1
|
Yang Y, Jiang B, Shi L, Wang L, Yang Y, Li Y, Zhang Y, Zhu Z, Zhang X, Liu X. The potential of natural herbal plants in the treatment and prevention of non-small cell lung cancer: An encounter between ferroptosis and mitophagy. JOURNAL OF ETHNOPHARMACOLOGY 2025; 346:119555. [PMID: 40015539 DOI: 10.1016/j.jep.2025.119555] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/24/2024] [Revised: 02/15/2025] [Accepted: 02/22/2025] [Indexed: 03/01/2025]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Chinese herbal medicine constitutes a substantial cultural and scientific resource for the Chinese nation, attracting considerable scholarly interest due to its intrinsic characteristics of "multi-component, multi-target, and multi-pathway" interactions. Simultaneously, it aligns accurately with the intricate and continuously evolving progression of non-small cell lung cancer (NSCLC). Furthermore, contemporary pharmacological studies indicate that natural herbaceous plants and their bioactive compounds exhibit a diverse array of biological activities, including antioxidant, anti-inflammatory, and anti-tumor effects, among others. Additionally, these substances have been demonstrated to possess a degree of safety, particularly in terms of exhibiting comparatively lower levels of toxicity to the liver and kidneys when contrasted with conventional Western medicine. Thus, the development of herbal plants, which includes both single herbs and composite formulations, as well as their bioactive constituents, through the targeted regulation of ferroptosis and mitophagy, presents substantial potential and instills considerable hope for individuals diagnosed with NSCLC. AIM OF THE REVIEW This review aims to conduct a critical analysis of the ethnopharmacological applications of natural herbaceous plants in relation to ferroptosis and mitophagy in NSCLC. The objective is to evaluate the potential advantages of prioritizing specific phytochemical constituents found in these plants, which may serve as novel therapeutic candidates informed by ethnobotanical knowledge. Additionally, this study seeks to enhance the current pharmacological applications of natural herbaceous plants. METHODS An investigation into natural herbal remedies for NSCLC was conducted, with a particular emphasis on the ferroptosis and mitophagy pathways. This study utilized traditional medical texts and ethnomedicinal literature as primary sources. Furthermore, relevant information related to ethnobotany, phytochemistry, and pharmacology is obtained from online databases, including PubMed and the China National Knowledge Infrastructure (CNKI), among others. "Traditional Chinese medicine compound preparations", "single herb extracts", "active compounds", "NSCLC", "ferroptosis", and "mitophagy" were used as keywords when searching the databases. Consequently, pertinent articles published in recent years were collected and analyzed. RESULTS Given the complex etiology of NSCLC, treatment strategies that concentrate exclusively on ferroptosis or mitophagy often demonstrate limitations. In this regard, the utilization of herbal plants offers unique benefits in the management of NSCLC. The rationale can be summarized within the following two dimensions: Firstly, due to the molecular mechanisms of ferroptosis and mitophagy involving multiple signaling pathways (including PINK1/Parkin, HMGB1, system Xc-/GPX4/GSH, FSP1/CoQ10/NAD (P) H, and so on), sometimes drugs with a single target are difficult to involve multiple pathways. Fortunately, there is an expanding body of evidence suggesting that various herbaceous plants and their bioactive compounds can affect multiple biological targets. Moreover, these compounds seem to interact with several targets associated with ferroptosis and mitophagy in NSCLC (such as NIX, BNIP3, FUNDC1, GPX4, FSP1, P53, Nrf2, LncRNA, and so on). Secondly, Herbaceous plants and their bioactive compounds have been shown to possess a favorable safety profile, particularly with respect to reduced hepatotoxicity and nephrotoxicity in comparison to conventional Western medicine. For example, Numerous compound formulations, such as Fangji Huangqi decoction, Mufangji decoction, Qiyu Sanlong decoction, and Fuzheng Kangai decoction, have been employed in China for millennia, and their clinical efficacy appears to be quite promising. Notably, In recent years, numerous researchers have sought to isolate active constituents from clinically effective compound formulations through the application of chemical methodologies. This endeavor has been driven by the necessity to tackle challenges related to complex ingredient compositions and sophisticated processing. These active compounds have been employed in cellular and animal studies to elucidate the molecular mechanisms underlying these formulations. CONCLUSIONS The Asian region has a long-standing historical tradition of employing natural herbaceous plants for traditional medicinal purposes. Phytochemical and pharmacological studies have shown that various compound preparations derived from traditional Chinese medicine, along with individual herb extracts and their active constituents, display a range of bioactive effects. These effects encompass anti-tumor, anti-inflammatory, antibacterial, and antioxidant properties, among others. Numerous traditional compound formulations originating from China have emerged as promising candidates for the development of pharmacological agents targeting NSCLC. It is noteworthy that a variety of compound formulations aimed at the ferroptosis and mitophagy pathways, which demonstrate unique therapeutic effects on NSCLC, are presently under extensive investigation by an increasing number of researchers. Therefore, it is imperative to consider in vitro mechanistic studies, in vivo pharmacological evaluations, and assessments of clinical efficacy. Furthermore, it is essential to conduct a comprehensive assessment of plant resources, implement quality control measures, and engage in toxicological research to ensure that the data is appropriate for further examination.
Collapse
Affiliation(s)
- Yujie Yang
- Key Laboratory of Traditional Chinese Herbs and Prescription Innovation and Transformation of Gansu Province, Lanzhou, Gansu, 730000, China; Laboratory for TCM New Products Development Engineering of Gansu Province, Lanzhou, Gansu, 730000, China; Department of Basic Medicine, Gansu University of Chinese Medicine, Lanzhou, Gansu, 730000, China
| | - Bing Jiang
- Department of Integrated Chinese and Western Medicine, Gansu University of Chinese Medicine, Lanzhou, Gansu, 730000, China
| | - Lijuan Shi
- Key Laboratory of Traditional Chinese Herbs and Prescription Innovation and Transformation of Gansu Province, Lanzhou, Gansu, 730000, China; Laboratory for TCM New Products Development Engineering of Gansu Province, Lanzhou, Gansu, 730000, China; Department of Basic Medicine, Gansu University of Chinese Medicine, Lanzhou, Gansu, 730000, China
| | - Lili Wang
- Key Laboratory of Traditional Chinese Herbs and Prescription Innovation and Transformation of Gansu Province, Lanzhou, Gansu, 730000, China; Laboratory for TCM New Products Development Engineering of Gansu Province, Lanzhou, Gansu, 730000, China; Department of Basic Medicine, Gansu University of Chinese Medicine, Lanzhou, Gansu, 730000, China
| | - Yaru Yang
- Department of Integrated Chinese and Western Medicine, Gansu University of Chinese Medicine, Lanzhou, Gansu, 730000, China
| | - Yongyu Li
- Key Laboratory of Traditional Chinese Herbs and Prescription Innovation and Transformation of Gansu Province, Lanzhou, Gansu, 730000, China; Laboratory for TCM New Products Development Engineering of Gansu Province, Lanzhou, Gansu, 730000, China; Department of Basic Medicine, Gansu University of Chinese Medicine, Lanzhou, Gansu, 730000, China
| | - Yanmei Zhang
- Key Laboratory of Traditional Chinese Herbs and Prescription Innovation and Transformation of Gansu Province, Lanzhou, Gansu, 730000, China; Laboratory for TCM New Products Development Engineering of Gansu Province, Lanzhou, Gansu, 730000, China; Department of Basic Medicine, Gansu University of Chinese Medicine, Lanzhou, Gansu, 730000, China
| | - Zhongbo Zhu
- Key Laboratory of Traditional Chinese Herbs and Prescription Innovation and Transformation of Gansu Province, Lanzhou, Gansu, 730000, China; Laboratory for TCM New Products Development Engineering of Gansu Province, Lanzhou, Gansu, 730000, China; Department of Basic Medicine, Gansu University of Chinese Medicine, Lanzhou, Gansu, 730000, China
| | - Xuhui Zhang
- Department of Pulmonary Diseases, Affiliated Hospital of Gansu University of Chinese Medicine, Lanzhou, Gansu, 730030, China.
| | - Xiping Liu
- Key Laboratory of Traditional Chinese Herbs and Prescription Innovation and Transformation of Gansu Province, Lanzhou, Gansu, 730000, China; Laboratory for TCM New Products Development Engineering of Gansu Province, Lanzhou, Gansu, 730000, China; Department of Basic Medicine, Gansu University of Chinese Medicine, Lanzhou, Gansu, 730000, China.
| |
Collapse
|
2
|
Li MH, Zhang X, Pan BB, Su XC. Excellent Fe(II) Binding Tag in Protein Paramagnetic NMR Spectroscopy. Inorg Chem 2025. [PMID: 40229220 DOI: 10.1021/acs.inorgchem.4c05233] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/16/2025]
Abstract
Most first series of transition metal ions have one or more unpaired electrons and show great variations in the paramagnetic property. The magnetic anisotropy of some transition metal ions, including Co(II), as well as lanthanide ions [Ln(III)], has been well examined in proteins by NMR. In contrast, few examples of Fe(II) complexes reporting the magnetic anisotropy were analyzed in proteins, except for the ones containing a heme motif or iron-sulfur clusters. Here, we showed that [2,2':6',2″-terpyridine]-6,6″-dicarboxylic acid (TDA) is an excellent iron-binding ligand. It forms a stable iron complex in aqueous solution and demonstrates distinct iron-binding properties. TDA forms a 1:1 stable complex with both Fe(II) and Fe(III), but Fe(II) presents a high-spin state in the complex. The TDA moiety can be site-specifically attached to a protein, and its protein conjugate generates sizable pseudocontact shifts (PCSs) in complex with Fe(II), which are larger than those of commonly used metal binding tags. In contrast, the protein-TDA-Fe(III) complex produces negligible paramagnetic relaxation enhancement (PRE) effects in the protein signals, indicating a low-spin state of Fe(III) in the protein-TDA complex. The high stability of the protein-TDA-Fe(II) complex allows one to measure accurate PCSs in cell lysate even in the presence of other transition metal ions and an excess of GSH.
Collapse
Affiliation(s)
- Mo-Han Li
- State Key Laboratory of Elemento-organic Chemistry, College of Chemistry, Nankai University, Tianjin 300071, China
| | - Xing Zhang
- State Key Laboratory of Elemento-organic Chemistry, College of Chemistry, Nankai University, Tianjin 300071, China
| | - Bin-Bin Pan
- State Key Laboratory of Elemento-organic Chemistry, College of Chemistry, Nankai University, Tianjin 300071, China
| | - Xun-Cheng Su
- State Key Laboratory of Elemento-organic Chemistry, College of Chemistry, Nankai University, Tianjin 300071, China
| |
Collapse
|
3
|
Zhao WM, Chu F, Zhu JX, Li XL, Zhu Y, Wang ZJ, Liu MQ, Zhu YK, Zhu JX, Shi R, Wei J, Wang XR, Wang DG. Diosmin attenuates UUO-induced renal ferroptosis and fibrosis by inhibiting the HIF-1α/FABP4 signaling axis. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2025; 141:156738. [PMID: 40233506 DOI: 10.1016/j.phymed.2025.156738] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/07/2024] [Revised: 03/29/2025] [Accepted: 04/07/2025] [Indexed: 04/17/2025]
Abstract
BACKGROUND AND PURPOSE Renal fibrosis is a major pathological feature of chronic kidney disease (CKD) that poses significant therapeutic challenges owing to its irreversible nature. In this study, we aimed to investigate the effects of diosmin, a polyphenolic flavonoid with anti-inflammatory, antioxidant, and antifibrotic properties, on renal fibrosis and to explore the underlying mechanisms. STUDY DESIGN AND METHODS Mouse renal fibrosis model induced by UUO surgery and an HK-2 cell fibrosis model stimulated by TGF-β1 were established to evaluate the effects of diosmin treatment on cell injury, inflammatory response, and ferroptosis. Changes in the expression of related genes in the kidney tissues were analyzed using RNA-seq. In addition, the effects of fatty acid-binding protein 4 (FABP4) on the efficacy of diosmin were explored by knockdown and overexpression of FABP4. Double luciferase reporter gene assay, Chip-qPCR, molecular docking, surface plasmon resonance, and cellular thermal shift experiments were performed to explore this mechanism. RESULTS Diosmin mitigated renal tubular injury and collagen deposition in the UUO model by modulating fibrotic markers, such as fibronectin, Col I α1, and α-SMA. It also reduces iron accumulation, decreases the expression of MDA, ASCL4, and inflammatory cytokines, and increases the expression of GPX4 and SOD2, thereby attenuating ferroptosis and enhancing the cellular response to oxidative stress. In vitro, diosmin counteracted TGF-β1-induced cellular damage and ferroptosis. RNA-seq analysis revealed that diosmin intervention suppressed the expression of FABP4 induced by UUO and targeted silencing of FABP4 attenuated cellular damage and ferroptosis. Conversely, FABP4 overexpression in vivo compromised the renoprotective effects of diosmin. Mechanically, diosmin was found to bind to HIF-1α and reduce its nuclear translocation, thereby inhibiting FABP4 transcription, resulting in reduced inflammation, collagen deposition, and ferroptosis. Furthermore, the overexpression of HIF-1α reversed the protective effects of diosmin. CONCLUSION Diosmin potentially attenuates renal ferroptosis and fibrosis through the inhibition of the HIF-1α/FABP4 axis, offering a promising therapeutic approach for renal fibrosis.
Collapse
Affiliation(s)
- Wen-Man Zhao
- Department of Nephrology, The Second Affiliated Hospital of Anhui Medical University, Hefei 230601, China; Inflammation & Immunity-Mediated Diseases, Institute of Kidney Disease, The Second Affiliated Hospital of Anhui Medical University, Hefei 230601, China
| | - Fan Chu
- Department of Nephrology, The Second Affiliated Hospital of Anhui Medical University, Hefei 230601, China; Inflammation & Immunity-Mediated Diseases, Institute of Kidney Disease, The Second Affiliated Hospital of Anhui Medical University, Hefei 230601, China
| | - Jun-Xing Zhu
- Department of Nephrology, The Second Affiliated Hospital of Anhui Medical University, Hefei 230601, China; Inflammation & Immunity-Mediated Diseases, Institute of Kidney Disease, The Second Affiliated Hospital of Anhui Medical University, Hefei 230601, China
| | - Xun-Liang Li
- Department of Nephrology, The Second Affiliated Hospital of Anhui Medical University, Hefei 230601, China; Inflammation & Immunity-Mediated Diseases, Institute of Kidney Disease, The Second Affiliated Hospital of Anhui Medical University, Hefei 230601, China
| | - Yuyu Zhu
- Department of Nephrology, The Second Affiliated Hospital of Anhui Medical University, Hefei 230601, China; Inflammation & Immunity-Mediated Diseases, Institute of Kidney Disease, The Second Affiliated Hospital of Anhui Medical University, Hefei 230601, China
| | - Zhi-Juan Wang
- Department of Nephrology, The Second Affiliated Hospital of Anhui Medical University, Hefei 230601, China; Inflammation & Immunity-Mediated Diseases, Institute of Kidney Disease, The Second Affiliated Hospital of Anhui Medical University, Hefei 230601, China
| | - Meng-Qian Liu
- Department of Nephrology, The Second Affiliated Hospital of Anhui Medical University, Hefei 230601, China; Inflammation & Immunity-Mediated Diseases, Institute of Kidney Disease, The Second Affiliated Hospital of Anhui Medical University, Hefei 230601, China
| | - Yu-Ke Zhu
- Department of Nephrology, The Second Affiliated Hospital of Anhui Medical University, Hefei 230601, China; Inflammation & Immunity-Mediated Diseases, Institute of Kidney Disease, The Second Affiliated Hospital of Anhui Medical University, Hefei 230601, China
| | - Jia-Xin Zhu
- Department of Nephrology, The Second Affiliated Hospital of Anhui Medical University, Hefei 230601, China; Inflammation & Immunity-Mediated Diseases, Institute of Kidney Disease, The Second Affiliated Hospital of Anhui Medical University, Hefei 230601, China
| | - Rui Shi
- Department of Nephrology, The Second Affiliated Hospital of Anhui Medical University, Hefei 230601, China; Inflammation & Immunity-Mediated Diseases, Institute of Kidney Disease, The Second Affiliated Hospital of Anhui Medical University, Hefei 230601, China
| | - Jie Wei
- Department of Nephrology, The Second Affiliated Hospital of Anhui Medical University, Hefei 230601, China; Inflammation & Immunity-Mediated Diseases, Institute of Kidney Disease, The Second Affiliated Hospital of Anhui Medical University, Hefei 230601, China
| | - Xue-Rong Wang
- Department of Nephrology, The Second Affiliated Hospital of Anhui Medical University, Hefei 230601, China; Inflammation & Immunity-Mediated Diseases, Institute of Kidney Disease, The Second Affiliated Hospital of Anhui Medical University, Hefei 230601, China
| | - De-Guang Wang
- Department of Nephrology, The Second Affiliated Hospital of Anhui Medical University, Hefei 230601, China; Inflammation & Immunity-Mediated Diseases, Institute of Kidney Disease, The Second Affiliated Hospital of Anhui Medical University, Hefei 230601, China.
| |
Collapse
|
4
|
Park J, Jang JY, Kim JH, Yi SE, Lee YJ, Yu MS, Chung YS, Jang YJ, Kim JH, Kang K. SLC27A2 marks lipid peroxidation in nasal epithelial cells driven by type 2 inflammation in chronic rhinosinusitis with nasal polyps. Exp Mol Med 2025:10.1038/s12276-025-01440-1. [PMID: 40195539 DOI: 10.1038/s12276-025-01440-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2024] [Revised: 01/16/2025] [Accepted: 02/05/2025] [Indexed: 04/09/2025] Open
Abstract
Chronic rhinosinusitis with nasal polyps (CRSwNP) is characterized by persistent inflammation and epithelial cell dysfunction, but the underlying molecular mechanisms remain poorly understood. Here we show that dysregulated lipid metabolism and increased lipid peroxidation in nasal polyp epithelial cells contribute to the pathogenesis of CRSwNP. Integrated analysis of bulk and single-cell RNA sequencing data reveals upregulation of SLC27A2/FATP2 in nasal polyp epithelium, which correlates with increased lipid peroxidation. SLC27A2-positive epithelial cells exhibit enriched expression of lipid peroxidation pathway genes and enhanced responsiveness to IL-4/IL-13 signaling from Th2 and ILC2 cells. Inhibition of IL-4/IL-13 signaling by dupilumab reduces expression of lipid peroxidation-associated genes, including SLC27A2. In eosinophilic CRSwNP, SLC27A2 expression correlates with disease severity. Pharmacological inhibition of FATP2 in air-liquid interface cultures of nasal epithelial cells decreases expression of IL13RA1 and lipid peroxidation-related genes. Our findings identify FATP2-mediated lipid peroxidation as a key driver of epithelial dysfunction and inflammation in CRSwNP, providing new insights into disease mechanisms and potential therapeutic targets.
Collapse
Affiliation(s)
- Jaewoo Park
- Department of Biological Sciences and Biotechnology, Chungbuk National University, Cheongju, Republic of Korea
| | - Jung Yeon Jang
- Department of Otorhinolaryngology-Head and Neck Surgery, Asan Medical Center, University of Ulsan College of Medicine, Seoul, Republic of Korea
| | - Jeong Heon Kim
- Department of Otorhinolaryngology-Head and Neck Surgery, Asan Medical Center, University of Ulsan College of Medicine, Seoul, Republic of Korea
| | - Se Eun Yi
- Department of Otorhinolaryngology-Head and Neck Surgery, Asan Medical Center, University of Ulsan College of Medicine, Seoul, Republic of Korea
| | - Yeong Ju Lee
- Department of Otorhinolaryngology-Head and Neck Surgery, Asan Medical Center, University of Ulsan College of Medicine, Seoul, Republic of Korea
| | - Myeong Sang Yu
- Department of Otorhinolaryngology-Head and Neck Surgery, Asan Medical Center, University of Ulsan College of Medicine, Seoul, Republic of Korea
| | - Yoo-Sam Chung
- Department of Otorhinolaryngology-Head and Neck Surgery, Asan Medical Center, University of Ulsan College of Medicine, Seoul, Republic of Korea
| | - Yong Ju Jang
- Department of Otorhinolaryngology-Head and Neck Surgery, Asan Medical Center, University of Ulsan College of Medicine, Seoul, Republic of Korea
| | - Ji Heui Kim
- Department of Otorhinolaryngology-Head and Neck Surgery, Asan Medical Center, University of Ulsan College of Medicine, Seoul, Republic of Korea.
| | - Kyuho Kang
- Department of Biological Sciences and Biotechnology, Chungbuk National University, Cheongju, Republic of Korea.
| |
Collapse
|
5
|
Sun P, Liu Q, Yuan S, Wang XT, Qiu Y, Ge XY. SARS-CoV-2 Membrane Protein Induces MARCHF1/GPX4-Mediated Ferroptosis by Promoting Lipid Accumulation. J Med Virol 2025; 97:e70328. [PMID: 40186530 DOI: 10.1002/jmv.70328] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2024] [Revised: 02/21/2025] [Accepted: 03/14/2025] [Indexed: 04/07/2025]
Abstract
The membrane protein (M), a key structural protein of SARS-CoV-2 that regulates virus assembly and morphogenesis, is involved in the pathological processes of multiple organ damage and metabolic disorders. This study aims to elucidate the mechanisms of M-mediated host ferroptosis and lipid accumulation during SARS-CoV-2 infection. Here, we detected that M protein enhances cellular sensitivity to ferroptosis. Additionally, we uncovered the pivotal role of perilipin-2 and sterol regulatory element-binding protein 1 in M-induced lipid accumulation. Xanthohumol, a cost-effective and orally available diacylglycerol acyltransferase inhibitor, alleviated triglyceride and total cholesterol accumulation, thereby counteracting the M-induced ferroptosis. Furthermore, we identified that the mitochondrial import inner membrane translocase subunit TIM23 and the mitochondrial import receptor subunit TOM20 homolog contribute to M-induced mitochondrial dysfunction. Notably, inhibiting lipid synthesis effectively reduced mitochondrial reactive oxygen species and transmembrane potential, indicating a cross-talk between lipid and ferro metabolic pathways. Mechanistically, glutathione peroxidase 4 (GPX4) interacts with SARS-CoV-2 M, leading to its subsequent degradation by the Membrane Associated Ring-CH-Type Finger 1 (MARCHF1) ubiquitin ligase. M-GPX4 interaction occurs at the R72 residue, which may represent a potential therapeutic target against SARS-CoV-2 infection. M modulates lipid accumulation and further impairs mitochondrial functions, ultimately resulting in ferroptosis through MARCHF1-GPX4 axis. Disrupting host-virus interactions along this pathway may provide a therapeutic strategy for SARS-CoV-2 infection.
