1
|
Eble J, Köttgen A, Schultheiß UT. Monogenic Kidney Diseases in Adults With Chronic Kidney Disease (CKD). DEUTSCHES ARZTEBLATT INTERNATIONAL 2024; 121:689-695. [PMID: 38958599 DOI: 10.3238/arztebl.m2024.0120] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/25/2024] [Revised: 05/28/2024] [Accepted: 05/28/2024] [Indexed: 07/04/2024]
Abstract
BACKGROUND According to current evidence, every 10th to 11th adult with chronic kidney disease (CKD) has a monogenic disease of the kidney. METHODS This review is based on reported studies in which molecular genetic diagnostic techniques were used to investigate monogenic kidney diseases in adults with CKD. The studies were identified by a selective literature search using predefined criteria. RESULTS In 12 selected studies, diagnostic variants of 179 different genes were identified in 1467 out of 6607 study participants with CKD (22.2%). More than 60% of these variants affected 8 genes (PKD1, PKD2, COL4A3, COL4A4, COL4A5, UMOD, MUC1, HNF1B). Three diseases are associated with these genes: autosomal dominant polycystic kidney disease (ADPKD), Alport syndrome, and autosomal dominant tubulo-interstitial kidney disease (ADTKD). Physicians treating patients with CKD should be alert to the presence of any red flags, such as onset at a young age, a positive family history, or hematuria of unknown cause. When a genetic etiology is suspected, a specialized work-up is indicated, often including a molecular genetic investigation. A positive genetic finding usually leads to a modification of the patient's specific diagnosis and/or treatment. CONCLUSION Awareness of the high prevalence of monogenic kidney diseases in adults with CKD and alertness to their suggestive clinical features are crucial for the timely initiation of targeted diagnostic testing. The molecular genetic identification of these diseases is a prerequisite for appropriate patient management.
Collapse
Affiliation(s)
- Julian Eble
- Institute of Genetic Epidemiology, Department of Data Driven Medicine, Faculty of Medicine and Medical Center, University of Freiburg, Germany; Faculty of Medicine and Medical Center, Department of Medicine IV-Nephrology and Primary Care, University of Freiburg, Germany; Synlab MVZ Humangenetik Freiburg GmbH, Germany
| | | | | |
Collapse
|
2
|
Lu K, Chiu KY, Chen IC, Lin GC. Identification of GTF2I Polymorphisms as Potential Biomarkers for CKD in the Han Chinese Population : Multicentric Collaborative Cross-Sectional Cohort Study. KIDNEY360 2024; 5:1466-1476. [PMID: 39024039 PMCID: PMC11556913 DOI: 10.34067/kid.0000000000000517] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/05/2023] [Accepted: 07/12/2024] [Indexed: 07/20/2024]
Abstract
Key Points Genetic factors are key players in CKD, with two linked single-nucleotide polymorphisms in the GTF2I gene, associated with CKD susceptibility in the Taiwanese population. Individuals with specific GTF2I genotypes (CT/TT for rs117026326 and CT/CC for rs73366469) show higher CKD prevalence and earlier onset. Men with the specific genotypes of rs117026326 and rs73366469 face a heightened CKD risk compared with women, particularly at lower eGFR. Background CKD poses a global health challenge, but its molecular mechanisms are poorly understood. Genetic factors play a critical role, and phenome-wide association studies and genome-wide association studies shed light on CKD's genetic architecture, shared variants, and biological pathways. Methods Using data from the multicenter collaborative precision medicine cohort, we conducted a retrospective prospectively maintained cross-sectional study. Participants with comprehensive information and genotyping data were selected, and genome-wide association study and phenome-wide association study analyses were performed using the curated Taiwan Biobank version 2 array to identify CKD-associated genetic variants and explore their phenotypic associations. Results Among 58,091 volunteers, 8420 participants were enrolled. Individuals with CKD exhibited higher prevalence of metabolic, cardiovascular, autoimmune, and nephritic disorders. Genetic analysis unveiled two closely linked single-nucleotide polymorphisms, rs117026326 and rs73366469, both associated with GTF2I and CKD (r 2 = 0.64). Further examination revealed significant associations between these single-nucleotide polymorphisms and various kidney-related diseases. The CKD group showed a higher proportion of individuals with specific genotypes (CT/TT for rs117026326 and CT/CC for rs73366469), suggesting potential associations with CKD susceptibility (P < 0.001). Furthermore, individuals with these genotypes developed CKD at an earlier age. Multiple logistic regression confirmed the independent association of these genetic variants with CKD. Subgroup analysis based on eGFR demonstrated an increased risk of CKD among carriers of the rs117026326 CT/TT genotypes (odds ratio [OR], 1.15; 95% confidence interval [CI], 1.07 to 1.24; P < 0.001; OR, 1.32, 95% CI, 1.04 to 1.66; P = 0.02, respectively) and carriers of the rs73366469 CT/CC genotypes (OR, 1.13; 95% CI, 1.05 to 1.21; P < 0.001; OR, 1.31; 95% CI, 1.08 to 1.58; P = 0.0049, respectively). In addition, men had a higher CKD risk than women at lower eGFR levels (OR, 1.35; 95% CI, 1.13 to 1.61; P < 0.001). Conclusions Our study reveals important links between genetic variants GTF2I and susceptibility to CKD, advancing our understanding of CKD development in the Taiwanese population and suggesting potential for personalized prevention and management strategies. More research is needed to validate and explore these variants in diverse populations.
Collapse
Affiliation(s)
- Kevin Lu
- College of Medicine, Kaohsiung Medical University, Kaohsiung, Taiwan
- Department of Urology, Kaohsiung Medical University Hospital, Kaohsiung, Taiwan
- Department of Urology, Taichung Veterans General Hospital, Taichung, Taiwan
- School of Medicine, National Yang-Ming Chiao Tung University, Taipei, Taiwan
| | - Kun-Yuan Chiu
- Department of Urology, Taichung Veterans General Hospital, Taichung, Taiwan
- School of Medicine, National Yang-Ming Chiao Tung University, Taipei, Taiwan
- Department of Applied Chemistry, National Chi Nan University, Nantou, Taiwan
| | - I-Chieh Chen
- Department of Medical Research, Taichung Veterans General Hospital, Taichung, Taiwan
| | - Guan-Cheng Lin
- Department of Medical Research, Taichung Veterans General Hospital, Taichung, Taiwan
| |
Collapse
|
3
|
Sowa PM, Mallett AJ, Connelly LB. Genetic kidney disease has a higher likelihood and cost of inpatient admissions compared to other aetiologies. GENETICS IN MEDICINE OPEN 2024; 2:101876. [PMID: 39669631 PMCID: PMC11613861 DOI: 10.1016/j.gimo.2024.101876] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/04/2023] [Revised: 07/14/2024] [Accepted: 07/17/2024] [Indexed: 12/14/2024]
Abstract
Purpose There is increasing recognition of monogenic aetiologies for kidney disease. We sought to identify whether genetic kidney disease (GKD) has distinct hospitalization patterns compared to other forms of chronic kidney disease (CKD). Methods Health service utilization analysis was undertaken in a CKD cohort study across public hospital services in Queensland, Australia. CKD due to clinically coded potential monogenic causes was compared to all other causes in terms of annual frequency, cost, and type of hospital admission. Results We analyzed 7 years of hospital admissions data (809,188 admissions) among 29,046 patients. Compared to non-genetic CKD, GKD was associated with a higher likelihood and cost of admissions. GKD had consistently more admissions (mean excess annual number of admissions increasing from 5.2 in year 1 to 13.4 in year 7) and more costly admissions (mean excess annual cost increasing from $5,265 in year 1 to $12,993 in year 7). This gap in hospitalization likelihood and cost increased over time for both surgical and medical admission episodes, but not for all (immunological, cancer) causes of admissions. Conclusion Understanding the nature and extent of differences in healthcare needs between GKD and other CKD will enable better secondary prevention and inform resource allocation decisions to reduce healthcare system pressures attributable to knowable causes.
Collapse
Affiliation(s)
- P. Marcin Sowa
- Centre for the Business and Economics of Health, The University of Queensland, St Lucia, Queensland, Australia
- NHMRC Chronic Kidney Disease Centre of Research Excellence, The University of Queensland, Herston, Queensland, Australia
| | - Andrew J. Mallett
- NHMRC Chronic Kidney Disease Centre of Research Excellence, The University of Queensland, Herston, Queensland, Australia
- Institute for Molecular Bioscience and Faculty of Medicine, The University of Queensland, Brisbane, Australia
- Department of Renal Medicine, Townsville University Hospital, Townsville, Australia
- College of Medicine & Dentistry, James Cook University, Townsville, Australia
- KidGen Collaborative, Australian Genomics Health Alliance, Parkville, Australia
| | - Luke B. Connelly
- Centre for the Business and Economics of Health, The University of Queensland, St Lucia, Queensland, Australia
- NHMRC Chronic Kidney Disease Centre of Research Excellence, The University of Queensland, Herston, Queensland, Australia
- Department of Sociology and Business Law, The University of Bologna, Bologna, Italy
| |
Collapse
|
4
|
Li W, Li H, Lu C, Zhao J, Xu H, Xu Z, Mitchell B, Jiang Y, Gu HQ, Xu Q, Wang A, Meng X, Lin J, Jing J, Li Z, Zhu W, Liang Z, Wang M, Wang Y. Neglected Mendelian causes of stroke in adult Chinese patients who had an ischaemic stroke or transient ischaemic attack. Stroke Vasc Neurol 2024; 9:194-201. [PMID: 37495379 PMCID: PMC11221298 DOI: 10.1136/svn-2022-002158] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2022] [Accepted: 06/27/2023] [Indexed: 07/28/2023] Open
Abstract
BACKGROUND AND PURPOSE Multiple factors play important roles in the occurrence and prognosis of stroke. However, the roles of monogenic variants in all-cause ischaemic stroke have not been systematically investigated. We aim to identify underdiagnosed monogenic stroke in an adult ischaemic stroke/transient ischaemic attack (TIA) cohort (the Third China National Stroke Registry, CNSR-III). METHODS Targeted next-generation sequencing for 181 genes associated with stroke was conducted on DNA samples from 10 428 patients recruited through CNSR-III. The genetic and clinical data from electronic health records (EHRs) were reviewed for completion of the diagnostic process. We assessed the percentages of individuals with pathogenic or likely pathogenic (P/LP) variants, and the diagnostic yield of pathogenic variants in known monogenic disease genes with associated phenotypes. RESULTS In total, 1953 individuals harboured at least one P/LP variant out of 10 428 patients. Then, 792 (7.6%) individuals (comprising 759 individuals harbouring one P/LP variant in one gene, 29 individuals harbouring two or more P/LP variants in different genes and 4 individuals with two P/LP variants in ABCC6) were predicted to be at risk for one or more monogenic diseases based on the inheritance pattern. Finally, 230 of 792 individuals manifested a clinical phenotype in the EHR data to support the diagnosis of stroke with a monogenic cause. The most diagnosed Mendelian cause of stroke in the cohort was cerebral autosomal dominant arteriopathy with subcortical infarcts and leukoencephalopathy. There were no relationships between age or family history and the incidence of first symptomatic monogenic stroke in patients. CONCLUSION The rate of monogenic cause of stroke was 2.2% after reviewing the clinical phenotype. Possible reasons that Mendelian causes of stroke may be missed in adult patients who had an ischaemic stroke/TIA include a late onset of stroke symptoms, combination with common vascular risks and the absence of a prominent family history.
