1
|
Zhang L, Wei J, Liu X, Li D, Pang X, Chen F, Cao H, Lei P. Gut microbiota-astrocyte axis: new insights into age-related cognitive decline. Neural Regen Res 2025; 20:990-1008. [PMID: 38989933 PMCID: PMC11438350 DOI: 10.4103/nrr.nrr-d-23-01776] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2023] [Accepted: 03/04/2024] [Indexed: 07/12/2024] Open
Abstract
With the rapidly aging human population, age-related cognitive decline and dementia are becoming increasingly prevalent worldwide. Aging is considered the main risk factor for cognitive decline and acts through alterations in the composition of the gut microbiota, microbial metabolites, and the functions of astrocytes. The microbiota-gut-brain axis has been the focus of multiple studies and is closely associated with cognitive function. This article provides a comprehensive review of the specific changes that occur in the composition of the gut microbiota and microbial metabolites in older individuals and discusses how the aging of astrocytes and reactive astrocytosis are closely related to age-related cognitive decline and neurodegenerative diseases. This article also summarizes the gut microbiota components that affect astrocyte function, mainly through the vagus nerve, immune responses, circadian rhythms, and microbial metabolites. Finally, this article summarizes the mechanism by which the gut microbiota-astrocyte axis plays a role in Alzheimer's and Parkinson's diseases. Our findings have revealed the critical role of the microbiota-astrocyte axis in age-related cognitive decline, aiding in a deeper understanding of potential gut microbiome-based adjuvant therapy strategies for this condition.
Collapse
Affiliation(s)
- Lan Zhang
- Haihe Laboratory of Cell Ecosystem, Department of Geriatrics, Tianjin Medical University General Hospital, Tianjin, China
- Tianjin Geriatrics Institute, Tianjin Medical University General Hospital, Tianjin, China
| | - Jingge Wei
- Department of Gastroenterology and Hepatology, Tianjin Medical University General Hospital, National Key Clinical Specialty, Tianjin Institute of Digestive Diseases, Tianjin Key Laboratory of Digestive Diseases, Tianjin, China
| | - Xilei Liu
- Department of Urology, Tianjin Medical University General Hospital, Tianjin, China
| | - Dai Li
- Haihe Laboratory of Cell Ecosystem, Department of Geriatrics, Tianjin Medical University General Hospital, Tianjin, China
- Tianjin Geriatrics Institute, Tianjin Medical University General Hospital, Tianjin, China
| | - Xiaoqi Pang
- Department of Gastroenterology and Hepatology, Tianjin Medical University General Hospital, National Key Clinical Specialty, Tianjin Institute of Digestive Diseases, Tianjin Key Laboratory of Digestive Diseases, Tianjin, China
| | - Fanglian Chen
- Tianjin Neurological Institution, Tianjin Medical University General Hospital, Tianjin, China
| | - Hailong Cao
- Department of Gastroenterology and Hepatology, Tianjin Medical University General Hospital, National Key Clinical Specialty, Tianjin Institute of Digestive Diseases, Tianjin Key Laboratory of Digestive Diseases, Tianjin, China
| | - Ping Lei
- Haihe Laboratory of Cell Ecosystem, Department of Geriatrics, Tianjin Medical University General Hospital, Tianjin, China
- Tianjin Geriatrics Institute, Tianjin Medical University General Hospital, Tianjin, China
| |
Collapse
|
2
|
Smith EE, Biessels GJ, Gao V, Gottesman RF, Liesz A, Parikh NS, Iadecola C. Systemic determinants of brain health in ageing. Nat Rev Neurol 2024; 20:647-659. [PMID: 39375564 DOI: 10.1038/s41582-024-01016-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/20/2024] [Indexed: 10/09/2024]
Abstract
Preservation of brain health is a worldwide priority. The traditional view is that the major threats to the ageing brain lie within the brain itself. Consequently, therapeutic approaches have focused on protecting the brain from these presumably intrinsic pathogenic processes. However, an increasing body of evidence has unveiled a previously under-recognized contribution of peripheral organs to brain dysfunction and damage. Thus, in addition to the well-known impact of diseases of the heart and endocrine glands on the brain, accumulating data suggest that dysfunction of other organs, such as gut, liver, kidney and lung, substantially affects the development and clinical manifestation of age-related brain pathologies. In this Review, a framework is provided to indicate how organ dysfunction can alter brain homeostasis and promote neurodegeneration, with a focus on dementia. We delineate the associations of subclinical dysfunction in specific organs with dementia risk and provide suggestions for public health promotion and clinical management.
Collapse
Affiliation(s)
- Eric E Smith
- Department of Clinical Neurosciences and Hotchkiss Brain Institute, University of Calgary, Calgary, Canada.
| | - Geert Jan Biessels
- Department of Neurology, UMC Utrecht Brain Center, University Medical Centre Utrecht, Utrecht, Netherlands
| | - Virginia Gao
- Feil Family Brain and Mind Research Institute, Weill Cornell Medicine, New York, NY, USA
| | | | - Arthur Liesz
- Institute for Stroke and Dementia Research, University Medical Center Munich, Munich, Germany
- Munich Cluster for Systems Neurology (SyNergy), Munich, Germany
| | - Neal S Parikh
- Feil Family Brain and Mind Research Institute, Weill Cornell Medicine, New York, NY, USA
| | - Costantino Iadecola
- Feil Family Brain and Mind Research Institute, Weill Cornell Medicine, New York, NY, USA.
| |
Collapse
|
3
|
Liao PH, Tung HY, Lim WS, Jang JSR, Li H, Shun CT, Chiu HM, Wu MS, Lin CH. Impaired gut barrier integrity and reduced colonic expression of free fatty acid receptors in patients with Parkinson's disease. Neurol Sci 2024; 45:5297-5307. [PMID: 38862654 DOI: 10.1007/s10072-024-07641-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2024] [Accepted: 06/05/2024] [Indexed: 06/13/2024]
Abstract
BACKGROUND Altered gut metabolites, especially short-chain fatty acids (SCFAs), in feces and plasma are observed in patients with Parkinson's disease (PD). OBJECTIVE We aimed to investigate the colonic expression of two SCFA receptors, free fatty acid receptor (FFAR)2 and FFAR3, and gut barrier integrity in patients with PD and correlations with clinical severity. METHODS In this retrospective study, colonic biopsy specimens were collected from 37 PD patients and 34 unaffected controls. Of this cohort, 31 participants (14 PD, 17 controls) underwent a series of colon biopsies. Colonic expression of FFAR2, FFAR3, and the tight junction marker ZO-1 were assayed by immunofluorescence staining. The You Only Look Once (version 8, YOLOv8) algorithm was used for automated detection and segmentation of immunostaining signal. PD motor function was assessed with the Movement Disorder Society (MDS)-Unified Parkinson's Disease Rating Scale (UPDRS), and constipation was assessed using Rome-IV criteria. RESULTS Compared with controls, PD patients had significantly lower colonic expression of ZO-1 (p < 0.01) and FFAR2 (p = 0.01). On serial biopsy, colonic expression of FFAR2 and FFAR3 was reduced in the pre-motor stage before PD diagnosis (both p < 0.01). MDS-UPDRS motor scores did not correlate with colonic marker levels. Constipation severity negatively correlated with colonic ZO-1 levels (r = -0.49, p = 0.02). CONCLUSIONS Colonic expression of ZO-1 and FFAR2 is lower in PD patients compared with unaffected controls, and FFAR2 and FFAR3 levels decline in the pre-motor stage of PD. Our findings implicate a leaky gut phenomenon in PD and reinforce that gut metabolites may contribute to the process of PD.