Collapse
Affiliation(s)
- Pei Sun
- Department of Biomedical Engineering, Hunan Provincial Key Laboratory of Medical Virology, College of Biology, Hunan University, Changsha, Hunan, China
| | - Qian Liu
- Department of Biomedical Engineering, Hunan Provincial Key Laboratory of Medical Virology, College of Biology, Hunan University, Changsha, Hunan, China
| | - Shuofeng Yuan
- Department of Microbiology, LKS Faculty of Medicine, The University of Hong Kong, Hong Kong SAR, China
| | - Xin-Tao Wang
- Department of Biomedical Engineering, Hunan Provincial Key Laboratory of Medical Virology, College of Biology, Hunan University, Changsha, Hunan, China
| | - Ye Qiu
- Department of Biomedical Engineering, Hunan Provincial Key Laboratory of Medical Virology, College of Biology, Hunan University, Changsha, Hunan, China
| | - Xing-Yi Ge
- Department of Biomedical Engineering, Hunan Provincial Key Laboratory of Medical Virology, College of Biology, Hunan University, Changsha, Hunan, China
| |
Collapse
|
6
|
Pei Y, Pan Y, Zhang Z, Zhu J, Sun Y, Zhang Q, Zhu D, Li G, Bryce MR, Wang D, Tang BZ. Leveraging Tumor Microenvironment to Boost Synergistic Photodynamic Therapy, Ferroptosis Anti-Tumor Efficiency Based on a Functional Iridium(III) Complex. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2025; 12:e2413879. [PMID: 39951332 PMCID: PMC11984874 DOI: 10.1002/advs.202413879] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/29/2024] [Revised: 01/20/2025] [Indexed: 04/12/2025]
Abstract
The tumor microenvironment (TME) severely limits the efficacy of clinical applications of photodynamic therapy (PDT). The development of a functional agent allowing full use of the TME to boost synergistic PDT and ferroptosis anti-tumor efficiency is an appealing yet significantly challenging task. Herein, to overcome the adverse influence on PDT of hypoxia and high level of glutathione (GSH) in the TME, an imine bond is introduced into an Ir(III)-ferrocene complex to construct a small molecule drug, named Ir-Fc, for tumors' imaging and therapy. The cleavage of the imine bond in the lysosome effectively disrupts the photoinduced electron transfer (PET) process, realizing the decomposition of Ir-Fc into Fc-CHO and Ir-NH2. Fc-CHO produces •OH by Fenton reactions under dark conditions and induces ferroptosis in tumor cells, and Ir-NH2 shows prominent performance for type-I and type-II reactive oxygen species (ROS) production. Meanwhile, the ferroptosis pathway simultaneously consumes large amounts of GSH and produces O2 for effectively relieving hypoxia. These distinctive outputs make Ir-Fc an exceptional molecule for effective tumor synergistic therapy. This study thus brings a new and revolutionary PDT protocol for practical cancer treatment.
Collapse
Affiliation(s)
- Yu Pei
- Key Laboratory of Nanobiosensing and Nanobioanalysis at Universities of Jilin ProvinceDepartment of ChemistryNortheast Normal University5268 Renmin StreetChangchunJilin Province130024P. R. China
- Center for AIE Research, Guangdong Provincial Key Laboratory of New Energy Materials Service SafetyCollege of Material Science and EngineeringShenzhen UniversityShenzhen518060P. R. China
| | - Yinzhen Pan
- Center for AIE Research, Guangdong Provincial Key Laboratory of New Energy Materials Service SafetyCollege of Material Science and EngineeringShenzhen UniversityShenzhen518060P. R. China
| | - Zhijun Zhang
- Center for AIE Research, Guangdong Provincial Key Laboratory of New Energy Materials Service SafetyCollege of Material Science and EngineeringShenzhen UniversityShenzhen518060P. R. China
| | - Jun Zhu
- Center for AIE Research, Guangdong Provincial Key Laboratory of New Energy Materials Service SafetyCollege of Material Science and EngineeringShenzhen UniversityShenzhen518060P. R. China
| | - Yan Sun
- Key Laboratory of Nanobiosensing and Nanobioanalysis at Universities of Jilin ProvinceDepartment of ChemistryNortheast Normal University5268 Renmin StreetChangchunJilin Province130024P. R. China
- Center for AIE Research, Guangdong Provincial Key Laboratory of New Energy Materials Service SafetyCollege of Material Science and EngineeringShenzhen UniversityShenzhen518060P. R. China
| | - Qian Zhang
- Key Laboratory of Nanobiosensing and Nanobioanalysis at Universities of Jilin ProvinceDepartment of ChemistryNortheast Normal University5268 Renmin StreetChangchunJilin Province130024P. R. China
| | - Dongxia Zhu
- Key Laboratory of Nanobiosensing and Nanobioanalysis at Universities of Jilin ProvinceDepartment of ChemistryNortheast Normal University5268 Renmin StreetChangchunJilin Province130024P. R. China
| | - Guangzhe Li
- Jilin Provincial Science and Technology Innovation Center of Health Food of Chinese MedicineChangchun University of Chinese MedicineChangchunJilin Province130117P. R. China
| | | | - Dong Wang
- Center for AIE Research, Guangdong Provincial Key Laboratory of New Energy Materials Service SafetyCollege of Material Science and EngineeringShenzhen UniversityShenzhen518060P. R. China
| | - Ben Zhong Tang
- Center for AIE Research, Guangdong Provincial Key Laboratory of New Energy Materials Service SafetyCollege of Material Science and EngineeringShenzhen UniversityShenzhen518060P. R. China
- School of Science and Engineering, Shenzhen Institute of Aggregate Science and TechnologyThe Chinese University of Hong Kong, Shenzhen (CUHK‐Shenzhen)Guangdong518172P. R. China
| |
Collapse
|
7
|
Zhang W, Li L, Wang Z, Nie Y, Yang Y, Li C, Zhang Y, Jiang Y, Kou Y, Zhang W, Lai Y. Injectable and adhesive MgO 2-potentiated hydrogel with sequential tumor synergistic therapy and osteogenesis for challenging postsurgical osteosarcoma treatment. Biomaterials 2025; 315:122959. [PMID: 39612764 DOI: 10.1016/j.biomaterials.2024.122959] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2024] [Revised: 10/23/2024] [Accepted: 11/08/2024] [Indexed: 12/01/2024]
Abstract
The clinical treatment of osteosarcoma faces great challenges of residual tumor cells leading to tumor recurrence and irregular bone defects difficult to repair after surgery removal of the primary tumor tissue. We developed an injectable and in-situ cross-linkable hydrogel (named MOG hydrogel) using MgO2 nanoparticles and dopamine-conjugated gelatin as main components. MgO2 was rationally designed as a multifunctional active ingredient to mediate in situ gelation, tumor therapy, and bone repair sequentially. The 10MOG (with 10 mg/mL MgO2 content) showed excellent gel stability, injectability, shape adaptability, tissue adhesion, and rapid hemostatic ability. Importantly, 10MOG exhibited ideal sequential H2O2 and Mg2+ release property. The released H2O2 synergized with photothermal therapy for enhanced tumor recurrence suppression, and the sustainable Mg2+ release efficiently promoted bone regeneration. The MOG hydrogel, possessing excellent on-demand antitumor and osteogenic capabilities in vitro and in vivo, exhibited tremendous potential in the clinical application for challenging postsurgical osteosarcoma treatment.
Collapse
Affiliation(s)
- Wenjing Zhang
- Shenzhen Clinical Research Center for Trauma Treatment, Shenzhen University General Hospital, Shenzhen University, Shenzhen, 518055, China; Guangdong Key Laboratory for Biomedical Measurements and Ultrasound Imaging, National-Regional Key Technology Engineering Laboratory for Medical Ultrasound, School of Biomedical Engineering, Shenzhen University Medical School, Shenzhen, 518060, China; National Center for Trauma Medicine, Beijing, 100000, China
| | - Long Li
- Centre for Translational Medicine Research & Development, Institute of Biomedical and Health Engineering, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, 518055, China; Guangdong Engineering Laboratory of Biomaterials Additive Manufacturing, Shenzhen, 518055, China
| | - Zishuo Wang
- Centre for Translational Medicine Research & Development, Institute of Biomedical and Health Engineering, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, 518055, China
| | - Yangyi Nie
- Centre for Translational Medicine Research & Development, Institute of Biomedical and Health Engineering, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, 518055, China
| | - Yipei Yang
- Centre for Translational Medicine Research & Development, Institute of Biomedical and Health Engineering, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, 518055, China
| | - Cairong Li
- Centre for Translational Medicine Research & Development, Institute of Biomedical and Health Engineering, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, 518055, China
| | - Yuyang Zhang
- Centre for Translational Medicine Research & Development, Institute of Biomedical and Health Engineering, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, 518055, China
| | - Yuxi Jiang
- Shenzhen Clinical Research Center for Trauma Treatment, Shenzhen University General Hospital, Shenzhen University, Shenzhen, 518055, China
| | - Yuhui Kou
- Department of Orthopedics and Trauma, Peking University People's Hospital, Beijing, 100044, China; National Center for Trauma Medicine, Beijing, 100000, China.
| | - Wei Zhang
- Centre for Translational Medicine Research & Development, Institute of Biomedical and Health Engineering, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, 518055, China; Guangdong Engineering Laboratory of Biomaterials Additive Manufacturing, Shenzhen, 518055, China.
| | - Yuxiao Lai
- Centre for Translational Medicine Research & Development, Institute of Biomedical and Health Engineering, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, 518055, China; Guangdong Engineering Laboratory of Biomaterials Additive Manufacturing, Shenzhen, 518055, China.
| |
Collapse
|
8
|
Zhou Y, Luan F, Feng X, Yu M, Li L, Guo X, Yin X. TGF-β1 induces ROS to activate ferroptosis via the ERK1/2-WISP1 pathway to promote the progression of renal tubular epithelial cell fibrosis. Cytotechnology 2025; 77:61. [PMID: 39959788 PMCID: PMC11828780 DOI: 10.1007/s10616-025-00719-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2024] [Accepted: 01/27/2025] [Indexed: 02/18/2025] Open
Abstract
Chronic kidney disease (CKD) often progresses to renal fibrosis, which is characterized by excessive extracellular matrix deposition and is also linked to ferroptosis. The present study investigated how TGF-β1 induces ferroptosis and thereby contributes to renal tubular epithelial cell fibrosis. Bioinformatics was employed to identify the differentially expressed genes relevant to renal fibrosis. An in vitro TGF-β1-induced fibrosis model of HK-2 cells was established, and the cell shape index was calculated. Fer-1, NAC, and PD98059 were utilized for targeted intervention, and their mechanisms were verified by transducing cells with WISP1-targeting shRNA lentivirus. Cell morphology was examined under a microscope, and cells were collected to determine the levels of ferroptosis-related factors (Fe2+, MDA, GSH, and LPO). Western blotting was performed to measure the levels of ERK1/2, WISP1, and ferroptosis indicators (GPX4 and hyperoxidized PRDX4). Flow cytometry was performed to determine the ROS levels and the rate of cell ferroptosis. TGF-β1 induced the transformation of HK-2 cells into fibroblast-like cells, leading to increased ROS levels, activation of the ERK1/2-WISP1 signaling pathway, and upregulation of ferroptosis and fibrosis-related factors. However, these effects could be effectively inhibited through pretreatment with Fer-1, NAC, and PD98059 individually, which further validated the involvement of the ERK1/2-WISP1 signaling pathway. In addition, WISP1 knockdown suppressed the cell transformation into fibroblast-like cells as well as the ferroptosis process, thereby reducing the expression levels of ferroptosis and fibrosis-related factors. The present study substantiated the process through which TGF-β1 elicits the production of ROS and triggers ferroptosis via the ERK1/2-WISP1 signaling pathway to facilitate the development of renal tubular epithelial cell fibrosis. Supplementary Information The online version contains supplementary material available at 10.1007/s10616-025-00719-5.
Collapse
Affiliation(s)
- Yi Zhou
- Department of Nephrology, General Hospital of Ningxia Medical University, No. 804 South Shengli Street, Xingqing District, Yinchuan, 750004 Ningxia China
| | - Fengwu Luan
- Department of Nephrology, General Hospital of Ningxia Medical University, No. 804 South Shengli Street, Xingqing District, Yinchuan, 750004 Ningxia China
| | - Xiaonan Feng
- Department of Nephrology, General Hospital of Ningxia Medical University, No. 804 South Shengli Street, Xingqing District, Yinchuan, 750004 Ningxia China
| | - Min Yu
- Department of Nephrology, General Hospital of Ningxia Medical University, No. 804 South Shengli Street, Xingqing District, Yinchuan, 750004 Ningxia China
| | - Lu Li
- Department of Nephrology, General Hospital of Ningxia Medical University, No. 804 South Shengli Street, Xingqing District, Yinchuan, 750004 Ningxia China
| | - Xiaoyan Guo
- Department of Nephrology, General Hospital of Ningxia Medical University, No. 804 South Shengli Street, Xingqing District, Yinchuan, 750004 Ningxia China
| | - Xiaolong Yin
- Department of Nephrology, General Hospital of Ningxia Medical University, No. 804 South Shengli Street, Xingqing District, Yinchuan, 750004 Ningxia China
| |
Collapse
|
9
|
Su W, Wang H, Pan J, Zhou Q. Advances in Sonodynamic Therapy: Focus on Ferroptosis. J Med Chem 2025; 68:5976-5992. [PMID: 40063557 DOI: 10.1021/acs.jmedchem.4c02603] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/28/2025]
Abstract
Ferroptosis is a nonapoptotic form of cell death discovered in 2012. Noninvasive treatments regulating ferroptosis are important for a wide range of diseases. Among the noninvasive treatments, sonodynamic therapy (SDT) has become promising due to its strong tissue penetration and few side effects. In recent years, targeted drug delivery platforms constructed on the basis of SDT have provided an efficient delivery mode for the regulation of ferroptosis. Based on the latest research reports, this Perspective introduces the basic mechanism of SDT and the influencing factors of therapeutic effects, elucidates the significance of ferroptosis-targeted SDT, and summarizes the recent studies on ferroptosis-targeted SDT through different pathways. We also present innovative studies of composite ultrasound-responsive drug delivery platforms. Finally, a brief summary and outlook based on current ferroptosis-targeted SDT are presented.
Collapse
Affiliation(s)
- Wendi Su
- Echo Lab, Department of Ultrasound Imaging, Renmin Hospital of Wuhan University, Wuhan 430060, China
| | - Hao Wang
- Echo Lab, Department of Ultrasound Imaging, Renmin Hospital of Wuhan University, Wuhan 430060, China
| | - Juhong Pan
- Echo Lab, Department of Ultrasound Imaging, Renmin Hospital of Wuhan University, Wuhan 430060, China
| | - Qing Zhou
- Echo Lab, Department of Ultrasound Imaging, Renmin Hospital of Wuhan University, Wuhan 430060, China
| |
Collapse
|
10
|
Wang Y, Wen X, Guo Y, Wang Y, Gu Y. TFRC Ablation Induces Insufficient Cartilage Development Through Mitochondrial p53 Translocation-Mediated Ferroptosis. Int J Mol Sci 2025; 26:2724. [PMID: 40141376 PMCID: PMC11943061 DOI: 10.3390/ijms26062724] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2025] [Revised: 01/19/2025] [Accepted: 01/22/2025] [Indexed: 03/28/2025] Open
Abstract
The mandibular condyle cartilage serves as a principal zone for mandible growth, and any dysplasia could contribute to skeletal mandibular hypoplasia (SMH). The aim of the study was to further explore how TFRC signaling regulates condylar cartilage development. In this study, TFRC, SLC39A14, chondrogenic markers and ferroptosis-related signals were detected in the condylar cartilage of postnatal mice and Tfrc cartilage conditional knockout (Tfrc-cKO) mice at different time points through immunofluorescence, immunohistochemical staining and qPCR assays. The overexpression and knockdown of TFRC in the ATDC5 cell line were used to investigate its role in a specific biological process. Co-immunoprecipitation was used to verify protein-protein interaction in vitro. Ferroptosis inhibitor Fer1, Ac-Met-OH and DFP were used for an in vitro rescue assay. The temporomandibular joint injection of DFP was used to rescue the cartilage phenotype in vivo. Our results verified that TFRC was crucial for condylar cartilage development. TFRC ablation led to condylar cartilage thickness and condyle length alterations and induced the ferroptosis of chondrocyte by upregulating SLC39A14. Mitochondrial p53 translocation was involved in the TFRC-SLC39A14 switch by SLC39A14 ubiquitination degradation. Fer1, Ac-Met-OH and DFP inhibited ferroptosis and restored chondrogenic differentiation in vivo. The temporomandibular joint injection of DFP could rescue the cartilage phenotype. In summary, this study reveals that TFRC influences postnatal condylar cartilage development through mitochondrial p53 translocation-mediated ferroptosis, which provides insights into the etiology, pathogenesis, and therapy of mandibular hypoplasia and even systemic articular cartilage dysplasia.
Collapse
Affiliation(s)
- Yidi Wang
- Department of Orthodontics, Peking University School and Hospital of Stomatology & National Center for Stomatology & National Clinical Research Center for Oral Diseases & National Engineering Research Center of Oral Biomaterials and Digital Medical Devices & Beijing Key Laboratory of Digital Stomatology & NHC Key Laboratory of Digital Stomatology & NMPA Key Laboratory for Dental Materials, No. 22, Zhongguancun Avenue South, Haidian District, Beijing 100081, China; (Y.W.); (X.W.); (Y.G.)
| | - Xi Wen
- Department of Orthodontics, Peking University School and Hospital of Stomatology & National Center for Stomatology & National Clinical Research Center for Oral Diseases & National Engineering Research Center of Oral Biomaterials and Digital Medical Devices & Beijing Key Laboratory of Digital Stomatology & NHC Key Laboratory of Digital Stomatology & NMPA Key Laboratory for Dental Materials, No. 22, Zhongguancun Avenue South, Haidian District, Beijing 100081, China; (Y.W.); (X.W.); (Y.G.)
| | - Yutong Guo
- Department of Orthodontics, Peking University School and Hospital of Stomatology & National Center for Stomatology & National Clinical Research Center for Oral Diseases & National Engineering Research Center of Oral Biomaterials and Digital Medical Devices & Beijing Key Laboratory of Digital Stomatology & NHC Key Laboratory of Digital Stomatology & NMPA Key Laboratory for Dental Materials, No. 22, Zhongguancun Avenue South, Haidian District, Beijing 100081, China; (Y.W.); (X.W.); (Y.G.)
| | - Yixiang Wang
- Central Laboratory, Peking University School and Hospital of Stomatology, No. 22, Zhongguancun Avenue South, Haidian District, Beijing 100081, China
| | - Yan Gu
- Department of Orthodontics, Peking University School and Hospital of Stomatology & National Center for Stomatology & National Clinical Research Center for Oral Diseases & National Engineering Research Center of Oral Biomaterials and Digital Medical Devices & Beijing Key Laboratory of Digital Stomatology & NHC Key Laboratory of Digital Stomatology & NMPA Key Laboratory for Dental Materials, No. 22, Zhongguancun Avenue South, Haidian District, Beijing 100081, China; (Y.W.); (X.W.); (Y.G.)
| |
Collapse
|
11
|
Bai X, Duan T, Shao J, Zhang Y, Xing G, Wang J, Liu X, Wang M, He Y, Wang H, Zhang ZY, Ni M, Zhou JY, Pan J. CBX3 promotes multidrug resistance by suppressing ferroptosis in colorectal carcinoma via the CUL3/NRF2/GPX2 axis. Oncogene 2025:10.1038/s41388-025-03337-9. [PMID: 40089640 DOI: 10.1038/s41388-025-03337-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2024] [Revised: 02/01/2025] [Accepted: 02/28/2025] [Indexed: 03/17/2025]
Abstract
Chemoresistance poses a significant challenge in colorectal cancer (CRC) treatment. However, the mechanisms underlying chemoresistance remain unclear. CBX3 promoted proliferation and metastasis in CRC. However, the role and mechanism of CBX3 in chemoresistance remain unknown. Therefore, we aimed to investigate the effects and mechanisms of CBX3 on multidrug resistance in CRC. Our studies showed that higher levels of CBX3 expression were associated with poor survival, especially in groups with progression following chemotherapy. CBX3 overexpression increased Irinotecan and Oxaliplatin resistance, whereas CBX3 knockdown suppressed multidrug resistance in CRC cells. Additionally, CBX3 inhibited ferroptosis associated with multidrug resistance, and the ferroptosis activators prevented CBX3 overexpression-mediated cell survival. RNA sequencing revealed that the NRF2-signaling pathway was involved in this process. CBX3-upregulated NRF2 protein expression by directly binding to the promoter of Cullin3 (CUL3) to suppress CUL3 transcription and CUL3-mediated NRF2 degradation. Moreover, Glutathione Peroxidase 2 (GPX2) was downstream of the CBX3-NRF2 pathway in CRC chemoresistance. ML385, an NRF2 inhibitor, suppressed GPX2 expression, and increased ferroptosis in PDX models. Our study identified CBX3/NRF2/GPX2 axis may be a novel signaling pathway that mediates multidrug resistance in CRC. This study proposes developing novel strategies for cancer treatment to overcome drug resistance in the future.