Collapse
Affiliation(s)
- Wei Li
- China National Clinical Research Center for Neurological Diseases, Beijing Tiantan Hospital, Capital Medical University, Beijing, China
- Department of Neurology, Beijing Tiantan Hospital, Capital Medical University, Beijing, China
| | - Hao Li
- China National Clinical Research Center for Neurological Diseases, Beijing Tiantan Hospital, Capital Medical University, Beijing, China
| | - Chaoxia Lu
- China National Clinical Research Center for Neurological Diseases, Beijing Tiantan Hospital, Capital Medical University, Beijing, China
| | - Jialu Zhao
- China National Clinical Research Center for Neurological Diseases, Beijing Tiantan Hospital, Capital Medical University, Beijing, China
| | - Huichun Xu
- Division of Endocrinology, Diabetes and Nutrition, Department of Medicine, University of Maryland School of Medicine, Baltimore, Maryland, USA
| | - Zhe Xu
- China National Clinical Research Center for Neurological Diseases, Beijing Tiantan Hospital, Capital Medical University, Beijing, China
| | - Braxton Mitchell
- Division of Endocrinology, Diabetes and Nutrition, Department of Medicine, University of Maryland School of Medicine, Baltimore, Maryland, USA
| | - Yong Jiang
- China National Clinical Research Center for Neurological Diseases, Beijing Tiantan Hospital, Capital Medical University, Beijing, China
| | - Hong-Qiu Gu
- China National Clinical Research Center for Neurological Diseases, Beijing Tiantan Hospital, Capital Medical University, Beijing, China
| | - Qin Xu
- China National Clinical Research Center for Neurological Diseases, Beijing Tiantan Hospital, Capital Medical University, Beijing, China
| | - Anxin Wang
- China National Clinical Research Center for Neurological Diseases, Beijing Tiantan Hospital, Capital Medical University, Beijing, China
| | - Xia Meng
- China National Clinical Research Center for Neurological Diseases, Beijing Tiantan Hospital, Capital Medical University, Beijing, China
| | - Jinxi Lin
- China National Clinical Research Center for Neurological Diseases, Beijing Tiantan Hospital, Capital Medical University, Beijing, China
| | - Jing Jing
- China National Clinical Research Center for Neurological Diseases, Beijing Tiantan Hospital, Capital Medical University, Beijing, China
- Department of Neurology, Beijing Tiantan Hospital, Capital Medical University, Beijing, China
| | - Zixiao Li
- China National Clinical Research Center for Neurological Diseases, Beijing Tiantan Hospital, Capital Medical University, Beijing, China
- Department of Neurology, Beijing Tiantan Hospital, Capital Medical University, Beijing, China
| | - Wanlin Zhu
- China National Clinical Research Center for Neurological Diseases, Beijing Tiantan Hospital, Capital Medical University, Beijing, China
| | - Zhigang Liang
- Department of Neurology, Qindao University Medical College Affiliated Yantai Yuhuangding Hospital, Yantai, Shandong, China
| | - Mengxing Wang
- China National Clinical Research Center for Neurological Diseases, Beijing Tiantan Hospital, Capital Medical University, Beijing, China
| | - Yongjun Wang
- Department of Neurology, Beijing Tiantan Hospital, Capital Medical University, Beijing, China
- Clinical Center for Precision Medicine in Stroke, Capital Medical University, Beijing, China
| |
Collapse
|
5
|
Trachtman H, Radhakrishnan J, Rheault MN, Alpers CE, Barratt J, Heerspink HJ, Noronha IL, Perkovic V, Rovin B, Trimarchi H, Wong MG, Mercer A, Inrig J, Rote W, Murphy E, Bedard PW, Roth S, Bieler S, Komers R. Focal Segmental Glomerulosclerosis Patient Baseline Characteristics in the Sparsentan Phase 3 DUPLEX Study. Kidney Int Rep 2024; 9:1020-1030. [PMID: 38765567 PMCID: PMC11101813 DOI: 10.1016/j.ekir.2024.01.032] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2023] [Revised: 01/11/2024] [Accepted: 01/15/2024] [Indexed: 05/22/2024] Open
Abstract
Introduction The phase 3 DUPLEX trial is evaluating sparsentan, a novel, nonimmunosuppressive, single-molecule dual endothelin angiotensin receptor antagonist, in patients with focal segmental glomerulosclerosis (FSGS). Methods DUPLEX (NCT03493685) is a global, multicenter, randomized, double-blind, parallel-group, active-controlled study evaluating the efficacy and safety of sparsentan 800 mg once daily versus irbesartan 300 mg once daily in patients aged 8 to 75 years (USA/UK) and 18 to 75 years (ex-USA/UK) weighing ≥20 kg with biopsy-proven FSGS or documented genetic mutation in a podocyte protein associated with FSGS, and urine protein-to-creatinine ratio (UP/C) ≥1.5 g/g. Baseline characteristics blinded to treatment allocation are reported descriptively. Results The primary analysis population includes 371 patients (336 adult, 35 pediatric [<18 years]) who were randomized and received study drug (median age, 42 years). Patients were White (73.0%), Asian (13.2%), Black/African American (6.7%), or Other race (7.0%); and from North America (38.8%), Europe (36.1%), South America (12.7%), or Asia Pacific (12.4%). Baseline median UP/C was 3.0 g/g; 42.6% in nephrotic-range (UP/C >3.5 g/g [adults]; >2.0 g/g [pediatrics]). Patients were evenly distributed across estimated glomerular filtration rate (eGFR) categories corresponding to chronic kidney disease (CKD) stages 1 to 3b. Thirty-three patients (9.4% of 352 evaluable samples) had pathogenic or likely pathogenic (P/LP) variants of genes essential to podocyte structural integrity and function, 27 (7.7%) had P/LP collagen gene (COL4A3/4/5) variants, and 14 (4.0%) had high-risk APOL1 genotypes. Conclusions Patient enrollment in DUPLEX, the largest interventional study in FSGS to date, will enable important characterization of the treatment effect of sparsentan in a geographically broad and clinically diverse FSGS population.
Collapse
Affiliation(s)
- Howard Trachtman
- Division of Nephrology, Department of Pediatrics, University of Michigan, Ann Arbor, Michigan, USA
| | - Jai Radhakrishnan
- Division of Nephrology, Columbia University, New York, New York, USA
| | - Michelle N. Rheault
- Division of Pediatric Nephrology, University of Minnesota Medical School, Minneapolis, Minnesota, USA
| | - Charles E. Alpers
- Department of Laboratory Medicine and Pathology, University of Washington, Seattle, Washington, USA
| | - Jonathan Barratt
- Department of Cardiovascular Sciences, University of Leicester General Hospital, Leicester, UK
| | - Hiddo J.L. Heerspink
- Department of Clinical Pharmacy and Pharmacology, University of Medical Center Groningen, University of Groningen, Groningen, the Netherlands
- The George Institute for Global Health, Sydney, Australia
| | - Irene L. Noronha
- Division of Nephrology, University of São Paulo School of Medicine, São Paulo, Brazil
| | - Vlado Perkovic
- Faculty of Medicine, University of New South Wales Sydney, Sydney, New South Wales, Australia
| | - Brad Rovin
- Division of Nephrology, Ohio State University Wexner Medical Center, Columbus, Ohio, USA
| | - Hernán Trimarchi
- Nephrology Service, Hospital Británico de Buenos Aires, Buenos Aires, Argentina
| | - Muh Geot Wong
- The George Institute for Global Health, Sydney, Australia
- Concord Clinical School, University of Sydney, Concord, New South Wales, Australia
| | | | - Jula Inrig
- Travere Therapeutics Inc., San Diego, California, USA
| | - William Rote
- Travere Therapeutics Inc., San Diego, California, USA
| | - Ed Murphy
- Travere Therapeutics Inc., San Diego, California, USA
| | | | - Sandra Roth
- Travere Therapeutics Inc., San Diego, California, USA
| | | | - Radko Komers
- Travere Therapeutics Inc., San Diego, California, USA
| |
Collapse
|
6
|
Madison J, Wilhelm K, Meehan DT, Gratton MA, Vosik D, Samuelson G, Ott M, Fascianella J, Nelson N, Cosgrove D. Ramipril therapy in integrin α1-null, autosomal recessive Alport mice triples lifespan: mechanistic clues from RNA-seq analysis. J Pathol 2024; 262:296-309. [PMID: 38129319 PMCID: PMC10872630 DOI: 10.1002/path.6231] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2023] [Revised: 10/10/2023] [Accepted: 10/29/2023] [Indexed: 12/23/2023]
Abstract
The standard of care for patients with Alport syndrome (AS) is angiotensin-converting enzyme (ACE) inhibitors. In autosomal recessive Alport (ARAS) mice, ACE inhibitors double lifespan. We previously showed that deletion of Itga1 in Alport mice [double-knockout (DKO) mice] increased lifespan by 50%. This effect seemed dependent on the prevention of laminin 211-mediated podocyte injury. Here, we treated DKO mice with vehicle or ramipril starting at 4 weeks of age. Proteinuria and glomerular filtration rates were measured at 5-week intervals. Glomeruli were analyzed for laminin 211 deposition in the glomerular basement membrane (GBM) and GBM ultrastructure was analyzed using transmission electron microscopy (TEM). RNA sequencing (RNA-seq) was performed on isolated glomeruli at all time points and the results were compared with cultured podocytes overlaid (or not) with recombinant laminin 211. Glomerular filtration rate declined in ramipril-treated DKO mice between 30 and 35 weeks. Proteinuria followed these same patterns with normalization of foot process architecture in ramipril-treated DKO mice. RNA-seq revealed a decline in the expression of Foxc2, nephrin (Nphs1), and podocin (Nphs2) mRNAs, which was delayed in the ramipril-treated DKO mice. GBM accumulation of laminin 211 was delayed in ramipril-treated DKO mice, likely due to a role for α1β1 integrin in CDC42 activation in Alport mesangial cells, which is required for mesangial filopodial invasion of the subendothelial spaces of the glomerular capillary loops. Ramipril synergized with Itga1 knockout, tripling lifespan compared with untreated ARAS mice. © 2023 The Pathological Society of Great Britain and Ireland. Published by John Wiley & Sons, Ltd.
Collapse
Affiliation(s)
- Jacob Madison
- Boys Town National Research Hospital, Omaha, NE, USA
| | - Kevin Wilhelm
- Boys Town National Research Hospital, Omaha, NE, USA
| | | | | | - Denise Vosik
- Boys Town National Research Hospital, Omaha, NE, USA
| | | | - Megan Ott
- Boys Town National Research Hospital, Omaha, NE, USA
| | | | - Noa Nelson
- Boys Town National Research Hospital, Omaha, NE, USA
| | | |
Collapse
|
7
|
Coban-Akdemir Z, Song X, Ceballos FC, Pehlivan D, Karaca E, Bayram Y, Mitani T, Gambin T, Bozkurt-Yozgatli T, Jhangiani SN, Muzny DM, Lewis RA, Liu P, Boerwinkle E, Hamosh A, Gibbs RA, Sutton VR, Sobreira N, Carvalho CM, Shaw CA, Posey JE, Valle D, Lupski JR. The impact of the Turkish population variome on the genomic architecture of rare disease traits. GENETICS IN MEDICINE OPEN 2024; 2:101830. [PMID: 39669594 PMCID: PMC11613692 DOI: 10.1016/j.gimo.2024.101830] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/28/2023] [Revised: 02/03/2024] [Accepted: 02/07/2024] [Indexed: 12/14/2024]
Abstract
Purpose The variome of the Turkish (TK) population, a population with a considerable history of admixture and consanguinity, has not been deeply investigated for insights on the genomic architecture of disease. Methods We generated and analyzed a database of variants derived from exome sequencing data of 773 TK unrelated, clinically affected individuals with various suspected Mendelian disease traits and 643 unaffected relatives. Results Using uniform manifold approximation and projection, we showed that the TK genomes are more similar to those of Europeans and consist of 2 main subpopulations: clusters 1 and 2 (N = 235 and 1181, respectively), which differ in admixture proportion and variome (https://turkishvariomedb.shinyapps.io/tvdb/). Furthermore, the higher inbreeding coefficient values observed in the TK affected compared with unaffected individuals correlated with a larger median span of long-sized (>2.64 Mb) runs of homozygosity (ROH) regions (P value = 2.09e-18). We show that long-sized ROHs are more likely to be formed on recently configured haplotypes enriched for rare homozygous deleterious variants in the TK affected compared with TK unaffected individuals (P value = 3.35e-11). Analysis of genotype-phenotype correlations reveals that genes with rare homozygous deleterious variants in long-sized ROHs provide the most comprehensive set of molecular diagnoses for the observed disease traits with a systematic quantitative analysis of Human Phenotype Ontology terms. Conclusion Our findings support the notion that novel rare variants on newly configured haplotypes arising within the recent past generations of a family or clan contribute significantly to recessive disease traits in the TK population.