Collapse
Affiliation(s)
| | - Hsiao-Yen Tung
- College of Medicine, National Taiwan University, Taipei, Taiwan
- Department of Computer Science & Information Engineering, National Taiwan University, Taipei, Taiwan
| | - Wee Shin Lim
- Department of Computer Science & Information Engineering, National Taiwan University, Taipei, Taiwan
| | - Jyh-Shing Roger Jang
- Department of Computer Science & Information Engineering, National Taiwan University, Taipei, Taiwan
| | - Hsun Li
- Department of Neurology, National Taiwan University Hospital, Taipei, Taiwan
| | - Chia-Tung Shun
- Department of Pathology, National Taiwan University Hospital, Taipei, Taiwan
| | - Han-Mo Chiu
- Department of Integrated Diagnostics and Therapeutics, National Taiwan University Hospital, Taipei, Taiwan
- Department of Internal Medicine, National Taiwan University Hospital, Taipei, Taiwan
| | - Ming-Shiang Wu
- Department of Internal Medicine, National Taiwan University Hospital, Taipei, Taiwan
| | - Chin-Hsien Lin
- College of Medicine, National Taiwan University, Taipei, Taiwan.
- Department of Neurology, National Taiwan University Hospital, Taipei, Taiwan.
- Institute of Molecular Medicine, College of Medicine, National Taiwan University, Taipei, Taiwan.
- Department of Biomedical Engineering, College of Medicine, National Taiwan University, Taipei, Taiwan.
| |
Collapse
|
4
|
Ahmad Fadzuli NI, Lim SM, Neoh CF, Majeed ABA, Tan MP, Khor HM, Tan AH, Ramasamy K. Faecal intestinal permeability and intestinal inflammatory markers in older adults with age-related disorders: A systematic review and meta-analysis. Ageing Res Rev 2024; 101:102506. [PMID: 39306247 DOI: 10.1016/j.arr.2024.102506] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2024] [Revised: 08/30/2024] [Accepted: 09/12/2024] [Indexed: 09/28/2024]
Abstract
This systematic review and meta-analysis appraised previous findings to uncover potential faecal intestinal permeability and intestinal inflammatory markers in older adults. A comprehensive literature search led to the identification of ten eligible studies with findings of potential faecal intestinal permeability (zonulin and alpha-1-antitrypsin) and intestinal inflammatory markers [calprotectin, lactoferrin and neutrophil gelatinase-associated lipocalin (NGAL)]. Most of the cases (n > 2) [Parkinson's disease (PD) and Alzheimer's disease (AD)] exhibited higher faecal alpha-1-antitrypsin, zonulin and calprotectin levels. The present meta-analysis confirmed significantly higher faecal alpha-1-antitrypsin in older persons with PD compared to non-PD [MD = 22.92 mg/dL; 95 % CI = 14.02-31.81, p < 0.00001; I2 = 0 % (p = 0.73)]. There was, however, no significant difference in faecal zonulin between PD and non-PD individuals [MD = 26.88 ng/mL; 95 % CI = -29.26-83.01, p = 0.35; I2 = 94 % (p < 0.0001)]. Meanwhile, faecal calprotectin was higher in older adults with GI symptoms, multiple system atrophy (MSA) or PD than the healthy controls [MD = 9.51 μg/g; 95 % CI = 0.07-18.95, p = 0.05; I2 = 84 % (p < 0.00001)]. Altogether, faecal calprotectin appears to be a potential intestinal inflammatory marker whereas previous findings on faecal alpha-1-antitrypsin as an intestinal permeability marker remain limited and require further validation.
Collapse
Affiliation(s)
- Nurul Izzati Ahmad Fadzuli
- Collaborative Drug Discovery Research (CDDR) Group, Faculty of Pharmacy, Universiti Teknologi MARA (UiTM) Cawangan Selangor, Kampus Puncak Alam, Bandar Puncak Alam, Selangor Darul Ehsan 42300, Malaysia
| | - Siong Meng Lim
- Collaborative Drug Discovery Research (CDDR) Group, Faculty of Pharmacy, Universiti Teknologi MARA (UiTM) Cawangan Selangor, Kampus Puncak Alam, Bandar Puncak Alam, Selangor Darul Ehsan 42300, Malaysia
| | - Chin Fen Neoh
- Collaborative Drug Discovery Research (CDDR) Group, Faculty of Pharmacy, Universiti Teknologi MARA (UiTM) Cawangan Selangor, Kampus Puncak Alam, Bandar Puncak Alam, Selangor Darul Ehsan 42300, Malaysia
| | - Abu Bakar Abdul Majeed
- Brain Degeneration and Therapeutics Group, Faculty of Pharmacy, University Teknologi MARA (UiTM) Cawangan Selangor, Kampus Puncak Alam, Selangor Darul Ehsan, Selangor Darul Ehsan 42300, Malaysia
| | - Maw Pin Tan
- Department of Medicine, Faculty of Medicine, University of Malaya, Kuala Lumpur 50603, Malaysia
| | - Hui Min Khor
- Department of Medicine, Faculty of Medicine, University of Malaya, Kuala Lumpur 50603, Malaysia
| | - Ai Huey Tan
- Department of Medicine, Faculty of Medicine, University of Malaya, Kuala Lumpur 50603, Malaysia
| | - Kalavathy Ramasamy
- Collaborative Drug Discovery Research (CDDR) Group, Faculty of Pharmacy, Universiti Teknologi MARA (UiTM) Cawangan Selangor, Kampus Puncak Alam, Bandar Puncak Alam, Selangor Darul Ehsan 42300, Malaysia.
| |
Collapse
|
5
|
Akbar M, Toppo P, Nazir A. Ageing, proteostasis, and the gut: Insights into neurological health and disease. Ageing Res Rev 2024; 101:102504. [PMID: 39284418 DOI: 10.1016/j.arr.2024.102504] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2024] [Revised: 08/28/2024] [Accepted: 09/09/2024] [Indexed: 09/22/2024]
Abstract
Recent research has illuminated the profound bidirectional communication between the gastrointestinal tract and the brain, furthering our understanding of neurological ailments facilitating possible therapeutic strategies. Technological advancements in high-throughput sequencing and multi-omics have unveiled significant alterations in gut microbiota and their metabolites in various neurological disorders. This review provides a thorough analysis of the role of microbiome-gut-brain axis in neurodegenerative disease pathology, linking it to reduced age-associated proteostasis. We discuss evidences that substantiate the existence of a gut-brain cross talk ranging from early clinical accounts of James Parkinson to Braak's hypothesis. In addition to understanding of microbes, the review particularly entails specific metabolites which are altered in neurodegenerative diseases. The regulatory effects of microbial metabolites on protein clearance mechanisms, proposing their potential therapeutic implications, are also discussed. By integrating this information, we advocate for a combinatory therapeutic strategy that targets early intervention, aiming to restore proteostasis and ameliorate disease progression. This approach not only provides a new perspective on the pathogenesis of neurodegenerative diseases but also highlights innovative strategies to combat the increasing burden of these age-related disorders.
