization strategies. We also explore the potential prospects of utilizing antimicrobial peptides in treating infectious bone defects. Furthermore, we propose that artificial intelligence (AI) algorithms can be utilized for predicting the pharmacokinetic properties of AMPs, including absorption, distribution, metabolism, and excretion, and by combining information from genomics, proteomics, metabolomics, and clinical studies with computational models driven by machine learning algorithms, scientists can gain a comprehensive understanding of AMPs' mechanisms of action, therapeutic potential, and optimizing treatment strategies tailored to individual patients, and through interdisciplinary collaborations between computer scientists, biologists, and clinicians, the full potential of AI in accelerating the discovery and development of novel AMPs will be realized. Besides, with the continuous advancements in 3D/4D/5D/6D technology and its integration into bone scaffold materials, we anticipate remarkable progress in the field of regenerative medicine. This review summarizes relevant research on the optimal future for the treatment of infectious bone defects, provides guidance for future novel treatment strategies combining multi-dimensional printing with new antimicrobial agents, and provides a novel and effective solution to the current challenges in the field of bone regeneration.
Collapse
Affiliation(s)
- Mengmeng Li
- Orthopedic Research Institute, Department of Orthopedics, West China Hospital, Sichuan University, Chengdu, Sichuan 610041, PR China.
- Trauma Center, West China Hospital, Sichuan University, Chengdu, Sichuan 610041, PR China
| | - Peizhang Zhao
- Orthopedic Research Institute, Department of Orthopedics, West China Hospital, Sichuan University, Chengdu, Sichuan 610041, PR China.
- Trauma Center, West China Hospital, Sichuan University, Chengdu, Sichuan 610041, PR China
| | - Jingwen Wang
- Orthopedic Research Institute, Department of Orthopedics, West China Hospital, Sichuan University, Chengdu, Sichuan 610041, PR China.
- Trauma Center, West China Hospital, Sichuan University, Chengdu, Sichuan 610041, PR China
| | - Xincai Zhang
- Department of Materials Science and Engineering, Stanford University, Stanford, CA, 94305, USA.
| | - Jun Li
- Orthopedic Research Institute, Department of Orthopedics, West China Hospital, Sichuan University, Chengdu, Sichuan 610041, PR China.
- Trauma Center, West China Hospital, Sichuan University, Chengdu, Sichuan 610041, PR China
| |
Collapse
|
25
|
Jin L, Liu H, Wang C, Mao C, Wu S, Zhang Y, Li Z, Zhu S, Jiang H, Cui Z, Zheng Y, Liu X. Interface/Dipole Polarized Antibiotics-Loaded Fe 3O 4/PB Nanoparticles for Non-Invasive Therapy of Osteomyelitis Under Medical Microwave Irradiation. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2024; 36:e2410917. [PMID: 39344940 DOI: 10.1002/adma.202410917] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/26/2024] [Revised: 09/12/2024] [Indexed: 10/01/2024]
Abstract
Due to their poor light penetration, photothermal therapy and photodynamic therapy are ineffective in treating deep tissue infections, such as osteomyelitis caused by Staphylococcus aureus (S. aureus). Here, a microwave (MW)-responsive magnetic targeting composite system consisting of ferric oxide (Fe3O4)/Prussian blue (PB) nanoparticles, gentamicin (Gent), and biodegradable poly(lactic-co-glycolic acid) (PLGA) is reported. The PLGA/Fe3O4/PB/Gent complex is used in combination with MW thermal therapy (MTT), MW dynamic therapy (MDT), and chemotherapy (CT) to treat acute osteomyelitis infected with S. aureus-infected. The powerful antibacterial effect of the PLGA/Fe3O4/PB/Gent is determined by the synergistic effects of heat and reactive oxygen species (ROS) generation by the Fe3O4/PB nanoparticles under MW irradiation and the effective release of Gent at the infection site via magnetic targeting. The antibacterial mechanism of the PLGA/Fe3O4/PB/Gent under MW irradiation is analyzed using bacterial transcriptome RNA sequencing. The MW heat and ROS reduce the activity of the protein transporters on the bacterial membrane, along with the transport of various ions and the acceleration of phosphate metabolism, which can lead to increased permeability of the bacterial membrane, damage the ribosome and DNA, and accompany the internal protein efflux of the bacteria, thus effectively killing the bacteria.
Collapse
Affiliation(s)
- Liguo Jin
- School of Materials Science & Engineering, the Key Laboratory of Advanced Ceramics and Machining Technology by the Ministry of Education of China, Tianjin University, Tianjin, 300072, China
| | - Hanpeng Liu
- School of Materials Science & Engineering, the Key Laboratory of Advanced Ceramics and Machining Technology by the Ministry of Education of China, Tianjin University, Tianjin, 300072, China
| | - Chaofeng Wang
- School of Health Science & Biomedical Engineering, Hebei University of Technology, Tianjin, 300401, China
| | - Congyang Mao
- School of Materials Science & Engineering, Biomedical Materials Engineering Research Center, Hubei Key Laboratory of Polymer Materials, Ministry-of-Education Key Laboratory for the Green Preparation and Application of Functional Materials, State Key Laboratory of Biocatalysis and Enzyme Engineering, Hubei University, Wuhan, 430062, China
| | - Shuilin Wu
- School of Materials Science & Engineering, the Key Laboratory of Advanced Ceramics and Machining Technology by the Ministry of Education of China, Tianjin University, Tianjin, 300072, China
- School of Materials Science & Engineering, Biomedical Materials Engineering Research Center, Hubei Key Laboratory of Polymer Materials, Ministry-of-Education Key Laboratory for the Green Preparation and Application of Functional Materials, State Key Laboratory of Biocatalysis and Enzyme Engineering, Hubei University, Wuhan, 430062, China
- School of Materials Science & Engineering, Peking University, Beijing, 100871, China
| | - Yu Zhang
- Department of Orthopedics, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, Guangzhou, 510080, China
| | - Zhaoyang Li
- School of Materials Science & Engineering, the Key Laboratory of Advanced Ceramics and Machining Technology by the Ministry of Education of China, Tianjin University, Tianjin, 300072, China
| | - Shengli Zhu
- School of Materials Science & Engineering, the Key Laboratory of Advanced Ceramics and Machining Technology by the Ministry of Education of China, Tianjin University, Tianjin, 300072, China
| | - Hui Jiang
- School of Materials Science & Engineering, the Key Laboratory of Advanced Ceramics and Machining Technology by the Ministry of Education of China, Tianjin University, Tianjin, 300072, China
| | - Zhenduo Cui
- School of Materials Science & Engineering, the Key Laboratory of Advanced Ceramics and Machining Technology by the Ministry of Education of China, Tianjin University, Tianjin, 300072, China
| | - Yufeng Zheng
- School of Materials Science & Engineering, Peking University, Beijing, 100871, China
| | - Xiangmei Liu
- School of Health Science & Biomedical Engineering, Hebei University of Technology, Tianjin, 300401, China
- School of Materials Science & Engineering, Biomedical Materials Engineering Research Center, Hubei Key Laboratory of Polymer Materials, Ministry-of-Education Key Laboratory for the Green Preparation and Application of Functional Materials, State Key Laboratory of Biocatalysis and Enzyme Engineering, Hubei University, Wuhan, 430062, China
| |
Collapse
|
26
|
Botros M, de Mesy Bentley KL, Schloemann DT, Saito M, Constantine R, Ricciardi BF, Muthukrishnan G. Cutibacterium acnes invades submicron osteocyte lacuno-canalicular networks following implant-associated osteomyelitis. J Orthop Res 2024; 42:2593-2603. [PMID: 39044717 DOI: 10.1002/jor.25929] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/11/2024] [Revised: 06/12/2024] [Accepted: 06/18/2024] [Indexed: 07/25/2024]
Abstract
Cutibacterium acnes, part of normal skin flora, is increasingly recognized as an opportunistic pathogen capable of causing chronic prosthetic joint infections (PJI) associated with total hip and knee arthroplasty. However, there is a paucity of literature examining the pathogenesis of C. acnes during PJI. To study this, we developed an implant-associated osteomyelitis murine model in which 8-10-week-old C57BL6 mice were subjected to transtibial implantation of titanium or stainless-steel L-shaped pins contaminated with C. acnes. Postsurgery, mice were killed on Days 14 and 28 for terminal assessments of (1) bacterial load in bone, implant, and internal organs (heart, spleen, kidney, and liver), (2) bone osteolysis (micro-CT), (3) abscess formation (histology), and (4) systematic electron microscopy (EM). In vitro scanning EM (SEM) confirmed that C. acnes can form biofilms on stainless-steel and titanium implants. In mice, C. acnes could persist for 28 days in the tibia. Also, we observed C. acnes dissemination to internal organs. C. acnes chronic osteomyelitis revealed markedly reduced bone osteolysis and abscess formation compared to Staphylococcus aureus infections. Importantly, transmission EM (TEM) investigation revealed the presence of C. acnes within canaliculi, demonstrating that C. acnes can invade the osteocyte lacuno-canalicular networks (OLCN) within bone. Our preliminary pilot study, for the first time, revealed that the OLCN in bone can be a reservoir for C. acnes and potentially provides a novel mechanism of why C. acnes chronic implant-associated bone infections are difficult to treat.
Collapse
Affiliation(s)
- Mina Botros
- Center for Musculoskeletal Research, University of Rochester Medical Center, Rochester, New York, USA
- Department of Orthopaedics, University of Rochester Medical Center, Rochester, New York, USA
| | - Karen L de Mesy Bentley
- Center for Musculoskeletal Research, University of Rochester Medical Center, Rochester, New York, USA
- Department of Orthopaedics, University of Rochester Medical Center, Rochester, New York, USA
- Department of Pathology and Laboratory Medicine, University of Rochester Medical Center, Rochester, New York, USA
| | - Derek T Schloemann
- Center for Musculoskeletal Research, University of Rochester Medical Center, Rochester, New York, USA
- Department of Orthopaedics, University of Rochester Medical Center, Rochester, New York, USA
| | - Motoo Saito
- Center for Musculoskeletal Research, University of Rochester Medical Center, Rochester, New York, USA
- Department of Orthopaedics, University of Rochester Medical Center, Rochester, New York, USA
| | - Robert Constantine
- Center for Musculoskeletal Research, University of Rochester Medical Center, Rochester, New York, USA
- Department of Orthopaedics, University of Rochester Medical Center, Rochester, New York, USA
| | - Benjamin F Ricciardi
- Center for Musculoskeletal Research, University of Rochester Medical Center, Rochester, New York, USA
- Department of Orthopaedics, University of Rochester Medical Center, Rochester, New York, USA
| | - Gowrishankar Muthukrishnan
- Center for Musculoskeletal Research, University of Rochester Medical Center, Rochester, New York, USA
- Department of Orthopaedics, University of Rochester Medical Center, Rochester, New York, USA
- Department of Microbiology and Immunology, University of Rochester Medical Center, Rochester, New York, USA
| |
Collapse
|
27
|
Qin L, Hu N, Zhang Y, Yang J, Zhao L, Zhang X, Yang Y, Zhang J, Zou Y, Wei K, Zhao C, Li Y, Zeng H, Huang W, Zou Q. Antibody-antibiotic conjugate targeted therapy for orthopedic implant-associated intracellular S. aureus infections. J Adv Res 2024; 65:239-255. [PMID: 38048846 PMCID: PMC11519013 DOI: 10.1016/j.jare.2023.12.001] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2023] [Revised: 11/07/2023] [Accepted: 12/01/2023] [Indexed: 12/06/2023] Open
Abstract
INTRODUCTION Treating orthopedic implant-associated infections, especially those caused by Staphylococcus aureus (S. aureus), remains a significant challenge. S. aureus has the ability to invade host cells, enabling it to evade both antibiotics and immune responses during infection, which may result in clinical treatment failures. Therefore, it is critical to identify the host cell type of implant-associated intracellular S. aureus infections and to develop a strategy for highly targeted delivery of antibiotics to the host cells. OBJECTIVES Introduced an antibody-antibiotic conjugate (AAC) for the targeted elimination of intracellular S. aureus. METHODS The AAC comprises of a human monoclonal antibody (M0662) directly recognizes the surface antigen of S. aureus, Staphylococcus protein A, which is conjugated with vancomycin through cathepsin-sensitive linkers that are cleavable in the proteolytic environment of the intracellular phagolysosome. AAC, vancomycin and vancomycin combined with AAC were used in vitro intracellular infection and mice implant infection models. We then tested the effect of AAC in vivo and in vivo by fluorescence imaging, in vivo imaging, bacterial quantitative analysis and bacterial biofilm imaging. RESULTS In vitro, it was observed that AAC captured extracellular S. aureus and co-entered the cells, and subsequently released vancomycin to induce rapid elimination of intracellular S. aureus. In the implant infection model, AAC significantly improved the bactericidal effect of vancomycin. Scanning electron microscopy showed that the application of AAC effectively blocked the formation of bacterial biofilm. Further histochemical and micro-CT analysis showed AAC significantly reduced the level of bone marrow density (BMD) and bone volume fraction (BV/TV) reduction caused by bacterial infection in the distal femur of mice compared to vancomycin treatment alone. CONCLUSIONS The application of AAC in an implant infection model showed that it significantly improved the bactericidal effects of vancomycin and effectively blocked the formation of bacterial biofilms, without apparent toxicity to the host.
