1
|
Wang Y, Lan T, Zhou C, Zhang Q, Liu P. LRP8-dependent cholesterol metabolism modulates mTORC1 signaling and apoptotic pathways in multiple myeloma. Cell Death Dis 2025; 16:263. [PMID: 40199866 PMCID: PMC11978852 DOI: 10.1038/s41419-025-07625-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2024] [Revised: 03/31/2025] [Accepted: 04/02/2025] [Indexed: 04/10/2025]
Abstract
Cholesterol plays a crucial role in tumor metabolism. Studies have shown that the serum cholesterol level of multiple myeloma (MM) patients significantly decreases, probably owing to the augmented uptake by MM cells. Despite its significance for MM, research on its metabolism within MM is limited. Our analysis of clinical data from 703 newly diagnosed MM patients revealed that low serum cholesterol is associated with poor prognosis, and it stems from the elevated cholesterol consumption by MM cells. By exploring the transcriptome and single-cell RNA-seq data of patients with different cholesterol levels in our center, we identified LRP8 as a key regulator of cholesterol metabolism in MM, which is closely related to prognosis and disease stages. We verified the oncogenic role of LRP8 in vitro and in vivo. Knockdown of LRP8 can facilitate apoptosis and cell cycle arrest in MM cells. Meanwhile, we employed mouse xenograft tumor model to replicate the phenomenon that MM cells with high LRP8 expression consume cholesterol, causing low serum cholesterol. Mechanistically, high LRP8 expression enhances cholesterol utilization and uptake by MM cells; LRP8 inhibition reduces cholesterol absorption, further weakening the activity of the cholesterol-dependent mTORC1 pathway in MM cells and inducing apoptosis. Concurrently, it triggers an upregulation of protective autophagy. Further suppression of autophagy can lead to extensive apoptosis of MM cells. Our study reveals that LRP8 regulates cholesterol metabolism in MM cells and influences the processes of cell apoptosis and autophagy through metabolic-related pathways. LRP8 holds potential as a therapeutic target for MM.
Collapse
Affiliation(s)
- Yue Wang
- Department of Hematology, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Tianwei Lan
- Department of Hematology, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Chi Zhou
- Department of Hematology, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Qiongyan Zhang
- Department of Pathology, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Peng Liu
- Department of Hematology, Zhongshan Hospital, Fudan University, Shanghai, China.
| |
Collapse
|
2
|
Gounis M, Hamidi H, Ivaska J. mTORC1 shutdown unleashes TFEB to drive triple-negative breast cancer invasion. Dev Cell 2025; 60:979-981. [PMID: 40199239 DOI: 10.1016/j.devcel.2025.03.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2025] [Revised: 03/07/2025] [Accepted: 03/07/2025] [Indexed: 04/10/2025]
Abstract
The PI3K/AKT/mTOR pathway is considered a key therapeutic target in triple-negative breast cancer (TNBC). In this issue of Developmental Cell, Remy et al. challenge this idea by demonstrating that mTORC1 inhibition activates TFEB, promoting MT1-MMP exocytosis, ECM degradation, and increased cell invasion, especially when combined with chemotherapy.
Collapse
Affiliation(s)
- Michalis Gounis
- Turku Bioscience Centre, University of Turku and Åbo Akademi University, 20520 Turku, Finland
| | - Hellyeh Hamidi
- Turku Bioscience Centre, University of Turku and Åbo Akademi University, 20520 Turku, Finland
| | - Johanna Ivaska
- Turku Bioscience Centre, University of Turku and Åbo Akademi University, 20520 Turku, Finland; Department of Life Technologies, University of Turku, 20520 Turku, Finland; InFLAMES Research Flagship, University of Turku, 20014 Turku, Finland; Western Finnish Cancer Center (FICAN West), University of Turku, 20520 Turku, Finland; Foundation for the Finnish Cancer Institute, Tukholmankatu 8, 00014 Helsinki, Finland.
| |
Collapse
|
3
|
Ungermann C, Moeller A. Structuring of the endolysosomal system by HOPS and CORVET tethering complexes. Curr Opin Cell Biol 2025; 94:102504. [PMID: 40187049 DOI: 10.1016/j.ceb.2025.102504] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2025] [Revised: 02/26/2025] [Accepted: 03/04/2025] [Indexed: 04/07/2025]
Abstract
Eukaryotic cells depend on their endolysosomal system for membrane protein and organelle turnover, plasma membrane quality control, or regulation of their nutrient uptake. All material eventually ends up in the lytic environment of the lysosome for cellular recycling. At endosomes and lysosomes, the multisubunit complexes CORVET and HOPS tether membranes by binding both their cognate Rab GTPase and specific membrane lipids. Additionally, they carry one Sec1/Munc18-like subunit at their center and thus promote SNARE assembly and, subsequently, bilayer mixing. Recent structural and functional analysis provided insights into their organization and suggested how these complexes combine tethering with fusion catalysis. This review discusses the function and structural organization of HOPS and CORVET in the context of recent studies in yeast and metazoan cells.
Collapse
Affiliation(s)
- Christian Ungermann
- Department of Biology/Chemistry, Biochemistry Section, Osnabrück University, Barbarastrasse 13, 49076, Osnabrück, Germany; Center of Cellular Nanoanalytics Osnabrück (CellNanOs), Osnabrück University, Barbarastrasse 11, 49076, Osnabrück, Germany.
| | - Arne Moeller
- Center of Cellular Nanoanalytics Osnabrück (CellNanOs), Osnabrück University, Barbarastrasse 11, 49076, Osnabrück, Germany; Department of Biology/Chemistry, Structural Biology Section, Osnabrück University, Barbarastrasse 13, 49076, Osnabrück, Germany.
| |
Collapse
|
4
|
Wang Z, He J, Yang Y, He Y, Qian H. Structural basis for cholesterol sensing of LYCHOS and its interaction with indoxyl sulfate. Nat Commun 2025; 16:2815. [PMID: 40118871 PMCID: PMC11928621 DOI: 10.1038/s41467-025-58087-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2024] [Accepted: 03/11/2025] [Indexed: 03/24/2025] Open
Abstract
The lysosome serves as an essential nutrient-sensing hub within the cell, where the mechanistic target of rapamycin complex 1 (mTORC1) is activated. Lysosomal cholesterol signaling (LYCHOS), a lysosome membrane protein, has been identified as a cholesterol sensor that couples cholesterol concentration to mTORC1 activation. However, the molecular basis is unknown. Here, we determine the cryo-electron microscopy (cryo-EM) structure of human LYCHOS at a resolution of 3.1 Å, revealing a cholesterol-like density at the interface between the permease and G-protein coupled receptor (GPCR) domains. Advanced 3D classification reveals two distinct states of LYCHOS. Comparative structural analysis between these two states demonstrated a cholesterol-related movement of GPCR domain relative to permease domain, providing structural insights into how LYCHOS senses lysosomal cholesterol levels. Additionally, we identify indoxyl sulfate (IS) as a binding ligand to the permease domain, confirmed by the LYCHOS-IS complex structure. Overall, our study provides a foundation and indicates additional directions for further investigation of the essential role of LYCHOS in the mTORC1 signaling pathway.
Collapse
Affiliation(s)
- Zhenhua Wang
- Department of Cardiology, The First Affiliated Hospital of USTC, MOE Key Laboratory for Membraneless Organelles and Cellular Dynamics, Hefei National Research Center for Interdisciplinary Sciences at the Microscale, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, China
| | - Jingjing He
- Department of Cardiology, The First Affiliated Hospital of USTC, MOE Key Laboratory for Membraneless Organelles and Cellular Dynamics, Hefei National Research Center for Interdisciplinary Sciences at the Microscale, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, China
| | - Yufan Yang
- Department of Cardiology, The First Affiliated Hospital of USTC, MOE Key Laboratory for Membraneless Organelles and Cellular Dynamics, Hefei National Research Center for Interdisciplinary Sciences at the Microscale, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, China
| | - Yonglin He
- Department of Cardiology, The First Affiliated Hospital of USTC, MOE Key Laboratory for Membraneless Organelles and Cellular Dynamics, Hefei National Research Center for Interdisciplinary Sciences at the Microscale, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, China
| | - Hongwu Qian
- Department of Cardiology, The First Affiliated Hospital of USTC, MOE Key Laboratory for Membraneless Organelles and Cellular Dynamics, Hefei National Research Center for Interdisciplinary Sciences at the Microscale, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, China.
| |
Collapse
|
5
|
Attaie Y, Storey KB. MicroRNA-mediated regulation in anoxic Lithobates sylvaticus liver. COMPARATIVE BIOCHEMISTRY AND PHYSIOLOGY. PART D, GENOMICS & PROTEOMICS 2025; 55:101487. [PMID: 40106882 DOI: 10.1016/j.cbd.2025.101487] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/17/2025] [Revised: 03/11/2025] [Accepted: 03/16/2025] [Indexed: 03/22/2025]
Abstract
The wood frog, Lithobates sylvaticus (formerly Rana sylvatica), endures various physiological stressors including freezing, anoxia, dehydration, and hyperglycemia during winter, relying on metabolic stress response to survive. microRNA (miRNA)-mediated gene regulation is a well-documented stress response, however, its role during anoxia in L. sylvaticus liver remains underexplored. This research identifies seven miRNAs with significant differential expression during anoxia. Bioinformatic analyses predicted downregulation of monounsaturated fatty acid biosynthesis and membrane fluidity pathways, alongside upregulation of insulin signalling pathways (PI3K/Akt, mTOR). These results suggest that miRNAs contribute to gene regulation in L. sylvaticus during anoxia.
Collapse
Affiliation(s)
- Yasser Attaie
- Department of Biology and Institute of Biochemistry, Carleton University, 1125 Colonel By Drive, Ottawa, Ontario K1S 5B6, Canada.
| | - Kenneth B Storey
- Department of Biology and Institute of Biochemistry, Carleton University, 1125 Colonel By Drive, Ottawa, Ontario K1S 5B6, Canada
| |
Collapse
|
6
|
Li X, Yin J, Song Q, Yang Q, Li C, Gao H. The novel ginseng Rh2 derivative 2-deoxy-Rh2, exhibits potent anticancer effect via the AMPK/mTOR/autophagy signaling pathway against breast cancer. Chem Biol Interact 2025; 409:111422. [PMID: 39961461 DOI: 10.1016/j.cbi.2025.111422] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2024] [Revised: 11/15/2024] [Accepted: 02/07/2025] [Indexed: 02/21/2025]
Abstract
Breast cancer is the most prevalent cancer and the second leading cause of cancer-related mortality among women globally, resulting in considerable psychological and physical distress for patients. Our previous study synthesized a novel derivative, 2-Deoxy-Rh2, which exhibited anticancer properties by influencing glycolysis and mitochondrial respiration. The objective of the current study was to investigate the anti-proliferative effects and underlying mechanisms of 2-Deoxy-Rh2 on human breast cancer cell lines MCF-7 and MDA-MB-231. In our experiments, we observed that 2-Deoxy-Rh2 reduced cell viability and induced cell cycle arrest, reactive oxygen species accumulation, and mitochondrial dysfunction. Furthermore, treatment with 2-Deoxy-Rh2 affected autophagic flux and induction, leading to increased expression of microtubule-associated protein light chain 3B (LC3B) and decreased expression of sequestosome 1 (P62) expression in both two breast cancer cell lines, which could be reversed by 3-Methyladenine (3-MA). Additionally, the AMPK signaling pathway plays a crucial role in 2-Deoxy-Rh2-induced autophagy. 2-Deoxy-Rh2 modulated the expression levels of mTOR and AMPK in MCF-7 and MDA-MB-231 cells, resulting in the cellular homeostasis disruption, autophagy and apoptosis, which was further corroborated by compound C (CC). Finally, the study validated the antitumor activity and mechanism of 2-Deoxy-Rh2 in vivo using Balb/c mice bearing 4T1 tumor cells. Overall, the results suggest that 2-Deoxy-Rh2 can induce apoptosis and autophagic cell death through the AMPK/mTOR signaling pathway, positioning it as a promising candidate for an antitumor agent against breast cancer.
Collapse
Affiliation(s)
- Xiaodong Li
- Department of Radiology, the First Hospital of Jilin University, Changchun, Jilin, 130021, China
| | - Jianyuan Yin
- Department of Natural Products Chemistry, School of Pharmaceutical Sciences, Jilin University, Changchun, Jilin, 130021, China
| | - Qing Song
- Department of Radiology, the First Hospital of Jilin University, Changchun, Jilin, 130021, China
| | - Qi Yang
- Department of Radiology, the First Hospital of Jilin University, Changchun, Jilin, 130021, China
| | - Chenchen Li
- Department of Natural Products Chemistry, School of Pharmaceutical Sciences, Jilin University, Changchun, Jilin, 130021, China; State Key Laboratory of Respiratory Disease, the First Affiliated Hospital of Guangzhou Medical University, Guangzhou Medical University, Guangzhou, 510180, China.
| | - Huan Gao
- Department of Clinical Pharmacy, the First Hospital of Jilin University, Changchun, Jilin, 130021, China; Department of Natural Products Chemistry, School of Pharmaceutical Sciences, Jilin University, Changchun, Jilin, 130021, China.
| |
Collapse
|
7
|
Fung TS, Ryu KW, Thompson CB. Arginine: at the crossroads of nitrogen metabolism. EMBO J 2025; 44:1275-1293. [PMID: 39920310 DOI: 10.1038/s44318-025-00379-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2024] [Revised: 12/06/2024] [Accepted: 12/10/2024] [Indexed: 02/09/2025] Open
Abstract
L-arginine is the most nitrogen-rich amino acid, acting as a key precursor for the synthesis of nitrogen-containing metabolites and an essential intermediate in the clearance of excess nitrogen. Arginine's side chain possesses a guanidino group which has unique biochemical properties, and plays a primary role in nitrogen excretion (urea), cellular signaling (nitric oxide) and energy buffering (phosphocreatine). The post-translational modification of protein-incorporated arginine by guanidino-group methylation also contributes to epigenetic gene control. Most human cells do not synthesize sufficient arginine to meet demand and are dependent on exogenous arginine. Thus, dietary arginine plays an important role in maintaining health, particularly upon physiologic stress. How cells adapt to changes in extracellular arginine availability is unclear, mostly because nearly all tissue culture media are supplemented with supraphysiologic levels of arginine. Evidence is emerging that arginine-deficiency can influence disease progression. Here, we review new insights into the importance of arginine as a metabolite, emphasizing the central role of mitochondria in arginine synthesis/catabolism and the recent discovery that arginine can act as a signaling molecule regulating gene expression and organelle dynamics.
Collapse
Affiliation(s)
- Tak Shun Fung
- Cancer Biology and Genetics Program, Memorial Sloan Kettering Cancer Center, New York, NY, 10065, USA
| | - Keun Woo Ryu
- Cancer Biology and Genetics Program, Memorial Sloan Kettering Cancer Center, New York, NY, 10065, USA
| | - Craig B Thompson
- Cancer Biology and Genetics Program, Memorial Sloan Kettering Cancer Center, New York, NY, 10065, USA.
- Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, NY, 10065, USA.
| |
Collapse
|
8
|
Zuo X, Zhao R, Wu M, Wang Y, Wang S, Tang K, Wang Y, Chen J, Yan X, Cao Y, Li T. Multi-omic profiling of sarcopenia identifies disrupted branched-chain amino acid catabolism as a causal mechanism and therapeutic target. NATURE AGING 2025; 5:419-436. [PMID: 39910243 DOI: 10.1038/s43587-024-00797-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/30/2023] [Accepted: 12/16/2024] [Indexed: 02/07/2025]
Abstract
Sarcopenia is a geriatric disorder characterized by a gradual loss of muscle mass and function. Despite its prevalence, the underlying mechanisms remain unclear, and there are currently no approved treatments. In this study, we conducted a comprehensive analysis of the molecular and metabolic signatures of skeletal muscle in patients with impaired muscle strength and sarcopenia using multi-omics approaches. Across discovery and replication cohorts, we found that disrupted branched-chain amino acid (BCAA) catabolism is a prominent pathway in sarcopenia, which leads to BCAA accumulation and decreased muscle health. Machine learning analysis further supported the causal role of BCAA catabolic dysfunction in sarcopenia. Using mouse models, we validated that defective BCAA catabolism impairs muscle mass and strength through dysregulated mTOR signaling, and enhancing BCAA catabolism by BT2 protects against sarcopenia in aged mice and in mice lacking Ppm1k, a positive regulator of BCAA catabolism in skeletal muscle. This study highlights improving BCAA catabolism as a potential treatment of sarcopenia.