Collapse
Affiliation(s)
- Zeynep Coban-Akdemir
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX
- Human Genetics Center, Department of Epidemiology, Human Genetics, and Environmental Sciences, School of Public Health, The University of Texas Health Science Center at Houston, Houston, TX
| | - Xiaofei Song
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX
- Department of Biostatistics and Bioinformatics, H. Lee Moffitt Cancer Center & Research Institute, Tampa, FL
| | | | - Davut Pehlivan
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX
- Section of Neurology, Department of Pediatrics, Baylor College of Medicine, Houston, TX
| | - Ender Karaca
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX
- Department of Pathology, Baylor University Medical Center, Dallas, TX
- Texas A&M School of Medicine, Texas A&M University, Dallas, TX
| | - Yavuz Bayram
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX
- Division of Genomic Diagnostics, Department of Pathology and Laboratory Medicine, Children's Hospital of Philadelphia, Philadelphia, PA
- Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA
| | - Tadahiro Mitani
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX
| | - Tomasz Gambin
- Institute of Computer Science, Warsaw University of Technology, Warsaw, Poland
| | - Tugce Bozkurt-Yozgatli
- Human Genetics Center, Department of Epidemiology, Human Genetics, and Environmental Sciences, School of Public Health, The University of Texas Health Science Center at Houston, Houston, TX
- Department of Biostatistics and Bioinformatics, Institute of Health Sciences, Acibadem Mehmet Ali Aydinlar University, Istanbul, Turkey
| | | | - Donna M. Muzny
- Human Genome Sequencing Center, Baylor College of Medicine, Houston, TX
| | - Richard A. Lewis
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX
- Department of Pediatrics, Baylor College of Medicine, Houston, TX
- Department of Ophthalmology, Cullen Eye Institute, Baylor College of Medicine, Houston, TX
| | - Pengfei Liu
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX
| | - Eric Boerwinkle
- Human Genetics Center, Department of Epidemiology, Human Genetics, and Environmental Sciences, School of Public Health, The University of Texas Health Science Center at Houston, Houston, TX
- Human Genome Sequencing Center, Baylor College of Medicine, Houston, TX
| | - Ada Hamosh
- McKusick-Nathans Department of Genetic Medicine, Johns Hopkins University School of Medicine, Baltimore, MD
| | - Richard A. Gibbs
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX
- Human Genome Sequencing Center, Baylor College of Medicine, Houston, TX
| | - V. Reid Sutton
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX
- Texas Children’s Hospital, Houston, TX
| | - Nara Sobreira
- McKusick-Nathans Department of Genetic Medicine, Johns Hopkins University School of Medicine, Baltimore, MD
| | - Claudia M.B. Carvalho
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX
- Pacific Northwest Research Institute, Seattle, WA
| | - Chad A. Shaw
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX
- Baylor Genetics, Houston, TX
| | - Jennifer E. Posey
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX
| | - David Valle
- McKusick-Nathans Department of Genetic Medicine, Johns Hopkins University School of Medicine, Baltimore, MD
| | - James R. Lupski
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX
- Human Genome Sequencing Center, Baylor College of Medicine, Houston, TX
- Department of Pediatrics, Baylor College of Medicine, Houston, TX
- Texas Children’s Hospital, Houston, TX
| |
Collapse
|
8
|
Kimmins S, Anderson RA, Barratt CLR, Behre HM, Catford SR, De Jonge CJ, Delbes G, Eisenberg ML, Garrido N, Houston BJ, Jørgensen N, Krausz C, Lismer A, McLachlan RI, Minhas S, Moss T, Pacey A, Priskorn L, Schlatt S, Trasler J, Trasande L, Tüttelmann F, Vazquez-Levin MH, Veltman JA, Zhang F, O'Bryan MK. Frequency, morbidity and equity - the case for increased research on male fertility. Nat Rev Urol 2024; 21:102-124. [PMID: 37828407 DOI: 10.1038/s41585-023-00820-4] [Citation(s) in RCA: 13] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/31/2023] [Indexed: 10/14/2023]
Abstract
Currently, most men with infertility cannot be given an aetiology, which reflects a lack of knowledge around gamete production and how it is affected by genetics and the environment. A failure to recognize the burden of male infertility and its potential as a biomarker for systemic illness exists. The absence of such knowledge results in patients generally being treated as a uniform group, for whom the strategy is to bypass the causality using medically assisted reproduction (MAR) techniques. In doing so, opportunities to prevent co-morbidity are missed and the burden of MAR is shifted to the woman. To advance understanding of men's reproductive health, longitudinal and multi-national centres for data and sample collection are essential. Such programmes must enable an integrated view of the consequences of genetics, epigenetics and environmental factors on fertility and offspring health. Definition and possible amelioration of the consequences of MAR for conceived children are needed. Inherent in this statement is the necessity to promote fertility restoration and/or use the least invasive MAR strategy available. To achieve this aim, protocols must be rigorously tested and the move towards personalized medicine encouraged. Equally, education of the public, governments and clinicians on the frequency and consequences of infertility is needed. Health options, including male contraceptives, must be expanded, and the opportunities encompassed in such investment understood. The pressing questions related to male reproductive health, spanning the spectrum of andrology are identified in the Expert Recommendation.
Collapse
Affiliation(s)
- Sarah Kimmins
- Department of Pharmacology and Therapeutics, Faculty of Medicine, McGill University, Montreal, Quebec, Canada
- The Centre de Recherche du Centre Hospitalier de l'Université de Montréal, Montreal, Quebec, Canada
- The Département de Pathologie et Biologie Cellulaire, Université de Montréal, Montreal, Quebec, Canada
| | - Richard A Anderson
- MRC Centre for Reproductive Health, University of Edinburgh, Edinburgh, UK
| | - Christopher L R Barratt
- Division of Systems Medicine, School of Medicine, Ninewells Hospital and Medical School, University of Dundee, Dundee, UK
| | - Hermann M Behre
- Center for Reproductive Medicine and Andrology, University Hospital, Martin Luther University Halle-Wittenberg, Halle, Germany
| | - Sarah R Catford
- Hudson Institute of Medical Research, Melbourne, Victoria, Australia
- Department of Obstetrics and Gynaecology, The Royal Women's Hospital, Melbourne, Victoria, Australia
| | | | - Geraldine Delbes
- Institut National de la Recherche Scientifique, Centre Armand-Frappier Sante Biotechnologie, Laval, Quebec, Canada
| | - Michael L Eisenberg
- Department of Urology and Obstetrics and Gynecology, Stanford University, Stanford, CA, USA
| | - Nicolas Garrido
- IVI Foundation, Instituto de Investigación Sanitaria La Fe, Valencia, Spain
| | - Brendan J Houston
- School of BioSciences and Bio21 Institute, The University of Melbourne, Parkville, Melbourne, Australia
| | - Niels Jørgensen
- Department of Growth and Reproduction, International Center for Research and Research Training in Endocrine Disruption of Male Reproduction and Child Health, Copenhagen University Hospital, Rigshospitalet, Copenhagen, Denmark
| | - Csilla Krausz
- Department of Experimental and Clinical Biomedical Sciences, 'Mario Serio', University of Florence, University Hospital of Careggi Florence, Florence, Italy
| | - Ariane Lismer
- Department of Pharmacology and Therapeutics, Faculty of Medicine, McGill University, Montreal, Quebec, Canada
| | - Robert I McLachlan
- Hudson Institute of Medical Research and the Department of Obstetrics and Gynaecology, Monash University, Melbourne, Australia
- Monash IVF Group, Richmond, Victoria, Australia
| | - Suks Minhas
- Department of Surgery and Cancer Imperial, London, UK
| | - Tim Moss
- Healthy Male and the Department of Obstetrics and Gynaecology, Monash University, Melbourne, Victoria, Australia
| | - Allan Pacey
- Faculty of Biology, Medicine and Health, University of Manchester, Manchester, UK
| | - Lærke Priskorn
- Department of Growth and Reproduction, International Center for Research and Research Training in Endocrine Disruption of Male Reproduction and Child Health, Copenhagen University Hospital, Rigshospitalet, Copenhagen, Denmark
| | - Stefan Schlatt
- Centre for Reproductive Medicine and Andrology, University of Münster, Münster, Germany
| | - Jacquetta Trasler
- Departments of Paediatrics, Human Genetics and Pharmacology & Therapeutics, McGill University and Research Institute of the McGill University Health Centre, Montreal, Quebec, Canada
| | - Leonardo Trasande
- Center for the Investigation of Environmental Hazards, Department of Paediatrics, NYU Grossman School of Medicine, New York, NY, USA
| | - Frank Tüttelmann
- Institute of Reproductive Genetics, University of Münster, Münster, Germany
| | - Mónica Hebe Vazquez-Levin
- Instituto de Biología y Medicina Experimental, Consejo Nacional de Investigaciones Científicas y Técnicas de Argentina, Fundación IBYME, Buenos Aires, Argentina
| | - Joris A Veltman
- Biosciences Institute, Faculty of Medical Sciences, Newcastle University, Newcastle upon Tyne, UK
| | - Feng Zhang
- Obstetrics and Gynecology Hospital, Institute of Reproduction and Development, Fudan University, Shanghai, China
| | - Moira K O'Bryan
- School of BioSciences and Bio21 Institute, The University of Melbourne, Parkville, Melbourne, Australia.
| |
Collapse
|
9
|
Aklilu AM, Gulati A, Kolber KJ, Yang H, Harris PC, Dahl NK. The VUS Challenge in Cystic Kidney Disease: A Case-Based Review. KIDNEY360 2024; 5:152-159. [PMID: 37962562 PMCID: PMC10833605 DOI: 10.34067/kid.0000000000000298] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/18/2023] [Accepted: 10/26/2023] [Indexed: 11/15/2023]
Abstract
Genetic testing in nephrology is becoming increasingly important to diagnose patients and to provide appropriate care. This is especially true for autosomal dominant polycystic kidney disease (ADPKD) because this is a common cause of kidney failure and genetically complex. In addition to the major genes, PKD1 and PKD2 , there are at least six minor loci, and phenotypic, and in some cases, genetic overlap with other cystic disorders. Targeted next-generation sequencing, a low-cost, high-throughput technique, has made routine genetic testing viable in nephrology clinics. Appropriate pre- and post-testing genetic counseling is essential to the testing process. Carefully assessing variants is also critical, with the genetic report classifying variants in accordance with American College of Medical Genetics and Genomics guidelines. However, variant of uncertain significance (VUSs) may pose a significant challenge for the ordering clinician. In ADPKD, and particularly within PKD1 , there is high allelic heterogeneity; no single variant is present in more than 2% of families. The Mayo/Polycystic Kidney Disease Foundation variant database, a research tool, is the best current database of PKD1 and PKD2 variants containing over 2300 variants identified in individuals with polycystic kidney disease, but novel variants are often identified. In patients with a high pretest probability of ADPKD on the basis of clinical criteria, but no finding of a pathogenic (P) or likely pathogenic (LP) variant in a cystic kidney gene, additional evaluation of cystic gene VUS can be helpful. In this case-based review, we propose an algorithm for the assessment of such variants in a clinical setting and show how some can be reassigned to a diagnostic grouping. When assessing the relevance of a VUS, we consider both patient/family-specific and allele-related factors using population and variant databases and available prediction tools, as well as genetic expertise. This analysis plus further family studies can aid in making a genetic diagnosis.