Collapse
Affiliation(s)
- Leilei Qin
- Department of Orthopaedics, The First Affiliated Hospital of Chongqing Medical University, Chongqing 400016, China; Orthopedic Laboratory of Chongqing Medical University, Chongqing 400016, China.
| | - Ning Hu
- Department of Orthopaedics, The First Affiliated Hospital of Chongqing Medical University, Chongqing 400016, China; Orthopedic Laboratory of Chongqing Medical University, Chongqing 400016, China
| | - Yanhao Zhang
- National Engineering Research Center of Immunological, Department of Microbiology and Biochemical Pharmacy, College of Pharmacy and Laboratory Medicine, Third Military Medical University, Chongqing, China.
| | - Jianye Yang
- Department of Orthopaedics, The First Affiliated Hospital of Chongqing Medical University, Chongqing 400016, China; Orthopedic Laboratory of Chongqing Medical University, Chongqing 400016, China.
| | - Liqun Zhao
- National Engineering Research Center of Immunological, Department of Microbiology and Biochemical Pharmacy, College of Pharmacy and Laboratory Medicine, Third Military Medical University, Chongqing, China.
| | - Xiaokai Zhang
- National Engineering Research Center of Immunological, Department of Microbiology and Biochemical Pharmacy, College of Pharmacy and Laboratory Medicine, Third Military Medical University, Chongqing, China.
| | - Yun Yang
- National Engineering Research Center of Immunological, Department of Microbiology and Biochemical Pharmacy, College of Pharmacy and Laboratory Medicine, Third Military Medical University, Chongqing, China.
| | - Jinyong Zhang
- National Engineering Research Center of Immunological, Department of Microbiology and Biochemical Pharmacy, College of Pharmacy and Laboratory Medicine, Third Military Medical University, Chongqing, China.
| | - Yinshuang Zou
- Department of Orthopaedics, The First Affiliated Hospital of Chongqing Medical University, Chongqing 400016, China; Orthopedic Laboratory of Chongqing Medical University, Chongqing 400016, China.
| | - Keyu Wei
- Department of Orthopaedics, The First Affiliated Hospital of Chongqing Medical University, Chongqing 400016, China; Orthopedic Laboratory of Chongqing Medical University, Chongqing 400016, China.
| | - Chen Zhao
- Department of Orthopaedics, The First Affiliated Hospital of Chongqing Medical University, Chongqing 400016, China; Orthopedic Laboratory of Chongqing Medical University, Chongqing 400016, China.
| | - Yujian Li
- Department of Orthopaedics, The First Affiliated Hospital of Chongqing Medical University, Chongqing 400016, China; Orthopedic Laboratory of Chongqing Medical University, Chongqing 400016, China.
| | - Hao Zeng
- National Engineering Research Center of Immunological, Department of Microbiology and Biochemical Pharmacy, College of Pharmacy and Laboratory Medicine, Third Military Medical University, Chongqing, China; State Key Laboratory of Trauma, Burn and Combined Injury, Third Military Medical University, Chongqing, China.
| | - Wei Huang
- Department of Orthopaedics, The First Affiliated Hospital of Chongqing Medical University, Chongqing 400016, China; Orthopedic Laboratory of Chongqing Medical University, Chongqing 400016, China.
| | - Quanming Zou
- National Engineering Research Center of Immunological, Department of Microbiology and Biochemical Pharmacy, College of Pharmacy and Laboratory Medicine, Third Military Medical University, Chongqing, China.
| |
Collapse
|
28
|
Christensen MH, Jakobsen TH, Lichtenberg M, Hertz FB, Dahl B, Bjarnsholt T. Antimicrobial susceptibility testing of bone and joint pathogens using isothermal microcalorimetry. APMIS 2024; 132:814-823. [PMID: 39301971 DOI: 10.1111/apm.13470] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2024] [Accepted: 09/10/2024] [Indexed: 09/22/2024]
Abstract
The rise in osteomyelitis and periprosthetic joint infections, in combination with increasing life expectancy and the prevalence of diabetes, underscores the urgent need for rapid and accurate diagnostic tools. Conventional culture-based methods are often time-consuming and prone to false-negatives, leading to prolonged and inappropriate antibiotic treatments. This study aims to improve osteomyelitis diagnostics by decreasing the time to detection and the time to an antibiotic susceptibility result to enable a targeted treatment using isothermal microcalorimetry (IMC). IMC measures heat flow in real-time, providing insights into bacterial metabolism without the need for labeling. Using clinical isolates from bone infections, assessing their response to antibiotics through IMC, we demonstrated that IMC could detect bacteria within 4 h and determine antimicrobial susceptibility profiles within 2-22 h (median 4.85, range 1.28-21.78). This is significantly faster than traditional methods. A decision tree, based on antibiotic susceptibility, accurately categorized pathogens, achieving high accuracy (74-100%), sensitivity (100%), and specificity (65-100%). These findings suggest that IMC could redefine diagnostics of bone and joint infections and potentially infections in general, offering timely and precise treatment guidance, thereby improving patient outcomes and reducing health care burdens. Further optimization and clinical validation are needed to fully integrate IMC into routine diagnostics.
Collapse
Affiliation(s)
- Mads H Christensen
- Department of Immunology and Microbiology, Costerton Biofilm Center, University of Copenhagen, Copenhagen, Denmark
| | - Tim H Jakobsen
- Department of Immunology and Microbiology, Costerton Biofilm Center, University of Copenhagen, Copenhagen, Denmark
| | - Mads Lichtenberg
- Department of Immunology and Microbiology, Costerton Biofilm Center, University of Copenhagen, Copenhagen, Denmark
| | - Frederik B Hertz
- Department of Clinical Microbiology, Copenhagen University Hospital, Rigshospitalet, Copenhagen, Denmark
| | - Benny Dahl
- Department of Orthopedics Surgery, Copenhagen University Hospital, Copenhagen, Denmark
| | - Thomas Bjarnsholt
- Department of Immunology and Microbiology, Costerton Biofilm Center, University of Copenhagen, Copenhagen, Denmark
- Department of Clinical Microbiology, Copenhagen University Hospital, Rigshospitalet, Copenhagen, Denmark
| |
Collapse
|
29
|
Du J, Chu Y, Hu Y, Liu J, Liu H, Wang H, Yang C, Wang Z, Yu A, Ran J. A multifunctional self-reinforced injectable hydrogel for enhancing repair of infected bone defects by simultaneously targeting macrophages, bacteria, and bone marrow stromal cells. Acta Biomater 2024; 189:232-253. [PMID: 39396629 DOI: 10.1016/j.actbio.2024.10.014] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2024] [Revised: 09/21/2024] [Accepted: 10/09/2024] [Indexed: 10/15/2024]
Abstract
Injectable hydrogels (IHs) have demonstrated huge potential in promoting repair of infected bone defects (IBDs), but how to endow them with desired anti-bacterial, immunoregulatory, and osteo-inductive properties as well as avoid mechanical failure during their manipulation are challenging. In this regard, we developed a multifunctional AOHA-RA/Lap nanocomposite IH for IBDs repair, which was constructed mainly through two kinds of reversible cross-links: (i) the laponite (Lap) crystals mediated electrostatic interactions; (ii) the phenylboronic acid easter bonds between the 4-aminobenzeneboronic acid grafted oxidized hyaluronic acid (AOHA) and rosmarinic acid (RA). Due to the specific structural composition, the AOHA-RA/Lap IH demonstrated superior injectability, self-recoverability, spatial adaptation, and self-reinforced mechanical properties after being injected to the bone defect site. In addition, the RA molecules could be locally released from the hydrogel following a Weibull model for over 10 days. Systematic in vitro/vivo assays proved the strong anti-bacterial activity of the hydrogel against Staphylococcus aureus (S. aureus) and Escherichia coli (E. coli). Moreover, its capability of inducing M2 polarization of macrophages (Mφ) and osteogenic differentiation of bone marrow stromal cells (BMSCs) was verified either, and the mechanism of the former was identified to be related to the JAK1-STAT1 and PI3K-AKT signaling pathways and that of the latter was identified to be related to the calcium signaling pathway, extracellular matrix (ECM) receptor interaction and TGF-β signaling pathway. After being implanted to a S. aureus infected rat skull defect model, the AOHA-RA/Lap IH significantly accelerated repair of IBDs without causing significant systemic toxicity. STATEMENT OF SIGNIFICANCE: Rosmarinic acid and laponite were utilized to develop an injectable hydrogel, promising for accelerating repair of infected bone defects in clinic. The gelation of the hydrogel was completely driven by two kinds of reversible cross-links, which endow the hydrogel superior spatial adaption, self-recoverability, and structural stability. The as-prepared hydrogel demonstrated superior anti-bacterial/anti-biofilm activity and could induce M2 polarization of macrophages and osteogenic differentiation of BMSCs. The mechanism behind macrophages polarization was identified to be related to the JAK1-STAT1 and PI3K-AKT signaling pathways. The mechanism behind osteogenic differentiation of BMSCs was identified to be related to the ECM receptor interaction and calcium signaling/TGF-β signaling pathways.
Collapse
Affiliation(s)
- Jingyi Du
- Hubei Key Laboratory of Natural Products Research and Development, China Three Gorges University, Yichang, 443002, China; College of Biological and Pharmaceutical Sciences, China Three Gorges University, Yichang, 443002, China
| | - Ying Chu
- Hubei Key Laboratory of Natural Products Research and Development, China Three Gorges University, Yichang, 443002, China; College of Biological and Pharmaceutical Sciences, China Three Gorges University, Yichang, 443002, China
| | - Yan Hu
- Department of Orthopedics Trauma and Microsurgery, Zhongnan Hospital, Wuhan University, Wuhan, 430000, China
| | - Jin Liu
- Hubei Engineering & Technology Research Center for Functional Materials from Biomass, School of Chemistry and Material Science, Hubei Engineering University, Xiaogan, Hubei 432000, China
| | - Hanghang Liu
- Hubei Key Laboratory of Natural Products Research and Development, China Three Gorges University, Yichang, 443002, China; College of Biological and Pharmaceutical Sciences, China Three Gorges University, Yichang, 443002, China
| | - Huimin Wang
- Hubei Key Laboratory of Natural Products Research and Development, China Three Gorges University, Yichang, 443002, China; College of Biological and Pharmaceutical Sciences, China Three Gorges University, Yichang, 443002, China
| | - Changying Yang
- Hubei Key Laboratory of Natural Products Research and Development, China Three Gorges University, Yichang, 443002, China; College of Biological and Pharmaceutical Sciences, China Three Gorges University, Yichang, 443002, China
| | - Zheng Wang
- Department of Orthopedics Trauma and Microsurgery, Zhongnan Hospital, Wuhan University, Wuhan, 430000, China.
| | - Aixi Yu
- Department of Orthopedics Trauma and Microsurgery, Zhongnan Hospital, Wuhan University, Wuhan, 430000, China.