Collapse
Affiliation(s)
- Xinrong Zuo
- Department of Anesthesiology, Laboratory of Mitochondrial Metabolism and Perioperative Medicine, National Clinical Research Center for Geriatrics, West China Hospital of Sichuan University, Chengdu, China
| | - Rui Zhao
- Department of Anesthesiology, Laboratory of Mitochondrial Metabolism and Perioperative Medicine, National Clinical Research Center for Geriatrics, West China Hospital of Sichuan University, Chengdu, China
- Division of Gastrointestinal Surgery, Department of General Surgery, West China Hospital of Sichuan University, Chengdu, China
| | - Minming Wu
- Department of Anesthesiology, Laboratory of Mitochondrial Metabolism and Perioperative Medicine, National Clinical Research Center for Geriatrics, West China Hospital of Sichuan University, Chengdu, China
| | - Yanyan Wang
- Innovation Center of Nursing Research, Nursing Key Laboratory of Sichuan Province & School of Nursing, West China Hospital, Sichuan University, Chengdu, China
| | - Shisheng Wang
- Liver Surgery and Liver Transplant Center and NHC Key Lab of Transplant Engineering and Immunology, West China Hospital, Sichuan University, Chengdu, China
| | - Kuo Tang
- Department of Anesthesiology, Laboratory of Mitochondrial Metabolism and Perioperative Medicine, National Clinical Research Center for Geriatrics, West China Hospital of Sichuan University, Chengdu, China
| | - Yang Wang
- Department of Anesthesiology, Laboratory of Mitochondrial Metabolism and Perioperative Medicine, National Clinical Research Center for Geriatrics, West China Hospital of Sichuan University, Chengdu, China
- Division of Gastrointestinal Surgery, Department of General Surgery, West China Hospital of Sichuan University, Chengdu, China
| | - Jie Chen
- Department of Rheumatology and Immunology, The Affiliated Hospital, Southwest Medical University, Luzhou, China
| | - Xiaoxiang Yan
- Department of Cardiovascular Medicine, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China.
| | - Yang Cao
- Department of Cardiology, Division of Life Sciences and Medicine, The First Affiliated Hospital of USTC, University of Science and Technology of China, Hefei, China.
- Division of Life Sciences and Medicine, School of Basic Medical Sciences, University of Science and Technology of China, Hefei, China.
| | - Tao Li
- Department of Anesthesiology, Laboratory of Mitochondrial Metabolism and Perioperative Medicine, National Clinical Research Center for Geriatrics, West China Hospital of Sichuan University, Chengdu, China.
| |
Collapse
|
9
|
Li Z, Guan Y, Gao J, Zhu L, Zeng Z, Jing Q, Wan Q, Fan Q, Ren X, Pei H, Zhang D, Rong Y, Rong Z, He J, Zhang Y, Li N, Chen P, Sun L, Xu B, Nie Y, Deng Y. PPDPF-mediated regulation of BCAA metabolism enhances mTORC1 activity and drives cholangiocarcinoma progression. Oncogene 2025:10.1038/s41388-025-03320-4. [PMID: 40025229 DOI: 10.1038/s41388-025-03320-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2024] [Revised: 01/30/2025] [Accepted: 02/19/2025] [Indexed: 03/04/2025]
Abstract
Tumor cells display profound changes in the metabolism of branched-chain amino acids (BCAA). However, how these changes are regulated to facilitate tumorigenesis is not yet completely understood. Here, we identified pancreatic progenitor cell differentiation and proliferation factor (PPDPF) as a BCAA-responsive protein through extensive screening using stable isotope labeling with amino acids in cell culture (SILAC). PPDPF is upregulated in cholangiocarcinoma to enhance the malignant phenotype of cholangiocarcinoma cells by activating the mTORC1 signaling pathway. Metabolic flux analysis and mechanistic studies revealed that PPDPF prevented the interaction between MCCA and MCCB, thus inhibiting leucine catabolism and activating mTORC1 signaling. Moreover, upon amino acid starvation, ariadne RBR E3 ubiquitin protein ligase 2 (ARIH2) and OTU deubiquitinase 4 (OTUD4) cooperatively regulated the stability of the PPDPF protein by modulating its ubiquitination. Additionally, monocytes/macrophage-derived IL-10 increased the BCAA content in cholangiocarcinoma cells and stabilized the PPDPF protein, even under amino acid starvation conditions. Knockout of PPDPF or restriction of leucine intake significantly inhibits the progression of cholangiocarcinoma in a mouse model. Collectively, we discovered a novel role for PPDPF in promoting the progression of cholangiocarcinoma by activating mTORC1 signaling through the inhibition of leucine catabolism. The present study suggests that targeting PPDPF or decreasing dietary leucine intake may provide a new strategy to improve the treatment efficacy of cholangiocarcinoma.
Collapse
Affiliation(s)
- Zhi Li
- Key Laboratory of Molecular Radiation Oncology (Xiangya Hospital, Central South University), Changsha, China
- Hunan International Science and Technology Collaboration Base of Precision Medicine for Cancer, Changsha, China
- Institute of Cancer Research, National Clinical Research Center for Geriatric Disorders (Xiangya), Xiangya Hospital, Central South University, Changsha, China
| | - Yidi Guan
- Key Laboratory of Molecular Radiation Oncology (Xiangya Hospital, Central South University), Changsha, China
- Department of Pathology, Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Jie Gao
- Key Laboratory of Molecular Radiation Oncology (Xiangya Hospital, Central South University), Changsha, China
- Shanghai Key Laboratory of Thoracic Tumor Biotherapy, Shanghai Chest Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Lan Zhu
- NHC Key Laboratory of Pulmonary Immune-related Diseases, Guizhou Provincial People's Hospital, Guiyang, China
| | - Zimei Zeng
- Shanghai Key Laboratory of Thoracic Tumor Biotherapy, Shanghai Chest Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Qianyu Jing
- NHC Key Laboratory of Pulmonary Immune-related Diseases, Guizhou Provincial People's Hospital, Guiyang, China
| | - Quan Wan
- NHC Key Laboratory of Pulmonary Immune-related Diseases, Guizhou Provincial People's Hospital, Guiyang, China
| | - Qi Fan
- Shanghai Key Laboratory of Thoracic Tumor Biotherapy, Shanghai Chest Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Xinxin Ren
- Cancer Center, Department of Pathology, Zhejiang Provincial People's Hospital (Affiliated People's Hospital), Hangzhou Medical College, Hangzhou, Zhejiang, China
| | - Haiping Pei
- Key Laboratory of Molecular Radiation Oncology (Xiangya Hospital, Central South University), Changsha, China
| | - Dexiang Zhang
- Department of General Surgery, Zhongshan Xuhui Hospital Affiliated to Fudan University, Shanghai, China
| | - Yefei Rong
- The Department of Emergency Surgery, the Department of General Surgery, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Zhuoxian Rong
- Key Laboratory of Molecular Radiation Oncology (Xiangya Hospital, Central South University), Changsha, China
| | - Junju He
- Department of Oncology, Renmin Hospital of Wuhan University, Wuhan University, Wuhan, China
| | - Yuefang Zhang
- Songjiang Research Institute, Songjiang Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Nan Li
- Department of Hepatic Surgery I (Ward I), Shanghai Eastern Hepatobiliary Surgery Hospital, Shanghai, China
| | - Pan Chen
- Hunan Cancer Hospital, The Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha, China
| | - Lunquan Sun
- Key Laboratory of Molecular Radiation Oncology (Xiangya Hospital, Central South University), Changsha, China.
- Hunan International Science and Technology Collaboration Base of Precision Medicine for Cancer, Changsha, China.
- Institute of Cancer Research, National Clinical Research Center for Geriatric Disorders (Xiangya), Xiangya Hospital, Central South University, Changsha, China.
| | - Bin Xu
- Department of Oncology, Renmin Hospital of Wuhan University, Wuhan University, Wuhan, China.
| | - Yingjie Nie
- Department of Research, the University of HongKong-Shenzhen Hospital, Shenzhen, China.
| | - Yuezhen Deng
- Shanghai Key Laboratory of Thoracic Tumor Biotherapy, Shanghai Chest Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China.
- Yangjiang Key Laboratory of Respiratory Disease, People's Hospital of Yangjiang, 529500, Yangjiang, Guangdong, China.
| |
Collapse
|
10
|
Dsouza L, Pant A, Pope B, Yang Z. Vaccinia growth factor-dependent modulation of the mTORC1-CAD axis upon nutrient restriction. J Virol 2025; 99:e0211024. [PMID: 39817770 PMCID: PMC11852859 DOI: 10.1128/jvi.02110-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2024] [Accepted: 12/16/2024] [Indexed: 01/18/2025] Open
Abstract
The molecular mechanisms by which vaccinia virus (VACV), the prototypical member of the poxviridae family, reprograms host cell metabolism remain largely unexplored. Additionally, cells sense and respond to fluctuating nutrient availability, thereby modulating metabolic pathways to ensure cellular homeostasis. Understanding how VACV modulates metabolic pathways in response to nutrient signals is crucial for understanding viral replication mechanisms, with the potential for developing antiviral therapies. In this study, we establish the importance of de novo pyrimidine synthesis during VACV infection. We report the significance of vaccinia growth factor (VGF), a viral early protein and a homolog of cellular epidermal growth factor (EGF), in enabling VACV to phosphorylate the key enzyme CAD of the de novo pyrimidine pathway at serine 1859, a site known to positively regulate CAD activity. Although nutrient-poor conditions typically inhibit mTORC1 activation, VACV activates CAD via the mTORC1-S6K1 signaling axis in a VGF-dependent manner, especially upon glutamine and asparagine limitation. However, unlike its cellular homolog EGF, the VGF peptide alone, in the absence of VACV infection, has minimal ability to activate CAD. This suggests the involvement of other viral factors yet to be identified. Our research provides a foundation for understanding the regulation of a significant metabolic pathway, de novo pyrimidine synthesis during VACV infection, shedding new light on viral regulation under distinct nutritional environments. This study not only has the potential to contribute to the advancement of antiviral treatments but also improve the development of VACV as an oncolytic agent and vaccine vector.IMPORTANCEViruses often reprogram host cell metabolism to facilitate replication. How poxviruses, such as the prototype member, vaccinia virus (VACV), modulate host cell metabolism is not well understood. Understanding how VACV affects these metabolic pathways is key to learning about viral replication and developing antiviral treatments. This study highlights the importance of de novo pyrimidine synthesis during VACV infection. We found that the vaccinia growth factor (VGF), a viral protein similar to the cellular epidermal growth factor (EGF), helps VACV activate the enzyme CAD of the de novo pyrimidine pathway. Upon nutrient limitation, VGF is needed for the activation of CAD through mTORC1-S6K signaling. VGF peptide alone is unable to activate this pathway independent of infection, suggesting the involvement of other viral factor(s). Our research not only sheds light on how VACV regulates metabolism but also holds promise for improving VACV as a cancer treatment and vaccine.
Collapse
Affiliation(s)
- Lara Dsouza
- Department of Veterinary Pathobiology, College of Veterinary Medicine & Biomedical Sciences, Texas A&M University, College Station, Texas, USA
| | - Anil Pant
- Department of Veterinary Pathobiology, College of Veterinary Medicine & Biomedical Sciences, Texas A&M University, College Station, Texas, USA
| | - Blake Pope
- Department of Veterinary Pathobiology, College of Veterinary Medicine & Biomedical Sciences, Texas A&M University, College Station, Texas, USA
| | - Zhilong Yang
- Department of Veterinary Pathobiology, College of Veterinary Medicine & Biomedical Sciences, Texas A&M University, College Station, Texas, USA
| |
Collapse
|
11
|
Liu H, Wang S, Wang J, Guo X, Song Y, Fu K, Gao Z, Liu D, He W, Yang LL. Energy metabolism in health and diseases. Signal Transduct Target Ther 2025; 10:69. [PMID: 39966374 PMCID: PMC11836267 DOI: 10.1038/s41392-025-02141-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2024] [Revised: 11/08/2024] [Accepted: 12/25/2024] [Indexed: 02/20/2025] Open
Abstract
Energy metabolism is indispensable for sustaining physiological functions in living organisms and assumes a pivotal role across physiological and pathological conditions. This review provides an extensive overview of advancements in energy metabolism research, elucidating critical pathways such as glycolysis, oxidative phosphorylation, fatty acid metabolism, and amino acid metabolism, along with their intricate regulatory mechanisms. The homeostatic balance of these processes is crucial; however, in pathological states such as neurodegenerative diseases, autoimmune disorders, and cancer, extensive metabolic reprogramming occurs, resulting in impaired glucose metabolism and mitochondrial dysfunction, which accelerate disease progression. Recent investigations into key regulatory pathways, including mechanistic target of rapamycin, sirtuins, and adenosine monophosphate-activated protein kinase, have considerably deepened our understanding of metabolic dysregulation and opened new avenues for therapeutic innovation. Emerging technologies, such as fluorescent probes, nano-biomaterials, and metabolomic analyses, promise substantial improvements in diagnostic precision. This review critically examines recent advancements and ongoing challenges in metabolism research, emphasizing its potential for precision diagnostics and personalized therapeutic interventions. Future studies should prioritize unraveling the regulatory mechanisms of energy metabolism and the dynamics of intercellular energy interactions. Integrating cutting-edge gene-editing technologies and multi-omics approaches, the development of multi-target pharmaceuticals in synergy with existing therapies such as immunotherapy and dietary interventions could enhance therapeutic efficacy. Personalized metabolic analysis is indispensable for crafting tailored treatment protocols, ultimately providing more accurate medical solutions for patients. This review aims to deepen the understanding and improve the application of energy metabolism to drive innovative diagnostic and therapeutic strategies.
Collapse
Affiliation(s)
- Hui Liu
- Department of Stomatology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Shuo Wang
- Department of Stomatology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Jianhua Wang
- Department of Stomatology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Xin Guo
- Department of Stomatology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Yujing Song
- Department of Stomatology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Kun Fu
- Department of Stomatology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Zhenjie Gao
- Department of Stomatology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Danfeng Liu
- Department of Stomatology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China.
| | - Wei He
- Department of Stomatology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China.
| | - Lei-Lei Yang
- Department of Stomatology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China.
| |
Collapse
|
12
|
Leccese A, Ruta V, Panzeri V, Attili F, Spada C, Cianfanelli V, Sette C. DDX21 Controls Cell Cycle Progression and Autophagy in Pancreatic Cancer Cells. Cancers (Basel) 2025; 17:570. [PMID: 40002164 PMCID: PMC11852591 DOI: 10.3390/cancers17040570] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2024] [Revised: 01/27/2025] [Accepted: 02/06/2025] [Indexed: 02/27/2025] Open
Abstract
Background: Pancreatic ductal adenocarcinoma (PDAC) is a highly lethal cancer. Late diagnosis and acquisition of chemoresistance contribute to its dismal prognosis. While surgical resection improved the clinical outcome of patients, only ~20% of them are eligible due to advanced disease at diagnosis. Thus, the development of new therapeutic approaches is a master priority for an improved management of this cancer. The helicase DDX21 was proposed as a prognostic marker in several tumors, including PDAC. Methods:DDX21 expression was evaluated in PDAC samples and cell lines; RNA sequencing and bioinformatics analyses of DDX21-depleted PANC-1 silenced cells; functional analyses of autophagy, cell cycle and proliferation. Results: DDX21 is expressed at higher levels in liver metastasis of PDAC patients. Transcriptomics analyses of DDX21-depleted cells revealed an enrichment in genes involved in autophagy and cell cycle progression. The inactivation of DDX21 by RNA interference enhanced the basal autophagic flux and altered the cell cycle by reducing the rate of G1-S transition. Coherently, PDAC cell proliferation and clonogenic activity was significantly reduced. Conclusions: Our results support the oncogenic role of DDX21 in PDAC and uncover a new role for this helicase in the regulation of basal autophagy.
Collapse
Affiliation(s)
- Adriana Leccese
- Department of Neuroscience, Section of Human Anatomy, Catholic University of the Sacred Heart, 00168 Rome, Italy; (A.L.); (V.R.); (V.P.)
| | - Veronica Ruta
- Department of Neuroscience, Section of Human Anatomy, Catholic University of the Sacred Heart, 00168 Rome, Italy; (A.L.); (V.R.); (V.P.)
| | - Valentina Panzeri
- Department of Neuroscience, Section of Human Anatomy, Catholic University of the Sacred Heart, 00168 Rome, Italy; (A.L.); (V.R.); (V.P.)
- Fondazione Policlinico A. Gemelli IRCCS, 00168 Rome, Italy; (F.A.); (C.S.); (V.C.)
| | - Fabia Attili
- Fondazione Policlinico A. Gemelli IRCCS, 00168 Rome, Italy; (F.A.); (C.S.); (V.C.)
| | - Cristiano Spada
- Fondazione Policlinico A. Gemelli IRCCS, 00168 Rome, Italy; (F.A.); (C.S.); (V.C.)