Collapse
Affiliation(s)
- Xiaoming Bai
- Department of Pathology, Nanjing Medical University, Nanjing, PR China
| | - Tinghong Duan
- Department of Pathology, Nanjing Medical University, Nanjing, PR China
- Department of Pathology, Sir Run Run Hospital, Nanjing Medical University, Nanjing, PR China
| | - Jiaofang Shao
- Department of Bioinformatics, Nanjing Medical University, Nanjing, PR China
| | - Yutong Zhang
- Department of Pathology, Nanjing Medical University, Nanjing, PR China
| | - Guangyuan Xing
- Department of Pathology, Nanjing Medical University, Nanjing, PR China
| | - Jie Wang
- Department of Pathology, Nanjing Medical University, Nanjing, PR China
| | - Xue Liu
- Department of Pathology, Nanjing Medical University, Nanjing, PR China
| | - Min Wang
- Department of Pathology, Nanjing Medical University, Nanjing, PR China
| | - Yuanqiao He
- Center of Laboratory Animal Science, Nanchang University, Nanchang, PR China
- Key Laboratory of New Drug Evaluation and Transformation of Jiangxi Province, Nanchang Royo Biotech Co., Ltd, Nanchang, PR China
| | - Hai Wang
- Department of Pathology, Sir Run Run Hospital, Nanjing Medical University, Nanjing, PR China
| | - Zhi-Yuan Zhang
- Department of Pathology, Nanjing Medical University, Nanjing, PR China
| | - Min Ni
- Department of Colorectum, Nanjing Hospital of Chinese Medicine affiliated to Nanjing University of Chinese Medicine, Nanjing, PR China.
| | - Jin-Yong Zhou
- Jiangsu Province Key Laboratory of Tumor Systems Biology and Chinese Medicine, Jiangsu Province Hospital of Chinese Medicine, Affiliated Hospital of Nanjing University of Chinese Medicine, Nanjing, PR China.
- Central Laboratory, Jiangsu Province Hospital of Chinese Medicine, Affiliated Hospital of Nanjing University of Chinese Medicine, Nanjing, PR China.
| | - Jinshun Pan
- Department of Biotherapy, The Second Affiliated Hospital of Nanjing Medical University, Nanjing, PR China.
| |
Collapse
|
12
|
Jia D, Huang W, Yin Q, Wang H, Wang Z, Zhang M, Gong W, Wang R, Zhu Y, Ji Y. Melatonin alleviates ferroptosis triggered by cadmium via regulating ferritinophagy and iron metabolism in spermatogonia. Sci Rep 2025; 15:8910. [PMID: 40087488 PMCID: PMC11909107 DOI: 10.1038/s41598-025-93822-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2024] [Accepted: 03/10/2025] [Indexed: 03/17/2025] Open
Abstract
Melatonin (Mel), a classical antioxidant, has the potential to mediate ferroptosis. Cadmium (Cd) poses a substantial threat to the male reproductive system, as it can induce testicular injury by triggering ferroptosis. The study aimed to explore the protective role and mechanism of Mel in Cd-induced ferroptosis in spermatogonia (spg). Our results demonstrated that Cd disrupted the mitochondrial ultrastructure and induced more autophagosomes in spg. Exposure to Cd resulted in a reduction of the mitochondrial membrane potential of the cells. The transcriptomics analysis revealed significant differences in gene expression associated with ferroptosis and autophagy. Mel could reverse the changes caused by Cd in the genes mentioned above. Furthermore, Cd increased cellular iron content and elevated reactive oxygen species levels, which induced oxidative stress in spg. Mel pretreatment reduced iron accumulation and oxidative damage caused by Cd exposure. Additional studies demonstrated that Cd exposure activated NCOA4-mediated ferritinophagy in spg. Mel pretreatment, as anticipated, inhibited the increased the mRNA and protein expression of ATG5, LC3B, and NCOA4 caused by Cd, ameliorated Cd-caused iron overload and oxidative stress, and protected spg from ferroptosis. Our study provides a therapeutic basis for the use of Mel to treat Cd-induced testicular injury.
Collapse
Affiliation(s)
- Didi Jia
- Department of Health Inspection and Quarantine, School of Public Health, Anhui Medical University, Hefei, Anhui, China
- The First Affiliated Hospital of Wannan Medical College, Wuhu, Anhui, China
| | - Wei Huang
- Department of Health Inspection and Quarantine, School of Public Health, Anhui Medical University, Hefei, Anhui, China
| | - Qizi Yin
- Department of Health Inspection and Quarantine, School of Public Health, Anhui Medical University, Hefei, Anhui, China
| | - Han Wang
- Department of Health Inspection and Quarantine, School of Public Health, Anhui Medical University, Hefei, Anhui, China
| | - Ziyue Wang
- Department of Health Inspection and Quarantine, School of Public Health, Anhui Medical University, Hefei, Anhui, China
| | - Mingming Zhang
- Department of Health Inspection and Quarantine, School of Public Health, Anhui Medical University, Hefei, Anhui, China
| | - Wenjing Gong
- Department of Health Inspection and Quarantine, School of Public Health, Anhui Medical University, Hefei, Anhui, China
| | - Rong Wang
- Department of Health Inspection and Quarantine, School of Public Health, Anhui Medical University, Hefei, Anhui, China.
| | - Yan Zhu
- The Second Affiliated Hospital of Anhui, University of Traditional Chinese Medicine, Hefei, Anhui, China.
| | - Yanli Ji
- Department of Health Inspection and Quarantine, School of Public Health, Anhui Medical University, Hefei, Anhui, China.
- Anhui Provincial Key Laboratory of Population Health and Aristogenics / Key Laboratory of Environmental Toxicology of Anhui Higher Education Institutes, Anhui Medical University, Hefei, Anhui, China.
| |
Collapse
|
13
|
Shen R, Yu X, Shi C, Fang Y, Dai C, Zhou Y. ACSL4 predicts rapid kidney function decline in patients with diabetic kidney disease. Front Endocrinol (Lausanne) 2025; 16:1499555. [PMID: 40182632 PMCID: PMC11966449 DOI: 10.3389/fendo.2025.1499555] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/21/2024] [Accepted: 02/20/2025] [Indexed: 04/05/2025] Open
Abstract
Background Ferroptosis of kidney tubular epithelial cells contributes to the pathogenesis of diabetic kidney disease (DKD). An increase in the enzyme long-chain fatty acid CoA ligase 4 (ACSL4) favors ferroptosis. However, the association between ACSL4 in renal tubules and kidney outcomes of patients with DKD is unknown. Methods To investigate the predictive property of ACSL4 in rapid kidney function decline in patients with DKD, a retrospective cohort of 72 biopsy-proven DKD patients were enrolled and followed up for a median of 23 months. Tubular expression levels of ACSL4 in the renal biopsy specimens from 72 DKD patients and 12 control subjects were measured using immunohistochemistry staining. The associations between the ACSL4 level and clinical characteristics as well as rapid kidney function decline defined as an estimated glomerular filtration rate (eGFR) slope ≤ -5 ml/min/1.73m2/year were analyzed. Results ACSL4 was mainly expressed in tubular epithelial cells. The tubular ACSL4 expression levels in the DKD patients were significantly higher than those in the control subjects. ACSL4 was positively correlated with proteinuria and negatively correlated with albumin and hemoglobin at the time of the renal biopsy. During the follow-up time period, the median eGFR slope of these DKD patients was -2.30 ml/min/1.73m2/year. ACSL4 was negatively correlated with the eGFR slope. The top tertile of baseline ACSL4 was found to identify the subjects with DKD who were at high risk for rapid kidney function decline and a similar significant relationship was found using ACSL4 levels as a continuous variable. Conclusions ACSL4 was associated with a rapid progression of DKD and may serve as a novel pathological biomarker.
Collapse
Affiliation(s)
| | | | | | | | - Chunsun Dai
- Center for Kidney Disease, The Second Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Yang Zhou
- Center for Kidney Disease, The Second Affiliated Hospital of Nanjing Medical University, Nanjing, China
| |
Collapse
|
14
|
Zheng L, Zhao B, Ji R, Zhang Z, Liu Y, Zhao X, Cai J, Qiao T. Berbamine attenuates hind limb ischemia-reperfusion injury by eliminating lipid ROS and inhibiting p65 nuclear translocation. Front Pharmacol 2025; 16:1509860. [PMID: 40135236 PMCID: PMC11933021 DOI: 10.3389/fphar.2025.1509860] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2024] [Accepted: 02/17/2025] [Indexed: 03/27/2025] Open
Abstract
This research aims to explore whether Berbamine (BBM) can mitigate tissue damage in mice resulting from hind limb muscle ischemia-reperfusion by scavenging lipid ROS and inhibiting p65 nuclear translocation. The hind limb ischemia-reperfusion (IR) injury model in mice was employed. Forty-eight mice (n = 12 per group) were randomly allocated into four groups: Sham group, IR group, IR + BBM (20 mg/kg) group, and IR + BBM (50 mg/kg) group. We observed that BBM pretreatment shielded against muscle damage and diminished levels of cell apoptosis compared to the control group. The mechanism likely involves reducing the movement of p65 into the nucleus and lessening the build-up of lipid ROS in muscle tissue. This action helps to decrease the release of substances that cause inflammation, ultimately reducing the inflammation in tissues that occurs as a result of hind limb IR. Our findings suggest that BBM has a protective impact on hindlimb ischemia-reperfusion injury, potentially due to its capacity to eliminate tissue lipid ROS and prevent p65 nuclear translocation.
Collapse
Affiliation(s)
- Lei Zheng
- Department of Vascular Surgery, Nanjing Drum Tower Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing, China
| | - Biao Zhao
- Department of Vascular Surgery, Nanjing Drum Tower Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing, China
| | - Run Ji
- Department of Vascular Surgery and Intervention, The Affiliated Suzhou Hospital of Nanjing Medical University, Suzhou, China
| | - Zhenxi Zhang
- Department of Vascular Surgery, Nanjing Drum Tower Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing, China
| | - Yutong Liu
- Department of Vascular Surgery, Nanjing Drum Tower Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing, China
| | - Xiaoqi Zhao
- Department of General Surgery, Nanjing Drum Tower Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing, China
| | - Jing Cai
- Department of Vascular Surgery, Nanjing Drum Tower Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing, China
| | - Tong Qiao
- Department of Vascular Surgery, Nanjing Drum Tower Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing, China
| |
Collapse
|
15
|
Gao XD, Ding JE, Xie JX, Xu HM. Epigenetic regulation of iron metabolism and ferroptosis in Parkinson's disease: Identifying novel epigenetic targets. Acta Pharmacol Sin 2025:10.1038/s41401-025-01499-6. [PMID: 40069488 DOI: 10.1038/s41401-025-01499-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/28/2024] [Accepted: 01/28/2025] [Indexed: 03/17/2025]
Abstract
Parkinson's disease (PD) is a neurodegenerative disease, and emerging evidence has shown that iron deposition, ferroptosis and epigenetic modifications are implicated in the pathogenesis of PD. However, the interplay among these factors in PD has not been fully understood. In this review, we provide an overview of the current research progress on iron metabolism, ferroptosis and epigenetic alterations associated with PD. Furthermore, we present new frontiers concerning various epigenetic modifications related to iron metabolism and ferroptosis that might contribute to the pathology of PD. Notably, epigenetic modifications of iron metabolism and ferroptosis as both diagnostic and therapeutic targets in PD have been discussed. This opens new avenues for the regulation of iron homeostasis and ferroptosis in PD from epigenetic perspectives, and provides evidence for their potential implications in the diagnosis and treatment of PD.
Collapse
Affiliation(s)
- Xiao-Die Gao
- Shandong Provincial Key Laboratory of Pathogenesis and Prevention of Brain Diseases and State Key Disciplines: Physiology, Department of Physiology, School of Basic Medicine, Qingdao University, Qingdao, 266071, China
| | - Jian-E Ding
- Shandong Provincial Key Laboratory of Pathogenesis and Prevention of Brain Diseases and State Key Disciplines: Physiology, Department of Physiology, School of Basic Medicine, Qingdao University, Qingdao, 266071, China
| | - Jun-Xia Xie
- Institute of Brain Science and Disease, Qingdao University, Qingdao, 266071, China.
| | - Hua-Min Xu
- Shandong Provincial Key Laboratory of Pathogenesis and Prevention of Brain Diseases and State Key Disciplines: Physiology, Department of Physiology, School of Basic Medicine, Qingdao University, Qingdao, 266071, China.
- Institute of Brain Science and Disease, Qingdao University, Qingdao, 266071, China.
| |
Collapse
|
16
|
Zhao Y, Zhuang Y, Shi J, Fan H, Lv Q, Guo X. Cathepsin B induces kidney diseases through different types of programmed cell death. Front Immunol 2025; 16:1535313. [PMID: 40129990 PMCID: PMC11930809 DOI: 10.3389/fimmu.2025.1535313] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2024] [Accepted: 02/25/2025] [Indexed: 03/26/2025] Open
Abstract
Cathepsin B (CTSB), a key cysteine protease, plays essential roles in physiological and pathological processes. As research progresses, interest in how CTSB triggers different types of programmed cell death (PCD) to induce the onset and development of diseases is increasing. Several recent studies suggest that different types of PCD mediated by CTSB play key roles in kidney diseases. In this review, we outline the fundamental mechanisms by which CTSB triggers different types of PCD in several kidney diseases and discuss the function of CTSB in various segments of the kidney. Moreover, we explore the possibilities and prospects of using CTSB as a therapeutic target for kidney diseases.
Collapse
Affiliation(s)
- Yunlong Zhao
- Institute of Disaster and Emergency Medicine, Tianjin University, Tianjin, China
- Key Laboratory for Disaster Medicine Technology, Tianjin University, Tianjin, China
- Wenzhou Safety (Emergency) Institute, Tianjin University, Wenzhou, China
| | - Yong Zhuang
- Institute of Disaster and Emergency Medicine, Tianjin University, Tianjin, China
- Key Laboratory for Disaster Medicine Technology, Tianjin University, Tianjin, China
- Wenzhou Safety (Emergency) Institute, Tianjin University, Wenzhou, China
| | - Jie Shi
- Institute of Disaster and Emergency Medicine, Tianjin University, Tianjin, China
- Key Laboratory for Disaster Medicine Technology, Tianjin University, Tianjin, China
- Wenzhou Safety (Emergency) Institute, Tianjin University, Wenzhou, China
| | - Haojun Fan
- Institute of Disaster and Emergency Medicine, Tianjin University, Tianjin, China
- Key Laboratory for Disaster Medicine Technology, Tianjin University, Tianjin, China
- Wenzhou Safety (Emergency) Institute, Tianjin University, Wenzhou, China
| | - Qi Lv
- Institute of Disaster and Emergency Medicine, Tianjin University, Tianjin, China
- Key Laboratory for Disaster Medicine Technology, Tianjin University, Tianjin, China
- Wenzhou Safety (Emergency) Institute, Tianjin University, Wenzhou, China
| | - Xiaoqin Guo
- Institute of Disaster and Emergency Medicine, Tianjin University, Tianjin, China
- Key Laboratory for Disaster Medicine Technology, Tianjin University, Tianjin, China
- Wenzhou Safety (Emergency) Institute, Tianjin University, Wenzhou, China
| |
Collapse
|
17
|
Zhang J, Wang F, Sun Z, Ye J, Chu H. Multidimensional applications of prussian blue-based nanoparticles in cancer immunotherapy. J Nanobiotechnology 2025; 23:161. [PMID: 40033359 DOI: 10.1186/s12951-025-03236-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2024] [Accepted: 02/16/2025] [Indexed: 03/05/2025] Open
Abstract
Immunotherapy holds notable progress in the treatment of cancer. However, the clinical therapeutic effect remains a significant challenge due to immune-related side effects, poor immunogenicity, and immunosuppressive microenvironment. Nanoparticles have emerged as a revolutionary tool to surmount these obstacles and amplify the potency of immunotherapeutic agents. Prussian blue nanoparticles (PBNPs) exhibit multi-dimensional immune function in cancer immunotherapy, including acting as a nanocarrier to deliver immunotherapeutic agents, as a photothermal agent to improve the efficacy of immunotherapy through photothermal therapy, as a nanozyme to regulate tumor microenvironment, and as an iron donor to induce immune events related to ferroptosis and tumor-associated macrophages polarization. This review focuses on the advances and applications of PBNPs in cancer immunotherapy. First, the biomedical functions of PBNPs are introduced. Then, based on the immune function of PBNPs, we systematically reviewed the multidimensional application of PBNPs in cancer immunotherapy. Finally, the challenges and future developments of PBNPs-based cancer immunotherapy are highlighted.
Collapse
Affiliation(s)
- Jiayi Zhang
- Translational Medicine Center, Beijing Chest Hospital, Capital Medical University, Beijing, 101149, China
- Beijing Key Laboratory in Drug Resistant Tuberculosis Research, Beijing Tuberculosis and Thoracic Tumor Research Institute, Beijing, 101149, China
| | - Fang Wang
- Translational Medicine Center, Beijing Chest Hospital, Capital Medical University, Beijing, 101149, China
- Beijing Key Laboratory in Drug Resistant Tuberculosis Research, Beijing Tuberculosis and Thoracic Tumor Research Institute, Beijing, 101149, China
| | - Zhaogang Sun
- Translational Medicine Center, Beijing Chest Hospital, Capital Medical University, Beijing, 101149, China
- Beijing Key Laboratory in Drug Resistant Tuberculosis Research, Beijing Tuberculosis and Thoracic Tumor Research Institute, Beijing, 101149, China
| | - Jun Ye
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, 100050, China.
| | - Hongqian Chu
- Translational Medicine Center, Beijing Chest Hospital, Capital Medical University, Beijing, 101149, China.
- Beijing Key Laboratory in Drug Resistant Tuberculosis Research, Beijing Tuberculosis and Thoracic Tumor Research Institute, Beijing, 101149, China.
| |
Collapse
|
18
|
Jin M, Wei L, Wang J, Shen Y, Gao L, Zhao F, Gao Q, Ma Y, Sun Y, Lin Y, Ji G, Cai P, Yan R. Formononetin: a review of its source, pharmacology, drug combination, toxicity, derivatives, and drug delivery systems. Front Pharmacol 2025; 16:1534798. [PMID: 40098623 PMCID: PMC11911920 DOI: 10.3389/fphar.2025.1534798] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2024] [Accepted: 01/31/2025] [Indexed: 03/19/2025] Open
Abstract
Formononetin (FMN) is a common natural metabolite that can be extracted and isolated from some common botanical drugs. In recent years, FMN has garnered increasing attention due to its beneficial biological activities. In this paper, we systematically summarize the sources of FMN and provide a comprehensive review of its pharmacological activities and molecular mechanisms, co-administration, toxicity, derivatives, and drug delivery systems in the last 5 years. The study results found that FMN has a wide range of pharmacological activities in neurological disorders, organ damage and cancer, showing great potential for clinical application and broad prospects. Researchers are exploring various types of delivery systems, including nanoparticle carriers, ligand modifications and polymer microspheres. These advanced delivery systems can enhance the stability of FMN, prolong its release time in vivo, and improve targeting, thereby optimizing its therapeutic efficacy and reducing side effects, and greatly improving its bioavailability. In conclusion, FMN is a natural metabolite with considerable research value, and its diverse biological activities make it a promising candidate for drug development and medical research.
Collapse
Affiliation(s)
- Min Jin
- College of Pharmacy, Shandong University of Traditional Chinese Medicine, Jinan, China
| | - Linfang Wei
- Affiliated Hospital of Integrated Traditional Chinese and Western Medicine, Nanjing University of Chinese Medicine, Nanjing, China
| | - Jianhua Wang
- Department of Thyroid and Breast Surgery, Affiliated Hospital of Integrated Traditional Chinese and Western Medicine, Nanjing University of Chinese Medicine, Nanjing, China
| | - Yuehong Shen
- School of Integrated Chinese and Western Medicine, Nanjing University of Chinese Medicine, Nanjing, China
| | - Lei Gao
- School of Integrated Chinese and Western Medicine, Nanjing University of Chinese Medicine, Nanjing, China
| | - Fan Zhao
- School of Integrated Chinese and Western Medicine, Nanjing University of Chinese Medicine, Nanjing, China
| | - Qianying Gao
- School of Integrated Chinese and Western Medicine, Nanjing University of Chinese Medicine, Nanjing, China
| | - Yifei Ma
- School of Integrated Chinese and Western Medicine, Nanjing University of Chinese Medicine, Nanjing, China
| | - Yongyan Sun
- School of Integrated Chinese and Western Medicine, Nanjing University of Chinese Medicine, Nanjing, China
| | - Ying Lin
- School of Integrated Chinese and Western Medicine, Nanjing University of Chinese Medicine, Nanjing, China
| | - Guanjie Ji
- Weifang Hospital of Traditional Chinese Medicine, Weifang, China
| | - Pingping Cai
- Department of Traditional Chinese Medicine, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, China
| | - Rugen Yan
- School of Integrated Chinese and Western Medicine, Nanjing University of Chinese Medicine, Nanjing, China
| |
Collapse
|
19
|
Zhao H, Huang Q, Liu YA, Wu W. Oncogenic KRAS Promotes Ferroptosis in Pancreatic Cancer Through Regulation of the Fosl1-Tfrc Axis. Pancreas 2025; 54:e235-e245. [PMID: 39626178 DOI: 10.1097/mpa.0000000000002426] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/27/2025]
Abstract
ABSTRACT Mutant KRAS activation occurs in most of pancreatic ductal adenocarcinoma (PDAC), which induce the sensitivity to ferroptosis of PDAC cells, but the underlying mechanism is still poorly understood. Here, we show how KRAS acts in signaling to activate transcription factor FOSL1, which promotes the expression of the iron uptake receptor TFRC. In PDAC cells, repression of TFRC by KRAS/FOSL1 signaling inhibited intracellular iron levels, thereby restricting the occurrence of ferroptosis. Furthermore, the KRAS/FOSL1/TFRC axis can make the PDAC cells vulnerable to alteration of the iron level in the tumor microenvironment. Our study highlights a pivotal mechanism of PDAC ferroptosis through iron metabolism and supports a new therapeutic strategy for PDAC with superior potential.