Collapse
Affiliation(s)
- Mahmood Akbar
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India; Division of Toxicology and Experimental Medicine, CSIR-Central Drug Research Institute, Lucknow 226031, India
| | - Pranoy Toppo
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India; Division of Toxicology and Experimental Medicine, CSIR-Central Drug Research Institute, Lucknow 226031, India
| | - Aamir Nazir
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India; Division of Toxicology and Experimental Medicine, CSIR-Central Drug Research Institute, Lucknow 226031, India.
| |
Collapse
|
6
|
Zhao Z, Chen J, Zhao D, Chen B, Wang Q, Li Y, Chen J, Bai C, Guo X, Hu N, Zhang B, Zhao R, Yuan J. Microbial biomarker discovery in Parkinson's disease through a network-based approach. NPJ Parkinsons Dis 2024; 10:203. [PMID: 39461950 PMCID: PMC11513973 DOI: 10.1038/s41531-024-00802-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2023] [Accepted: 10/03/2024] [Indexed: 10/28/2024] Open
Abstract
Associations between the gut microbiota and Parkinson's disease (PD) have been widely investigated. However, the replicable biomarkers for PD diagnosis across multiple populations remain elusive. Herein, we performed a meta-analysis to investigate the pivotal role of the gut microbiome in PD and its potential diagnostic implications. Six 16S rRNA gene amplicon sequence datasets from five independent studies were integrated, encompassing 550 PD and 456 healthy control samples. The analysis revealed significant alterations in microbial composition and alpha and beta diversity, emphasizing altered gut microbiota in PD. Specific microbial taxa, including Faecalibacterium, Roseburia, and Coprococcus_2, known as butyrate producers, were notably diminished in PD, potentially contributing to intestinal inflammation. Conversely, genera such as Akkermansia and Bilophila exhibited increased relative abundances. A network-based algorithm called NetMoss was utilized to identify potential biomarkers of PD. Afterwards, a classification model incorporating 11 optimized genera demonstrated high performance. Further functional analyses indicated enrichment in pathways related to neurodegeneration and metabolic pathways. These findings illuminate the intricate relationship between the gut microbiota and PD, offering insights into potential therapeutic interventions and personalized diagnostic strategies.
Collapse
Affiliation(s)
- Zhe Zhao
- Department of Pharmacy, Peking University Third Hospital, 100191, Beijing, China
- Institute for Drug Evaluation, Peking University Health Science Center, 100191, Beijing, China
| | - Jing Chen
- Department of Neurology, Peking University Sixth Hospital, Peking University Institute of Mental Health, NHC Key Laboratory of Mental Health (Peking University), National Clinical Research Center for Mental Disorders (Peking University Sixth Hospital), Peking University, 100191, Beijing, China
| | - Danhua Zhao
- Department of Neurology, Peking University Sixth Hospital, Peking University Institute of Mental Health, NHC Key Laboratory of Mental Health (Peking University), National Clinical Research Center for Mental Disorders (Peking University Sixth Hospital), Peking University, 100191, Beijing, China
| | - Baoyu Chen
- Department of Neurology, Peking University Sixth Hospital, Peking University Institute of Mental Health, NHC Key Laboratory of Mental Health (Peking University), National Clinical Research Center for Mental Disorders (Peking University Sixth Hospital), Peking University, 100191, Beijing, China
| | - Qi Wang
- Department of Neurology, Peking University Sixth Hospital, Peking University Institute of Mental Health, NHC Key Laboratory of Mental Health (Peking University), National Clinical Research Center for Mental Disorders (Peking University Sixth Hospital), Peking University, 100191, Beijing, China
| | - Yuan Li
- Department of Neurology, Peking University Sixth Hospital, Peking University Institute of Mental Health, NHC Key Laboratory of Mental Health (Peking University), National Clinical Research Center for Mental Disorders (Peking University Sixth Hospital), Peking University, 100191, Beijing, China
| | - Junyi Chen
- Department of Neurology, Peking University Sixth Hospital, Peking University Institute of Mental Health, NHC Key Laboratory of Mental Health (Peking University), National Clinical Research Center for Mental Disorders (Peking University Sixth Hospital), Peking University, 100191, Beijing, China
| | - Chaobo Bai
- Department of Neurology, Peking University Sixth Hospital, Peking University Institute of Mental Health, NHC Key Laboratory of Mental Health (Peking University), National Clinical Research Center for Mental Disorders (Peking University Sixth Hospital), Peking University, 100191, Beijing, China
| | - Xintong Guo
- Department of Neurology, Peking University Sixth Hospital, Peking University Institute of Mental Health, NHC Key Laboratory of Mental Health (Peking University), National Clinical Research Center for Mental Disorders (Peking University Sixth Hospital), Peking University, 100191, Beijing, China
| | - Nan Hu
- Department of Neurology, Peking University Sixth Hospital, Peking University Institute of Mental Health, NHC Key Laboratory of Mental Health (Peking University), National Clinical Research Center for Mental Disorders (Peking University Sixth Hospital), Peking University, 100191, Beijing, China
- First Affiliated Hospital of Dalian Medical University, No. 222, Zhongshan Road, Dalian, 116011, Liaoning, China
| | - Bingwei Zhang
- Department of Neurology, Peking University Sixth Hospital, Peking University Institute of Mental Health, NHC Key Laboratory of Mental Health (Peking University), National Clinical Research Center for Mental Disorders (Peking University Sixth Hospital), Peking University, 100191, Beijing, China
- First Affiliated Hospital of Dalian Medical University, No. 222, Zhongshan Road, Dalian, 116011, Liaoning, China
| | - Rongsheng Zhao
- Department of Pharmacy, Peking University Third Hospital, 100191, Beijing, China.
- Institute for Drug Evaluation, Peking University Health Science Center, 100191, Beijing, China.
| | - Junliang Yuan
- Department of Neurology, Peking University Sixth Hospital, Peking University Institute of Mental Health, NHC Key Laboratory of Mental Health (Peking University), National Clinical Research Center for Mental Disorders (Peking University Sixth Hospital), Peking University, 100191, Beijing, China.
| |
Collapse
|
7
|
Shrewsbury JV, Vitus ES, Koziol AL, Nenarokova A, Jess T, Elmahdi R. Comprehensive phage display viral antibody profiling using VirScan: potential applications in chronic immune-mediated disease. J Virol 2024:e0110224. [PMID: 39431820 DOI: 10.1128/jvi.01102-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2024] Open
Abstract
Phage immunoprecipitation sequencing (PhIP-Seq) is a high-throughput platform that uses programmable phage display for serology. VirScan, a specific PhIP-Seq library encoding viral peptides from all known human viruses, enables comprehensive quantification of past viral exposures. We review its use in immune-mediated diseases (IMDs), highlighting its utility in identifying viral exposures in the context of IMD development. Finally, we evaluate its potential for precision medicine by integrating it with other large-scale omics data sets.
