1
|
Small SL. Precision neurology. Ageing Res Rev 2024; 104:102632. [PMID: 39657848 DOI: 10.1016/j.arr.2024.102632] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2024] [Revised: 11/23/2024] [Accepted: 12/05/2024] [Indexed: 12/12/2024]
Abstract
Over the past several decades, high-resolution brain imaging, blood and cerebrospinal fluid analyses, and other advanced technologies have changed diagnosis from an exercise depending primarily on the history and physical examination to a computer- and online resource-aided process that relies on larger and larger quantities of data. In addition, randomized controlled trials (RCT) at a population level have led to many new drugs and devices to treat neurological disease, including disease-modifying therapies. We are now at a crossroads. Combinatorially profound increases in data about individuals has led to an alternative to population-based RCTs. Genotyping and comprehensive "deep" phenotyping can sort individuals into smaller groups, enabling precise medical decisions at a personal level. In neurology, precision medicine that includes prediction, prevention and personalization requires that genomic and phenomic information further incorporate imaging and behavioral data. In this article, we review the genomic, phenomic, and computational aspects of precision medicine for neurology. After defining biological markers, we discuss some applications of these "-omic" and neuroimaging measures, and then outline the role of computation and ultimately brain simulation. We conclude the article with a discussion of the relation between precision medicine and value-based care.
Collapse
Affiliation(s)
- Steven L Small
- Department of Neuroscience, University of Texas at Dallas, Dallas, TX, USA; Department of Neurology, University of Texas Southwestern Medical Center, Dallas, TX, USA; Department of Neurology, The University of Chicago, Chicago, IL, USA; Department of Neurology, University of California, Irvine, Orange, CA, USA.
| |
Collapse
|
2
|
Alonso Vanegas MA, Arrotta K, Davis K, Jobst BC, Kotagal P, Poduri A, Valencia I. Frontal Lobe Epilepsy: Bermuda's Triangle. Epilepsy Curr 2024:15357597241280055. [PMID: 39539403 PMCID: PMC11556358 DOI: 10.1177/15357597241280055] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2024] Open
Abstract
Despite great progress in imaging, genetics, surgery, and therapeutics, frontal lobe epilepsy (FLE) continues to be a challenge for neurologists and epileptologists. This manuscript summarizes the latest advancements in FLE discussed at the 2023 Epilepsy Specialist Symposium during the American Epilepsy Society Annual meeting. Correlation between stereoelectroencephalography and clinical symptoms has reinvigorated symptomatology literature in FLE, allowing for more precise aura anatomical localization. Neuropsychological assessments permit the identification of different FLE cognitive phenotypes, with language being the most prominent domain-specific impairment. These tests can help develop psychotherapeutic and cognitive support systems for these patients. Genetic and molecular studies have uncovered specific genes associated with FLE susceptibility, offering prospects for targeted therapies. Advanced neuroimaging techniques such as high field magnetic resonance imaging (MRI), functional MRI (fMRI), magnetoencephalography and colocalization of multiple imaging techniques have led to more precise localization of the epileptogenic zone providing insights into the dynamic neural networks underlying frontal lobe seizures. This has facilitated guided therapeutic surgical interventions that can be employed around the world, expanding access of these technologies to multiple populations. Despite many advances, prognosis of FLE remains poor for some patients. The biggest determinant for poor prognosis continues to be nonlesional FLE. Newer technological advancements aim to pass these barriers and offer FLE patients a better quality of life with lower seizure burden and higher cognitive outcomes.
Collapse
Affiliation(s)
| | - Kayela Arrotta
- Epilepsy Center, Department of Neurology, Cleveland Clinic, Cleveland, USA
| | - Kathryn Davis
- University of Pennsylvania, Penn Epilepsy Center, Philadelphia, USA
| | - Barbara C. Jobst
- Geisel School of Medicine at Dartmouth, Department of Neurology-DHMC, Dartmouth-Hitchcock Epilepsy Center, Hanover, USA
| | - Prakash Kotagal
- Cleveland Clinic Epilepsy Center, Cleveland Clinic Foundation, Cleveland, Ohio
| | - Annapurna Poduri
- Department of Neurology, Epilepsy Genetics Program at Boston Children's Hospital, Boston, USA
| | - Ignacio Valencia
- Division of Pediatric Neurology and Developmental Medicine, Children's Regional Hospital, Cooper University Health Care, Camden, USA
| |
Collapse
|
3
|
Ma J, Zhang W, Rahimialiabadi S, Ganesh NU, Sun Z, Parvez S, Peterson RT, Yeh JRJ. Instantaneous visual genotyping and facile site-specific transgenesis via CRISPR-Cas9 and phiC31 integrase. Biol Open 2024; 13:bio061666. [PMID: 39225039 PMCID: PMC11391820 DOI: 10.1242/bio.061666] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2024] [Accepted: 08/01/2024] [Indexed: 09/04/2024] Open
Abstract
Here, we introduce 'TICIT', targeted integration by CRISPR-Cas9 and integrase technologies, which utilizes the site-specific DNA recombinase - phiC31 integrase - to insert large DNA fragments into CRISPR-Cas9 target loci. This technique, which relies on first knocking in a 39-basepair phiC31 landing site via CRISPR-Cas9, enables researchers to repeatedly perform site-specific transgenesis at the exact genomic location with high precision and efficiency. We applied this approach to devise a method for the instantaneous determination of a zebrafish's genotype simply by examining its color. When a zebrafish mutant line must be propagated as heterozygotes due to homozygous lethality, employing this method allows facile identification of a population of homozygous mutant embryos even before the mutant phenotypes manifest. Thus, it should facilitate various downstream applications, such as large-scale chemical screens. We demonstrated that TICIT could also create reporter fish driven by an endogenous promoter. Further, we identified a landing site in the tyrosinase gene that could support transgene expression in a broad spectrum of tissue and cell types. In sum, TICIT enables site-specific DNA integration without requiring complex donor DNA construction. It can yield consistent transgene expression, facilitate diverse applications in zebrafish, and may be applicable to cells in culture and other model organisms.
Collapse
Affiliation(s)
- Junyan Ma
- Department of Basic Medical Science, Quanzhou Medical College, Quanzhou, Fujian 362011, China
- Cardiovascular Research Center, Massachusetts General Hospital, Charlestown, MA 02129, USA and Department of Medicine, Harvard Medical School, Boston, MA 02115, USA
| | - Weiting Zhang
- Cardiovascular Research Center, Massachusetts General Hospital, Charlestown, MA 02129, USA and Department of Medicine, Harvard Medical School, Boston, MA 02115, USA
| | - Simin Rahimialiabadi
- Department of Pharmacology and Toxicology, University of Utah, Salt Lake City, UT 84112, USA
| | - Nikkitha Umesh Ganesh
- Cardiovascular Research Center, Massachusetts General Hospital, Charlestown, MA 02129, USA and Department of Medicine, Harvard Medical School, Boston, MA 02115, USA
| | - Zhengwang Sun
- Center for Immunology and Inflammatory Disease, Massachusetts General Hospital, Charlestown, MA 02129, USA
| | - Saba Parvez
- Department of Pharmacology and Toxicology, University of Utah, Salt Lake City, UT 84112, USA
| | - Randall T Peterson
- Department of Pharmacology and Toxicology, University of Utah, Salt Lake City, UT 84112, USA
| | - Jing-Ruey Joanna Yeh
- Cardiovascular Research Center, Massachusetts General Hospital, Charlestown, MA 02129, USA and Department of Medicine, Harvard Medical School, Boston, MA 02115, USA
| |
Collapse
|
4
|
Klein P, Kaminski RM, Koepp M, Löscher W. New epilepsy therapies in development. Nat Rev Drug Discov 2024; 23:682-708. [PMID: 39039153 DOI: 10.1038/s41573-024-00981-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/29/2024] [Indexed: 07/24/2024]
Abstract
Epilepsy is a common brain disorder, characterized by spontaneous recurrent seizures, with associated neuropsychiatric and cognitive comorbidities and increased mortality. Although people at risk can often be identified, interventions to prevent the development of the disorder are not available. Moreover, in at least 30% of patients, epilepsy cannot be controlled by current antiseizure medications (ASMs). As a result of considerable progress in epilepsy genetics and the development of novel disease models, drug screening technologies and innovative therapeutic modalities over the past 10 years, more than 200 novel epilepsy therapies are currently in the preclinical or clinical pipeline, including many treatments that act by new mechanisms. Assisted by diagnostic and predictive biomarkers, the treatment of epilepsy is undergoing paradigm shifts from symptom-only ASMs to disease prevention, and from broad trial-and-error treatments for seizures in general to mechanism-based treatments for specific epilepsy syndromes. In this Review, we assess recent progress in ASM development and outline future directions for the development of new therapies for the treatment and prevention of epilepsy.
Collapse
Affiliation(s)
- Pavel Klein
- Mid-Atlantic Epilepsy and Sleep Center, Bethesda, MD, USA.
| | | | - Matthias Koepp
- Department of Clinical and Experimental Epilepsy, UCL Queen Square Institute of Neurology, University College London, London, UK
| | - Wolfgang Löscher
- Translational Neuropharmacology Lab., NIFE, Department of Experimental Otology of the ENT Clinics, Hannover Medical School, Hannover, Germany.
- Center for Systems Neuroscience, Hannover, Germany.
| |
Collapse
|
5
|
Wang J, Wu W, Wan J, Zhan L, Chen Y, Yun F, Ji Y, Suo G, Zheng Y, Shen D, Zhang Q. Preliminary study on the mechanism of SAHA in the treatment of refractory epilepsy induced by GABRG2(F343L) mutation. Biochem Pharmacol 2024; 227:116449. [PMID: 39053637 DOI: 10.1016/j.bcp.2024.116449] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2024] [Revised: 07/02/2024] [Accepted: 07/22/2024] [Indexed: 07/27/2024]
Abstract
Mutations in the γ-amino butyric acid type A (GABAA) receptor γ2 subunit gene, GABRG2, have been associated with refractory epilepsy. Increasing evidence indicates that suberoylanilide hydroxamic acid (SAHA), a broad-spectrum histone acetyltransferases (HDACs) inhibitor, can inhibit seizure onset. However, the mechanisms involved remains unknown. The present study aimed to explore the anti-epileptic effect and underlying mechanisms of SAHA in the treatment of refractory epilepsy induced by GABRG2 mutation. In the zebrafish line expressing human mutant GABRG2(F343L), Tg(hGABRG2F343L), SAHA was found to reduce seizure onset, swimming activity, and neuronal activity. In both Tg(hGABRG2F343L) zebrafish and HEK293T cells transfected with GABAA receptor subunits, SAHA could improve the pan-acetylation level and reduce the expression of HDAC1/10. The decreased expressions of GABAA receptor subunits could be rescued by SAHA treatment both in vivo and in vitro, which might be the result of increased gene transcription and protein trafficking. The up-regulated acetylation of histone H3 and H4 as well as Bip expression might be involved in the process. Taken together, our data proved that both histone and non-histone acetylation might contribute to the anti-epileptic effect of SAHA in refractory epilepsy caused by GABRG2(F343L) mutation, demonstrating SAHA as a promising therapeutic agent for refractory epilepsy.