Collapse
Affiliation(s)
- Huijia Zhao
- From the Department of General Surgery, State Key Laboratory of Complex Severe and Rare Diseases, Peking Union Medical College Hospital, Chinese Academy of Medical Science and Peking Union Medical College, Beijing, China
| | | | | | | |
Collapse
|
20
|
Hu S, Liu B, Shang J, Guo Q, Lu T, Zhou X, Zhou X, Wang X. Targeting PTGDS Promotes ferroptosis in peripheral T cell lymphoma through regulating HMOX1-mediated iron metabolism. Br J Cancer 2025; 132:384-400. [PMID: 39706989 PMCID: PMC11833084 DOI: 10.1038/s41416-024-02919-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2024] [Revised: 10/30/2024] [Accepted: 11/22/2024] [Indexed: 12/23/2024] Open
Abstract
BACKGROUND Peripheral T cell lymphoma (PTCL) is characterized by high heterogeneity, strong aggressiveness, and extremely poor prognosis. Ferroptosis, a novel form of programmed cell death, has been involved in tumor development and targeting ferroptosis holds great potential for tumor therapy. METHODS Lentiviral transfection was performed to regulate gene expression, followed by Tandem mass tag (TMT)-mass spectrometry and RNA-sequencing. Tumor xenograft models were established for in vivo experiments. RESULTS High expression of prostaglandin D2 synthase (PTGDS) was closely associated with poor prognosis of PTCL patients. PTGDS knockdown and AT56 treatment significantly inhibited the progression of PTCL through regulating cell viability, proliferation, apoptosis, cell cycle and invasion in vitro and in vivo. We further revealed that targeting PTGDS promoted ferroptosis process and enhanced the sensitivity of PTCL cells to ferroptosis inducers Sorafenib in vitro and in vivo. Mechanically, PTGDS interacted with heme-degrading enzymes HMOX1, and targeting PTGDS increased the level of iron and induced ferroptosis in PTCL through promoting HMOX1-mediated heme catabolism and ferritin autophagy process. Through the construction of H25A mutation, the specific gene site of HMOX1 corresponding to its role was identified. CONCLUSIONS Taken together, our findings firstly identified that targeting PTGDS promotes the ferroptosis in PTCL through regulating HMOX1-mediated iron metabolism, and highlighted novel therapeutic strategies to improve the efficacy of ferroptosis-targeted therapy in PTCL patients.
Collapse
Affiliation(s)
- Shunfeng Hu
- Department of Hematology, Shandong Provincial Hospital, Shandong University, Jinan, Shandong, 250021, China
- Department of Hematology, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, Shandong, 250021, China
| | - Bingyu Liu
- Department of Hematology, Shandong Provincial Hospital, Shandong University, Jinan, Shandong, 250021, China
| | - Juanjuan Shang
- Department of Hematology, Shandong Provincial Hospital, Shandong University, Jinan, Shandong, 250021, China
| | - Qianqian Guo
- Department of Hematology, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, Shandong, 250021, China
| | - Tiange Lu
- Department of Hematology, Shandong Provincial Hospital, Shandong University, Jinan, Shandong, 250021, China
| | - Xiaoli Zhou
- Department of Hematology, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, Shandong, 250021, China
| | - Xiangxiang Zhou
- Department of Hematology, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, Shandong, 250021, China.
- Taishan Scholars Program of Shandong Province, Jinan, Shandong, 250021, China.
- Branch of National Clinical Research Center for Hematologic Diseases, Jinan, Shandong, 250021, China.
- National Clinical Research Center for Hematologic Diseases, the First Affiliated Hospital of Soochow University, Suzhou, 251006, China.
| | - Xin Wang
- Department of Hematology, Shandong Provincial Hospital, Shandong University, Jinan, Shandong, 250021, China.
- Department of Hematology, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, Shandong, 250021, China.
- Taishan Scholars Program of Shandong Province, Jinan, Shandong, 250021, China.
- Branch of National Clinical Research Center for Hematologic Diseases, Jinan, Shandong, 250021, China.
- National Clinical Research Center for Hematologic Diseases, the First Affiliated Hospital of Soochow University, Suzhou, 251006, China.
| |
Collapse
|
21
|
Xu W, Guan G, Yue R, Dong Z, Lei L, Kang H, Song G. Chemical Design of Magnetic Nanomaterials for Imaging and Ferroptosis-Based Cancer Therapy. Chem Rev 2025; 125:1897-1961. [PMID: 39951340 DOI: 10.1021/acs.chemrev.4c00546] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/27/2025]
Abstract
Ferroptosis, an iron-dependent form of regulatory cell death, has garnered significant interest as a therapeutic target in cancer treatment due to its distinct characteristics, including lipid peroxide generation and redox imbalance. However, its clinical application in oncology is currently limited by issues such as suboptimal efficacy and potential off-target effects. The advent of nanotechnology has provided a new way for overcoming these challenges through the development of activatable magnetic nanoparticles (MNPs). These innovative MNPs are designed to improve the specificity and efficacy of ferroptosis induction. This Review delves into the chemical and biological principles guiding the design of MNPs for ferroptosis-based cancer therapies and imaging-guided therapies. It discusses the regulatory mechanisms and biological attributes of ferroptosis, the chemical composition of MNPs, their mechanism of action as ferroptosis inducers, and their integration with advanced imaging techniques for therapeutic monitoring. Additionally, we examine the convergence of ferroptosis with other therapeutic strategies, including chemodynamic therapy, photothermal therapy, photodynamic therapy, sonodynamic therapy, and immunotherapy, within the context of nanomedicine strategies utilizing MNPs. This Review highlights the potential of these multifunctional MNPs to surpass the limitations of conventional treatments, envisioning a future of drug-resistance-free, precision diagnostics and ferroptosis-based therapies for treating recalcitrant cancers.
Collapse
Affiliation(s)
- Wei Xu
- School of Life Science and Technology, Shandong Second Medical University, Weifang 261053, PR China
- State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Hunan University, Changsha 410082, PR China
| | - Guoqiang Guan
- Key Laboratory of Diagnosis and Treatment of Severe Hepato-Pancreatic Diseases of Zhejiang Province, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou 325000, PR China
- State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Hunan University, Changsha 410082, PR China
| | - Renye Yue
- State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Hunan University, Changsha 410082, PR China
- School of Biomedical Engineering, Research and Engineering Center of Biomedical Materials, Anhui Medical University, Hefei 230032, PR China
| | - Zhe Dong
- State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Hunan University, Changsha 410082, PR China
| | - Lingling Lei
- State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Hunan University, Changsha 410082, PR China
- School of Pharmaceutical Sciences, Guizhou University, Guiyang 550025, PR China
| | - Heemin Kang
- Department of Materials Science and Engineering and College of Medicine, Korea University, 12 Seoul 02841, Republic of Korea
| | - Guosheng Song
- State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Hunan University, Changsha 410082, PR China
| |
Collapse
|
22
|
Wang X, Zhang T, Wang S, Shi H, Dong H, Huang Y, Lai W, Hu Y, Yue C. Bio-nanocomplexes impair iron homeostasis to induce non-canonical ferroptosis in cancer cells. J Nanobiotechnology 2025; 23:121. [PMID: 39972473 PMCID: PMC11837358 DOI: 10.1186/s12951-025-03117-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2024] [Accepted: 01/13/2025] [Indexed: 02/21/2025] Open
Abstract
The targeted elevation of the labile iron pool (LIP) represents the most direct and effective strategy to induce ferroptosis in cancer cells. However, the efficiency of increasing LIP to induce ferroptosis via iron supplementation is controversial due to the iron homeostasis between LIP and storage iron pool, leading to poor effects and serious safety concerns. In this study, a bio-nanocomplex named AbDA-Lim, composed of albumin, polydopamine, and limonene, is prepared to promote LIP and induce non-canonical ferroptosis in cancer cells by destroying the iron balance. Albumin avidity drives AbDA-Lim entering cancer cells. Subsequently, the released polydopamine enhances the expression of HMOX1 to degrade haem and facilitate the transformation of Fe (III) to Fe (II). Meanwhile, limonene reduces glutathione (GSH) levels via inhibiting CBS, thereby, triggering the release of Fe (II) into LIP from its GSH-bound storage state. The augmentation of LIP ultimately triggers non-canonical ferroptosis in cancer cells. Furthermore, the photothermal property of polydopamine augments the synergistic anti-tumor efficiency of AbDA-Lim by incorporating photothermal therapy. This study presents a distinctive, cascading, and biotic strategy for promoting LIP non-canonically to induce ferroptosis.
Collapse
Affiliation(s)
- Xin Wang
- Department of General Surgery, Center of Nutrition and Metabolism of Cancer, Beijing Shijitan Hospital, Key Laboratory of Cancer FSMP for State Market Regulation, Capital Medical University, Beijing International Science and Technology Cooperation Base for Cancer Metabolism and Nutrition, Beijing, 100038, China
| | - Tianyi Zhang
- State Key Laboratory of Pharmaceutical Biotechnology, Institute of Drug R&D, Jiangsu Key Laboratory for Nano Technology, Medical School, School of Life Science, Nanjing University, Nanjing, 210093, China
| | - Shuai Wang
- State Key Laboratory of Pharmaceutical Biotechnology, Institute of Drug R&D, Jiangsu Key Laboratory for Nano Technology, Medical School, School of Life Science, Nanjing University, Nanjing, 210093, China
| | - Hanping Shi
- Department of General Surgery, Center of Nutrition and Metabolism of Cancer, Beijing Shijitan Hospital, Key Laboratory of Cancer FSMP for State Market Regulation, Capital Medical University, Beijing International Science and Technology Cooperation Base for Cancer Metabolism and Nutrition, Beijing, 100038, China
| | - Hong Dong
- State Key Laboratory of Pharmaceutical Biotechnology, Institute of Drug R&D, Jiangsu Key Laboratory for Nano Technology, Medical School, School of Life Science, Nanjing University, Nanjing, 210093, China
| | - Yanning Huang
- Office of International Cooperation and Exchanges, Central South University, Changsha, 410008, China
| | - Wenjia Lai
- CAS Key Laboratory of Standardization and Measurement for Nanotechnology, National Center for Nanoscience and Technology, Beijing, 100190, China.
| | - Yiqiao Hu
- State Key Laboratory of Pharmaceutical Biotechnology, Institute of Drug R&D, Jiangsu Key Laboratory for Nano Technology, Medical School, School of Life Science, Nanjing University, Nanjing, 210093, China.
| | - Chunyan Yue
- State Key Laboratory of Pharmaceutical Biotechnology, Institute of Drug R&D, Jiangsu Key Laboratory for Nano Technology, Medical School, School of Life Science, Nanjing University, Nanjing, 210093, China.
| |
Collapse
|
23
|
Huang J, He K, Guo X, Wang J, Hu H, Zhang X, Guo N, Wang Y, Huang W, Huang R, Liu T, Jiang X, Zhang D, Li Q, Wei Z. T-2 toxin triggers immunotoxic effects in goats by inducing ferroptosis and neutrophil extracellular traps. Toxicol Appl Pharmacol 2025; 495:117232. [PMID: 39832565 DOI: 10.1016/j.taap.2025.117232] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2024] [Revised: 01/06/2025] [Accepted: 01/15/2025] [Indexed: 01/22/2025]
Abstract
T-2 toxin, a prevalent mycotoxin, represents a notable global public health risk. Neutrophil extracellular traps (NETs) and ferroptosis are involved in a variety of pathophysiological processes and are implicated in goat immunity. However, the impact of T-2 toxin on NETs release, ferroptosis, and their interplay have not been previously documented. In this study, neutrophils were stimulated with T-2 toxin for 4 h. The structure and mechanism of NETs were analyzed using immunofluorescence and Pico Green staining. The expressions of glutathione peroxidase 4 (GPX4) and ferritin (FT) was quantified by qRT-PCR and western blotting. The levels of ROS and lipid ROS were assessed using DCFH-DA and C11 BODIPY 581/591 probes, and cellular mitochondria Fe2+ were detected by using Mito-FerroGreen probe. Inhibitors were utilized to explore the interaction between these two processes. The results confirmed that the T-2 toxin stimulated the NETs production, characterized by a structure co-modified by citrullinated histones (citH3), neutrophil elastase (NE) and DNA. Notably, significant inhibition of NETs production by T-2 toxin was observed with the NOX inhibitor DPI (P < 0.001), the ERK inhibitor U0126 (P < 0.001), the TLR2 inhibitor C29 (P < 0.001), and the TLR4 inhibitor TLR4-IN-C34 (P < 0.001). T-2 toxin triggered ferroptosis in neutrophils by suppressing GPX4 and FT expression, elevating ROS and lipid ROS, and augmenting the concentration of mitochondrial Fe2+. The ferroptosis inhibitor Fer-1 could rescue this induction; however, Fer-1 was unable to inhibit NETs which is induced by T-2 toxin. Conversely, T-2 toxin effectively triggered the downregulation of GPX4, which was counteracted by DPI, U0126, C29, and C34. This research elucidates the immunotoxic mechanisms of T-2 toxin in goat neutrophils and offers a novel perspective on preventing and treating T-2 toxin.
Collapse
Affiliation(s)
- Jing Huang
- College of Veterinary Medicine, Southwest University, Chongqing 400715, China; School of Animal Science and Technology, Foshan University, Foshan 528225, Guangdong Province, China
| | - Kaifeng He
- College of Veterinary Medicine, Southwest University, Chongqing 400715, China
| | - Xin Guo
- College of Veterinary Medicine, Southwest University, Chongqing 400715, China
| | - Jiaxuan Wang
- College of Veterinary Medicine, Southwest University, Chongqing 400715, China
| | - Han Hu
- College of Veterinary Medicine, Southwest University, Chongqing 400715, China
| | - Xuhui Zhang
- College of Veterinary Medicine, Southwest University, Chongqing 400715, China
| | - Na Guo
- College of Veterinary Medicine, Southwest University, Chongqing 400715, China
| | - Yiwen Wang
- School of Animal Science and Technology, Foshan University, Foshan 528225, Guangdong Province, China
| | - Wenlong Huang
- School of Animal Science and Technology, Foshan University, Foshan 528225, Guangdong Province, China
| | - Rongsheng Huang
- School of Animal Science and Technology, Foshan University, Foshan 528225, Guangdong Province, China
| | - Tingting Liu
- School of Animal Science and Technology, Foshan University, Foshan 528225, Guangdong Province, China
| | - Xi Jiang
- School of Animal Science and Technology, Foshan University, Foshan 528225, Guangdong Province, China
| | - Deizhi Zhang
- College of Veterinary Medicine, Southwest University, Chongqing 400715, China
| | - Qianyong Li
- College of Veterinary Medicine, Southwest University, Chongqing 400715, China.
| | - Zhengkai Wei
- College of Veterinary Medicine, Southwest University, Chongqing 400715, China.
| |
Collapse
|
24
|
Zheng F, Lei JZ, Wang JX, Xu XY, Zhou B, Ge R, Dai M, Dong HK, Wu N, Li YH, Zhu GQ, Zhou YB. Crucial roles of asprosin in cisplatin-induced ferroptosis and acute kidney injury. Free Radic Biol Med 2025; 227:296-311. [PMID: 39653130 DOI: 10.1016/j.freeradbiomed.2024.12.024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/09/2024] [Revised: 12/04/2024] [Accepted: 12/05/2024] [Indexed: 12/13/2024]
Abstract
Ferroptosis is a type of non-apoptotic regulated cell death characterized by iron accumulation and lipid peroxidation. Cisplatin is an effective chemotherapy drug with several serious side effects including acute kidney injury (AKI). Asprosin is a peptide contributing to metabolism regulation and metabolic disorders. This study aimed to determine the role and mechanism of asprosin in AKI. Cisplatin was used to induce cell damage in mouse renal tubular epithelial (TCMK-1) cells and AKI in C57BL/6 mice. Cisplatin caused asprosin upregulation in cisplatin-treated TCMK-1 cells and mice. In TCMK-1 cells, asprosin overexpression led to iron overload and lipid peroxidation, while asprosin knockdown attenuated cisplatin-induced iron overload, lipid peroxidation and ferroptosis. Exogenous asprosin promoted cell damage and ferroptosis, which were attenuated by ferroptosis inhibitors. Asprosin-induced iron overload, lipid peroxidation, cell damage and SMAD1/5/8 phosphorylation were prevented by bone morphogenetic protein (BMP) type I receptor inhibitor. Integrin antagonist prevented asprosin-induced SMAD1/5/8 phosphorylation, and asprosin can specifically bind to integrin β3. Inhibition of integrin β3 reduced the asprosin-induced increases in Fe2+ and MDA levels. Asprosin knockdown relieved cisplatin-induced hepcidin upregulation, while hepcidin knockdown attenuated asprosin-induced iron overload, lipid peroxidation and ferroptosis. In cisplatin-induced AKI mice, specific knockdown of asprosin in the kidney not only attenuated renal dysfunction and damage, but also alleviated iron overload, lipid peroxidation and ferroptosis. These results indicated that excessively increased asprosin promotes TCMK-1 cells ferroptosis and damage via integrin β3/BMP/hepcidin-mediated iron overload and lipid peroxidation. Silencing of asprosin attenuates renal injury and dysfunction in cisplatin-induced AKI by inhibiting ferroptosis.
Collapse
Affiliation(s)
- Fen Zheng
- Key Laboratory of Targeted Intervention of Cardiovascular Disease, Collaborative Innovation Center for Cardiovascular Disease Translational Medicine, and Department of Physiology, Nanjing Medical University, Nanjing, Jiangsu, 211166, China; The Affiliated Taizhou People's Hospital of Nanjing Medical University, Taizhou School of Clinical Medicine, Nanjing Medical University, Nanjing, Jiangsu, 211166, China
| | - Jian-Zhen Lei
- Key Laboratory of Targeted Intervention of Cardiovascular Disease, Collaborative Innovation Center for Cardiovascular Disease Translational Medicine, and Department of Physiology, Nanjing Medical University, Nanjing, Jiangsu, 211166, China
| | - Jing-Xiao Wang
- Key Laboratory of Targeted Intervention of Cardiovascular Disease, Collaborative Innovation Center for Cardiovascular Disease Translational Medicine, and Department of Physiology, Nanjing Medical University, Nanjing, Jiangsu, 211166, China
| | - Xiao-Yu Xu
- Key Laboratory of Targeted Intervention of Cardiovascular Disease, Collaborative Innovation Center for Cardiovascular Disease Translational Medicine, and Department of Physiology, Nanjing Medical University, Nanjing, Jiangsu, 211166, China
| | - Bing Zhou
- Department of Pathology, Yijishan Hospital, The First Affiliated Hospital of Wannan Medical College, Wuhu, Anhui, 241001, China
| | - Rui Ge
- Key Laboratory of Targeted Intervention of Cardiovascular Disease, Collaborative Innovation Center for Cardiovascular Disease Translational Medicine, and Department of Physiology, Nanjing Medical University, Nanjing, Jiangsu, 211166, China
| | - Min Dai
- Key Laboratory of Targeted Intervention of Cardiovascular Disease, Collaborative Innovation Center for Cardiovascular Disease Translational Medicine, and Department of Physiology, Nanjing Medical University, Nanjing, Jiangsu, 211166, China
| | - Hong-Ke Dong
- Key Laboratory of Targeted Intervention of Cardiovascular Disease, Collaborative Innovation Center for Cardiovascular Disease Translational Medicine, and Department of Physiology, Nanjing Medical University, Nanjing, Jiangsu, 211166, China
| | - Nan Wu
- Key Laboratory of Targeted Intervention of Cardiovascular Disease, Collaborative Innovation Center for Cardiovascular Disease Translational Medicine, and Department of Physiology, Nanjing Medical University, Nanjing, Jiangsu, 211166, China
| | - Yue-Hua Li
- Department of Pathophysiology, Nanjing Medical University, Nanjing, Jiangsu, 211166, China
| | - Guo-Qing Zhu
- Key Laboratory of Targeted Intervention of Cardiovascular Disease, Collaborative Innovation Center for Cardiovascular Disease Translational Medicine, and Department of Physiology, Nanjing Medical University, Nanjing, Jiangsu, 211166, China.
| | - Ye-Bo Zhou
- Key Laboratory of Targeted Intervention of Cardiovascular Disease, Collaborative Innovation Center for Cardiovascular Disease Translational Medicine, and Department of Physiology, Nanjing Medical University, Nanjing, Jiangsu, 211166, China.
| |
Collapse
|
25
|
Cao M, Yang J, Ye H, Cui G, Li W, Zhang X. Leech granules inhibit ferroptosis and alleviate renal injury in mice with diabetic kidney disease. JOURNAL OF ETHNOPHARMACOLOGY 2025; 337:118995. [PMID: 39490713 DOI: 10.1016/j.jep.2024.118995] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/22/2024] [Revised: 10/08/2024] [Accepted: 10/23/2024] [Indexed: 11/05/2024]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE The underlying mechanisms of diabetic kidney disease (DKD) and effective treatment strategies remain unclear. DKD progression is closely associated with abnormal iron metabolism and ferroptosis in vivo. Leeches, used in traditional Chinese medicine for promoting blood circulation and resolving blood stasis, are utilized to treat diabetes and its associated complications. Leeches effectively antagonize oxidative stress injury and exert protective effects on renal function. However, whether leeches can inhibit ferroptosis by modulating oxidative stress and iron metabolism remains unclear. AIM OF THE STUDY To investigate the therapeutic potential of leech granules in DKD and, specifically, their effects on ferroptosis. MATERIALS AND METHODS We used a mouse model of DKD. The mice were treated with leech granules via gavage. Component identification and analysis of leech granules were performed using UPLC-MS, and efficacy was assessed by histopathology and analysis of blood glucose, lipids, and renal function. Additionally, the pharmacological mechanisms of leech granules were explored via proteomics, immunohistochemical staining, western blotting, and cell culture. RESULTS Proteomic analysis showed that iron metabolism was dysregulated and ferroptosis increased in DKD mice. Leech granules significantly reduced iron accumulation and renal pathological damage, decreased ROS levels, upregulated GSH levels, and inhibited ferroptosis in the kidneys of DKD mice. Furthermore, in vitro cellular experiments demonstrated that leech granules could inhibit erastin-induced ferroptosis and protect renal cells. CONCLUSIONS The regulation of renal iron metabolism and inhibition of ferroptosis mediates the therapeutic effect of leech granules on DKD. Leech granules represent a promising approach for DKD treatment.
