1
|
Batan S, Kuppuswamy S, Wood M, Reddy M, Annex B, Ganta V. Inhibiting anti-angiogenic VEGF165b activates a miR-17-20a-Calcipressin-3 pathway that revascularizes ischemic muscle in peripheral artery disease. COMMUNICATIONS MEDICINE 2024; 4:3. [PMID: 38182796 PMCID: PMC10770062 DOI: 10.1038/s43856-023-00431-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2023] [Accepted: 12/19/2023] [Indexed: 01/07/2024] Open
Abstract
BACKGROUND VEGF165a increases the expression of the microRNA-17-92 cluster, promoting developmental, retinal, and tumor angiogenesis. We have previously shown that VEGF165b, an alternatively spliced anti-angiogenic VEGF-A isoform, inhibits the VEGFR-STAT3 pathway in ischemic endothelial cells (ECs) to decrease their angiogenic capacity. In ischemic macrophages (Møs), VEGF165b inhibits VEGFR1 to induce S100A8/A9 expression, which drives M1-like polarization. Our current study aims to determine whether VEGF165b inhibition promotes perfusion recovery by regulating the microRNA(miR)-17-92 cluster in preclinical PAD. METHODS Femoral artery ligation and resection was used as a preclinical PAD model. Hypoxia serum starvation (HSS) was used as an in vitro PAD model. VEGF165b was inhibited/neutralized by an isoform-specific VEGF165b antibody. RESULTS Here, we show that VEGF165b-inhibition induces the expression of miR-17-20a (within miR-17-92 (miR-17-18a-19a-19b-20a-92) cluster) in HSS-ECs and HSS-Møs vs. respective normal and/or isotype-matched IgG controls to enhance perfusion recovery. Consistent with the bioinformatics analysis that revealed RCAN3 as a common target of miR-17 and miR-20a, Argonaute-2 pull-down assays showed decreased miR-17-20a expression and higher RCAN3 expression in the RNA-induced silencing complex of HSS-ECs and HSS-Møs vs. respective controls. Inhibiting miR-17-20a induced RCAN3 levels to decrease ischemic angiogenesis and promoted M1-like polarization to impair perfusion recovery. Finally, using STAT3 inhibitors, S100A8/A9 silencers, and VEGFR1-deficient ECs and Møs, we show that VEGF165b-inhibition activates the miR-17-20a-RCAN3 pathway independent of VEGFR1-STAT3 or VEGFR1-S100A8/A9 in ischemic-ECs and ischemic-Møs respectively. CONCLUSIONS Our data revealed a hereunto unrecognized therapeutic 'miR-17-20a-RCAN3' pathway in the ischemic vasculature that is VEGFR1-STAT3/S100A8/A9 independent and is activated only upon VEGF165b-inhibition in PAD.
Collapse
Affiliation(s)
- Sonia Batan
- Vascular Biology Center, Department of Medicine, Augusta University, Augusta, GA, 30912, USA
| | - Sivaraman Kuppuswamy
- Vascular Biology Center, Department of Medicine, Augusta University, Augusta, GA, 30912, USA
| | - Madison Wood
- Medical College of Georgia, Augusta University, Augusta, GA, 30912, USA
| | - Meghana Reddy
- Medical College of Georgia, Augusta University, Augusta, GA, 30912, USA
| | - Brian Annex
- Vascular Biology Center, Department of Medicine, Augusta University, Augusta, GA, 30912, USA
| | - Vijay Ganta
- Vascular Biology Center, Department of Medicine, Augusta University, Augusta, GA, 30912, USA.
| |
Collapse
|
2
|
Adhikary R, Roy A, Jolly MK, Das D. Effects of microRNA-mediated negative feedback on gene expression noise. Biophys J 2023; 122:4220-4240. [PMID: 37803829 PMCID: PMC10645566 DOI: 10.1016/j.bpj.2023.09.019] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2023] [Revised: 07/19/2023] [Accepted: 09/28/2023] [Indexed: 10/08/2023] Open
Abstract
MicroRNAs (miRNAs) are small noncoding RNAs that regulate gene expression post-transcriptionally in eukaryotes by binding with target mRNAs and preventing translation. miRNA-mediated feedback motifs are ubiquitous in various genetic networks that control cellular decision making. A key question is how such a feedback mechanism may affect gene expression noise. To answer this, we have developed a mathematical model to study the effects of a miRNA-dependent negative-feedback loop on mean expression and noise in target mRNAs. Combining analytics and simulations, we show the existence of an expression threshold demarcating repressed and expressed regimes in agreement with earlier studies. The steady-state mRNA distributions are bimodal near the threshold, where copy numbers of mRNAs and miRNAs exhibit enhanced anticorrelated fluctuations. Moreover, variation of negative-feedback strength shifts the threshold locations and modulates the noise profiles. Notably, the miRNA-mRNA binding affinity and feedback strength collectively shape the bimodality. We also compare our model with a direct auto-repression motif, where a gene produces its own repressor. Auto-repression fails to produce bimodal mRNA distributions as found in miRNA-based indirect repression, suggesting the crucial role of miRNAs in creating phenotypic diversity. Together, we demonstrate how miRNA-dependent negative feedback modifies the expression threshold and leads to a broader parameter regime of bimodality compared to the no-feedback case.
Collapse
Affiliation(s)
- Raunak Adhikary
- Department of Biological Sciences, Indian Institute of Science Education And Research Kolkata Mohanpur, Nadia, West Bengal, India
| | - Arnab Roy
- Department of Biological Sciences, Indian Institute of Science Education And Research Kolkata Mohanpur, Nadia, West Bengal, India
| | - Mohit Kumar Jolly
- Centre for BioSystems Science and Engineering, Indian Institute of Science, Bengaluru, India
| | - Dipjyoti Das
- Department of Biological Sciences, Indian Institute of Science Education And Research Kolkata Mohanpur, Nadia, West Bengal, India.
| |
Collapse
|
3
|
Diggins NL, Hancock MH. Viral miRNA regulation of host gene expression. Semin Cell Dev Biol 2023; 146:2-19. [PMID: 36463091 PMCID: PMC10101914 DOI: 10.1016/j.semcdb.2022.11.007] [Citation(s) in RCA: 9] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2022] [Revised: 11/16/2022] [Accepted: 11/22/2022] [Indexed: 12/05/2022]
Abstract
Viruses have evolved a multitude of mechanisms to combat barriers to productive infection in the host cell. Virally-encoded miRNAs are one such means to regulate host gene expression in ways that benefit the virus lifecycle. miRNAs are small non-coding RNAs that regulate protein expression but do not trigger the adaptive immune response, making them powerful tools encoded by viruses to regulate cellular processes. Diverse viruses encode for miRNAs but little sequence homology exists between miRNAs of different viral species. Despite this, common cellular pathways are targeted for regulation, including apoptosis, immune evasion, cell growth and differentiation. Herein we will highlight the viruses that encode miRNAs and provide mechanistic insight into how viral miRNAs aid in lytic and latent infection by targeting common cellular processes. We also highlight how viral miRNAs can mimic host cell miRNAs as well as how viral miRNAs have evolved to regulate host miRNA expression. These studies dispel the myth that viral miRNAs are subtle regulators of gene expression, and highlight the critical importance of viral miRNAs to the virus lifecycle.