| | - Jiabing Ran
- Hubei Key Laboratory of Natural Products Research and Development, China Three Gorges University, Yichang, 443002, China; College of Biological and Pharmaceutical Sciences, China Three Gorges University, Yichang, 443002, China.
| |
Collapse
|
30
|
Yin M, Liu Z, Sun Z, Qu X, Chen Z, Diao Y, Cheng Y, Shen S, Wang X, Cai Z, Lu B, Tan S, Wang Y, Zhao X, Chen F. Biomimetic Scaffolds Regulating the Iron Homeostasis for Remolding Infected Osteogenic Microenvironment. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2024; 11:e2407251. [PMID: 39373362 PMCID: PMC11600272 DOI: 10.1002/advs.202407251] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/28/2024] [Revised: 09/12/2024] [Indexed: 10/08/2024]
Abstract
The treatment of infected bone defects (IBDs) needs simultaneous elimination of infection and acceleration of bone regeneration. One mechanism that hinders the regeneration of IBDs is the iron competition between pathogens and host cells, leading to an iron deficient microenvironment that impairs the innate immune responses. In this work, an in situ modification strategy is proposed for printing iron-active multifunctional scaffolds with iron homeostasis regulation ability for treating IBDs. As a proof-of-concept, ultralong hydroxyapatite (HA) nanowires are modified through in situ growth of a layer of iron gallate (FeGA) followed by incorporation in the poly(lactic-co-glycolic acid) (PLGA) matrix to print biomimetic PLGA based composite scaffolds containing FeGA modified HA nanowires (FeGA-HA@PLGA). The photothermal effect of FeGA endows the scaffolds with excellent antibacterial activity. The released iron ions from the FeGA-HA@PLGA help restore the iron homeostasis microenvironment, thereby promoting anti-inflammatory, angiogenesis and osteogenic differentiation. The transcriptomic analysis shows that FeGA-HA@PLGA scaffolds exert anti-inflammatory and pro-osteogenic differentiation by activating NF-κB, MAPK and PI3K-AKT signaling pathways. Animal experiments confirm the excellent bone repair performance of FeGA-HA@PLGA scaffolds for IBDs, suggesting the promising prospect of iron homeostasis regulation therapy in future clinical applications.
Collapse
Affiliation(s)
- Mengting Yin
- Center for Orthopaedic Science and Translational MedicineDepartment of OrthopaedicsShanghai Tenth People's HospitalSchool of MedicineTongji UniversityShanghai200072P. R China
| | - Zhiqing Liu
- Center for Orthopaedic Science and Translational MedicineDepartment of OrthopaedicsShanghai Tenth People's HospitalSchool of MedicineTongji UniversityShanghai200072P. R China
| | - Zhongyi Sun
- Center for Orthopaedic Science and Translational MedicineDepartment of OrthopaedicsShanghai Tenth People's HospitalSchool of MedicineTongji UniversityShanghai200072P. R China
- Shanghai Key Laboratory of Craniomaxillofacial Development and Diseases Shanghai Stomatological Hospital & School of StomatologyFudan UniversityShanghai201102P. R. China
- Suzhou First People's HospitalSchool of MedicineAnhui University of Science and TechnologyAnhui232001P.R. China
| | - Xinyu Qu
- Center for Orthopaedic Science and Translational MedicineDepartment of OrthopaedicsShanghai Tenth People's HospitalSchool of MedicineTongji UniversityShanghai200072P. R China
| | - Ziyan Chen
- Center for Orthopaedic Science and Translational MedicineDepartment of OrthopaedicsShanghai Tenth People's HospitalSchool of MedicineTongji UniversityShanghai200072P. R China
| | - Yuying Diao
- Shanghai Key Laboratory of Craniomaxillofacial Development and Diseases Shanghai Stomatological Hospital & School of StomatologyFudan UniversityShanghai201102P. R. China
| | - Yuxuan Cheng
- Center for Orthopaedic Science and Translational MedicineDepartment of OrthopaedicsShanghai Tenth People's HospitalSchool of MedicineTongji UniversityShanghai200072P. R China
| | - Sisi Shen
- Department of Plastic and Reconstructive SurgeryShanghai Key Laboratory of Tissue EngineeringShanghai Ninth People's HospitalShanghai Jiao Tong University School of MedicineShanghai200011P. R. China
| | - Xiansong Wang
- Department of Plastic and Reconstructive SurgeryShanghai Key Laboratory of Tissue EngineeringShanghai Ninth People's HospitalShanghai Jiao Tong University School of MedicineShanghai200011P. R. China
| | - Zhuyun Cai
- Center for Orthopaedic Science and Translational MedicineDepartment of OrthopaedicsShanghai Tenth People's HospitalSchool of MedicineTongji UniversityShanghai200072P. R China
| | - Bingqiang Lu
- Center for Orthopaedic Science and Translational MedicineDepartment of OrthopaedicsShanghai Tenth People's HospitalSchool of MedicineTongji UniversityShanghai200072P. R China
| | - Shuo Tan
- Center for Orthopaedic Science and Translational MedicineDepartment of OrthopaedicsShanghai Tenth People's HospitalSchool of MedicineTongji UniversityShanghai200072P. R China
| | - Yan Wang
- Shanghai Key Laboratory of Craniomaxillofacial Development and Diseases Shanghai Stomatological Hospital & School of StomatologyFudan UniversityShanghai201102P. R. China
| | - Xinyu Zhao
- Center for Orthopaedic Science and Translational MedicineDepartment of OrthopaedicsShanghai Tenth People's HospitalSchool of MedicineTongji UniversityShanghai200072P. R China
| | - Feng Chen
- Center for Orthopaedic Science and Translational MedicineDepartment of OrthopaedicsShanghai Tenth People's HospitalSchool of MedicineTongji UniversityShanghai200072P. R China
- Shanghai Key Laboratory of Craniomaxillofacial Development and Diseases Shanghai Stomatological Hospital & School of StomatologyFudan UniversityShanghai201102P. R. China
- Suzhou First People's HospitalSchool of MedicineAnhui University of Science and TechnologyAnhui232001P.R. China
| |
Collapse
|
31
|
Straub J, Baertl S, Verheul M, Walter N, Wong RMY, Alt V, Rupp M. Antimicrobial resistance: Biofilms, small colony variants, and intracellular bacteria. Injury 2024; 55 Suppl 6:111638. [PMID: 39482024 DOI: 10.1016/j.injury.2024.111638] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/27/2024] [Revised: 05/25/2024] [Accepted: 05/27/2024] [Indexed: 11/03/2024]
Abstract
Soft tissue and bone infections continue to be a serious complication in orthopedic and trauma surgery. Both can lead to a high burden for the patients and the healthcare system. Musculoskeletal infections can be induced by intraoperative contamination, bacterial contamination of open wounds or hematogenous bacterial spread. During the recent decades, advances were achieved in the understanding of pathogenesis and antibiotic resistance. Despite some progress in the diagnosis and advancing of therapeutic concepts, groundbreaking successful improvement of treatment concepts is still missing. Current therapy concepts are based on the two pillars consisting of surgical debridement with joint or bone reconstruction as well as prolonged antibiotic therapy. An improved understanding of both host and pathogen-related factors leading to treatment failure is essential in musculoskeletal infections. Therefore, this review aims to give an overview of pathogen-related pathophysiology in musculoskeletal infections. It describes defense strategies of pathogens such as (1) biofilm, its development, characteristics, and treatment options. In addition, (2) characteristics of small colony variants and (3) intracellular bacteria are highlighted. Lastly (4) an outlook for potential and promising future therapeutic strategies is provided.
Collapse
Affiliation(s)
- Josina Straub
- Department of Trauma Surgery, University Hospital Regensburg, Franz-Josef-Strauss-Allee 11, 93053, Regensburg, Germany
| | - Susanne Baertl
- Department of Trauma Surgery, University Hospital Regensburg, Franz-Josef-Strauss-Allee 11, 93053, Regensburg, Germany
| | - Marielle Verheul
- Department of Infectious Diseases, Leiden University Medical Center, Leiden, the Netherlands
| | - Nike Walter
- Department of Trauma Surgery, University Hospital Regensburg, Franz-Josef-Strauss-Allee 11, 93053, Regensburg, Germany
| | - Ronald Man Yeung Wong
- Department of Orthopaedics & Traumatology, The Chinese University of Hong Kong, Hong Kong SAR, China
| | - Volker Alt
- Department of Trauma Surgery, University Hospital Regensburg, Franz-Josef-Strauss-Allee 11, 93053, Regensburg, Germany
| | - Markus Rupp
- Department of Trauma Surgery, University Hospital Regensburg, Franz-Josef-Strauss-Allee 11, 93053, Regensburg, Germany.
| |
Collapse
|
32
|
Ge M, Ruan Z, Zhu YX, Wu W, Yang C, Lin H, Shi J. A natural killer cell mimic against intracellular pathogen infections. SCIENCE ADVANCES 2024; 10:eadp3976. [PMID: 39475620 PMCID: PMC11524181 DOI: 10.1126/sciadv.adp3976] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/22/2024] [Accepted: 09/25/2024] [Indexed: 11/02/2024]
Abstract
In the competition between the pathogen infection and the host defense, infectious microorganisms may enter the host cells by evading host defense mechanisms and use the intracellular biomolecules as replication nutrient. Among them, intracellular Staphylococcus aureus relies on the host cells to protect itself from the attacks by antibiotics or immune system to achieve long-term colonization in the host, and the consequent clinical therapeutic failures and relapses after antibiotic treatment. Here, we demonstrate that intracellular S. aureus surviving well even in the presence of vancomycin can be effectively eliminated using an emerging cell-mimicking therapeutic strategy. These cell mimics with natural killer cell-like activity (NKMs) are composed of a redox-responsive degradable carrier, and perforin and granzyme B within the carrier. NKMs perform far more effectivly than clinical antibiotics in treating intracellular bacterial infections, providing a direct evidence of the NK cell-mimicking immune mechanism in the treatment of intracellular S. aureus.
Collapse
Affiliation(s)
- Min Ge
- Shanghai Institute of Ceramics, Chinese Academy of Sciences, Research Unit of Nanocatalytic Medicine in Specific Therapy for Serious Disease, Chinese Academy of Medical Sciences, Shanghai 200050, P. R. China
- Department of Electrical and Electronic Engineering, The University of Hong Kong, Pokfulam Road, Hong Kong, China
| | - Zesong Ruan
- Department of Orthopaedics, Shanghai Sixth People’s Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai 200233, P. R. China
| | - Ya-Xuan Zhu
- Shanghai Institute of Ceramics, Chinese Academy of Sciences, Research Unit of Nanocatalytic Medicine in Specific Therapy for Serious Disease, Chinese Academy of Medical Sciences, Shanghai 200050, P. R. China
| | - Wencheng Wu
- Shanghai Institute of Ceramics, Chinese Academy of Sciences, Research Unit of Nanocatalytic Medicine in Specific Therapy for Serious Disease, Chinese Academy of Medical Sciences, Shanghai 200050, P. R. China
| | - Chuang Yang
- Department of Orthopaedics, Shanghai Sixth People’s Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai 200233, P. R. China
| | - Han Lin
- Shanghai Institute of Ceramics, Chinese Academy of Sciences, Research Unit of Nanocatalytic Medicine in Specific Therapy for Serious Disease, Chinese Academy of Medical Sciences, Shanghai 200050, P. R. China
- Shanghai Tenth People’s Hospital, Shanghai Frontiers Science Center of Nanocatalytic Medicine, School of Medicine, Tongji University, Shanghai 200331, P. R. China
| | - Jianlin Shi
- Shanghai Institute of Ceramics, Chinese Academy of Sciences, Research Unit of Nanocatalytic Medicine in Specific Therapy for Serious Disease, Chinese Academy of Medical Sciences, Shanghai 200050, P. R. China
- Shanghai Tenth People’s Hospital, Shanghai Frontiers Science Center of Nanocatalytic Medicine, School of Medicine, Tongji University, Shanghai 200331, P. R. China
| |
Collapse
|
33
|
Yang J, Chen L, Cai Z, Pang L, Huang Y, Xiao P, Wang J, Huang W, Cui W, Hu N. Precise Clearance of Intracellular MRSA via Internally and Externally Mediated Bioorthogonal Activation of Micro/Nano Hydrogel Microspheres. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2024; 11:e2402370. [PMID: 39342650 PMCID: PMC11600240 DOI: 10.1002/advs.202402370] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/05/2024] [Revised: 08/25/2024] [Indexed: 10/01/2024]
Abstract
Traditional high-dose antibiotic treatments of intracellular methicillin-resistant staphylococcus aureus (MRSA) are highly inefficient and associated with a high rate of infection relapse. As an effective antibacterial technology, sonodynamic therapy (SDT) may be able to break the dilemma. However, indiscriminate reactive oxygen species (ROS) release leads to potential side effects. This study incorporates Staphylococcal Protein A antibody-modified Cu2+/tetracarboxyphenylporphyrin nanoparticles (Cu(II)NS-SPA) into hydrogel microspheres (HAMA@Cu(II)NS-SPA) to achieve precise eradication of intracellular bacteria. This eradication is under bioorthogonal activation mediated by bacillithiol (BSH) (internally) and ultrasound (US) (externally). To specify, the US responsiveness of Cu(II)NS-SPA is restored when it is reduced to Cu(I)NS-SPA by the BSH secreted characteristically by intracellular MRSA, thus forming a bioorthogonal activation with the external US, which confines ROS production within the infected MΦ. Under external US activation at 2 W cm-2, over 95% of intracellular MRSA can be cleared. In vivo, a single injection of HAMA@Cu(II)NS-SPA achieves up to two weeks of antibacterial sonodynamic therapy, reducing pro-inflammatory factor expression by 90%, and peri-implant bone trabeculae numbers exceed the control group by five times. In summary, these micro/nano hydrogel microspheres mediated by internal and external bioorthogonal activation can precisely eliminate intracellular MRSA, effectively treating multi-drug resistant intracellular bacterial infections.