Collapse
Affiliation(s)
- Minghui Cao
- Department of Integrated Traditional Chinese and Western Medicine, Peking University First Hospital, Institute of Integrated Traditional Chinese and Western Medicine, Peking University, Beijing, 100034, China
| | - Jinxia Yang
- Department of Integrated Traditional Chinese and Western Medicine, Peking University First Hospital, Institute of Integrated Traditional Chinese and Western Medicine, Peking University, Beijing, 100034, China
| | - Hui Ye
- Department of Integrated Traditional Chinese and Western Medicine, Peking University First Hospital, Institute of Integrated Traditional Chinese and Western Medicine, Peking University, Beijing, 100034, China
| | - Guanghui Cui
- Department of Integrated Traditional Chinese and Western Medicine, Peking University First Hospital, Institute of Integrated Traditional Chinese and Western Medicine, Peking University, Beijing, 100034, China
| | - Weiwei Li
- Department of Integrated Traditional Chinese and Western Medicine, Peking University First Hospital, Institute of Integrated Traditional Chinese and Western Medicine, Peking University, Beijing, 100034, China.
| | - Xuezhi Zhang
- Department of Integrated Traditional Chinese and Western Medicine, Peking University First Hospital, Institute of Integrated Traditional Chinese and Western Medicine, Peking University, Beijing, 100034, China.
| |
Collapse
|
26
|
Gong FH, Liu L, Wang X, Xiang Q, Yi X, Jiang DS. Ferroptosis induced by environmental pollutants and its health implications. Cell Death Discov 2025; 11:20. [PMID: 39856053 PMCID: PMC11759704 DOI: 10.1038/s41420-025-02305-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2024] [Revised: 12/19/2024] [Accepted: 01/16/2025] [Indexed: 01/27/2025] Open
Abstract
Environmental pollution represents a significant public health concern, with the potential health risks associated with environmental pollutants receiving considerable attention over an extended period. In recent years, a substantial body of research has been dedicated to this topic. Since the discovery of ferroptosis, an iron-dependent programmed cell death typically characterized by lipid peroxidation, in 2012, there have been significant advances in the study of its role and mechanism in various diseases. A growing number of recent studies have also demonstrated the involvement of ferroptosis in the damage caused to the organism by environmental pollutants, and the molecular mechanisms involved have been partially elucidated. The targeting of ferroptosis has been demonstrated to be an effective means of ameliorating the health damage caused by PM2.5, organic and inorganic pollutants, and ionizing radiation. This review begins by providing a summary of the most recent and important advances in ferroptosis. It then proceeds to offer a critical analysis of the health effects and molecular mechanisms of ferroptosis induced by various environmental pollutants. Furthermore, as is the case with all rapidly evolving research areas, there are numerous unanswered questions and challenges pertaining to environmental pollutant-induced ferroptosis, which we discuss in this review in an attempt to provide some directions and clues for future research in this field.
Collapse
Affiliation(s)
- Fu-Han Gong
- Department of Cardiology, Tongren People's Hospital, Tongren, Guizhou, China
| | - Liyuan Liu
- Department of Cardiology, Renmin Hospital of Wuhan University, Wuhan, Hubei, China
| | - Xuesheng Wang
- Department of Cardiology, Tongren People's Hospital, Tongren, Guizhou, China
| | - Qi Xiang
- Division of Cardiovascular Surgery, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Xin Yi
- Department of Cardiology, Renmin Hospital of Wuhan University, Wuhan, Hubei, China.
| | - Ding-Sheng Jiang
- Division of Cardiovascular Surgery, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China.
- Key Laboratory of Organ Transplantation, Ministry of Education; NHC Key Laboratory of Organ Transplantation; Key Laboratory of Organ Transplantation, Chinese Academy of Medical Sciences, Wuhan, Hubei, China.
| |
Collapse
|
27
|
Hu Y, Tang J, Hong H, Chen Y, Ye B, Gao Z, Zhu G, Wang L, Liu W, Wang Y. Ferroptosis in kidney disease: a bibliometric analysis from 2012 to 2024. Front Pharmacol 2025; 15:1507574. [PMID: 39872050 PMCID: PMC11769937 DOI: 10.3389/fphar.2024.1507574] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2024] [Accepted: 12/27/2024] [Indexed: 01/29/2025] Open
Abstract
Background and aims Ferroptosis, a novel concept of programmed cell death proposed in 2012, in kidney disease, has garnered significant attention based on evidence of abnormal iron deposition and lipid peroxidation damage in the kidney. Our study aim to examine the trends and future research directions in the field of ferroptosis in kidney disease, so as to further explore the target or treatment strategy for clinical treatment of kidney disease. Material and Methods A thorough survey using the Web of Science Core Collection, focusing on literature published between 2012 and 2024 examining the interaction between kidney disease and ferroptosis was conducted. VOSviewer, CiteSpace, and Biblioshiny were used for in-depth scientometric and visualized analyses. Results From 2012 to 2024, a total of 2,244 articles met the inclusion criteria for final analysis. The number of annual publications in this area of study showed a steady pattern at the beginning of the decade. The top 3 journals with the highest publication output were Renal Failure, Oxidative Medicine And Cellular Longevity, and Biomedicine & Pharmacotherapy. China and the United States had the highest number of publications. Central South University and Guangzhou Medical University as the most active and influential institutions. Documents and citation analysis suggested that Andreas Linkermann, Jolanta Malyszko, and Alberto Ortiz are active researchers, and the research by Scott J. Dixon and Jose Pedro Friedmann Angeli, as the most cited article, are more important drivers in the development of the field. Keywords associated with glutathione, lipid peroxidation, and nitric oxide had high frequency in the early studies. In recent years, however, there has been a shift towards biomarkers, inflammation and necrosis, which indicate current and future research directions in this area. Conclusion The global landscape of the ferroptosis research in kidney disease from 2012 to 2024 was presented. Basic research and mechanism exploration for renal fibrosis and chronic kidney disease may be a hot spot in the future.
Collapse
Affiliation(s)
- Yuxin Hu
- Dongzhimen Hospital, Beijing University of Chinese Medicine, Beijing, China
- Beijing University of Chinese Medicine, Beijing, China
- Renal Research Institution of Beijing University of Chinese Medicine, Dongzhimen Hospital Affiliated to Beijing University of Chinese Medicine, Beijing, China
| | - Jingyi Tang
- Dongzhimen Hospital, Beijing University of Chinese Medicine, Beijing, China
- Beijing University of Chinese Medicine, Beijing, China
- Renal Research Institution of Beijing University of Chinese Medicine, Dongzhimen Hospital Affiliated to Beijing University of Chinese Medicine, Beijing, China
| | - Hanzhang Hong
- Dongzhimen Hospital, Beijing University of Chinese Medicine, Beijing, China
- Beijing University of Chinese Medicine, Beijing, China
| | - Yexin Chen
- Dongzhimen Hospital, Beijing University of Chinese Medicine, Beijing, China
- Beijing University of Chinese Medicine, Beijing, China
| | - Beibei Ye
- Beijing University of Chinese Medicine, Beijing, China
| | - Ziheng Gao
- Dongzhimen Hospital, Beijing University of Chinese Medicine, Beijing, China
- Beijing University of Chinese Medicine, Beijing, China
| | | | - Lin Wang
- Dongzhimen Hospital, Beijing University of Chinese Medicine, Beijing, China
- Renal Research Institution of Beijing University of Chinese Medicine, Dongzhimen Hospital Affiliated to Beijing University of Chinese Medicine, Beijing, China
- Key Laboratory of Chinese Internal Medicine of Ministry of Education and Beijing, Dongzhimen Hospital Affiliated to Beijing University of Chinese Medicine, Beijing, China
| | - Weijing Liu
- Dongzhimen Hospital, Beijing University of Chinese Medicine, Beijing, China
- Renal Research Institution of Beijing University of Chinese Medicine, Dongzhimen Hospital Affiliated to Beijing University of Chinese Medicine, Beijing, China
- Key Laboratory of Chinese Internal Medicine of Ministry of Education and Beijing, Dongzhimen Hospital Affiliated to Beijing University of Chinese Medicine, Beijing, China
| | - Yaoxian Wang
- Dongzhimen Hospital, Beijing University of Chinese Medicine, Beijing, China
- Key Laboratory of Chinese Internal Medicine of Ministry of Education and Beijing, Dongzhimen Hospital Affiliated to Beijing University of Chinese Medicine, Beijing, China
- Henan University of Chinese Medicine, Zhengzhou, Henan, China
| |
Collapse
|
28
|
Chen Q, Song JX, Zhang Z, An JR, Gou YJ, Tan M, Zhao Y. Exploring Liraglutide's mechanism in reducing renal fibrosis: the Fsp1-CoQ10-NAD(P)H pathway. Sci Rep 2025; 15:1754. [PMID: 39799153 PMCID: PMC11724886 DOI: 10.1038/s41598-025-85658-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2024] [Accepted: 01/06/2025] [Indexed: 01/15/2025] Open
Abstract
Studies have confirmed that elevated glucose levels could lead to renal fibrosis through the process of ferroptosis. Liraglutide, a human glucagon-like peptide-1 (GLP-1) analogue, is a potential treatment option for diabetes. This study aimed to examine the potential of liraglutide (LIRA) in inhibiting ferroptosis and reducing high glucose-induced renal fibrotic injury in mice, and whether the Fsp1-CoQ10-NAD(P)H signal pathway is a mechanism for this effect. In our study, we used db/db mice to simulate Type 2 diabetes mellitus (T2DM). The mice were intraperitoneally injected with LIRA (200 µg/kg/d) daily for 6 weeks. Renal function, pathologic changes, lipid peroxidation levels, iron levels, and ferroptosis were assessed. First, LIRA ameliorated renal dysfunction and fibrosis in db/db mice. Second, LIRA inhibited lipid peroxidation by up-regulating T-SOD, GSH-Px, and GSH activities as well as down-regulating the levels of 8-OHDG, MDA, LPO, 4-HNE, 12-Lox, and NOX4 in db/db mice. In addition, LIRA attenuated iron deposition by decreasing the expression of TfR1 and increasing the expression of FPN1. Meanwhile, LIRA reduced high levels of high glucose-induced cell viability decline and intracellular lipid peroxidation. Furthermore, LIRA inhibited ferroptosis by adjusting the Fsp1-CoQ10-NAD(P)H pathway in vivo and in vitro. These findings suggested that LIRA attenuated kidney fibrosis injury in db/db mice by inhibiting ferroptosis through the Fsp1-CoQ10-NAD(P)H pathway.
Collapse
Affiliation(s)
- Qi Chen
- Hebei Technology Innovation Center of TCM Combined Hydrogen Medicine, Hebei University of Chinese Medicine, NO.3, Luqian Xingyuan Road, Shijiazhuang, 050200, Hebei Province, China
- College of Basic Medicine, Chengde Medical University, Chengde, 067000, China
| | - Ji-Xian Song
- Hebei Technology Innovation Center of TCM Combined Hydrogen Medicine, Hebei University of Chinese Medicine, NO.3, Luqian Xingyuan Road, Shijiazhuang, 050200, Hebei Province, China
| | - Zhi Zhang
- Hebei Technology Innovation Center of TCM Combined Hydrogen Medicine, Hebei University of Chinese Medicine, NO.3, Luqian Xingyuan Road, Shijiazhuang, 050200, Hebei Province, China
| | - Ji-Ren An
- Hebei Technology Innovation Center of TCM Combined Hydrogen Medicine, Hebei University of Chinese Medicine, NO.3, Luqian Xingyuan Road, Shijiazhuang, 050200, Hebei Province, China
| | - Yu-Jing Gou
- Hebei Technology Innovation Center of TCM Combined Hydrogen Medicine, Hebei University of Chinese Medicine, NO.3, Luqian Xingyuan Road, Shijiazhuang, 050200, Hebei Province, China
- College of Basic Medicine, Chengde Medical University, Chengde, 067000, China
| | - Miao Tan
- The Fourth Affiliated Hospital of Hebei Medical University, Shijiazhuang, 050011, China.
| | - Yashuo Zhao
- Hebei Technology Innovation Center of TCM Combined Hydrogen Medicine, Hebei University of Chinese Medicine, NO.3, Luqian Xingyuan Road, Shijiazhuang, 050200, Hebei Province, China.
| |
Collapse
|
29
|
Chen XY, Zhi LJ, Chen J, Li R, Long KL. Research hotspots and future trends in sepsis-associated acute kidney injury: a bibliometric and visualization analysis. Front Med (Lausanne) 2025; 11:1456535. [PMID: 39839617 PMCID: PMC11747655 DOI: 10.3389/fmed.2024.1456535] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2024] [Accepted: 11/29/2024] [Indexed: 01/23/2025] Open
Abstract
Objectives Sepsis-associated acute kidney injury (SA-AKI) commonly occurs in critically ill patients and is closely associated with adverse outcomes. A comprehensive analysis of the current research landscape in SA-AKI can help uncover trends and key issues in this field. This study aims to provide a scientific basis for research directions and critical issues through bibliometric analysis. Methods We searched all articles on SA-AKI indexed in the SCI-Expanded of WoSCC up to May 7, 2024, and conducted bibliometric and visual analyses using bibliometric software CiteSpace and VOSviewer. Results Over the past 20 years, there has been a steady increase in literature related to renal repair following AKI. China and the United States contribute over 60% of the publications, driving research in this field. The University of Pittsburgh is the most active academic institution, producing the highest number of publications. J. A. Kellum is both the most prolific and the most cited author in this area. "Shock" and "American Journal of Physiology-Renal Physiology" are the most popular journals, publishing the highest number of articles. Recent high-frequency keywords in this field include "septic AKI," "mitochondrial dysfunction," "inflammasome," "ferroptosis," and "macrophage." The terms "mitochondrial dysfunction," "inflammasome," "ferroptosis," and "macrophage" represent current research hotspots and potential targets in this area. Conclusion This is the first comprehensive bibliometric study to summarize the trends and advancements in SA-AKI research in recent years. These findings identify current research frontiers and hot topics, providing valuable insights for scholars studying SA-AKI.
Collapse
Affiliation(s)
- Xing-Yue Chen
- Department of Critical Care Medicine, Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Li-Jia Zhi
- Department of Critical Care Medicine, Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Jun Chen
- Department of Critical Care Medicine, Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Rong Li
- School of Clinical Medicine, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Kun-Lan Long
- Department of Critical Care Medicine, Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, China
| |
Collapse
|
30
|
Jian J, Wei J. Ferroptosis: A New Pathway in the Interaction between Gut Microbiota and Multiple Sclerosis. FRONT BIOSCI-LANDMRK 2025; 30:26265. [PMID: 39862079 DOI: 10.31083/fbl26265] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2024] [Revised: 10/28/2024] [Accepted: 11/01/2024] [Indexed: 01/27/2025]
Abstract
Multiple sclerosis (MS) is a chronic autoimmune disorder marked by neuroinflammation, demyelination, and neuronal damage. Recent advancements highlight a novel interaction between iron-dependent cell death, known as ferroptosis, and gut microbiota, which may significantly influences the pathophysiology of MS. Ferroptosis, driven by lipid peroxidation and tightly linked to iron metabolism, is a pivotal contributor to the oxidative stress observed in MS. Concurrently, the gut microbiota, known to affect systemic immunity and neurological health, emerges as an important regulator of iron homeostasis and inflammatory responses, thereby influencing ferroptotic pathways. This review investigates how gut microbiota dysbiosis and ferroptosis impact MS, emphasizing their potential as therapeutic targets. Through an integrated examination of mechanistic pathways and clinical evidence, we discuss how targeting these interactions could lead to novel interventions that not only modulate disease progression but also offer personalized treatment strategies based on gut microbiota profiling. This synthesis aims at deepening insights into the microbial contributions to ferroptosis and their implications in MS, setting the stage for future research and therapeutic exploration.
Collapse
Affiliation(s)
- Junjie Jian
- The First College of Clinical Medical Science, China Three Gorges University, 443000 Yichang, Hubei, China
- Department of Neurology, Yichang Central People's Hospital, 443003 Yichang, Hubei, China
| | - Jun Wei
- The First College of Clinical Medical Science, China Three Gorges University, 443000 Yichang, Hubei, China
- Department of Neurology, Yichang Central People's Hospital, 443003 Yichang, Hubei, China
| |
Collapse
|
31
|
Yang X, Wang X, Yang Z, Lu H. Iron-Mediated Regulation in Adipose Tissue: A Comprehensive Review of Metabolism and Physiological Effects. Curr Obes Rep 2025; 14:4. [PMID: 39753935 DOI: 10.1007/s13679-024-00600-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 12/11/2024] [Indexed: 01/14/2025]
Abstract
PURPOSE OF REVIEW Review the latest data regarding the intersection of adipose tissue (AT) and iron to meet the needs of AT metabolism and the progression of related diseases. RECENT FINDINGS Iron is involved in fundamental biological metabolic processes and is precisely fine-tuned within the body to maintain cellular, tissue and even systemic iron homeostasis. AT not only serves as an energy storage depot but also represents the largest endocrine organ in the human body, maintaining systemic metabolic homeostasis. It is involved in physiological processes such as energy storage, insulin sensitivity regulation and lipid metabolism. As a unique iron-sensing tissue, AT expresses related regulatory factors, including the classic hepcidin, ferroportin (FPN), iron regulatory protein/iron responsive element (IRP/IRE) and ferritin. Consequently, the interaction between AT and iron is intricately intertwined. Imbalance of iron homeostasis produces the potential risks of steatosis, impaired glucose tolerance and insulin resistance, leading to AT dysfunction diseases, including obesity, type 2 diabetes and metabolic dysfunction-associated steatotic liver disease (MASLD). Despite the role of AT iron has garnered increasing attention in recent years, a comprehensive review that systematically organizes the connection between iron and AT remains lacking. Given the necessity of iron homeostasis, emphasizing its potential impact on AT function and metabolism regulation provides valuable insights into physiological effects such as adipocyte differentiation and thermogenesis. Futhermore, regulators including adipokines, mitochondria and macrophages have been mentioned, along with analyzing the novel perspective of iron as a key mediator influencing the fat-gut crosstalk.
Collapse
Affiliation(s)
- Xinyu Yang
- Department of Endocrinology and Metabolism, Zhuhai People's Hospital (The Affiliated Hospital of Beijing Institute of Technology, Zhuhai Clinical Medical College of Jinan University), Zhuhai, China
| | - Xianghong Wang
- Department of Endocrinology and Metabolism, Zhuhai People's Hospital (The Affiliated Hospital of Beijing Institute of Technology, Zhuhai Clinical Medical College of Jinan University), Zhuhai, China
| | - Zhe Yang
- Department of Endocrinology and Metabolism, Zhuhai People's Hospital (The Affiliated Hospital of Beijing Institute of Technology, Zhuhai Clinical Medical College of Jinan University), Zhuhai, China
| | - Hongyun Lu
- Department of Endocrinology and Metabolism, Zhuhai People's Hospital (The Affiliated Hospital of Beijing Institute of Technology, Zhuhai Clinical Medical College of Jinan University), Zhuhai, China.
| |
Collapse
|
32
|
Chen L, Hu P, Fang W, Wu T, Shi J. Nebulized Immunotherapy of Orthotopic Lung Cancer by Mild Magnetothermal-Based Innate Immunity Activations. Angew Chem Int Ed Engl 2025; 64:e202413127. [PMID: 39343740 DOI: 10.1002/anie.202413127] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2024] [Revised: 09/08/2024] [Accepted: 09/27/2024] [Indexed: 10/01/2024]
Abstract
Advances in adaptive immunity have greatly contributed to the development of cancer immunotherapy. However, its over-low efficacy and insufficient invasion of immune cells in the tumor tissue, and safety problems caused by cytokine storm, have seriously impeded further clinical application for solid tumor immunotherapy. Notably, the immune microenvironment of the lungs is naturally enriched with alveolar macrophages (AMs). Herein, we introduce a novel nebulized magnetothermal immunotherapy strategy to treat orthotopic lung cancer by using magnetothermal nanomaterial (Zn-CoFe2O4@Zn-MnFe2O4-PEG, named ZCMP), which can release iron ions via an acid/thermal-catalytic reaction to maximize the use of lung's immune environment through the cascade activations of AMs and natural killer (NK) cells. Nebulized administration greatly enhance drug bioavailability by localized drug accumulation at the lesion site. Upon mild magnetic hyperthermia, the released iron ions catalyze endogenous H2O2 decomposition to produce reactive oxygen species (ROS), which triggers the M1 polarization of AMs, and the resultant inflammatory cytokine IFN-β, IL-1β and IL-15 releases to activate c-Jun, STAT5 and GZMB related signaling pathways, promoting NK cells proliferation and activation. This innovative strategy optimally utilizes the lung's immune environment and shows excellent immunotherapeutic outcomes against orthotopic lung cancer.
Collapse
Affiliation(s)
- Lizhu Chen
- School of Chemical Science and Engineering, Institute of Advanced Study, Shanghai Key Laboratory of Chemical Assessment and Sustainability, Shanghai Tenth People's Hospital, School of Medicine, Tongji University, 200092, Shanghai, P.R. China
| | - Ping Hu
- School of Chemical Science and Engineering, Institute of Advanced Study, Shanghai Key Laboratory of Chemical Assessment and Sustainability, Shanghai Tenth People's Hospital, School of Medicine, Tongji University, 200092, Shanghai, P.R. China
- State Key Laboratory of High Performance Ceramics and Superfine Microstructures, Shanghai Institute of Ceramics, Chinese Academy of Sciences, 200050, Shanghai, P.R. China
| | - Wenming Fang
- State Key Laboratory of High Performance Ceramics and Superfine Microstructures, Shanghai Institute of Ceramics, Chinese Academy of Sciences, 200050, Shanghai, P.R. China
| | - Tong Wu
- School of Chemical Science and Engineering, Institute of Advanced Study, Shanghai Key Laboratory of Chemical Assessment and Sustainability, Shanghai Tenth People's Hospital, School of Medicine, Tongji University, 200092, Shanghai, P.R. China
| | - Jianlin Shi
- School of Chemical Science and Engineering, Institute of Advanced Study, Shanghai Key Laboratory of Chemical Assessment and Sustainability, Shanghai Tenth People's Hospital, School of Medicine, Tongji University, 200092, Shanghai, P.R. China
- State Key Laboratory of High Performance Ceramics and Superfine Microstructures, Shanghai Institute of Ceramics, Chinese Academy of Sciences, 200050, Shanghai, P.R. China
| |
Collapse
|
33
|
Zhang J, Han S, Zhao Z, Zhou C, Chen H, Hou J, Wu J. Ultrasmall Black Phosphorus Quantum Dots with Robust Antioxidative Properties for Acute Kidney and Liver Injury Therapy. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2025; 21:e2407543. [PMID: 39513198 DOI: 10.1002/smll.202407543] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/26/2024] [Revised: 10/21/2024] [Indexed: 11/15/2024]
Abstract
Acute organ injuries, such as acute kidney injury (AKI) and acute liver injury (ALI), usually present high morbidity and mortality in patients. However, the current clinical treatments remain limited, especially the lack of effective drug-based treatment. Since these acute injuries are often associated with reactive oxygen species (ROS) overproduction, it is a promising strategy to develop therapeutic agents with potent ROS scavenging ability and excellent biocompatibility for efficient antioxidation therapy. Black phosphorus quantum dots (BPQDs), low-dimensional nanomaterials prepared through a straightforward one-step method and capable of complete controllable biodegradation, offer significant potential. This study comprehensively explores the extensive free-radical scavenging capabilities of BPQDs, underscoring their immense potential in treating ROS-related organ injuries. BPQDs could simultaneously achieve radical scavenging of DPPH, ABTS·, OH·, and O2 -· and exhibit excellent cytoprotective effects against ROS-mediated damage even at extremely low dosages. Besides, the ultrasmall size of BPQDs (≈3-5 nm) allows them to effectively penetrate the glomerular filtration barrier (≈6 nm), significantly improving the symptoms of AKI and ALI in vivo. The therapeutic efficacy and great biocompatibility of BPQDs facilitate the clinical management of ROS-related diseases, which will broaden the applications of QDs in the field of biomedicine.