Collapse
Affiliation(s)
- Jed Valentiner Shrewsbury
- Faculty of Medicine, Imperial College London, London, United Kingdom
- Ashford and St. Peter's Hospitals NHS Foundation Trust, Chertsey, United Kingdom
| | - Evangelin Shaloom Vitus
- Centre for Molecular Prediction of Inflammatory Bowel Disease (PREDICT), Department of Clinical Medicine, Aalborg University, Copenhagen, Denmark
| | - Adam Leslie Koziol
- Centre for Molecular Prediction of Inflammatory Bowel Disease (PREDICT), Department of Clinical Medicine, Aalborg University, Copenhagen, Denmark
| | | | - Tine Jess
- Centre for Molecular Prediction of Inflammatory Bowel Disease (PREDICT), Department of Clinical Medicine, Aalborg University, Copenhagen, Denmark
- Department of Gastroenterology and Hepatology, Aalborg University Hospital, Aalborg, Denmark
| | - Rahma Elmahdi
- Centre for Molecular Prediction of Inflammatory Bowel Disease (PREDICT), Department of Clinical Medicine, Aalborg University, Copenhagen, Denmark
- Department of Gastroenterology and Hepatology, Aalborg University Hospital, Aalborg, Denmark
| |
Collapse
|
8
|
Park DG, Kang W, Shin IJ, Chalita M, Oh HS, Hyun DW, Kim H, Chun J, An YS, Lee EJ, Yoon JH. Difference in gut microbial dysbiotic patterns between body-first and brain-first Parkinson's disease. Neurobiol Dis 2024; 201:106655. [PMID: 39218360 DOI: 10.1016/j.nbd.2024.106655] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2024] [Revised: 07/31/2024] [Accepted: 08/29/2024] [Indexed: 09/04/2024] Open
Abstract
BACKGROUND This study aims to identify distinct microbial and functional biomarkers characteristic of body-first or brain-first subtypes of Parkinson's disease (PD). This could illuminate the unique pathogenic mechanisms within these subtypes. METHODS In this cross-sectional study, we classified 36 well-characterized PD patients into body-first, brain-first, or undetermined subtypes based on the presence of premotor REM sleep behavior disorder (RBD) and cardiac meta-iodobenzylguanidine (MIBG) uptake. We then conducted an in-depth shotgun metagenomic analysis of the gut microbiome for each subtype and compared the results with those from age- and sex-matched healthy controls. RESULTS Significant differences were found in the gut microbiome of body-first PD patients (n = 15) compared to both brain-first PD patients (n = 9) and healthy controls. The gut microbiome in body-first PD showed a distinct profile, characterized by an increased presence of Escherichia coli and Akkermansia muciniphila, and a decreased abundance of short-chain fatty acid-producing commensal bacteria. These shifts were accompanied by a higher abundance of microbial genes associated with curli protein biosynthesis and a lower abundance of genes involved in putrescine and spermidine biosynthesis. Furthermore, the combined use of premotor RBD and MIBG criteria was more strongly correlated with these microbiome differences than the use of each criterion independently. CONCLUSIONS Our findings highlight the significant role of dysbiotic and pathogenic gut microbial alterations in body-first PD, supporting the body-first versus brain-first hypothesis. These insights not only reinforce the gut microbiome's potential as a therapeutic target in PD but also suggest the possibility of developing subtype-specific treatment strategies.
Collapse
Affiliation(s)
- Don Gueu Park
- Department of Neurology, Ajou University School of Medicine, Suwon 16499, Republic of Korea
| | - Woorim Kang
- CJ Bioscience Inc., Seoul 04527, Republic of Korea
| | - In-Ja Shin
- Department of Neurology, Ajou University School of Medicine, Suwon 16499, Republic of Korea
| | | | - Hyun-Seok Oh
- CJ Bioscience Inc., Seoul 04527, Republic of Korea
| | | | - Hyun Kim
- CJ Bioscience Inc., Seoul 04527, Republic of Korea
| | - Jongsik Chun
- CJ Bioscience Inc., Seoul 04527, Republic of Korea
| | - Young-Sil An
- Department of Nuclear Medicine, Ajou University School of Medicine, Suwon 16499, Republic of Korea
| | - Eun Jeong Lee
- Department of Brain Science, Ajou University School of Medicine, Suwon 16499, Republic of Korea.
| | - Jung Han Yoon
- Department of Neurology, Ajou University School of Medicine, Suwon 16499, Republic of Korea.
| |
Collapse
|
9
|
Kalia LV, Asis A, Arbour N, Bar-Or A, Bove R, Di Luca DG, Fon EA, Fox S, Gan-Or Z, Gommerman JL, Kang UJ, Klawiter EC, Koch M, Kolind S, Lang AE, Lee KK, Lincoln MR, MacDonald PA, McKeown MJ, Mestre TA, Miron VE, Ontaneda D, Rousseaux MWC, Schlossmacher MG, Schneider R, Stoessl AJ, Oh J. Disease-modifying therapies for Parkinson disease: lessons from multiple sclerosis. Nat Rev Neurol 2024:10.1038/s41582-024-01023-0. [PMID: 39375563 DOI: 10.1038/s41582-024-01023-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/09/2024] [Indexed: 10/09/2024]
Abstract
The development of disease-modifying therapies (DMTs) for neurological disorders is an important goal in modern neurology, and the associated challenges are similar in many chronic neurological conditions. Major advances have been made in the multiple sclerosis (MS) field, with a range of DMTs being approved for relapsing MS and the introduction of the first DMTs for progressive MS. By contrast, people with Parkinson disease (PD) still lack such treatment options, relying instead on decades-old therapeutic approaches that provide only symptomatic relief. To address this unmet need, an in-person symposium was held in Toronto, Canada, in November 2022 for international researchers and experts in MS and PD to discuss strategies for advancing DMT development. In this Roadmap article, we highlight discussions from the symposium, which focused on therapeutic targets and preclinical models, disease spectra and subclassifications, and clinical trial design and outcome measures. From these discussions, we propose areas for novel or deeper exploration in PD using lessons learned from therapeutic development in MS. In addition, we identify challenges common to the PD and MS fields that need to be addressed to further advance the discovery and development of effective DMTs.
Collapse
Affiliation(s)
- Lorraine V Kalia
- Edmond J Safra Program in Parkinson's Disease, Krembil Research Institute, Toronto Western Hospital, University Health Network, Toronto, Ontario, Canada.
- Division of Neurology, Department of Medicine, University of Toronto, Toronto, Ontario, Canada.