Collapse
Affiliation(s)
- Nicole L Diggins
- Vaccine and Gene Therapy Institute, Oregon Health & Science University, Portland, OR, USA
| | - Meaghan H Hancock
- Vaccine and Gene Therapy Institute, Oregon Health & Science University, Portland, OR, USA.
| |
Collapse
|
4
|
Vahabi M, Dehni B, Antomás I, Giovannetti E, Peters GJ. Targeting miRNA and using miRNA as potential therapeutic options to bypass resistance in pancreatic ductal adenocarcinoma. Cancer Metastasis Rev 2023; 42:725-740. [PMID: 37490255 PMCID: PMC10584721 DOI: 10.1007/s10555-023-10127-w] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/06/2023] [Accepted: 07/12/2023] [Indexed: 07/26/2023]
Abstract
Pancreatic ductal adenocarcinoma (PDAC) is a highly aggressive disease with poor prognosis due to early metastasis, low diagnostic rates at early stages, and resistance to current therapeutic regimens. Despite numerous studies and clinical trials, the mortality rate for PDAC has shown limited improvement. Therefore, there is a pressing need to attain. a more comprehensive molecular characterization to identify biomarkers enabling early detection and evaluation of treatment response. MicroRNA (miRNAs) are critical regulators of gene expression on the post-transcriptional level, and seem particularly interesting as biomarkers due to their relative stability, and the ability to detect them in fixed tissue specimens and biofluids. Deregulation of miRNAs is common and affects several hallmarks of cancer and contribute to the oncogenesis and metastasis of PDAC. Unique combinations of upregulated oncogenic miRNAs (oncomiRs) and downregulated tumor suppressor miRNAs (TsmiRs), promote metastasis, characterize the tumor and interfere with chemosensitivity of PDAC cells. Here, we review several oncomiRs and TsmiRs involved in chemoresistance to gemcitabine and FOLFIRINOX in PDAC and highlighted successful/effective miRNA-based therapy approaches in vivo. Integrating miRNAs in PDAC treatment represents a promising therapeutic avenue that can be used as guidance for personalized medicine for PDAC patients.
Collapse
Affiliation(s)
- Mahrou Vahabi
- Department of Medical Oncology, Amsterdam UMC, location VUMC, Vrije Universiteit Amsterdam, Cancer Center Amsterdam, Amsterdam, Netherlands
| | - Bilal Dehni
- Department of Medical Oncology, Amsterdam UMC, location VUMC, Vrije Universiteit Amsterdam, Cancer Center Amsterdam, Amsterdam, Netherlands
| | - Inés Antomás
- Department of Medical Oncology, Amsterdam UMC, location VUMC, Vrije Universiteit Amsterdam, Cancer Center Amsterdam, Amsterdam, Netherlands
| | - Elisa Giovannetti
- Department of Medical Oncology, Amsterdam UMC, location VUMC, Vrije Universiteit Amsterdam, Cancer Center Amsterdam, Amsterdam, Netherlands
- Cancer Pharmacology Lab, Fondazione Pisana per La Scienza, Pisa, Italy
| | - Godefridus J Peters
- Department of Medical Oncology, Amsterdam UMC, location VUMC, Vrije Universiteit Amsterdam, Cancer Center Amsterdam, Amsterdam, Netherlands.
- Department of Biochemistry, Medical University of Gdansk, Gdansk, Poland.
| |
Collapse
|
5
|
Liu Q, Li D, Dai Y, Zhang Y, Lan S, Luo Q, Ye J, Chen X, Li P, Chen W, Li R, Hu L. Functional gene polymorphisms and expression alteration of selected microRNAs and the risk of various gastric lesions in Helicobacter pylori-related gastric diseases. Front Genet 2023; 13:1097543. [PMID: 36712871 PMCID: PMC9878693 DOI: 10.3389/fgene.2022.1097543] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2022] [Accepted: 12/31/2022] [Indexed: 01/13/2023] Open
Abstract
Background: Helicobacter pylori (Hp) persistent infection is an important pathogenic factor for a series of chronic gastric diseases from chronic gastritis to gastric cancer. Genetic and epigenetic abnormalities of microRNAs may play a vital role in the pathological evolution of gastric mucosa in Helicobacter pylori-related gastric diseases (HPGD). This study aimed to investigate the relationship between miR-146a, miR-196a2, miR-149, miR-499 and miR-27a gene single nucleotide polymorphisms (SNPs) and their expressions with pathological changes in gastric mucosa, and to further analyze the interactions between SNPs and Hp. Methods: Subjects in this study included patients diagnosed with HPGD and healthy controls. MiR-146a rs2910164, miR-196a2 rs11614913, miR-149 rs2292832, miR-499 rs3746444 and miR-27a rs895819 were genotyped by direct sequencing. Fluorescence quantitative PCR was used to detect microRNA expressions. Gene-gene and gene-environment interactions were evaluated by multifactor dimensionality reduction (MDR) method. Results: we found that frequency distribution of miR-196a2 rs11614913 CT genotype in gastric precancerous lesion (GPL) group and gastric cancer (GC) group was significantly higher than normal control (NOR) group [adjusted OR = 6.16, 95%CI (1.46-26.03); adjusted OR = 11.83, 95%CI (1.65-84.72), respectively]. CT genotype and C allele of miR-27a rs895819 were associated with increased risk of GC [adjusted OR = 10.14, 95%CI (2.25-45.77); adjusted OR = 3.71, 95%CI(1.46-9.44), respectively]. The MDR analysis results showed that the interaction between miR-196a2 rs11614913 and Hp was associated with the risk of GPL (p = 0.004). Meanwhile, the expression level of miR-196a2 in GC group was significantly higher than NOR, chronic inflammation (CI) and early precancerous lesion (EPL) groups among Hp-positive subjects. And expressions of miR-499 and miR-27a in GC group were both higher than EPL group. Also, miR-27a expression in GC group was higher than CI and gastric atrophy (GA) groups. Conclusion: miR-196a2 rs11614913 and miR-27a rs895819 may affect the genetic susceptibility to GPL or GC. MiR-196a2 rs11614913 and Hp have a synergistic effect in the occurrence and development of GPL. The up-regulation of miR-499, miR-196a2 and miR-27a expression caused by Hp infection may be an important mechanism of gastric carcinogenesis.
Collapse
Affiliation(s)
- Qi Liu
- Institute of Gastroenterology, Science and Technology Innovation Center, Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Danyan Li
- Institute of Gastroenterology, Science and Technology Innovation Center, Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Yunkai Dai
- Institute of Gastroenterology, Science and Technology Innovation Center, Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Yunzhan Zhang
- Institute of Gastroenterology, Science and Technology Innovation Center, Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Shaoyang Lan
- Department of Gastroenterology, First Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Qi Luo
- Department of Gastroenterology, First Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Jintong Ye
- Department of Gastroenterology, First Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Xu Chen
- Department of Gastroenterology, First Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Peiwu Li
- Department of Gastroenterology, First Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Weijing Chen
- Institute of Gastroenterology, Science and Technology Innovation Center, Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Ruliu Li
- Institute of Gastroenterology, Science and Technology Innovation Center, Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Ling Hu
- Institute of Gastroenterology, Science and Technology Innovation Center, Guangzhou University of Chinese Medicine, Guangzhou, China,*Correspondence: Ling Hu,
| |
Collapse
|
6
|
Pan-Cancer Study on Variants of Canonical miRNA Biogenesis Pathway Components: A Pooled Analysis. Cancers (Basel) 2023; 15:cancers15020338. [PMID: 36672288 PMCID: PMC9856462 DOI: 10.3390/cancers15020338] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2022] [Revised: 12/23/2022] [Accepted: 01/03/2023] [Indexed: 01/06/2023] Open
Abstract
Single nucleotide polymorphisms in genes involved in microRNA processing/maturation and release may deregulate the microRNAome expression levels. We aimed to assess the relationship between miRNA machinery genetic variants and human cancer risk using integrative bioinformatics analyses to identify the role of these genes in cancer aggressiveness. Mutations of 8176 pan-cancer samples were retrieved from 33 studies in "TCGA" database, and a Cox regression model for survival was performed. Next, 22 computationally identified variants within 11 genes were selected based on their high citation rate and MAF. Relevant articles through March 2020 were included. Pooled estimates under the five genetic association models were calculated. Publication bias and heterogeneity between articles were evaluated. Trial Sequential Analysis (TSA) was applied to assess the power and reliability of the draw conclusions. TCGA patients with different cancer types revealed significant alterations in miRNA machinery genes, with mutation frequency ranging from 0.6-13% of samples. RAN was associated with LN metastasis, while TARBP2 and PIWIL1 gene mutations exhibited better overall survival. In the meta-analysis, 45 articles (74,593 cases and 89,198 controls) met the eligibility criteria. Pooled analysis revealed an increased cancer risk with DROSHArs10719*G, RANrs3803012*G, DGCR8rs417309*A, and GEMIN3rs197414*A. In contrast, both DICER1rs1057035*T and GEMIN4rs2743048*G conferred protection against developing cancer. TSA showed the cumulative evidence is inadequate, and the addition of further primary studies is necessary. This study suggests a potential role of miRNA biogenesis genes in cancer development/prognosis. Further functional studies may reveal biological explanations for the differential risks of the machinery variants in different cancer types.