Collapse
Affiliation(s)
- Jie Wang
- Key Laboratory of Neuroregeneration of Jiangsu and Ministry of Education, Co-innovation Center of Neuroregeneration, NMPA Key Laboratory for Research and Evaluation of Tissue Engineering Technology Products, Jiangsu Clinical Medicine Center of Tissue Engineering and Nerve Injury Repair, Nantong University, Nantong, China
| | - Wenwen Wu
- Key Laboratory of Neuroregeneration of Jiangsu and Ministry of Education, Co-innovation Center of Neuroregeneration, NMPA Key Laboratory for Research and Evaluation of Tissue Engineering Technology Products, Jiangsu Clinical Medicine Center of Tissue Engineering and Nerve Injury Repair, Nantong University, Nantong, China
| | - Jiali Wan
- Key Laboratory of Neuroregeneration of Jiangsu and Ministry of Education, Co-innovation Center of Neuroregeneration, NMPA Key Laboratory for Research and Evaluation of Tissue Engineering Technology Products, Jiangsu Clinical Medicine Center of Tissue Engineering and Nerve Injury Repair, Nantong University, Nantong, China
| | - Longwu Zhan
- Key Laboratory of Neuroregeneration of Jiangsu and Ministry of Education, Co-innovation Center of Neuroregeneration, NMPA Key Laboratory for Research and Evaluation of Tissue Engineering Technology Products, Jiangsu Clinical Medicine Center of Tissue Engineering and Nerve Injury Repair, Nantong University, Nantong, China
| | - Yuhan Chen
- Key Laboratory of Neuroregeneration of Jiangsu and Ministry of Education, Co-innovation Center of Neuroregeneration, NMPA Key Laboratory for Research and Evaluation of Tissue Engineering Technology Products, Jiangsu Clinical Medicine Center of Tissue Engineering and Nerve Injury Repair, Nantong University, Nantong, China
| | - Feng Yun
- Key Laboratory of Neuroregeneration of Jiangsu and Ministry of Education, Co-innovation Center of Neuroregeneration, NMPA Key Laboratory for Research and Evaluation of Tissue Engineering Technology Products, Jiangsu Clinical Medicine Center of Tissue Engineering and Nerve Injury Repair, Nantong University, Nantong, China
| | - Yuhua Ji
- Key Laboratory of Neuroregeneration of Jiangsu and Ministry of Education, Co-innovation Center of Neuroregeneration, NMPA Key Laboratory for Research and Evaluation of Tissue Engineering Technology Products, Jiangsu Clinical Medicine Center of Tissue Engineering and Nerve Injury Repair, Nantong University, Nantong, China
| | - Guihai Suo
- Department of Pediatrics, Affiliated Hospital of Nantong University, Medical School, Nantong University, Nantong, China
| | - Yuqin Zheng
- Department of Pediatrics, Affiliated Hospital of Nantong University, Medical School, Nantong University, Nantong, China
| | - Dingding Shen
- Department of Neurology, Affiliated Hospital of Nantong University, Medical School, Nantong University, Nantong, China.
| | - Qi Zhang
- Key Laboratory of Neuroregeneration of Jiangsu and Ministry of Education, Co-innovation Center of Neuroregeneration, NMPA Key Laboratory for Research and Evaluation of Tissue Engineering Technology Products, Jiangsu Clinical Medicine Center of Tissue Engineering and Nerve Injury Repair, Nantong University, Nantong, China.
| |
Collapse
|
6
|
Cavirani B, Spagnoli C, Caraffi SG, Cavalli A, Cesaroni CA, Cutillo G, De Giorgis V, Frattini D, Marchetti GB, Masnada S, Peron A, Rizzi S, Varesio C, Spaccini L, Vignoli A, Canevini MP, Veggiotti P, Garavelli L, Fusco C. Genetic Epilepsies and Developmental Epileptic Encephalopathies with Early Onset: A Multicenter Study. Int J Mol Sci 2024; 25:1248. [PMID: 38279250 PMCID: PMC10816990 DOI: 10.3390/ijms25021248] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2023] [Revised: 01/15/2024] [Accepted: 01/17/2024] [Indexed: 01/28/2024] Open
Abstract
The genetic causes of epilepsies and developmental and epileptic encephalopathies (DEE) with onset in early childhood are increasingly recognized. Their outcomes vary from benign to severe disability. In this paper, we wished to retrospectively review the clinical, genetic, EEG, neuroimaging, and outcome data of patients experiencing the onset of epilepsy in the first three years of life, diagnosed and followed up in four Italian epilepsy centres (Epilepsy Centre of San Paolo University Hospital in Milan, Child Neurology and Psychiatry Unit of AUSL-IRCCS di Reggio Emilia, Pediatric Neurology Unit of Vittore Buzzi Children's Hospital, Milan, and Child Neurology and Psychiatry Unit, IRCCS Mondino Foundation, Pavia). We included 168 patients (104 with monogenic conditions, 45 with copy number variations (CNVs) or chromosomal abnormalities, and 19 with variants of unknown significance), who had been followed up for a mean of 14.75 years. We found a high occurrence of generalized seizures at onset, drug resistance, abnormal neurological examination, global developmental delay and intellectual disability, and behavioural and psychiatric comorbidities. We also documented differing presentations between monogenic issues versus CNVs and chromosomal conditions, as well as atypical/rare phenotypes. Genetic early-childhood-onset epilepsies and DEE show a very wide phenotypic and genotypic spectrum, with a high risk of complex neurological and neuropsychiatric phenotypes.
Collapse
Affiliation(s)
- Benedetta Cavirani
- Child Neuropsychiatry Unit, Azienda USL di Parma, 43121 Parma, Italy;
- Child Neurology and Psychiatry Unit, Department of Pediatrics, Presidio Ospedaliero Santa Maria Nuova, AUSL-IRCCS di Reggio Emilia, 42122 Reggio Emilia, Italy; (A.C.); (C.A.C.); (D.F.); (S.R.); (C.F.)
| | - Carlotta Spagnoli
- Child Neurology and Psychiatry Unit, Department of Pediatrics, Presidio Ospedaliero Santa Maria Nuova, AUSL-IRCCS di Reggio Emilia, 42122 Reggio Emilia, Italy; (A.C.); (C.A.C.); (D.F.); (S.R.); (C.F.)
| | - Stefano Giuseppe Caraffi
- Medical Genetics Unit, Presidio Ospedaliero Santa Maria Nuova, AUSL-IRCCS di Reggio Emilia, 42122 Reggio Emilia, Italy (L.G.)
| | - Anna Cavalli
- Child Neurology and Psychiatry Unit, Department of Pediatrics, Presidio Ospedaliero Santa Maria Nuova, AUSL-IRCCS di Reggio Emilia, 42122 Reggio Emilia, Italy; (A.C.); (C.A.C.); (D.F.); (S.R.); (C.F.)
| | - Carlo Alberto Cesaroni
- Child Neurology and Psychiatry Unit, Department of Pediatrics, Presidio Ospedaliero Santa Maria Nuova, AUSL-IRCCS di Reggio Emilia, 42122 Reggio Emilia, Italy; (A.C.); (C.A.C.); (D.F.); (S.R.); (C.F.)
| | - Gianni Cutillo
- Pediatric Neurology Unit, Department of Pediatric Neurology, Buzzi Children’s Hospital, 20154 Milan, Italy; (G.C.); (S.M.); (P.V.)
| | - Valentina De Giorgis
- Department of Brain and Behavioural Sciences, University of Pavia, 27100 Pavia, Italy; (V.D.G.); (C.V.)
- Department of Child Neurology and Psychiatriy, IRCCS Mondino Foundation, ERN-Epicare, 27100 Pavia, Italy
| | - Daniele Frattini
- Child Neurology and Psychiatry Unit, Department of Pediatrics, Presidio Ospedaliero Santa Maria Nuova, AUSL-IRCCS di Reggio Emilia, 42122 Reggio Emilia, Italy; (A.C.); (C.A.C.); (D.F.); (S.R.); (C.F.)
| | - Giulia Bruna Marchetti
- Medical Genetics Unit, Woman-Child-Newborn Department, Fondazione IRCCS Ca’ Granda, Ospedale Maggiore Policlinico, 20122 Milan, Italy;
| | - Silvia Masnada
- Pediatric Neurology Unit, Department of Pediatric Neurology, Buzzi Children’s Hospital, 20154 Milan, Italy; (G.C.); (S.M.); (P.V.)
| | - Angela Peron
- Medical Genetics, Meyer Children’s Hospital IRCCS, 50139 Florence, Italy;
- Department of Experimental and Clinical Biomedical Sciences “Mario Serio”, Università degli Studi di Firenze, 50121 Florence, Italy
- Medical Genetics, ASST Santi Paolo e Carlo, San Paolo Hospital, 20142 Milan, Italy
| | - Susanna Rizzi
- Child Neurology and Psychiatry Unit, Department of Pediatrics, Presidio Ospedaliero Santa Maria Nuova, AUSL-IRCCS di Reggio Emilia, 42122 Reggio Emilia, Italy; (A.C.); (C.A.C.); (D.F.); (S.R.); (C.F.)
| | - Costanza Varesio
- Department of Brain and Behavioural Sciences, University of Pavia, 27100 Pavia, Italy; (V.D.G.); (C.V.)
- Department of Child Neurology and Psychiatriy, IRCCS Mondino Foundation, ERN-Epicare, 27100 Pavia, Italy
| | - Luigina Spaccini
- Clinical Genetics Unit, Department of Obstetrics and Gynecology, V. Buzzi Children’s Hospital, University of Milan, 20157 Milan, Italy;
| | - Aglaia Vignoli
- Child Neuropsychiatry Unit-Epilepsy Center, ASST Santi Paolo e Carlo, San Paolo Hospital, 20142 Milan, Italy; (A.V.); (M.P.C.)
- Department of Health Sciences, University of Milan, 20157 Milan, Italy
| | - Maria Paola Canevini
- Child Neuropsychiatry Unit-Epilepsy Center, ASST Santi Paolo e Carlo, San Paolo Hospital, 20142 Milan, Italy; (A.V.); (M.P.C.)
- Department of Health Sciences, University of Milan, 20157 Milan, Italy
| | - Pierangelo Veggiotti
- Pediatric Neurology Unit, Department of Pediatric Neurology, Buzzi Children’s Hospital, 20154 Milan, Italy; (G.C.); (S.M.); (P.V.)
- Department of Biomedical and Clinical Sciences, University of Milan, 20157 Milan, Italy
| | - Livia Garavelli
- Medical Genetics Unit, Presidio Ospedaliero Santa Maria Nuova, AUSL-IRCCS di Reggio Emilia, 42122 Reggio Emilia, Italy (L.G.)
| | - Carlo Fusco
- Child Neurology and Psychiatry Unit, Department of Pediatrics, Presidio Ospedaliero Santa Maria Nuova, AUSL-IRCCS di Reggio Emilia, 42122 Reggio Emilia, Italy; (A.C.); (C.A.C.); (D.F.); (S.R.); (C.F.)
| |
Collapse
|
7
|
Robertson CD, Davis P, Richardson RR, Iffland PH, Vieira DCO, Steyert M, McKeon PN, Romanowski AJ, Crutcher G, Jašarević E, Wolff SBE, Mathur BN, Crino PB, Bale TL, Dick IE, Poulopoulos A. Rapid modeling of an ultra-rare epilepsy variant in wild-type mice by in utero prime editing. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.12.06.570164. [PMID: 38106154 PMCID: PMC10723435 DOI: 10.1101/2023.12.06.570164] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/19/2023]
Abstract
Generating animal models for individual patients within clinically-useful timeframes holds great potential toward enabling personalized medicine approaches for genetic epilepsies. The ability to rapidly incorporate patient-specific genomic variants into model animals recapitulating elements of the patient's clinical manifestations would enable applications ranging from validation and characterization of pathogenic variants to personalized models for tailoring pharmacotherapy to individual patients. Here, we demonstrate generation of an animal model of an individual epilepsy patient with an ultra-rare variant of the NMDA receptor subunit GRIN2A, without the need for germline transmission and breeding. Using in utero prime editing in the brain of wild-type mice, our approach yielded high in vivo editing precision and induced frequent, spontaneous seizures which mirrored specific elements of the patient's clinical presentation. Leveraging the speed and versatility of this approach, we introduce PegAssist, a generalizable workflow to generate bedside-to-bench animal models of individual patients within weeks. The capability to produce individualized animal models rapidly and cost-effectively will reduce barriers to access for precision medicine, and will accelerate drug development by offering versatile in vivo platforms to identify compounds with efficacy against rare neurological conditions.