Collapse
Affiliation(s)
- Jingyang Zhang
- Department of Nephrology, Guangzhou First People's Hospital, School of Medicine, South China University of Technology, Guangzhou, 510180, China
- Smart Manufacturing Thrust, The Hong Kong University of Science and Technology (Guangzhou), Guangzhou, Guangdong, 511400, China
| | - Shuyan Han
- Department of Nephrology, Center of Kidney and Urology, The Seventh Affiliated Hospital, Sun Yat-sen University, Shenzhen, 518107, China
| | - Zixuan Zhao
- Bioscience and Biomedical Engineering Thrust, The Hong Kong University of Science and Technology (Guangzhou), Nansha, Guangzhou, Guangdong, 511400, China
| | - Chufan Zhou
- School of Life Sciences and Bio-Pharmaceutics, Guangdong Pharmaceutics University, Guangzhou, 510006, China
| | - Haolin Chen
- Department of Anesthesiology, General Hospital of Southern Theater Command of People's Liberation Army, Guangzhou, 510010, China
| | - Jingtao Hou
- Department of Nephrology, Guangzhou First People's Hospital, School of Medicine, South China University of Technology, Guangzhou, 510180, China
| | - Jun Wu
- Bioscience and Biomedical Engineering Thrust, The Hong Kong University of Science and Technology (Guangzhou), Nansha, Guangzhou, Guangdong, 511400, China
- Division of Life Science, The Hong Kong University of Science and Technology, Hong Kong SAR, 999077, China
| |
Collapse
|
34
|
Talha M, Ali MH, Hurjkaliani S, Rahmat ZS, Sadia H, Hasibuzzaman MA, Uzair AUQ. Beyond blood transfusions: exploring iron chelation therapies in transfusion-dependent beta-thalassemia. Ann Med Surg (Lond) 2025; 87:13-17. [PMID: 40109613 PMCID: PMC11918563 DOI: 10.1097/ms9.0000000000002796] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2024] [Accepted: 11/20/2024] [Indexed: 03/22/2025] Open
Abstract
Introduction Abnormal hemoglobin, or hemoglobinopathy, affects about 7% of the global population. Major hemoglobinopathies like beta-thalassemia and sickle cell disease require regular blood transfusions, leading to chronic iron overload. This review examines the efficacy and safety of deferiprone, an oral iron chelator, in managing iron overload in pediatric patients with transfusion-dependent conditions. Methods Data were sourced from PubMed, Google Scholar, and relevant articles, focusing on randomized controlled trials (RCTs) published between 2010 and 2023. The search terms included "deferiprone," "iron chelation," "transfusion," "iron overload," "hemoglobinopathies," and "thalassemia." Three RCTs met the inclusion criteria, involving 521 pediatric patients. Results The START trial demonstrated that early-start deferiprone significantly reduced iron load compared to placebo, with no severe adverse events. The DEEP-2 study found deferiprone non-inferior to deferasirox in terms of efficacy and safety. Another trial highlighted the benefits of early deferiprone therapy in delaying iron overload symptoms without serious side effects. Common adverse effects included pyrexia, nasopharyngitis, and decreased neutrophil count, but no significant differences in growth parameters, creatinine, or prolactin levels were observed. Conclusion Deferiprone shows significant promise in managing iron overload in pediatric patients, with comparable effectiveness to existing therapies and a favorable safety profile. Its oral administration is advantageous for young children. However, long-term studies are needed to fully understand its safety and efficacy. Addressing challenges such as patient compliance and adverse effects through education, personalized medicine, and advanced monitoring techniques can further improve treatment outcomes for beta-thalassemia patients.
Collapse
Affiliation(s)
- Muhammad Talha
- Department of Pediatrics, Shaikh Khalifa Bin Zayed Al-Nahyan Medical and Dental College, Lahore, Pakistan
| | - Mohammad Haris Ali
- Department of Pediatrics, Shaikh Khalifa Bin Zayed Al-Nahyan Medical and Dental College, Lahore, Pakistan
| | - Sonia Hurjkaliani
- Department of Pediatrics, Dow University of Health Sciences, Karachi, Pakistan
| | | | - Haleema Sadia
- Department of Pediatrics, Karachi Institute of Medical Sciences, Karachi, Pakistan
| | - Md Al Hasibuzzaman
- Institute of Nutrition and Food Science, University of Dhaka, Dhaka, Bangladesh
| | - Ahsan Ul Qayyum Uzair
- Department of Pediatrics, Shaikh Khalifa Bin Zayed Al-Nahyan Medical and Dental College, Lahore, Pakistan
| |
Collapse
|
35
|
He S, Ye H, Wang Q, He Y, Liu X, Song J, Zhao C, Hu Y, Luo L, Guo Y, Liu Q. Ginsenoside Rb1 targets to HO-1 to improve sepsis by inhibiting ferroptosis. Free Radic Biol Med 2025; 226:13-28. [PMID: 39510452 DOI: 10.1016/j.freeradbiomed.2024.11.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/26/2024] [Revised: 11/02/2024] [Accepted: 11/04/2024] [Indexed: 11/15/2024]
Abstract
Sepsis remains the leading cause of mortality among Intensive Care Unit (ICU) patients, with its pathogenesis and treatment not yet fully elucidated. Ferroptosis plays a critical role in sepsis, suggesting that ferroptosis-related genes may serve as potential therapeutic targets. This study aims to identify key ferroptosis-related genes in sepsis and explore targeted therapeutics. Through differential expression analysis of the GSE13940 and GSE26440 datasets, heme oxygenase-1 (HO-1) was identified as a hub gene associated with ferroptosis. Additionally, single-cell analysis of the GSE175453 dataset revealed a significant upregulation of HO-1 expression in monocyte lineages during sepsis. The cecal ligation and puncture (CLP) method was employed to induce sepsis in a mouse model, lung and intestinal tissues exhibited typical ferroptosis characteristics, with a significant increase in HO-1 expression. However, treatment with the HO-1 inhibitor zinc protoporphyrin (ZNPP) significantly ameliorated ferroptosis in CLP-induced lung and intestinal tissues, as well as in lipopolysaccharide (LPS)-induced THP-1 cells. Subsequently, molecular docking, surface plasmon resonance (SPR), and microscale thermophoresis (MST) experiments demonstrated that ginsenoside Rb1 specifically targets HO-1, identifying K18A as the key binding residue. Finally, experiments conducted both in vitro and in vivo verified that ginsenoside Rb1 significantly reduces HO-1 expression, inhibits ferroptosis in sepsis-induced lung, and intestinal tissues and THP-1 cells, and improves sepsis-induced pulmonary and intestinal damage. In conclusion, this study identifies HO-1 as a key ferroptosis target in sepsis and suggests ginsenoside Rb1 as a potential novel HO-1 inhibitor for the therapeutic approach of sepsis-induced organ dysfunction.
Collapse
Affiliation(s)
- Shasha He
- Beijing Hospital of Traditional Chinese Medicine, Capital Medical University, Beijing, 100010, China; Beijing Institute of Traditional Chinese Medicine, Beijing, 100010, China; Beijing Key Laboratory of Basic Research with Traditional Chinese Medicine on Infectious Diseases, Beijing, 100010, China
| | - Haoran Ye
- Beijing Hospital of Traditional Chinese Medicine, Capital Medical University, Beijing, 100010, China; Beijing Institute of Traditional Chinese Medicine, Beijing, 100010, China; Beijing Key Laboratory of Basic Research with Traditional Chinese Medicine on Infectious Diseases, Beijing, 100010, China
| | - Qian Wang
- State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences, Peking University, Beijing, 100191, China
| | - Yidong He
- The Marine Biomedical Research Institute of Guangdong Zhanjiang, School of Ocean and Tropical Medicine, Guangdong Medical University, Zhanjiang, 524023, China
| | - Xin Liu
- Beijing Hospital of Traditional Chinese Medicine, Capital Medical University, Beijing, 100010, China; Beijing Institute of Traditional Chinese Medicine, Beijing, 100010, China
| | - Jin Song
- Beijing Hospital of Traditional Chinese Medicine, Capital Medical University, Beijing, 100010, China; Beijing Institute of Traditional Chinese Medicine, Beijing, 100010, China
| | - Chunxia Zhao
- Beijing Hospital of Traditional Chinese Medicine, Capital Medical University, Beijing, 100010, China; Beijing Institute of Traditional Chinese Medicine, Beijing, 100010, China; Beijing Key Laboratory of Basic Research with Traditional Chinese Medicine on Infectious Diseases, Beijing, 100010, China
| | - Yahui Hu
- Beijing Hospital of Traditional Chinese Medicine, Capital Medical University, Beijing, 100010, China; Beijing Institute of Traditional Chinese Medicine, Beijing, 100010, China; Beijing Key Laboratory of Basic Research with Traditional Chinese Medicine on Infectious Diseases, Beijing, 100010, China
| | - Lianxiang Luo
- The Marine Biomedical Research Institute of Guangdong Zhanjiang, School of Ocean and Tropical Medicine, Guangdong Medical University, Zhanjiang, 524023, China.
| | - Yuhong Guo
- Beijing Hospital of Traditional Chinese Medicine, Capital Medical University, Beijing, 100010, China; Beijing Institute of Traditional Chinese Medicine, Beijing, 100010, China; Beijing Key Laboratory of Basic Research with Traditional Chinese Medicine on Infectious Diseases, Beijing, 100010, China.
| | - Qingquan Liu
- Beijing Hospital of Traditional Chinese Medicine, Capital Medical University, Beijing, 100010, China; Beijing Institute of Traditional Chinese Medicine, Beijing, 100010, China; Beijing Key Laboratory of Basic Research with Traditional Chinese Medicine on Infectious Diseases, Beijing, 100010, China.
| |
Collapse
|
36
|
Li Q, Zheng Y, Zhao J, Wei X, Shi Z, Fan H, Ge C, Xu M, Tan J. Radish red attenuates chronic kidney disease in obese mice through repressing oxidative stress and ferroptosis via Nrf2 signaling improvement. Int Immunopharmacol 2024; 143:113385. [PMID: 39549542 DOI: 10.1016/j.intimp.2024.113385] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2024] [Revised: 10/03/2024] [Accepted: 10/08/2024] [Indexed: 11/18/2024]
Abstract
Chronic kidney disease (CKD) presents a significant public health concern, with obesity being a prominent contributing factor to kidney disorders by inducing oxidative stress, lipotoxicity, and tubular cell injury. Natural anthocyanins extracted from red radishes (Raphanus sativus L.) exert antioxidant and anti-apoptotic functions. This study aims to employ a novel natural pigment anthocyanin, referred to as radish red (RR) isolated from red radishes, to alleviate obesity-related metabolic disturbances and kidney impairment in a CKD mouse model induced by high-fat and high-fructose diets (HFFD). The in vitro study initially demonstrated that RR treatment significantly mitigated the palmitate acid (PA)-induced injury and cytotoxicity in human tubular epithelial HK2 cells. Subsequently, RR supplementation notably improved obesity and associated metabolic dysfunctions in mice caused by HFFD. Abnormal renal function indices including serum creatinine, blood urea nitrogen (BUN), uric acid (UA), urine protein, albuminuria and urine albumin-to-creatinine ratio (UACR) were detected in HFFD-fed mice, which were effectively alleviated by RR treatment. Histologically, renal tubular cell injury, lipid deposition, tubular dilatation, and renal fibrosis induced by HFFD were markedly improved after RR administration in mice. Furthermore, RR treatment significantly alleviated oxidative stress in HFFD-fed mice, as evidenced by the decreased renal reactive oxygen species (ROS) production, 4-HNE, and NOX4 expression levels. Anti-oxidants such as superoxide dismutase-1 (SOD1), NAD (P) H: quinone oxidoreductase (NQO1), heme oxygenase-1 (HO-1) and glutamate cysteine ligase (GCLC) were highly upregulated in kidney of HFFD-fed mice with RR consumption through improving NFE2-related factor 2 (Nrf2) signaling activation. Furthermore, ferroptosis was identified in the kidneys of HFFD-fed mice, evidenced by the elevated levels of malondialdehyde (MDA), iron content, and lipid peroxidation, along with the decreased expression of glutathione peroxidase 4 (GPX4) and solute carrier family 7 member 11 (SLC7A11). These occurrences were significantly mitigated following RR treatment. Mechanistically, we further discovered that the suppressive effects of RR in restricting oxidative stress, ferroptosis, lipid accumulation, and injury of tubular epithelial cells induced by PA were significantly counteracted by Nrf2 knockdown. Collectively, our results demonstrated that dietary supplementation with RR could potentially serve as an efficacious therapeutic modality for the management of obesity-related CKD progression by enhancing Nrf2 activation to impede oxidative stress and ferroptosis.
Collapse
Affiliation(s)
- Qiang Li
- Chongqing Key Laboratory of Medicinal Resources in the Three Gorges Reservoir Region, School of Biological and Chemical Engineering, Chongqing University of Education, Chongqing 400067, PR China; College of Modern Health Industry, Chongqing University of Education, Chongqing 400067, PR China
| | - Yanbin Zheng
- Chongqing Key Laboratory of Medicinal Resources in the Three Gorges Reservoir Region, School of Biological and Chemical Engineering, Chongqing University of Education, Chongqing 400067, PR China; College of Modern Health Industry, Chongqing University of Education, Chongqing 400067, PR China
| | - Jianyu Zhao
- Chongqing Key Laboratory of Medicinal Resources in the Three Gorges Reservoir Region, School of Biological and Chemical Engineering, Chongqing University of Education, Chongqing 400067, PR China; College of Modern Health Industry, Chongqing University of Education, Chongqing 400067, PR China
| | - Xinyi Wei
- Chongqing Key Laboratory of Medicinal Resources in the Three Gorges Reservoir Region, School of Biological and Chemical Engineering, Chongqing University of Education, Chongqing 400067, PR China; College of Modern Health Industry, Chongqing University of Education, Chongqing 400067, PR China
| | - Zongxin Shi
- Chongqing Key Laboratory of Medicinal Resources in the Three Gorges Reservoir Region, School of Biological and Chemical Engineering, Chongqing University of Education, Chongqing 400067, PR China; College of Modern Health Industry, Chongqing University of Education, Chongqing 400067, PR China
| | - Haonan Fan
- Chongqing Key Laboratory of Medicinal Resources in the Three Gorges Reservoir Region, School of Biological and Chemical Engineering, Chongqing University of Education, Chongqing 400067, PR China; College of Modern Health Industry, Chongqing University of Education, Chongqing 400067, PR China
| | - Chenxu Ge
- Chongqing Key Laboratory of Medicinal Resources in the Three Gorges Reservoir Region, School of Biological and Chemical Engineering, Chongqing University of Education, Chongqing 400067, PR China; College of Modern Health Industry, Chongqing University of Education, Chongqing 400067, PR China; Key Laboratory of Biorheological Science and Technology (Chongqing University), Ministry of Education, College of Bioengineering, Chongqing University, Chongqing 400030, PR China.
| | - Minxuan Xu
- Chongqing Key Laboratory of Medicinal Resources in the Three Gorges Reservoir Region, School of Biological and Chemical Engineering, Chongqing University of Education, Chongqing 400067, PR China; College of Modern Health Industry, Chongqing University of Education, Chongqing 400067, PR China; Key Laboratory of Biorheological Science and Technology (Chongqing University), Ministry of Education, College of Bioengineering, Chongqing University, Chongqing 400030, PR China.
| | - Jun Tan
- Chongqing Key Laboratory of Medicinal Resources in the Three Gorges Reservoir Region, School of Biological and Chemical Engineering, Chongqing University of Education, Chongqing 400067, PR China; College of Modern Health Industry, Chongqing University of Education, Chongqing 400067, PR China; Key Laboratory of Biorheological Science and Technology (Chongqing University), Ministry of Education, College of Bioengineering, Chongqing University, Chongqing 400030, PR China.
| |
Collapse
|
37
|
Zhang G, Wu K, Jiang X, Gao Y, Ding D, Wang H, Yu C, Wang X, Jia N, Zhu L. The role of ferroptosis-related non-coding RNA in liver fibrosis. Front Cell Dev Biol 2024; 12:1517401. [PMID: 39717848 PMCID: PMC11663870 DOI: 10.3389/fcell.2024.1517401] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2024] [Accepted: 11/25/2024] [Indexed: 12/25/2024] Open
Abstract
Liver fibrosis represents a reversible pathophysiological process, caused by chronic inflammation stemming from hepatocyte damage. It delineates the initial stage in the progression of chronic liver disease. This pathological progression is characterized by the excessive accumulation of the extracellular matrix (ECM), which leads to significant structural disruption and ultimately impairs liver function. To date, no specific antifibrotic drugs have been developed, and advanced liver fibrosis remains largely incurable. Liver transplantation remains the sole efficacious intervention for advanced liver fibrosis; nevertheless, it is constrained by exorbitant costs and the risk of postoperative immune rejection, underscoring the imperative for novel therapeutic strategies. Ferroptosis, an emergent form of regulated cell death, has been identified as a pivotal regulatory mechanism in the development of liver fibrosis and is intricately linked with the progression of liver diseases. Recent investigations have elucidated that a diverse array of non-coding RNAs (ncRNAs), including microRNAs, long non-coding RNAs, and circular RNAs, are involved in the ferroptosis pathway, thereby modulating the progression of various diseases, including liver fibrosis. In recent years, the roles of ferroptosis and ferroptosis-related ncRNAs in liver fibrosis have attracted escalating scholarly attention. This paper elucidates the pathophysiology of liver fibrosis, explores the mechanisms underlying ferroptosis, and delineates the involvement of ncRNA-mediated ferroptosis pathways in the pathology of liver fibrosis. It aims to propose novel strategies for the prevention and therapeutic intervention of liver fibrosis.
Collapse
Affiliation(s)
- Guozhu Zhang
- Department of Emergency Medicine, The First People’s Hospital of Changzhou, The Third Affiliated Hospital of Soochow University, Changzhou, Jiangsu, China
| | - Kejia Wu
- Department of Hepatobiliary and Pancreatic Surgery, The First People’s Hospital of Changzhou, The Third Affiliated Hospital of Soochow University, Changzhou, Jiangsu, China
- Department of Hepatobiliary and Pancreatic Surgery, The First Affiliated Hospital of Soochow University, Suzhou, Jiangsu, China
| | - Xiaobo Jiang
- Kunshan Zhenchuan Community Health Service Center, Kunshan, Jiangsu, China
| | - Yuan Gao
- Department of Hepato-Biliary-Pancreatic Surgery, The Institute of Hepatobiliary and Pancreatic Diseases, The Affiliated Changzhou Second People’s Hospital of Nanjing Medical University, Changzhou, Jiangsu, China
| | - Dong Ding
- Department of Hepato-Biliary-Pancreatic Surgery, The Institute of Hepatobiliary and Pancreatic Diseases, The Affiliated Changzhou Second People’s Hospital of Nanjing Medical University, Changzhou, Jiangsu, China
| | - Hao Wang
- Department of Emergency Medicine, The First People’s Hospital of Changzhou, The Third Affiliated Hospital of Soochow University, Changzhou, Jiangsu, China
| | - Chongyuan Yu
- Department of Hepatobiliary and Pancreatic Surgery, The First People’s Hospital of Changzhou, The Third Affiliated Hospital of Soochow University, Changzhou, Jiangsu, China
| | - Xiaozhong Wang
- Department of General Surgery, Wujin Affiliated Hospital of Jiangsu University and the Wujin Clinical College of Xuzhou Medical University, Changzhou, Jiangsu, China
| | - Naixin Jia
- Department of Hepatobiliary Surgery, Kunshan First People’s Hospital affiliated to Jiangsu University, Kunshan, Jiangsu, China
| | - Li Zhu
- Department of Emergency Medicine, The First People’s Hospital of Changzhou, The Third Affiliated Hospital of Soochow University, Changzhou, Jiangsu, China
| |
Collapse
|
38
|
Wu Y, Zhang Y, Ge L, He S, Zhang Y, Chen D, Nie Y, Zhu M, Pang Q. RTA408 alleviates lipopolysaccharide-induced acute lung injury via inhibiting Bach1-mediated ferroptosis. Int Immunopharmacol 2024; 142:113250. [PMID: 39340988 DOI: 10.1016/j.intimp.2024.113250] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2024] [Revised: 09/07/2024] [Accepted: 09/21/2024] [Indexed: 09/30/2024]
Abstract
The approved traditional Asian medicine RTA408 (Omaveloxolone) has demonstrated potent anti-inflammatory properties in the treatment of Friedreich's ataxia. However, its effect on lipopolysaccharide (LPS)-induced acute lung injury (ALI) remains poorly understood. This study aims to evaluate the effect of RTA408 on LPS-induced ALI and elucidate its underlying mechanisms. In this study, in vivo experiments demonstrated that RTA408 significantly ameliorated LPS-induced mouse ALI, characterized by reduced pathological damage and neutrophil infiltration as well as decreased lung edema of murine lung tissues. Moreover, LPS administration induced ferroptosis in ALI mice, evidenced by increased MDA levels, reduced GSH and SOD activity, and decreased expression of ferroptosis repressors (GPX4 and SLC7A11), whereas RTA408 reversed these changes. Consistently, RTA408 reduced ferroptosis and improved cell damage in LPS-stimulated MLE-12 cells, as evidenced by decreased ROS and MDA levels, increased SOD, GSH activity and ferroptosis repressors expression. Meanwhile, the protective effective of RTA408 on LPS-induced oxidative damage was blocked by ferroptosis inhibitor ferrostatin-1 (Fer-1). Mechanistic studies demonstrated that RTA408 inhibited the expression and nuclear translocation of Bach1, and the anti-ferroptosis effect was diminished by Bach1 siRNA or Bach1 knockout (Bach1-/-) mice. Furthermore, Bach1-/- mice exhibited attenuated ALI induced by LPS compared to wild-type (WT) mice, and the protective effect of RTA408 on LPS-challenged ALI was not observed in Bach1-/- mice. In conclusion, our data suggested that RTA408 alleviates LPS-induced ALI by interfering Bach1-mediated ferroptosis and might be a novel candidate for LPS-induced ALI/ARDS therapy.