Collapse
Affiliation(s)
- Abinet M. Aklilu
- Section of Nephrology, Yale University School of Medicine, New Haven, Connecticut
| | | | - Kayla J. Kolber
- Center for Individualized Medicine, Mayo Clinic, Rochester, Minnesota
| | - Hana Yang
- Division of Nephrology and Hypertension, Mayo Clinic, Rochester, Minnesota
| | - Peter C. Harris
- Division of Nephrology and Hypertension, Mayo Clinic, Rochester, Minnesota
| | - Neera K. Dahl
- Division of Nephrology and Hypertension, Mayo Clinic, Rochester, Minnesota
| |
Collapse
|
10
|
Cirillo L, De Chiara L, Innocenti S, Errichiello C, Romagnani P, Becherucci F. Chronic kidney disease in children: an update. Clin Kidney J 2023; 16:1600-1611. [PMID: 37779846 PMCID: PMC10539214 DOI: 10.1093/ckj/sfad097] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2023] [Indexed: 10/03/2023] Open
Abstract
Chronic kidney disease (CKD) is a major healthcare issue worldwide. However, the prevalence of pediatric CKD has never been systematically assessed and consistent information is lacking in this population. The current definition of CKD is based on glomerular filtration rate (GFR) and the extent of albuminuria. Given the physiological age-related modification of GFR in the first years of life, the definition of CKD is challenging per se in the pediatric population, resulting in high risk of underdiagnosis in this population, treatment delays and untailored clinical management. The advent and spreading of massive-parallel sequencing technology has prompted a profound revision of the epidemiology and the causes of CKD in children, supporting the hypothesis that CKD is much more frequent than currently reported in children and adolescents. This acquired knowledge will eventually converge in the identification of the molecular pathways and cellular response to damage, with new specific therapeutic targets to control disease progression and clinical features of children with CKD. In this review, we will focus on recent innovations in the field of pediatric CKD and in particular those where advances in knowledge have become available in the last years, with the aim of providing a new perspective on CKD in children and adolescents.
Collapse
Affiliation(s)
- Luigi Cirillo
- Nephrology and Dialysis Unit, Meyer Children's Hospital IRCCS, Florence, Italy
- Department of Biomedical, Experimental and Clinical Sciences “Mario Serio”, University of Florence, Florence, Italy
| | - Letizia De Chiara
- Department of Biomedical, Experimental and Clinical Sciences “Mario Serio”, University of Florence, Florence, Italy
| | - Samantha Innocenti
- Nephrology and Dialysis Unit, Meyer Children's Hospital IRCCS, Florence, Italy
| | - Carmela Errichiello
- Nephrology and Dialysis Unit, Meyer Children's Hospital IRCCS, Florence, Italy
| | - Paola Romagnani
- Nephrology and Dialysis Unit, Meyer Children's Hospital IRCCS, Florence, Italy
- Department of Biomedical, Experimental and Clinical Sciences “Mario Serio”, University of Florence, Florence, Italy
| | - Francesca Becherucci
- Nephrology and Dialysis Unit, Meyer Children's Hospital IRCCS, Florence, Italy
- Department of Biomedical, Experimental and Clinical Sciences “Mario Serio”, University of Florence, Florence, Italy
| |
Collapse
|
11
|
Vinuesa CG, Shen N, Ware T. Genetics of SLE: mechanistic insights from monogenic disease and disease-associated variants. Nat Rev Nephrol 2023; 19:558-572. [PMID: 37438615 DOI: 10.1038/s41581-023-00732-x] [Citation(s) in RCA: 29] [Impact Index Per Article: 14.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/25/2023] [Indexed: 07/14/2023]
Abstract
The past few years have provided important insights into the genetic architecture of systemic autoimmunity through aggregation of findings from genome-wide association studies (GWAS) and whole-exome or whole-genome sequencing studies. In the prototypic systemic autoimmune disease systemic lupus erythematosus (SLE), monogenic disease accounts for a small fraction of cases but has been instrumental in the elucidation of disease mechanisms. Defects in the clearance or digestion of extracellular or intracellular DNA or RNA lead to increased sensing of nucleic acids, which can break B cell tolerance and induce the production of type I interferons leading to tissue damage. Current data suggest that multiple GWAS SLE risk alleles act in concert with rare functional variants to promote SLE development. Moreover, introduction of orthologous variant alleles into mice has revealed that pathogenic X-linked dominant and recessive SLE can be caused by novel variants in TLR7 and SAT1, respectively. Such bespoke models of disease help to unravel pathogenic pathways and can be used to test targeted therapies. Cell type-specific expression data revealed that most GWAS SLE risk genes are highly expressed in age-associated B cells (ABCs), which supports the view that ABCs produce lupus autoantibodies and contribute to end-organ damage by persisting in inflamed tissues, including the kidneys. ABCs have thus emerged as key targets of promising precision therapeutics.
Collapse
Affiliation(s)
- Carola G Vinuesa
- The Francis Crick Institute, London, UK.
- University College London, London, UK.
- China Australia Centre for Personalized Immunology (CACPI), Renji Hospital, Shanghai Jiao Tong University School of Medicine (SJTUSM), Shanghai, China.
| | - Nan Shen
- Shanghai Institute of Rheumatology, Renji Hospital, Shanghai Jiao Tong University School of Medicine (SJTUSM), Shanghai, China
- Center for Autoimmune Genomics and Aetiology, Division of Human Genetics, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, USA
- Department of Paediatrics, University of Cincinnati, Cincinnati, OH, USA
| | - Thuvaraka Ware
- The Francis Crick Institute, London, UK
- University College London, London, UK
| |
Collapse
|
12
|
Cai Y, Liu Y, Tong J, Jin Y, Liu J, Hao X, Ji Y, Ma J, Pan X, Chen N, Ren H, Xie J. Develop and Validate a Risk Score in Predicting Renal Failure in Focal Segmental Glomerulosclerosis. KIDNEY DISEASES (BASEL, SWITZERLAND) 2023; 9:285-297. [PMID: 37899999 PMCID: PMC10601954 DOI: 10.1159/000529773] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/17/2022] [Accepted: 02/08/2023] [Indexed: 10/31/2023]
Abstract
Introduction The aim of this study was to develop and validate a risk score (RS) for end-stage kidney disease (ESKD) in patients with focal segmental glomerulosclerosis (FSGS). Methods Patient with biopsy-proven FSGS was enrolled. All the patients were allocated 1:1 to the two groups according to their baseline gender, age, and baseline creatinine level by using a stratified randomization method. ESKD was the primary endpoint. Results We recruited 359 FSGS patients, and 177 subjects were assigned to group 1 and 182 to group 2. The clinicopathological variables were similar between two groups. There were 23 (13%) subjects reached to ESKD in group 1 and 22 (12.1%) in group 2. By multivariate Cox regression analyses, we established RS 1 and RS 2 in groups 1 and 2, respectively. RS 1 consists of five parameters including lower eGFR, higher urine protein, MAP, IgG level, and tubulointerstitial lesion (TIL) score; RS 2 also consists of five predictors including lower C3, higher MAP, IgG level, hemoglobin, and TIL score. RS 1 and RS 2 were cross-validated between these two groups, showing RS 1 had better performance in predicting 5-year ESKD in group 1 (c statics, 0.86 [0.74-0.98] vs. 0.82 [0.69-0.95]) and group 2 (c statics, 0.91 [0.83-0.99] vs. 0.89 [0.79-0.99]) compared to RS 2. We then stratified the risk factors into four groups, and Kaplan-Meier survival curve revealed that patients progressed to ESKD increased as risk levels increased. Conclusions A predictive model incorporated clinicopathological feature was developed and validated for the prediction of ESKD in FSGS patients.
Collapse
Affiliation(s)
- Yikai Cai
- Department of Nephrology, Institute of Nephrology, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Yunzi Liu
- Department of Nephrology, Institute of Nephrology, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Jun Tong
- Department of Nephrology, Institute of Nephrology, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Yuanmeng Jin
- Department of Nephrology, Institute of Nephrology, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Jian Liu
- Department of Nephrology, Institute of Nephrology, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Xu Hao
- Department of Nephrology, Institute of Nephrology, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Yinhong Ji
- Department of Nephrology, Institute of Nephrology, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Jun Ma
- Department of Nephrology, Institute of Nephrology, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Xiaoxia Pan
- Department of Nephrology, Institute of Nephrology, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Nan Chen
- Department of Nephrology, Institute of Nephrology, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Hong Ren
- Department of Nephrology, Institute of Nephrology, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Jingyuan Xie
- Department of Nephrology, Institute of Nephrology, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| |
Collapse
|
13
|
Cosgrove D, Gratton MA, Madison J, Vosik D, Samuelson G, Meehan D, Delimont D, Phillips G, Smyth B, Pramparo T, Jarocki D, Nguyen M, Komers R, Jenkinson C. Dual inhibition of the endothelin and angiotensin receptor ameliorates renal and inner ear pathologies in Alport mice. J Pathol 2023; 260:353-364. [PMID: 37256677 PMCID: PMC10330771 DOI: 10.1002/path.6087] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2022] [Revised: 03/08/2023] [Accepted: 04/04/2023] [Indexed: 06/01/2023]
Abstract
Alport syndrome (AS), a type IV collagen disorder, leads to glomerular disease and, in some patients, hearing loss. AS is treated with inhibitors of the renin-angiotensin system; however, a need exists for novel therapies, especially those addressing both major pathologies. Sparsentan is a single-molecule dual endothelin type-A and angiotensin II type 1 receptor antagonist (DEARA) under clinical development for focal segmental glomerulosclerosis and IgA nephropathy. We report the ability of sparsentan to ameliorate both renal and inner ear pathologies in an autosomal-recessive Alport mouse model. Sparsentan significantly delayed onset of glomerulosclerosis, interstitial fibrosis, proteinuria, and glomerular filtration rate decline. Sparsentan attenuated glomerular basement membrane defects, blunted mesangial filopodial invasion into the glomerular capillaries, increased lifespan more than losartan, and lessened changes in profibrotic/pro-inflammatory gene pathways in both the glomerular and the renal cortical compartments. Notably, treatment with sparsentan, but not losartan, prevented accumulation of extracellular matrix in the strial capillary basement membranes in the inner ear and reduced susceptibility to hearing loss. Improvements in lifespan and in renal and strial pathology were observed even when sparsentan was initiated after development of renal pathologies. These findings suggest that sparsentan may address both renal and hearing pathologies in Alport syndrome patients. © 2023 Travere Therapeutics, Inc and The Authors. The Journal of Pathology published by John Wiley & Sons Ltd on behalf of The Pathological Society of Great Britain and Ireland.
Collapse
Affiliation(s)
- Dominic Cosgrove
- Center for Sensory Neuroscience, Boys Town National Research Hospital, Omaha, NE, USA
| | - Michael Anne Gratton
- Department of Otolaryngology, Washington University in St. Louis, St. Louis, MO, USA
| | - Jacob Madison
- Center for Sensory Neuroscience, Boys Town National Research Hospital, Omaha, NE, USA
| | - Denise Vosik
- Center for Sensory Neuroscience, Boys Town National Research Hospital, Omaha, NE, USA
| | - Gina Samuelson
- Center for Sensory Neuroscience, Boys Town National Research Hospital, Omaha, NE, USA
| | - Daniel Meehan
- Center for Sensory Neuroscience, Boys Town National Research Hospital, Omaha, NE, USA
| | - Duane Delimont
- Center for Sensory Neuroscience, Boys Town National Research Hospital, Omaha, NE, USA
| | - Grady Phillips
- Department of Otolaryngology, Washington University in St. Louis, St. Louis, MO, USA
| | - Brendan Smyth
- Department of Otolaryngology, Washington University in St. Louis, St. Louis, MO, USA
| | | | - Diana Jarocki
- Department of Otolaryngology, Washington University in St. Louis, St. Louis, MO, USA
| | - Mai Nguyen
- Travere Therapeutics, San Diego, CA, USA
| | | | | |
Collapse
|
14
|
Lingaas F, Tengvall K, Jansen JH, Pelander L, Hurst MH, Meuwissen T, Karlsson Å, Meadows JRS, Sundström E, Thoresen SI, Arnet EF, Guttersrud OA, Kierczak M, Hytönen MK, Lohi H, Hedhammar Å, Lindblad-Toh K, Wang C. Bayesian mixed model analysis uncovered 21 risk loci for chronic kidney disease in boxer dogs. PLoS Genet 2023; 19:e1010599. [PMID: 36693108 PMCID: PMC9897549 DOI: 10.1371/journal.pgen.1010599] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2022] [Revised: 02/03/2023] [Accepted: 01/04/2023] [Indexed: 01/25/2023] Open
Abstract
Chronic kidney disease (CKD) affects 10% of the human population, with only a small fraction genetically defined. CKD is also common in dogs and has been diagnosed in nearly all breeds, but its genetic basis remains unclear. Here, we performed a Bayesian mixed model genome-wide association analysis for canine CKD in a boxer population of 117 canine cases and 137 controls, and identified 21 genetic regions associated with the disease. At the top markers from each CKD region, the cases carried an average of 20.2 risk alleles, significantly higher than controls (15.6 risk alleles). An ANOVA test showed that the 21 CKD regions together explained 57% of CKD phenotypic variation in the population. Based on whole genome sequencing data of 20 boxers, we identified 5,206 variants in LD with the top 50 BayesR markers. Following comparative analysis with human regulatory data, 17 putative regulatory variants were identified and tested with electrophoretic mobility shift assays. In total four variants, three intronic variants from the MAGI2 and GALNT18 genes, and one variant in an intergenic region on chr28, showed alternative binding ability for the risk and protective alleles in kidney cell lines. Many genes from the 21 CKD regions, RELN, MAGI2, FGFR2 and others, have been implicated in human kidney development or disease. The results from this study provide new information that may enlighten the etiology of CKD in both dogs and humans.