Collapse
Affiliation(s)
- Jianye Yang
- Department of OrthopaedicsThe First Affiliated Hospital of Chongqing Medical UniversityOrthopedic Laboratory of Chongqing Medical UniversityChongqing400016P. R. China
| | - Li Chen
- Department of OrthopaedicsThe First Affiliated Hospital of Chongqing Medical UniversityOrthopedic Laboratory of Chongqing Medical UniversityChongqing400016P. R. China
| | - Zhengwei Cai
- Department of OrthopaedicsShanghai Key Laboratory for Prevention and Treatment of Bone and Joint DiseasesShanghai Institute of Traumatology and OrthopaedicsRuijin HospitalShanghai Jiao Tong University School of Medicine197 Ruijin 2nd RoadShanghai200025P. R. China
| | - Libin Pang
- Department of OrthopaedicsShanghai Key Laboratory for Prevention and Treatment of Bone and Joint DiseasesShanghai Institute of Traumatology and OrthopaedicsRuijin HospitalShanghai Jiao Tong University School of Medicine197 Ruijin 2nd RoadShanghai200025P. R. China
| | - Yanran Huang
- Department of OrthopaedicsThe First Affiliated Hospital of Chongqing Medical UniversityOrthopedic Laboratory of Chongqing Medical UniversityChongqing400016P. R. China
| | - Pengcheng Xiao
- Department of OrthopaedicsThe First Affiliated Hospital of Chongqing Medical UniversityOrthopedic Laboratory of Chongqing Medical UniversityChongqing400016P. R. China
| | - Juan Wang
- Department of OrthopaedicsShanghai Key Laboratory for Prevention and Treatment of Bone and Joint DiseasesShanghai Institute of Traumatology and OrthopaedicsRuijin HospitalShanghai Jiao Tong University School of Medicine197 Ruijin 2nd RoadShanghai200025P. R. China
| | - Wei Huang
- Department of OrthopaedicsThe First Affiliated Hospital of Chongqing Medical UniversityOrthopedic Laboratory of Chongqing Medical UniversityChongqing400016P. R. China
| | - Wenguo Cui
- Department of OrthopaedicsShanghai Key Laboratory for Prevention and Treatment of Bone and Joint DiseasesShanghai Institute of Traumatology and OrthopaedicsRuijin HospitalShanghai Jiao Tong University School of Medicine197 Ruijin 2nd RoadShanghai200025P. R. China
| | - Ning Hu
- Department of OrthopaedicsThe First Affiliated Hospital of Chongqing Medical UniversityOrthopedic Laboratory of Chongqing Medical UniversityChongqing400016P. R. China
| |
Collapse
|
34
|
Dong Y, Hu Y, Hu X, Wang L, Shen X, Tian H, Li M, Luo Z, Cai C. Synthetic nanointerfacial bioengineering of Ti implants: on-demand regulation of implant-bone interactions for enhancing osseointegration. MATERIALS HORIZONS 2024. [PMID: 39480512 DOI: 10.1039/d4mh01237b] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/02/2024]
Abstract
Titanium and its alloys are the most commonly used biometals for developing orthopedic implants to treat various forms of bone fractures and defects, but their clinical performance is still challenged by the unfavorable mechanical and biological interactions at the implant-tissue interface, which substantially impede bone healing at the defects and reduce the quality of regenerated bones. Moreover, the impaired osteogenesis capacity of patients under certain pathological conditions such as diabetes and osteoporosis may further impair the osseointegration of Ti-based implants and increase the risk of treatment failure. To address these issues, various modification strategies have been developed to regulate the implant-bone interactions for improving bone growth and remodeling in situ. In this review, we provide a comprehensive analysis on the state-of-the-art synthetic nanointerfacial bioengineering strategies for designing Ti-based biofunctional orthopedic implants, with special emphasis on the contributions to (1) promotion of new bone formation and binding at the implant-bone interface, (2) bacterial elimination for preventing peri-implant infection and (3) overcoming osseointegration resistance induced by degenerative bone diseases. Furthermore, a perspective is included to discuss the challenges and potential opportunities for the interfacial engineering of Ti implants in a translational perspective. Overall, it is envisioned that the insights in this review may guide future research in the area of biometallic orthopedic implants for improving bone repair with enhanced efficacy and safety.
Collapse
Affiliation(s)
- Yilong Dong
- Ruian People's Hospital, The Third Affiliated Hospital of Wenzhou Medical University, Wenzhou 325016, China.
| | - Yan Hu
- Key Laboratory of Biorheological Science and Technology, Ministry of Education, College of Bioengineering, Chongqing University, Chongqing 400044, China.
| | - Xinqiang Hu
- Key Laboratory of Biorheological Science and Technology, Ministry of Education, College of Bioengineering, Chongqing University, Chongqing 400044, China.
| | - Lingshuang Wang
- School of Life Sciences, Chongqing University, Chongqing, 400044, China.
| | - Xinkun Shen
- Ruian People's Hospital, The Third Affiliated Hospital of Wenzhou Medical University, Wenzhou 325016, China.
| | - Hao Tian
- Kairui Stomatological Hospital, Chengdu 610211, China
| | - Menghuan Li
- School of Life Sciences, Chongqing University, Chongqing, 400044, China.
| | - Zhong Luo
- Key Laboratory of Biorheological Science and Technology, Ministry of Education, College of Bioengineering, Chongqing University, Chongqing 400044, China.
- School of Life Sciences, Chongqing University, Chongqing, 400044, China.
| | - Chunyuan Cai
- Ruian People's Hospital, The Third Affiliated Hospital of Wenzhou Medical University, Wenzhou 325016, China.
| |
Collapse
|
35
|
Wang W, Li Z, Liu C, Yu H, Sun Y. Application of Drug Delivery System Based on Nanozyme Cascade Technology in Chronic Wound. Adv Healthc Mater 2024:e2402559. [PMID: 39400523 DOI: 10.1002/adhm.202402559] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2024] [Revised: 09/02/2024] [Indexed: 10/15/2024]
Abstract
Chronic wounds are characterized by long-term inflammation, including diabetic ulcers, traumatic ulcers, etc., which provide an optimal environment for bacterial proliferation. At present, antibiotics are the main clinical treatment method for chronic wound infections. However, the overuse of antibiotics may accelerate the emergence of drug-resistant bacteria, which poses a significant threat to human health. Therefore, there is an urgent need to develop new therapeutic strategies for bacterial infections. Nanozyme-based antimicrobial therapy (NABT) is an emerging antimicrobial strategy with broad-spectrum activity and low drug resistance compared to traditional antibiotics. NABT has shown great potential as an emerging antimicrobial strategy by catalyzing the generation of reactive oxygen species (ROS) with its enzyme-like catalytic properties, producing a powerful bactericidal effect without developing drug resistance. Nanozyme-based cascade antimicrobial technology offers a new approach to infection control, effectively improving antimicrobial efficacy by activating cascades against bacterial cell membranes and intracellular DNA while minimizing potential side effects. However, it is worth noting that this technology is still in the early stages of research. This article comprehensively reviews wound classification, current methods for the treatment of wound infection, different types of nanozymes, the application of nanozyme cascade reaction technology in antimicrobial therapy, and future challenges and prospects.
Collapse
Affiliation(s)
- Wenyu Wang
- Department of Pharmaceutics, School of Pharmacy, Qingdao University, Qingdao, 266021, China
| | - Zhipeng Li
- Department of Pharmaceutics, School of Pharmacy, Qingdao University, Qingdao, 266021, China
| | - Chaolong Liu
- Department of Pharmaceutics, School of Pharmacy, Qingdao University, Qingdao, 266021, China
| | - Hongli Yu
- Qingdao Women's and Children's Hospital, Qingdao, 266034, China
| | - Yong Sun
- Department of Pharmaceutics, School of Pharmacy, Qingdao University, Qingdao, 266021, China
| |
Collapse
|
36
|
Vanvelk N, de Mesy Bentley KL, Verhofstad MHJ, Metsemakers WJ, Moriarty TF, Siverino C. Development of an ex vivo model to study Staphylococcus aureus invasion of the osteocyte lacuno-canalicular network. J Orthop Res 2024. [PMID: 39380444 DOI: 10.1002/jor.25988] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/10/2024] [Revised: 09/08/2024] [Accepted: 09/18/2024] [Indexed: 10/10/2024]
Abstract
Staphylococcus aureus has multiple mechanisms to evade the host's immune system and antibiotic treatment. One such mechanism is the invasion of the osteocyte lacuno-canalicular network (OLCN), which may be particularly important in recurrence of infection after debridement and antibiotic therapy. The aim of this study was to develop an ex vivo model to facilitate further study of S. aureus invasion of the OLCN and early-stage testing of antibacterial strategies against bacteria in this niche. The diameter of the canaliculi of non-infected human, sheep, and mouse bones was measured microscopically on Schmorl's picrothionin stained sections, showing a large overlap in canalicular diameter. S. aureus successfully invaded the OLCN in all species in vitro as revealed by presence in osteocyte lacunae in Brown and Brenn-stained sections and by scanning electron microscopy. Murine bones were then selected for further experiments, and titanium pins with either a wild-type or ΔPBP4 mutant S. aureus USA300 were placed trans-cortically and incubated for 2 weeks in tryptic soy broth. Wild-type S. aureus readily invaded the osteocyte lacunae in mouse bones while the ΔPBP4 showed a significantly lower invasion of the OLCN (p = 0.0005). Bone specimens were then treated with gentamicin, sitafloxacin, R14 bacteriophages, or left untreated. Gentamicin (p = 0.0027) and sitafloxacin (p = 0.0280) significantly reduced the proportion of S. aureus-occupied lacunae, whilst bacteriophage treatment had no effect. This study shows that S. aureus is able to invade the OLCN in an ex vivo model. This ex vivo model can be used for future early-stage studies before proceeding to in vivo studies.