Collapse
Affiliation(s)
- Yaxian Wu
- Wuxi School of Medicine, Jiangnan University, 1800 Lihu Avenue, Wuxi 214122, Jiangsu Province, PR China.
| | - Yaru Zhang
- Wuxi School of Medicine, Jiangnan University, 1800 Lihu Avenue, Wuxi 214122, Jiangsu Province, PR China.
| | - Longlong Ge
- Wuxi School of Medicine, Jiangnan University, 1800 Lihu Avenue, Wuxi 214122, Jiangsu Province, PR China.
| | - Shuai He
- Wuxi School of Medicine, Jiangnan University, 1800 Lihu Avenue, Wuxi 214122, Jiangsu Province, PR China.
| | - Yanli Zhang
- Wuxi School of Medicine, Jiangnan University, 1800 Lihu Avenue, Wuxi 214122, Jiangsu Province, PR China.
| | - Dan Chen
- Wuxi School of Medicine, Jiangnan University, 1800 Lihu Avenue, Wuxi 214122, Jiangsu Province, PR China.
| | - Yunjuan Nie
- Wuxi School of Medicine, Jiangnan University, 1800 Lihu Avenue, Wuxi 214122, Jiangsu Province, PR China.
| | - Minmin Zhu
- Department of Anesthesiology and Pain Medicine, Jiangnan University Medical Center, Zhongshan Road 68, Wuxi 214002, Jiangsu Province, PR China.
| | - Qingfeng Pang
- Wuxi School of Medicine, Jiangnan University, 1800 Lihu Avenue, Wuxi 214122, Jiangsu Province, PR China.
| |
Collapse
|
39
|
Pan C, Zhao H, Cai X, Wu M, Qin B, Li J. The connection between autophagy and ferroptosis in AKI: recent advances regarding selective autophagy. Ren Fail 2024; 46:2379601. [PMID: 39099238 DOI: 10.1080/0886022x.2024.2379601] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2024] [Revised: 07/01/2024] [Accepted: 07/08/2024] [Indexed: 08/06/2024] Open
Abstract
Acute kidney injury (AKI) is a significant issue in public health, displaying a high occurrence rate and mortality rate. Ferroptosis, a form of programmed cell death (PCD), is characterized by iron accumulation and intensified lipid peroxidation. Recent studies have demonstrated the pivotal significance of ferroptosis in AKI caused by diverse stimuli, including ischemia-reperfusion injury (IRI), sepsis and toxins. Autophagy, a multistep process that targets damaged organelles and macromolecules for degradation and recycling, also plays an essential role in AKI. Previous research has demonstrated that autophagy deletion in proximal tubules could aggravate tubular injury and renal function loss, indicating the protective function of autophagy in AKI. Consequently, finding ways to stimulate autophagy has become a crucial therapeutic strategy. The recent discovery of the role of selective autophagy in influencing ferroptosis has identified new therapeutic targets for AKI and has highlighted the importance of understanding the cross-talk between autophagy and ferroptosis. This study aims to provide an overview of the signaling pathways involved in ferroptosis and autophagy, focusing on the mechanisms and functions of selective autophagy and autophagy-dependent ferroptosis. We hope to establish a foundation for future investigations into the interaction between autophagy and ferroptosis in AKI as well as other diseases.
Collapse
Affiliation(s)
- Chunyu Pan
- Department of Nephrology, Tongji Hospital Affiliated to Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Hairui Zhao
- Department of Nephrology, Tianyou Hospital, Wuhan University of Science and Technology, Wuhan, China
| | - Xiaojing Cai
- Department of Nephrology, Tongji Hospital Affiliated to Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Manyi Wu
- Department of Nephrology, Tongji Hospital Affiliated to Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Bowen Qin
- Department of Nephrology, Tianyou Hospital, Wuhan University of Science and Technology, Wuhan, China
| | - Junhua Li
- Department of Nephrology, Tongji Hospital Affiliated to Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- Department of Nephrology, Tianyou Hospital, Wuhan University of Science and Technology, Wuhan, China
| |
Collapse
|
40
|
Zhang X, Wu W, Li Y, Peng Z. Exploring the role and therapeutic potential of lipid metabolism in acute kidney injury. Ren Fail 2024; 46:2403652. [PMID: 39319697 PMCID: PMC11425701 DOI: 10.1080/0886022x.2024.2403652] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2024] [Revised: 09/06/2024] [Accepted: 09/06/2024] [Indexed: 09/26/2024] Open
Abstract
Acute kidney injury (AKI) is a prevalent condition, yet no specific treatment is available. Extensive research has revealed the pivotal role of lipid-related alterations in AKI. Lipid metabolism plays an essential role in the sustenance of the kidneys. In addition to their energy-supplying function, lipids contribute to the formation of renal biomembranes and the establishment of the renal microenvironment. Moreover, lipids or their metabolites actively participate in signal transduction, which governs various vital biological processes, such as proliferation, differentiation, apoptosis, autophagy, and epithelial-mesenchymal transition. While previous studies have focused predominantly on abnormalities in lipid metabolism in chronic kidney disease, this review focuses on lipid metabolism anomalies in AKI. We explore the significance of lipid metabolism products as potential biomarkers for the early diagnosis and classification of AKI. Additionally, this review assesses current preclinical investigations on the modulation of lipid metabolism in the progression of AKI. Finally, on the basis of existing research, this review proposes future directions, highlights challenges, and presents novel targets and innovative ideas for the treatment of and intervention in AKI.
Collapse
Affiliation(s)
- Xiaoyu Zhang
- Department of Critical Care Medicine, Zhongnan Hospital, Wuhan University, Wuhan, China
- Clinical Research Center of Hubei Critical Care Medicine, Wuhan, China
| | - Wen Wu
- Department of Critical Care Medicine, Zhongnan Hospital, Wuhan University, Wuhan, China
- Clinical Research Center of Hubei Critical Care Medicine, Wuhan, China
- Department of Critical Care Medicine, Yichang Central People's Hospital, Yichang, China
| | - Yiming Li
- Department of Critical Care Medicine, Zhongnan Hospital, Wuhan University, Wuhan, China
- Clinical Research Center of Hubei Critical Care Medicine, Wuhan, China
| | - Zhiyong Peng
- Department of Critical Care Medicine, Zhongnan Hospital, Wuhan University, Wuhan, China
- Clinical Research Center of Hubei Critical Care Medicine, Wuhan, China
- Department of Critical Care Medicine, Center of Critical Care Nephrology, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
| |
Collapse
|
41
|
Zhang W, Wen W, Tan R, Zhang M, Zhong T, Wang J, Chen H, Fang X. Ferroptosis: Potential therapeutic targets and prognostic predictions for acute myeloid leukemia (Review). Oncol Lett 2024; 28:574. [PMID: 39397802 PMCID: PMC11467844 DOI: 10.3892/ol.2024.14707] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2024] [Accepted: 08/15/2024] [Indexed: 10/15/2024] Open
Abstract
Ferroptosis is a relatively recently discovered type of regulated cell death that is induced by iron-dependent lipid peroxidation. The key contributing factors to ferroptosis are the loss of glutathione peroxidase 4 which is required for reversing lipid peroxidation, the buildup of redox-active iron and the oxidation of phospholipids containing polyunsaturated fatty acids. Ferroptosis has been associated with a number of diseases, including cancers such as hepatocellular carcinoma, breast cancer, acute renal damage and neurological disorders such as Alzheimer's disease and Alzheimer's disease, and there may be an association between ferroptosis and acute myeloid leukemia (AML). The present review aims to describe the primary regulatory pathways of ferroptosis, and the relationship between ferroptosis and the occurrence and development of AML. Furthermore, the present review comprehensively summarizes the latest advances in the treatment and prognosis of ferroptosis in AML.
Collapse
Affiliation(s)
- Wenlu Zhang
- Department of Hematology, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Shandong First Medical University, Jinan, Shandong 250021, P.R. China
| | - Wen Wen
- Department of Hematology, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Shandong First Medical University, Jinan, Shandong 250021, P.R. China
| | - Ran Tan
- Department of Hematology, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Shandong First Medical University, Jinan, Shandong 250021, P.R. China
| | - Meirui Zhang
- Department of Hematology, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Shandong First Medical University, Jinan, Shandong 250021, P.R. China
| | - Tantan Zhong
- Department of Hematology, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Shandong First Medical University, Jinan, Shandong 250021, P.R. China
| | - Jianhong Wang
- Department of Hematology, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, Shandong 250021, P.R. China
| | - Haiping Chen
- Department of Infectious Diseases, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, Shandong 250021, P.R. China
| | - Xiaosheng Fang
- Department of Hematology, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, Shandong 250021, P.R. China
| |
Collapse
|
42
|
Zheng Q, Xing J, Li X, Tang X, Zhang D. PRDM16 suppresses ferroptosis to protect against sepsis-associated acute kidney injury by targeting the NRF2/GPX4 axis. Redox Biol 2024; 78:103417. [PMID: 39549609 PMCID: PMC11612791 DOI: 10.1016/j.redox.2024.103417] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2024] [Accepted: 11/02/2024] [Indexed: 11/18/2024] Open
Abstract
Acute kidney injury (AKI) constitutes a significant public health issue. Sepsis accounts for over 50 % of AKI cases in the ICU. Recent findings from our research indicated that the PRD1-BF1-RIZ1 homeodomain protein 16 (PRDM16) inhibited the progression of diabetic kidney disease (DKD). However, its precise role and regulatory mechanism in sepsis-induced AKI remain obscure. This study reveals that lipopolysaccharide (LPS) and cecum ligation and puncture (CLP) instigated PRDM16 expression in Boston University mouse proximal tubule (BUMPT) cells and mouse kidneys, respectively. Functionally, PRDM16 curtailed LPS-induced ferroptosis. Mechanistically, PRDM16 associates with the promoter regions of nuclear factor-erythroid 2-related factor-2 (NRF2) and augments its expression, subsequently enhancing glutathione peroxidase 4 (GPX4) expression. Additionally, PRDM16 directly engages with the promoter regions of GPX4, stimulating its expression. Notably, these observations were corroborated in human renal tubular epithelial (HK-2) cells. Furthermore, the ablation of PRDM16 from kidney proximal tubules in mice inhibited NRF2 and GPX4 expression, leading to decreased glutathione (GSH)/oxidized glutathione (GSSG) ratio, increased Fe2+ and reactive oxygen species (ROS) production, exacerbated ferroptosis, and AKI progression. Conversely, PRDM16 knock-in exhibited the opposite effects. Ultimately, adenovirus (ADV)-PRDM16 plasmid or poly (lactide-glycolide acid) (PLGA)-encapsulated formononetin not only mitigated sepsis-induced AKI but also alleviated liver, cardiac, and lung injury. In summary, PRDM16 inhibits ferroptosis via the NRF2/GPX4 axis or GPX4 to prevent sepsis-induced multi-organ injury, including AKI. PLGA-encapsulated formononetin presents a promising therapeutic approach.
Collapse
Affiliation(s)
- Qiang Zheng
- Department of Emergency, The First Hospital of Jilin University, Changchun, Jilin, China; Department of Emergency and Critical Care Medicine, The Second Xiangya Hospital of Central South University, Changsha, Hunan, China
| | - Jihong Xing
- Department of Emergency, The First Hospital of Jilin University, Changchun, Jilin, China
| | - Xiaozhou Li
- Department of Emergency and Critical Care Medicine, The Second Xiangya Hospital of Central South University, Changsha, Hunan, China
| | - Xianming Tang
- Department of Emergency and Critical Care Medicine, The Second Xiangya Hospital of Central South University, Changsha, Hunan, China
| | - Dongshan Zhang
- Department of Emergency and Critical Care Medicine, The Second Xiangya Hospital of Central South University, Changsha, Hunan, China; Emergency Medicine and Difficult Diseases Institute, The Second Xiangya Hospital of Central South University, Changsha, Hunan, China; Department of Nephrology, The Second Xiangya Hospital of Central South University, Changsha, Hunan, China; Furong Laboratory, Changsha, Hunan, China.
| |
Collapse
|
43
|
Zhou Q, Meng Y, Le J, Sun Y, Dian Y, Yao L, Xiong Y, Zeng F, Chen X, Deng G. Ferroptosis: mechanisms and therapeutic targets. MedComm (Beijing) 2024; 5:e70010. [PMID: 39568772 PMCID: PMC11577302 DOI: 10.1002/mco2.70010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2024] [Revised: 10/08/2024] [Accepted: 10/10/2024] [Indexed: 11/22/2024] Open
Abstract
Ferroptosis is a nonapoptotic form of cell death characterized by iron-dependent lipid peroxidation in membrane phospholipids. Since its identification in 2012, extensive research has unveiled its involvement in the pathophysiology of numerous diseases, including cancers, neurodegenerative disorders, organ injuries, infectious diseases, autoimmune conditions, metabolic disorders, and skin diseases. Oxidizable lipids, overload iron, and compromised antioxidant systems are known as critical prerequisites for driving overwhelming lipid peroxidation, ultimately leading to plasma membrane rupture and ferroptotic cell death. However, the precise regulatory networks governing ferroptosis and ferroptosis-targeted therapy in these diseases remain largely undefined, hindering the development of pharmacological agonists and antagonists. In this review, we first elucidate core mechanisms of ferroptosis and summarize its epigenetic modifications (e.g., histone modifications, DNA methylation, noncoding RNAs, and N6-methyladenosine modification) and nonepigenetic modifications (e.g., genetic mutations, transcriptional regulation, and posttranslational modifications). We then discuss the association between ferroptosis and disease pathogenesis and explore therapeutic approaches for targeting ferroptosis. We also introduce potential clinical monitoring strategies for ferroptosis. Finally, we put forward several unresolved issues in which progress is needed to better understand ferroptosis. We hope this review will offer promise for the clinical application of ferroptosis-targeted therapies in the context of human health and disease.
Collapse
Affiliation(s)
- Qian Zhou
- Department of Dermatology Xiangya Hospital Central South University Changsha Hunan Province China
- National Engineering Research Center of Personalized Diagnostic and Therapeutic Technology Changsha Hunan Province China
- Furong Laboratory Changsha Hunan Province China
- Hunan Key Laboratory of Skin Cancer and Psoriasis Hunan Engineering Research Center of Skin Health and Disease Xiangya Hospital Central South University Changsha Hunan Province China
- National Clinical Research Center for Geriatric Disorders Xiangya Hospital Changsha Hunan Province China
| | - Yu Meng
- Department of Dermatology Xiangya Hospital Central South University Changsha Hunan Province China
- National Engineering Research Center of Personalized Diagnostic and Therapeutic Technology Changsha Hunan Province China
- Furong Laboratory Changsha Hunan Province China
- Hunan Key Laboratory of Skin Cancer and Psoriasis Hunan Engineering Research Center of Skin Health and Disease Xiangya Hospital Central South University Changsha Hunan Province China
- National Clinical Research Center for Geriatric Disorders Xiangya Hospital Changsha Hunan Province China
| | - Jiayuan Le
- Department of Dermatology Xiangya Hospital Central South University Changsha Hunan Province China
- National Engineering Research Center of Personalized Diagnostic and Therapeutic Technology Changsha Hunan Province China
- Furong Laboratory Changsha Hunan Province China
- Hunan Key Laboratory of Skin Cancer and Psoriasis Hunan Engineering Research Center of Skin Health and Disease Xiangya Hospital Central South University Changsha Hunan Province China
- National Clinical Research Center for Geriatric Disorders Xiangya Hospital Changsha Hunan Province China
| | - Yuming Sun
- Department of Plastic and Cosmetic Surgery Xiangya Hospital Central South University Changsha Hunan Province China
| | - Yating Dian
- Department of Dermatology Xiangya Hospital Central South University Changsha Hunan Province China
- National Engineering Research Center of Personalized Diagnostic and Therapeutic Technology Changsha Hunan Province China
- Furong Laboratory Changsha Hunan Province China
- Hunan Key Laboratory of Skin Cancer and Psoriasis Hunan Engineering Research Center of Skin Health and Disease Xiangya Hospital Central South University Changsha Hunan Province China
- National Clinical Research Center for Geriatric Disorders Xiangya Hospital Changsha Hunan Province China
| | - Lei Yao
- Department of General Surgery Xiangya Hospital Central South University Changsha Hunan Province China
| | - Yixiao Xiong
- Department of Dermatology Tongji Hospital Huazhong University of Science and Technology Wuhan Hubei China
| | - Furong Zeng
- Department of Oncology Xiangya Hospital Central South University Changsha Hunan Province China
| | - Xiang Chen
- Department of Dermatology Xiangya Hospital Central South University Changsha Hunan Province China
- National Engineering Research Center of Personalized Diagnostic and Therapeutic Technology Changsha Hunan Province China
- Furong Laboratory Changsha Hunan Province China
- Hunan Key Laboratory of Skin Cancer and Psoriasis Hunan Engineering Research Center of Skin Health and Disease Xiangya Hospital Central South University Changsha Hunan Province China
- National Clinical Research Center for Geriatric Disorders Xiangya Hospital Changsha Hunan Province China
| | - Guangtong Deng
- Department of Dermatology Xiangya Hospital Central South University Changsha Hunan Province China
- National Engineering Research Center of Personalized Diagnostic and Therapeutic Technology Changsha Hunan Province China
- Furong Laboratory Changsha Hunan Province China
- Hunan Key Laboratory of Skin Cancer and Psoriasis Hunan Engineering Research Center of Skin Health and Disease Xiangya Hospital Central South University Changsha Hunan Province China
- National Clinical Research Center for Geriatric Disorders Xiangya Hospital Changsha Hunan Province China
| |
Collapse
|
44
|
Yang JD, Lin SC, Kuo HL, Chen YS, Weng PY, Chen CM, Liu SH, Huang CF, Guan SS, Liao PL, Su YH, Lee KI, Wang PY, Chuang HL, Wu CT. Imperatorin ameliorates ferroptotic cell death, inflammation, and renal fibrosis in a unilateral ureteral obstruction mouse model. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2024; 135:156066. [PMID: 39341130 DOI: 10.1016/j.phymed.2024.156066] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/20/2024] [Revised: 09/01/2024] [Accepted: 09/15/2024] [Indexed: 09/30/2024]
Abstract
BACKGROUND Imperatorin is a naturally occurring furocoumarin derivative found in traditional Chinese medicine Angelica dahurica for its anticancer, antihypertensive, and antidiabetic properties. Chronic kidney disease (CKD) is a global health issue, characterized by a high prevalence, significant morbidity and mortality, and a range of related complications. OBJECTIVE This study aims to investigate the protective effects of imperatorin treatment and the specific underlying mechanisms in progressive CKD. METHODS Imperatorin was orally administrated for 14 consecutive days to mice with unilateral ureteral obstruction (UUO) to investigate the renal pathological alternations, pro-inflammatory mediators, antioxidant response, and ferroptotic death signaling. Imperatorin was also tested in the erastin-induced injury of renal proximal tubular cells (NRK-52E). Cell viability, ferroptosis protein markers, erastin-induced oxidative stress, and lipid peroxidation were assessed. RESULTS In vivo, imperatorin treatment alleviated kidney histology alternations and attenuated the protein expression of fibrotic markers. Furthermore, imperatorin administration reduced inflammatory cell infiltration, and alleviated the oxidative stress burden by downregulating protein markers such as catalase, superoxide dismutase 2 (SOD-2), NADPH oxidase 4 (NOX-4), and thioredoxin reductase 1 (Trxr-1). It also mitigated ferroptosis markers such as glutathione peroxidase 4 (GPX4), solute carrier family 7 member 11/cystine transporter (SLC7A11/xCT), and transferrin receptor 1 (TFR-1), and attenuated renal cell apoptosis. In vitro, imperatorin treatment effectively decreased erastin-induced feroptotic cell death, restored the antioxidant enzyme levels, and mitigated lipid peroxidation as well as the expression of ferroptosis-related markers (XCT, GPX4, and p-p53) in a dose-dependent manner. CONCLUSION Our finding demonstrated for the first time, that imperatorin treatment holds therapeutic potential in a UUO mouse model of CKD and inhibits the erastin-induced oxidative stress, ferroptosis, and subsequent lipid peroxidation in vitro. This highlights the potential of imperatorin as a future therapeutic target for ferroptosis to improve the progression of CKD.