- Department of Translational Medicine & Surgery, Catholic University of the Sacred Heart, 00168 Rome, Italy
| | - Valentina Cianfanelli
- Fondazione Policlinico A. Gemelli IRCCS, 00168 Rome, Italy; (F.A.); (C.S.); (V.C.)
- Department of Science, University “Roma TRE”, 00146 Rome, Italy
| | - Claudio Sette
- Department of Neuroscience, Section of Human Anatomy, Catholic University of the Sacred Heart, 00168 Rome, Italy; (A.L.); (V.R.); (V.P.)
- Fondazione Policlinico A. Gemelli IRCCS, 00168 Rome, Italy; (F.A.); (C.S.); (V.C.)
| |
Collapse
|
13
|
Shin HR, Zoncu R. Illuminating cholesterol-mTORC1 signaling: LYCHOS in focus. Structure 2025; 33:218-220. [PMID: 39919712 DOI: 10.1016/j.str.2025.01.009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2025] [Revised: 01/09/2025] [Accepted: 01/09/2025] [Indexed: 02/09/2025]
Abstract
In a recent issue of Nature, Bayly-Jones et al.1 report the first cryoelectron microscopy (cryo-EM) structure of the lysosomal transmembrane protein LYCHOS, which mediates cholesterol sensing by mTORC1. LYCHOS forms a homodimer, with cholesterol engagement at the transporter-GPCR domain interface, coupled to auxin binding at the transporter-like domain, suggesting multi-domain coordination as critical for cholesterol sensing.
Collapse
Affiliation(s)
- Hijai R Shin
- Children's Medical Center Research Institute and the Department of Pediatrics, University of Texas Southwestern Medical Center, Dallas, TX, USA.
| | - Roberto Zoncu
- Department of Molecular and Cell Biology, University of California at Berkeley, Berkeley, CA 94720, USA.
| |
Collapse
|
14
|
Li C, Yuan Y, Jia Y, Zhou Q, Wang Q, Jiang X. Cellular senescence: from homeostasis to pathological implications and therapeutic strategies. Front Immunol 2025; 16:1534263. [PMID: 39963130 PMCID: PMC11830604 DOI: 10.3389/fimmu.2025.1534263] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2024] [Accepted: 01/15/2025] [Indexed: 02/20/2025] Open
Abstract
Cellular aging is a multifactorial and intricately regulated physiological process with profound implications. The interaction between cellular senescence and cancer is complex and multifaceted, senescence can both promote and inhibit tumor progression through various mechanisms. M6A methylation modification regulates the aging process of cells and tissues by modulating senescence-related genes. In this review, we comprehensively discuss the characteristics of cellular senescence, the signaling pathways regulating senescence, the biomarkers of senescence, and the mechanisms of anti-senescence drugs. Notably, this review also delves into the complex interactions between senescence and cancer, emphasizing the dual role of the senescent microenvironment in tumor initiation, progression, and treatment. Finally, we thoroughly explore the function and mechanism of m6A methylation modification in cellular senescence, revealing its critical role in regulating gene expression and maintaining cellular homeostasis. In conclusion, this review provides a comprehensive perspective on the molecular mechanisms and biological significance of cellular senescence and offers new insights for the development of anti-senescence strategies.
Collapse
Affiliation(s)
- Chunhong Li
- Department of Oncology, Suining Central Hospital, Suining, Sichuan, China
| | - Yixiao Yuan
- Department of Medicine, Health Cancer Center, University of Florida, Gainesville, FL, United States
| | - YingDong Jia
- Gastrointestinal Surgical Unit, Suining Central Hospital, Suining, Sichuan, China
| | - Qiang Zhou
- Department of Oncology, Suining Central Hospital, Suining, Sichuan, China
| | - Qiang Wang
- Gastrointestinal Surgical Unit, Suining Central Hospital, Suining, Sichuan, China
| | - Xiulin Jiang
- Department of Medicine, Health Cancer Center, University of Florida, Gainesville, FL, United States
| |
Collapse
|
15
|
Hsueh YP. Signaling in autism: Relevance to nutrients and sex. Curr Opin Neurobiol 2025; 90:102962. [PMID: 39731919 DOI: 10.1016/j.conb.2024.102962] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2024] [Revised: 11/11/2024] [Accepted: 12/05/2024] [Indexed: 12/30/2024]
Abstract
Autism spectrum disorders (ASD) are substantially heterogeneous neuropsychiatric conditions with over a thousand associated genetic factors and various environmental influences, such as infection and nutrition. Additionally, males are four times more likely than females to be affected. This heterogeneity underscores the need to uncover common molecular features within ASD. Recent studies have revealed interactions among genetic predispositions, environmental factors, and sex that may be critical to ASD etiology. This review focuses on emerging evidence for the impact of nutrients-particularly zinc and amino acids-on ASD, as demonstrated in mouse models and human studies. These nutrients have been shown to influence synaptic signaling, dendritic spine formation, and behaviors linked to autism. Furthermore, sex-based differences in nutritional requirements, especially for zinc and amino acids, may contribute to the observed male bias in autism, indicating that interactions between nutrients and genetic factors could be integral to understanding and potentially mitigating ASD symptoms.
Collapse
Affiliation(s)
- Yi-Ping Hsueh
- Institute of Molecular Biology, Academia Sinica, Taipei, 11529, Taiwan, ROC.
| |
Collapse
|
16
|
Liu Y, Hu P, Cheng H, Xu F, Ye Y. The impact of glycolysis on ischemic stroke: from molecular mechanisms to clinical applications. Front Neurol 2025; 16:1514394. [PMID: 39926015 PMCID: PMC11802445 DOI: 10.3389/fneur.2025.1514394] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2024] [Accepted: 01/10/2025] [Indexed: 02/11/2025] Open
Abstract
Ischemic stroke (IS), a leading cause of disability and mortality worldwide, remains a significant challenge due to its complex pathogenesis. Glycolysis, a central metabolic pathway, plays a critical role in bridging the gap between metabolic dysfunction and neurological impairment. During ischemic conditions, glycolysis replaces oxidative phosphorylation as the primary energy source for brain tissue. However, in the ischemia-reperfusion state, neuronal cells show a particular reliance on aerobic glycolysis. Immune cells, such as monocytes, also contribute to atheromatous plaque formation and thrombi through increased aerobic glycolysis. Given glycolysis's involvement in various pathological stages of IS, it offers the potential for improved diagnosis, treatment, and prevention. This review comprehensively explores the role of glycolysis in different phases of IS, addresses existing controversies, and discusses its diagnostic and therapeutic applications. By elucidating the intricate relationship between glycolysis and IS, this review aims to provide novel insights for future research and clinical advancements.
Collapse
Affiliation(s)
- Yingquan Liu
- The First Clinical College of Anhui University of Chinese Medicine, Hefei, China
| | - Peijia Hu
- The Second Affiliated Hospital of Anhui University of Chinese Medicine, Hefei, Anhui, China
| | - Hongliang Cheng
- The Second Affiliated Hospital of Anhui University of Chinese Medicine, Hefei, Anhui, China
| | - Fangyuan Xu
- The First Clinical College of Anhui University of Chinese Medicine, Hefei, China
| | - Yu Ye
- Graduate School, Anhui University of Chinese Medicine, Hefei, Anhui, China
| |
Collapse
|
17
|
Takasaki T, Yamada R, Sugimoto Y, Sugiura R. Alpha-Synuclein Fails to Form Aggregates in Endocytosis-Defective Fission Yeast Strains, ∆ myo1 and ∆ end4. MICROPUBLICATION BIOLOGY 2025; 2025:10.17912/micropub.biology.001479. [PMID: 39911909 PMCID: PMC11795301 DOI: 10.17912/micropub.biology.001479] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Figures] [Subscribe] [Scholar Register] [Received: 12/20/2024] [Revised: 01/18/2025] [Accepted: 01/16/2025] [Indexed: 02/07/2025]
Abstract
Alpha-Synuclein (α-Syn) is a soluble neuronal protein whose aggregation is one of the hallmarks of Parkinson's disease (PD). We previously developed a fission yeast model of PD that recapitulates α-Syn aggregation upon high-level expression of human α-Syn. Here, we show that α-Syn aggregate formation in yeast requires Myo1 and End4 , proteins essential for the early steps of endocytosis. α-Syn expression levels in Δ myo1 and ∆end4 cells were comparable to wild-type cells, suggesting that defects in endocytosis disrupt α-Syn aggregation. These findings highlight the critical role of endocytosis in α-Syn aggregation and PD pathology.
Collapse
|
18
|
Xiong Q, Zhu Z, Li T, Li X, Zhou Z, Chao Y, Yang C, Feng S, Qu Q, Li D. Molecular architecture of human LYCHOS involved in lysosomal cholesterol signaling. Nat Struct Mol Biol 2025:10.1038/s41594-024-01474-5. [PMID: 39824977 DOI: 10.1038/s41594-024-01474-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2024] [Accepted: 12/10/2024] [Indexed: 01/20/2025]
Abstract
Lysosomal membrane protein LYCHOS (lysosomal cholesterol signaling) translates cholesterol abundance to mammalian target of rapamycin activation. Here we report the 2.11-Å structure of human LYCHOS, revealing a unique fusion architecture comprising a G-protein-coupled receptor (GPCR)-like domain and a transporter domain that mediates homodimer assembly. The NhaA-fold transporter harbors a previously uncharacterized intramembrane Na+ pocket. The GPCR-like domain is stabilized, by analogy to canonical GPCRs, in an inactive state through 'tethered antagonism' by a lumenal loop and strong interactions at the cytosol side preventing the hallmark swing of the sixth transmembrane helix seen in active GPCRs. A cholesterol molecule and an associated docosahexaenoic acid (DHA)-phospholipid are entrapped between the transporter and GPCR-like domains, with the DHA-phospholipid occupying a pocket previously implicated in cholesterol sensing, indicating inter-domain coupling via dynamic lipid-protein interactions. Our work provides a high-resolution framework for functional investigations of the understudied LYCHOS protein.
Collapse
Affiliation(s)
- Qi Xiong
- The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
- Key Laboratory of RNA Innovation, Science, and Engineering; Center for Excellence in Molecular Cell Science, Shanghai Institute of Biochemistry and Cell Biology, Chinese Academy of Sciences, Shanghai, China
| | - Zhini Zhu
- Institutes of Biomedical Sciences, Shanghai Key Laboratory of Medical Epigenetics, International Colaboratory of Medical Epigenetics and Metabolism (Ministry of Science and Technology), Department of Systems Biology for Medicine, Fudan University, Shanghai, China
| | - Tingting Li
- Key Laboratory of RNA Innovation, Science, and Engineering; Center for Excellence in Molecular Cell Science, Shanghai Institute of Biochemistry and Cell Biology, Chinese Academy of Sciences, Shanghai, China
| | - Xiaotian Li
- Lipid Metabolism and Chemical Biology Unit, Key Laboratory of Immune Response and Immunotherapy, Shanghai Institute of Immunity and Infection, Chinese Academy of Sciences, Shanghai, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Zixuan Zhou
- Institutes of Biomedical Sciences, Shanghai Key Laboratory of Medical Epigenetics, International Colaboratory of Medical Epigenetics and Metabolism (Ministry of Science and Technology), Department of Systems Biology for Medicine, Fudan University, Shanghai, China
| | - Yulin Chao
- Institutes of Biomedical Sciences, Shanghai Key Laboratory of Medical Epigenetics, International Colaboratory of Medical Epigenetics and Metabolism (Ministry of Science and Technology), Department of Systems Biology for Medicine, Fudan University, Shanghai, China
| | - Chuanhui Yang
- Institutes of Biomedical Sciences, Shanghai Key Laboratory of Medical Epigenetics, International Colaboratory of Medical Epigenetics and Metabolism (Ministry of Science and Technology), Department of Systems Biology for Medicine, Fudan University, Shanghai, China
| | - Suihan Feng
- Lipid Metabolism and Chemical Biology Unit, Key Laboratory of Immune Response and Immunotherapy, Shanghai Institute of Immunity and Infection, Chinese Academy of Sciences, Shanghai, China
| | - Qianhui Qu
- Institutes of Biomedical Sciences, Shanghai Key Laboratory of Medical Epigenetics, International Colaboratory of Medical Epigenetics and Metabolism (Ministry of Science and Technology), Department of Systems Biology for Medicine, Fudan University, Shanghai, China.
| | - Dianfan Li
- Key Laboratory of RNA Innovation, Science, and Engineering; Center for Excellence in Molecular Cell Science, Shanghai Institute of Biochemistry and Cell Biology, Chinese Academy of Sciences, Shanghai, China.
- School of Agriculture and Biotechnology, Sun Yat-Sen University, Shenzhen, China.
| |
Collapse
|
19
|
Zhao J, Shen Q, Yong X, Li X, Tian X, Sun S, Xu Z, Zhang X, Zhang L, Yang H, Shao Z, Xu H, Jiang Y, Zhang Y, Yan W. Cryo-EM reveals cholesterol binding in the lysosomal GPCR-like protein LYCHOS. Nat Struct Mol Biol 2025:10.1038/s41594-024-01470-9. [PMID: 39824976 DOI: 10.1038/s41594-024-01470-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2024] [Accepted: 12/06/2024] [Indexed: 01/20/2025]
Abstract
Cholesterol plays a pivotal role in modulating the activity of mechanistic target of rapamycin complex 1 (mTOR1), thereby regulating cell growth and metabolic homeostasis. LYCHOS, a lysosome-localized G-protein-coupled receptor-like protein, emerges as a cholesterol sensor and is capable of transducing the cholesterol signal to affect the mTORC1 function. However, the precise mechanism by which LYCHOS recognizes cholesterol remains unknown. Here, using cryo-electron microscopy, we determined the three-dimensional structural architecture of LYCHOS in complex with cholesterol molecules, revealing a unique arrangement of two sequential structural domains. Through a comprehensive analysis of this structure, we elucidated the specific structural features of these two domains and their collaborative role in the process of cholesterol recognition by LYCHOS.
Collapse
Affiliation(s)
- Jie Zhao
- Division of Nephrology and Kidney Research Institute, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, China
- Frontiers Medical Center, Tianfu Jincheng Laboratory, Chengdu, China
| | - Qingya Shen
- Department of Pathology of Sir Run Shaw Hospital, Department of Pharmacology, and Liangzhu Laboratory, Zhejiang University School of Medicine, Hangzhou, China
- MOE Frontier Science Center for Brain Research and Brain-Machine Integration, Zhejiang University School of Medicine, Hangzhou, China
| | - Xihao Yong
- Division of Nephrology and Kidney Research Institute, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, China
- Frontiers Medical Center, Tianfu Jincheng Laboratory, Chengdu, China
| | - Xin Li
- NHC Key Lab of Transplant Engineering and Immunology, Regenerative Medicine Research Center, Institutes for Systems Genetics, Frontiers Science Center for Disease-Related Molecular Network, Metabolomics and Proteomics Technology Platform, West China Hospital, Sichuan University, Chengdu, China
| | - Xiaowen Tian
- Division of Nephrology and Kidney Research Institute, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, China
- Frontiers Medical Center, Tianfu Jincheng Laboratory, Chengdu, China
| | - Suyue Sun
- Division of Nephrology and Kidney Research Institute, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, China
- Frontiers Medical Center, Tianfu Jincheng Laboratory, Chengdu, China
| | - Zheng Xu
- Division of Nephrology and Kidney Research Institute, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, China
- Frontiers Medical Center, Tianfu Jincheng Laboratory, Chengdu, China
| | - Xiaoyu Zhang
- Division of Nephrology and Kidney Research Institute, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, China
- Frontiers Medical Center, Tianfu Jincheng Laboratory, Chengdu, China
| | - Lu Zhang
- NHC Key Lab of Transplant Engineering and Immunology, Regenerative Medicine Research Center, Institutes for Systems Genetics, Frontiers Science Center for Disease-Related Molecular Network, Metabolomics and Proteomics Technology Platform, West China Hospital, Sichuan University, Chengdu, China
| | - Hao Yang
- NHC Key Lab of Transplant Engineering and Immunology, Regenerative Medicine Research Center, Institutes for Systems Genetics, Frontiers Science Center for Disease-Related Molecular Network, Metabolomics and Proteomics Technology Platform, West China Hospital, Sichuan University, Chengdu, China
| | - Zhenhua Shao
- Division of Nephrology and Kidney Research Institute, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, China.
- Frontiers Medical Center, Tianfu Jincheng Laboratory, Chengdu, China.
| | - Haoxing Xu
- New Cornerstone Science Laboratory & Liangzhu Laboratory, the Second Affiliated Hospital & School of Basic Medical Sciences, Zhejiang University, Hangzhou, China.
| | - Yiyang Jiang
- Department of Hepatobiliary Surgery, Innovative Institute of Tumor Immunity and Medicine (ITIM), Anhui Province Key Laboratory of Tumor Immune Microenvironment and Immunotherapy, The First Affiliated Hospital of Anhui Medical University, Hefei, China.
| | - Yan Zhang
- Department of Pathology of Sir Run Shaw Hospital, Department of Pharmacology, and Liangzhu Laboratory, Zhejiang University School of Medicine, Hangzhou, China.