Collapse
|
7
|
Wei W, Lu H, Dai W, Zheng X, Dong H. Multiplexed Organelles Portrait Barcodes for Subcellular MicroRNA Array Detection in Living Cells. ACS NANO 2022; 16:20329-20339. [PMID: 36410732 DOI: 10.1021/acsnano.2c06252] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/16/2023]
Abstract
Multiplexed profiling of microRNAs' subcellular expression and distribution is essential to understand their spatiotemporal function information, but it remains a crucial challenge. Herein, we report an encoding approach that leverages combinational fluorescent dye barcodes, organelle targeting elements, and an independent quantification signal, termed Multiplexed Organelles Portrait Barcodes (MOPB), for high-throughput profiling of miRNAs from organelles. The MOPB barcodes consist of heterochromatic fluorescent dye-loaded shell-core mesoporous silica nanoparticles modified with organelle targeting peptides and molecular beacon detection probes. Using mitochondria and endoplasmic reticulum as models, we encoded four Cy3/AMCA ER-MOPB and four Cy5/AMCA Mito-MOPB by varying the Cy3 and Cy5 intensity for distinguishing eight organelles' miRNAs. Significantly, the MOPB strategy successfully and accurately profiled eight subcellular organelle miRNAs' alterations in the drug-induced Ca2+ homeostasis breakdown. The approach should allow more widespread application of subcellular miRNAs and multiplexed subcellular protein biomarkers' monitoring for drug discovery, cellular metabolism, signaling transduction, and gene expression regulation readout.
Collapse
Affiliation(s)
- Wei Wei
- Marshall Laboratory of Biomedical Engineering, Research Center for Biosensor and Nanotheranostic, School of Biomedical Engineering, Shenzhen University, 3688 Nanhai Road, Shenzhen, Guangdong518060, China
- Beijing Key Laboratory for Bioengineering and Sensing Technology, School of Chemistry and Bioengineering, University of Science and Technology Beijing30 Xueyuan Road, 100083, Beijing, China
| | - Huiting Lu
- Department of Chemistry, School of Chemistry and Bioengineering, University of Science and Technology Beijing, 30 Xueyuan Road, Beijing100083, China
| | - Wenhao Dai
- Beijing Key Laboratory for Bioengineering and Sensing Technology, School of Chemistry and Bioengineering, University of Science and Technology Beijing30 Xueyuan Road, 100083, Beijing, China
| | - Xiaonan Zheng
- Beijing Key Laboratory for Bioengineering and Sensing Technology, School of Chemistry and Bioengineering, University of Science and Technology Beijing30 Xueyuan Road, 100083, Beijing, China
| | - Haifeng Dong
- Marshall Laboratory of Biomedical Engineering, Research Center for Biosensor and Nanotheranostic, School of Biomedical Engineering, Shenzhen University, 3688 Nanhai Road, Shenzhen, Guangdong518060, China
| |
Collapse
|
8
|
Xia S, Zheng Y, Yan F, Chen G. MicroRNAs modulate neuroinflammation after intracerebral hemorrhage: Prospects for new therapy. Front Immunol 2022; 13:945860. [PMID: 36389834 PMCID: PMC9665326 DOI: 10.3389/fimmu.2022.945860] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2022] [Accepted: 10/13/2022] [Indexed: 12/03/2022] Open
Abstract
Intracerebral hemorrhage (ICH) is the most common subtype of hemorrhagic stroke. After ICH, blood components extravasate from vessels into the brain, activating immune cells and causing them to release a series of inflammatory mediators. Immune cells, together with inflammatory mediators, lead to neuroinflammation in the perihematomal region and the whole brain, and neuroinflammation is closely related to secondary brain injury as well as functional recovery of the brain. Despite recent progress in understanding the pathophysiology of ICH, there is still no effective treatment for this disease. MicroRNAs (miRNAs) are non-coding RNAs 17-25 nucleotides in length that are generated naturally in the human body. They bind complementarily to messenger RNAs and suppress translation, thus regulating gene expression at the post-transcriptional level. They have been found to regulate the pathophysiological process of ICH, particularly the neuroinflammatory cascade. Multiple preclinical studies have shown that manipulating the expression and activity of miRNAs can modulate immune cell activities, influence neuroinflammatory responses, and ultimately affect neurological functions after ICH. This implicates the potentially crucial roles of miRNAs in post-ICH neuroinflammation and indicates the possibility of applying miRNA-based therapeutics for this disease. Thus, this review aims to address the pathophysiological roles and molecular underpinnings of miRNAs in the regulation of neuroinflammation after ICH. With a more sophisticated understanding of ICH and miRNAs, it is possible to translate these findings into new pharmacological therapies for ICH.
Collapse
Affiliation(s)
- Siqi Xia
- Department of Neurosurgery, Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang, China
- Key Laboratory of Precise Treatment and Clinical Translational Research of Neurological Diseases, Zhejiang University, Hangzhou, Zhejiang, China
| | - Yonghe Zheng
- Department of Neurosurgery, Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang, China
- Key Laboratory of Precise Treatment and Clinical Translational Research of Neurological Diseases, Zhejiang University, Hangzhou, Zhejiang, China
| | - Feng Yan
- Department of Neurosurgery, Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang, China
- Key Laboratory of Precise Treatment and Clinical Translational Research of Neurological Diseases, Zhejiang University, Hangzhou, Zhejiang, China
| | - Gao Chen
- Department of Neurosurgery, Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang, China
- Key Laboratory of Precise Treatment and Clinical Translational Research of Neurological Diseases, Zhejiang University, Hangzhou, Zhejiang, China
| |
Collapse
|
9
|
Yang Q, Luo Y, Lan B, Dong X, Wang Z, Ge P, Zhang G, Chen H. Fighting Fire with Fire: Exosomes and Acute Pancreatitis-Associated Acute Lung Injury. Bioengineering (Basel) 2022; 9:615. [PMID: 36354526 PMCID: PMC9687423 DOI: 10.3390/bioengineering9110615] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2022] [Revised: 10/18/2022] [Accepted: 10/24/2022] [Indexed: 08/30/2023] Open
Abstract
Acute pancreatitis (AP) is a prevalent clinical condition of the digestive system, with a growing frequency each year. Approximately 20% of patients suffer from severe acute pancreatitis (SAP) with local consequences and multi-organ failure, putting a significant strain on patients' health insurance. According to reports, the lungs are particularly susceptible to SAP. Acute respiratory distress syndrome, a severe type of acute lung injury (ALI), is the primary cause of mortality among AP patients. Controlling the mortality associated with SAP requires an understanding of the etiology of AP-associated ALI, the discovery of biomarkers for the early detection of ALI, and the identification of potentially effective drug treatments. Exosomes are a class of extracellular vesicles with a diameter of 30-150 nm that are actively released into tissue fluids to mediate biological functions. Exosomes are laden with bioactive cargo, such as lipids, proteins, DNA, and RNA. During the initial stages of AP, acinar cell-derived exosomes suppress forkhead box protein O1 expression, resulting in M1 macrophage polarization. Similarly, macrophage-derived exosomes activate inflammatory pathways within endothelium or epithelial cells, promoting an inflammatory cascade response. On the other hand, a part of exosome cargo performs tissue repair and anti-inflammatory actions and inhibits the cytokine storm during AP. Other reviews have detailed the function of exosomes in the development of AP, chronic pancreatitis, and autoimmune pancreatitis. The discoveries involving exosomes at the intersection of AP and acute lung injury (ALI) are reviewed here. Furthermore, we discuss the therapeutic potential of exosomes in AP and associated ALI. With the continuous improvement of technological tools, the research on exosomes has gradually shifted from basic to clinical applications. Several exosome-specific non-coding RNAs and proteins can be used as novel molecular markers to assist in the diagnosis and prognosis of AP and associated ALI.