Collapse
Affiliation(s)
- Niels Vanvelk
- AO Research Institute Davos, Davos, Switzerland
- Trauma Research Unit, Department of Surgery, Erasmus MC, University Medical Center Rotterdam, Rotterdam, The Netherlands
| | - Karen L de Mesy Bentley
- Center for Musculoskeletal Research, University of Rochester Medical Center, Rochester, New York, USA
- Center for Advanced Research Technology (CART), University of Rochester Medical Center Rochester, Rochester, New York, USA
| | - Michael H J Verhofstad
- Trauma Research Unit, Department of Surgery, Erasmus MC, University Medical Center Rotterdam, Rotterdam, The Netherlands
| | - Willem-Jan Metsemakers
- Department of Trauma Surgery, University Hospitals Leuven, Leuven, Belgium
- Department of Development and Regeneration, KU Leuven-University of Leuven, Leuven, Belgium
| | - Thomas F Moriarty
- AO Research Institute Davos, Davos, Switzerland
- Center for Muskuloskeletal Infections (ZMSI), University Hospital Basel, Basel, Switzerland
| | | |
Collapse
|
37
|
Szymczak M, Golec P. Long-Term Effectiveness of Engineered T7 Phages Armed with Silver Nanoparticles Against Escherichia coli Biofilm. Int J Nanomedicine 2024; 19:10097-10105. [PMID: 39381027 PMCID: PMC11460280 DOI: 10.2147/ijn.s479960] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2024] [Accepted: 09/20/2024] [Indexed: 10/10/2024] Open
Abstract
The escalating threat of antibiotic-resistant bacteria, particularly those forming biofilm structures, underscores the urgent need for alternative treatment strategies. Bacteriophages have emerged as promising agents for combating bacterial infections, especially those associated with biofilm formation. However, the efficacy of phage therapy can be limited by the development of bacterial resistance and biofilm regrowth. Interestingly, phages could be combined with other agents, such as metal nanoparticles, to enhance their antibacterial effectiveness. Since the therapeutic strategy of using phages and metal nanoparticles has been developed relatively recently, evaluating its efficacy under various conditions is essential, with a particular focus on the duration of activity. This study tested the hypothesis that a novel approach to combating bacterial biofilms, based on phages armed with silver nanoparticles (AgNPs), would exhibit enhanced activity over an extended period after application. In this work, we investigated the potential of engineered T7 phages armed with AgNPs for eradicating Escherichia coli biofilm. We demonstrated that such biomaterial exhibits sustained antimicrobial activity even after prolonged exposure. Compared to phages alone or AgNPs alone, the biomaterial significantly enhances biofilm eradication, particularly after 48 hours of treatment. These findings highlight the potential of synergistic phage-nanoparticle strategies for combatting biofilm-associated infections.
Collapse
Affiliation(s)
- Mateusz Szymczak
- Department of Molecular Virology, Institute of Microbiology, Faculty of Biology, University of Warsaw, Warsaw, Poland
| | - Piotr Golec
- Department of Molecular Virology, Institute of Microbiology, Faculty of Biology, University of Warsaw, Warsaw, Poland
| |
Collapse
|
38
|
Ando K, Miyahara S, Hanada S, Fukuda K, Saito M, Sakai A, Maruo A, Zenke Y. Effective biofilm eradication in MRSA isolates with aminoglycoside-modifying enzyme genes using high-concentration and prolonged gentamicin treatment. Microbiol Spectr 2024; 12:e0064724. [PMID: 39191399 PMCID: PMC11448082 DOI: 10.1128/spectrum.00647-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2024] [Accepted: 07/31/2024] [Indexed: 08/29/2024] Open
Abstract
Bone and soft tissue infections caused by biofilm-forming bacteria, such as methicillin-resistant Staphylococcus aureus (MRSA), remain a significant clinical challenge. While the control of local infection is necessary, systemic treatment is also required, and biofilm eradication is a critical target for successful management. Topical antibiotic treatments, such as antibiotic-loaded bone cement (ALBC), have been used for some time, and continuous local antibiotic perfusion therapy, a less invasive method, has been developed by our group. However, the optimal antibiotics and concentrations for biofilms of clinical isolates are still not well understood. We examined the efficacy of high concentrations of gentamicin against MRSA biofilms and the role of gentamicin resistance genes in biofilm eradication. We collected 101 MRSA samples from a hospital in Japan and analyzed their gene properties, including methicillin and gentamicin resistance, and their minimum biofilm eradication concentration (MBEC) values. Our results showed that high concentrations of gentamicin are effective against MRSA biofilms and that even concentrations lower than the MBEC value could eliminate biofilms after prolonged exposure. We also identified three aminoglycoside/gentamicin resistance genes [aac(6')-aph(2″), aph(3')-III, and ant(4')-IA] and found that the presence or absence of these genes may inform the selection of treatments. It was also found that possession of the aac(6')-aph(2″) gene correlated with the minimum inhibitory concentration/MBEC values of gentamicin. Although this study provides insight into the efficacy of gentamicin against MRSA biofilms and the role of gentamicin resistance genes, careful selection of the optimal treatment strategy is needed for clinical application. IMPORTANCE Our analysis of 101 MRSA clinical isolates has provided valuable insights that could enhance treatment selection for biofilm infections in orthopedics. We found that high concentrations of gentamicin were effective against MRSA biofilms, and even prolonged exposure to concentrations lower than the minimum biofilm eradication concentration (MBEC) value could eliminate biofilms. The presence of the aac(6')-aph(2″) gene, an aminoglycoside resistance gene, was found to correlate with the minimum inhibitory concentration (MIC) and MBEC values of gentamicin, providing a potential predictive tool for treatment susceptibility. These results suggest that extended high concentrations of local gentamicin treatment could effectively eliminate MRSA biofilms in orthopedic infections. Furthermore, testing for gentamicin MIC or the possession of the aac(6')-aph(2″) gene could help select treatment, including topical gentamicin administration and surgical debridement.
Collapse
Affiliation(s)
- Kohei Ando
- Department of Emergency and Intensive Care Medicine, School of Medicine, University of Occupational and Environmental Health, Kitakyushu, Japan
| | - Satoshi Miyahara
- Department of Microbiology, School of Medicine, University of Occupational and Environmental Health, Kitakyushu, Japan
| | - Shuhei Hanada
- Department of Microbiology, School of Medicine, University of Occupational and Environmental Health, Kitakyushu, Japan
- Department of Orthopedic Surgery, School of Medicine, University of Occupational and Environmental Health, Kitakyushu, Japan
| | - Kazumasa Fukuda
- Department of Microbiology, School of Medicine, University of Occupational and Environmental Health, Kitakyushu, Japan
| | - Mitsumasa Saito
- Department of Microbiology, School of Medicine, University of Occupational and Environmental Health, Kitakyushu, Japan
| | - Akinori Sakai
- Department of Orthopedic Surgery, School of Medicine, University of Occupational and Environmental Health, Kitakyushu, Japan
| | - Akihiro Maruo
- Department of Orthopedic Surgery, Hyogo Prefectural Harima-Himeji General Medical Center, Himeji, Japan
| | - Yukichi Zenke
- Department of Emergency and Intensive Care Medicine, School of Medicine, University of Occupational and Environmental Health, Kitakyushu, Japan
| |
Collapse
|
39
|
Sabir N, Akkaya Z. Musculoskeletal infections through direct inoculation. Skeletal Radiol 2024; 53:2161-2179. [PMID: 38291151 PMCID: PMC11371867 DOI: 10.1007/s00256-024-04591-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/31/2023] [Revised: 01/11/2024] [Accepted: 01/11/2024] [Indexed: 02/01/2024]
Abstract
Musculoskeletal infections consist of different clinical conditions that are commonly encountered in daily clinical settings. As clinical findings and even laboratory tests cannot always be specific, imaging plays a crucial role in the diagnosis and treatment of these cases. Musculoskeletal infections most commonly occur secondary to direct inoculation into the skin involuntarily affected by trauma, microorganism, foreign bodies, or in diabetic ulcers; direct infections can also occur from voluntary causes due to surgery, vaccinations, or other iatrogenic procedures. Hematogenous spread of infection from a remote focus can also be a cause for musculoskeletal infections. Risk factors for soft tissue and bone infections include immunosuppression, old age, corticosteroid use, systemic illnesses, malnutrition, obesity, and burns. Most literature discusses musculoskeletal infections according to the diagnostic tools or forms of infection seen in different soft tissue anatomical planes or bones. This review article aims to evaluate musculoskeletal infections that occur due to direct inoculation to the musculoskeletal tissues, by focusing on the traumatic mechanism with emphasis on the radiological findings.
Collapse
Affiliation(s)
- Nuran Sabir
- Department of Radiology, Faculty of Medicine, Pamukkale University, Kinikli Kampusu, 20100, Denizli, Turkey.
| | - Zehra Akkaya
- Department of Radiology, Faculty of Medicine, İbni Sina Hospital, Ankara University, Ankara, Turkey
| |
Collapse
|
40
|
Ye P, Yang Y, Qu Y, Yang W, Tan J, Zhang C, Sun D, Zhang J, Zhao W, Guo S, Song L, Hou T, Zhang Z, Tang Y, Limjunyawong N, Xu J, Dong S, Dou C, Luo F. LL-37 and bisphosphonate co-delivery 3D-scaffold with antimicrobial and antiresorptive activities for bone regeneration. Int J Biol Macromol 2024; 277:134091. [PMID: 39059543 DOI: 10.1016/j.ijbiomac.2024.134091] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2024] [Revised: 07/19/2024] [Accepted: 07/20/2024] [Indexed: 07/28/2024]
Abstract
This study introduces a novel 3D scaffold for bone regeneration, composed of silk fibroin, chitosan, nano-hydroxyapatite, LL-37 antimicrobial peptide, and pamidronate. The scaffold addresses a critical need in bone tissue engineering by simultaneously combating bone infections and promoting bone growth. LL-37 was incorporated for its broad-spectrum antimicrobial properties, while pamidronate was included to inhibit bone resorption. The scaffold's porous structure, essential for cell infiltration and nutrient diffusion, was achieved through a freeze-drying process. In vitro assessments using SEM and FTIR confirmed the scaffold's morphology and chemical integrity. Antimicrobial efficacy was tested against pathogens of Staphylococcus aureus (S. aureus) and Pseudomonas aeruginosa (P. aeruginosa). In vivo studies in a murine model of infectious bone defect revealed the scaffold's effectiveness in reducing inflammation and bacterial load, and promoting bone regeneration. RNA sequencing of treated specimens provided insights into the molecular mechanisms underlying these observations, revealing significant gene expression changes related to bone healing and immune response modulation. The results indicate that the scaffold effectively inhibits bacterial growth and supports bone cell functions, making it a promising candidate for treating infectious bone defects. Future studies should focus on optimizing the release of therapeutic agents and evaluating the scaffold's clinical potential.