| | | | - Nathalie Arbour
- Department of Neurosciences, Université de Montreal, Montreal, Quebec, Canada
- Centre de Recherche du CHUM (CRCHUM), Montreal, Quebec, Canada
| | - Amit Bar-Or
- Division of MS and Related Disorders, Department of Neurology, University of Pennsylvania, Philadelphia, PA, USA
- Centre for Neuroinflammation and Experimental Therapeutics, University of Pennsylvania, Philadelphia, PA, USA
| | - Riley Bove
- UCSF Weill Institute for Neurosciences, University of California San Francisco, San Francisco, CA, USA
- Department of Neurology, University of California San Francisco, San Francisco, CA, USA
| | - Daniel G Di Luca
- Edmond J Safra Program in Parkinson's Disease, Krembil Research Institute, Toronto Western Hospital, University Health Network, Toronto, Ontario, Canada
- Division of Neurology, Department of Medicine, University of Toronto, Toronto, Ontario, Canada
- Department of Neurology, Washington University in St. Louis, St. Louis, MO, USA
| | - Edward A Fon
- The Neuro (Montreal Neurological Institute-Hospital), Montreal, Quebec, Canada
- Department of Neurology & Neurosurgery, McGill University, Montreal, Quebec, Canada
| | - Susan Fox
- Edmond J Safra Program in Parkinson's Disease, Krembil Research Institute, Toronto Western Hospital, University Health Network, Toronto, Ontario, Canada
- Division of Neurology, Department of Medicine, University of Toronto, Toronto, Ontario, Canada
| | - Ziv Gan-Or
- The Neuro (Montreal Neurological Institute-Hospital), Montreal, Quebec, Canada
- Department of Neurology & Neurosurgery, McGill University, Montreal, Quebec, Canada
- Department of Human Genetics, McGill University, Montreal, Quebec, Canada
| | - Jennifer L Gommerman
- Department of Immunology, Temerty Faculty of Medicine, University of Toronto, Toronto, Ontario, Canada
| | - Un Jung Kang
- Department of Neurology, Grossman School of Medicine, NYU Langone Health, New York, NY, USA
- Parekh Center for Interdisciplinary Neurology, Grossman School of Medicine, NYU Langone Health, New York, NY, USA
- Fresco Institute for Parkinson's and Movement Disorders, Grossman School of Medicine, NYU Langone Health, New York, NY, USA
- Department of Neuroscience and Physiology, Grossman School of Medicine, NYU Langone Health, New York, NY, USA
| | - Eric C Klawiter
- Department of Neurology, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
| | - Marcus Koch
- University of Calgary MS Clinic, Department of Clinical Neurosciences, University of Calgary, Calgary, Alberta, Canada
| | - Shannon Kolind
- Division of Neurology, Department of Medicine, University of British Columbia, Vancouver, British Columbia, Canada
- Department of Radiology, University of British Columbia, Vancouver, British Columbia, Canada
- Department of Physics and Astronomy, University of British Columbia, Vancouver, British Columbia, Canada
| | - Anthony E Lang
- Edmond J Safra Program in Parkinson's Disease, Krembil Research Institute, Toronto Western Hospital, University Health Network, Toronto, Ontario, Canada
- Division of Neurology, Department of Medicine, University of Toronto, Toronto, Ontario, Canada
| | | | - Matthew R Lincoln
- Division of Neurology, Department of Medicine, University of Toronto, Toronto, Ontario, Canada
- Barlo MS Centre, St. Michael's Hospital, Unity Health Toronto, Toronto, Ontario, Canada
- Keenan Research Centre for Biomedical Science, St. Michael's Hospital, Unity Health Toronto, Toronto, Ontario, Canada
| | - Penny A MacDonald
- Clinical Neurological Sciences, Schulich School of Medicine and Dentistry, University of Western Ontario, London, Ontario, Canada
| | - Martin J McKeown
- Pacific Parkinson's Research Centre, Division of Neurology, University of British Columbia, Vancouver, British Columbia, Canada
- Djavad Mowafaghian Centre for Brain Health, University of British Columbia, Vancouver, British Columbia, Canada
| | - Tiago A Mestre
- Parkinson's Disease and Movement Disorders Clinic, Division of Neurology, Department of Medicine, University of Ottawa, Ottawa, Ontario, Canada
- University of Ottawa Brain and Mind Research Institute, Ottawa, Ontario, Canada
| | - Veronique E Miron
- Department of Immunology, Temerty Faculty of Medicine, University of Toronto, Toronto, Ontario, Canada
- Keenan Research Centre for Biomedical Science, St. Michael's Hospital, Unity Health Toronto, Toronto, Ontario, Canada
- The United Kingdom Dementia Research Institute, The University of Edinburgh, Edinburgh, UK
| | - Daniel Ontaneda
- Mellen Center for Multiple Sclerosis, Cleveland Clinic Lerner College of Medicine, Cleveland, OH, USA
| | - Maxime W C Rousseaux
- University of Ottawa Brain and Mind Research Institute, Ottawa, Ontario, Canada
- Ottawa Institute of Systems Biology, University of Ottawa, Ottawa, Ontario, Canada
- Department of Cellular and Molecular Medicine, University of Ottawa, Ottawa, Ontario, Canada
| | - Michael G Schlossmacher
- Parkinson's Disease and Movement Disorders Clinic, Division of Neurology, Department of Medicine, University of Ottawa, Ottawa, Ontario, Canada
- University of Ottawa Brain and Mind Research Institute, Ottawa, Ontario, Canada
| | - Raphael Schneider
- Division of Neurology, Department of Medicine, University of Toronto, Toronto, Ontario, Canada
- Barlo MS Centre, St. Michael's Hospital, Unity Health Toronto, Toronto, Ontario, Canada
- Keenan Research Centre for Biomedical Science, St. Michael's Hospital, Unity Health Toronto, Toronto, Ontario, Canada
| | - A Jon Stoessl
- Pacific Parkinson's Research Centre, Division of Neurology, University of British Columbia, Vancouver, British Columbia, Canada
- Djavad Mowafaghian Centre for Brain Health, University of British Columbia, Vancouver, British Columbia, Canada
| | - Jiwon Oh
- Division of Neurology, Department of Medicine, University of Toronto, Toronto, Ontario, Canada
- Barlo MS Centre, St. Michael's Hospital, Unity Health Toronto, Toronto, Ontario, Canada
- Keenan Research Centre for Biomedical Science, St. Michael's Hospital, Unity Health Toronto, Toronto, Ontario, Canada
| |
Collapse
|
10
|
Roodveldt C, Bernardino L, Oztop-Cakmak O, Dragic M, Fladmark KE, Ertan S, Aktas B, Pita C, Ciglar L, Garraux G, Williams-Gray C, Pacheco R, Romero-Ramos M. The immune system in Parkinson's disease: what we know so far. Brain 2024; 147:3306-3324. [PMID: 38833182 PMCID: PMC11449148 DOI: 10.1093/brain/awae177] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2024] [Revised: 05/02/2024] [Accepted: 05/13/2024] [Indexed: 06/06/2024] Open
Abstract
Parkinson's disease is characterized neuropathologically by the degeneration of dopaminergic neurons in the ventral midbrain, the accumulation of α-synuclein (α-syn) aggregates in neurons and chronic neuroinflammation. In the past two decades, in vitro, ex vivo and in vivo studies have consistently shown the involvement of inflammatory responses mediated by microglia and astrocytes, which may be elicited by pathological α-syn or signals from affected neurons and other cell types, and are directly linked to neurodegeneration and disease development. Apart from the prominent immune alterations seen in the CNS, including the infiltration of T cells into the brain, more recent studies have demonstrated important changes in the peripheral immune profile within both the innate and adaptive compartments, particularly involving monocytes, CD4+ and CD8+ T cells. This review aims to integrate the consolidated understanding of immune-related processes underlying the pathogenesis of Parkinson's disease, focusing on both central and peripheral immune cells, neuron-glia crosstalk as well as the central-peripheral immune interaction during the development of Parkinson's disease. Our analysis seeks to provide a comprehensive view of the emerging knowledge of the mechanisms of immunity in Parkinson's disease and the implications of this for better understanding the overall pathogenesis of this disease.