Collapse
Affiliation(s)
- Qi Yang
- Department of General Surgery, The First Affiliated Hospital of Dalian Medical University, Dalian 116011, China
- Institute (College) of Integrative Medicine, Dalian Medical University, Dalian 116044, China
- Department of Traditional Chinese Medicine, The Second Affiliated Hospital of Dalian Medical University, Dalian 116023, China
| | - Yalan Luo
- Department of General Surgery, The First Affiliated Hospital of Dalian Medical University, Dalian 116011, China
- Institute (College) of Integrative Medicine, Dalian Medical University, Dalian 116044, China
- Laboratory of Integrative Medicine, The First Affiliated Hospital of Dalian Medical University, Dalian 116011, China
| | - Bowen Lan
- Department of General Surgery, The First Affiliated Hospital of Dalian Medical University, Dalian 116011, China
- Laboratory of Integrative Medicine, The First Affiliated Hospital of Dalian Medical University, Dalian 116011, China
| | - Xuanchi Dong
- Department of General Surgery, The First Affiliated Hospital of Dalian Medical University, Dalian 116011, China
- Laboratory of Integrative Medicine, The First Affiliated Hospital of Dalian Medical University, Dalian 116011, China
| | - Zhengjian Wang
- Department of General Surgery, The First Affiliated Hospital of Dalian Medical University, Dalian 116011, China
- Laboratory of Integrative Medicine, The First Affiliated Hospital of Dalian Medical University, Dalian 116011, China
| | - Peng Ge
- Department of General Surgery, The First Affiliated Hospital of Dalian Medical University, Dalian 116011, China
- Laboratory of Integrative Medicine, The First Affiliated Hospital of Dalian Medical University, Dalian 116011, China
| | - Guixin Zhang
- Department of General Surgery, The First Affiliated Hospital of Dalian Medical University, Dalian 116011, China
- Institute (College) of Integrative Medicine, Dalian Medical University, Dalian 116044, China
- Laboratory of Integrative Medicine, The First Affiliated Hospital of Dalian Medical University, Dalian 116011, China
| | - Hailong Chen
- Department of General Surgery, The First Affiliated Hospital of Dalian Medical University, Dalian 116011, China
- Institute (College) of Integrative Medicine, Dalian Medical University, Dalian 116044, China
- Laboratory of Integrative Medicine, The First Affiliated Hospital of Dalian Medical University, Dalian 116011, China
| |
Collapse
|
10
|
Liu J, Yang CQ, Chen Q, Yu TY, Zhang SL, Guo WH, Luo LH, Zhao G, Yin DC, Zhang CY. MiR-4458-loaded gelatin nanospheres target COL11A1 for DDR2/SRC signaling pathway inactivation to suppress the progression of estrogen receptor-positive breast cancer. Biomater Sci 2022; 10:4596-4611. [PMID: 35792605 DOI: 10.1039/d2bm00543c] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/17/2024]
Abstract
RNA interference is a promising way to treat cancer and the construction of a stable drug delivery system is critically important for its application. Gelatin nanospheres (GNs) comprise a biodegradable drug vehicle with excellent biocompatibility, but there are limited studies on its delivery and role in the stabilization of miRNA and siRNA. Breast cancer is the most diagnosed type of female cancer worldwide. Abnormal miRNA expression is closely related to the occurrence and progression of estrogen receptor-positive (ER+) breast cancer. In this study, miR-4458 was upregulated in ER+ breast cancer and could inhibit MCF-7 cell viability, colony formation, migration, and invasion. Collagen type XI alpha 1 (COL11A1) was identified as a directly interacting protein of miR-4458 and an important component of the extracellular matrix. High COL11A1 expression was positively correlated with poor prognosis, lower overall survival, disease-free survival, and a late tumor-node-metastasis stage. COL11A1 knockdown could inhibit MCF-7 cell migration and invasion. GNs were used to load a miR-4458 mimic or COL11A1 siRNA (si-COL11A1) to achieve sustained and controlled release in xenograft nude mice. Their tumor volume was decreased, tumor cell apoptosis was promoted, and hepatic metastasis was significantly inhibited. Moreover, the DDR2/SRC signaling pathway was inactivated after transfection with the miR-4458 mimic and si-COL11A1. In conclusion, GNs can be potentially used to deliver siRNA or miRNA, and miR-4458 and COL11A1 can be possible targets for ER+ breast cancer treatment.
Collapse
Affiliation(s)
- Jie Liu
- Institute for Special Environmental Biophysics, Key Laboratory for Space Bioscience and Biotechnology, School of Life Sciences, Northwestern Polytechnical University, Xi'an 710072, Shaanxi, PR China.
| | - Chang-Qing Yang
- Institute for Special Environmental Biophysics, Key Laboratory for Space Bioscience and Biotechnology, School of Life Sciences, Northwestern Polytechnical University, Xi'an 710072, Shaanxi, PR China.
| | - Qiang Chen
- State Key Laboratory of Solidification Processing, Northwestern Polytechnical University, Xi'an 710072, Shaanxi, PR China
| | - Tong-Yao Yu
- Institute for Special Environmental Biophysics, Key Laboratory for Space Bioscience and Biotechnology, School of Life Sciences, Northwestern Polytechnical University, Xi'an 710072, Shaanxi, PR China.
| | - Shi-Long Zhang
- Institute for Special Environmental Biophysics, Key Laboratory for Space Bioscience and Biotechnology, School of Life Sciences, Northwestern Polytechnical University, Xi'an 710072, Shaanxi, PR China.
| | - Wei-Hong Guo
- Institute for Special Environmental Biophysics, Key Laboratory for Space Bioscience and Biotechnology, School of Life Sciences, Northwestern Polytechnical University, Xi'an 710072, Shaanxi, PR China.
| | - Li-Heng Luo
- Institute for Special Environmental Biophysics, Key Laboratory for Space Bioscience and Biotechnology, School of Life Sciences, Northwestern Polytechnical University, Xi'an 710072, Shaanxi, PR China.
| | - Gang Zhao
- The First Hospital of Jilin University, 130021, Changchun, China.
| | - Da-Chuan Yin
- Institute for Special Environmental Biophysics, Key Laboratory for Space Bioscience and Biotechnology, School of Life Sciences, Northwestern Polytechnical University, Xi'an 710072, Shaanxi, PR China.
| | - Chen-Yan Zhang
- Institute for Special Environmental Biophysics, Key Laboratory for Space Bioscience and Biotechnology, School of Life Sciences, Northwestern Polytechnical University, Xi'an 710072, Shaanxi, PR China.
| |
Collapse
|
11
|
Zhou J, Peng X, Yang Z, Zhuo Y, Liang W, Yuan R, Chai Y. Discrimination between Cancer Cells and DNA-Damaged Cells: Pre-miRNA Region Recognition Based on Hyperbranched Hybrid Chain Reaction Amplification for Simultaneous Sensitive Detection and Imaging of miRNA and Pre-miRNA. Anal Chem 2022; 94:9911-9918. [PMID: 35749657 DOI: 10.1021/acs.analchem.2c01918] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Herein, a novel region recognition of precursor microRNA (Pre-miRNA) based on hyperbranched hybrid chain reaction (HB-HCR) amplification was constructed to effectively eliminate the interference of Pre-miRNA to the mature microRNA (miRNA) by establishing the linear mapping relation between the two fluorescence signals produced by the miRNA sequence in the Pre-miRNA and Pre-miRNA residues to first realize simultaneous sensitive detection of Pre-miRNA and miRNA as well as highly sensitive imaging of intracellular Pre-miRNA and miRNA, which solves one main challenge of in vitro tumor disease diagnostics: inaccurate detection of tumor-induced miRNA changes. Impressively, this strategy easily distinguishes cancer cells from normal cells and DNA-damaged cells by the difference in miRNA and Pre-miRNA expression, which provides an innovative approach for accurate clinical diagnosis of cancer and precise treatment of prognosis.