Collapse
Affiliation(s)
- Frode Lingaas
- Faculty of Veterinary Medicine, Department of Preclinical Sciences and Pathology, Norwegian University of Life Sciences, Ås, Norway
| | - Katarina Tengvall
- Science for Life Laboratory, Department of Medical Biochemistry and Microbiology, Uppsala University, Uppsala, Sweden
| | - Johan Høgset Jansen
- Faculty of Veterinary Medicine, Department of Preclinical Sciences and Pathology, Norwegian University of Life Sciences, Ås, Norway
| | - Lena Pelander
- Department of Clinical Sciences, Swedish University of Agricultural Sciences, Uppsala, Sweden
| | | | - Theo Meuwissen
- Faculty of Biosciences, Norwegian University of Life Sciences, Ås, Norway
| | - Åsa Karlsson
- Science for Life Laboratory, Department of Medical Biochemistry and Microbiology, Uppsala University, Uppsala, Sweden
| | - Jennifer R. S. Meadows
- Science for Life Laboratory, Department of Medical Biochemistry and Microbiology, Uppsala University, Uppsala, Sweden
| | - Elisabeth Sundström
- Science for Life Laboratory, Department of Medical Biochemistry and Microbiology, Uppsala University, Uppsala, Sweden
| | - Stein Istre Thoresen
- Faculty of Veterinary Medicine, Department of Preclinical Sciences and Pathology, Norwegian University of Life Sciences, Ås, Norway
| | - Ellen Frøysadal Arnet
- Faculty of Veterinary Medicine, Department of Preclinical Sciences and Pathology, Norwegian University of Life Sciences, Ås, Norway
| | - Ole Albert Guttersrud
- Faculty of Veterinary Medicine, Department of Preclinical Sciences and Pathology, Norwegian University of Life Sciences, Ås, Norway
| | - Marcin Kierczak
- Department of Cell and Molecular Biology, National Bioinformatics Infrastructure Sweden, Science for Life Laboratory, Uppsala University, Uppsala, Sweden
| | - Marjo K. Hytönen
- Department of Medical and Clinical Genetics, University of Helsinki, Helsinki, Finland
- Department of Veterinary Biosciences, University of Helsinki, Helsinki, Finland
- Folkhälsan Research Center, Helsinki, Finland
| | - Hannes Lohi
- Department of Medical and Clinical Genetics, University of Helsinki, Helsinki, Finland
- Department of Veterinary Biosciences, University of Helsinki, Helsinki, Finland
- Folkhälsan Research Center, Helsinki, Finland
| | - Åke Hedhammar
- Department of Clinical Sciences, Swedish University of Agricultural Sciences, Uppsala, Sweden
| | - Kerstin Lindblad-Toh
- Science for Life Laboratory, Department of Medical Biochemistry and Microbiology, Uppsala University, Uppsala, Sweden
- Broad Institute of MIT and Harvard, Cambridge, Massachusetts, United States of America
- * E-mail: (KL-T); (CW)
| | - Chao Wang
- Science for Life Laboratory, Department of Medical Biochemistry and Microbiology, Uppsala University, Uppsala, Sweden
- * E-mail: (KL-T); (CW)
| |
Collapse
|
15
|
Kagan M, Pleniceanu O, Vivante A. The genetic basis of congenital anomalies of the kidney and urinary tract. Pediatr Nephrol 2022; 37:2231-2243. [PMID: 35122119 DOI: 10.1007/s00467-021-05420-1] [Citation(s) in RCA: 28] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/03/2021] [Revised: 12/02/2021] [Accepted: 12/03/2021] [Indexed: 10/19/2022]
Abstract
During the past decades, remarkable progress has been made in our understanding of the molecular basis of kidney diseases, as well as in the ability to pinpoint disease-causing genetic changes. Congenital anomalies of the kidney and urinary tract (CAKUT) are remarkably diverse, and may be either isolated to the kidney or involve other systems, and are notorious in their variable genotype-phenotype correlations. Genetic conditions underlying CAKUT are individually rare, but collectively contribute to disease etiology in ~ 16% of children with CAKUT. In this review, we will discuss basic concepts of kidney development and genetics, common causes of monogenic CAKUT, and the approach to diagnosing and managing a patient with suspected monogenic CAKUT. Altogether, the concepts presented herein represent an introduction to the emergence of nephrogenetics, a fast-growing multi-disciplinary field that is focused on deciphering the causes and manifestations of genetic kidney diseases as well as providing the framework for managing patients with genetic forms of CAKUT.
Collapse
Affiliation(s)
- Maayan Kagan
- Pediatric Department B and Pediatric Nephrology Unit, Edmond and Lily Safra Children's Hospital, Sackler Faculty of Medicine, Sheba Medical Center, Tel Hashomer, 5265601, Ramat Gan, Israel.,Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel
| | - Oren Pleniceanu
- Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel.,Kidney Research Lab, The Institute of Nephrology and Hypertension, Sheba Medical Center, Tel Hashomer, Ramat Gan, Israel
| | - Asaf Vivante
- Pediatric Department B and Pediatric Nephrology Unit, Edmond and Lily Safra Children's Hospital, Sackler Faculty of Medicine, Sheba Medical Center, Tel Hashomer, 5265601, Ramat Gan, Israel. .,Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel. .,Talpiot Medical Leadership Program, Tel HaShomer, Ramat Gan, Israel.
| |
Collapse
|
16
|
Ilori T, Watanabe A, Ng KH, Solarin A, Sinha A, Gbadegesin R. Genetics of Chronic Kidney Disease in Low-Resource Settings. Semin Nephrol 2022; 42:151314. [PMID: 36801667 PMCID: PMC10272019 DOI: 10.1016/j.semnephrol.2023.151314] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/19/2023]
Abstract
Advances in kidney genomics in the past 20 years has opened the door for more precise diagnosis of kidney disease and identification of new and specific therapeutic agents. Despite these advances, an imbalance exists between low-resource and affluent regions of the world. Individuals of European ancestry from the United States, United Kingdom, and Iceland account for 16% of the world's population, but represent more than 80% of all genome-wide association studies. South Asia, Southeast Asia, Latin America, and Africa together account for 57% of the world population but less than 5% of genome-wide association studies. Implications of this difference include limitations in new variant discovery, inaccurate interpretation of the effect of genetic variants in non-European populations, and unequal access to genomic testing and novel therapies in resource-poor regions. It also further introduces ethical, legal, and social pitfalls, and ultimately may propagate global health inequities. Ongoing efforts to reduce the imbalance in low-resource regions include funding and capacity building, population-based genome sequencing, population-based genome registries, and genetic research networks. More funding, training, and capacity building for infrastructure and expertise is needed in resource-poor regions. Focusing on this will ensure multiple-fold returns on investments in genomic research and technology.
Collapse
Affiliation(s)
- Titilayo Ilori
- Division of Nephrology, Boston University School of Medicine, Boston, MA
| | - Andreia Watanabe
- Division of Molecular Medicine, Department of Pediatrics, University of São Paulo School of Medicine, São Paulo, Brazil
| | - Kar-Hui Ng
- Department of Pediatrics, Yong Loo Lin School of Medicine, Singapore
| | - Adaobi Solarin
- Department of Pediatrics and Child Health, Lagos State University College of Medicine, Ikeja, Lagos, Nigeria
| | - Aditi Sinha
- Department of Pediatrics, All India Institute of Medical Sciences, New Delhi, India
| | - Rasheed Gbadegesin
- Division of Nephrology, Department of Pediatrics, Duke University School of Medicine, Durham, NC.
| |
Collapse
|
17
|
Wopperer FJ, Knaup KX, Stanzick KJ, Schneider K, Jobst-Schwan T, Ekici AB, Uebe S, Wenzel A, Schliep S, Schürfeld C, Seitz R, Bernhardt W, Gödel M, Wiesener A, Popp B, Stark KJ, Gröne HJ, Friedrich B, Weiß M, Basic-Jukic N, Schiffer M, Schröppel B, Huettel B, Beck BB, Sayer JA, Ziegler C, Büttner-Herold M, Amann K, Heid IM, Reis A, Pasutto F, Wiesener MS. Diverse molecular causes of unsolved autosomal dominant tubulointerstitial kidney diseases. Kidney Int 2022; 102:405-420. [DOI: 10.1016/j.kint.2022.04.031] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2021] [Revised: 03/22/2022] [Accepted: 04/08/2022] [Indexed: 12/11/2022]
|
18
|
Wu HT, Lin YT, Chew SH, Wu KJ. Organ defects of the Usp7 mutant mouse strain indicate the essential role of K63-polyubiquitinated Usp7 in organ formation. Biomed J 2022; 46:122-133. [PMID: 35183794 PMCID: PMC10104958 DOI: 10.1016/j.bj.2022.02.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2021] [Revised: 01/12/2022] [Accepted: 02/09/2022] [Indexed: 11/30/2022] Open
Abstract
BACKGROUND K63-linked polyubiquitination of proteins have nonproteolytic functions and regulate the activity of many signal transduction pathways. USP7, a HIF1α deubiquitinase, undergoes K63-linked polyubiquitination under hypoxia. K63-polyubiquitinated USP7 serves as a scaffold to anchor HIF1α, CREBBP, the mediator complex, and the super elongation complex to enhance HIF1α-induced gene transcription. However, the physiological role of K63-polyubiquitinated USP7 remains unknown. METHODS Using a Usp7K444R point mutation knock-in mouse strain, we performed immunohistochemistry and standard molecular biological methods to examine the organ defects of liver and kidney in this knock-in mouse strain. Mechanistic studies were performed by using deubiquitination, immunoprecipitation, and quantitative immunoprecipitations (qChIP) assays. RESULTS We observed multiple organ defects, including decreased liver and muscle weight, decreased tibia/fibula length, liver glycogen storage defect, and polycystic kidneys. The underlying mechanisms include the regulation of protein stability and/or modulation of transcriptional activation of several key factors, leading to decreased protein levels of Prr5l, Hnf4α, Cebpα, and Hnf1β. Repression of these crucial factors leads to the organ defects described above. CONCLUSIONS K63-polyubiquitinated Usp7 plays an essential role in the development of multiple organs and illustrates the importance of the process of K63-linked polyubiquitination in regulating critical protein functions.