Collapse
Affiliation(s)
- Peng Ye
- Department of Orthopedics, Southwest Hospital, Third Military Medical University (Army Medical University), Chongqing, 400038, China; Department of Emergency, Affiliated Hospital of Zunyi Medical University, Zunyi, Guizhou 563000, China
| | - Yusheng Yang
- Department of Orthopedics, Southwest Hospital, Third Military Medical University (Army Medical University), Chongqing, 400038, China
| | - Ying Qu
- Department of Orthopedics, Southwest Hospital, Third Military Medical University (Army Medical University), Chongqing, 400038, China
| | - Wenxin Yang
- Department of Orthopedics, Southwest Hospital, Third Military Medical University (Army Medical University), Chongqing, 400038, China
| | - Jiulin Tan
- Department of Orthopedics, Southwest Hospital, Third Military Medical University (Army Medical University), Chongqing, 400038, China
| | - Chengmin Zhang
- Department of Orthopedics, Southwest Hospital, Third Military Medical University (Army Medical University), Chongqing, 400038, China
| | - Dong Sun
- Department of Orthopedics, Southwest Hospital, Third Military Medical University (Army Medical University), Chongqing, 400038, China
| | - Jie Zhang
- Department of Orthopedics, Southwest Hospital, Third Military Medical University (Army Medical University), Chongqing, 400038, China
| | - Weikang Zhao
- Department of Orthopaedics, The First Affiliated Hospital of Chongqing Medical University, Chongqing 400042, China
| | - Shuquan Guo
- Department of Orthopaedics, The First Affiliated Hospital of Chongqing Medical University, Chongqing 400042, China
| | - Lei Song
- Department of Orthopedics, Southwest Hospital, Third Military Medical University (Army Medical University), Chongqing, 400038, China
| | - Tianyong Hou
- Department of Orthopedics, Southwest Hospital, Third Military Medical University (Army Medical University), Chongqing, 400038, China
| | - Zehua Zhang
- Department of Orthopedics, Southwest Hospital, Third Military Medical University (Army Medical University), Chongqing, 400038, China
| | - Yong Tang
- Department of Orthopedics, Southwest Hospital, Third Military Medical University (Army Medical University), Chongqing, 400038, China
| | - Nathachit Limjunyawong
- Center of Research Excellence in Allergy and Immunology, Research Department, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok 10700, Thailand
| | - Jianzhong Xu
- Department of Orthopedics, Southwest Hospital, Third Military Medical University (Army Medical University), Chongqing, 400038, China
| | - Shiwu Dong
- Department of Orthopedics, Southwest Hospital, Third Military Medical University (Army Medical University), Chongqing, 400038, China; Department of Biomedical Materials Science, School of Biomedical Engineering, Third Military Medical University, Chongqing 400038, China.
| | - Ce Dou
- Department of Orthopedics, Southwest Hospital, Third Military Medical University (Army Medical University), Chongqing, 400038, China.
| | - Fei Luo
- Department of Orthopedics, Southwest Hospital, Third Military Medical University (Army Medical University), Chongqing, 400038, China.
| |
Collapse
|
41
|
Wang C, Su Y, Shahriar SMS, Li Y, Xie J. Emerging strategies for treating medical device and wound-associated biofilm infections. Microb Biotechnol 2024; 17:e70035. [PMID: 39431971 PMCID: PMC11492805 DOI: 10.1111/1751-7915.70035] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2024] [Accepted: 10/01/2024] [Indexed: 10/22/2024] Open
Abstract
Bacterial infections represent a significant global threat to human health, leading to considerable economic losses through increased healthcare costs and reduced productivity. One major challenge in treating these infections is the presence of biofilms - structured bacterial communities that form protective barriers, making traditional treatments less effective. Additionally, the rise of antibiotic-resistant bacteria has exacerbated treatment difficulties. To address these challenges, researchers are developing and exploring innovative approaches to combat biofilm-related infections. This mini-review highlights recent advancements in the following key areas: surface anti-adhesion technologies, electricity, photo/acoustic-active materials, endogenous mimicking agents, and innovative drug delivery systems. These strategies aim to prevent biofilm formation, disrupt existing biofilms, and enhance the efficacy of antimicrobial treatments. Currently, these approaches show great potential for applications in medical fields such as medical device and wound - associated biofilm infections. By summarizing these developments, this mini-review provides a comprehensive resource for researchers seeking to advance the management and treatment of biofilm-associated infections.
Collapse
Affiliation(s)
- Chenlong Wang
- Department of Surgery‐Transplant and Mary & Dick Holland Regenerative Medicine ProgramCollege of Medicine, University of Nebraska Medical CenterOmahaNebraskaUSA
| | - Yajuan Su
- Department of Surgery‐Transplant and Mary & Dick Holland Regenerative Medicine ProgramCollege of Medicine, University of Nebraska Medical CenterOmahaNebraskaUSA
| | - S. M. Shatil Shahriar
- Department of Surgery‐Transplant and Mary & Dick Holland Regenerative Medicine ProgramCollege of Medicine, University of Nebraska Medical CenterOmahaNebraskaUSA
| | - Yu Li
- Department of Emergency MedicineCollege of Medicine, University of Nebraska Medical CenterOmahaNebraskaUSA
| | - Jingwei Xie
- Department of Surgery‐Transplant and Mary & Dick Holland Regenerative Medicine ProgramCollege of Medicine, University of Nebraska Medical CenterOmahaNebraskaUSA
- Department of Mechanical and Materials EngineeringUniversity of Nebraska LincolnLincolnNebraskaUSA
| |
Collapse
|
42
|
Hu X, Chen J, Yang S, Zhang Z, Wu H, He J, Qin L, Cao J, Xiong C, Li K, Liu X, Qian Z. 3D Printed Multifunctional Biomimetic Bone Scaffold Combined with TP-Mg Nanoparticles for the Infectious Bone Defects Repair. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2024; 20:e2403681. [PMID: 38804867 DOI: 10.1002/smll.202403681] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/07/2024] [Revised: 05/18/2024] [Indexed: 05/29/2024]
Abstract
Infected bone defects are one of the most challenging problems in the treatment of bone defects due to the high antibiotic failure rate and the lack of ideal bone grafts. In this paper, inspired by clinical bone cement filling treatment, α-c phosphate (α-TCP) with self-curing properties is composited with β-tricalcium phosphate (β-TCP) and constructed a bionic cancellous bone scaffolding system α/β-tricalcium phosphate (α/β-TCP) by low-temperature 3D printing, and gelatin is preserved inside the scaffolds as an organic phase, and later loaded with a metal-polyphenol network structure of tea polyphenol-magnesium (TP-Mg) nanoparticles. The scaffolds mimic the structure and components of cancellous bone with high mechanical strength (>100 MPa) based on α-TCP self-curing properties through low-temperature 3D printing. Meanwhile, the scaffolds loaded with TP-Mg exhibit significant inhibition of Staphylococcus aureus (S.aureus) and promote the transition of macrophages from M1 pro-inflammatory to M2 anti-inflammatory phenotype. In addition, the composite scaffold also exhibits excellent bone-enhancing effects based on the synergistic effect of Mg2+ and Ca2+. In this study, a multifunctional ceramic scaffold (α/β-TCP@TP-Mg) that integrates anti-inflammatory, antibacterial, and osteoinduction is constructed, which promotes late bone regenerative healing while modulating the early microenvironment of infected bone defects, has a promising application in the treatment of infected bone defects.
Collapse
Affiliation(s)
- Xulin Hu
- Clinical Medical College and Affiliated Hospital of Chengdu University, Chengdu University, Chengdu, Sichuan, 610081, China
- Department of Biotherapy, Cancer Center and State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, Sichuan, 610041, China
| | - Jiao Chen
- State Key Laboratory of Oral Diseases & National Center for Stomatology & National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, Sichuan, 610041, China
| | - Shuhao Yang
- Department of Orthopedics, The First Affiliated Hospital of Chongqing Medical University, Chongqing, 400042, China
| | - Zhen Zhang
- University of Chinese Academy of Sciences, Beijing, 101408, China
| | - Haoming Wu
- Clinical Medical College and Affiliated Hospital of Chengdu University, Chengdu University, Chengdu, Sichuan, 610081, China
| | - Jian He
- College of Medical, Henan University of Science and Technology, Luoyang, 471023, China
| | - Leilei Qin
- Department of Orthopedics, The First Affiliated Hospital of Chongqing Medical University, Chongqing, 400042, China
| | - Jianfei Cao
- School of Materials and Environmental Engineering, Chengdu Technological University, Chengdu, Sichuan, 611730, China
| | - Chengdong Xiong
- University of Chinese Academy of Sciences, Beijing, 101408, China
| | - Kainan Li
- Clinical Medical College and Affiliated Hospital of Chengdu University, Chengdu University, Chengdu, Sichuan, 610081, China
| | - Xian Liu
- State Key Laboratory of Oral Diseases & National Center for Stomatology & National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, Sichuan, 610041, China
| | - Zhiyong Qian
- Department of Biotherapy, Cancer Center and State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, Sichuan, 610041, China
| |
Collapse
|
43
|
Costa B, Alves PM, Fonseca DR, Campos F, Monteiro AC, Shahrour H, Gomes A, Costa F, Gomes P, Martínez-de-Tejada G, Monteiro C, Martins MCL. Dhvar5-chitosan nanogels and their potential to improve antibiotics activity. Int J Biol Macromol 2024; 277:134059. [PMID: 39038581 DOI: 10.1016/j.ijbiomac.2024.134059] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2024] [Revised: 06/28/2024] [Accepted: 07/19/2024] [Indexed: 07/24/2024]
Abstract
Infection is one of the main causes of orthopedic implants failure, with antibiotic-resistant bacteria playing a crucial role in this outcome. In this work, antimicrobial nanogels were developed to be applied in situ as implant coating to prevent orthopedic-device-related infections. To that regard, a broad-spectrum antimicrobial peptide, Dhvar5, was grafted onto chitosan via thiol-norbornene "photoclick" chemistry. Dhvar5-chitosan nanogels (Dhvar5-NG) were then produced using a microfluidic system. Dhvar5-NG (1010 nanogels (NG)/mL) with a Dhvar5 concentration of 6 μg/mL reduced the burden of the most critical bacteria in orthopedic infections - methicillin-resistant Staphylococcus aureus (MRSA) - after 24 h in medium supplemented with human plasma proteins. Transmission electron microscopy showed that Dhvar5-NG killed bacteria by membrane disruption and cytoplasm release. No signs of cytotoxicity against a pre-osteoblast cell line were verified upon incubation with Dhvar5-NG. To further explore therapeutic alternatives, the potential synergistic effect of Dhvar5-NG with antibiotics was evaluated against MRSA. Dhvar5-NG at a sub-minimal inhibitory concentration (109 NG/mL) demonstrated synergistic effect with oxacillin (4-fold reduction: from 2 to 0.5 μg/mL) and piperacillin (2-fold reduction: from 2 to 1 μg/mL). This work supports the use of Dhvar5-NG as adjuvant of antibiotics to the prevention of orthopedic devices-related infections.
Collapse
Affiliation(s)
- B Costa
- i3S - Instituto de Investigação e Inovação em Saúde, Universidade do Porto, Porto, Portugal; INEB - Instituto de Engenharia Biomédica, Universidade do Porto, Porto, Portugal; FEUP-Faculdade de Engenharia, Universidade do Porto, Porto, Portugal
| | - P M Alves
- i3S - Instituto de Investigação e Inovação em Saúde, Universidade do Porto, Porto, Portugal; INEB - Instituto de Engenharia Biomédica, Universidade do Porto, Porto, Portugal; FEUP-Faculdade de Engenharia, Universidade do Porto, Porto, Portugal
| | - D R Fonseca
- i3S - Instituto de Investigação e Inovação em Saúde, Universidade do Porto, Porto, Portugal; INEB - Instituto de Engenharia Biomédica, Universidade do Porto, Porto, Portugal; FEUP-Faculdade de Engenharia, Universidade do Porto, Porto, Portugal
| | - F Campos
- i3S - Instituto de Investigação e Inovação em Saúde, Universidade do Porto, Porto, Portugal; INEB - Instituto de Engenharia Biomédica, Universidade do Porto, Porto, Portugal; ICBAS - Instituto de Ciências Biomédicas Abel Salazar, Universidade do Porto, Porto, Portugal
| | - A C Monteiro
- i3S - Instituto de Investigação e Inovação em Saúde, Universidade do Porto, Porto, Portugal; INEB - Instituto de Engenharia Biomédica, Universidade do Porto, Porto, Portugal; ICBAS - Instituto de Ciências Biomédicas Abel Salazar, Universidade do Porto, Porto, Portugal
| | - H Shahrour
- Department of Microbiology and Parasitology, University of Navarra, Pamplona, Spain; Navarra Institute for Health Research (IdiSNA), Pamplona, Spain
| | - A Gomes
- LAQV-REQUIMTE, Departamento de Química e Bioquímica, Faculdade de Ciências, Universidade do Porto, Porto, Portugal
| | - F Costa
- i3S - Instituto de Investigação e Inovação em Saúde, Universidade do Porto, Porto, Portugal; INEB - Instituto de Engenharia Biomédica, Universidade do Porto, Porto, Portugal
| | - P Gomes
- LAQV-REQUIMTE, Departamento de Química e Bioquímica, Faculdade de Ciências, Universidade do Porto, Porto, Portugal
| | - G Martínez-de-Tejada
- Department of Microbiology and Parasitology, University of Navarra, Pamplona, Spain; Navarra Institute for Health Research (IdiSNA), Pamplona, Spain
| | - C Monteiro
- i3S - Instituto de Investigação e Inovação em Saúde, Universidade do Porto, Porto, Portugal; INEB - Instituto de Engenharia Biomédica, Universidade do Porto, Porto, Portugal
| | - M C L Martins
- i3S - Instituto de Investigação e Inovação em Saúde, Universidade do Porto, Porto, Portugal; INEB - Instituto de Engenharia Biomédica, Universidade do Porto, Porto, Portugal; ICBAS - Instituto de Ciências Biomédicas Abel Salazar, Universidade do Porto, Porto, Portugal.
| |
Collapse
|
44
|
Alavi SMA, Petri F, Mahmoud OK, Igwilo-Alaneme R, El Zein S, Nassr AN, Gori A, Berbari EF. Culture-Negative Native Vertebral Osteomyelitis: A Narrative Review of an Underdescribed Condition. J Clin Med 2024; 13:5802. [PMID: 39407862 PMCID: PMC11477431 DOI: 10.3390/jcm13195802] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2024] [Revised: 09/24/2024] [Accepted: 09/25/2024] [Indexed: 10/20/2024] Open
Abstract
The incidence of culture-negative NVO (CN-NVO) cases is increasing, presenting significant diagnostic and therapeutic challenges due to the inability to isolate causative organisms with conventional microbiological methods. Factors influencing the diagnosis of CN-NVO include prior antimicrobial therapy, low pathogen burden, fastidious or intracellular organisms, technical issues, and non-infectious mimickers. Diagnosis often relies on imaging modalities like magnetic resonance imaging (MRI) and computed tomography (CT)-guided biopsy, though these methods can sometimes fail to yield positive microbiological results. Advanced diagnostic tools, such as polymerase chain reaction (PCR), metagenomic next-generation sequencing (mNGS), and cell-free DNA analysis, may be necessary to identify the pathogen. The causative pathogen cannot be isolated in some patients, among which an empirical antimicrobial therapy should be initiated. This narrative review discusses the management, monitoring, surgical indications, and outcomes for patients with CN-NVO.