- MOE Frontier Science Center for Brain Research and Brain-Machine Integration, Zhejiang University School of Medicine, Hangzhou, China.
| | - Wei Yan
- Division of Nephrology and Kidney Research Institute, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, China.
| |
Collapse
|
20
|
Zhang J, Yao M, Xia S, Zeng F, Liu Q. Systematic and comprehensive insights into HIF-1 stabilization under normoxic conditions: implications for cellular adaptation and therapeutic strategies in cancer. Cell Mol Biol Lett 2025; 30:2. [PMID: 39757165 DOI: 10.1186/s11658-024-00682-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2024] [Accepted: 12/19/2024] [Indexed: 01/07/2025] Open
Abstract
Hypoxia-inducible factors (HIFs) are essential transcription factors that orchestrate cellular responses to oxygen deprivation. HIF-1α, as an unstable subunit of HIF-1, is usually hydroxylated by prolyl hydroxylase domain enzymes under normoxic conditions, leading to ubiquitination and proteasomal degradation, thereby keeping low levels. Instead of hypoxia, sometimes even in normoxia, HIF-1α translocates into the nucleus, dimerizes with HIF-1β to generate HIF-1, and then activates genes involved in adaptive responses such as angiogenesis, metabolic reprogramming, and cellular survival, which presents new challenges and insights into its role in cellular processes. Thus, the review delves into the mechanisms by which HIF-1 maintains its stability under normoxia including but not limited to giving insights into transcriptional, translational, as well as posttranslational regulation to underscore the pivotal role of HIF-1 in cellular adaptation and malignancy. Moreover, HIF-1 is extensively involved in cancer and cardiovascular diseases and potentially serves as a bridge between them. An overview of HIF-1-related drugs that are approved or in clinical trials is summarized, highlighting their potential capacity for targeting HIF-1 in cancer and cardiovascular toxicity related to cancer treatment. The review provides a comprehensive insight into HIF-1's regulatory mechanism and paves the way for future research and therapeutic development.
Collapse
Affiliation(s)
- Jiayi Zhang
- Laboratory of Biochemistry and Molecular Biology, School of Basic Medical Science, Southwest Medical University, Luzhou, 646000, China
- School of Clinical Medicine, Southwest Medical University, Luzhou, 646000, China
| | - Mingxuan Yao
- School of Pharmacy, Southwest Medical University, Luzhou, 646000, China
| | - Shiting Xia
- Laboratory of Biochemistry and Molecular Biology, School of Basic Medical Science, Southwest Medical University, Luzhou, 646000, China
| | - Fancai Zeng
- Laboratory of Biochemistry and Molecular Biology, School of Basic Medical Science, Southwest Medical University, Luzhou, 646000, China.
| | - Qiuyu Liu
- School of Pharmacy, Southwest Medical University, Luzhou, 646000, China.
| |
Collapse
|
21
|
Gong GQ, Anandapadamanaban M, Islam MS, Hay IM, Bourguet M, Špokaitė S, Dessus AN, Ohashi Y, Perisic O, Williams RL. Making PI3K superfamily enzymes run faster. Adv Biol Regul 2025; 95:101060. [PMID: 39592347 DOI: 10.1016/j.jbior.2024.101060] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2024] [Accepted: 11/16/2024] [Indexed: 11/28/2024]
Abstract
The phosphoinositide 3-kinase (PI3K) superfamily includes lipid kinases (PI3Ks and type III PI4Ks) and a group of PI3K-like Ser/Thr protein kinases (PIKKs: mTOR, ATM, ATR, DNA-PKcs, SMG1 and TRRAP) that have a conserved C-terminal kinase domain. A common feature of the superfamily is that they have very low basal activity that can be greatly increased by a range of regulatory factors. Activators reconfigure the active site, causing a subtle realignment of the N-lobe of the kinase domain relative to the C-lobe. This realignment brings the ATP-binding loop in the N-lobe closer to the catalytic residues in the C-lobe. In addition, a conserved C-lobe feature known as the PIKK regulatory domain (PRD) also can change conformation, and PI3K activators can alter an analogous PRD-like region. Recent structures have shown that diverse activating influences can trigger these conformational changes, and a helical region clamping onto the kinase domain transmits regulatory interactions to bring about the active site realignment for more efficient catalysis. A recent report of a small-molecule activator of PI3Kα for application in nerve regeneration suggests that flexibility of these regulatory elements might be exploited to develop specific activators of all PI3K superfamily members. These activators could have roles in wound healing, anti-stroke therapy and treating neurodegeneration. We review common structural features of the PI3K superfamily that may make them amenable to activation.
Collapse
Affiliation(s)
- Grace Q Gong
- MRC Laboratory of Molecular Biology, Francis Crick Avenue, Cambridge, CB2 0QH, UK; University College London Cancer Institute, University College London, London, UK
| | | | - Md Saiful Islam
- MRC Laboratory of Molecular Biology, Francis Crick Avenue, Cambridge, CB2 0QH, UK
| | - Iain M Hay
- MRC Laboratory of Molecular Biology, Francis Crick Avenue, Cambridge, CB2 0QH, UK
| | - Maxime Bourguet
- MRC Laboratory of Molecular Biology, Francis Crick Avenue, Cambridge, CB2 0QH, UK
| | - Saulė Špokaitė
- MRC Laboratory of Molecular Biology, Francis Crick Avenue, Cambridge, CB2 0QH, UK
| | - Antoine N Dessus
- MRC Laboratory of Molecular Biology, Francis Crick Avenue, Cambridge, CB2 0QH, UK
| | - Yohei Ohashi
- MRC Laboratory of Molecular Biology, Francis Crick Avenue, Cambridge, CB2 0QH, UK
| | - Olga Perisic
- MRC Laboratory of Molecular Biology, Francis Crick Avenue, Cambridge, CB2 0QH, UK
| | - Roger L Williams
- MRC Laboratory of Molecular Biology, Francis Crick Avenue, Cambridge, CB2 0QH, UK.
| |
Collapse
|
22
|
Zandi M, Mousavi FS, Hashemnia SMR. Mpox-Induced Metabolic Alterations. J Cell Mol Med 2025; 29:e70341. [PMID: 39779460 PMCID: PMC11710930 DOI: 10.1111/jcmm.70341] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2024] [Revised: 12/14/2024] [Accepted: 12/23/2024] [Indexed: 01/11/2025] Open
Abstract
The resurgence of mpox as a global health threat highlights the need to understand its interaction with host cell metabolism. Unlike other well-studied viruses, research on mpox is limited, particularly regarding its impact on cellular processes. In this article, we explore how mpox might manipulate metabolic pathways-such as glycolysis, lipid synthesis and mitochondrial dynamics-to enhance its replication and evade immune responses. By drawing parallels with related poxviruses, we underscore the potential for targeting these metabolic shifts as novel therapeutic strategies. Understanding these interactions is crucial for developing effective treatments against mpox.
Collapse
Affiliation(s)
- Milad Zandi
- Iranian Society for VirologyDeputy for Education, Ministry of Health and Medical EducationTehranIran
| | - Fatemeh Sadat Mousavi
- Department of Microbiology and Immunology, Faculty of Veterinary MedicineUniversity of TehranTehranIran
| | | |
Collapse
|
23
|
Li CH, Kersten N, Özkan N, Nguyen DTM, Koppers M, Post H, Altelaar M, Farias GG. Spatiotemporal proteomics reveals the biosynthetic lysosomal membrane protein interactome in neurons. Nat Commun 2024; 15:10829. [PMID: 40016183 PMCID: PMC11868546 DOI: 10.1038/s41467-024-55052-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2024] [Accepted: 11/26/2024] [Indexed: 03/01/2025] Open
Abstract
Lysosomes are membrane-bound organelles critical for maintaining cellular homeostasis. Delivery of biosynthetic lysosomal proteins to lysosomes is crucial to orchestrate proper lysosomal function. However, it remains unknown how the delivery of biosynthetic lysosomal proteins to lysosomes is ensured in neurons, which are highly polarized cells. Here, we developed Protein Origin, Trafficking And Targeting to Organelle Mapping (POTATOMap), by combining trafficking synchronization and proximity-labelling based proteomics, to unravel the trafficking routes and interactome of the biosynthetic lysosomal membrane protein LAMP1 at specified time points. This approach, combined with advanced microscopy, enables us to identify the neuronal domain-specific trafficking machineries of biosynthetic LAMP1. We reveal a role in replenishing axonal lysosomes, in delivery of newly synthesized axonal synaptic proteins, and interactions with RNA granules to facilitate hitchhiking in the axon. POTATOMap offers a robust approach to map out dynamic biosynthetic protein trafficking and interactome from their origin to destination.
Collapse
Affiliation(s)
- Chun Hei Li
- Cell Biology, Neurobiology and Biophysics, Department of Biology, Faculty of Science, Utrecht University, Utrecht, 3584 CH, The Netherlands
| | - Noortje Kersten
- Cell Biology, Neurobiology and Biophysics, Department of Biology, Faculty of Science, Utrecht University, Utrecht, 3584 CH, The Netherlands
| | - Nazmiye Özkan
- Cell Biology, Neurobiology and Biophysics, Department of Biology, Faculty of Science, Utrecht University, Utrecht, 3584 CH, The Netherlands
| | - Dan T M Nguyen
- Cell Biology, Neurobiology and Biophysics, Department of Biology, Faculty of Science, Utrecht University, Utrecht, 3584 CH, The Netherlands
| | - Max Koppers
- Cell Biology, Neurobiology and Biophysics, Department of Biology, Faculty of Science, Utrecht University, Utrecht, 3584 CH, The Netherlands
- Center for Neurogenomics and Cognitive Research, Department Functional Genomics, Vrije Universiteit Amsterdam, Amsterdam, Netherlands
| | - Harm Post
- Biomolecular Mass Spectrometry and Proteomics, Bijvoet Center for Biomolecular Research and Utrecht Institute for Pharmaceutical Sciences, Utrecht University, Utrecht, Netherlands
| | - Maarten Altelaar
- Biomolecular Mass Spectrometry and Proteomics, Bijvoet Center for Biomolecular Research and Utrecht Institute for Pharmaceutical Sciences, Utrecht University, Utrecht, Netherlands
| | - Ginny G Farias
- Cell Biology, Neurobiology and Biophysics, Department of Biology, Faculty of Science, Utrecht University, Utrecht, 3584 CH, The Netherlands.
| |
Collapse
|
24
|
Galhuber M, Thedieck K. ODE-based models of signaling networks in autophagy. CURRENT OPINION IN SYSTEMS BIOLOGY 2024; 39:100519. [DOI: 10.1016/j.coisb.2024.100519] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/04/2025]
|
25
|
Johnstone JC, Yazicioglu YF, Clarke AJ. Fuelling B cells: dynamic regulation of B cell metabolism. Curr Opin Immunol 2024; 91:102484. [PMID: 39357080 DOI: 10.1016/j.coi.2024.102484] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2024] [Revised: 09/10/2024] [Accepted: 09/11/2024] [Indexed: 10/04/2024]
Abstract
B cells experience extreme alterations in their metabolism throughout their life cycle, from naïve B cells, which have minimal activity, to germinal centre (GC) B cells, which proliferate at the fastest rate of all cells, to long-lived plasma cells with very high levels of protein production that can persist for decades. The underpinning of these transitions remains incompletely understood, and a key question is how utilisation of fuel source supports B cell metabolism. For example, GC B cells, unlike almost all rapidly proliferating cells, mainly use fatty acid oxidation rather than glycolysis. However, following differentiation to plasma cells, their metabolism switches towards a high rate of glucose consumption to aid antibody production. In this review, we discuss the key metabolic pathways in B cells, linking them to cellular signalling events and placing them in the context of disease and therapeutic potential.
Collapse
Affiliation(s)
- Julia C Johnstone
- Kennedy Institute of Rheumatology, University of Oxford, Roosevelt Drive, Oxford OX3 7FY, United Kingdom
| | - Yavuz F Yazicioglu
- Kennedy Institute of Rheumatology, University of Oxford, Roosevelt Drive, Oxford OX3 7FY, United Kingdom
| | - Alexander J Clarke
- Kennedy Institute of Rheumatology, University of Oxford, Roosevelt Drive, Oxford OX3 7FY, United Kingdom.
| |
Collapse
|
26
|
Toyama-Sorimachi N. New approaches to the control of chronic inflammatory diseases with a focus on the endolysosomal system of immune cells. Int Immunol 2024; 37:15-24. [PMID: 38946351 PMCID: PMC11587895 DOI: 10.1093/intimm/dxae041] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2024] [Accepted: 06/29/2024] [Indexed: 07/02/2024] Open
Abstract
Chronic inflammation is implicated in many types of diseases, including cardiovascular, neurodegenerative, metabolic, and immune disorders. The search for therapeutic targets to control chronic inflammation often involves narrowing down the various molecules associated with pathology that have been discovered by various omics analyses. Herein, a different approach to identify therapeutic targets against chronic inflammation is proposed and one such target is discussed as an example. In chronically inflamed tissues, a large number of cells receive diverse proinflammatory signals, the intracellular signals are intricately integrated, and complicated intercellular interactions are orchestrated. This review focuses on effectively blocking this chaotic inflammatory signaling network via the endolysosomal system, which acts as a cellular signaling hub. In endolysosomes, the inflammatory signals mediated by pathogen sensors, such as Toll-like receptors, and the signals from nutrient and metabolic pathways are integrally regulated. Disruption of endolysosome signaling results in a strong anti-inflammatory effect by disrupting various signaling pathways, including pathogen sensor-mediated signals, in multiple immune cells. The endolysosome-resident amino acid transporter, solute carrier family 15 member 4 (SLC15A4), which plays an important role in the regulation of endolysosome-mediated signals, is a promising therapeutic target for several inflammatory diseases, including autoimmune diseases. The mechanisms by which SLC15A4 regulates inflammatory responses may provide a proof of concept for the efficacy of therapeutic strategies targeting immune cell endolysosomes.
Collapse
Affiliation(s)
- Noriko Toyama-Sorimachi
- Division of Human Immunology, International Research and Development Center for Vaccines, The Institute of Medical Science, The University of Tokyo (IMSUT), Tokyo 108-8639, Japan
| |
Collapse
|
27
|
Cui Z, Esposito A, Napolitano G, Ballabio A, Hurley JH. Structural basis for growth factor and nutrient signal integration on the lysosomal membrane by mTORC1. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.11.15.623810. [PMID: 39605743 PMCID: PMC11601357 DOI: 10.1101/2024.11.15.623810] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 11/29/2024]
Abstract
Mechanistic target of rapamycin complex 1 (mTORC1), which consists of mTOR, Raptor, and mLST8, receives signaling inputs from growth factor signals and nutrients. These signals are mediated by the Rheb and Rag small GTPases, respectively, which activate mTORC1 on the cytosolic face of the lysosome membrane. We biochemically reconstituted the activation of mTORC1 on membranes by physiological submicromolar concentrations of Rheb, Rags, and Ragulator. We determined the cryo-EM structure and found that Raptor and mTOR directly interact with the membrane at anchor points separated by up to 230 Å across the membrane surface. Full engagement of the membrane anchors is required for maximal activation, which is brought about by alignment of the catalytic residues in the mTOR kinase active site. The observations show at the molecular and atomic scale how converging signals from growth factors and nutrients drive mTORC1 recruitment to and activation on the lysosomal membrane in a three-step process, consisting of (1) Rag-Ragulator-driven recruitment to within ∼100 Å of the lysosomal membrane, (2) Rheb-driven recruitment to within ∼40 Å, and finally (3) direct engagement of mTOR and Raptor with the membrane. The combination of Rheb and membrane engagement leads to full catalytic activation, providing a structural explanation for growth factor and nutrient signal integration at the lysosome.
Collapse
|
28
|
Jiang C, Tan X, Liu N, Yan P, Hou T, Wei W. Nutrient sensing of mTORC1 signaling in cancer and aging. Semin Cancer Biol 2024; 106-107:1-12. [PMID: 39153724 DOI: 10.1016/j.semcancer.2024.08.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2024] [Revised: 08/08/2024] [Accepted: 08/09/2024] [Indexed: 08/19/2024]
Abstract
The mechanistic target of rapamycin complex 1 (mTORC1) is indispensable for preserving cellular and organismal homeostasis by balancing the anabolic and catabolic processes in response to various environmental cues, such as nutrients, growth factors, energy status, oxygen levels, and stress. Dysregulation of mTORC1 signaling is associated with the progression of many types of human disorders including cancer, age-related diseases, neurodegenerative disorders, and metabolic diseases. The way mTORC1 senses various upstream signals and converts them into specific downstream responses remains a crucial question with significant impacts for our perception of the related physiological and pathological process. In this review, we discuss the recent molecular and functional insights into the nutrient sensing of the mTORC1 signaling pathway, along with the emerging role of deregulating nutrient-mTORC1 signaling in cancer and age-related disorders.