Collapse
Affiliation(s)
- Han-Tsang Wu
- Department of Cell and Tissue Engineering, Changhua Christian Hospital, Changhua, Taiwan
| | - Yueh-Te Lin
- Cancer Genome Research Center, Chang Gung Memorial Hospital at Linkou, Taoyuan, Taiwan
| | - Shan Hwu Chew
- Cancer Research Malaysia, Outpatient Centre, Sime Darby Medical Centre, Subang Jaya, Selangor, Malaysia
| | - Kou-Juey Wu
- Cancer Genome Research Center, Chang Gung Memorial Hospital at Linkou, Taoyuan, Taiwan; Institute of Cellular and Organismic Biology, Academia Sinica, Taipei, Taiwan; Inst. of Clinical Medical Sciences, Chang Gung University, Taoyuan, Taiwan.
| |
Collapse
|
19
|
Piras D, Lepori N, Cabiddu G, Pani A. How Genetics Can Improve Clinical Practice in Chronic Kidney Disease: From Bench to Bedside. J Pers Med 2022; 12:jpm12020193. [PMID: 35207681 PMCID: PMC8875178 DOI: 10.3390/jpm12020193] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2021] [Revised: 01/17/2022] [Accepted: 01/24/2022] [Indexed: 01/27/2023] Open
Abstract
Chronic kidney disease (CKD) is considered a major global health problem with high socio-economic costs: the risk of CKD in individuals with an affected first degree relative has been found to be three times higher than in the general population. Genetic factors are known to be involved in CKD pathogenesis, both due to the possible presence of monogenic pathologies as causes of CKD, and to the role of numerous gene variants in determining susceptibility to the development of CKD. The genetic study of CKD patients can represent a useful tool in the hands of the clinician; not only in the diagnostic and prognostic field, but potentially also in guiding therapeutic choices and in designing clinical trials. In this review we discuss the various aspects of the role of genetic analysis on clinical management of patients with CKD with a focus on clinical applications. Several topics are discussed in an effort to provide useful information for daily clinical practice: definition of susceptibility to the development of CKD, identification of unrecognized monogenic diseases, reclassification of the etiological diagnosis, role of pharmacogenetics.
Collapse
Affiliation(s)
- Doloretta Piras
- Struttura Complessa di Nefrologia, Dialisi e Trapianto, ARNAS Brotzu, 09134 Cagliari, Italy; (N.L.); (G.C.); (A.P.)
- Correspondence:
| | - Nicola Lepori
- Struttura Complessa di Nefrologia, Dialisi e Trapianto, ARNAS Brotzu, 09134 Cagliari, Italy; (N.L.); (G.C.); (A.P.)
| | - Gianfranca Cabiddu
- Struttura Complessa di Nefrologia, Dialisi e Trapianto, ARNAS Brotzu, 09134 Cagliari, Italy; (N.L.); (G.C.); (A.P.)
- Dipartimento di Scienze Mediche e Sanità Pubblica, Università degli Studi di Cagliari, 09134 Cagliari, Italy
| | - Antonello Pani
- Struttura Complessa di Nefrologia, Dialisi e Trapianto, ARNAS Brotzu, 09134 Cagliari, Italy; (N.L.); (G.C.); (A.P.)
- Dipartimento di Scienze Mediche e Sanità Pubblica, Università degli Studi di Cagliari, 09134 Cagliari, Italy
- Istituto di Ricerca Genetica e Biomedica (IRGB), Consiglio Nazionale delle Ricerce (CNR), 09042 Monserrato, Italy
| |
Collapse
|
20
|
Zug R. Developmental disorders caused by haploinsufficiency of transcriptional regulators: a perspective based on cell fate determination. Biol Open 2022; 11:bio058896. [PMID: 35089335 PMCID: PMC8801891 DOI: 10.1242/bio.058896] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
Many human birth defects and neurodevelopmental disorders are caused by loss-of-function mutations in a single copy of transcription factor (TF) and chromatin regulator genes. Although this dosage sensitivity has long been known, how and why haploinsufficiency (HI) of transcriptional regulators leads to developmental disorders (DDs) is unclear. Here I propose the hypothesis that such DDs result from defects in cell fate determination that are based on disrupted bistability in the underlying gene regulatory network (GRN). Bistability, a crucial systems biology concept to model binary choices such as cell fate decisions, requires both positive feedback and ultrasensitivity, the latter often achieved through TF cooperativity. The hypothesis explains why dosage sensitivity of transcriptional regulators is an inherent property of fate decisions, and why disruption of either positive feedback or cooperativity in the underlying GRN is sufficient to cause disease. I present empirical and theoretical evidence in support of this hypothesis and discuss several issues for which it increases our understanding of disease, such as incomplete penetrance. The proposed framework provides a mechanistic, systems-level explanation of HI of transcriptional regulators, thus unifying existing theories, and offers new insights into outstanding issues of human disease. This article has an associated Future Leader to Watch interview with the author of the paper.
Collapse
Affiliation(s)
- Roman Zug
- Department of Biology, Lund University, 22362 Lund, Sweden
| |
Collapse
|
21
|
Hua Tan CS, Ang SF, Yeoh E, Goh BX, Loh WJ, Shum CF, May Ping Eng M, Yan Lun Liu A, Wan Ting Chan L, Goh LX, Subramaniam T, Sum CF, Lim SC. MODY5 Hepatocyte Nuclear Factor 1ß (HNF1ß)-Associated Nephropathy: experience from a regional monogenic diabetes referral centre in Singapore. J Investig Med High Impact Case Rep 2022; 10:23247096211065626. [PMID: 35038894 PMCID: PMC8784948 DOI: 10.1177/23247096211065626] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2021] [Revised: 11/11/2021] [Accepted: 11/20/2021] [Indexed: 11/16/2022] Open
Abstract
From our monogenic diabetes registry set-up at a secondary-care diabetes center, we identified a nontrivial subpopulation (~15%) of maturity-onset diabetes of the young (MODY) among people with young-onset diabetes. In this report, we describe the diagnostic caveats, clinical features and long-term renal-trajectory of people with HNF1B mutations (HNF1B-MODY). Between 2013 and 2020, we received 267 referrals to evaluate MODY from endocrinologists in both public and private practice. Every participant was subjected to a previously reported structured evaluation process, high-throughput nucleotide sequencing and gene-dosage analysis. Out of 40 individuals with confirmed MODY, 4 (10%) had HNF1B-MODY (harboring either a HNF1B whole-gene deletion or duplication). Postsequencing follow-up biochemical and radiological evaluations revealed the known HNF1B-MODY associated systemic-features, such as transaminitis and structural renal-lesions. These anomalies could have been missed without prior knowledge of the nucleotide-sequencing results. Interestingly, preliminary longitudinal observation (up to 15 years) suggested possibly 2 distinct patterns of renal-deterioration (albuminuric vs. nonalbuminuric chronic kidney disease). Monogenic diabetes like HNF1B-MODY may be missed among young-onset diabetes in a resource-limited routine-care clinic. Collaboration with a MODY-evaluation center may fill the care-gap. The long-term renal-trajectories of HNF1B-MODY will require further studies by dedicated registries and international consortium.
Collapse
Affiliation(s)
| | - Su Fen Ang
- Clinical Research Unit, Khoo Teck Puat Hospital, Singapore
| | - Ester Yeoh
- Diabetes Centre, Admiralty Medical Centre, Singapore
| | - Bing Xing Goh
- Diabetes Centre, Admiralty Medical Centre, Singapore
| | - Wann Jia Loh
- Department of Endocrinology, Changi General Hospital, Singapore
| | - Cheuk Fan Shum
- Department of Surgery, Woodlands Health Campus, Singapore
| | | | | | | | - Li Xian Goh
- Clinical Research Unit, Khoo Teck Puat Hospital, Singapore
| | | | - Chee Fang Sum
- Diabetes Centre, Admiralty Medical Centre, Singapore
| | - Su Chi Lim
- Clinical Research Unit, Khoo Teck Puat Hospital, Singapore
- Diabetes Centre, Admiralty Medical Centre, Singapore
- Saw Swee Hock School of Public Health, National University of Singapore, Singapore
| |
Collapse
|
22
|
Wang Z, Xu H, Xiang T, Liu D, Xu F, Zhao L, Feng Y, Xu L, Liu J, Fang Y, Liu H, Li R, Hu X, Guan J, Liu L, Feng G, Shen Q, Xu H, Frishman D, Tang W, Guo J, Rao J, Shang W. An accessible insight into genetic findings for transplantation recipients with suspected genetic kidney disease. NPJ Genom Med 2021; 6:57. [PMID: 34215756 PMCID: PMC8253729 DOI: 10.1038/s41525-021-00219-3] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2021] [Accepted: 06/10/2021] [Indexed: 02/07/2023] Open
Abstract
Determining the etiology of end-stage renal disease (ESRD) constitutes a great challenge in the context of renal transplantation. Evidence is lacking on the genetic findings for adult renal transplant recipients through exome sequencing (ES). Adult patients on kidney transplant waitlist were recruited from 2017 to 2019. Trio-ES was conducted for the families who had multiple affected individuals with nephropathy or clinical suspicion of a genetic kidney disease owing to early onset or extrarenal features. Pathogenic variants were confirmed in 62 from 115 families post sequencing for 421 individuals including 195 health family members as potential living donors. Seventeen distinct genetic disorders were identified confirming the priori diagnosis in 33 (28.7%) families, modified or reclassified the clinical diagnosis in 27 (23.5%) families, and established a diagnosis in two families with ESRD of unknown etiology. In 14.8% of the families, we detected promising variants of uncertain significance in candidate genes associated with renal development or renal disease. Furthermore, we reported the secondary findings of oncogenes in 4.4% of the patients and known single-nucleotide polymorphisms associated with pharmacokinetics in our cohort to predict the drug levels of tacrolimus and mycophenolate. The diagnostic utility of the genetic findings has provided new clinical insight in most families that help with preplanned renal transplantation.
Collapse
Affiliation(s)
- Zhigang Wang
- Department of Kidney Transplantation, First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China
| | - Hongen Xu
- Precision Medicine Center of Zhengzhou University, Academy of Medical Sciences, Zhengzhou University, Zhengzhou, Henan, China
| | - Tianchao Xiang
- Department of Nephrology, Children's Hospital of Fudan University, Shanghai, China.,Shanghai Key Lab of Birth Defect, Children's Hospital of Fudan University, Shanghai, China
| | - Danhua Liu
- Precision Medicine Center of Zhengzhou University, Academy of Medical Sciences, Zhengzhou University, Zhengzhou, Henan, China.,The Second Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China
| | - Fei Xu
- Department of Kidney Transplantation, First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China
| | - Lixiang Zhao
- Department of Kidney Transplantation, First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China
| | - Yonghua Feng
- Department of Kidney Transplantation, First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China
| | - Linan Xu
- Department of Nephrology, Children's Hospital of Fudan University, Shanghai, China.,Shanghai Key Lab of Birth Defect, Children's Hospital of Fudan University, Shanghai, China
| | - Jialu Liu
- Department of Nephrology, Children's Hospital of Fudan University, Shanghai, China.,Shanghai Key Lab of Birth Defect, Children's Hospital of Fudan University, Shanghai, China
| | - Ye Fang
- Department of Nephrology, Children's Hospital of Fudan University, Shanghai, China.,Shanghai Key Lab of Birth Defect, Children's Hospital of Fudan University, Shanghai, China
| | - Huanfei Liu
- Precision Medicine Center of Zhengzhou University, Academy of Medical Sciences, Zhengzhou University, Zhengzhou, Henan, China
| | - Ruijun Li
- Precision Medicine Center of Zhengzhou University, Academy of Medical Sciences, Zhengzhou University, Zhengzhou, Henan, China
| | - Xinxin Hu
- Precision Medicine Center of Zhengzhou University, Academy of Medical Sciences, Zhengzhou University, Zhengzhou, Henan, China
| | - Jingyuan Guan
- Precision Medicine Center of Zhengzhou University, Academy of Medical Sciences, Zhengzhou University, Zhengzhou, Henan, China
| | - Longshan Liu
- Organ Transplant Center, The First Affiliated Hospital of Sun Yat-sen University, Guangzhou, China
| | - Guiwen Feng
- Department of Kidney Transplantation, First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China
| | - Qian Shen
- Department of Nephrology, Children's Hospital of Fudan University, Shanghai, China.,Shanghai Key Lab of Birth Defect, Children's Hospital of Fudan University, Shanghai, China
| | - Hong Xu
- Department of Nephrology, Children's Hospital of Fudan University, Shanghai, China.,Shanghai Key Lab of Birth Defect, Children's Hospital of Fudan University, Shanghai, China
| | - Dmitrij Frishman
- Department of Bioinformatics, Technische Universität München, Freising, Germany
| | - Wenxue Tang
- Precision Medicine Center of Zhengzhou University, Academy of Medical Sciences, Zhengzhou University, Zhengzhou, Henan, China.,The Second Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China.,Henan Institute of Medical and Pharmaceutical Sciences, Zhengzhou University, Zhengzhou, Henan, China
| | - Jiancheng Guo
- Precision Medicine Center of Zhengzhou University, Academy of Medical Sciences, Zhengzhou University, Zhengzhou, Henan, China. .,The Second Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China. .,Henan Institute of Medical and Pharmaceutical Sciences, Zhengzhou University, Zhengzhou, Henan, China.