Collapse
Affiliation(s)
- Cintia Roodveldt
- Centre for Molecular Biology and Regenerative Medicine-CABIMER, University of Seville-CSIC, Seville 41092, Spain
- Department of Medical Biochemistry, Molecular Biology and Immunology, Faculty of Medicine, University of Seville, Seville 41009, Spain
| | - Liliana Bernardino
- Health Sciences Research Center (CICS-UBI), Faculty of Health Sciences, University of Beira Interior, 6200-506, Covilhã, Portugal
| | - Ozgur Oztop-Cakmak
- Department of Neurology, Faculty of Medicine, Koç University, Istanbul 34010, Turkey
| | - Milorad Dragic
- Laboratory for Neurobiology, Department of General Physiology and Biophysics, Faculty of Biology, University of Belgrade, 11000 Belgrade, Serbia
- Department of Molecular Biology and Endocrinology, ‘VINČA’ Institute of Nuclear Sciences-National Institute of the Republic of Serbia, University of Belgrade, 11000 Belgrade, Serbia
| | - Kari E Fladmark
- Department of Biological Science, University of Bergen, 5006 Bergen, Norway
| | - Sibel Ertan
- Department of Neurology, Faculty of Medicine, Koç University, Istanbul 34010, Turkey
| | - Busra Aktas
- Department of Molecular Biology and Genetics, Burdur Mehmet Akif Ersoy University, Burdur 15200, Turkey
| | - Carlos Pita
- iNOVA4Health, NOVA Medical School, Faculdade de Ciências Médicas, NMS, FCM, Universidade Nova de Lisboa, 1169-056 Lisboa, Portugal
| | - Lucia Ciglar
- Center Health & Bioresources, Competence Unit Molecular Diagnostics, AIT Austrian Institute of Technology GmbH, 1210 Vienna, Austria
| | - Gaetan Garraux
- Movere Group, Faculty of Medicine, GIGA Institute, University of Liège, Liège 4000, Belgium
| | | | - Rodrigo Pacheco
- Laboratorio de Neuroinmunología, Centro Científico y Tecnológico de Excelencia Ciencia & Vida, Fundación Ciencia & Vida, Huechuraba 8580702, Santiago, Chile
- Facultad de Medicina y Ciencia, Universidad San Sebastián, Providencia 7510156, Santiago, Chile
| | - Marina Romero-Ramos
- Department of Biomedicine & The Danish Research Institute of Translational Neuroscience—DANDRITE, Aarhus University, DK-8000 Aarhus C, Denmark
| |
Collapse
|
11
|
Metcalfe-Roach A, Cirstea MS, Yu AC, Ramay HR, Coker O, Boroomand S, Kharazyan F, Martino D, Sycuro LK, Appel-Cresswell S, Finlay BB. Metagenomic Analysis Reveals Large-Scale Disruptions of the Gut Microbiome in Parkinson's Disease. Mov Disord 2024; 39:1740-1751. [PMID: 39192744 DOI: 10.1002/mds.29959] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2024] [Revised: 07/08/2024] [Accepted: 07/16/2024] [Indexed: 08/29/2024] Open
Abstract
BACKGROUND Parkinson's disease (PD) has been consistently linked to alterations within the gut microbiome. OBJECTIVE Our goal was to identify microbial features associated with PD incidence and progression. METHODS Metagenomic sequencing was used to characterize taxonomic and functional changes to the PD microbiome and to explore their relation to bacterial metabolites and disease progression. Motor and non-motor symptoms were tracked using Movement Disorder Society Unified Parkinson's Disease Rating Scale (MDS-UPDRS) and levodopa equivalent dose across ≤5 yearly study visits. Stool samples were collected at baseline for metagenomic sequencing (176 PD, 100 controls). RESULTS PD-derived stool samples had reduced intermicrobial connectivity and seven differentially abundant species compared to controls. A suite of bacterial functions differed between PD and controls, including depletion of carbohydrate degradation pathways and enrichment of ribosomal genes. Faecalibacterium prausnitzii-specific reads contributed significantly to more than half of all differentially abundant functional terms. A subset of disease-associated functional terms correlated with faster progression of MDS-UPDRS part IV and separated those with slow and fast progression with moderate accuracy within a random forest model (area under curve = 0.70). Most PD-associated microbial trends were stronger in those with symmetric motor symptoms. CONCLUSION We provide further evidence that the PD microbiome is characterized by reduced intermicrobial communication and a shift to proteolytic metabolism in lieu of short-chain fatty acid production, and suggest that these microbial alterations may be relevant to disease progression. We also describe how our results support the existence of gut-first versus brain-first PD subtypes. © 2024 The Author(s). Movement Disorders published by Wiley Periodicals LLC on behalf of International Parkinson and Movement Disorder Society.
Collapse
Affiliation(s)
- Avril Metcalfe-Roach
- Department of Microbiology and Immunology, University of British Columbia, Vancouver, British Columbia, Canada
- Michael Smith Laboratories, University of British Columbia, Vancouver, British Columbia, Canada
| | - Mihai S Cirstea
- Department of Microbiology and Immunology, University of British Columbia, Vancouver, British Columbia, Canada
- Michael Smith Laboratories, University of British Columbia, Vancouver, British Columbia, Canada
| | - Adam C Yu
- Pacific Parkinson's Research Centre, Djavad Mowafaghian Centre for Brain Health, University of British Columbia, Vancouver, British Columbia, Canada
| | - Hena R Ramay
- International Microbiome Centre, Cumming School of Medicine, University of Calgary, Calgary, Alberta, Canada
| | - Olabisi Coker
- International Microbiome Centre, Cumming School of Medicine, University of Calgary, Calgary, Alberta, Canada
| | - Seti Boroomand
- Borgland Family Brain Tissue and DNA Bank, Djavad Mowafaghian Centre for Brain Health, University of British Columbia, Vancouver, British Columbia, Canada
| | - Faezeh Kharazyan
- Borgland Family Brain Tissue and DNA Bank, Djavad Mowafaghian Centre for Brain Health, University of British Columbia, Vancouver, British Columbia, Canada
| | - Davide Martino
- Department of Clinical Neurosciences, Hotchkiss Brain Institute, University of Calgary, Calgary, Alberta, Canada
| | - Laura K Sycuro
- International Microbiome Centre, Cumming School of Medicine, University of Calgary, Calgary, Alberta, Canada
- Department of Microbiology, Immunology, and Infectious Diseases, University of Calgary, Calgary, Alberta, Canada
| | - Silke Appel-Cresswell
- Pacific Parkinson's Research Centre, Djavad Mowafaghian Centre for Brain Health, University of British Columbia, Vancouver, British Columbia, Canada
- Division of Neurology, Faculty of Medicine, University of British Columbia, Vancouver, British Columbia, Canada
| | - B Brett Finlay
- Department of Microbiology and Immunology, University of British Columbia, Vancouver, British Columbia, Canada
- Michael Smith Laboratories, University of British Columbia, Vancouver, British Columbia, Canada
- Department of Biochemistry and Molecular Biology, University of British Columbia, Vancouver, British Columbia, Canada
| |
Collapse
|
12
|
Shahpasand S, Khatami SH, Ehtiati S, Alehossein P, Salmani F, Toutounchi AH, Zarei T, Shahmohammadi MR, Khodarahmi R, Aghamollaii V, Tafakhori A, Karima S. Therapeutic potential of the ketogenic diet: A metabolic switch with implications for neurological disorders, the gut-brain axis, and cardiovascular diseases. J Nutr Biochem 2024; 132:109693. [PMID: 38880191 DOI: 10.1016/j.jnutbio.2024.109693] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2024] [Revised: 06/11/2024] [Accepted: 06/11/2024] [Indexed: 06/18/2024]
Abstract
The Ketogenic Diet (KD) is a dietary regimen that is low in carbohydrates, high in fats, and contains adequate protein. It is designed to mimic the metabolic state of fasting. This diet triggers the production of ketone bodies through a process known as ketosis. The primary objective of KD is to induce and sustain ketosis, which has been associated with numerous health benefits. Recent research has uncovered promising therapeutic potential for KD in the treatment of various diseases. This includes evidence of its effectiveness as a dietary strategy for managing intractable epilepsy, a form of epilepsy that is resistant to medication. We are currently assessing the efficacy and safety of KD through laboratory and clinical studies. This review focuses on the anti-inflammatory properties of the KD and its potential benefits for neurological disorders and the gut-brain axis. We also explore the existing literature on the potential effects of KD on cardiac health. Our aim is to provide a comprehensive overview of the current knowledge in these areas. Given the encouraging preliminary evidence of its therapeutic effects and the growing understanding of its mechanisms of action, randomized controlled trials are warranted to further explore the rationale behind the clinical use of KD. These trials will ultimately enhance our understanding of how KD functions and its potential benefits for various health conditions. We hope that our research will contribute to the body of knowledge in this field and provide valuable insights for future studies.