Collapse
Affiliation(s)
- Colin D Robertson
- Department of Pharmacology and UM-MIND, University of Maryland School of Medicine, Baltimore, MD, USA
| | - Patrick Davis
- Department of Neurology, Boston Children's Hospital, Harvard Medical School, Boston, MA, USA
| | - Ryan R Richardson
- Department of Pharmacology and UM-MIND, University of Maryland School of Medicine, Baltimore, MD, USA
| | - Philip H Iffland
- Department of Neurology, and UM-MIND, University of Maryland School of Medicine, Baltimore, MD, USA
| | - Daiana C O Vieira
- Department of Physiology and UM-MIND, University of Maryland School of Medicine, Baltimore, MD, USA
| | - Marilyn Steyert
- Department of Pharmacology and UM-MIND, University of Maryland School of Medicine, Baltimore, MD, USA
| | - Paige N McKeon
- Department of Pharmacology and UM-MIND, University of Maryland School of Medicine, Baltimore, MD, USA
| | - Andrea J Romanowski
- Department of Pharmacology and UM-MIND, University of Maryland School of Medicine, Baltimore, MD, USA
| | - Garrett Crutcher
- Department of Pharmacology and UM-MIND, University of Maryland School of Medicine, Baltimore, MD, USA
| | - Eldin Jašarević
- Department of Pharmacology and UM-MIND, University of Maryland School of Medicine, Baltimore, MD, USA
- Current affiliations: MS: Department of Neurological Surgery, University of California San Francisco; EJ: Department Computational and Systems Biology, Department of Obstetrics, Gynecology and Reproductive Sciences, University of Pittsburgh School of Medicine; TB: Department of Psychiatry, University of Colorado School of Medicine
| | - Steffen B E Wolff
- Department of Pharmacology and UM-MIND, University of Maryland School of Medicine, Baltimore, MD, USA
| | - Brian N Mathur
- Department of Pharmacology and UM-MIND, University of Maryland School of Medicine, Baltimore, MD, USA
| | - Peter B Crino
- Department of Neurology, and UM-MIND, University of Maryland School of Medicine, Baltimore, MD, USA
| | - Tracy L Bale
- Department of Pharmacology and UM-MIND, University of Maryland School of Medicine, Baltimore, MD, USA
- Current affiliations: MS: Department of Neurological Surgery, University of California San Francisco; EJ: Department Computational and Systems Biology, Department of Obstetrics, Gynecology and Reproductive Sciences, University of Pittsburgh School of Medicine; TB: Department of Psychiatry, University of Colorado School of Medicine
| | - Ivy E Dick
- Department of Physiology and UM-MIND, University of Maryland School of Medicine, Baltimore, MD, USA
| | - Alexandros Poulopoulos
- Department of Pharmacology and UM-MIND, University of Maryland School of Medicine, Baltimore, MD, USA
| |
Collapse
|
8
|
Koh HY, Smith L, Wiltrout KN, Podury A, Chourasia N, D’Gama AM, Park M, Knight D, Sexton EL, Koh JJ, Oby B, Pinsky R, Shao DD, French CE, Shao W, Rockowitz S, Sliz P, Zhang B, Mahida S, Moufawad El Achkar C, Yuskaitis CJ, Olson HE, Sheidley BR, Poduri AH. Utility of Exome Sequencing for Diagnosis in Unexplained Pediatric-Onset Epilepsy. JAMA Netw Open 2023; 6:e2324380. [PMID: 37471090 PMCID: PMC10359957 DOI: 10.1001/jamanetworkopen.2023.24380] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/14/2023] [Accepted: 05/31/2023] [Indexed: 07/21/2023] Open
Abstract
Importance Genomic advances inform our understanding of epilepsy and can be translated to patients as precision diagnoses that influence clinical treatment, prognosis, and counseling. Objective To delineate the genetic landscape of pediatric epilepsy and clinical utility of genetic diagnoses for patients with epilepsy. Design, Setting, and Participants This cohort study used phenotypic data from medical records and treating clinicians at a pediatric hospital to identify patients with unexplained pediatric-onset epilepsy. Exome sequencing was performed for 522 patients and available biological parents, and sequencing data were analyzed for single nucleotide variants (SNVs) and copy number variants (CNVs). Variant pathogenicity was assessed, patients were provided with their diagnostic results, and clinical utility was evaluated. Patients were enrolled from August 2018 to October 2021, and data were analyzed through December 2022. Exposures Phenotypic features associated with diagnostic genetic results. Main Outcomes and Measures Main outcomes included diagnostic yield and clinical utility. Diagnostic findings included variants curated as pathogenic, likely pathogenic (PLP), or diagnostic variants of uncertain significance (VUS) with clinical features consistent with the involved gene's associated phenotype. The proportion of the cohort with diagnostic findings, the genes involved, and their clinical utility, defined as impact on clinical treatment, prognosis, or surveillance, are reported. Results A total of 522 children (269 [51.5%] male; mean [SD] age at seizure onset, 1.2 [1.4] years) were enrolled, including 142 children (27%) with developmental epileptic encephalopathy and 263 children (50.4%) with intellectual disability. Of these, 100 participants (19.2%) had identifiable genetic explanations for their seizures: 89 participants had SNVs (87 germline, 2 somatic mosaic) involving 69 genes, and 11 participants had CNVs. The likelihood of identifying a genetic diagnosis was highest in patients with intellectual disability (adjusted odds ratio [aOR], 2.44; 95% CI, 1.40-4.26), early onset seizures (aOR, 0.93; 95% CI, 0.88-0.98), and motor impairment (aOR, 2.19; 95% CI 1.34-3.58). Among 43 patients with apparently de novo variants, 2 were subsequently determined to have asymptomatic parents harboring mosaic variants. Of 71 patients who received diagnostic results and were followed clinically, 29 (41%) had documented clinical utility resulting from their genetic diagnoses. Conclusions and Relevance These findings suggest that pediatric-onset epilepsy is genetically heterogeneous and that some patients with previously unexplained pediatric-onset epilepsy had genetic diagnoses with direct clinical implications.
Collapse
Affiliation(s)
- Hyun Yong Koh
- Epilepsy Genetics Program, Boston Children’s Hospital, Boston, Massachusetts
- Department of Neurology, Boston Children’s Hospital, Boston, Massachusetts
- F.M. Kirby Neurobiology Center, Boston Children’s Hospital, Harvard Medical School, Boston, Massachusetts
- The Manton Center for Orphan Disease Research, Boston Children’s Hospital, Boston, Massachusetts
| | - Lacey Smith
- Epilepsy Genetics Program, Boston Children’s Hospital, Boston, Massachusetts
- Department of Neurology, Boston Children’s Hospital, Boston, Massachusetts
| | - Kimberly N. Wiltrout
- Epilepsy Genetics Program, Boston Children’s Hospital, Boston, Massachusetts
- Department of Neurology, Boston Children’s Hospital, Boston, Massachusetts
- Department of Neurology, Harvard Medical School, Boston, Massachusetts
| | | | - Nitish Chourasia
- Department of Neurology, Boston Children’s Hospital, Boston, Massachusetts
- Department of Pediatrics and Neurology, University of Tennessee Health Science Center, Memphis
| | - Alissa M. D’Gama
- Epilepsy Genetics Program, Boston Children’s Hospital, Boston, Massachusetts
- Harvard Medical School, Boston, Massachusetts
- Division of Newborn Medicine, Department of Pediatrics, Boston Children’s Hospital, Boston, Massachusetts
| | - Meredith Park
- Epilepsy Genetics Program, Boston Children’s Hospital, Boston, Massachusetts
| | - Devon Knight
- Epilepsy Genetics Program, Boston Children’s Hospital, Boston, Massachusetts
| | - Emma L. Sexton
- Epilepsy Genetics Program, Boston Children’s Hospital, Boston, Massachusetts
| | - Julia J. Koh
- Epilepsy Genetics Program, Boston Children’s Hospital, Boston, Massachusetts
| | - Brandon Oby
- Epilepsy Genetics Program, Boston Children’s Hospital, Boston, Massachusetts
| | - Rebecca Pinsky
- Epilepsy Genetics Program, Boston Children’s Hospital, Boston, Massachusetts
| | - Diane D. Shao
- Epilepsy Genetics Program, Boston Children’s Hospital, Boston, Massachusetts
- Department of Neurology, Boston Children’s Hospital, Boston, Massachusetts
- Department of Neurology, Harvard Medical School, Boston, Massachusetts
| | - Courtney E. French
- Research Computing, Department of Information Technology, Boston Children’s Hospital, Boston, Massachusetts
| | - Wanqing Shao
- Research Computing, Department of Information Technology, Boston Children’s Hospital, Boston, Massachusetts
| | - Shira Rockowitz
- The Manton Center for Orphan Disease Research, Boston Children’s Hospital, Boston, Massachusetts
- Research Computing, Department of Information Technology, Boston Children’s Hospital, Boston, Massachusetts
| | - Piotr Sliz
- The Manton Center for Orphan Disease Research, Boston Children’s Hospital, Boston, Massachusetts
- Research Computing, Department of Information Technology, Boston Children’s Hospital, Boston, Massachusetts
- Division of Molecular Medicine, Boston Children’s Hospital, Boston, Massachusetts
| | - Bo Zhang
- Department of Neurology, Boston Children’s Hospital, Boston, Massachusetts
- Biostatistics and Research Design Center, Institutional Centers for Clinical and Translational Research, Boston Children’s Hospital, Boston, Massachusetts
| | - Sonal Mahida
- Epilepsy Genetics Program, Boston Children’s Hospital, Boston, Massachusetts
- Department of Neurology, Boston Children’s Hospital, Boston, Massachusetts
| | - Christelle Moufawad El Achkar
- Epilepsy Genetics Program, Boston Children’s Hospital, Boston, Massachusetts
- Department of Neurology, Boston Children’s Hospital, Boston, Massachusetts
- Department of Neurology, Harvard Medical School, Boston, Massachusetts
- Biostatistics and Research Design Center, Institutional Centers for Clinical and Translational Research, Boston Children’s Hospital, Boston, Massachusetts
| | - Christopher J. Yuskaitis
- Epilepsy Genetics Program, Boston Children’s Hospital, Boston, Massachusetts
- Department of Neurology, Boston Children’s Hospital, Boston, Massachusetts
- F.M. Kirby Neurobiology Center, Boston Children’s Hospital, Harvard Medical School, Boston, Massachusetts
- Department of Neurology, Harvard Medical School, Boston, Massachusetts
| | - Heather E. Olson
- Epilepsy Genetics Program, Boston Children’s Hospital, Boston, Massachusetts
- Department of Neurology, Boston Children’s Hospital, Boston, Massachusetts
- F.M. Kirby Neurobiology Center, Boston Children’s Hospital, Harvard Medical School, Boston, Massachusetts
- Department of Neurology, Harvard Medical School, Boston, Massachusetts
| | - Beth Rosen Sheidley
- Epilepsy Genetics Program, Boston Children’s Hospital, Boston, Massachusetts
- Department of Neurology, Boston Children’s Hospital, Boston, Massachusetts
| | - Annapurna H. Poduri
- Epilepsy Genetics Program, Boston Children’s Hospital, Boston, Massachusetts
- Department of Neurology, Boston Children’s Hospital, Boston, Massachusetts
- F.M. Kirby Neurobiology Center, Boston Children’s Hospital, Harvard Medical School, Boston, Massachusetts
- Department of Neurology, Harvard Medical School, Boston, Massachusetts
- Broad Institute of MIT and Harvard, Cambridge, Massachusetts
| |
Collapse
|
9
|
Stöber TM, Batulin D, Triesch J, Narayanan R, Jedlicka P. Degeneracy in epilepsy: multiple routes to hyperexcitable brain circuits and their repair. Commun Biol 2023; 6:479. [PMID: 37137938 PMCID: PMC10156698 DOI: 10.1038/s42003-023-04823-0] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2022] [Accepted: 04/06/2023] [Indexed: 05/05/2023] Open
Abstract
Due to its complex and multifaceted nature, developing effective treatments for epilepsy is still a major challenge. To deal with this complexity we introduce the concept of degeneracy to the field of epilepsy research: the ability of disparate elements to cause an analogous function or malfunction. Here, we review examples of epilepsy-related degeneracy at multiple levels of brain organisation, ranging from the cellular to the network and systems level. Based on these insights, we outline new multiscale and population modelling approaches to disentangle the complex web of interactions underlying epilepsy and to design personalised multitarget therapies.
Collapse
Affiliation(s)
- Tristan Manfred Stöber
- Frankfurt Institute for Advanced Studies, 60438, Frankfurt am Main, Germany
- Institute for Neural Computation, Faculty of Computer Science, Ruhr University Bochum, 44801, Bochum, Germany
- Epilepsy Center Frankfurt Rhine-Main, Department of Neurology, Goethe University, 60590, Frankfurt, Germany
| | - Danylo Batulin
- Frankfurt Institute for Advanced Studies, 60438, Frankfurt am Main, Germany
- CePTER - Center for Personalized Translational Epilepsy Research, Goethe University, 60590, Frankfurt, Germany
- Faculty of Computer Science and Mathematics, Goethe University, 60486, Frankfurt, Germany
| | - Jochen Triesch
- Frankfurt Institute for Advanced Studies, 60438, Frankfurt am Main, Germany
| | - Rishikesh Narayanan
- Cellular Neurophysiology Laboratory, Molecular Biophysics Unit, Indian Institute of Science, Bangalore, 560012, India
| | - Peter Jedlicka
- ICAR3R - Interdisciplinary Centre for 3Rs in Animal Research, Faculty of Medicine, Justus Liebig University Giessen, 35390, Giessen, Germany.