| | - Jia Rao
- Department of Nephrology, Children's Hospital of Fudan University, Shanghai, China. .,Shanghai Key Lab of Birth Defect, Children's Hospital of Fudan University, Shanghai, China. .,State Key Laboratory of Medical Neurobiology, Institutes of Brain Science and School of Basic Medical Science, Fudan University, Shanghai, China.
| | - Wenjun Shang
- Department of Kidney Transplantation, First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China.
| |
Collapse
|
23
|
Fang Y, Shi H, Xiang T, Liu J, Liu J, Tang X, Fang X, Chen J, Zhai Y, Shen Q, Li G, Sun L, Bi Y, Wang X, Qian Y, Wu B, Wang H, Zhou W, Ma D, Mao J, Jiang X, Sun S, Shen Y, Liu X, Zhang A, Wang X, Huang W, Li Q, Wang M, Gao X, Wu Y, Deng F, Zhang R, Liu C, Yu L, Zhuang J, Sun Q, Dang X, Bai H, Zhu Y, Lu S, Zhang B, Shao X, Liu X, Han M, Zhao L, Liu Y, Gao J, Bao Y, Zhang D, Ma Q, Zhao L, Xia Z, Lu B, Wang Y, Zhao M, Zhang J, Jian S, He G, Zhang H, Zhao B, LI X, Wang F, Li Y, Zhu H, Luo X, Li J, Rao J, Xu H. Genetic Architecture of Childhood Kidney and Urological Diseases in China. PHENOMICS (CHAM, SWITZERLAND) 2021; 1:91-104. [PMID: 36939782 PMCID: PMC9590557 DOI: 10.1007/s43657-021-00014-1] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/08/2021] [Revised: 04/20/2021] [Accepted: 04/23/2021] [Indexed: 11/28/2022]
Abstract
Kidney disease is manifested in a wide variety of phenotypes, many of which have an important hereditary component. To delineate the genotypic and phenotypic spectrum of pediatric nephropathy, a multicenter registration system is being implemented based on the Chinese Children Genetic Kidney Disease Database (CCGKDD). In this study, all the patients with kidney and urological diseases were recruited from 2014 to 2020. Genetic analysis was conducted using exome sequencing for families with multiple affected individuals with nephropathy or clinical suspicion of a genetic kidney disease owing to early-onset or extrarenal features. The genetic diagnosis was confirmed in 883 of 2256 (39.1%) patients from 23 provinces in China. Phenotypic profiles showed that the primary diagnosis included steroid-resistant nephrotic syndrome (SRNS, 23.5%), glomerulonephritis (GN, 32.2%), congenital anomalies of the kidney and urinary tract (CAKUT, 21.2%), cystic renal disease (3.9%), renal calcinosis/stone (3.6%), tubulopathy (9.7%), and chronic kidney disease of unknown etiology (CKDu, 5.8%). The pathogenic variants of 105 monogenetic disorders were identified. Ten distinct genomic disorders were identified as pathogenic copy number variants (CNVs) in 11 patients. The diagnostic yield differed by subgroups, and was highest in those with cystic renal disease (66.3%), followed by tubulopathy (58.4%), GN (57.7%), CKDu (43.5%), SRNS (29.2%), renal calcinosis /stone (29.3%) and CAKUT (8.6%). Reverse phenotyping permitted correct identification in 40 cases with clinical reassessment and unexpected genetic conditions. We present the results of the largest cohort of children with kidney disease in China where diagnostic exome sequencing was performed. Our data demonstrate the utility of family-based exome sequencing, and indicate that the combined analysis of genotype and phenotype based on the national patient registry is pivotal to the genetic diagnosis of kidney disease. Supplementary Information The online version contains supplementary material available at 10.1007/s43657-021-00014-1.
Collapse
Affiliation(s)
- Ye Fang
- grid.411333.70000 0004 0407 2968Department of Nephrology, Children’s Hospital of Fudan University, National Pediatric Medical Center of CHINA, 399 Wanyuan Road, Shanghai, China
- Shanghai Kidney Development and Pediatric Kidney Disease Research Center, Shanghai, China
- grid.411333.70000 0004 0407 2968Shanghai Key Lab of Birth Defect, Children’s Hospital of Fudan University, Shanghai, 201102 China
| | - Hua Shi
- grid.411333.70000 0004 0407 2968Department of Nephrology, Children’s Hospital of Fudan University, National Pediatric Medical Center of CHINA, 399 Wanyuan Road, Shanghai, China
- Shanghai Kidney Development and Pediatric Kidney Disease Research Center, Shanghai, China
- grid.411333.70000 0004 0407 2968Shanghai Key Lab of Birth Defect, Children’s Hospital of Fudan University, Shanghai, 201102 China
| | - Tianchao Xiang
- grid.411333.70000 0004 0407 2968Department of Nephrology, Children’s Hospital of Fudan University, National Pediatric Medical Center of CHINA, 399 Wanyuan Road, Shanghai, China
- Shanghai Kidney Development and Pediatric Kidney Disease Research Center, Shanghai, China
- grid.411333.70000 0004 0407 2968Shanghai Key Lab of Birth Defect, Children’s Hospital of Fudan University, Shanghai, 201102 China
| | - Jiaojiao Liu
- grid.411333.70000 0004 0407 2968Department of Nephrology, Children’s Hospital of Fudan University, National Pediatric Medical Center of CHINA, 399 Wanyuan Road, Shanghai, China
- Shanghai Kidney Development and Pediatric Kidney Disease Research Center, Shanghai, China
- grid.411333.70000 0004 0407 2968Shanghai Key Lab of Birth Defect, Children’s Hospital of Fudan University, Shanghai, 201102 China
| | - Jialu Liu
- grid.411333.70000 0004 0407 2968Department of Nephrology, Children’s Hospital of Fudan University, National Pediatric Medical Center of CHINA, 399 Wanyuan Road, Shanghai, China
- Shanghai Kidney Development and Pediatric Kidney Disease Research Center, Shanghai, China
- grid.411333.70000 0004 0407 2968Shanghai Key Lab of Birth Defect, Children’s Hospital of Fudan University, Shanghai, 201102 China
| | - Xiaoshan Tang
- grid.411333.70000 0004 0407 2968Department of Nephrology, Children’s Hospital of Fudan University, National Pediatric Medical Center of CHINA, 399 Wanyuan Road, Shanghai, China
- Shanghai Kidney Development and Pediatric Kidney Disease Research Center, Shanghai, China
- grid.411333.70000 0004 0407 2968Shanghai Key Lab of Birth Defect, Children’s Hospital of Fudan University, Shanghai, 201102 China
| | - Xiaoyan Fang
- grid.411333.70000 0004 0407 2968Department of Nephrology, Children’s Hospital of Fudan University, National Pediatric Medical Center of CHINA, 399 Wanyuan Road, Shanghai, China
- Shanghai Kidney Development and Pediatric Kidney Disease Research Center, Shanghai, China
- grid.411333.70000 0004 0407 2968Shanghai Key Lab of Birth Defect, Children’s Hospital of Fudan University, Shanghai, 201102 China
| | - Jing Chen
- grid.411333.70000 0004 0407 2968Department of Nephrology, Children’s Hospital of Fudan University, National Pediatric Medical Center of CHINA, 399 Wanyuan Road, Shanghai, China
- Shanghai Kidney Development and Pediatric Kidney Disease Research Center, Shanghai, China
- grid.411333.70000 0004 0407 2968Shanghai Key Lab of Birth Defect, Children’s Hospital of Fudan University, Shanghai, 201102 China
| | - Yihui Zhai
- grid.411333.70000 0004 0407 2968Department of Nephrology, Children’s Hospital of Fudan University, National Pediatric Medical Center of CHINA, 399 Wanyuan Road, Shanghai, China
- Shanghai Kidney Development and Pediatric Kidney Disease Research Center, Shanghai, China
- grid.411333.70000 0004 0407 2968Shanghai Key Lab of Birth Defect, Children’s Hospital of Fudan University, Shanghai, 201102 China
| | - Qian Shen
- grid.411333.70000 0004 0407 2968Department of Nephrology, Children’s Hospital of Fudan University, National Pediatric Medical Center of CHINA, 399 Wanyuan Road, Shanghai, China
- Shanghai Kidney Development and Pediatric Kidney Disease Research Center, Shanghai, China
- grid.411333.70000 0004 0407 2968Shanghai Key Lab of Birth Defect, Children’s Hospital of Fudan University, Shanghai, 201102 China
| | - Guomin Li
- grid.411333.70000 0004 0407 2968Department of Rheumatology, Children’s Hospital of Fudan University, Shanghai, China
| | - Li Sun
- grid.411333.70000 0004 0407 2968Department of Rheumatology, Children’s Hospital of Fudan University, Shanghai, China
| | - Yunli Bi
- grid.411333.70000 0004 0407 2968Department of Urology, Children’s Hospital of Fudan University, Shanghai, China
| | - Xiang Wang
- grid.411333.70000 0004 0407 2968Department of Urology, Children’s Hospital of Fudan University, Shanghai, China
| | - Yanyan Qian
- grid.411333.70000 0004 0407 2968Clinical Genetic Center, Children’s Hospital of Fudan University, Shanghai, China
| | - Bingbing Wu
- grid.411333.70000 0004 0407 2968Clinical Genetic Center, Children’s Hospital of Fudan University, Shanghai, China
| | - Huijun Wang
- grid.411333.70000 0004 0407 2968Clinical Genetic Center, Children’s Hospital of Fudan University, Shanghai, China
| | - Wenhao Zhou
- grid.411333.70000 0004 0407 2968Clinical Genetic Center, Children’s Hospital of Fudan University, Shanghai, China
| | - Duan Ma
- grid.411333.70000 0004 0407 2968Shanghai Key Lab of Birth Defect, Children’s Hospital of Fudan University, Shanghai, 201102 China
- grid.8547.e0000 0001 0125 2443Key Laboratory of Metabolism and Molecular Medicine, Ministry of Education, Department of Biochemistry and Molecular Biology, Institutes of Biomedical Sciences, School of Basic Medical Sciences, Fudan University, Shanghai, China
| | - Jianhua Mao
- grid.13402.340000 0004 1759 700XThe Children Hospital of Zhejiang University School of Medicine, Hangzhou, China
| | - Xiaoyun Jiang
- grid.412615.5The First Affiliated Hospital of Sun Yat-Sen University, Guangzhou, China
| | - Shuzhen Sun
- grid.460018.b0000 0004 1769 9639Shandong Provincial Hospital, Jinan, China
| | - Ying Shen
- grid.24696.3f0000 0004 0369 153XBejing Children’s Hospital Affiliated to Capital University of Medical Science, Beijing, China
| | - Xiaorong Liu
- grid.24696.3f0000 0004 0369 153XBejing Children’s Hospital Affiliated to Capital University of Medical Science, Beijing, China
| | - Aihua Zhang
- grid.452511.6Children’s Hospital of Nanjing Medical University, Nanjing, China
| | - Xiaowen Wang
- grid.33199.310000 0004 0368 7223Wuhan Children’s Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Wenyan Huang
- grid.16821.3c0000 0004 0368 8293Shanghai Children’s Medical Centre, Shanghai Jiaotong University School of Medicine, Shanghai, China
| | - Qiu Li
- grid.488412.3Children’s Hospital of Chongqing Medical University, Chongqing, China
| | - Mo Wang
- grid.488412.3Children’s Hospital of Chongqing Medical University, Chongqing, China
| | - Xiaojie Gao
- grid.452787.b0000 0004 1806 5224Shenzhen Children’s Hospital, Shenzheng, China
| | - Yubin Wu
- grid.412467.20000 0004 1806 3501Shengjing Hospital of China Medical University, Shenyang, Liaoning China
| | - Fang Deng
- grid.489986.2Anhui Provincial Children’s Hospital, Hefei, China
| | - Ruifeng Zhang
- grid.460138.8Xuzhou Children’s Hospital, Xuzhou, China
| | - Cuihua Liu
- Henan Children’s Hospital, Zhengzhou, China
| | - Li Yu
- grid.413432.30000 0004 1798 5993Guangzhou First People’s Hospital, Guangzhou, China
| | - Jieqiu Zhuang
- grid.417384.d0000 0004 1764 2632The Second Affiliated Hospital and Yuying Children’s Hospital of Wenzhou Medical University, Wenzhou, China