Collapse
Affiliation(s)
- Sheyda Shahpasand
- Department of Biology, Faculty of Basic Science, Science and Research Branch, Islamic Azad University, Tehran, Iran
| | - Seyyed Hossein Khatami
- Student Research Committee, Department of Clinical Biochemistry, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Sajad Ehtiati
- Student Research Committee, Department of Clinical Biochemistry, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Parsa Alehossein
- School of Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Farzaneh Salmani
- Department of Clinical Biochemistry, School of Medicine, Shahid Beheshti University of Medical Sciences (SBMU), Tehran, Iran
| | - Alireza Haghbin Toutounchi
- Department of general surgery,Imam Hosein medical and educational center, Shahid Beheshti University of medical sciences, Tehran, Iran
| | - Tayebe Zarei
- Clinical Trial Department, Behbalin Co., Ltd., Tehran, Iran
| | - Mohammad Reza Shahmohammadi
- Functional Neurosurgery Research Center, Shohada Tajrish Comprehensive Neurosurgical Center of Excellence, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Reza Khodarahmi
- Medical Biology Research Center, Research Institute for Health Technology, Kermanshah University of Medical Sciences, Kermanshah, Iran
| | - Vajiheh Aghamollaii
- Neurology Department, Roozbeh Hospital, Tehran University of Medical Sciences, Tehran, Iran
| | - Abbas Tafakhori
- Department of Neurology, School of Medicine, Iranian Center of Neurological Research, Neuroscience Institute, Imam Khomeini Hospital Complex, Tehran University of Medical Sciences, Tehran, Iran
| | - Saeed Karima
- Department of Clinical Biochemistry, School of Medicine, Shahid Beheshti University of Medical Sciences (SBMU), Tehran, Iran.
| |
Collapse
|
13
|
Goldman SM, Weaver FM, Gonzalez B, Stroupe KT, Cao L, Colletta K, Brown EG, Tanner CM. Parkinson's Disease Progression and Exposure to Contaminated Water at Camp Lejeune. Mov Disord 2024; 39:1732-1739. [PMID: 38988230 PMCID: PMC11490380 DOI: 10.1002/mds.29922] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2024] [Revised: 06/16/2024] [Accepted: 06/24/2024] [Indexed: 07/12/2024] Open
Abstract
BACKGROUND We recently reported an increased risk of Parkinson's disease (PD) in service members who resided at Marine Base Camp Lejeune, North Carolina, when water supplies were contaminated with trichloroethylene and other volatile organic compounds (VOCs). Prior studies suggest that environmental exposures may affect PD phenotype or progression, but this has not been reported for VOCs. OBJECTIVE The objective of this study was to test whether PD progression is faster in individuals exposed to VOCs in water at Camp Lejeune. METHODS A cohort of 172,128 marines residing at Camp Lejeune between 1975 and 1985 was previously assembled. We identified individuals with PD in Veterans Health Administration and Medicare databases between 2000 and 2021. Using estimates derived by the US Agency for Toxic Substances and Disease Registry, we classified individuals as exposed or unexposed to VOCs in residential water. We used Kaplan-Meier and Cox regression models to test differences between exposed and unexposed groups in the time from PD diagnosis until psychosis, fracture, fall, or death. RESULTS Among 270 persons with PD, 177 (65.6%) were exposed to VOCs in residential water. Median cumulative exposure was 4970 μg/L-months, >50-fold the permissible level. Time until psychosis, fracture, and fall were all shorter in the exposed group, with adjusted hazard ratios (HRs) exceeding 2: psychosis HR, 2.19 (95% confidence interval [CI]: 0.99-4.83); fracture HR, 2.44 (95% CI: 0.91-6.55); and fall HR, 2.64 (95% CI: 0.97-7.21). A significant dose response was observed for time to fall (P trend, 0.032). No differences were observed for time until death. CONCLUSIONS PD progression may be faster in persons exposed to trichloroethylene and other VOCs in water decades earlier. © 2024 The Author(s). Movement Disorders published by Wiley Periodicals LLC on behalf of International Parkinson and Movement Disorder Society. This article has been contributed to by U.S. Government employees and their work is in the public domain in the USA.
Collapse
Affiliation(s)
- Samuel M. Goldman
- Division of Occupational, Environmental, and Climate Medicine, University of California San Francisco, San Francisco, CA, USA
- San Francisco Veterans Affairs Health Care System, San Francisco, CA, USA
| | - Frances M. Weaver
- Hines Veterans Affairs Hospital, Center of Innovation for Complex Chronic Healthcare, Hines, IL, USA
- Parkinson School of Health Sciences and Public Health, Loyola University, Maywood, Illinois, USA
| | - Beverly Gonzalez
- Hines Veterans Affairs Hospital, Center of Innovation for Complex Chronic Healthcare, Hines, IL, USA
| | - Kevin T. Stroupe
- Hines Veterans Affairs Hospital, Center of Innovation for Complex Chronic Healthcare, Hines, IL, USA
- Parkinson School of Health Sciences and Public Health, Loyola University, Maywood, Illinois, USA
| | - Lishan Cao
- Hines Veterans Affairs Hospital, Center of Innovation for Complex Chronic Healthcare, Hines, IL, USA
| | - Kalea Colletta
- Hines Veterans Affairs Hospital, Center of Innovation for Complex Chronic Healthcare, Hines, IL, USA
| | - Ethan G. Brown
- San Francisco Veterans Affairs Health Care System, San Francisco, CA, USA
- Department of Neurology, Weill Institute for Neurosciences, University of California San Francisco, San Francisco, CA, USA
| | - Caroline M. Tanner
- San Francisco Veterans Affairs Health Care System, San Francisco, CA, USA
- Department of Neurology, Weill Institute for Neurosciences, University of California San Francisco, San Francisco, CA, USA
| |
Collapse
|
14
|
Wen J, Skampardoni I, Tian YE, Yang Z, Cui Y, Erus G, Hwang G, Varol E, Boquet-Pujadas A, Chand GB, Nasrallah I, Satterthwaite T, Shou H, Shen L, Toga AW, Zalesky A, Davatzikos C. Nine Neuroimaging-AI Endophenotypes Unravel Disease Heterogeneity and Partial Overlap across Four Brain Disorders: A Dimensional Neuroanatomical Representation. MEDRXIV : THE PREPRINT SERVER FOR HEALTH SCIENCES 2024:2023.08.16.23294179. [PMID: 37662256 PMCID: PMC10473785 DOI: 10.1101/2023.08.16.23294179] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/05/2023]
Abstract
Disease heterogeneity poses a significant challenge for precision diagnostics. Recent work leveraging artificial intelligence has offered promise to dissect this heterogeneity by identifying complex intermediate brain phenotypes, herein called dimensional neuroimaging endophenotypes (DNEs). We advance the argument that these DNEs capture the degree of expression of respective neuroanatomical patterns measured, offering a dimensional neuroanatomical representation for studying disease heterogeneity and similarities of neurologic and neuropsychiatric diseases. We investigate the presence of nine such DNEs derived from independent yet harmonized studies on Alzheimer's disease (AD1-2)1, autism spectrum disorder (ASD1-3)2, late-life depression (LLD1-2)3, and schizophrenia (SCZ1-2)4, in the general population of 39,178 participants in the UK Biobank study. Phenome-wide associations revealed prominent associations between the nine DNEs and phenotypes related to the brain and other human organ systems. This phenotypic landscape aligns with the SNP-phenotype genome-wide associations, revealing 31 genomic loci associated with the nine DNEs (Bonferroni corrected P-value < 5×10-8/9). The DNEs exhibited significant genetic correlations, colocalization, and causal relationships with multiple human organ systems and chronic diseases. A causal effect (odds ratio=1.25 [1.11, 1.40], P-value=8.72×10-4) was established from AD2, characterized by focal medial temporal lobe atrophy, to AD. The nine DNEs, along with their polygenic risk scores, significantly enhanced the predictive accuracy for 14 systemic disease categories, particularly for conditions related to mental health and the central nervous system, as well as mortality outcomes. These findings underscore the potential of the nine DNEs to capture the expression of disease-related brain phenotypes in individuals of the general population and to relate such measures with genetics, lifestyle factors, and chronic diseases. All results are publicly available at https://labs-laboratory.com/medicine/.