Collapse
Affiliation(s)
- Jie Zhou
- Key Laboratory of Luminescence Analysis and Molecular Sensing (Southwest University), Ministry of Education, College of Chemistry and Chemical Engineering, Southwest University, Chongqing 400715, PR China
| | - Xin Peng
- Key Laboratory of Luminescence Analysis and Molecular Sensing (Southwest University), Ministry of Education, College of Chemistry and Chemical Engineering, Southwest University, Chongqing 400715, PR China
| | - Zezhou Yang
- Key Laboratory of Luminescence Analysis and Molecular Sensing (Southwest University), Ministry of Education, College of Chemistry and Chemical Engineering, Southwest University, Chongqing 400715, PR China
| | - Ying Zhuo
- Key Laboratory of Luminescence Analysis and Molecular Sensing (Southwest University), Ministry of Education, College of Chemistry and Chemical Engineering, Southwest University, Chongqing 400715, PR China
| | - Wenbin Liang
- Key Laboratory of Luminescence Analysis and Molecular Sensing (Southwest University), Ministry of Education, College of Chemistry and Chemical Engineering, Southwest University, Chongqing 400715, PR China
| | - Ruo Yuan
- Key Laboratory of Luminescence Analysis and Molecular Sensing (Southwest University), Ministry of Education, College of Chemistry and Chemical Engineering, Southwest University, Chongqing 400715, PR China
| | - Yaqin Chai
- Key Laboratory of Luminescence Analysis and Molecular Sensing (Southwest University), Ministry of Education, College of Chemistry and Chemical Engineering, Southwest University, Chongqing 400715, PR China
| |
Collapse
|
12
|
Kalaimani L, Devarajan B, Namperumalsamy VP, Veerappan M, Daniels JT, Chidambaranathan GP. Hsa-miR-143-3p inhibits Wnt-β-catenin and MAPK signaling in human corneal epithelial stem cells. Sci Rep 2022; 12:11432. [PMID: 35794158 PMCID: PMC9259643 DOI: 10.1038/s41598-022-15263-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2022] [Accepted: 06/21/2022] [Indexed: 11/09/2022] Open
Abstract
Our previous study demonstrated hsa-miR-143-3p as one of the highly expressed miRNAs in enriched corneal epithelial stem cells (CESCs). Hence this study aims to elucidate the regulatory role of hsa-miR-143-3p in the maintenance of stemness in CESCs. The target genes of hsa-miR-143-3p were predicted and subjected to pathway analysis to select the targets for functional studies. Primary cultured limbal epithelial cells were transfected with hsa-miR-143-3p mimic, inhibitor or scrambled sequence using Lipofectamine 3000. The transfected cells were analysed for (i) colony forming potential, (ii) expression of stem cell (SC) markers/ transcription factors (ABCG2, NANOG, OCT4, KLF4, ΔNp63), (iii) differentiation marker (Cx43), (iv) predicted five targets of hsa-miR-143-3p (DVL3, MAPK1, MAPK14, KRAS and KAT6A), (v) MAPK signaling regulators and (vi) Wnt-β-catenin signaling regulators by qPCR, immunofluorescence staining and/or Western blotting. High expression of hsa-miR-143-3p increased the colony forming potential (10.04 ± 1.35%, p < 0.001) with the ability to form holoclone-like colonies in comparison to control (3.33 ± 0.71%). The mimic treated cells had increased expression of SC markers but reduced expression of Cx43 and hsa-miR-143-3p targets involved in Wnt-β-catenin and MAPK signaling pathways. The expression of β-catenin, active β-catenin and ERK2 in hsa-miR-143-3p inhibitor transfected cells were higher than the control cells and the localized nuclear expression indicated the activation of Wnt and MAPK signaling. Thus, the probable association of hsa-miR-143-3p in the maintenance of CESCs through inhibition of Wnt and MAPK signaling pathways was thus indicated.
Collapse
Affiliation(s)
- Lavanya Kalaimani
- Department of Immunology and Stem Cell Biology, Aravind Medical Research Foundation, Madurai, Tamil Nadu, 625020, India.,Department of Biotechnology, Aravind Medical Research Foundation-Affiliated to Alagappa University, Karaikudi, Tamil Nadu, India.,Institute of Ophthalmology, University College London, London, UK
| | - Bharanidharan Devarajan
- Department of Bioinformatics, Aravind Medical Research Foundation, Madurai, Tamil Nadu, India
| | | | - Muthukkaruppan Veerappan
- Department of Immunology and Stem Cell Biology, Aravind Medical Research Foundation, Madurai, Tamil Nadu, 625020, India
| | - Julie T Daniels
- Institute of Ophthalmology, University College London, London, UK
| | - Gowri Priya Chidambaranathan
- Department of Immunology and Stem Cell Biology, Aravind Medical Research Foundation, Madurai, Tamil Nadu, 625020, India. .,Department of Biotechnology, Aravind Medical Research Foundation-Affiliated to Alagappa University, Karaikudi, Tamil Nadu, India.
| |
Collapse
|
13
|
Bulge-Forming miRNases Cleave Oncogenic miRNAs at the Central Loop Region in a Sequence-Specific Manner. Int J Mol Sci 2022; 23:ijms23126562. [PMID: 35743015 PMCID: PMC9224474 DOI: 10.3390/ijms23126562] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2022] [Revised: 05/27/2022] [Accepted: 06/10/2022] [Indexed: 11/16/2022] Open
Abstract
The selective degradation of disease-associated microRNA is promising for the development of new therapeutic approaches. In this study, we engineered a series of bulge-loop-forming oligonucleotides conjugated with catalytic peptide [(LeuArg)2Gly]2 (BC-miRNases) capable of recognizing and destroying oncogenic miR-17 and miR-21. The principle behind the design of BC-miRNase is the cleavage of miRNA at a three-nucleotide bulge loop that forms in the central loop region, which is essential for the biological competence of miRNA. A thorough study of mono- and bis-BC-miRNases (containing one or two catalytic peptides, respectively) revealed that: (i) the sequence of miRNA bulge loops and neighbouring motifs are of fundamental importance for efficient miRNA cleavage (i.e., motifs containing repeating pyrimidine-A bonds are more susceptible to cleavage); (ii) the incorporation of the second catalytic peptide in the same molecular scaffold increases the potency of BC-miRNase, providing a complete degradation of miR-17 within 72 h; (iii) the synergetic co-operation of BC-miRNases with RNase H accelerates the rate of miRNA catalytic cleavage by both the conjugate and the enzyme. Such synergy allows the rapid destruction of constantly emerging miRNA to maintain sufficient knockdown and achieve a desired therapeutic effect.
Collapse
|
14
|
Lim SA, Cox A, Tung M, Chung EJ. Clinical progress of nanomedicine-based RNA therapies. Bioact Mater 2022; 12:203-213. [PMID: 35310381 PMCID: PMC8897211 DOI: 10.1016/j.bioactmat.2021.10.018] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2021] [Revised: 10/11/2021] [Accepted: 10/14/2021] [Indexed: 12/14/2022] Open
Abstract
The clinical application of nanoparticles (NPs) to deliver RNA for therapy has progressed rapidly since the FDA approval of Onpattro® in 2018 for the treatment of polyneuropathy associated with hereditary transthyretin amyloidosis. The emergency use authorization or approval and widespread global use of two mRNA-NP based vaccines developed by Moderna Therapeutics Inc. and Pfizer-BioNTech in 2021 has highlighted the translatability of NP technology for RNA delivery. Furthermore, in clinical trials, a wide variety of NP formulations have been found to extend the half-life of RNA molecules such as microRNA, small interfering RNA, and messenger RNA, with limited safety issues. In this review, we discuss the NP formulations that are already used in the clinic to deliver therapeutic RNA and highlight examples of RNA-NPs which are currently under evaluation for human use. We also detail NP formulations that failed to progress through clinical trials, in hopes of guiding future successful translation of nanomedicine-based RNA therapeutics into the clinic.