- Institute of Clinical Neuroanatomy, Neuroscience Center, Goethe University, 60590, Frankfurt am Main, Germany.
| |
Collapse
|
10
|
Wong ZW, Engel T. More than a drug target: Purinergic signalling as a source for diagnostic tools in epilepsy. Neuropharmacology 2023; 222:109303. [PMID: 36309046 DOI: 10.1016/j.neuropharm.2022.109303] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2022] [Revised: 10/15/2022] [Accepted: 10/21/2022] [Indexed: 11/06/2022]
Abstract
Epilepsy is one of the most common and disabling chronic neurological diseases affecting people of all ages. Major challenges of epilepsy management include the persistently high percentage of drug-refractoriness among patients, the absence of disease-modifying treatments, and its diagnosis and prognosis. To date, long-term video-electroencephalogram (EEG) recordings remain the gold standard for an epilepsy diagnosis. However, this is very costly, has low throughput, and in some instances has very limited availability. Therefore, much effort is put into the search for non-invasive diagnostic tests. Purinergic signalling, via extracellularly released adenosine triphosphate (ATP), is gaining increasing traction as a therapeutic strategy for epilepsy treatment which is supported by evidence from both experimental models and patients. This includes in particular the ionotropic P2X7 receptor. Besides that, other components from the ATPergic signalling cascade such as the metabotropic P2Y receptors (e.g., P2Y1 receptor) and ATP-release channels (e.g., pannexin-1), have also been shown to contribute to seizures and epilepsy. In addition to the therapeutic potential of purinergic signalling, emerging evidence has also shown its potential as a diagnostic tool. Following seizures and epilepsy, the concentration of purines in the blood and the expression of different compounds of the purinergic signalling cascade are significantly altered. Herein, this review will provide a detailed discussion of recent findings on the diagnostic potential of purinergic signalling for epilepsy management and the prospect of translating it for clinical application. This article is part of the Special Issue on 'Purinergic Signaling: 50 years'.
Collapse
Affiliation(s)
- Zheng Wei Wong
- School of Pharmacy, Faculty of Science and Engineering, University of Nottingham Malaysia, Jalan Broga, 43500, Semenyih, Selangor Darul Ehsan, Malaysia
| | - Tobias Engel
- Department of Physiology and Medical Physics, Royal College of Surgeons in Ireland, University of Medicine and Health Sciences, Dublin, D02 YN77, Ireland; FutureNeuro, Science Foundation Ireland Research Centre for Chronic and Rare Neurological Diseases, Royal College of Surgeons in Ireland, University of Medicine and Health Sciences, Dublin, D02 YN77, Ireland.
| |
Collapse
|
11
|
Demarest S, Marsh R, Treat L, Fisher MP, Dempsey A, Junaid M, Downs J, Leonard H, Benke T, Morris MA. The Lived Experience of Parents' Receiving the Diagnosis of CDKL5 Deficiency Disorder for Their Child. J Child Neurol 2022; 37:451-460. [PMID: 35196159 DOI: 10.1177/08830738221076285] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
CDKL5 deficiency disorder (CDD), a severe developmental and epileptic encephalopathy, is being diagnosed earlier with improved access to genetic testing, but this may also have unanticipated impacts on parents' experience receiving the diagnosis. This study explores the lived experience of parents receiving a diagnosis of CDD for their child using mixed methods. Thirty-seven semistructured interviews were conducted with parents of children with a diagnosis of CDD, which were coded and analyzed to identify themes. Grief was a nearly universal theme expressed among participants. Parents of younger children discussed grief in the context of receiving the diagnosis, whereas parents of older children indicated they were at different stages along the grieving journey when they received the diagnosis. Parents with less understanding of their child's prognosis (poorer prognostic awareness) connected their grief to receiving the diagnosis as this brought a clear understanding of the prognosis. Several themes suggested what providers did well to improve the diagnostic experience for parents, much of which aligns with existing literature around how to provide serious news. Additionally, parents identified long-term benefits of having a diagnosis for their child's medical problems. Although interview data were concordant with a survey of parents' diagnostic experience from a large international cohort, most participants in this study were relatively affluent, white mothers and further research is needed to better understand if other groups of parents have a different diagnostic experience. This study gives context of parental experience that providers should be aware of when conveying new genetic diagnoses to families.
Collapse
Affiliation(s)
- Scott Demarest
- Adult and Child Consortium for Health Outcomes Research Science, University of Colorado.,Department of Pediatrics, University of Colorado.,2932Children's Hospital Colorado
| | - Rebekah Marsh
- Adult and Child Consortium for Health Outcomes Research Science, University of Colorado
| | - Lauren Treat
- Department of Pediatrics, University of Colorado.,2932Children's Hospital Colorado
| | - Michael P Fisher
- Department of Health Sciences, 1492Towson University, Towson, MD, USA
| | - Amanda Dempsey
- Adult and Child Consortium for Health Outcomes Research Science, University of Colorado.,Department of Pediatrics, University of Colorado.,2932Children's Hospital Colorado
| | - Mohammed Junaid
- 117610Telethon Kids Institute, Nedlands, Western Australia, Australia
| | - Jenny Downs
- 117610Telethon Kids Institute, Nedlands, Western Australia, Australia.,Curtin School of Allied Health, Curtin University, Bentley, Western Australia, Australia
| | - Helen Leonard
- 117610Telethon Kids Institute, Nedlands, Western Australia, Australia
| | - Tim Benke
- Adult and Child Consortium for Health Outcomes Research Science, University of Colorado.,Department of Pediatrics, University of Colorado.,Department of Medicine.,Department of Pharmacology
| | - Megan A Morris
- Adult and Child Consortium for Health Outcomes Research Science, University of Colorado.,Department of Medicine
| |
Collapse
|
12
|
The IDH1 inhibitor ivosidenib improved seizures in a patient with drug-resistant epilepsy from IDH1 mutant oligodendroglioma. Epilepsy Behav Rep 2022; 18:100526. [PMID: 35198955 PMCID: PMC8844211 DOI: 10.1016/j.ebr.2022.100526] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2021] [Revised: 01/21/2022] [Accepted: 01/23/2022] [Indexed: 12/03/2022] Open
Abstract
Focal epilepsy from oligodendrogliomas can be very treatment resistant. IDH1/2 mutation can lower seizure threshold by D2HG production. Ivosidenib, an IDH1 inhibitor, significantly improved seizures in our patient. In our patient, seizure improvement was seen with stable tumor appearance on MRI.
Compared to high grade gliomas, low grade gliomas such as oligodendrogliomas are often more epileptogenic. Epilepsy develops in 70–90% of patients with oligodendrogliomas and 40% of these are resistant to anti-seizure medications and surgery [3]. IDH1/2 mutation is one defining feature of oligodendrogliomas and confers improved prognosis when found in astrocytomas [7]. One possible etiology of the high rate of epileptogenicity in oligodendrogliomas is D-2-Hydroxyglutarate (D2HG), an oncometabolite seen in IDH mutation [8]. D2HG can mimic the effect of glutamate at the NMDA receptor and increase the seizure risk [11]. In this case report, we present a patient with drug resistant focal epilepsy from IDH1 mutant oligodendroglioma with markedly improved seizure frequency after starting Ivosidenib, an IDH1 inhibitor, in the absence of any changes to traditional anti-seizure medications. Our case suggests the possibility that IDH1 inhibitors may help reduce seizure burden in patients with difficult to control epilepsy from IDH1 mutant oligodendrogliomas. This is significant because we show that a targeted cancer therapy is able to improve seizure frequency through a unique pathway, and suggests that research into similar targeted, precision medicine therapies in brain lesions associated with epilepsy may be beneficial.
Collapse
|
13
|
Terai H, Gwedela MNV, Kawakami K, Aizawa H. Electrophysiological and pharmacological characterization of spreading depolarization in the adult zebrafish tectum. J Neurophysiol 2021; 126:1934-1942. [PMID: 34731067 DOI: 10.1152/jn.00343.2021] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023] Open
Abstract
Spreading depolarization (SD) is a slowly propagating wave of neuronal and glial depolarization. A growing number of studies show that SD and SD-like phenomena play a role in neurological disorders such as migraine, stroke, and traumatic brain injury. Despite the clinical importance of SD, its underlying molecular and cellular mechanisms remain elusive, possibly because of insufficient animal model allowing genetic manipulation. Such a model would also allow high-throughput screening for SD-suppressing drug development. To address this, we developed a novel experimental system to study SD using zebrafish. Electrophysiological recordings in the immobilized adult zebrafish revealed that increasing extracellular potassium concentration elicited SD with a large and long-lasting negative shift of direct current (DC) potential in the optic tectum. It also reduced the oscillatory activity in the extracellular field potential and increased the expression of the immediate early gene c-fos. Pharmacological blocking of the N-methyl-d-aspartate (NMDA) glutamate receptor attenuated the propagation of SD, suggesting that glutamatergic neurotransmission mediated tectal SD in zebrafish. Our analyses revealed that the zebrafish tectum and rodent cortex had similar SD kinetics. The current study provides electrophysiological and pharmacological evidence that zebrafish SD and mammal SD are comparable. This zebrafish SD model is suitable for genetic manipulation and cost-effective high-throughput screening. It could pave the way to novel diagnostic and therapeutic methods applicable to SD-associated neurological disorders.NEW & NOTEWORTHY Previous studies have implicated spreading depolarization (SD) in stroke and migraine. Here, we demonstrate SD, for the first time, in the adult zebrafish tectum showing waveform kinetics, c-fos expression, and attenuation by N-methyl-d-aspartate glutamate receptor blocker as observed in the rodent cortex. Since the zebrafish is an animal model amenable to genetic manipulation and chemical screening, this result could pave the way to novel diagnostic and therapeutic methods applicable to SD-associated neurological disorders.
Collapse
Affiliation(s)
- Haruhi Terai
- Department of Neurobiology, Graduate School of Biomedical and Health Sciences, Hiroshima University, Hiroshima, Japan
| | - Mayeso Naomi Victoria Gwedela
- Department of Neurobiology, Graduate School of Biomedical and Health Sciences, Hiroshima University, Hiroshima, Japan
| | - Koichi Kawakami
- Laboratory of Molecular and Developmental Biology, National Institute of Genetics and Department of Genetics, SOKENDAI (The Graduate University for Advanced Studies), Shizuoka, Japan
| | - Hidenori Aizawa
- Department of Neurobiology, Graduate School of Biomedical and Health Sciences, Hiroshima University, Hiroshima, Japan
| |
Collapse
|
14
|
Löscher W. Single-Target Versus Multi-Target Drugs Versus Combinations of Drugs With Multiple Targets: Preclinical and Clinical Evidence for the Treatment or Prevention of Epilepsy. Front Pharmacol 2021; 12:730257. [PMID: 34776956 PMCID: PMC8580162 DOI: 10.3389/fphar.2021.730257] [Citation(s) in RCA: 46] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2021] [Accepted: 10/04/2021] [Indexed: 01/09/2023] Open
Abstract
Rationally designed multi-target drugs (also termed multimodal drugs, network therapeutics, or designed multiple ligands) have emerged as an attractive drug discovery paradigm in the last 10-20 years, as potential therapeutic solutions for diseases of complex etiology and diseases with significant drug-resistance problems. Such agents that modulate multiple targets simultaneously are developed with the aim of enhancing efficacy or improving safety relative to drugs that address only a single target or to combinations of single-target drugs. Although this strategy has been proposed for epilepsy therapy >25 years ago, to my knowledge, only one antiseizure medication (ASM), padsevonil, has been intentionally developed as a single molecular entity that could target two different mechanisms. This novel drug exhibited promising effects in numerous preclinical models of difficult-to-treat seizures. However, in a recent randomized placebo-controlled phase IIb add-on trial in treatment-resistant focal epilepsy patients, padsevonil did not separate from placebo in its primary endpoints. At about the same time, a novel ASM, cenobamate, exhibited efficacy in several randomized controlled trials in such patients that far surpassed the efficacy of any other of the newer ASMs. Yet, cenobamate was discovered purely by phenotype-based screening and its presumed dual mechanism of action was only described recently. In this review, I will survey the efficacy of single-target vs. multi-target drugs vs. combinations of drugs with multiple targets in the treatment and prevention of epilepsy. Most clinically approved ASMs already act at multiple targets, but it will be important to identify and validate new target combinations that are more effective in drug-resistant epilepsy and eventually may prevent the development or progression of epilepsy.