| | - Qing Sun
- grid.508137.80000 0004 4914 6107Qingdao Women and Children’s Hospital, Qingdao, China
| | - Xiqiang Dang
- grid.452223.00000 0004 1757 7615Xiangya Hospital Central South University, Changsha, Hunan China
| | - Haitao Bai
- grid.412625.6The First Affiliated Hospital of Xiamen University, Xiamen, China
| | - Ying Zhu
- grid.412679.f0000 0004 1771 3402First Affiliated Hospital of Anhui Medical University, Hefei, China
| | - Siguang Lu
- Children’s Hospital of Lianyungang, Lianyungang, China
| | - Bili Zhang
- Tianjin Children Hospital, Tianjing, China
| | - Xiaoshan Shao
- The Children’s Hospital of Guiyang City, Guiyang, China
| | - Xuemei Liu
- grid.27255.370000 0004 1761 1174Qilu Children’s Hospital of Shandong University, Jinan, China
| | - Mei Han
- Dalian Children’s Hospital, Dalian, China
| | - Lijun Zhao
- grid.440213.00000 0004 1757 9418Shanxi Children’s Hospital, Taiyuan, China
| | - Yuling Liu
- grid.460171.5Boai Hospital of Zhongshan, Zhongshan, China
| | - Jian Gao
- Weifang Maternal and Child Health Hospital, Weifang, China
| | - Ying Bao
- grid.452902.8Xi’an Children’s Hospital, Xian, China
| | - Dongfeng Zhang
- grid.470210.0Children’s Hospital of Hebei Province, Shijiazhuang, China
| | - Qingshan Ma
- grid.430605.4First Affiliated Hospital of Jilin University, Changchun, China
| | - Liping Zhao
- Wuxi Municipal Children’s Hospital, Wuxi, China
| | - Zhengkun Xia
- grid.89957.3a0000 0000 9255 8984Department of Pediatrics, Jinling Hospital, Nanjing Medical University, Nanjing, China
| | - Biao Lu
- grid.413385.8General Hospital of Ningxia Medical University, Yinchuan, China
| | - Yulong Wang
- grid.452704.0The Second Hospital of Shandong University, Jinan, China
| | - Mengzhun Zhao
- grid.194645.b0000000121742757Shenzhen Hospital of University of Hong Kong, Shenzhen, China
| | - Jianjiang Zhang
- grid.412633.1First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Shan Jian
- grid.413106.10000 0000 9889 6335Peking Union Medical College Hospital, Beijing, China
| | - Guohua He
- Child Health Hospital of Foshan, Foshan, Guangdong China
| | - Huifeng Zhang
- grid.452702.60000 0004 1804 3009The Second Hospital of Hebei Medical University, Shijiazhuang, China
| | - Bo Zhao
- grid.415549.8Kunming Children’s Hospital, Kunming, China
| | - Xiaohua LI
- grid.413375.70000 0004 1757 7666Affiliated Hospital of Inner Mongolia Medical University, Hohehot, China
| | - Feiyan Wang
- Urumqi City Children’s Hospital, Urumqi, China
| | - Yufeng Li
- grid.16821.3c0000 0004 0368 8293Xinhua Hospital Affiliated to Medical College of Shanghai Jiaotong University, Shanghai, China
| | - Hongtao Zhu
- grid.13394.3c0000 0004 1799 3993Academy of Pediatrics, Xinjiang Medical University, Urumqi, China
| | - Xinhui Luo
- Xinjiang Uygur Autonomous Region People’s Hospital, Urumqi, China
| | - Jinghai Li
- grid.470082.9Changchun Children’s Hospital, Changchun, China
| | - Jia Rao
- grid.411333.70000 0004 0407 2968Department of Nephrology, Children’s Hospital of Fudan University, National Pediatric Medical Center of CHINA, 399 Wanyuan Road, Shanghai, China
- Shanghai Kidney Development and Pediatric Kidney Disease Research Center, Shanghai, China
- grid.411333.70000 0004 0407 2968Shanghai Key Lab of Birth Defect, Children’s Hospital of Fudan University, Shanghai, 201102 China
| | - Hong Xu
- grid.411333.70000 0004 0407 2968Department of Nephrology, Children’s Hospital of Fudan University, National Pediatric Medical Center of CHINA, 399 Wanyuan Road, Shanghai, China
- Shanghai Kidney Development and Pediatric Kidney Disease Research Center, Shanghai, China
- grid.411333.70000 0004 0407 2968Shanghai Key Lab of Birth Defect, Children’s Hospital of Fudan University, Shanghai, 201102 China
| |
Collapse
|
24
|
Tang PCT, Chan ASW, Zhang CB, García Córdoba CA, Zhang YY, To KF, Leung KT, Lan HY, Tang PMK. TGF-β1 Signaling: Immune Dynamics of Chronic Kidney Diseases. Front Med (Lausanne) 2021; 8:628519. [PMID: 33718407 PMCID: PMC7948440 DOI: 10.3389/fmed.2021.628519] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2020] [Accepted: 01/21/2021] [Indexed: 12/13/2022] Open
Abstract
Chronic kidney disease (CKD) is a major cause of morbidity and mortality worldwide, imposing a great burden on the healthcare system. Regrettably, effective CKD therapeutic strategies are yet available due to their elusive pathogenic mechanisms. CKD is featured by progressive inflammation and fibrosis associated with immune cell dysfunction, leading to the formation of an inflammatory microenvironment, which ultimately exacerbating renal fibrosis. Transforming growth factor β1 (TGF-β1) is an indispensable immunoregulator promoting CKD progression by controlling the activation, proliferation, and apoptosis of immunocytes via both canonical and non-canonical pathways. More importantly, recent studies have uncovered a new mechanism of TGF-β1 for de novo generation of myofibroblast via macrophage-myofibroblast transition (MMT). This review will update the versatile roles of TGF-β signaling in the dynamics of renal immunity, a better understanding may facilitate the discovery of novel therapeutic strategies against CKD.
Collapse
Affiliation(s)
- Philip Chiu-Tsun Tang
- State Key Laboratory of Translational Oncology, Department of Anatomical and Cellular Pathology, The Chinese University of Hong Kong, Shatin, Hong Kong
| | - Alex Siu-Wing Chan
- Department of Applied Social Sciences, The Hong Kong Polytechnic University, Hung Hom, Hong Kong
| | - Cai-Bin Zhang
- State Key Laboratory of Translational Oncology, Department of Anatomical and Cellular Pathology, The Chinese University of Hong Kong, Shatin, Hong Kong
| | - Cristina Alexandra García Córdoba
- State Key Laboratory of Translational Oncology, Department of Anatomical and Cellular Pathology, The Chinese University of Hong Kong, Shatin, Hong Kong
| | - Ying-Ying Zhang
- Department of Nephrology, Tongji Hospital, Tongji University School of Medicine, Shanghai, China
| | - Ka-Fai To
- State Key Laboratory of Translational Oncology, Department of Anatomical and Cellular Pathology, The Chinese University of Hong Kong, Shatin, Hong Kong
| | - Kam-Tong Leung
- Department of Paediatrics, The Chinese University of Hong Kong, Shatin, Hong Kong
| | - Hui-Yao Lan
- Department of Medicine and Therapeutics, Li Ka Shing Institute of Health Sciences, The Chinese University of Hong Kong, Shatin, Hong Kong.,Guangdong-Hong Kong Joint Laboratory on Immunological and Genetic Kidney Diseases, The Chinese University of Hong Kong, Shatin, Hong Kong
| | - Patrick Ming-Kuen Tang
- State Key Laboratory of Translational Oncology, Department of Anatomical and Cellular Pathology, The Chinese University of Hong Kong, Shatin, Hong Kong
| |
Collapse
|
25
|
Abstract
Evolutionary processes, including mutation, migration and natural selection, have influenced the prevalence and distribution of various disorders in humans. However, despite a few well-known examples, such as the APOL1 variants - which have undergone positive genetic selection for their ability to confer resistance to Trypanosoma brucei infection but confer a higher risk of chronic kidney disease - little is known about the effects of evolutionary processes that have shaped genetic variation on kidney disease. An understanding of basic concepts in evolutionary genetics provides an opportunity to consider how findings from ancient and archaic genomes could inform our knowledge of evolution and provide insights into how population migration and genetic admixture have shaped the current distribution and landscape of human kidney-associated diseases. Differences in exposures to infectious agents, environmental toxins, dietary components and climate also have the potential to influence the evolutionary genetics of kidneys. Of note, selective pressure on loci associated with kidney disease is often from non-kidney diseases, and thus it is important to understand how the link between genome-wide selected loci and kidney disease occurs in relation to secondary nephropathies.
Collapse
|
26
|
Becherucci F, Landini S, Cirillo L, Mazzinghi B, Romagnani P. Look Alike, Sound Alike: Phenocopies in Steroid-Resistant Nephrotic Syndrome. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2020; 17:E8363. [PMID: 33198123 PMCID: PMC7696007 DOI: 10.3390/ijerph17228363] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/30/2020] [Revised: 10/30/2020] [Accepted: 11/10/2020] [Indexed: 12/11/2022]
Abstract
Steroid-resistant nephrotic syndrome (SRNS) is a clinical picture defined by the lack of response to standard steroid treatment, frequently progressing toward end-stage kidney disease. The genetic basis of SRNS has been thoroughly explored since the end of the 1990s and especially with the advent of next-generation sequencing. Genetic forms represent about 30% of cases of SRNS. However, recent evidence supports the hypothesis that "phenocopies" could account for a non-negligible fraction of SRNS patients who are currently classified as non-genetic, paving the way for a more comprehensive understanding of the genetic background of the disease. The identification of phenocopies is mandatory in order to provide patients with appropriate clinical management and to inform therapy. Extended genetic testing including phenocopy genes, coupled with reverse phenotyping, is recommended for all young patients with SRNS to avoid unnecessary and potentially harmful diagnostic procedures and treatment, and for the reclassification of the disease. The aim of this work is to review the main steps of the evolution of genetic testing in SRNS, demonstrating how a paradigm shifting from "forward" to "reverse" genetics could significantly improve the identification of the molecular mechanisms of the disease, as well as the overall clinical management of affected patients.
Collapse
Affiliation(s)
- Francesca Becherucci
- Pediatric Nephrology and Dialysis Unit, Meyer Children’s Hospital, Viale Pieraccini 24, 50139 Florence, Italy; (L.C.); (B.M.); (P.R.)
| | - Samuela Landini
- Department of Biomedical, Experimental and Clinical Science “Mario Serio”, University of Florence, Viale Morgagni 50, 50134 Florence, Italy;
| | - Luigi Cirillo
- Pediatric Nephrology and Dialysis Unit, Meyer Children’s Hospital, Viale Pieraccini 24, 50139 Florence, Italy; (L.C.); (B.M.); (P.R.)
- Department of Biomedical, Experimental and Clinical Science “Mario Serio”, University of Florence, Viale Morgagni 50, 50134 Florence, Italy;
| | - Benedetta Mazzinghi
- Pediatric Nephrology and Dialysis Unit, Meyer Children’s Hospital, Viale Pieraccini 24, 50139 Florence, Italy; (L.C.); (B.M.); (P.R.)
| | - Paola Romagnani
- Pediatric Nephrology and Dialysis Unit, Meyer Children’s Hospital, Viale Pieraccini 24, 50139 Florence, Italy; (L.C.); (B.M.); (P.R.)
- Department of Biomedical, Experimental and Clinical Science “Mario Serio”, University of Florence, Viale Morgagni 50, 50134 Florence, Italy;
| |
Collapse
|