Collapse
Affiliation(s)
- Siyoung A. Lim
- Department of Biomedical Engineering, University of Southern California, Los Angeles, CA, USA
| | - Alysia Cox
- Department of Biomedical Engineering, University of Southern California, Los Angeles, CA, USA
| | - Madelynn Tung
- Department of Biomedical Engineering, University of Southern California, Los Angeles, CA, USA
| | - Eun Ji Chung
- Department of Biomedical Engineering, University of Southern California, Los Angeles, CA, USA
- Mork Family Department of Chemical Engineering and Materials Science, University of Southern California, Los Angeles, CA, USA
- Department of Medicine, Division of Nephrology and Hypertension, University of Southern California, Los Angeles, CA, USA
- Department of Surgery, Division of Vascular Surgery and Endovascular Therapy, University of Southern California, Los Angeles, CA, USA
| |
Collapse
|
15
|
Nordick B, Yu PY, Liao G, Hong T. Nonmodular oscillator and switch based on RNA decay drive regeneration of multimodal gene expression. Nucleic Acids Res 2022; 50:3693-3708. [PMID: 35380686 PMCID: PMC9023291 DOI: 10.1093/nar/gkac217] [Citation(s) in RCA: 20] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2022] [Revised: 03/13/2022] [Accepted: 03/21/2022] [Indexed: 12/15/2022] Open
Abstract
Periodic gene expression dynamics are key to cell and organism physiology. Studies of oscillatory expression have focused on networks with intuitive regulatory negative feedback loops, leaving unknown whether other common biochemical reactions can produce oscillations. Oscillation and noise have been proposed to support mammalian progenitor cells’ capacity to restore heterogenous, multimodal expression from extreme subpopulations, but underlying networks and specific roles of noise remained elusive. We use mass-action-based models to show that regulated RNA degradation involving as few as two RNA species—applicable to nearly half of human protein-coding genes—can generate sustained oscillations without explicit feedback. Diverging oscillation periods synergize with noise to robustly restore cell populations’ bimodal expression on timescales of days. The global bifurcation organizing this divergence relies on an oscillator and bistable switch which cannot be decomposed into two structural modules. Our work reveals surprisingly rich dynamics of post-transcriptional reactions and a potentially widespread mechanism underlying development, tissue regeneration, and cancer cell heterogeneity.
Collapse
Affiliation(s)
- Benjamin Nordick
- School of Genome Science and Technology, The University of Tennessee, Knoxville, Tennessee 37916, USA
| | - Polly Y Yu
- NSF-Simons Center for Mathematical and Statistical Analysis of Biology, Harvard University, Cambridge, Massachusetts 02138, USA
| | - Guangyuan Liao
- Department of Biochemistry & Cellular and Molecular Biology, The University of Tennessee, Knoxville, Tennessee 37916, USA
| | - Tian Hong
- Department of Biochemistry & Cellular and Molecular Biology, The University of Tennessee, Knoxville, Tennessee 37916, USA.,National Institute for Mathematical and Biological Synthesis, Knoxville, Tennessee 37916, USA
| |
Collapse
|
16
|
Fruciano C, Franchini P, Jones JC. Capturing the rapidly evolving study of adaptation. J Evol Biol 2021; 34:856-865. [PMID: 34145685 DOI: 10.1111/jeb.13871] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2021] [Revised: 05/12/2021] [Accepted: 05/12/2021] [Indexed: 11/30/2022]
Abstract
Research on the genomics of adaptation is rapidly changing. In the last few decades, progress in this area has been driven by methodological advances, not only in the way increasingly large amounts of molecular data are generated (e.g. with high-throughput sequencing), but also in the way these data are analysed. This includes a growing appreciation and quantitative treatment of covariation among units within the same data type (e.g. genes) or across data types (e.g. genes and phenotypes). The development and adoption of more and more integrative tools have resulted in richer and more interesting empirical work. This special issue - comprising methodological, empirical, and review papers - aims to capture a 'snapshot' of this rapidly evolving field. We discuss in particular three important themes in the study of adaptation: the genetic architecture of adaptive variation, protein-coding and regulatory changes, and parallel evolution. We highlight how more traditional key themes in the study of genetic architecture (e.g. the number of loci underlying adaptive traits and the distribution of their effects) are now being complemented by other factors (e.g. how patterns of linkage and number of loci interact to affect the ability to adapt). Similarly, apart from addressing the relative importance of protein-coding and regulatory changes, we now have the tools to look in-depth at specific types of regulatory variation to gain a clearer picture of regulatory networks. Finally, parallel evolution has always been central to the study of adaptation, but now we are often able to address the question of whether - and to what extent - parallelism at the organismal or phenotypic level is matched by parallelism at the genetic level. Perhaps most importantly, we can now determine what mechanisms are driving parallelism (or lack thereof) across levels of biological organization. All these recent methodological developments open up new directions for future studies of adaptive changes across traits, levels of biological organization, demographic contexts and time scales.
Collapse
Affiliation(s)
- Carmelo Fruciano
- National Research Council - Institute of Marine Biological Resources and Biotechnologies, Messina, Italy.,Institut de biologie de l'Ecole normale supérieure (IBENS), Ecole normale supérieure, CNRS, PSL Université Paris, Paris, France.,School of Biological Sciences, University of Portsmouth, Portsmouth, UK
| | - Paolo Franchini
- Department of Biology, University of Konstanz, Konstanz, Germany
| | - Julia C Jones
- School of Biology and Environmental Science, University College Dublin, Dublin, Ireland
| |
Collapse
|
17
|
Mitchell MI, Ben‐Dov IZ, Liu C, Ye K, Chow K, Kramer Y, Gangadharan A, Park S, Fitzgerald S, Ramnauth A, Perlin DS, Donato M, Bhoy E, Manouchehri Doulabi E, Poulos M, Kamali‐Moghaddam M, Loudig O. Extracellular Vesicle Capture by AnTibody of CHoice and Enzymatic Release (EV-CATCHER): A customizable purification assay designed for small-RNA biomarker identification and evaluation of circulating small-EVs. J Extracell Vesicles 2021; 10:e12110. [PMID: 34122779 PMCID: PMC8173589 DOI: 10.1002/jev2.12110] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2020] [Revised: 05/07/2021] [Accepted: 05/12/2021] [Indexed: 12/11/2022] Open
Abstract
Circulating nucleic acids, encapsulated within small extracellular vesicles (EVs), provide a remote cellular snapshot of biomarkers derived from diseased tissues, however selective isolation is critical. Current laboratory-based purification techniques rely on the physical properties of small-EVs rather than their inherited cellular fingerprints. We established a highly-selective purification assay, termed EV-CATCHER, initially designed for high-throughput analysis of low-abundance small-RNA cargos by next-generation sequencing. We demonstrated its selectivity by specifically isolating and sequencing small-RNAs from mouse small-EVs spiked into human plasma. Western blotting, nanoparticle tracking, and transmission electron microscopy were used to validate and quantify the capture and release of intact small-EVs. As proof-of-principle for sensitive detection of circulating miRNAs, we compared small-RNA sequencing data from a subset of small-EVs serum-purified with EV-CATCHER to data from whole serum, using samples from a small cohort of recently hospitalized Covid-19 patients. We identified and validated, only in small-EVs, hsa-miR-146a and hsa-miR-126-3p to be significantly downregulated with disease severity. Separately, using convalescent sera from recovered Covid-19 patients with high anti-spike IgG titers, we confirmed the neutralizing properties, against SARS-CoV-2 in vitro, of a subset of small-EVs serum-purified by EV-CATCHER, as initially observed with ultracentrifuged small-EVs. Altogether our data highlight the sensitivity and versatility of EV-CATCHER.