Collapse
Affiliation(s)
| | - Francesco Petri
- Division of Public Health, Infectious Diseases and Occupational Medicine, Department of Medicine, Mayo Clinic College of Medicine and Science, Mayo Clinic, Rochester, MN 55905, USA; (F.P.); (O.K.M.); (R.I.-A.); (S.E.Z.)
- Department of Infectious Diseases, ASST Fatebenefratelli Sacco, “L. Sacco” University Hospital, 20157 Milan, Italy;
| | - Omar K. Mahmoud
- Division of Public Health, Infectious Diseases and Occupational Medicine, Department of Medicine, Mayo Clinic College of Medicine and Science, Mayo Clinic, Rochester, MN 55905, USA; (F.P.); (O.K.M.); (R.I.-A.); (S.E.Z.)
| | - Rita Igwilo-Alaneme
- Division of Public Health, Infectious Diseases and Occupational Medicine, Department of Medicine, Mayo Clinic College of Medicine and Science, Mayo Clinic, Rochester, MN 55905, USA; (F.P.); (O.K.M.); (R.I.-A.); (S.E.Z.)
| | - Said El Zein
- Division of Public Health, Infectious Diseases and Occupational Medicine, Department of Medicine, Mayo Clinic College of Medicine and Science, Mayo Clinic, Rochester, MN 55905, USA; (F.P.); (O.K.M.); (R.I.-A.); (S.E.Z.)
| | - Ahmad N. Nassr
- Department of Orthopedic Surgery, Mayo Clinic, Rochester, MN 55905, USA;
| | - Andrea Gori
- Department of Infectious Diseases, ASST Fatebenefratelli Sacco, “L. Sacco” University Hospital, 20157 Milan, Italy;
- Centre of Multidisciplinary Research in Health Science (MACH), University of Milan, 20122 Milan, Italy
| | - Elie F. Berbari
- Division of Public Health, Infectious Diseases and Occupational Medicine, Department of Medicine, Mayo Clinic College of Medicine and Science, Mayo Clinic, Rochester, MN 55905, USA; (F.P.); (O.K.M.); (R.I.-A.); (S.E.Z.)
| |
Collapse
|
45
|
Nowotnick AG, Xi Z, Jin Z, Khalatbarizamanpoor S, Brauer DS, Löffler B, Jandt KD. Antimicrobial Biomaterials Based on Physical and Physicochemical Action. Adv Healthc Mater 2024:e2402001. [PMID: 39301968 DOI: 10.1002/adhm.202402001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2024] [Revised: 08/09/2024] [Indexed: 09/22/2024]
Abstract
Developing effective antimicrobial biomaterials is a relevant and fast-growing field in advanced healthcare materials. Several well-known (e.g., traditional antibiotics, silver, copper etc.) and newer (e.g., nanostructured, chemical, biomimetic etc.) approaches have been researched and developed in recent years and valuable knowledge has been gained. However, biomaterials associated infections (BAIs) remain a largely unsolved problem and breakthroughs in this area are sparse. Hence, novel high risk and potential high gain approaches are needed to address the important challenge of BAIs. Antibiotic free antimicrobial biomaterials that are largely based on physical action are promising, since they reduce the risk of antibiotic resistance and tolerance. Here, selected examples are reviewed such antimicrobial biomaterials, namely switchable, protein-based, carbon-based and bioactive glass, considering microbiological aspects of BAIs. The review shows that antimicrobial biomaterials mainly based on physical action are powerful tools to control microbial growth at biomaterials interfaces. These biomaterials have major clinical and application potential for future antimicrobial healthcare materials without promoting microbial tolerance. It also shows that the antimicrobial action of these materials is based on different complex processes and mechanisms, often on the nanoscale. The review concludes with an outlook and highlights current important research questions in antimicrobial biomaterials.
Collapse
Affiliation(s)
- Adrian G Nowotnick
- Chair of Materials Science (CMS), Otto Schott Institute of Materials Research (OSIM), Friedrich Schiller University Jena, Löbdergraben 32, 07743, Jena, Germany
- Jena School for Microbial Communication (JSMC), 07743, Neugasse 23, Jena, Germany
| | - Zhongqian Xi
- Chair of Materials Science (CMS), Otto Schott Institute of Materials Research (OSIM), Friedrich Schiller University Jena, Löbdergraben 32, 07743, Jena, Germany
- Jena School for Microbial Communication (JSMC), 07743, Neugasse 23, Jena, Germany
| | - Zhaorui Jin
- Bioactive Glasses Group, Otto Schott Institute of Materials Research (OSIM), Friedrich Schiller University Jena, Lessingstraße 12, 07743, Jena, Germany
| | - Sadaf Khalatbarizamanpoor
- Jena School for Microbial Communication (JSMC), 07743, Neugasse 23, Jena, Germany
- Institute of Medical Microbiology, Jena University Hospital, 07747, Am Klinikum 1, Jena, Germany
| | - Delia S Brauer
- Bioactive Glasses Group, Otto Schott Institute of Materials Research (OSIM), Friedrich Schiller University Jena, Lessingstraße 12, 07743, Jena, Germany
| | - Bettina Löffler
- Jena School for Microbial Communication (JSMC), 07743, Neugasse 23, Jena, Germany
- Institute of Medical Microbiology, Jena University Hospital, 07747, Am Klinikum 1, Jena, Germany
| | - Klaus D Jandt
- Chair of Materials Science (CMS), Otto Schott Institute of Materials Research (OSIM), Friedrich Schiller University Jena, Löbdergraben 32, 07743, Jena, Germany
- Jena School for Microbial Communication (JSMC), 07743, Neugasse 23, Jena, Germany
| |
Collapse
|
46
|
Gao X, Zhang J, Gong Y, Yan L. The biomedical applications of nanozymes in orthopaedics based on regulating reactive oxygen species. J Nanobiotechnology 2024; 22:569. [PMID: 39285458 PMCID: PMC11406882 DOI: 10.1186/s12951-024-02844-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2024] [Accepted: 09/07/2024] [Indexed: 09/19/2024] Open
Abstract
Nanozymes, a category of nanomaterials with enzyme-like activity, have garnered growing interest in various biomedical contexts. Notably, nanozymes that are capable of regulating reactive oxygen species levels by emulating antioxidant or prooxidant enzymes within cells hold significant therapeutic potential for a range of disorders. Herein, we overview the catalytic mechanisms of four exemplary nanozymes within the orthopedic domain. Subsequently, we emphasize recent groundbreaking advancements in nanozyme applications in orthopaedics, encompassing osteoarthritis, osteoporosis, intervertebral disc degeneration, bone defects, spinal cord injury, gout, rheumatoid arthritis, osteosarcoma and bone infection. Furthermore, we discuss the emerging area's future prospects and several noteworthy challenges in biomedical application. This review not only fosters the ongoing development of nanozyme research but also fosters the emergence of more potent nanozymes for the treatment of orthopaedical diseases in the future.
Collapse
Affiliation(s)
- Xiangcheng Gao
- Department of Spine Surgery, Honghui Hospital, Xi'an Jiaotong University, Xi'an, Shaanxi, 710061, China
| | - Jiejie Zhang
- Department of Neurology, The Second Hospital of Hebei Medical University, Shijiazhuang, Hebei, 050000, China
| | - Yining Gong
- Department of Spine Surgery, Honghui Hospital, Xi'an Jiaotong University, Xi'an, Shaanxi, 710061, China.
| | - Liang Yan
- Department of Spine Surgery, Honghui Hospital, Xi'an Jiaotong University, Xi'an, Shaanxi, 710061, China.
| |
Collapse
|
47
|
Xu G, Peng G, Yang J, Wu M, Li W, Wang J, Zhu L, Zhang W, Ge F, Song P. Molybdenum disulfide nanosheets based non-oxygen-dependent and heat-initiated free radical nanogenerator with antimicrobial peptides for antimicrobial, biofilm ablation and wound healing. BIOMATERIALS ADVANCES 2024; 162:213920. [PMID: 38901063 DOI: 10.1016/j.bioadv.2024.213920] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/15/2024] [Revised: 05/22/2024] [Accepted: 05/31/2024] [Indexed: 06/22/2024]
Abstract
Chronic refractory wounds caused by multidrug-resistant (MDR) bacterial and biofilm infections are a substantial threat to human health, which presents a persistent challenge in managing clinical wound care. We here synthesized a composite nanosheet AIPH/AMP/MoS2, which can potentially be used for combined therapy because of the photothermal effect induced by MoS2, its ability to deliver antimicrobial peptides, and its ability to generate alkyl free radicals independent of oxygen. The synthesized nanosheets exhibited 61 % near-infrared (NIR) photothermal conversion efficiency, marked photothermal stability and free radical generating ability. The minimal inhibitory concentrations (MICs) of the composite nanosheets against MDR Escherichia coli (MDR E. coli) and MDR Staphylococcus aureus (MDR S. aureus) were approximately 38 μg/mL and 30 μg/mL, respectively. The composite nanosheets (150 μg/mL) effectively ablated >85 % of the bacterial biofilm under 808-nm NIR irradiation for 6 min. In the wound model experiment, approximately 90 % of the wound healed after the 4-day treatment with the composite nanosheets. The hemolysis experiment, mouse embryonic fibroblast (MEFs) cytotoxicity experiment, and mouse wound healing experiment all unveiled the excellent biocompatibility of the composite nanosheets. According to the transcriptome analysis, the composite nanosheets primarily exerted a synergistic therapeutic effect by disrupting the cellular membrane function of S. aureus and inhibiting quorum sensing mediated by the two-component system. Thus, the synthesized composite nanosheets exhibit remarkable antibacterial and biofilm ablation properties and therefore can be used to improve wound healing in chronic biofilm infections.