Collapse
Affiliation(s)
- Wolfgang Löscher
- Department of Pharmacology, Toxicology, and Pharmacy, University of Veterinary Medicine Hannover, Germany, and Center for Systems Neuroscience Hannover, Hannover, Germany
| |
Collapse
|
15
|
Findlay GM. Linking genome variants to disease: scalable approaches to test the functional impact of human mutations. Hum Mol Genet 2021; 30:R187-R197. [PMID: 34338757 PMCID: PMC8490018 DOI: 10.1093/hmg/ddab219] [Citation(s) in RCA: 31] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2021] [Revised: 07/19/2021] [Accepted: 07/19/2021] [Indexed: 11/13/2022] Open
Abstract
The application of genomics to medicine has accelerated the discovery of mutations underlying disease and has enhanced our knowledge of the molecular underpinnings of diverse pathologies. As the amount of human genetic material queried via sequencing has grown exponentially in recent years, so too has the number of rare variants observed. Despite progress, our ability to distinguish which rare variants have clinical significance remains limited. Over the last decade, however, powerful experimental approaches have emerged to characterize variant effects orders of magnitude faster than before. Fueled by improved DNA synthesis and sequencing and, more recently, by CRISPR/Cas9 genome editing, multiplex functional assays provide a means of generating variant effect data in wide-ranging experimental systems. Here, I review recent applications of multiplex assays that link human variants to disease phenotypes and I describe emerging strategies that will enhance their clinical utility in coming years.
Collapse
Affiliation(s)
- Gregory M Findlay
- The Francis Crick Institute, The Genome Function Laboratory, London NW1 1AT, UK
| |
Collapse
|
16
|
Multimodal electrophysiological analyses reveal that reduced synaptic excitatory neurotransmission underlies seizures in a model of NMDAR antibody-mediated encephalitis. Commun Biol 2021; 4:1106. [PMID: 34545200 PMCID: PMC8452639 DOI: 10.1038/s42003-021-02635-8] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2021] [Accepted: 09/02/2021] [Indexed: 12/15/2022] Open
Abstract
Seizures are a prominent feature in N-Methyl-D-Aspartate receptor antibody (NMDAR antibody) encephalitis, a distinct neuro-immunological disorder in which specific human autoantibodies bind and crosslink the surface of NMDAR proteins thereby causing internalization and a state of NMDAR hypofunction. To further understand ictogenesis in this disorder, and to test a potential treatment compound, we developed an NMDAR antibody mediated rat seizure model that displays spontaneous epileptiform activity in vivo and in vitro. Using a combination of electrophysiological and dynamic causal modelling techniques we show that, contrary to expectation, reduction of synaptic excitatory, but not inhibitory, neurotransmission underlies the ictal events through alterations in the dynamical behaviour of microcircuits in brain tissue. Moreover, in vitro application of a neurosteroid, pregnenolone sulphate, that upregulates NMDARs, reduced established ictal activity. This proof-of-concept study highlights the complexity of circuit disturbances that may lead to seizures and the potential use of receptor-specific treatments in antibody-mediated seizures and epilepsy.
Collapse
|
17
|
Brock DC, Demarest S, Benke TA. Clinical Trial Design for Disease-Modifying Therapies for Genetic Epilepsies. Neurotherapeutics 2021; 18:1445-1457. [PMID: 34595733 PMCID: PMC8609073 DOI: 10.1007/s13311-021-01123-5] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/07/2021] [Indexed: 02/04/2023] Open
Abstract
Although trials with anti-seizure medications (ASMs) have not shown clear anti-epileptogenic or disease-modifying activity in humans to date, rapid advancements in genomic technology and emerging gene-mediated and gene replacement options offer hope for the successful development of disease-modifying therapies (DMTs) for genetic epilepsies. In fact, more than 26 potential DMTs are in various stages of preclinical and/or clinical development for genetic syndromes associated with epilepsy. The scope of disease-modification includes but is not limited to effects on the underlying pathophysiology, the condition's natural history, epilepsy severity, developmental achievement, function, behavior, sleep, and quality of life. While conventional regulatory clinical trials for epilepsy therapeutics have historically focused on seizure reduction, similarly designed trials may prove ill-equipped to identify these broader disease-modifying benefits. As we look forward to this pipeline of DMTs, focused consideration should be given to the challenges they pose to conventional clinical trial designs for epilepsy therapeutics. Just as DMTs promise to fundamentally alter how we approach the care of patients with genetic epilepsy syndromes, DMTs likewise challenge how we traditionally construct and measure the success of clinical trials. In the following, we briefly review the historical and preclinical frameworks for DMT development for genetic epilepsies and explore the many novel challenges posed for such trials, including the choice of suitable outcome measures, trial structure, timing and duration of treatment, feasible follow-up period, varying safety profile, and ethical concerns.
Collapse
Affiliation(s)
- Dylan C Brock
- Department of Pediatrics, University of Colorado School of Medicine, Aurora, CO, 80045, USA.
- Children's Hospital Colorado, Aurora, CO, 80045, USA.
| | - Scott Demarest
- Department of Pediatrics, University of Colorado School of Medicine, Aurora, CO, 80045, USA
- Children's Hospital Colorado, Aurora, CO, 80045, USA
| | - Tim A Benke
- Department of Pediatrics, University of Colorado School of Medicine, Aurora, CO, 80045, USA
- Departments of Neurology, Pharmacology, and Otolaryngology, University of Colorado School of Medicine, CO, 80045, Aurora, USA
- Children's Hospital Colorado, Aurora, CO, 80045, USA
| |
Collapse
|
18
|
Löscher W, Klein P. New approaches for developing multi-targeted drug combinations for disease modification of complex brain disorders. Does epilepsy prevention become a realistic goal? Pharmacol Ther 2021; 229:107934. [PMID: 34216705 DOI: 10.1016/j.pharmthera.2021.107934] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2021] [Revised: 06/16/2021] [Accepted: 06/16/2021] [Indexed: 12/14/2022]
Abstract
Over decades, the prevailing standard in drug discovery was the concept of designing highly selective compounds that act on individual drug targets. However, more recently, multi-target and combinatorial drug therapies have become an important treatment modality in complex diseases, including neurodegenerative diseases such as Alzheimer's and Parkinson's disease. The development of such network-based approaches is facilitated by the significant advance in our understanding of the pathophysiological processes in these and other complex brain diseases and the adoption of modern computational approaches in drug discovery and repurposing. However, although drug combination therapy has become an effective means for the symptomatic treatment of many complex diseases, the holy grail of identifying clinically effective disease-modifying treatments for neurodegenerative and other brain diseases remains elusive. Thus, despite extensive research, there remains an urgent need for novel treatments that will modify the progression of the disease or prevent its development in patients at risk. Here we discuss recent approaches with a focus on multi-targeted drug combinations for prevention or modification of epilepsy. Over the last ~10 years, several novel promising multi-targeted therapeutic approaches have been identified in animal models. We envision that synergistic combinations of repurposed drugs as presented in this review will be demonstrated to prevent epilepsy in patients at risk within the next 5-10 years.
Collapse
Affiliation(s)
- Wolfgang Löscher
- Department of Pharmacology, Toxicology, and Pharmacy, University of Veterinary Medicine, Hannover, Germany; Center for Systems Neuroscience, Hannover, Germany.
| | - Pavel Klein
- Mid-Atlantic Epilepsy and Sleep Center, Bethesda, MD, USA
| |
Collapse
|
19
|
Phenotypic analysis of catastrophic childhood epilepsy genes. Commun Biol 2021; 4:680. [PMID: 34083748 PMCID: PMC8175701 DOI: 10.1038/s42003-021-02221-y] [Citation(s) in RCA: 35] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2020] [Accepted: 05/17/2021] [Indexed: 01/06/2023] Open
Abstract
Genetic engineering techniques have contributed to the now widespread use of zebrafish to investigate gene function, but zebrafish-based human disease studies, and particularly for neurological disorders, are limited. Here we used CRISPR-Cas9 to generate 40 single-gene mutant zebrafish lines representing catastrophic childhood epilepsies. We evaluated larval phenotypes using electrophysiological, behavioral, neuro-anatomical, survival and pharmacological assays. Local field potential recordings (LFP) were used to screen ∼3300 larvae. Phenotypes with unprovoked electrographic seizure activity (i.e., epilepsy) were identified in zebrafish lines for 8 genes; ARX, EEF1A, GABRB3, GRIN1, PNPO, SCN1A, STRADA and STXBP1. We also created an open-source database containing sequencing information, survival curves, behavioral profiles and representative electrophysiology data. We offer all zebrafish lines as a resource to the neuroscience community and envision them as a starting point for further functional analysis and/or identification of new therapies. Griffin et al used CRISPR-Cas9 to generate 40 single-gene mutant zebrafish lines representing childhood epilepsies for which they evaluated larval phenotypes using electrophysiological, behavioral, neuro-anatomical, survival and pharmacological assays. Their study provides a useful resource for the future functional analysis and/or identification of potential anti-epileptic therapies.
Collapse
|
20
|
Evaluation of the Aberrant Behavior Checklist for Developmental and Epileptic Encephalopathies. Epilepsy Behav 2021; 119:107958. [PMID: 33892287 DOI: 10.1016/j.yebeh.2021.107958] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/03/2020] [Revised: 03/23/2021] [Accepted: 03/24/2021] [Indexed: 12/12/2022]
Abstract
OBJECTIVES To determine the suitability of the Aberrant Behavior Checklist (ABC)-a common measure used in clinical trials for treatment of challenging behaviors of autism-as an outcome measure for pharmacological and behavioral interventions for young people with Developmental and Epileptic Encephalopathies (DEEs). METHODS We assessed score profiles on the ABC in a sample of 122 young people with DEEs, including Dravet and Lennox-Gastaut syndromes, and KCNQ2- SCN2A-, and KCNB1-associated disorders. Then we examined its internal structure using item cluster analysis. We used both unrestricted item cluster analysis to determine the number of item clusters that maximize reliability and restricted analyses in which we pre-specified models with 5-, 6-, and 7-clusters, to examine consistency with previous factor analytic studies. We also conducted validity analysis on the various scoring methods with age, sex, and autism spectrum screening measure scores. RESULTS Unrestricted item cluster analysis suggested that three clusters maximized reliability of ABC scores. These broadly represented other-directed behaviors (i.e., "externalizing"), self-directed behaviors (i.e., "internalizing"), and inappropriate speech. Restricted models separated item clusters for stereotypy from other self-directed problem behaviors, and self-injurious behaviors from the other externalizing behaviors. Validity analysis also supported these structures. Overall, all scores were low, and less than 20% of DEE participants had symptoms severe enough to qualify for most randomized trials of behavioral therapies. SIGNIFICANCE These results are broadly consistent with the extant ABC scoring algorithms. They suggest a high internal consistency reliability, which may support the use of the ABC in future clinical trials in patients with DEEs who exhibit the behaviors assessed by the ABC. Alternatively, concerns about overall low scores raise cautions about using the ABC as a measure of behavior in unselected populations with DEE.