Collapse
Affiliation(s)
- Jr-Di Yang
- Division of Urology, Department of Surgery, National Yang-Ming Chiao Tung University Hospital, Yilan, Taiwan
| | - Ssu Chia Lin
- Department of Nutrition, China Medical University, Taichung 40402, Taiwan
| | - Huey Liang Kuo
- Division of Nephrology, Department of Internal Medicine, China Medical University Hospital, Taichung 40402, Taiwan; School of Medicine, College of Medicine, China Medical University, Taichung 40402, Taiwan; Clinical Nutrition, China Medical University Hospital, Taichung 40402, Taiwan
| | - Yu Syuan Chen
- Department of Nutrition, China Medical University, Taichung 40402, Taiwan
| | - Pei Yu Weng
- Department of Nutrition, China Medical University, Taichung 40402, Taiwan
| | - Chang Mu Chen
- Division of Neurosurgery, Department of Surgery, College of Medicine and Hospital, National Taiwan University, Taipei 10051, Taiwan
| | - Shing-Hwa Liu
- Institute of Toxicology, College of Medicine, National Taiwan University, Taipei 10051, Taiwan
| | - Chun Fa Huang
- School of Chinese Medicine, College of Chinese Medicine, China Medical University, Taichung 40402, Taiwan; Department of Nursing, College of Medical and Health Science, Asia University, Taichung, 413, Taiwan
| | - Siao Syun Guan
- Institute of Nuclear Energy Research, Atomic Energy Council, Taoyuan 32546, Taiwan
| | - Po Lin Liao
- Institute of Food Safety and Health Risk Assessment, National Yang Ming Chiao Tung University-Yang ming Campus, 155, Sec. 2, Linong Street, Taipei 11221, Taiwan
| | - Yen Hao Su
- Department of Surgery, Division of General Surgery, Shuang Ho Hospital, Taipei Medical University, Taipei 235, Taiwan; Department of General Surgery, School of Medicine, College of Medicine, Taipei Medical University, Taipei 110, Taiwan
| | - Kuan-I Lee
- Department of Emergency, Taichung Tzu Chi Hospital, Buddhist Tzu Chi Medical Foundation, Taichung 427, Taiwan
| | - Pei Yun Wang
- Department of Nutrition, China Medical University, Taichung 40402, Taiwan
| | - Haw Ling Chuang
- Department of Emergency, Taichung Tzu Chi Hospital, Buddhist Tzu Chi Medical Foundation, Taichung 427, Taiwan.
| | - Cheng Tien Wu
- Department of Nutrition, China Medical University, Taichung 40402, Taiwan.
| |
Collapse
|
45
|
Banach K, Kowalska J, Maszczyk M, Rzepka Z, Rok J, Wrześniok D. An In Vitro Strategy to Evaluate Ketoprofen Phototoxicity at the Molecular and Cellular Levels. Int J Mol Sci 2024; 25:12647. [PMID: 39684359 DOI: 10.3390/ijms252312647] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2024] [Revised: 11/15/2024] [Accepted: 11/17/2024] [Indexed: 12/18/2024] Open
Abstract
Phototoxicity is a significant problem that occurs in a large part of the population and is often caused by commonly used pharmaceuticals, including over-the-counter drugs. Therefore, testing drugs with photosensitizing potential is very important. The aim of this study is to analyze the cytotoxicity and phototoxicity of ketoprofen towards human melanocytes and fibroblasts in three different treatment schemes in order to optimize the study. Cytometric tests (studies of viability, proliferation, intracellular thiol levels, mitochondrial potential, cell cycle, and DNA fragmentation), Western blot analysis (cytochrome c and p44/p42 protein levels), and confocal microscopy imaging were performed to assess the impact of the developed treatments on skin cells. Research on experimental schemes may help reduce or eliminate the risk of phototoxic reactions. In the case of ketoprofen, we found that the strongest phototoxic potential was exhibited in the treatment where the drug was present in the solution during the irradiation of cells, both pigmented and non-pigmented cells. These results indicate that the greatest risk of photosensitivity reactions related to ketoprofen occurs after direct contact with the drug and UV exposure.
Collapse
Affiliation(s)
- Klaudia Banach
- Department of Pharmaceutical Chemistry, Faculty of Pharmaceutical Sciences in Sosnowiec, Medical University of Silesia, 40-055 Katowice, Poland
| | - Justyna Kowalska
- Department of Pharmaceutical Chemistry, Faculty of Pharmaceutical Sciences in Sosnowiec, Medical University of Silesia, 40-055 Katowice, Poland
| | - Mateusz Maszczyk
- Department of Pharmaceutical Chemistry, Faculty of Pharmaceutical Sciences in Sosnowiec, Medical University of Silesia, 40-055 Katowice, Poland
| | - Zuzanna Rzepka
- Department of Pharmaceutical Chemistry, Faculty of Pharmaceutical Sciences in Sosnowiec, Medical University of Silesia, 40-055 Katowice, Poland
| | - Jakub Rok
- Department of Pharmaceutical Chemistry, Faculty of Pharmaceutical Sciences in Sosnowiec, Medical University of Silesia, 40-055 Katowice, Poland
| | - Dorota Wrześniok
- Department of Pharmaceutical Chemistry, Faculty of Pharmaceutical Sciences in Sosnowiec, Medical University of Silesia, 40-055 Katowice, Poland
| |
Collapse
|
46
|
Li Q, Lv H, Chen Y, Shen J, Shi J, Zhou C. Association between iron metabolism and acute kidney injury in cardiac surgery with cardiopulmonary bypass: a retrospective analysis from two datasets. BMC Nephrol 2024; 25:416. [PMID: 39567924 PMCID: PMC11580507 DOI: 10.1186/s12882-024-03857-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2024] [Accepted: 11/13/2024] [Indexed: 11/22/2024] Open
Abstract
OBJECTIVE We sought to explore the linear or nonlinear relationship between preoperative iron metabolism and acute kidney injury following cardiac surgery (CSA-AKI) with cardiopulmonary bypass (CPB). METHODS Patients who underwent cardiac surgery with CPB between December 2018 and April 2021 were retrospectively collected from Fuwai Hospital and Medical Information Mart for Intensive Cared dataset (MIMIC-IV). The measurements of iron metabolism included serum iron (SI), serum ferritin (SF), transferrin (TRF), transferrin saturation (TS), and total iron binding capacity (TIBC). Logistic regression and restricted cubic spline (RCS) were used for linear and nonlinear analysis. The primary outcome was postoperative AKI with 48 h after cardiac surgery. RESULTS Of 10,639 patients screened (2420 in Fuwai Hospital and 8219 in MIMIC-IV dataset),1488 eligible patients were enrolled for the final analysis (Fuwai Hospital: n = 744, MIMIC-IV: n = 744).The incidence of AKI was 25.7% and 56.5%, respectively. Logistic regression showed that the levels of TRF (odds ratio (OR) = 1.53,95%CI:1.01-2.14, p = 0.012) and TIBC (OR = 1.05,95%CI:1.02-1.07, p < 0.001) were independent risk factor for AKI. Moreover, in the spline models adjusted with age (median:56), female, and history of diabetes, a significant statistical difference was observed between SI, SF, TRF, TS, TIBC (p for nonlinear < 0.05) and AKI in the Fuwai Hospital dataset. Additionally, the levels of SI (p for nonlinear 0.0364),SF (p for nonlinear 0.0461) were also in non-linear relationship with AKI in the MIMIC-IV dataset. CONCLUSION Iron metabolism markers (SI, SF, TS, TRF, and TIBC) displayed a nonlinear relationship with AKI by the RCS model (adjusted by age, gender, and history of diabetes). Notably, the MIMIC-IV dataset, which includes elderly patients, also demonstrated a nonlinear relationship between SI, SF and AKI. These findings highlight the potential therapeutic value of targeting proteins related to iron metabolism in patients with AKI. CLINICAL TRIAL NUMBER Not applicable.
Collapse
Affiliation(s)
- Qian Li
- Department of Anesthesiology, State Key Laboratory of Cardiovascular Disease, Fuwai Hospital, National Center for Cardiovascular Diseases, Chinese Academy of Medical Sciences, Peking Union Medical College, 167 Beilishi Rd., Xicheng District, Beijing, 100037, China
| | - Hong Lv
- Department of Anesthesiology, State Key Laboratory of Cardiovascular Disease, Fuwai Hospital, National Center for Cardiovascular Diseases, Chinese Academy of Medical Sciences, Peking Union Medical College, 167 Beilishi Rd., Xicheng District, Beijing, 100037, China
| | - Yuye Chen
- Department of Anesthesiology, State Key Laboratory of Cardiovascular Disease, Fuwai Hospital, National Center for Cardiovascular Diseases, Chinese Academy of Medical Sciences, Peking Union Medical College, 167 Beilishi Rd., Xicheng District, Beijing, 100037, China
| | - Jingjia Shen
- Department of Anesthesiology, State Key Laboratory of Cardiovascular Disease, Fuwai Hospital, National Center for Cardiovascular Diseases, Chinese Academy of Medical Sciences, Peking Union Medical College, 167 Beilishi Rd., Xicheng District, Beijing, 100037, China
| | - Jia Shi
- Department of Anesthesiology, State Key Laboratory of Cardiovascular Disease, Fuwai Hospital, National Center for Cardiovascular Diseases, Chinese Academy of Medical Sciences, Peking Union Medical College, 167 Beilishi Rd., Xicheng District, Beijing, 100037, China
| | - Chenghui Zhou
- Department of Anesthesiology, State Key Laboratory of Cardiovascular Disease, Fuwai Hospital, National Center for Cardiovascular Diseases, Chinese Academy of Medical Sciences, Peking Union Medical College, 167 Beilishi Rd., Xicheng District, Beijing, 100037, China.
| |
Collapse
|
47
|
Chen W, Wang B, Liang S, Zheng L, Fang H, Xu S, Zhang T, Wang M, He X, Feng W. Fullerenols as efficient ferroptosis inhibitor by targeting lipid peroxidation for preventing drug-induced acute kidney injury. J Colloid Interface Sci 2024; 680:261-273. [PMID: 39509775 DOI: 10.1016/j.jcis.2024.10.198] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2024] [Revised: 10/28/2024] [Accepted: 10/31/2024] [Indexed: 11/15/2024]
Abstract
Acute kidney injury (AKI) is characterized by rapid and significant deterioration of renal function over a short duration with high mortality. However, the intricate pathophysiological mechanisms underlying AKI have hindered the development of effective therapeutic strategies. Recent research has highlighted the crucial role of ferroptosis in the pathogenesis of AKI and has identified it as a promising therapeutic target. Herein, we investigated the prophylactic efficacy of fullerenol nanoparticles, renowned for their broad-spectrum free radical scavenging capabilities and favorable biocompatibility, in preventing and mitigating ferroptosis-mediated cisplatin-induced AKI. Our findings demonstrate the remarkable potential of fullerenols in mitigating AKI. Specifically, fullerenols exert their protective effects primarily by suppressing renal lipid peroxidation and ferrous iron accumulation, which are two defining hallmarks of ferroptosis. Notably, fullerenols significantly inhibited the upregulation of key enzymes involved in the intracellular lipid peroxidation induced by cisplatin, including acyl-coA synthetase long chain family member 4 (ACSL4), arachidonate lipoxygenase 3 (ALOXE3), and cytochrome P450 oxidoreductase (POR), and enhanced antioxidant systems xc-/Glutathione (GSH)/Glutathione Peroxidase 4 (GPX4). Fullerenols also significantly suppressed the increase in mRNA expression of iron regulation-related genes and prevented the elevation of low-valent iron levels in the kidney tissue of AKI mice. Collectively, our study presents fullerenol as a promising drug candidate for the prevention of AKI in clinical settings, and provides valuable insights into the management of various ferroptosis-associated diseases.
Collapse
Affiliation(s)
- Wei Chen
- CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety, Institute of High Energy Physics, Chinese Academy of Sciences, Beijing 100049, China
| | - Bing Wang
- CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety, Institute of High Energy Physics, Chinese Academy of Sciences, Beijing 100049, China.
| | - Shanshan Liang
- CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety, Institute of High Energy Physics, Chinese Academy of Sciences, Beijing 100049, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Lingna Zheng
- CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety, Institute of High Energy Physics, Chinese Academy of Sciences, Beijing 100049, China
| | - Hao Fang
- CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety, Institute of High Energy Physics, Chinese Academy of Sciences, Beijing 100049, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Si Xu
- CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety, Institute of High Energy Physics, Chinese Academy of Sciences, Beijing 100049, China
| | - Tingfeng Zhang
- CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety, Institute of High Energy Physics, Chinese Academy of Sciences, Beijing 100049, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Meng Wang
- CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety, Institute of High Energy Physics, Chinese Academy of Sciences, Beijing 100049, China
| | - Xiao He
- CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety, Institute of High Energy Physics, Chinese Academy of Sciences, Beijing 100049, China
| | - Weiyue Feng
- CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety, Institute of High Energy Physics, Chinese Academy of Sciences, Beijing 100049, China.
| |
Collapse
|
48
|
Yang Y, Zhang X, Yang Y, Gao P, Fan W, Zheng T, Yang W, Tang Y, Cai K. A two-pronged approach to inhibit ferroptosis of MSCs caused by the iron overload in postmenopausal osteoporosis and promote osseointegration of titanium implant. Bioact Mater 2024; 41:336-354. [PMID: 39161794 PMCID: PMC11331706 DOI: 10.1016/j.bioactmat.2024.07.024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2024] [Revised: 07/02/2024] [Accepted: 07/15/2024] [Indexed: 08/21/2024] Open
Abstract
Postmenopausal osteoporosis (PMOP) is a prevalent condition among elderly women. After menopause, women exhibit decreased iron excretion, which is prone to osteoporosis. To design a specific titanium implant for PMOP, we first analyze miRNAs and DNA characteristics of postmenopausal patients with and without osteoporosis. The results indicate that iron overload disrupts iron homeostasis in the pathogenesis of PMOP. Further experiments confirm that iron overload can cause lipid peroxidation and ferroptosis of MSCs, thus breaking bone homeostasis. Based on the findings above, we have designed a novel Ti implant coated with nanospheres of caffeic acid (CA) and deferoxamine (DFO). CA can bind on the Ti surface through the two adjacent phenolic hydroxyls and polymerize into polycaffeic acid (PCA) dimer, as well as the PCA nanospheres with the repetitive 1,4-benzodioxan units. DFO was grafted with PCA through borate ester bonds. The experimental results showed that modified Ti can inhibit the ferroptosis of MSCs in the pathological environment of PMOP and promote osseointegration in two main ways. Firstly, DFO was released under high oxidative stress, chelating with excess iron and decreasing the labile iron pool in MSCs. Meanwhile, CA and DFO activated the KEAP1/NRF2/HMOX1 pathway in MSCs and reduced the level of intracellular lipid peroxidation. So, the ferroptosis of MSCs is inhibited by promoting the SLC7A11/GSH/GPX4 pathway. Furthermore, the remained CA coating on the Ti surface could reduce the extracellular oxidative stress and glutathione level. This study offers a novel inspiration for the specific design of Ti implants in the treatment of PMOP.
Collapse
Affiliation(s)
- Yulu Yang
- Key Laboratory of Biorheological Science and Technology, Ministry of Education College of Bioengineering, Chongqing University, Chongqing, 400044, China
| | - Xianhui Zhang
- Key Laboratory of Biorheological Science and Technology, Ministry of Education College of Bioengineering, Chongqing University, Chongqing, 400044, China
| | - Yao Yang
- Key Laboratory of Biorheological Science and Technology, Ministry of Education College of Bioengineering, Chongqing University, Chongqing, 400044, China
| | - Pengfei Gao
- Key Laboratory of Biorheological Science and Technology, Ministry of Education College of Bioengineering, Chongqing University, Chongqing, 400044, China
| | - Wuzhe Fan
- Key Laboratory of Biorheological Science and Technology, Ministry of Education College of Bioengineering, Chongqing University, Chongqing, 400044, China
| | - Tao Zheng
- Key Laboratory of Biorheological Science and Technology, Ministry of Education College of Bioengineering, Chongqing University, Chongqing, 400044, China
| | - Weihu Yang
- Key Laboratory of Biorheological Science and Technology, Ministry of Education College of Bioengineering, Chongqing University, Chongqing, 400044, China
| | - Yu Tang
- Orthopedics Department, The Second Affiliated Hospital of Chongqing Medical University, Chongqing, 400010, China
| | - Kaiyong Cai
- Key Laboratory of Biorheological Science and Technology, Ministry of Education College of Bioengineering, Chongqing University, Chongqing, 400044, China
| |
Collapse
|
49
|
Liang NN, Guo YY, Zhang XY, Ren YH, He YZ, Liu ZB, Xu DX, Xu S. Mitochondrial Dysfunction-Evoked DHODH Acetylation is Involved in Renal Cell Ferroptosis during Cisplatin-Induced Acute Kidney Injury. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2024; 11:e2404753. [PMID: 39303219 DOI: 10.1002/advs.202404753] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/02/2024] [Revised: 09/10/2024] [Indexed: 09/22/2024]
Abstract
Several studies have observed renal cell ferroptosis during cisplatin-induced acute kidney injury (AKI). However, the mechanism is not completely clear. In this study, oxidized arachidonic acid (AA) metabolites are increased in cisplatin-treated HK-2 cells. Targeted metabolomics showed that the end product of pyrimidine biosynthesis is decreased and the initiating substrate of pyrimidine biosynthesis is increased in cisplatin-treated mouse kidneys. Mitochondrial DHODH, a key enzyme for pyrimidine synthesis, and its downstream product CoQH2, are downregulated. DHODH overexpression attenuated but DHODH silence exacerbated cisplatin-induced CoQH2 depletion and lipid peroxidation. Mechanistically, renal DHODH acetylation is elevated in cisplatin-exposed mice. Mitochondrial SIRT3 is reduced in cisplatin-treated mouse kidneys and HK-2 cells. Both in vitro SIRT3 overexpression and in vivo NMN supplementation attenuated cisplatin-induced mitochondrial DHODH acetylation and renal cell ferroptosis. By contrast, Sirt3 knockout aggravated cisplatin-induced mitochondrial DHODH acetylation and renal cell ferroptosis, which can not be attenuated by NMN. Additional experiments showed that cisplatin caused mitochondrial dysfunction and SIRT3 SUMOylation. Pretreatment with mitochondria-target antioxidant MitoQ alleviated cisplatin-caused mitochondrial dysfunction, SIRT3 SUMOylation, and DHODH acetylation. MitoQ pretreatment protected against cisplatin-caused AKI and renal cell ferroptosis. Taken together, these results suggest that mitochondrial dysfunction-evoked DHODH acetylation partially contributes to renal cell ferroptosis during cisplatin-induced AKI.
Collapse
Affiliation(s)
- Nan-Nan Liang
- Department of Toxicology, Anhui Medical University, Hefei, China, 230032
| | - Yue-Yue Guo
- Department of Toxicology, Anhui Medical University, Hefei, China, 230032
| | - Xiao-Yi Zhang
- Department of Toxicology, Anhui Medical University, Hefei, China, 230032
| | - Ya-Hui Ren
- Department of Urology, the Second Affiliated Hospital of Anhui Medical University, Hefei, China, 230601
| | - Yi-Zhang He
- Department of Urology, the Second Affiliated Hospital of Anhui Medical University, Hefei, China, 230601
| | - Zhi-Bing Liu
- Department of Blood Transfusion, Second Affiliated Hospital of Anhui Medical University, Hefei, Anhui, 230601, China
| | - De-Xiang Xu
- Department of Toxicology, Anhui Medical University, Hefei, China, 230032
| | - Shen Xu
- Department of Urology, the Second Affiliated Hospital of Anhui Medical University, Hefei, China, 230601
| |
Collapse
|
50
|
Deng Y, Zeng L, Liu H, Zuo A, Zhou J, Yang Y, You Y, Zhou X, Peng B, Lu H, Ji S, Wang M, Lai Y, Kwan HY, Sun X, Wang Q, Zhao X. Silibinin attenuates ferroptosis in acute kidney injury by targeting FTH1. Redox Biol 2024; 77:103360. [PMID: 39326069 PMCID: PMC11462067 DOI: 10.1016/j.redox.2024.103360] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2024] [Revised: 09/10/2024] [Accepted: 09/17/2024] [Indexed: 09/28/2024] Open
Abstract
Acute kidney injury (AKI) is primarily caused by renal ischemia-reperfusion injury (IRI), which is one of the most prevalent triggers. Currently, preventive and therapeutic measures remain limited. Ferroptosis plays a significant role in the pathophysiological process of IRI-induced AKI and is considered a key target for improving its outcomes. Silibinin, a polyphenolic flavonoid, possesses diverse pharmacological properties and is widely used as an effective therapeutic agent for liver diseases. Recent studies have reported that silibinin may improves kidney diseases, though the underlying mechanism remain unclear. In this study, we investigated whether silibinin protects against IRI-induced AKI and explored its mechanism of action. Our findings indicated that pretreatment with silibinin alleviated renal dysfunction, pathological damage, and inflammation in IRI-AKI mice. Furthermore, the results demonstrated that silibinin inhibited ferroptosis both in vivo and in vitro. Proteome microarrays were used to identify silibinin's target, and our results revealed that silibinin binds to FTH1. This binding affinity was confirmed through molecular docking, SPRi, CETSA, and DARTS. Additionally, co-IP assays demonstrated that silibinin disrupted the NCOA4-FTH1 interaction, inhibiting ferritinophagy. Finally, the inhibitory effects of silibinin on ferroptosis were reversed by knocking down FTH1 in vitro. In conclusion, our study shows that silibinin effectively alleviates AKI by targeting FTH1 to reduce ferroptosis, suggesting that silibinin could be developed as a potential therapeutic agent for managing and treating AKI.
Collapse
Affiliation(s)
- Yijian Deng
- Zhujiang Hospital, Southern Medical University, Guangzhou, Guangdong, 510282, China; School of Traditional Chinese Medicine, Southern Medical University, Guangzhou, Guangdong, 510515, China
| | - Liying Zeng
- Zhujiang Hospital, Southern Medical University, Guangzhou, Guangdong, 510282, China; School of Traditional Chinese Medicine, Southern Medical University, Guangzhou, Guangdong, 510515, China
| | - Huaxi Liu
- Boai Hospital of Zhongshan, Zhongshan, Guangdong, 528403, China
| | - Anna Zuo
- School of Traditional Chinese Medicine, Southern Medical University, Guangzhou, Guangdong, 510515, China
| | - Jie Zhou
- School of Traditional Chinese Medicine, Southern Medical University, Guangzhou, Guangdong, 510515, China
| | - Ying Yang
- School of Traditional Chinese Medicine, Southern Medical University, Guangzhou, Guangdong, 510515, China
| | - Yanting You
- School of Traditional Chinese Medicine, Southern Medical University, Guangzhou, Guangdong, 510515, China
| | - Xinghong Zhou
- Dongguan Hospital of Traditional Chinese Medicine, Dongguan, Guangdong, 523000, China
| | - Baizhao Peng
- School of Traditional Chinese Medicine, Southern Medical University, Guangzhou, Guangdong, 510515, China
| | - Hanqi Lu
- Dongguan Hospital of Traditional Chinese Medicine, Dongguan, Guangdong, 523000, China
| | - Shuai Ji
- School of Traditional Chinese Medicine, Southern Medical University, Guangzhou, Guangdong, 510515, China
| | - Ming Wang
- Zhujiang Hospital, Southern Medical University, Guangzhou, Guangdong, 510282, China
| | - Yigui Lai
- People's Hospital of Yangjiang, Yangjiang, 529500, China
| | - Hiu Yee Kwan
- School of Chinese Medicine, Hong Kong Baptist University, Hong Kong, China
| | - Xiaomin Sun
- School of Traditional Chinese Medicine, Southern Medical University, Guangzhou, Guangdong, 510515, China.
| | - Qi Wang
- School of Traditional Chinese Medicine, Southern Medical University, Guangzhou, Guangdong, 510515, China.
| | - Xiaoshan Zhao
- Zhujiang Hospital, Southern Medical University, Guangzhou, Guangdong, 510282, China; School of Traditional Chinese Medicine, Southern Medical University, Guangzhou, Guangdong, 510515, China.
| |
Collapse
|