Collapse
Affiliation(s)
- Cong Jiang
- Tongji University Cancer Center, Shanghai Tenth People's Hospital, School of Medicine, Tongji University, Shanghai 200092, China.
| | - Xiao Tan
- Tongji University Cancer Center, Shanghai Tenth People's Hospital, School of Medicine, Tongji University, Shanghai 200092, China
| | - Ning Liu
- International Research Center for Food and Health, College of Food Science and Technology, Shanghai Ocean University, Shanghai 201306, China
| | - Peiqiang Yan
- Department of Pathology, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA 02215, USA
| | - Tao Hou
- Department of Pathology, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA 02215, USA
| | - Wenyi Wei
- Department of Pathology, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA 02215, USA.
| |
Collapse
|
29
|
Obata F, Miura M. Regulatory Mechanisms of Aging Through the Nutritional and Metabolic Control of Amino Acid Signaling in Model Organisms. Annu Rev Genet 2024; 58:19-41. [PMID: 38857535 DOI: 10.1146/annurev-genet-111523-102042] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/12/2024]
Abstract
Life activities are supported by the intricate metabolic network that is fueled by nutrients. Nutritional and genetic studies in model organisms have determined that dietary restriction and certain mutations in the insulin signaling pathway lead to lifespan extension. Subsequently, the detailed mechanisms of aging as well as various nutrient signaling pathways and their relationships have been investigated in a wide range of organisms, from yeast to mammals. This review summarizes the roles of nutritional and metabolic signaling in aging and lifespan with a focus on amino acids, the building blocks of organisms. We discuss how lifespan is affected by the sensing, transduction, and metabolism of specific amino acids and consider the influences of life stage, sex, and genetic background on the nutritional control of aging. Our goal is to enhance our understanding of how nutrients affect aging and thus contribute to the biology of aging and lifespan.
Collapse
Affiliation(s)
- Fumiaki Obata
- Laboratory of Molecular Cell Biology and Development, Graduate School of Biostudies, Kyoto University, Kyoto, Japan
- Laboratory for Nutritional Biology, RIKEN Center for Biosystems Dynamics Research, Kobe, Hyogo, Japan;
| | - Masayuki Miura
- Department of Genetics, Graduate School of Pharmaceutical Sciences, The University of Tokyo, Bunkyo-ku, Tokyo, Japan;
| |
Collapse
|
30
|
Bettedi L, Zhang Y, Yang S, Lilly MA. Unveiling GATOR2 Function: Novel Insights from Drosophila Research. Cells 2024; 13:1795. [PMID: 39513902 PMCID: PMC11545208 DOI: 10.3390/cells13211795] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2024] [Revised: 10/03/2024] [Accepted: 10/16/2024] [Indexed: 11/16/2024] Open
Abstract
The multiprotein Target of Rapamycin (TOR) Complex 1 (TORC1) is a serine/threonine kinase that stimulates anabolic metabolism and suppresses catabolism. Deregulation of TORC1 is implicated in various human pathologies, including cancer, epilepsy, and neurodegenerative disorders. The Gap Activity Towards Rags (GATOR) complex contains two subcomplexes: GATOR1, which inhibits TORC1 activity; and GATOR2, which counteracts GATOR1s function. Structural and biochemical studies have elucidated how GATOR1 regulates TORC1 activity by acting as a GTPase activating protein for Rag GTPase. However, while cryogenic electron microscopy has determined that the structure of the multi-protein GATOR2 complex is conserved from yeast to humans, how GATOR2 inhibits GATOR1 remains unclear. Here, we describe recent whole-animal studies in Drosophila that have yielded novel insights into GATOR2 function, including identifying a novel role for the GATOR2 subunit WDR59, redefining the core proteins sufficient for GATOR2 activity, and defining a TORC1-independent role for GATOR2 in the regulation of the lysosomal autophagic endomembrane system. Additionally, the recent characterization of a novel methionine receptor in Drosophila that acts through the GATOR2 complex suggests an attractive model for the evolution of species-specific nutrient sensors. Research on GATOR2 function in Drosophila highlights how whole-animal genetic models can be used to dissect intracellular signaling pathways to identify tissue-specific functions and functional redundancies that may be missed in studies confined to rapidly proliferating cell lines.
Collapse
Affiliation(s)
- Lucia Bettedi
- Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, MD 20892, USA; (L.B.); (S.Y.)
| | - Yingbiao Zhang
- Institute for Translational Medicine, The Affiliated Hospital of Qingdao University, Qingdao 266000, China;
| | - Shu Yang
- Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, MD 20892, USA; (L.B.); (S.Y.)
| | - Mary A. Lilly
- Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, MD 20892, USA; (L.B.); (S.Y.)
| |
Collapse
|
31
|
Loo SK, Sica G, Wang X, Li T, Chen L, Gaither-Davis A, Huang Y, Burns TF, Stabile LP, Gao SJ. CASTOR1 phosphorylation predicts poor survival in male patients with KRAS-mutated lung adenocarcinoma. Cell Biosci 2024; 14:127. [PMID: 39385301 PMCID: PMC11465729 DOI: 10.1186/s13578-024-01307-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2024] [Accepted: 09/25/2024] [Indexed: 10/12/2024] Open
Abstract
BACKGROUND Lung cancer, a leading global cause of cancer-related mortality, necessitates enhanced prognostic markers for improved treatment outcomes. We have previously shown a tumor suppressive role of cytosolic arginine sensor for mTORC1 subunit 1 (CASTOR1), which is targeted for degradation upon phosphorylation at S14 (pCASTOR1) in multiple types of cancer. This study focuses on the predictive value of pCASTOR1 in lung adenocarcinoma (LUAD) patients with KRAS mutations. RESULTS Employing a newly developed pCASTOR1 specific antibody, we found that tumor cells exhibited significantly elevated pCASTOR1 scores compared to non-tumor cells (P < 0.05). Higher pCASTOR1 scores predicted poorer overall survival (OS) (HR = 3.3, P = 0.0008) and relapse-free survival (RFS) (HR = 3.0, P = 0.0035) in male patients with KRAS mutations. pCASTOR1 remained an independent predictor for OS (HR = 4.1, P = 0.0047) and RFS (HR = 3.5, P = 0.0342) after controlling for other factors. Notably, in early-stage LUAD, elevated pCASTOR1 scores were associated with significantly worse OS (HR = 3.3, P = 0.0176) and RFS (HR = 3.1, P = 0.0277) in male patients with KRAS mutations, akin to late-stage patients. CONCLUSION Elevated pCASTOR1 scores serve as biomarkers predicting poorer OS and RFS in male LUAD patients with KRAS mutations, offering potential clinical utility in optimizing treatment strategies for this subgroup.
Collapse
Affiliation(s)
- Suet Kee Loo
- Cancer Virology Program, UPMC Hillman Cancer Center, Pittsburgh, PA, USA
- Department of Microbiology and Molecular Genetics, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
| | - Gabriel Sica
- Department of Pathology, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
- UPMC Presbyterian Hospital, University of Pittsburgh Medical Center, Pittsburgh, PA, USA
| | - Xian Wang
- Cancer Virology Program, UPMC Hillman Cancer Center, Pittsburgh, PA, USA
- Department of Microbiology and Molecular Genetics, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
| | - Tingting Li
- Cancer Virology Program, UPMC Hillman Cancer Center, Pittsburgh, PA, USA
- Department of Microbiology and Molecular Genetics, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
| | - Luping Chen
- Cancer Virology Program, UPMC Hillman Cancer Center, Pittsburgh, PA, USA
- Department of Microbiology and Molecular Genetics, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
| | - Autumn Gaither-Davis
- Department of Medicine, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
| | - Yufei Huang
- Cancer Virology Program, UPMC Hillman Cancer Center, Pittsburgh, PA, USA
- Department of Medicine, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
- Department of Electrical and Computer Engineering, Swanson School of Engineering, University of Pittsburgh, Pittsburgh, PA, USA
| | - Timothy F Burns
- Department of Medicine, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
- Cancer Biology Program, UPMC Hillman Cancer Center, Pittsburgh, PA, USA
- Department of Pharmacology and Chemical Biology, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
| | - Laura P Stabile
- Cancer Biology Program, UPMC Hillman Cancer Center, Pittsburgh, PA, USA
- Department of Pharmacology and Chemical Biology, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
| | - Shou-Jiang Gao
- Cancer Virology Program, UPMC Hillman Cancer Center, Pittsburgh, PA, USA.
- Department of Microbiology and Molecular Genetics, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA.
| |
Collapse
|
32
|
Tanigawa M, Maeda T, Isono E. FYVE1/FREE1 is involved in glutamine-responsive TORC1 activation in plants. iScience 2024; 27:110814. [PMID: 39297172 PMCID: PMC11409180 DOI: 10.1016/j.isci.2024.110814] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2024] [Revised: 07/06/2024] [Accepted: 08/22/2024] [Indexed: 09/21/2024] Open
Abstract
Target of rapamycin complex 1 (TORC1) integrates nutrient availability, growth factors, and stress signals to regulate cellular metabolism according to its environment. Similar to mammals, amino acids have been shown to activate TORC1 in plants. However, as the Rag complex that controls amino acid-responsive TORC1 activation mechanisms in many eukaryotes is not conserved in plants, the amino acid-sensing mechanisms upstream of TORC1 in plants remain unknown. In this study, we report that Arabidopsis FYVE1/FREE1 is involved in glutamine-induced TORC1 activation, independent of its previously reported function in ESCRT-dependent processes. FYVE1/FREE1 has a domain structure similar to that of the yeast glutamine sensor Pib2 that directly activates TORC1. Similar to Pib2, FYVE1/FREE1 interacts with TORC1 in response to glutamine. Furthermore, overexpression of a FYVE1/FREE1 variant lacking the presumptive TORC1 activation motif hindered the glutamine-responsive activation of TORC1. Overall, these observations suggest that FYVE1/FREE1 acts as an intracellular amino acid sensor that triggers TORC1 activation in plants.
Collapse
Affiliation(s)
- Mirai Tanigawa
- Departments of Biology, Hamamatsu University School of Medicine, Hamamatsu, Shizuoka 431-3125, Japan
- Department of Biology, Faculty of Sciences, University of Konstanz, 78457 Konstanz, Germany
| | - Tatsuya Maeda
- Departments of Biology, Hamamatsu University School of Medicine, Hamamatsu, Shizuoka 431-3125, Japan
| | - Erika Isono
- Department of Biology, Faculty of Sciences, University of Konstanz, 78457 Konstanz, Germany
- Division of Molecular Cell Biology, National Institute for Basic Biology, Okazaki 444-8585, Aichi, Japan
| |
Collapse
|
33
|
Ru Y, Deng X, Chen J, Zhang L, Xu Z, Lv Q, Long S, Huang Z, Kong M, Guo J, Jiang M. Maternal age enhances purifying selection on pathogenic mutations in complex I genes of mammalian mtDNA. NATURE AGING 2024; 4:1211-1230. [PMID: 39075271 DOI: 10.1038/s43587-024-00672-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/11/2024] [Accepted: 06/14/2024] [Indexed: 07/31/2024]
Abstract
Mitochondrial diseases, caused mainly by pathogenic mitochondrial DNA (mtDNA) mutations, pose major challenges due to the lack of effective treatments. Investigating the patterns of maternal transmission of mitochondrial diseases could pave the way for preventive approaches. In this study, we used DddA-derived cytosine base editors (DdCBEs) to generate two mouse models, each haboring a single pathogenic mutation in complex I genes (ND1 and ND5), replicating those found in human patients. Our findings revealed that both mutations are under strong purifying selection during maternal transmission and occur predominantly during postnatal oocyte maturation, with increased protein synthesis playing a vital role. Interestingly, we discovered that maternal age intensifies the purifying selection, suggesting that older maternal age may offer a protective effect against the transmission of deleterious mtDNA mutations, contradicting the conventional notion that maternal age correlates with increased transmitted mtDNA mutations. As collecting comprehensive clinical data is needed to understand the relationship between maternal age and transmission patterns in humans, our findings may have profound implications for reproductive counseling of mitochondrial diseases, especially those involving complex I gene mutations.
Collapse
Affiliation(s)
- Yanfei Ru
- Westlake Laboratory of Life Sciences and Biomedicine, Hangzhou, China
- Key Laboratory of Growth Regulation and Translational Research of Zhejiang Province, School of Life Sciences,Westlake University, Hangzhou, China
| | - Xiaoling Deng
- Westlake Laboratory of Life Sciences and Biomedicine, Hangzhou, China
- Key Laboratory of Growth Regulation and Translational Research of Zhejiang Province, School of Life Sciences,Westlake University, Hangzhou, China
- Fudan University, Shanghai, China
| | - Jiatong Chen
- Westlake Laboratory of Life Sciences and Biomedicine, Hangzhou, China
- Key Laboratory of Growth Regulation and Translational Research of Zhejiang Province, School of Life Sciences,Westlake University, Hangzhou, China
- College of Life Sciences, Zhejiang University, Hangzhou, China
| | - Leping Zhang
- Westlake Laboratory of Life Sciences and Biomedicine, Hangzhou, China
- Key Laboratory of Growth Regulation and Translational Research of Zhejiang Province, School of Life Sciences,Westlake University, Hangzhou, China
- College of Life Sciences, Zhejiang University, Hangzhou, China
| | - Zhe Xu
- Westlake Laboratory of Life Sciences and Biomedicine, Hangzhou, China
- Key Laboratory of Growth Regulation and Translational Research of Zhejiang Province, School of Life Sciences,Westlake University, Hangzhou, China
| | - Qunyu Lv
- Westlake Laboratory of Life Sciences and Biomedicine, Hangzhou, China
- Key Laboratory of Growth Regulation and Translational Research of Zhejiang Province, School of Life Sciences,Westlake University, Hangzhou, China
- College of Life Sciences, Zhejiang University, Hangzhou, China
| | - Shiyun Long
- Westlake Laboratory of Life Sciences and Biomedicine, Hangzhou, China
- Key Laboratory of Growth Regulation and Translational Research of Zhejiang Province, School of Life Sciences,Westlake University, Hangzhou, China
- College of Life Sciences, Zhejiang University, Hangzhou, China
| | - Zijian Huang
- Westlake Laboratory of Life Sciences and Biomedicine, Hangzhou, China
- Key Laboratory of Growth Regulation and Translational Research of Zhejiang Province, School of Life Sciences,Westlake University, Hangzhou, China
- Fudan University, Shanghai, China
| | - Minghua Kong
- Westlake Laboratory of Life Sciences and Biomedicine, Hangzhou, China
- Key Laboratory of Growth Regulation and Translational Research of Zhejiang Province, School of Life Sciences,Westlake University, Hangzhou, China
- Institute of Basic Medical Sciences, Westlake Institute for Advanced Study, Hangzhou, China
| | - Jing Guo
- Clinical Research Center for Reproduction and Genetics in Hunan Province, Reproductive and Genetic Hospital of CITIC-Xiangya, Changsha, China
- NHC Key Laboratory of Human Stem Cell and Reproductive Engineering, School of Basic Medical Sciences, Central South University, Changsha, China
| | - Min Jiang
- Westlake Laboratory of Life Sciences and Biomedicine, Hangzhou, China.
- Key Laboratory of Growth Regulation and Translational Research of Zhejiang Province, School of Life Sciences,Westlake University, Hangzhou, China.
- Institute of Basic Medical Sciences, Westlake Institute for Advanced Study, Hangzhou, China.
| |
Collapse
|
34
|
Talaia G, Bentley-DeSousa A, Ferguson SM. Lysosomal TBK1 responds to amino acid availability to relieve Rab7-dependent mTORC1 inhibition. EMBO J 2024; 43:3948-3967. [PMID: 39103493 PMCID: PMC11405869 DOI: 10.1038/s44318-024-00180-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/29/2024] [Revised: 05/22/2024] [Accepted: 06/24/2024] [Indexed: 08/07/2024] Open
Abstract
Lysosomes play a pivotal role in coordinating macromolecule degradation and regulating cell growth and metabolism. Despite substantial progress in identifying lysosomal signaling proteins, understanding the pathways that synchronize lysosome functions with changing cellular demands remains incomplete. This study uncovers a role for TANK-binding kinase 1 (TBK1), well known for its role in innate immunity and organelle quality control, in modulating lysosomal responsiveness to nutrients. Specifically, we identify a pool of TBK1 that is recruited to lysosomes in response to elevated amino acid levels. This lysosomal TBK1 phosphorylates Rab7 on serine 72. This is critical for alleviating Rab7-mediated inhibition of amino acid-dependent mTORC1 activation. Furthermore, a TBK1 mutant (E696K) associated with amyotrophic lateral sclerosis and frontotemporal dementia constitutively accumulates at lysosomes, resulting in elevated Rab7 phosphorylation and increased mTORC1 activation. This data establishes the lysosome as a site of amino acid regulated TBK1 signaling that is crucial for efficient mTORC1 activation. This lysosomal pool of TBK1 has broader implications for lysosome homeostasis, and its dysregulation could contribute to the pathogenesis of ALS-FTD.