Collapse
|
21
|
Sun H, Shen XR, Fang ZB, Jiang ZZ, Wei XJ, Wang ZY, Yu XF. Next-Generation Sequencing Technologies and Neurogenetic Diseases. Life (Basel) 2021; 11:life11040361. [PMID: 33921670 PMCID: PMC8072598 DOI: 10.3390/life11040361] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2021] [Revised: 04/05/2021] [Accepted: 04/16/2021] [Indexed: 12/18/2022] Open
Abstract
Next-generation sequencing (NGS) technology has led to great advances in understanding the causes of Mendelian and complex neurological diseases. Owing to the complexity of genetic diseases, the genetic factors contributing to many rare and common neurological diseases remain poorly understood. Selecting the correct genetic test based on cost-effectiveness, coverage area, and sequencing range can improve diagnosis, treatments, and prevention. Whole-exome sequencing and whole-genome sequencing are suitable methods for finding new mutations, and gene panels are suitable for exploring the roles of specific genes in neurogenetic diseases. Here, we provide an overview of the classifications, applications, advantages, and limitations of NGS in research on neurological diseases. We further provide examples of NGS-based explorations and insights of the genetic causes of neurogenetic diseases, including Charcot-Marie-Tooth disease, spinocerebellar ataxias, epilepsy, and multiple sclerosis. In addition, we focus on issues related to NGS-based analyses, including interpretations of variants of uncertain significance, de novo mutations, congenital genetic diseases with complex phenotypes, and single-molecule real-time approaches.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Xue-Fan Yu
- Correspondence: ; Tel.: +86-157-5430-1836
| |
Collapse
|
22
|
Li Y, Lv X, Chen H, Zhi Z, Wei Z, Wang B, Zhou L, Li H, Tang W. Peptide Derived from AHNAK Inhibits Cell Migration and Proliferation in Hirschsprung's Disease by Targeting the ERK1/2 Pathway. J Proteome Res 2021; 20:2308-2318. [PMID: 33853325 DOI: 10.1021/acs.jproteome.0c00811] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023]
Abstract
Hirschsprung's disease (HSCR) is characterized by the lack of ganglion cells in the distal part of the digestive tract. It occurs due to migration disorders of enteric neural crest cells (ENCCs) from 5 to 12 weeks of embryonic development. More and more studies show that HSCR is a result of the interaction of multiple genes and the microenvironments, but its specific pathogenesis has not been fully elucidated. Studies have confirmed that many substances in the intestinal microenvironment, such as laminin and β1-integrin, play a vital regulatory role in cell growth and disease progression. In addition to these high-molecular-weight proteins, research on endogenous polypeptides derived from these proteins has been increasing in recent years. However, it is unclear whether these endogenous peptides have effects on the migration of ENCCs and thus participate in the occurrence of HSCR. Previously, our research group found that compared with the normal intestinal tissue, the expression of AHNAK protein in the stenosed intestinal tissue of HSCR patients was significantly upregulated, and overexpression of AHNAK could inhibit cell migration and proliferation. In this study, endogenous peptides were extracted from the normal control intestinal tissue and the stenosed HSCR intestinal tissue. The endogenous polypeptide expression profile was analyzed by liquid chromatography-mass spectrometry, and multiple peptides derived from AHNAK protein were found. We selected one of them, "EGPEVDVNLPK", for research. Because there is no uniform naming system, this peptide is temporarily named PDAHNAK (peptide derived from AHNAK). This project aims to clarify the potential role of PDAHNAK in the development of HSCR and to further understand its relationship with its precursor protein AHNAK and how they contribute to the development of HSCR.
Collapse
Affiliation(s)
- Yuhan Li
- Department of Pediatric Surgery, Children's Hospital of Nanjing Medical University, Nanjing 210008, China.,Department of Pediatric Surgery, Xin Hua Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Xiurui Lv
- Department of Pediatric Surgery, Children's Hospital of Nanjing Medical University, Nanjing 210008, China.,School of Medicine & Dentistry, University of Rochester, Rochester 14642, United States
| | - Huan Chen
- Department of Pediatric Surgery, Children's Hospital of Nanjing Medical University, Nanjing 210008, China.,State Key Laboratory of Reproductive Medicine, Institute of Toxicology, School of Public Health, Nanjing Medical University, Nanjing 211166, China
| | - Zhengke Zhi
- Department of Pediatric Surgery, Children's Hospital of Nanjing Medical University, Nanjing 210008, China.,State Key Laboratory of Reproductive Medicine, Institute of Toxicology, School of Public Health, Nanjing Medical University, Nanjing 211166, China
| | - Zhonghong Wei
- Department of Pediatric Surgery, Children's Hospital of Nanjing Medical University, Nanjing 210008, China
| | - Binyu Wang
- Department of Pediatric Surgery, Children's Hospital of Nanjing Medical University, Nanjing 210008, China.,State Key Laboratory of Reproductive Medicine, Institute of Toxicology, School of Public Health, Nanjing Medical University, Nanjing 211166, China
| | - LingLing Zhou
- Department of Pediatric Surgery, Children's Hospital of Nanjing Medical University, Nanjing 210008, China
| | - Hongxing Li
- Department of Pediatric Surgery, Children's Hospital of Nanjing Medical University, Nanjing 210008, China.,State Key Laboratory of Reproductive Medicine, Institute of Toxicology, School of Public Health, Nanjing Medical University, Nanjing 211166, China
| | - Weibing Tang
- Department of Pediatric Surgery, Children's Hospital of Nanjing Medical University, Nanjing 210008, China.,State Key Laboratory of Reproductive Medicine, Institute of Toxicology, School of Public Health, Nanjing Medical University, Nanjing 211166, China
| |
Collapse
|
23
|
Löscher W, Klein P. The Pharmacology and Clinical Efficacy of Antiseizure Medications: From Bromide Salts to Cenobamate and Beyond. CNS Drugs 2021; 35:935-963. [PMID: 34145528 PMCID: PMC8408078 DOI: 10.1007/s40263-021-00827-8] [Citation(s) in RCA: 132] [Impact Index Per Article: 33.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 05/04/2021] [Indexed: 12/16/2022]
Abstract
Epilepsy is one of the most common and disabling chronic neurological disorders. Antiseizure medications (ASMs), previously referred to as anticonvulsant or antiepileptic drugs, are the mainstay of symptomatic epilepsy treatment. Epilepsy is a multifaceted complex disease and so is its treatment. Currently, about 30 ASMs are available for epilepsy therapy. Furthermore, several ASMs are approved therapies in nonepileptic conditions, including neuropathic pain, migraine, bipolar disorder, and generalized anxiety disorder. Because of this wide spectrum of therapeutic activity, ASMs are among the most often prescribed centrally active agents. Most ASMs act by modulation of voltage-gated ion channels; by enhancement of gamma aminobutyric acid-mediated inhibition; through interactions with elements of the synaptic release machinery; by blockade of ionotropic glutamate receptors; or by combinations of these mechanisms. Because of differences in their mechanisms of action, most ASMs do not suppress all types of seizures, so appropriate treatment choices are important. The goal of epilepsy therapy is the complete elimination of seizures; however, this is not achievable in about one-third of patients. Both in vivo and in vitro models of seizures and epilepsy are used to discover ASMs that are more effective in patients with continued drug-resistant seizures. Furthermore, therapies that are specific to epilepsy etiology are being developed. Currently, ~ 30 new compounds with diverse antiseizure mechanisms are in the preclinical or clinical drug development pipeline. Moreover, therapies with potential antiepileptogenic or disease-modifying effects are in preclinical and clinical development. Overall, the world of epilepsy therapy development is changing and evolving in many exciting and important ways. However, while new epilepsy therapies are developed, knowledge of the pharmacokinetics, antiseizure efficacy and spectrum, and adverse effect profiles of currently used ASMs is an essential component of treating epilepsy successfully and maintaining a high quality of life for every patient, particularly those receiving polypharmacy for drug-resistant seizures.
Collapse
Affiliation(s)
- Wolfgang Löscher
- Department of Pharmacology, Toxicology, and Pharmacy, University of Veterinary Medicine, Bünteweg 17, 30559, Hannover, Germany. .,Center for Systems Neuroscience, Hannover, Germany.
| | - Pavel Klein
- grid.429576.bMid-Atlantic Epilepsy and Sleep Center, Bethesda, MD USA
| |
Collapse
|
24
|
Welzel L, Bergin DH, Schidlitzki A, Twele F, Johne M, Klein P, Löscher W. Systematic evaluation of rationally chosen multitargeted drug combinations: a combination of low doses of levetiracetam, atorvastatin and ceftriaxone exerts antiepileptogenic effects in a mouse model of acquired epilepsy. Neurobiol Dis 2020; 149:105227. [PMID: 33347976 DOI: 10.1016/j.nbd.2020.105227] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2020] [Revised: 11/24/2020] [Accepted: 12/16/2020] [Indexed: 01/22/2023] Open
Abstract
Epileptogenesis, the gradual process that leads to epilepsy after brain injury or genetic mutations, is a complex network phenomenon, involving a variety of morphological, biochemical and functional brain alterations. Although risk factors for developing epilepsy are known, there is currently no treatment available to prevent epilepsy. We recently proposed a multitargeted, network-based approach to prevent epileptogenesis by rationally combining clinically available drugs and provided first proof-of-concept that this strategy is effective. Here we evaluated eight novel rationally chosen combinations of 14 drugs with mechanisms that target different epileptogenic processes. The combinations consisted of 2-4 different drugs per combination and were administered systemically over 5 days during the latent epileptogenic period in the intrahippocampal kainate mouse model of acquired temporal lobe epilepsy, starting 6 h after kainate. Doses and dosing intervals were based on previous pharmacokinetic and tolerability studies in mice. The incidence and frequency of spontaneous electrographic and electroclinical seizures were recorded by continuous (24/7) video linked EEG monitoring done for seven days at 4 and 12 weeks post-kainate, i.e., long after termination of drug treatment. Compared to vehicle controls, the most effective drug combination consisted of low doses of levetiracetam, atorvastatin and ceftriaxone, which markedly reduced the incidence of electrographic seizures (by 60%; p<0.05) and electroclinical seizures (by 100%; p<0.05) recorded at 12 weeks after kainate. This effect was lost when higher doses of the three drugs were administered, indicating a synergistic drug-drug interaction at the low doses. The potential mechanisms underlying this interaction are discussed. We have discovered a promising novel multitargeted combination treatment for modifying the development of acquired epilepsy.
Collapse
Affiliation(s)
- Lisa Welzel
- Department of Pharmacology, Toxicology, and Pharmacy, University of Veterinary Medicine Hannover, Germany
| | - David H Bergin
- Department of Pharmacology, Toxicology, and Pharmacy, University of Veterinary Medicine Hannover, Germany
| | - Alina Schidlitzki
- Department of Pharmacology, Toxicology, and Pharmacy, University of Veterinary Medicine Hannover, Germany
| | - Friederike Twele
- Department of Pharmacology, Toxicology, and Pharmacy, University of Veterinary Medicine Hannover, Germany
| | - Marie Johne
- Department of Pharmacology, Toxicology, and Pharmacy, University of Veterinary Medicine Hannover, Germany; Center for Systems Neuroscience, Hannover, Germany
| | - Pavel Klein
- Mid-Atlantic Epilepsy and Sleep Center, Bethesda, MD, USA
| | - Wolfgang Löscher
- Department of Pharmacology, Toxicology, and Pharmacy, University of Veterinary Medicine Hannover, Germany; Center for Systems Neuroscience, Hannover, Germany.
| |
Collapse
|
25
|
Löscher W, Potschka H, Sisodiya SM, Vezzani A. Drug Resistance in Epilepsy: Clinical Impact, Potential Mechanisms, and New Innovative Treatment Options. Pharmacol Rev 2020; 72:606-638. [PMID: 32540959 PMCID: PMC7300324 DOI: 10.1124/pr.120.019539] [Citation(s) in RCA: 386] [Impact Index Per Article: 77.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
Epilepsy is a chronic neurologic disorder that affects over 70 million people worldwide. Despite the availability of over 20 antiseizure drugs (ASDs) for symptomatic treatment of epileptic seizures, about one-third of patients with epilepsy have seizures refractory to pharmacotherapy. Patients with such drug-resistant epilepsy (DRE) have increased risks of premature death, injuries, psychosocial dysfunction, and a reduced quality of life, so development of more effective therapies is an urgent clinical need. However, the various types of epilepsy and seizures and the complex temporal patterns of refractoriness complicate the issue. Furthermore, the underlying mechanisms of DRE are not fully understood, though recent work has begun to shape our understanding more clearly. Experimental models of DRE offer opportunities to discover, characterize, and challenge putative mechanisms of drug resistance. Furthermore, such preclinical models are important in developing therapies that may overcome drug resistance. Here, we will review the current understanding of the molecular, genetic, and structural mechanisms of ASD resistance and discuss how to overcome this problem. Encouragingly, better elucidation of the pathophysiological mechanisms underpinning epilepsies and drug resistance by concerted preclinical and clinical efforts have recently enabled a revised approach to the development of more promising therapies, including numerous potential etiology-specific drugs (“precision medicine”) for severe pediatric (monogenetic) epilepsies and novel multitargeted ASDs for acquired partial epilepsies, suggesting that the long hoped-for breakthrough in therapy for as-yet ASD-resistant patients is a feasible goal.