Collapse
Affiliation(s)
- Guanglin Xu
- College of Biological and Food Engineering, Anhui Polytechnic University, Wuhu 241000, Anhui, China
| | - Guanglan Peng
- The first Affiliated Hospital of Wannan Medical College, Yijishan Hospital, Wuhu 241002, Anhui, China
| | - Jianping Yang
- College of Biological and Food Engineering, Anhui Polytechnic University, Wuhu 241000, Anhui, China
| | - Mingcai Wu
- Department of Biochemistry and Molecular Biology, Wannan Medical College, Wuhu, 241002, Anhui, China
| | - Wanzhen Li
- College of Biological and Food Engineering, Anhui Polytechnic University, Wuhu 241000, Anhui, China
| | - Jun Wang
- College of Biological and Food Engineering, Anhui Polytechnic University, Wuhu 241000, Anhui, China
| | - Longbao Zhu
- College of Biological and Food Engineering, Anhui Polytechnic University, Wuhu 241000, Anhui, China
| | - Weiwei Zhang
- College of Biological and Food Engineering, Anhui Polytechnic University, Wuhu 241000, Anhui, China.
| | - Fei Ge
- College of Biological and Food Engineering, Anhui Polytechnic University, Wuhu 241000, Anhui, China.
| | - Ping Song
- College of Biological and Food Engineering, Anhui Polytechnic University, Wuhu 241000, Anhui, China.
| |
Collapse
|
48
|
Farazin A, Mahjoubi S. Dual-functional Hydroxyapatite scaffolds for bone regeneration and precision drug delivery. J Mech Behav Biomed Mater 2024; 157:106661. [PMID: 39018918 DOI: 10.1016/j.jmbbm.2024.106661] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2024] [Revised: 06/25/2024] [Accepted: 07/12/2024] [Indexed: 07/19/2024]
Abstract
Addressing infected bone defects remains a significant challenge in orthopedics, requiring effective infection control and bone defect repair. A promising therapeutic approach involves the development of dual-functional engineered biomaterials with drug delivery systems that combine antibacterial properties with osteogenesis promotion. The Hydroxyapatite composite scaffolds offer a one-stage treatment, eliminating the need for multiple surgeries and thereby streamlining the process and reducing treatment time. This review delves into the impaired bone repair mechanisms within pathogen-infected and inflamed microenvironments, providing a theoretical foundation for treating infectious bone defects. Additionally, it explores composite scaffolds made of antibacterial and osteogenic materials, along with advanced drug delivery systems that possess both antibacterial and bone-regenerative properties. By offering a comprehensive understanding of the microenvironment of infectious bone defects and innovative design strategies for dual-function scaffolds, this review presents significant advancements in treatment methods for infectious bone defects. Continued research and clinical validation are essential to refine these innovations, ensuring biocompatibility and safety, achieving controlled release and stability, and developing scalable manufacturing processes for widespread clinical application.
Collapse
Affiliation(s)
- Ashkan Farazin
- Department of Mechanical Engineering, Stevens Institute of Technology, Castle Point on Hudson, Hoboken, NJ, 07030, United States
| | - Soroush Mahjoubi
- Department of Civil and Environmental Engineering, Stevens Institute of Technology, Hoboken, NJ, 07030, United States; Department of Civil and Environmental Engineering, Massachusetts Institute of Technology, Cambridge, MA, 02139, United States; Department of Materials Science and Engineering, Massachusetts Institute of Technology, Cambridge, MA, 02139, United States.
| |
Collapse
|
49
|
Guo Y, Mao C, Wu S, Wang C, Zheng Y, Liu X. Ultrasound-Triggered Piezoelectric Catalysis of Zinc Oxide@Glucose Derived Carbon Spheres for the Treatment of MRSA Infected Osteomyelitis. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2024; 20:e2400732. [PMID: 38764258 DOI: 10.1002/smll.202400732] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/30/2024] [Revised: 04/28/2024] [Indexed: 05/21/2024]
Abstract
Currently, methicillin-resistant Staphylococcus aureus (MRSA)-induced osteomyelitis is a clinically life-threatening disease, however, long-term antibiotic treatment can lead to bacterial resistance, posing a huge challenge to treatment and public health. In this study, glucose-derived carbon spheres loaded with zinc oxide (ZnO@HTCS) are successfully constructed. This composite demonstrates the robust ability to generate reactive oxygen species (ROS) under ultrasound (US) irradiation, eradicating 99.788% ± 0.087% of MRSA within 15 min and effectively treating MRSA-induced osteomyelitis infection. Piezoelectric force microscopy tests and finite element method simulations reveal that the ZnO@HTCS composite exhibits superior piezoelectric catalytic performance compared to pure ZnO, making it a unique piezoelectric sonosensitizer. Density functional theory calculations reveal that the formation of a Mott-Schottky heterojunction and an internal piezoelectric field within the interface accelerates the electron transfer and the separation of electron-hole pairs. Concurrently, surface vacancies of the composite enable the adsorption of a greater amount of oxygen, enhancing the piezoelectric catalytic effect and generating a substantial quantity of ROS. This work not only presents a promising approach for augmenting piezoelectric catalysis through construction of a Schottky heterojunction interface but also provides a novel, efficient therapeutic strategy for treating osteomyelitis.
Collapse
Affiliation(s)
- Yihao Guo
- Biomedical Materials Engineering Research Center, Hubei Key Laboratory of Polymer Materials, Ministry-of-Education Key Laboratory for the Green Preparation and Application of Functional Materials, School of Materials Science & Engineering, State Key Laboratory of Biocatalysis and Enzyme Engineering, Hubei University, Wuhan, 430062, China
- School of Health Science & Biomedical Engineering, Hebei University of Technology, Xiping Avenue 5340#, Tianjin, 300401, China
- School of Materials Science & Engineering, Peking University, Yiheyuan Road 5#, Beijing, 100871, China
| | - Congyang Mao
- Biomedical Materials Engineering Research Center, Hubei Key Laboratory of Polymer Materials, Ministry-of-Education Key Laboratory for the Green Preparation and Application of Functional Materials, School of Materials Science & Engineering, State Key Laboratory of Biocatalysis and Enzyme Engineering, Hubei University, Wuhan, 430062, China
| | - Shuilin Wu
- Biomedical Materials Engineering Research Center, Hubei Key Laboratory of Polymer Materials, Ministry-of-Education Key Laboratory for the Green Preparation and Application of Functional Materials, School of Materials Science & Engineering, State Key Laboratory of Biocatalysis and Enzyme Engineering, Hubei University, Wuhan, 430062, China
- School of Health Science & Biomedical Engineering, Hebei University of Technology, Xiping Avenue 5340#, Tianjin, 300401, China
- School of Materials Science & Engineering, Peking University, Yiheyuan Road 5#, Beijing, 100871, China
| | - Chaofeng Wang
- School of Health Science & Biomedical Engineering, Hebei University of Technology, Xiping Avenue 5340#, Tianjin, 300401, China
| | - Yufeng Zheng
- School of Materials Science & Engineering, Peking University, Yiheyuan Road 5#, Beijing, 100871, China
| | - Xiangmei Liu
- Biomedical Materials Engineering Research Center, Hubei Key Laboratory of Polymer Materials, Ministry-of-Education Key Laboratory for the Green Preparation and Application of Functional Materials, School of Materials Science & Engineering, State Key Laboratory of Biocatalysis and Enzyme Engineering, Hubei University, Wuhan, 430062, China
- School of Health Science & Biomedical Engineering, Hebei University of Technology, Xiping Avenue 5340#, Tianjin, 300401, China
| |
Collapse
|
50
|
Liang W, Li Y, Ji Y, Kang R, Zhang K, Su X, Li J, Ji M, Wu T, Cao X, Chen J, Huo J. Exosomes derived from bone marrow mesenchymal stem cells induce the proliferation and osteogenic differentiation and regulate the inflammatory state in osteomyelitis in vitro model. NAUNYN-SCHMIEDEBERG'S ARCHIVES OF PHARMACOLOGY 2024:10.1007/s00210-024-03357-4. [PMID: 39168906 DOI: 10.1007/s00210-024-03357-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Received: 02/19/2024] [Accepted: 08/02/2024] [Indexed: 08/23/2024]
Abstract
Chronic osteomyelitis is a chronic bone infection characterized by progressive osteonecrosis and dead bone formation, which is closely related to persistent infection and chronic inflammation. Exosomes derived from bone marrow-derived mesenchymal stem cells (BMSC) play an important role in bone tissue regeneration and the modulation of inflammatory processes. However, their role and mechanism of action in osteomyelitis have not been reported so far. This paper explores the potential effect of BMSC-derived exosomes on osteomyelitis in vitro model with the aim of providing a theoretical basis for the treatment of osteomyelitis in the future. In this study, exosomes were isolated and extracted from BMSCs and identified. MC3T3-E1 cells were treated with Staphylococcal protein A (SPA) to establish an in vitro model of osteomyelitis. Next, the effects of BMSC-derived exosomes on cell proliferation, apoptosis, angiogenesis, and autophagy in MC3T3-E1 cells treated with SPA were evaluated. Results showed that the proliferation ability of MC3T3-E1 cells increased after co-culture with BMSC-derived exosomes. Moreover, exosomes induced autophagy and osteogenic differentiation in MC3T3-E1 cells. The mRNA and protein levels of factors related to proliferation, differentiation, apoptosis, autophagy, and angiogenesis including β-Catenin, Runx2, Bcl-2, VEGFA, and Beclin-1 upregulated in SPA-treated MC3T3-E1 cells, whereas the levels of inflammatory cytokines including TNF-α, IL-1β, and IL-6 decreased in the supernatant. The results showed that exosomes derived from BMSCs may participate in the attenuation of osteomyelitis by inducing proliferation and osteogenic differentiation and regulating the inflammatory state in bone cells.
Collapse
Affiliation(s)
- Wei Liang
- Department of Orthopaedics, Taiyuan Hospital of Peking University First Hospital (Taiyuan Central Hospital), No. 1, East Sandao Lane, Jiefang Road, Taiyuan, 030000, Shanxi Province, China
| | - Yangui Li
- Department of Orthopaedics, Taiyuan Hospital of Peking University First Hospital (Taiyuan Central Hospital), No. 1, East Sandao Lane, Jiefang Road, Taiyuan, 030000, Shanxi Province, China
| | - Yihua Ji
- Department of Orthopaedics, Taiyuan Hospital of Peking University First Hospital (Taiyuan Central Hospital), No. 1, East Sandao Lane, Jiefang Road, Taiyuan, 030000, Shanxi Province, China
| | - Renjie Kang
- Department of Orthopaedics, Taiyuan Hospital of Peking University First Hospital (Taiyuan Central Hospital), No. 1, East Sandao Lane, Jiefang Road, Taiyuan, 030000, Shanxi Province, China
| | - Kaixi Zhang
- Department of Orthopaedics, Taiyuan Hospital of Peking University First Hospital (Taiyuan Central Hospital), No. 1, East Sandao Lane, Jiefang Road, Taiyuan, 030000, Shanxi Province, China
| | - Xueyuan Su
- Department of Orthopaedics, Taiyuan Hospital of Peking University First Hospital (Taiyuan Central Hospital), No. 1, East Sandao Lane, Jiefang Road, Taiyuan, 030000, Shanxi Province, China
| | - Jiangbo Li
- Department of Orthopaedics, Taiyuan Hospital of Peking University First Hospital (Taiyuan Central Hospital), No. 1, East Sandao Lane, Jiefang Road, Taiyuan, 030000, Shanxi Province, China
| | - Mingming Ji
- Department of Orthopaedics, Taiyuan Hospital of Peking University First Hospital (Taiyuan Central Hospital), No. 1, East Sandao Lane, Jiefang Road, Taiyuan, 030000, Shanxi Province, China
| | - Taiyong Wu
- Department of Orthopaedics, Taiyuan Hospital of Peking University First Hospital (Taiyuan Central Hospital), No. 1, East Sandao Lane, Jiefang Road, Taiyuan, 030000, Shanxi Province, China
| | - Xinjie Cao
- Department of Orthopaedics, Taiyuan Hospital of Peking University First Hospital (Taiyuan Central Hospital), No. 1, East Sandao Lane, Jiefang Road, Taiyuan, 030000, Shanxi Province, China
| | - Jianrui Chen
- Department of Orthopaedics, Taiyuan Hospital of Peking University First Hospital (Taiyuan Central Hospital), No. 1, East Sandao Lane, Jiefang Road, Taiyuan, 030000, Shanxi Province, China.
| | - Jianzhong Huo
- Department of Orthopaedics, Taiyuan Hospital of Peking University First Hospital (Taiyuan Central Hospital), No. 1, East Sandao Lane, Jiefang Road, Taiyuan, 030000, Shanxi Province, China.
| |
Collapse
|