Collapse
Affiliation(s)
- Gabriel Talaia
- Department of Cell Biology, Yale University School of Medicine, New Haven, CT, 06510, USA
- Department of Neuroscience, Yale University School of Medicine, New Haven, CT, 06510, USA
- Program in Cellular Neuroscience, Neurodegeneration and Repair, Yale University School of Medicine, New Haven, CT, 06510, USA
- Wu Tsai Institute, Yale University School of Medicine, New Haven, CT, 06510, USA
- Aligning Science Across Parkinson's (ASAP) Collaborative Research Network, Chevy Chase, MD, 20815, USA
| | - Amanda Bentley-DeSousa
- Department of Cell Biology, Yale University School of Medicine, New Haven, CT, 06510, USA
- Department of Neuroscience, Yale University School of Medicine, New Haven, CT, 06510, USA
- Program in Cellular Neuroscience, Neurodegeneration and Repair, Yale University School of Medicine, New Haven, CT, 06510, USA
- Wu Tsai Institute, Yale University School of Medicine, New Haven, CT, 06510, USA
- Aligning Science Across Parkinson's (ASAP) Collaborative Research Network, Chevy Chase, MD, 20815, USA
| | - Shawn M Ferguson
- Department of Cell Biology, Yale University School of Medicine, New Haven, CT, 06510, USA.
- Department of Neuroscience, Yale University School of Medicine, New Haven, CT, 06510, USA.
- Program in Cellular Neuroscience, Neurodegeneration and Repair, Yale University School of Medicine, New Haven, CT, 06510, USA.
- Wu Tsai Institute, Yale University School of Medicine, New Haven, CT, 06510, USA.
- Aligning Science Across Parkinson's (ASAP) Collaborative Research Network, Chevy Chase, MD, 20815, USA.
- Kavli Institute for Neuroscience, Yale University School of Medicine, New Haven, CT, 06510, USA.
| |
Collapse
|
35
|
Reifenberg P, Zimmer A. Branched-chain amino acids: physico-chemical properties, industrial synthesis and role in signaling, metabolism and energy production. Amino Acids 2024; 56:51. [PMID: 39198298 PMCID: PMC11358235 DOI: 10.1007/s00726-024-03417-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2024] [Accepted: 08/20/2024] [Indexed: 09/01/2024]
Abstract
Branched-chain amino acids (BCAAs)-leucine (Leu), isoleucine (Ile), and valine (Val)-are essential nutrients with significant roles in protein synthesis, metabolic regulation, and energy production. This review paper offers a detailed examination of the physico-chemical properties of BCAAs, their industrial synthesis, and their critical functions in various biological processes. The unique isomerism of BCAAs is presented, focusing on analytical challenges in their separation and quantification as well as their solubility characteristics, which are crucial for formulation and purification applications. The industrial synthesis of BCAAs, particularly using bacterial strains like Corynebacterium glutamicum, is explored, alongside methods such as genetic engineering aimed at enhancing production, detailing the enzymatic processes and specific precursors. The dietary uptake, distribution, and catabolism of BCAAs are reviewed as fundamental components of their physiological functions. Ultimately, their multifaceted impact on signaling pathways, immune function, and disease progression is discussed, providing insights into their profound influence on muscle protein synthesis and metabolic health. This comprehensive analysis serves as a resource for understanding both the basic and complex roles of BCAAs in biological systems and their industrial application.
Collapse
Affiliation(s)
- Philipp Reifenberg
- Merck Life Science KGaA, Upstream R&D, Frankfurter Strasse 250, 64293, Darmstadt, Germany
- Institute for Organic Chemistry and Biochemistry, Technische Universität Darmstadt, Alarich‑Weiss‑Strasse 4, 64287, Darmstadt, Germany
| | - Aline Zimmer
- Merck Life Science KGaA, Upstream R&D, Frankfurter Strasse 250, 64293, Darmstadt, Germany.
| |
Collapse
|
36
|
De Leonibus C, Maddaluno M, Ferriero R, Besio R, Cinque L, Lim PJ, Palma A, De Cegli R, Gagliotta S, Montefusco S, Iavazzo M, Rohrbach M, Giunta C, Polishchuk E, Medina DL, Di Bernardo D, Forlino A, Piccolo P, Settembre C. Sestrin2 drives ER-phagy in response to protein misfolding. Dev Cell 2024; 59:2035-2052.e10. [PMID: 39094564 PMCID: PMC11338521 DOI: 10.1016/j.devcel.2024.07.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2023] [Revised: 05/01/2024] [Accepted: 07/09/2024] [Indexed: 08/04/2024]
Abstract
Protein biogenesis within the endoplasmic reticulum (ER) is crucial for organismal function. Errors during protein folding necessitate the removal of faulty products. ER-associated protein degradation and ER-phagy target misfolded proteins for proteasomal and lysosomal degradation. The mechanisms initiating ER-phagy in response to ER proteostasis defects are not well understood. By studying mouse primary cells and patient samples as a model of ER storage disorders (ERSDs), we show that accumulation of faulty products within the ER triggers a response involving SESTRIN2, a nutrient sensor controlling mTORC1 signaling. SESTRIN2 induction by XBP1 inhibits mTORC1's phosphorylation of TFEB/TFE3, allowing these transcription factors to enter the nucleus and upregulate the ER-phagy receptor FAM134B along with lysosomal genes. This response promotes ER-phagy of misfolded proteins via FAM134B-Calnexin complex. Pharmacological induction of FAM134B improves clearance of misfolded proteins in ERSDs. Our study identifies the interplay between nutrient signaling and ER quality control, suggesting therapeutic strategies for ERSDs.
Collapse
Affiliation(s)
- Chiara De Leonibus
- Telethon Institute of Genetics and Medicine (TIGEM), Pozzuoli, Italy; Department of Health Sciences, University of Basilicata, Potenza, Italy
| | - Marianna Maddaluno
- Telethon Institute of Genetics and Medicine (TIGEM), Pozzuoli, Italy; Department of Clinical Medicine and Surgery, Federico II University, Naples, Italy
| | - Rosa Ferriero
- Telethon Institute of Genetics and Medicine (TIGEM), Pozzuoli, Italy
| | - Roberta Besio
- Department of Molecular Medicine, University of Pavia, Pavia, Italy
| | - Laura Cinque
- Telethon Institute of Genetics and Medicine (TIGEM), Pozzuoli, Italy; Department of Clinical Medicine and Surgery, Federico II University, Naples, Italy
| | - Pei Jin Lim
- Division of Metabolism and Children's Research Center, University Hospital of Zurich, Zurich, Switzerland
| | - Alessandro Palma
- Telethon Institute of Genetics and Medicine (TIGEM), Pozzuoli, Italy
| | - Rossella De Cegli
- Telethon Institute of Genetics and Medicine (TIGEM), Pozzuoli, Italy
| | | | - Sandro Montefusco
- Telethon Institute of Genetics and Medicine (TIGEM), Pozzuoli, Italy
| | - Maria Iavazzo
- Telethon Institute of Genetics and Medicine (TIGEM), Pozzuoli, Italy; Department of Clinical Medicine and Surgery, Federico II University, Naples, Italy
| | - Marianne Rohrbach
- Division of Metabolism and Children's Research Center, University Hospital of Zurich, Zurich, Switzerland
| | - Cecilia Giunta
- Division of Metabolism and Children's Research Center, University Hospital of Zurich, Zurich, Switzerland
| | - Elena Polishchuk
- Telethon Institute of Genetics and Medicine (TIGEM), Pozzuoli, Italy
| | - Diego Louis Medina
- Telethon Institute of Genetics and Medicine (TIGEM), Pozzuoli, Italy; Department of Translational Medical Sciences, Federico II University, Naples, Italy
| | - Diego Di Bernardo
- Telethon Institute of Genetics and Medicine (TIGEM), Pozzuoli, Italy; Department of Chemical, Materials and Industrial Production Engineering, University of Naples "Federico II", Naples, Italy
| | | | - Pasquale Piccolo
- Telethon Institute of Genetics and Medicine (TIGEM), Pozzuoli, Italy
| | - Carmine Settembre
- Telethon Institute of Genetics and Medicine (TIGEM), Pozzuoli, Italy; Department of Clinical Medicine and Surgery, Federico II University, Naples, Italy.
| |
Collapse
|
37
|
Lehmer M, Zoncu R. mTORC1 Signaling Inhibition Modulates Mitochondrial Function in Frataxin Deficiency. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.08.06.606942. [PMID: 39211218 PMCID: PMC11360942 DOI: 10.1101/2024.08.06.606942] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/04/2024]
Abstract
Lysosomes regulate mitochondrial function through multiple mechanisms including the master regulator, mechanistic Target of Rapamycin Complex 1 (mTORC1) protein kinase, which is activated at the lysosomal membrane by nutrient, growth factor and energy signals. mTORC1 promotes mitochondrial protein composition changes, respiratory capacity, and dynamics, though the full range of mitochondrial-regulating functions of this protein kinase remain undetermined. We find that acute chemical modulation of mTORC1 signaling decreased mitochondrial oxygen consumption, increased mitochondrial membrane potential and reduced susceptibility to stress-induced mitophagy. In cellular models of Friedreich's Ataxia (FA), where loss of the Frataxin (FXN) protein suppresses Fe-S cluster synthesis and mitochondrial respiration, the changes induced by mTORC1 inhibitors lead to improved cell survival. Proteomic-based profiling uncover compositional changes that could underlie mTORC1-dependent modulation of FXN-deficient mitochondria. These studies highlight mTORC1 signaling as a regulator of mitochondrial composition and function, prompting further evaluation of this pathway in the context of mitochondrial disease.
Collapse
|
38
|
Shao W, Feng Y, Huang J, Li T, Gao S, Yang Y, Li D, Yang Z, Yao Z. Interaction of ncRNAs and the PI3K/AKT/mTOR pathway: Implications for osteosarcoma. Open Life Sci 2024; 19:20220936. [PMID: 39119480 PMCID: PMC11306965 DOI: 10.1515/biol-2022-0936] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2024] [Revised: 07/07/2024] [Accepted: 07/09/2024] [Indexed: 08/10/2024] Open
Abstract
Osteosarcoma (OS) is the most common primary malignant bone tumor in children and adolescents, and is characterized by high heterogeneity, high malignancy, easy metastasis, and poor prognosis. Recurrence, metastasis, and multidrug resistance are the main problems that limit the therapeutic effect and prognosis of OS. PI3K/AKT/mTOR signaling pathway is often abnormally activated in OS tissues and cells, which promotes the rapid development, metastasis, and drug sensitivity of OS. Emerging evidence has revealed new insights into tumorigenesis through the interaction between the PI3K/AKT/mTOR pathway and non-coding RNAs (ncRNAs). Therefore, we reviewed the interactions between the PI3K/AKT/mTOR pathway and ncRNAs and their implication in OS. These interactions have the potential to serve as cancer biomarkers and therapeutic targets in clinical applications.
Collapse
Affiliation(s)
- Weilin Shao
- Bone and Soft Tissue Tumours Research Centre of Yunnan Province, Department of Orthopaedics, The Third Affiliated Hospital of Kunming Medical University (Yunnan Cancer Hospital, Yunnan Cancer Center), Kunming, Yunnan, 650118, China
| | - Yan Feng
- Bone and Soft Tissue Tumours Research Centre of Yunnan Province, Department of Orthopaedics, The Third Affiliated Hospital of Kunming Medical University (Yunnan Cancer Hospital, Yunnan Cancer Center), Kunming, Yunnan, 650118, China
| | - Jin Huang
- Bone and Soft Tissue Tumours Research Centre of Yunnan Province, Department of Orthopaedics, The Third Affiliated Hospital of Kunming Medical University (Yunnan Cancer Hospital, Yunnan Cancer Center), Kunming, Yunnan, 650118, China
| | - Tingyu Li
- Clinical Oncology Institute, Kunming Medical University, Kunming, Yunnan, 650500, China
| | - Shengguai Gao
- Clinical Oncology Institute, Kunming Medical University, Kunming, Yunnan, 650500, China
| | - Yihao Yang
- Bone and Soft Tissue Tumours Research Centre of Yunnan Province, Department of Orthopaedics, The Third Affiliated Hospital of Kunming Medical University (Yunnan Cancer Hospital, Yunnan Cancer Center), Kunming, Yunnan, 650118, China
| | - Dongqi Li
- Bone and Soft Tissue Tumours Research Centre of Yunnan Province, Department of Orthopaedics, The Third Affiliated Hospital of Kunming Medical University (Yunnan Cancer Hospital, Yunnan Cancer Center), Kunming, Yunnan, 650118, China
| | - Zuozhang Yang
- Bone and Soft Tissue Tumours Research Centre of Yunnan Province, Department of Orthopaedics, The Third Affiliated Hospital of Kunming Medical University (Yunnan Cancer Hospital, Yunnan Cancer Center), Kunming, Yunnan, 650118, China
| | - Zhihong Yao
- Bone and Soft Tissue Tumours Research Centre of Yunnan Province, Department of Orthopaedics, The Third Affiliated Hospital of Kunming Medical University (Yunnan Cancer Hospital, Yunnan Cancer Center), No. 519 Kunzhou Road, Xishan District, Kunming, Yunnan, 650118, China
- Department of Cancer Research Institute, The Third Affiliated Hospital of Kunming Medical University (Yunnan Cancer Hospital, Yunnan Cancer Center), No. 519 Kunzhou Road, Xishan District, Kunming, Yunnan, 650118, China
| |
Collapse
|
39
|
Segura-Roman A, Citron YR, Shin M, Sindoni N, Maya-Romero A, Rapp S, Goul C, Mancias JD, Zoncu R. Autophagosomes coordinate an AKAP11-dependent regulatory checkpoint that shapes neuronal PKA signaling. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.08.06.606738. [PMID: 39211170 PMCID: PMC11361107 DOI: 10.1101/2024.08.06.606738] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/04/2024]
Abstract
Protein Kinase A (PKA) is regulated spatially and temporally via scaffolding of its catalytic (Cα/β) and regulatory (RI/RII) subunits by the A-kinase-anchoring proteins (AKAP). PKA engages in poorly understood interactions with autophagy, a key degradation pathway for neuronal cell homeostasis, partly via its AKAP11 scaffold. Mutations in AKAP11 drive schizophrenia and bipolar disorders (SZ-BP) through unknown mechanisms. Through proteomic-based analysis of immunopurified lysosomes, we identify the Cα-RIα-AKAP11 holocomplex as a prominent autophagy-associated protein kinase complex. AKAP11 scaffolds Cα-RIα to the autophagic machinery via its LC3-interacting region (LIR), enabling both PKA regulation by upstream signals, and its autophagy-dependent degradation. We identify Ser83 on the RIα linker-hinge region as an AKAP11-dependent phospho-residue that modulates RIα-Cα binding and cAMP-induced PKA activation. Decoupling AKAP11-PKA from autophagy alters Ser83 phosphorylation, supporting an autophagy-dependent checkpoint for PKA signaling. Ablating AKAP11 in induced pluripotent stem cell-derived neurons reveals dysregulation of multiple pathways for neuronal homeostasis. Thus, the autophagosome is a novel platform that modulate PKA signaling, providing a possible mechanistic link to SZ/BP pathophysiology.
Collapse
|
40
|
Roiuk M, Neff M, Teleman AA. eIF4E-independent translation is largely eIF3d-dependent. Nat Commun 2024; 15:6692. [PMID: 39107322 PMCID: PMC11303786 DOI: 10.1038/s41467-024-51027-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2023] [Accepted: 07/22/2024] [Indexed: 08/10/2024] Open
Abstract
Translation initiation is a highly regulated step needed for protein synthesis. Most cell-based mechanistic work on translation initiation has been done using non-stressed cells growing in medium with sufficient nutrients and oxygen. This has yielded our current understanding of 'canonical' translation initiation, involving recognition of the mRNA cap by eIF4E1 followed by successive recruitment of initiation factors and the ribosome. Many cells, however, such as tumor cells, are exposed to stresses such as hypoxia, low nutrients or proteotoxic stress. This leads to inactivation of mTORC1 and thereby inactivation of eIF4E1. Hence the question arises how cells translate mRNAs under such stress conditions. We study here how mRNAs are translated in an eIF4E1-independent manner by blocking eIF4E1 using a constitutively active version of eIF4E-binding protein (4E-BP). Via ribosome profiling we identify a subset of mRNAs that are still efficiently translated when eIF4E1 is inactive. We find that these mRNAs preferentially release eIF4E1 when eIF4E1 is inactive and bind instead to eIF3d via its cap-binding pocket. eIF3d then enables these mRNAs to be efficiently translated due to its cap-binding activity. In sum, our work identifies eIF3d-dependent translation as a major mechanism enabling mRNA translation in an eIF4E-independent manner.