Collapse
Affiliation(s)
- Megan I. Mitchell
- Center for Discovery and InnovationHackensack Meridian HealthNutleyNew JerseyUSA
| | - Iddo Z. Ben‐Dov
- Laboratory of Medical TranscriptomicsHadassah‐Hebrew University Medical CenterJerusalemIsrael
| | - Christina Liu
- Center for Discovery and InnovationHackensack Meridian HealthNutleyNew JerseyUSA
| | - Kenny Ye
- Department of Epidemiology and Population HealthAlbert Einstein College of MedicineBronxNew YorkUSA
| | - Kar Chow
- BiorepositoryHackensack University Medical CenterHackensackNew JerseyUSA
| | - Yael Kramer
- BiorepositoryHackensack University Medical CenterHackensackNew JerseyUSA
| | - Anju Gangadharan
- BiorepositoryHackensack University Medical CenterHackensackNew JerseyUSA
| | - Steven Park
- Center for Discovery and InnovationHackensack Meridian HealthNutleyNew JerseyUSA
| | - Sean Fitzgerald
- Center for Discovery and InnovationHackensack Meridian HealthNutleyNew JerseyUSA
| | - Andrew Ramnauth
- Department of Pathology and Laboratory MedicineWeill Cornell MedicineNew YorkUSA
| | - David S. Perlin
- Center for Discovery and InnovationHackensack Meridian HealthNutleyNew JerseyUSA
| | - Michele Donato
- BiorepositoryHackensack University Medical CenterHackensackNew JerseyUSA
| | - Emily Bhoy
- Center for Discovery and InnovationHackensack Meridian HealthNutleyNew JerseyUSA
| | - Ehsan Manouchehri Doulabi
- Department of Immunology, Genetics and PathologyScience for Life LaboratoryUppsala UniversityUppsalaSweden
| | - Michael Poulos
- Center for Discovery and InnovationHackensack Meridian HealthNutleyNew JerseyUSA
| | - Masood Kamali‐Moghaddam
- Department of Immunology, Genetics and PathologyScience for Life LaboratoryUppsala UniversityUppsalaSweden
| | - Olivier Loudig
- Center for Discovery and InnovationHackensack Meridian HealthNutleyNew JerseyUSA
| |
Collapse
|
18
|
Modulation of microRNome by Human Cytomegalovirus and Human Herpesvirus 6 Infection in Human Dermal Fibroblasts: Possible Significance in the Induction of Fibrosis in Systemic Sclerosis. Cells 2021; 10:cells10051060. [PMID: 33946985 PMCID: PMC8146000 DOI: 10.3390/cells10051060] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2021] [Revised: 04/23/2021] [Accepted: 04/26/2021] [Indexed: 02/07/2023] Open
Abstract
Human cytomegalovirus (HCMV) and Human herpesvirus 6 (HHV-6) have been reportedly suggested as triggers of the onset and/or progression of systemic sclerosis (SSc), a severe autoimmune disorder characterized by multi-organ fibrosis. The etiology and pathogenesis of SSc are still largely unknown but virological and immunological observations support a role for these beta-herpesviruses, and we recently observed a direct impact of HCMV and HHV-6 infection on the expression of cell factors associated with fibrosis at the cell level. Since miRNA expression has been found profoundly deregulated at the tissue level, here we aimed to investigate the impact on cell microRNome (miRNome) of HCMV and HHV-6 infection in in vitro infected primary human dermal fibroblasts, which represent one of the main SSc target cells. The analysis, performed by Taqman arrays detecting and quantifying 754 microRNAs (miRNAs), showed that both herpesviruses significantly modulated miRNA expression in infected cells, with evident early and late effects and deep modulation (>10 fold) of >40 miRNAs at each time post infection, including those previously recognized for their key function in fibrosis. The correlation between these in vitro results with in vivo observations is strongly suggestive of a role of HCMV and/or HHV-6 in the multistep pathogenesis of fibrosis in SSc and in the induction of fibrosis-signaling pathways finally leading to tissue fibrosis. The identification of specific miRNAs may open the way to their use as biomarkers for SSc diagnosis, assessment of disease progression and possible antifibrotic therapies.
Collapse
|
19
|
Huang J, Xu X, Yang J. miRNAs Alter T Helper 17 Cell Fate in the Pathogenesis of Autoimmune Diseases. Front Immunol 2021; 12:593473. [PMID: 33968012 PMCID: PMC8096907 DOI: 10.3389/fimmu.2021.593473] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2020] [Accepted: 02/18/2021] [Indexed: 01/05/2023] Open
Abstract
T helper 17 (Th17) cells are characterized by the secretion of the IL-17 cytokine and are essential for the immune response against bacterial and fungal infections. Despite the beneficial roles of Th17 cells, unrestrained IL-17 production can contribute to immunopathology and inflammatory autoimmune diseases, including multiple sclerosis, rheumatoid arthritis, and inflammatory bowel disease. Although these diverse outcomes are directed by the activation of Th17 cells, the regulation of Th17 cells is incompletely understood. The discovery that microRNAs (miRNAs) are involved in the regulation of Th17 cell differentiation and function has greatly improved our understanding of Th17 cells in immune response and disease. Here, we provide an overview of the biogenesis and function of miRNA and summarize the role of miRNAs in Th17 cell differentiation and function. Finally, we focus on recent advances in miRNA-mediated dysregulation of Th17 cell fate in autoimmune diseases.
Collapse
Affiliation(s)
| | | | - Ji Yang
- Department of Dermatology, Zhongshan Hospital, Fudan University, Shanghai, China
| |
Collapse
|
20
|
Abstract
Exosomes are bi-layered vesicles secreted by the cells in physiological and pathological conditions. They are involved in cell-cell communication facilitating the transfer of functional macromolecules, including DNA, RNA, proteins and lipids. In this chapter, we will focus on specific class of RNA, the microRNAs, that are shuttled from the exosome-producing cells to the recipient cells where they affect biological processes. We will describe the recent methodologies developed to detect and isolate exosomal microRNAs providing a suitable workflow that contributes to quickly expand the field of exosomes-derived microRNAs and their potential use as biomarkers.
Collapse
Affiliation(s)
- Sheila Spada
- Department of Radiation Oncology, Weill Cornell Medicine, New York, NY, United States.
| |
Collapse
|
21
|
Kozar I, Philippidou D, Margue C, Gay LA, Renne R, Kreis S. Cross-Linking Ligation and Sequencing of Hybrids (qCLASH) Reveals an Unpredicted miRNA Targetome in Melanoma Cells. Cancers (Basel) 2021; 13:1096. [PMID: 33806450 PMCID: PMC7961530 DOI: 10.3390/cancers13051096] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2021] [Revised: 02/18/2021] [Accepted: 02/26/2021] [Indexed: 01/13/2023] Open
Abstract
MicroRNAs are key post-transcriptional gene regulators often displaying aberrant expression patterns in cancer. As microRNAs are promising disease-associated biomarkers and modulators of responsiveness to anti-cancer therapies, a solid understanding of their targetome is crucial. Despite enormous research efforts, the success rates of available tools to reliably predict microRNAs (miRNA)-target interactions remains limited. To investigate the disease-associated miRNA targetome, we have applied modified cross-linking ligation and sequencing of hybrids (qCLASH) to BRAF-mutant melanoma cells. The resulting RNA-RNA hybrid molecules provide a comprehensive and unbiased snapshot of direct miRNA-target interactions. The regulatory effects on selected miRNA target genes in predicted vs. non-predicted binding regions was validated by miRNA mimic experiments. Most miRNA-target interactions deviate from the central dogma of miRNA targeting up to 60% interactions occur via non-canonical seed pairing with a strong contribution of the 3' miRNA sequence, and over 50% display a clear bias towards the coding sequence of mRNAs. miRNAs targeting the coding sequence can directly reduce gene expression (miR-34a/CD68), while the majority of non-canonical miRNA interactions appear to have roles beyond target gene suppression (miR-100/AXL). Additionally, non-mRNA targets of miRNAs (lncRNAs) whose interactions mainly occur via non-canonical binding were identified in melanoma. This first application of CLASH sequencing to cancer cells identified over 8 K distinct miRNA-target interactions in melanoma cells. Our data highlight the importance non-canonical interactions, revealing further layers of complexity of post-transcriptional gene regulation in melanoma, thus expanding the pool of miRNA-target interactions, which have so far been omitted in the cancer field.