Collapse
Affiliation(s)
- Wolfgang Löscher
- Department of Pharmacology, Toxicology, and Pharmacy, University of Veterinary Medicine, Hannover, Germany (W.L.); Center for Systems Neuroscience, Hannover, Germany (W.L.); Institute of Pharmacology, Toxicology and Pharmacy, Ludwig-Maximilians-University, Munich, Germany (H.P.); Department of Clinical and Experimental Epilepsy, UCL Queen Square Institute of Neurology, London, United Kingdom (S.S); and Department of Neuroscience, Mario Negri Institute for Pharmacological Research Istituto di Ricovero e Cura a Carattere Scientifico, Milano, Italy (A.V.)
| | - Heidrun Potschka
- Department of Pharmacology, Toxicology, and Pharmacy, University of Veterinary Medicine, Hannover, Germany (W.L.); Center for Systems Neuroscience, Hannover, Germany (W.L.); Institute of Pharmacology, Toxicology and Pharmacy, Ludwig-Maximilians-University, Munich, Germany (H.P.); Department of Clinical and Experimental Epilepsy, UCL Queen Square Institute of Neurology, London, United Kingdom (S.S); and Department of Neuroscience, Mario Negri Institute for Pharmacological Research Istituto di Ricovero e Cura a Carattere Scientifico, Milano, Italy (A.V.)
| | - Sanjay M Sisodiya
- Department of Pharmacology, Toxicology, and Pharmacy, University of Veterinary Medicine, Hannover, Germany (W.L.); Center for Systems Neuroscience, Hannover, Germany (W.L.); Institute of Pharmacology, Toxicology and Pharmacy, Ludwig-Maximilians-University, Munich, Germany (H.P.); Department of Clinical and Experimental Epilepsy, UCL Queen Square Institute of Neurology, London, United Kingdom (S.S); and Department of Neuroscience, Mario Negri Institute for Pharmacological Research Istituto di Ricovero e Cura a Carattere Scientifico, Milano, Italy (A.V.)
| | - Annamaria Vezzani
- Department of Pharmacology, Toxicology, and Pharmacy, University of Veterinary Medicine, Hannover, Germany (W.L.); Center for Systems Neuroscience, Hannover, Germany (W.L.); Institute of Pharmacology, Toxicology and Pharmacy, Ludwig-Maximilians-University, Munich, Germany (H.P.); Department of Clinical and Experimental Epilepsy, UCL Queen Square Institute of Neurology, London, United Kingdom (S.S); and Department of Neuroscience, Mario Negri Institute for Pharmacological Research Istituto di Ricovero e Cura a Carattere Scientifico, Milano, Italy (A.V.)
| |
Collapse
|
26
|
Hirose S, Tanaka Y, Shibata M, Kimura Y, Ishikawa M, Higurashi N, Yamamoto T, Ichise E, Chiyonobu T, Ishii A. Application of induced pluripotent stem cells in epilepsy. Mol Cell Neurosci 2020; 108:103535. [DOI: 10.1016/j.mcn.2020.103535] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2020] [Revised: 07/10/2020] [Accepted: 07/31/2020] [Indexed: 02/06/2023] Open
|
27
|
Feng Y, Yang H, Yue Y, Tian F. MicroRNAs and target genes in epileptogenesis. Epilepsia 2020; 61:2086-2096. [PMID: 32944964 DOI: 10.1111/epi.16687] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2020] [Revised: 08/15/2020] [Accepted: 08/17/2020] [Indexed: 12/14/2022]
Abstract
Epilepsy is a chronic brain dysfunction. Current antiepileptic medicines cannot prevent epileptogenesis. Increasing data have shown that microRNAs (miRNAs) are selectively altered within the epileptic hippocampi of experimental models and human tissues, and these alterations affect the genes that control epileptogenesis. Furthermore, manipulation of miRNAs in animal models can modify epileptogenesis. As a result, miRNAs have been proposed as promising targets for treating epilepsy. We searched PubMed using the terms "microRNAs/miRNAs AND epilepsy", "microRNAs/miRNAs AND epileptogenesis", and "microRNAs/miRNAs AND seizure". We selected the articles in which the relationship between miRNAs and target gene(s) was validated and manipulation of miRNAs in in vivo epilepsy models modified epileptogenesis during the chronic phase via gene regulation. A total of 13 miRNAs were found in the present review. Based on the current analysis of miRNAs and their target gene(s), each miRNA has limitations as a potential epilepsy target. Importantly, miR-211 or miR-128 transgenic mice displayed seizures. These findings highlight new developments for epileptogenesis prevention. Developing novel strategies to modify epileptogenesis will be effective in curing epilepsy patients. This article provides an overview of the clinical application of miRNAs as novel targets for epilepsy.
Collapse
Affiliation(s)
- Yanyan Feng
- Department of Neurology, Xiangya Hospital, Central South University, Changsha, China
| | - Haojun Yang
- Department of Neurology, Xiangya Hospital, Central South University, Changsha, China
| | - Yinyan Yue
- Department of Pediatrics, First Hospital of Zhengzhou University, Zhengzhou, China
| | - Fafa Tian
- Department of Neurology, Xiangya Hospital, Central South University, Changsha, China
| |
Collapse
|
28
|
Functional Genomics of Epileptogenesis in Animal Models and Humans. Cell Mol Neurobiol 2020; 41:1579-1587. [PMID: 32725455 DOI: 10.1007/s10571-020-00927-x] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2019] [Accepted: 07/20/2020] [Indexed: 12/14/2022]
Abstract
It has been estimated that epilepsies are among the top five neurological diseases with the highest burden of disease. In recent years, genome-wide expression studies (GWES) have been carried out in experimental models of epilepsy and in samples from human patients. In this study, I carried out meta-analyses and analyses of convergence for available GWES for epileptogenesis in humans and in mouse, rat, zebrafish and fruit fly models. Multiple lines of evidence (such as genome-wide association data and known druggable genes) were integrated to prioritize top candidate genes for epileptogenesis and a functional enrichment analysis was carried out. Several top candidate genes, which are supported by multiple lines of genomic evidence, such as GRIN1, KCNAB1 and STX1B, were identified. Druggable genes of potential interest (such as GABRA2, GRIK1, KCNAB1 and STX4) were also identified. An enrichment of genes regulated by the MEF2 and SOX5 transcription factors and the miR-106b-5p and miR-101-3p miRNAs was found. The current work is the first meta-analysis and convergent analysis of GWES for epileptogenesis in humans and in multiple animal models, integrating results from several genomic studies. Novel candidate genes and pathways for epileptogenesis were identified in this analysis.
Collapse
|
29
|
Abstract
[Box: see text]
Collapse
|
30
|
Rubbini D, Cornet C, Terriente J, Di Donato V. CRISPR Meets Zebrafish: Accelerating the Discovery of New Therapeutic Targets. SLAS DISCOVERY 2020; 25:552-567. [PMID: 32462967 DOI: 10.1177/2472555220926920] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Bringing a new drug to the market costs an average of US$2.6 billion and takes more than 10 years from discovery to regulatory approval. Despite the need to reduce cost and time to increase productivity, pharma companies tend to crowd their efforts in the same indications and drug targets. This results in the commercialization of drugs that share the same mechanism of action (MoA) and, in many cases, equivalent efficacies among them-an outcome that helps neither patients nor the balance sheet of the companies trying to bring therapeutics to the same patient population. Indeed, the discovery of new therapeutic targets, based on a deeper understanding of the disease biology, would likely provide more innovative MoAs and potentially greater drug efficacies. It would also bring better chances for identifying appropriate treatments according to the patient's genetic stratification. Nowadays, we count with an enormous amount of unprocessed information on potential disease targets that could be extracted from omics data obtained from patient samples. In addition, hundreds of pharmacological and genetic screenings have been performed to identify innovative drug targets. Traditionally, rodents have been the animal models of choice to perform functional genomic studies. The high experimental cost, combined with the low throughput provided by those models, however, is a bottleneck for discovering and validating novel genetic disease associations. To overcome these limitations, we propose that zebrafish, in conjunction with the use of CRISPR/Cas9 genome-editing tools, could streamline functional genomic processes to bring biologically relevant knowledge on innovative disease targets in a shorter time frame.
Collapse
Affiliation(s)
- Davide Rubbini
- ZeClinics SL, IGTP (Germans Trias I Pujol Research Institute), Barcelona, Spain
| | - Carles Cornet
- ZeClinics SL, IGTP (Germans Trias I Pujol Research Institute), Barcelona, Spain
| | - Javier Terriente
- ZeClinics SL, IGTP (Germans Trias I Pujol Research Institute), Barcelona, Spain
| | - Vincenzo Di Donato
- ZeClinics SL, IGTP (Germans Trias I Pujol Research Institute), Barcelona, Spain
| |
Collapse
|
31
|
Yokoi T, Enomoto Y, Tsurusaki Y, Harada N, Saito T, Nagai JI, Naruto T, Kurosawa K. An efficient genetic test flow for multiple congenital anomalies and intellectual disability. Pediatr Int 2020; 62:556-561. [PMID: 31955471 DOI: 10.1111/ped.14159] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/07/2019] [Revised: 04/10/2019] [Accepted: 01/16/2020] [Indexed: 11/29/2022]
Abstract
BACKGROUND Genetic testing has enabled the diagnosis of multiple congenital anomalies and/or intellectual disabilities. However, because of the phenotypic variability in these disorders, selection of an appropriate genetic test can be difficult and complex. For clinical examination, particularly in clinical facilities, a simple and standardized system is needed. METHODS We compared microarray comparative genomic hybridization and clinical exome sequencing with regard to diagnostic yield, cost, and time required to reach a definitive diagnosis. After first performing G-banding for 200 patients with multiple congenital anomalies and/or intellectual disability, as a subsequent genetic test, microarray and clinical exome sequencing were compared with regard to diagnostic yield, cost, and time required. RESULTS There was no obvious difference in the diagnostic rate between the two methods; however, clinical exome sequencing was superior in terms of cost and time. In addition, clinical exome sequencing could sufficiently identify copy number variants, and even smaller copy number variants could be identified. CONCLUSIONS Clinical exome sequencing should be implemented earlier as a genetic test for undiagnosed patients with multiple congenital anomalies and/or intellectual disabilities. Our results can be used to establish inspection methods in clinical facilities.
Collapse
Affiliation(s)
- Takayuki Yokoi
- Division of Medical Genetics, Kanagawa Children's Medical Center, Yokohama, Japan.,Clinical Research Institute, Kanagawa Children's Medical Center, Yokohama, Japan
| | - Yumi Enomoto
- Department of Clinical Laboratory, Kanagawa Children's Medical Center, Yokohama, Japan
| | - Yoshinori Tsurusaki
- Department of Clinical Laboratory, Kanagawa Children's Medical Center, Yokohama, Japan
| | - Noriaki Harada
- Department of Pediatrics, Jikei University School of Medicine, Tokyo, Japan
| | - Toshiyuki Saito
- Department of Pediatrics, Jikei University School of Medicine, Tokyo, Japan
| | - Jun-Ichi Nagai
- Department of Pediatrics, Jikei University School of Medicine, Tokyo, Japan
| | - Takuya Naruto
- Department of Pediatrics and Developmental Biology, Tokyo Medical and Dental University Graduate School, Tokyo, Japan
| | - Kenji Kurosawa
- Division of Medical Genetics, Kanagawa Children's Medical Center, Yokohama, Japan
| |
Collapse
|
32
|
Löscher W, Klein P. The feast and famine: Epilepsy treatment and treatment gaps in early 21st century. Neuropharmacology 2020; 170:108055. [PMID: 32199986 DOI: 10.1016/j.neuropharm.2020.108055] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Affiliation(s)
- Wolfgang Löscher
- Department of Pharmacology, Toxicology, and Pharmacy, University of Veterinary Medicine, Hannover, Germany; Center for Systems Neuroscience, Hannover, Germany.
| | - Pavel Klein
- Mid-Atlantic Epilepsy and Sleep Center, Bethesda, MD, USA
| |
Collapse
|
33
|
Cárdenas-Rodríguez N, Carmona-Aparicio L, Pérez-Lozano DL, Ortega-Cuellar D, Gómez-Manzo S, Ignacio-Mejía I. Genetic variations associated with pharmacoresistant epilepsy (Review). Mol Med Rep 2020; 21:1685-1701. [PMID: 32319641 PMCID: PMC7057824 DOI: 10.3892/mmr.2020.10999] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2019] [Accepted: 01/16/2020] [Indexed: 12/13/2022] Open
Abstract
Epilepsy is a common, serious neurological disorder worldwide. Although this disease can be successfully treated in most cases, not all patients respond favorably to medical treatments, which can lead to pharmacoresistant epilepsy. Drug-resistant epilepsy can be caused by a number of mechanisms that may involve environmental and genetic factors, as well as disease- and drug-related factors. In recent years, numerous studies have demonstrated that genetic variation is involved in the drug resistance of epilepsy, especially genetic variations found in drug resistance-related genes, including the voltage-dependent sodium and potassium channels genes, and the metabolizer of endogenous and xenobiotic substances genes. The present review aimed to highlight the genetic variants that are involved in the regulation of drug resistance in epilepsy; a comprehensive understanding of the role of genetic variation in drug resistance will help us develop improved strategies to regulate drug resistance efficiently and determine the pathophysiological processes that underlie this common human neurological disease.