Collapse
Affiliation(s)
- Mykola Roiuk
- German Cancer Research Center (DKFZ) Heidelberg, Heidelberg, Germany
- Faculty of Medicine, Heidelberg University, Heidelberg, Germany
- Faculty of Biosciences, Heidelberg University, Heidelberg, Germany
| | - Marilena Neff
- German Cancer Research Center (DKFZ) Heidelberg, Heidelberg, Germany
- Faculty of Medicine, Heidelberg University, Heidelberg, Germany
- Faculty of Biosciences, Heidelberg University, Heidelberg, Germany
| | - Aurelio A Teleman
- German Cancer Research Center (DKFZ) Heidelberg, Heidelberg, Germany.
- Faculty of Medicine, Heidelberg University, Heidelberg, Germany.
- Faculty of Biosciences, Heidelberg University, Heidelberg, Germany.
| |
Collapse
|
41
|
Pan YF, Zhong L, Wang M, Jiang TY, Lin YK, Chen YB, Li X, Hu HP, Zhou HB, Yan HZ, Dong LW. PTEN status determines therapeutic vulnerability to celastrol in cholangiocarcinoma. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2024; 131:155790. [PMID: 38851099 DOI: 10.1016/j.phymed.2024.155790] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/20/2024] [Revised: 05/15/2024] [Accepted: 05/28/2024] [Indexed: 06/10/2024]
Abstract
BACKGROUND A balanced protein homeostasis network helps cholangiocarcinoma (CCA) maintain their oncogenic growth, and disrupting proteostasis therapeutically will induce proteotoxic stress. Phosphatase and tensin homolog (PTEN) have been reported to be involved in proteostasis, and PTEN-associated pathways are commonly altered in CCA. Celastrol, a triterpene from plants, exhibits cytotoxic effects in various types of cancer. However, the underlying mechanisms remain unclear. PURPOSE We investigated the therapeutic effect of celastrol in CCA and identified the molecular characteristics of tumors that were sensitive to celastrol. The target of celastrol was explored. We then evaluated the candidate combination therapeutic strategy to increase the effectiveness of celastrol in celastrol-insensitive CCA tumors. METHODS Various CCA cells were categorized as either celastrol-sensitive or celastrol-insensitive based on their response to celastrol. The molecular characteristics of cells from different groups were determined by RNA-seq. PTEN status and its role in proteasome activity in CCA cells were investigated. The CMAP analysis, molecular docking, and functional assay were performed to explore the effect of celastrol on proteasome activities. The correlation between PTEN status and clinical outcomes, as well as proteasomal activity, were measured in CCA patients. The synergistic therapeutic effect of autophagy inhibitors on celastrol-insensitive CCA cells were measured. RESULTS Diverse responses to celastrol were observed in CCA cells. PTEN expression varied among different CCA cells, and its status could impact cell sensitivity to celastrol: PTENhigh tumor cells were resistant to celastrol, while PTENlow cells were more sensitive. Celastrol induced proteasomal dysregulation in CCA cells by directly targeting PSMB5. Cells with low PTEN status transcriptionally promoted proteasome subunit expression in an AKT-dependent manner, making these cells more reliant on proteasomal activities to maintain proteostasis. This caused the PTENlow CCA cells sensitive to celastrol. A negative correlation was found between PTEN levels and the proteasome signature in CCA patients. Moreover, celastrol treatment could induce autophagy in PTENhigh CCA cells. Disrupting the autophagic pathway in PTENhigh CCA cells enhanced the cytotoxic effect of celastrol. CONCLUSION PTEN status in CCA cells determines their sensitivity to celastrol, and autophagy inhibitors could enhance the anti-tumor effect in PTENhigh CCA.
Collapse
Affiliation(s)
- Yu-Fei Pan
- National Center for Liver Cancer, Naval Medical University, 366 Qianju Road, Shanghai, 201805, China; Key Laboratory of Signaling Regulation and Targeting Therapy of Liver Cancer (SMMU), Ministry of Education. 225 Changhai Road, Shanghai 200438, China
| | - Lin Zhong
- Department of Pathology, Seventh People's Hospital of Shanghai University of Traditional Chinese Medicine (TCM), 358 Datong Road, Shanghai, 200137, China
| | - Min Wang
- Department of Laboratory Medicine, Eastern Hepatobiliary Surgery Hospital, Naval Medical University, 700 Moyu Road, Shanghai, 201805, China
| | - Tian-Yi Jiang
- National Center for Liver Cancer, Naval Medical University, 366 Qianju Road, Shanghai, 201805, China; Key Laboratory of Signaling Regulation and Targeting Therapy of Liver Cancer (SMMU), Ministry of Education. 225 Changhai Road, Shanghai 200438, China
| | - Yun-Kai Lin
- National Center for Liver Cancer, Naval Medical University, 366 Qianju Road, Shanghai, 201805, China
| | - Yi-Bin Chen
- National Center for Liver Cancer, Naval Medical University, 366 Qianju Road, Shanghai, 201805, China
| | - Xin Li
- Key Laboratory of Signaling Regulation and Targeting Therapy of Liver Cancer (SMMU), Ministry of Education. 225 Changhai Road, Shanghai 200438, China
| | - He-Ping Hu
- Department of Hepatobiliary Medicine, Eastern Hepatobiliary Surgery Hospital, 700 Moyu Road, Shanghai, 201805, China
| | - Hua-Bang Zhou
- Department of Hepatobiliary Medicine, Eastern Hepatobiliary Surgery Hospital, 700 Moyu Road, Shanghai, 201805, China.
| | - Hong-Zhu Yan
- Department of Pathology, Seventh People's Hospital of Shanghai University of Traditional Chinese Medicine (TCM), 358 Datong Road, Shanghai, 200137, China.
| | - Li-Wei Dong
- National Center for Liver Cancer, Naval Medical University, 366 Qianju Road, Shanghai, 201805, China; Key Laboratory of Signaling Regulation and Targeting Therapy of Liver Cancer (SMMU), Ministry of Education. 225 Changhai Road, Shanghai 200438, China.
| |
Collapse
|
42
|
Sambri I, Ferniani M, Ballabio A. Ragopathies and the rising influence of RagGTPases on human diseases. Nat Commun 2024; 15:5812. [PMID: 38987251 PMCID: PMC11237164 DOI: 10.1038/s41467-024-50034-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2024] [Accepted: 06/27/2024] [Indexed: 07/12/2024] Open
Abstract
RagGTPases (Rags) play an essential role in the regulation of cell metabolism by controlling the activities of both mechanistic target of rapamycin complex 1 (mTORC1) and Transcription factor EB (TFEB). Several diseases, herein named ragopathies, are associated to Rags dysfunction. These diseases may be caused by mutations either in genes encoding the Rags, or in their upstream regulators. The resulting phenotypes may encompass a variety of clinical features such as cataract, kidney tubulopathy, dilated cardiomyopathy and several types of cancer. In this review, we focus on the key clinical, molecular and physio-pathological features of ragopathies, aiming to shed light on their underlying mechanisms.
Collapse
Affiliation(s)
- Irene Sambri
- Telethon Institute of Genetics and Medicine (TIGEM), Pozzuoli, (NA), Italy
- Scuola Superiore Meridionale (SSM, School of Advanced Studies), Genomics and Experimental Medicine Program (GEM), Naples, Italy
| | - Marco Ferniani
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX, USA
- Jan and Dan Duncan Neurological Research Institute, Texas Children's Hospital, Houston, TX, USA
| | - Andrea Ballabio
- Telethon Institute of Genetics and Medicine (TIGEM), Pozzuoli, (NA), Italy.
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX, USA.
- Jan and Dan Duncan Neurological Research Institute, Texas Children's Hospital, Houston, TX, USA.
- Medical Genetics Unit, Department of Medical and Translational Science, Federico II University, Naples, Italy.
| |
Collapse
|
43
|
Dsouza L, Pant A, Pope B, Yang Z. Role of vaccinia virus growth factor in stimulating the mTORC1-CAD axis of the de novo pyrimidine pathway under different nutritional cues. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.07.02.601567. [PMID: 39005450 PMCID: PMC11245005 DOI: 10.1101/2024.07.02.601567] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/16/2024]
Abstract
Vaccinia virus (VACV), the prototype poxvirus, actively reprograms host cell metabolism upon infection. However, the nature and molecular mechanisms remain largely elusive. Given the diverse nutritional exposures of cells in different physiological contexts, it is essential to understand how VACV may alter various metabolic pathways in different nutritional conditions. In this study, we established the importance of de novo pyrimidine biosynthesis in VACV infection. We elucidated the significance of vaccinia growth factor (VGF), a viral early protein and a homolog of cellular epidermal growth factor, in enabling VACV to phosphorylate the key enzyme CAD of the de novo pyrimidine pathway at serine 1859, a site known to positively regulate CAD activity. While nutrient-poor conditions typically inhibit mTORC1 activation, VACV activates CAD via mTORC1-S6K1 signaling axis, in conditions where glutamine and asparagine are absent. However, unlike its cellular homolog, epidermal growth factor (EGF), VGF peptide alone in the absence of VACV infection has minimal ability to activate CAD, suggestive of the involvement of other viral factor(s) and differential functions to EGF acquired during poxvirus evolution. Our research provides a foundation for understanding the regulation of a significant metabolic pathway, namely, de novo pyrimidine synthesis during VACV infection, shedding new light on viral regulation under distinct nutritional environments. This study not only has the potential to contribute to the advancement of antiviral treatments but also improve the development of VACV as an oncolytic agent and vaccine vector.
Collapse
Affiliation(s)
- Lara Dsouza
- Department of Veterinary Pathobiology, College of Veterinary Medicine & Biomedical Sciences, Texas A&M University, College Station, TX, 77843, USA
| | - Anil Pant
- Department of Veterinary Pathobiology, College of Veterinary Medicine & Biomedical Sciences, Texas A&M University, College Station, TX, 77843, USA
| | - Blake Pope
- Department of Veterinary Pathobiology, College of Veterinary Medicine & Biomedical Sciences, Texas A&M University, College Station, TX, 77843, USA
| | - Zhilong Yang
- Department of Veterinary Pathobiology, College of Veterinary Medicine & Biomedical Sciences, Texas A&M University, College Station, TX, 77843, USA
| |
Collapse
|
44
|
Santos-Ribeiro D, Cunha C, Carvalho A. Humoral pathways of innate immune regulation in granuloma formation. Trends Immunol 2024; 45:419-427. [PMID: 38762333 DOI: 10.1016/j.it.2024.04.008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2024] [Revised: 04/24/2024] [Accepted: 04/24/2024] [Indexed: 05/20/2024]
Abstract
The humoral arm of mammalian innate immunity regulates several molecular mechanisms involved in resistance to pathogens, inflammation, and tissue repair. Recent studies highlight the crucial role played by humoral mediators in granulomatous inflammation. However the molecular mechanisms linking the function of these soluble molecules to the initiation and maintenance of granulomas remain elusive. We propose that humoral innate immunity coordinates fundamental physiological processes in macrophages which, in turn, initiate activation and transformation events that enable granuloma formation. We discuss the involvement of humoral mediators in processes such as immune activation, phagocytosis, metabolism, and tissue remodeling, and how these can dictate macrophage functionality during granuloma formation. These advances present opportunities for discovering novel disease factors and developing targeted, more effective treatments for granulomatous diseases.
Collapse
Affiliation(s)
- Diana Santos-Ribeiro
- Life and Health Sciences Research Institute (ICVS), School of Medicine, University of Minho, Braga, Portugal; ICVS/3B's - PT Government Associate Laboratory, Braga/Guimarães, Portugal
| | - Cristina Cunha
- Life and Health Sciences Research Institute (ICVS), School of Medicine, University of Minho, Braga, Portugal; ICVS/3B's - PT Government Associate Laboratory, Braga/Guimarães, Portugal
| | - Agostinho Carvalho
- Life and Health Sciences Research Institute (ICVS), School of Medicine, University of Minho, Braga, Portugal; ICVS/3B's - PT Government Associate Laboratory, Braga/Guimarães, Portugal.
| |
Collapse
|
45
|
Zheng X, Lei W, Zhang Y, Jin H, Han C, Wu F, Jia C, Zeng R, Chen Z, Zhang Y, Wang H, Liu Q, Yao Z, Yu Y, Zhou J. Neuropilin-1 high monocytes protect against neonatal inflammation. Cell Mol Immunol 2024; 21:575-588. [PMID: 38632385 PMCID: PMC11143335 DOI: 10.1038/s41423-024-01157-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2023] [Accepted: 03/19/2024] [Indexed: 04/19/2024] Open
Abstract
Neonates are susceptible to inflammatory disorders such as necrotizing enterocolitis (NEC) due to their immature immune system. The timely appearance of regulatory immune cells in early life contributes to the control of inflammation in neonates, yet the underlying mechanisms of which remain poorly understood. In this study, we identified a subset of neonatal monocytes characterized by high levels of neuropilin-1 (Nrp1), termed Nrp1high monocytes. Compared with their Nrp1low counterparts, Nrp1high monocytes displayed potent immunosuppressive activity. Nrp1 deficiency in myeloid cells aggravated the severity of NEC, whereas adoptive transfer of Nrp1high monocytes led to remission of NEC. Mechanistic studies showed that Nrp1, by binding to its ligand Sema4a, induced intracellular p38-MAPK/mTOR signaling and activated the transcription factor KLF4. KLF4 transactivated Nos2 and enhanced the production of nitric oxide (NO), a key mediator of immunosuppression in monocytes. These findings reveal an important immunosuppressive axis in neonatal monocytes and provide a potential therapeutic strategy for treating inflammatory disorders in neonates.
Collapse
Affiliation(s)
- Xiaoqing Zheng
- Tianjin Institute of Immunology, Key Laboratory of Immune Microenvironment and Disease (Ministry of Education), The Province and Ministry Co-sponsored Collaborative Innovation Center for Medical Epigenetics, International Joint Laboratory of Ocular Diseases (Ministry of Education), State Key Laboratory of Experimental Hematology, Department of Immunology, Tianjin Medical University, Tianjin, 300070, China
- Institute of Pediatric Health and Disease, Guangdong Provincial Key Laboratory of Major Obstetric Diseases, Guangdong Provincial Clinical Research Center for Obstetrics and Gynecology, The Third Affiliated Hospital of Guangzhou Medical University, Guangzhou, 510150, China
- Key Laboratory of Immune Mechanism and Intervention on Serious Disease in Hebei Province, Department of Immunology, Hebei Medical University, Shijiazhuang, 050017, China
| | - Wen Lei
- Pediatric Immunity and Healthcare Biomedical Co., Ltd, Guangzhou, 510320, China
| | - Yongmei Zhang
- Tianjin Institute of Immunology, Key Laboratory of Immune Microenvironment and Disease (Ministry of Education), The Province and Ministry Co-sponsored Collaborative Innovation Center for Medical Epigenetics, International Joint Laboratory of Ocular Diseases (Ministry of Education), State Key Laboratory of Experimental Hematology, Department of Immunology, Tianjin Medical University, Tianjin, 300070, China
| | - Han Jin
- Department of Neurology, Institute of Neuroimmunology, Tianjin Medical University General Hospital, Tianjin, 300052, China
| | - Cha Han
- Department of Gynecology and Obstetrics, Tianjin Medical University General Hospital, Tianjin, 300052, China
| | - Fan Wu
- Institute of Pediatric Health and Disease, Guangdong Provincial Key Laboratory of Major Obstetric Diseases, Guangdong Provincial Clinical Research Center for Obstetrics and Gynecology, The Third Affiliated Hospital of Guangzhou Medical University, Guangzhou, 510150, China
- Department of Neonatology, Guangzhou Key Laboratory of Neonatal Intestinal Diseases, The Third Affiliated Hospital of Guangzhou Medical University, Guangzhou, 510150, China
| | - Chonghong Jia
- Institute of Pediatric Health and Disease, Guangdong Provincial Key Laboratory of Major Obstetric Diseases, Guangdong Provincial Clinical Research Center for Obstetrics and Gynecology, The Third Affiliated Hospital of Guangzhou Medical University, Guangzhou, 510150, China
- Department of Neonatology, Guangzhou Key Laboratory of Neonatal Intestinal Diseases, The Third Affiliated Hospital of Guangzhou Medical University, Guangzhou, 510150, China
| | - Ruihong Zeng
- Key Laboratory of Immune Mechanism and Intervention on Serious Disease in Hebei Province, Department of Immunology, Hebei Medical University, Shijiazhuang, 050017, China
| | - Zhanghua Chen
- Department of Gastroenterology, Guangzhou Institute of Pediatrics, Guangzhou Women and Children's Medical Center, Guangzhou Medical University, Guangzhou, 510623, China
| | - Yuxia Zhang
- Department of Gastroenterology, Guangzhou Institute of Pediatrics, Guangzhou Women and Children's Medical Center, Guangzhou Medical University, Guangzhou, 510623, China
| | - Haitao Wang
- Department of oncology, The Second Hospital of Tianjin Medical University, Tianjin Key Laboratory of Precision Medicine for Sex Hormones and Diseases, Tianjin, 300211, China
| | - Qiang Liu
- Department of Neurology, Institute of Neuroimmunology, Tianjin Medical University General Hospital, Tianjin, 300052, China
| | - Zhi Yao
- Tianjin Institute of Immunology, Key Laboratory of Immune Microenvironment and Disease (Ministry of Education), The Province and Ministry Co-sponsored Collaborative Innovation Center for Medical Epigenetics, International Joint Laboratory of Ocular Diseases (Ministry of Education), State Key Laboratory of Experimental Hematology, Department of Immunology, Tianjin Medical University, Tianjin, 300070, China
| | - Ying Yu
- Department of Pharmacology, Tianjin Key Laboratory of Inflammatory Biology, School of Basic Medical Sciences, Tianjin Medical University, Tianjin, 300070, China
| | - Jie Zhou
- Tianjin Institute of Immunology, Key Laboratory of Immune Microenvironment and Disease (Ministry of Education), The Province and Ministry Co-sponsored Collaborative Innovation Center for Medical Epigenetics, International Joint Laboratory of Ocular Diseases (Ministry of Education), State Key Laboratory of Experimental Hematology, Department of Immunology, Tianjin Medical University, Tianjin, 300070, China.