Collapse
Affiliation(s)
- Ines Kozar
- Department of Life Sciences and Medicine, University of Luxembourg, 6, Avenue du Swing, L-4367 Belvaux, Luxembourg; (I.K.); (D.P.); (C.M.)
| | - Demetra Philippidou
- Department of Life Sciences and Medicine, University of Luxembourg, 6, Avenue du Swing, L-4367 Belvaux, Luxembourg; (I.K.); (D.P.); (C.M.)
| | - Christiane Margue
- Department of Life Sciences and Medicine, University of Luxembourg, 6, Avenue du Swing, L-4367 Belvaux, Luxembourg; (I.K.); (D.P.); (C.M.)
| | - Lauren A. Gay
- Department of Molecular Genetics and Microbiology, University of Florida, 1200 Newell Drive, Gainesville, FL 32610, USA; (L.A.G.); (R.R.)
| | - Rolf Renne
- Department of Molecular Genetics and Microbiology, University of Florida, 1200 Newell Drive, Gainesville, FL 32610, USA; (L.A.G.); (R.R.)
| | - Stephanie Kreis
- Department of Life Sciences and Medicine, University of Luxembourg, 6, Avenue du Swing, L-4367 Belvaux, Luxembourg; (I.K.); (D.P.); (C.M.)
| |
Collapse
|
22
|
Zhou X, Wu Q, Hao T, Xu R, Hu X, Dong L. Expression and diagnostic value of circulating miRNA-190 and miRNA-197 in patients with pulmonary thromboembolism. J Clin Lab Anal 2021; 35:e23574. [PMID: 32920929 PMCID: PMC7843280 DOI: 10.1002/jcla.23574] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2020] [Revised: 08/11/2020] [Accepted: 08/22/2020] [Indexed: 02/06/2023] Open
Abstract
BACKGROUND Diagnosing pulmonary thromboembolism (PTE) remains challenging due to the lack of specific clinical symptoms and biomarkers. Circulating microRNAs (miRNAs) have proved to be potential biomarkers for numerous cardiovascular diseases. The aims of this study were to quantitatively analyze the expression of plasma miRNA-190 and miRNA-197 in patients with PTE and to evaluate the diagnostic value for PTE. METHODS Thirty patients diagnosed with PTE by computed tomographic pulmonary angiography at the emergency department were enrolled in this study, and plasma was collected immediately. For comparison, myocardial infarction (MI, n = 45) and healthy participants (NC, n = 45) were recruited as the control groups. Quantitative reverse transcription PCR (qRT-PCR) was conducted to reveal the relative expression levels of miRNA-190 and miRNA-197 in each group. The plasma concentrations of D-dimer were measured by immunoturbidimetric assay. The diagnostic value was evaluated by analyzing the area under the receiver operating characteristic curve (AUC). RESULTS The relative expression levels of miRNA-190 and miRNA-197 in the PTE group were both significantly higher than in the MI group (t = 3.602 t = 4.791, P < .05, respectively) and the healthy control group (t = 5.814, t = 5.886, P < .05, respectively). As diagnostic indicator, the sensitivity and specificity of miRNA-190 were 75.56% and 80%, respectively, with an AUC of 0.7844 (95%CI: 0.6858-0.8831, P < .001). The sensitivity and specificity of miRNA-197 were 73.33% and 86.67%, respectively, with an AUC value of 0.7931 (95%CI: 0.6870-0.8991, P < .001). Combining miRNA-190 and miRNA-197 with D-dimer levels significantly increased the diagnostic power, improving the AUC to 0.9536 (95% CI: 0.9083-0.9989, P < .001). CONCLUSIONS The relative expression levels of miRNA-190 and miRNA-197 in PTE patients were significantly higher than in the MI and healthy control groups, indicating that (a) both may be involved in the pathophysiological process of PTE and (b) both may serve as potential noninvasive diagnostic markers for PTE. The combination of miRNA-190, miRNA-197, and D-dimer levels showed better sensitivity and specificity, which is more conducive to the diagnosis of PTE.
Collapse
Affiliation(s)
- XiaoTing Zhou
- Department of Respiratory and Critical Care MedicineSuzhou Ninth People’s Hospital (The Affiliated Wujiang Hospital of Nantong University)SoochowChina
| | - QiaoZhen Wu
- Department of Respiratory and Critical Care MedicineSuzhou Ninth People’s Hospital (The Affiliated Wujiang Hospital of Nantong University)SoochowChina
| | - TianBo Hao
- Department of clinical laboratorySuzhou Ninth People’s Hospital (The Affiliated Wujiang Hospital of Nantong University)SoochowChina
| | - Rui Xu
- Department of Respiratory and Critical Care MedicineSuzhou Ninth People’s Hospital (The Affiliated Wujiang Hospital of Nantong University)SoochowChina
| | - XiaoYun Hu
- Department of Respiratory and Critical Care MedicineSuzhou Ninth People’s Hospital (The Affiliated Wujiang Hospital of Nantong University)SoochowChina
| | - LingYun Dong
- Department of Respiratory and Critical Care MedicineSuzhou Ninth People’s Hospital (The Affiliated Wujiang Hospital of Nantong University)SoochowChina
| |
Collapse
|
23
|
Gámez-Valero A, Guisado-Corcoll A, Herrero-Lorenzo M, Solaguren-Beascoa M, Martí E. Non-Coding RNAs as Sensors of Oxidative Stress in Neurodegenerative Diseases. Antioxidants (Basel) 2020; 9:E1095. [PMID: 33171576 PMCID: PMC7695195 DOI: 10.3390/antiox9111095] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2020] [Revised: 11/03/2020] [Accepted: 11/06/2020] [Indexed: 12/11/2022] Open
Abstract
Oxidative stress (OS) results from an imbalance between the production of reactive oxygen species and the cellular antioxidant capacity. OS plays a central role in neurodegenerative diseases, where the progressive accumulation of reactive oxygen species induces mitochondrial dysfunction, protein aggregation and inflammation. Regulatory non-protein-coding RNAs (ncRNAs) are essential transcriptional and post-transcriptional gene expression controllers, showing a highly regulated expression in space (cell types), time (developmental and ageing processes) and response to specific stimuli. These dynamic changes shape signaling pathways that are critical for the developmental processes of the nervous system and brain cell homeostasis. Diverse classes of ncRNAs have been involved in the cell response to OS and have been targeted in therapeutic designs. The perturbed expression of ncRNAs has been shown in human neurodegenerative diseases, with these changes contributing to pathogenic mechanisms, including OS and associated toxicity. In the present review, we summarize existing literature linking OS, neurodegeneration and ncRNA function. We provide evidences for the central role of OS in age-related neurodegenerative conditions, recapitulating the main types of regulatory ncRNAs with roles in the normal function of the nervous system and summarizing up-to-date information on ncRNA deregulation with a direct impact on OS associated with major neurodegenerative conditions.
Collapse
Affiliation(s)
- Ana Gámez-Valero
- Department de Biomedicina, Facultat de Medicina i Ciències de la Salut, Institut de Neurociències, Universitat de Barcelona, C/Casanova 143, 08036 Barcelona, Spain; (A.G.-V.); (A.G.-C.); (M.H.-L.); (M.S.-B.)
| | - Anna Guisado-Corcoll
- Department de Biomedicina, Facultat de Medicina i Ciències de la Salut, Institut de Neurociències, Universitat de Barcelona, C/Casanova 143, 08036 Barcelona, Spain; (A.G.-V.); (A.G.-C.); (M.H.-L.); (M.S.-B.)
| | - Marina Herrero-Lorenzo
- Department de Biomedicina, Facultat de Medicina i Ciències de la Salut, Institut de Neurociències, Universitat de Barcelona, C/Casanova 143, 08036 Barcelona, Spain; (A.G.-V.); (A.G.-C.); (M.H.-L.); (M.S.-B.)
| | - Maria Solaguren-Beascoa
- Department de Biomedicina, Facultat de Medicina i Ciències de la Salut, Institut de Neurociències, Universitat de Barcelona, C/Casanova 143, 08036 Barcelona, Spain; (A.G.-V.); (A.G.-C.); (M.H.-L.); (M.S.-B.)
| | - Eulàlia Martí
- Department de Biomedicina, Facultat de Medicina i Ciències de la Salut, Institut de Neurociències, Universitat de Barcelona, C/Casanova 143, 08036 Barcelona, Spain; (A.G.-V.); (A.G.-C.); (M.H.-L.); (M.S.-B.)
- Centro de Investigación Biomédica en Red de Epidemiología y Salud Pública (CIBERESP), Ministerio de Ciencia Innovación y Universidades, 28046 Madrid, Spain
| |
Collapse
|