Collapse
Affiliation(s)
- Noemí Cárdenas-Rodríguez
- Laboratory of Neuroscience, National Institute of Pediatrics, Ministry of Health, Coyoacán, Mexico City 04530, Mexico
| | - Liliana Carmona-Aparicio
- Laboratory of Neuroscience, National Institute of Pediatrics, Ministry of Health, Coyoacán, Mexico City 04530, Mexico
| | - Diana L Pérez-Lozano
- Laboratory of Neuroscience, National Institute of Pediatrics, Ministry of Health, Coyoacán, Mexico City 04530, Mexico
| | - Daniel Ortega-Cuellar
- Laboratory of Experimental Nutrition, National Institute of Pediatrics, Ministry of Health, Coyoacán, Mexico City 04530, Mexico
| | - Saúl Gómez-Manzo
- Laboratory of Genetic Biochemistry, National Institute of Pediatrics, Ministry of Health, Coyoacán, Mexico City 04530, Mexico
| | - Iván Ignacio-Mejía
- Laboratory of Translational Medicine, Military School of Health Graduates, Lomas de Sotelo, Militar, Mexico City 11200, Mexico
| |
Collapse
|
34
|
Lauritano A, Moutton S, Longobardi E, Tran Mau‐Them F, Laudati G, Nappi P, Soldovieri MV, Ambrosino P, Cataldi M, Jouan T, Lehalle D, Maurey H, Philippe C, Miceli F, Vitobello A, Taglialatela M. A novel homozygous KCNQ3 loss-of-function variant causes non-syndromic intellectual disability and neonatal-onset pharmacodependent epilepsy. Epilepsia Open 2019; 4:464-475. [PMID: 31440727 PMCID: PMC6698674 DOI: 10.1002/epi4.12353] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2019] [Revised: 07/04/2019] [Accepted: 07/28/2019] [Indexed: 12/18/2022] Open
Abstract
OBJECTIVE Heterozygous variants in KCNQ2 or, more rarely, KCNQ3 genes are responsible for early-onset developmental/epileptic disorders characterized by heterogeneous clinical presentation and course, genetic transmission, and prognosis. While familial forms mostly include benign epilepsies with seizures starting in the neonatal or early-infantile period, de novo variants in KCNQ2 or KCNQ3 have been described in sporadic cases of early-onset encephalopathy (EOEE) with pharmacoresistant seizures, various age-related pathological EEG patterns, and moderate/severe developmental impairment. All pathogenic variants in KCNQ2 or KCNQ3 occur in heterozygosity. The aim of this work was to report the clinical, molecular, and functional properties of a new KCNQ3 variant found in homozygous configuration in a 9-year-old girl with pharmacodependent neonatal-onset epilepsy and non-syndromic intellectual disability. METHODS Exome sequencing was used for genetic investigation. KCNQ3 transcript and subunit expression in fibroblasts was analyzed with quantitative real-time PCR and Western blotting or immunofluorescence, respectively. Whole-cell patch-clamp electrophysiology was used for functional characterization of mutant subunits. RESULTS A novel single-base duplication in exon 12 of KCNQ3 (NM_004519.3:c.1599dup) was found in homozygous configuration in the proband born to consanguineous healthy parents; this frameshift variant introduced a premature termination codon (PTC), thus deleting a large part of the C-terminal region. Mutant KCNQ3 transcript and protein abundance was markedly reduced in primary fibroblasts from the proband, consistent with nonsense-mediated mRNA decay. The variant fully abolished the ability of KCNQ3 subunits to assemble into functional homomeric or heteromeric channels with KCNQ2 subunits. SIGNIFICANCE The present results indicate that a homozygous KCNQ3 loss-of-function variant is responsible for a severe phenotype characterized by neonatal-onset pharmacodependent seizures, with developmental delay and intellectual disability. They also reveal difference in genetic and pathogenetic mechanisms between KCNQ2- and KCNQ3-related epilepsies, a crucial observation for patients affected with EOEE and/or developmental disabilities.
Collapse
Affiliation(s)
- Anna Lauritano
- Division of Pharmacology, Department of NeuroscienceUniversity of Naples “Federico II”NaplesItaly
| | - Sebastien Moutton
- Reference Center for Developmental Anomalies, Department of Medical GeneticsDijon University HospitalDijonFrance
- INSERM U1231, LNC UMR1231 GADBurgundy UniversityDijonFrance
| | - Elena Longobardi
- Division of Pharmacology, Department of NeuroscienceUniversity of Naples “Federico II”NaplesItaly
| | - Frédéric Tran Mau‐Them
- INSERM U1231, LNC UMR1231 GADBurgundy UniversityDijonFrance
- Laboratoire de Génétique, Innovation en Diagnostic Génomique des Maladies Rares UF6254, Plateau Technique de BiologieCHU DijonDijonFrance
| | - Giusy Laudati
- Division of Pharmacology, Department of NeuroscienceUniversity of Naples “Federico II”NaplesItaly
| | - Piera Nappi
- Division of Pharmacology, Department of NeuroscienceUniversity of Naples “Federico II”NaplesItaly
| | | | - Paolo Ambrosino
- Division of Pharmacology, Department of Science and TechnologyUniversity of SannioBeneventoItaly
| | - Mauro Cataldi
- Division of Pharmacology, Department of NeuroscienceUniversity of Naples “Federico II”NaplesItaly
| | - Thibaud Jouan
- INSERM U1231, LNC UMR1231 GADBurgundy UniversityDijonFrance
- Laboratoire de Génétique, Innovation en Diagnostic Génomique des Maladies Rares UF6254, Plateau Technique de BiologieCHU DijonDijonFrance
| | - Daphné Lehalle
- Reference Center for Developmental Anomalies, Department of Medical GeneticsDijon University HospitalDijonFrance
- INSERM U1231, LNC UMR1231 GADBurgundy UniversityDijonFrance
| | - Hélène Maurey
- Service de Neurologie PédiatriqueAPHP, Hôpital Universitaire BicêtreLe Kremlin‐BicêtreFrance
| | - Christophe Philippe
- INSERM U1231, LNC UMR1231 GADBurgundy UniversityDijonFrance
- Laboratoire de Génétique, Innovation en Diagnostic Génomique des Maladies Rares UF6254, Plateau Technique de BiologieCHU DijonDijonFrance
| | - Francesco Miceli
- Division of Pharmacology, Department of NeuroscienceUniversity of Naples “Federico II”NaplesItaly
| | - Antonio Vitobello
- INSERM U1231, LNC UMR1231 GADBurgundy UniversityDijonFrance
- Laboratoire de Génétique, Innovation en Diagnostic Génomique des Maladies Rares UF6254, Plateau Technique de BiologieCHU DijonDijonFrance
| | - Maurizio Taglialatela
- Division of Pharmacology, Department of NeuroscienceUniversity of Naples “Federico II”NaplesItaly
| |
Collapse
|
35
|
Liu K, Petree C, Requena T, Varshney P, Varshney GK. Expanding the CRISPR Toolbox in Zebrafish for Studying Development and Disease. Front Cell Dev Biol 2019; 7:13. [PMID: 30886848 PMCID: PMC6409501 DOI: 10.3389/fcell.2019.00013] [Citation(s) in RCA: 94] [Impact Index Per Article: 15.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2018] [Accepted: 01/24/2019] [Indexed: 12/13/2022] Open
Abstract
The study of model organisms has revolutionized our understanding of the mechanisms underlying normal development, adult homeostasis, and human disease. Much of what we know about gene function in model organisms (and its application to humans) has come from gene knockouts: the ability to show analogous phenotypes upon gene inactivation in animal models. The zebrafish (Danio rerio) has become a popular model organism for many reasons, including the fact that it is amenable to various forms of genetic manipulation. The RNA-guided CRISPR/Cas9-mediated targeted mutagenesis approaches have provided powerful tools to manipulate the genome toward developing new disease models and understanding the pathophysiology of human diseases. CRISPR-based approaches are being used for the generation of both knockout and knock-in alleles, and also for applications including transcriptional modulation, epigenome editing, live imaging of the genome, and lineage tracing. Currently, substantial effort is being made to improve the specificity of Cas9, and to expand the target coverage of the Cas9 enzymes. Novel types of naturally occurring CRISPR systems [Cas12a (Cpf1); engineered variants of Cas9, such as xCas9 and SpCas9-NG], are being studied and applied to genome editing. Since the majority of pathogenic mutations are single point mutations, development of base editors to convert C:G to T:A or A:T to G:C has further strengthened the CRISPR toolbox. In this review, we provide an overview of the increasing number of novel CRISPR-based tools and approaches, including lineage tracing and base editing.
Collapse
Affiliation(s)
| | | | | | | | - Gaurav K. Varshney
- Functional and Chemical Genomics Research Program, Oklahoma Medical Research Foundation, Oklahoma City, OK, United States
| |
Collapse
|
36
|
Angione K, Eschbach K, Smith G, Joshi C, Demarest S. Genetic testing in a cohort of patients with potential epilepsy with myoclonic-atonic seizures. Epilepsy Res 2019; 150:70-77. [PMID: 30660939 DOI: 10.1016/j.eplepsyres.2019.01.008] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2018] [Revised: 01/10/2019] [Accepted: 01/13/2019] [Indexed: 10/27/2022]
Abstract
Epilepsy with myoclonic-atonic seizures (EMAS) accounts for 1-2% of all childhood-onset epilepsies. EMAS has been shown to have an underlying genetic component, however the genetics of this disorder is not yet well understood. The purpose of this study was to review genetic testing results for a cohort of EMAS patients. A retrospective chart review was conducted for 77 patients evaluated at Children's Hospital Colorado with a potential diagnosis of EMAS. Genetic testing and biochemical testing was reviewed. Family history data was also collected. Seventy-seven percent of the cohort had at least one genetic test performed, and a molecular diagnosis was reached for six patients. Thirty-seven patients had a microarray, six of which identified a copy number variant. Only one was felt to contribute to the phenotype (2p16.3 deletion including NRXN1). Fifty-one patients had an epilepsy panel, two of which were positive (likely pathogenic variant in SCN1A, pathogenic variant in GABRG2). Of the six patients who had whole exome sequencing, two were negative, three were positive or likely positive, and one had multiple variants not felt to explain the phenotype. While EMAS is widely accepted to have a strong genetic component, the diagnostic yield of genetic testing remains low. This may be because several genes now thought to be associated with EMAS are not included on the more commonly ordered epilepsy panels, or have only recently been added to them.
Collapse
Affiliation(s)
- Katie Angione
- University of Colorado Denver, Department of Pediatrics, Section of Neurology, United States.
| | - Krista Eschbach
- University of Colorado Denver, Department of Pediatrics, Section of Neurology, United States
| | - Garnett Smith
- University of Colorado Denver, Department of Pediatrics, Section of Neurology, United States
| | - Charuta Joshi
- University of Colorado Denver, Department of Pediatrics, Section of Neurology, United States
| | - Scott Demarest
- University of Colorado Denver, Department of Pediatrics, Section of Neurology, United States
| |
Collapse
|