| |
Collapse
|
46
|
Mishra M, Wu J, Kane AE, Howlett SE. The intersection of frailty and metabolism. Cell Metab 2024; 36:893-911. [PMID: 38614092 PMCID: PMC11123589 DOI: 10.1016/j.cmet.2024.03.012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/07/2023] [Revised: 03/11/2024] [Accepted: 03/21/2024] [Indexed: 04/15/2024]
Abstract
On average, aging is associated with unfavorable changes in cellular metabolism, which are the processes involved in the storage and expenditure of energy. However, metabolic dysregulation may not occur to the same extent in all older individuals as people age at different rates. Those who are aging rapidly are at increased risk of adverse health outcomes and are said to be "frail." Here, we explore the links between frailty and metabolism, including metabolic contributors and consequences of frailty. We examine how metabolic diseases may modify the degree of frailty in old age and suggest that frailty may predispose toward metabolic disease. Metabolic interventions that can mitigate the degree of frailty in people are reviewed. New treatment strategies developed in animal models that are poised for translation to humans are also considered. We suggest that maintaining a youthful metabolism into older age may be protective against frailty.
Collapse
Affiliation(s)
- Manish Mishra
- Department of Pharmacology, Dalhousie University, Halifax, NS, Canada
| | - Judy Wu
- Institute for Systems Biology, Seattle, WA, USA
| | - Alice E Kane
- Institute for Systems Biology, Seattle, WA, USA; Department of Laboratory Medicine and Pathology, University of Washington, Seattle, WA, USA
| | - Susan E Howlett
- Department of Pharmacology, Dalhousie University, Halifax, NS, Canada; Department of Medicine (Geriatric Medicine), Dalhousie University, Halifax, NS, Canada.
| |
Collapse
|
47
|
Ouyang D, Xiong Y, Hu Z, He J, He S, Liu R, Gao Z, Hu D. mTORC1 - TFEB pathway was involved in sodium arsenite induced lysosomal alteration, oxidative stress and genetic damage in BEAS-2B cells. Toxicology 2024; 504:153795. [PMID: 38574842 DOI: 10.1016/j.tox.2024.153795] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2024] [Revised: 03/29/2024] [Accepted: 04/02/2024] [Indexed: 04/06/2024]
Abstract
The mechanistic target of rapamycin (RAPA) complex 1 (mTORC1) - transcription factor EB (TFEB) pathway plays a crucial role in response to nutritional status, energy and environmental stress for maintaining cellular homeostasis. But there is few reports on its role in the toxic effects of arsenic exposure and the related mechanisms. Here, we show that the exposure of bronchial epithelial cells (BEAS-2B) to sodium arsenite promoted the activation of mTORC1 (p-mTORC1) and the inactivation of TFEB (p-TFEB), the number and activity of lysosomes decreased, the content of reduced glutathione (GSH) and superoxide dismutase (SOD) decreased, the content of malondialdehyde (MDA) increased, the DNA and chromosome damage elevated. Further, when mTORC1 was inhibited with RAPA, p-mTORC1 and p-TFEB down-regulated, GSH and SOD increased, MDA decreased, the DNA and chromosome damage reduced significantly, as compared with the control group. Our data revealed for the first time that mTORC1 - TFEB pathway was involved in sodium arsenite induced lysosomal alteration, oxidative stress and genetic damage in BEAS-2B cells, and it may be a potential intervention target for the toxic effects of arsenic.
Collapse
Affiliation(s)
- Di Ouyang
- Department of Environmental Health, Guangdong Provincial Key Laboratory of Tropical Disease Research, School of Public Health, Southern Medical University, 1838 Guangzhou Road North, Guangzhou 510515, PR China
| | - Yiren Xiong
- Department of Environmental Health, Guangdong Provincial Key Laboratory of Tropical Disease Research, School of Public Health, Southern Medical University, 1838 Guangzhou Road North, Guangzhou 510515, PR China
| | - Zuqing Hu
- Department of Environmental Health, Guangdong Provincial Key Laboratory of Tropical Disease Research, School of Public Health, Southern Medical University, 1838 Guangzhou Road North, Guangzhou 510515, PR China
| | - Jiayi He
- Department of Environmental Health, Guangdong Provincial Key Laboratory of Tropical Disease Research, School of Public Health, Southern Medical University, 1838 Guangzhou Road North, Guangzhou 510515, PR China
| | - Shanshan He
- Department of Environmental Health, Guangdong Provincial Key Laboratory of Tropical Disease Research, School of Public Health, Southern Medical University, 1838 Guangzhou Road North, Guangzhou 510515, PR China
| | - Renyi Liu
- Department of Environmental Health, Guangdong Provincial Key Laboratory of Tropical Disease Research, School of Public Health, Southern Medical University, 1838 Guangzhou Road North, Guangzhou 510515, PR China
| | - Zhenjie Gao
- Department of Environmental Health, Guangdong Provincial Key Laboratory of Tropical Disease Research, School of Public Health, Southern Medical University, 1838 Guangzhou Road North, Guangzhou 510515, PR China
| | - Dalin Hu
- Department of Environmental Health, Guangdong Provincial Key Laboratory of Tropical Disease Research, School of Public Health, Southern Medical University, 1838 Guangzhou Road North, Guangzhou 510515, PR China.
| |
Collapse
|
48
|
Dai X, Yan P, Wei W. Amino acid availability governs mTOR ubiquitination. Cell Res 2024; 34:335-336. [PMID: 38102197 PMCID: PMC11061116 DOI: 10.1038/s41422-023-00910-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2023] Open
Affiliation(s)
- Xiaoming Dai
- Department of Pathology, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, USA.
| | - Peiqiang Yan
- Department of Pathology, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, USA
| | - Wenyi Wei
- Department of Pathology, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, USA.
| |
Collapse
|
49
|
Wang Z, Zong H, Liu W, Lin W, Sun A, Ding Z, Chen X, Wan X, Liu Y, Hu Z, Zhang H, Li H, Liu Y, Li D, Zhang S, Zha X. Augmented ERO1α upon mTORC1 activation induces ferroptosis resistance and tumor progression via upregulation of SLC7A11. J Exp Clin Cancer Res 2024; 43:112. [PMID: 38610018 PMCID: PMC11015652 DOI: 10.1186/s13046-024-03039-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/01/2024] [Accepted: 04/08/2024] [Indexed: 04/14/2024] Open
Abstract
BACKGROUND The dysregulated mechanistic target of rapamycin complex 1 (mTORC1) signaling plays a critical role in ferroptosis resistance and tumorigenesis. However, the precise underlying mechanisms still need to be fully understood. METHODS Endoplasmic reticulum oxidoreductase 1 alpha (ERO1α) expression in mTORC1-activated mouse embryonic fibroblasts, cancer cells, and laryngeal squamous cell carcinoma (LSCC) clinical samples was examined by quantitative real-time PCR (qRT-PCR), western blotting, immunofluorescence (IF), and immunohistochemistry. Extensive in vitro and in vivo experiments were carried out to determine the role of ERO1α and its downstream target, member 11 of the solute carrier family 7 (SLC7A11), in mTORC1-mediated cell proliferation, angiogenesis, ferroptosis resistance, and tumor growth. The regulatory mechanism of ERO1α on SLC7A11 was investigated via RNA-sequencing, a cytokine array, an enzyme-linked immunosorbent assay, qRT-PCR, western blotting, IF, a luciferase reporter assay, and a chromatin immunoprecipitation assay. The combined therapeutic effect of ERO1α inhibition and the ferroptosis inducer imidazole ketone erastin (IKE) on mTORC1-activated cells was evaluated using cell line-derived xenografts, LSCC organoids, and LSCC patient-derived xenograft models. RESULTS ERO1α is a functional downstream target of mTORC1. Elevated ERO1α induced ferroptosis resistance and exerted pro-oncogenic roles in mTORC1-activated cells via upregulation of SLC7A11. Mechanically, ERO1α stimulated the transcription of SLC7A11 by activating the interleukin-6 (IL-6)/signal transducer and activator of transcription 3 (STAT3) pathway. Moreover, ERO1α inhibition combined with treatment using the ferroptosis inducer IKE exhibited synergistic antitumor effects on mTORC1-activated tumors. CONCLUSIONS The ERO1α/IL-6/STAT3/SLC7A11 pathway is crucial for mTORC1-mediated ferroptosis resistance and tumor growth, and combining ERO1α inhibition with ferroptosis inducers is a novel and effective treatment for mTORC1-related tumors.
Collapse
Affiliation(s)
- Zixi Wang
- Department of Biochemistry & Molecular Biology, School of Basic Medicine, Anhui Medical University, No. 81 Meishan Road, Hefei, 230032, Anhui Province, China
- Children's Hospital of Fudan University, National Children's Medical Center, And Institutes of Biomedical Sciences, Fudan University, Shanghai, 200032, China
| | - Huaiyuan Zong
- Department of Biochemistry & Molecular Biology, School of Basic Medicine, Anhui Medical University, No. 81 Meishan Road, Hefei, 230032, Anhui Province, China
| | - Weiwei Liu
- Department of Otorhinolaryngology, Head & Neck Surgery, The First Affiliated Hospital of Anhui Medical University, Hefei, 230022, China
| | - Wei Lin
- Department of Stomatology, The First Affiliated Hospital of Anhui Medical University, Hefei, 230022, China
| | - Anjiang Sun
- Department of Biochemistry & Molecular Biology, School of Basic Medicine, Anhui Medical University, No. 81 Meishan Road, Hefei, 230032, Anhui Province, China
| | - Zhao Ding
- Department of Otorhinolaryngology, Head & Neck Surgery, The First Affiliated Hospital of Anhui Medical University, Hefei, 230022, China
| | - Xu Chen
- Department of Biochemistry & Molecular Biology, School of Basic Medicine, Anhui Medical University, No. 81 Meishan Road, Hefei, 230032, Anhui Province, China
| | - Xiaofeng Wan
- Hefei Cancer Hospital, Chinese Academy of Sciences, Hefei, 230031, China
| | - Yanyan Liu
- Department of Thyroid and Breast Surgery, Hefei First People's Hospital, Hefei, 230061, China
| | - Zhongdong Hu
- Modern Research Center for Traditional Chinese Medicine, Beijing Research Institute of Chinese Medicine, Beijing University of Chinese Medicine, Beijing, 100029, China
| | - Hongbing Zhang
- State Key Laboratory of Medical Molecular Biology, Department of Physiology, Institute of Basic Medical Sciences and School of Basic Medicine, Peking Union Medical College and Chinese Academy of Medical Sciences, Beijing, 100730, China
| | - Hongwu Li
- Department of Otorhinolaryngology, Head & Neck Surgery, The First Affiliated Hospital of Anhui Medical University, Hefei, 230022, China
- Anhui Public Health Clinical Center, Hefei, 230011, China
| | - Yehai Liu
- Department of Otorhinolaryngology, Head & Neck Surgery, The First Affiliated Hospital of Anhui Medical University, Hefei, 230022, China
| | - Dapeng Li
- Department of Otorhinolaryngology, Head & Neck Surgery, The Affiliated Bozhou Hospital of Anhui Medical University, No. 616 Duzhong Road, Bozhou, 236800, Anhui Province, China.
| | - Sumei Zhang
- Department of Biochemistry & Molecular Biology, School of Basic Medicine, Anhui Medical University, No. 81 Meishan Road, Hefei, 230032, Anhui Province, China.
| | - Xiaojun Zha
- Department of Biochemistry & Molecular Biology, School of Basic Medicine, Anhui Medical University, No. 81 Meishan Road, Hefei, 230032, Anhui Province, China.
- Department of Otorhinolaryngology, Head & Neck Surgery, The Affiliated Bozhou Hospital of Anhui Medical University, No. 616 Duzhong Road, Bozhou, 236800, Anhui Province, China.
| |
Collapse
|
50
|
Bonet-Ponce L, Tegicho T, Beilina A, Kluss JH, Li Y, Cookson MR. Opposing actions of JIP4 and RILPL1 provide antagonistic motor force to dynamically regulate membrane reformation during lysosomal tubulation/sorting driven by LRRK2. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.04.02.587808. [PMID: 38903076 PMCID: PMC11188082 DOI: 10.1101/2024.04.02.587808] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/22/2024]
Abstract
Lysosomes are dynamic cellular structures that adaptively remodel their membrane in response to stimuli, including membrane damage. We previously uncovered a process we term LYTL (LYsosomal Tubulation/sorting driven by Leucine-Rich Repeat Kinase 2 [LRRK2]), wherein damaged lysosomes generate tubules sorted into mobile vesicles. LYTL is orchestrated by the Parkinson's disease-associated kinase LRRK2 that recruits the motor adaptor protein and RHD family member JIP4 to lysosomes via phosphorylated RAB proteins. To identify new players involved in LYTL, we performed unbiased proteomics on isolated lysosomes after LRRK2 kinase inhibition. Our results demonstrate that there is recruitment of RILPL1 to ruptured lysosomes via LRRK2 activity to promote phosphorylation of RAB proteins at the lysosomal surface. RILPL1, which is also a member of the RHD family, enhances the clustering of LRRK2-positive lysosomes in the perinuclear area and causes retraction of LYTL tubules, in contrast to JIP4 which promotes LYTL tubule extension. Mechanistically, RILPL1 binds to p150Glued, a dynactin subunit, facilitating the transport of lysosomes and tubules to the minus end of microtubules. Further characterization of the tubulation process revealed that LYTL tubules move along tyrosinated microtubules, with tubulin tyrosination proving essential for tubule elongation. In summary, our findings emphasize the dynamic regulation of LYTL tubules by two distinct RHD proteins and pRAB effectors, serving as opposing motor adaptor proteins: JIP4, promoting tubulation via kinesin, and RILPL1, facilitating tubule retraction through dynein/dynactin. We infer that the two opposing processes generate a metastable lysosomal membrane deformation that facilitates dynamic tubulation events.
Collapse
Affiliation(s)
- Luis Bonet-Ponce
- Department of Neurology, Wexner Medical Center, The Ohio State University, Columbus, Ohio, 43210, USA
- Cell Biology and Gene Expression Section, National Institute on Aging, National Institutes of Health, Bethesda, Maryland, 20892, USA
| | - Tsion Tegicho
- Department of Neurology, Wexner Medical Center, The Ohio State University, Columbus, Ohio, 43210, USA
| | - Alexandra Beilina
- Cell Biology and Gene Expression Section, National Institute on Aging, National Institutes of Health, Bethesda, Maryland, 20892, USA
| | - Jillian H. Kluss
- Cell Biology and Gene Expression Section, National Institute on Aging, National Institutes of Health, Bethesda, Maryland, 20892, USA
| | - Yan Li
- Proteomic Core Facility, National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, Maryland, 20892, USA
| | - Mark R. Cookson
- Cell Biology and Gene Expression Section, National Institute on Aging, National Institutes of Health, Bethesda, Maryland, 20892, USA
| |
Collapse
|