Collapse
Affiliation(s)
- Junhao Wen
- Laboratory of AI and Biomedical Science (LABS), University of Southern California, Los Angeles, California, USA
| | - Ioanna Skampardoni
- Artificial Intelligence in Biomedical Imaging Laboratory (AIBIL), Center for AI and Data Science for Integrated Diagnostics (AID), Perelman School of Medicine, University of Pennsylvania, Philadelphia, USA
| | - Ye Ella Tian
- Melbourne Neuropsychiatry Centre, Department of Psychiatry, Melbourne Medical School, The University of Melbourne, Melbourne, Victoria, Australia
| | - Zhijian Yang
- Artificial Intelligence in Biomedical Imaging Laboratory (AIBIL), Center for AI and Data Science for Integrated Diagnostics (AID), Perelman School of Medicine, University of Pennsylvania, Philadelphia, USA
| | - Yuhan Cui
- Artificial Intelligence in Biomedical Imaging Laboratory (AIBIL), Center for AI and Data Science for Integrated Diagnostics (AID), Perelman School of Medicine, University of Pennsylvania, Philadelphia, USA
| | - Guray Erus
- Artificial Intelligence in Biomedical Imaging Laboratory (AIBIL), Center for AI and Data Science for Integrated Diagnostics (AID), Perelman School of Medicine, University of Pennsylvania, Philadelphia, USA
| | - Gyujoon Hwang
- Artificial Intelligence in Biomedical Imaging Laboratory (AIBIL), Center for AI and Data Science for Integrated Diagnostics (AID), Perelman School of Medicine, University of Pennsylvania, Philadelphia, USA
| | - Erdem Varol
- Department of Computer Science and Engineering, New York University, New York, USA
| | - Aleix Boquet-Pujadas
- Laboratory of AI and Biomedical Science (LABS), University of Southern California, Los Angeles, California, USA
| | - Ganesh B. Chand
- Department of Radiology, School of Medicine, Washington University in St. Louis, St. Louis, MO, USA
| | - Ilya Nasrallah
- Artificial Intelligence in Biomedical Imaging Laboratory (AIBIL), Center for AI and Data Science for Integrated Diagnostics (AID), Perelman School of Medicine, University of Pennsylvania, Philadelphia, USA
| | - Theodore Satterthwaite
- Department of Psychiatry, Perelman School of Medicine, University of Pennsylvania, Philadelphia, USA
| | - Haochang Shou
- Artificial Intelligence in Biomedical Imaging Laboratory (AIBIL), Center for AI and Data Science for Integrated Diagnostics (AID), Perelman School of Medicine, University of Pennsylvania, Philadelphia, USA
| | - Li Shen
- Department of Biostatistics, Epidemiology and Informatics University of Pennsylvania Perelman School of Medicine, Philadelphia, USA
| | - Arthur W. Toga
- Laboratory of Neuro Imaging (LONI), Stevens Neuroimaging and Informatics Institute, Keck School of Medicine of USC, University of Southern California, Los Angeles, California, USA
| | - Andrew Zalesky
- Melbourne Neuropsychiatry Centre, Department of Psychiatry, Melbourne Medical School, The University of Melbourne, Melbourne, Victoria, Australia
| | - Christos Davatzikos
- Artificial Intelligence in Biomedical Imaging Laboratory (AIBIL), Center for AI and Data Science for Integrated Diagnostics (AID), Perelman School of Medicine, University of Pennsylvania, Philadelphia, USA
| |
Collapse
|
15
|
Khan AF, Iturria-Medina Y. Beyond the usual suspects: multi-factorial computational models in the search for neurodegenerative disease mechanisms. Transl Psychiatry 2024; 14:386. [PMID: 39313512 PMCID: PMC11420368 DOI: 10.1038/s41398-024-03073-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/01/2024] [Revised: 08/20/2024] [Accepted: 08/27/2024] [Indexed: 09/25/2024] Open
Abstract
From Alzheimer's disease to amyotrophic lateral sclerosis, the molecular cascades underlying neurodegenerative disorders remain poorly understood. The clinical view of neurodegeneration is confounded by symptomatic heterogeneity and mixed pathology in almost every patient. While the underlying physiological alterations originate, proliferate, and propagate potentially decades before symptomatic onset, the complexity and inaccessibility of the living brain limit direct observation over a patient's lifespan. Consequently, there is a critical need for robust computational methods to support the search for causal mechanisms of neurodegeneration by distinguishing pathogenic processes from consequential alterations, and inter-individual variability from intra-individual progression. Recently, promising advances have been made by data-driven spatiotemporal modeling of the brain, based on in vivo neuroimaging and biospecimen markers. These methods include disease progression models comparing the temporal evolution of various biomarkers, causal models linking interacting biological processes, network propagation models reproducing the spatial spreading of pathology, and biophysical models spanning cellular- to network-scale phenomena. In this review, we discuss various computational approaches for integrating cross-sectional, longitudinal, and multi-modal data, primarily from large observational neuroimaging studies, to understand (i) the temporal ordering of physiological alterations, i(i) their spatial relationships to the brain's molecular and cellular architecture, (iii) mechanistic interactions between biological processes, and (iv) the macroscopic effects of microscopic factors. We consider the extents to which computational models can evaluate mechanistic hypotheses, explore applications such as improving treatment selection, and discuss how model-informed insights can lay the groundwork for a pathobiological redefinition of neurodegenerative disorders.
Collapse
Affiliation(s)
- Ahmed Faraz Khan
- Department of Neurology and Neurosurgery, Montreal Neurological Institute, McGill University, Montreal, Quebec, Canada
- McConnell Brain Imaging Center, Montreal Neurological Institute, Montreal, Canada
- Ludmer Centre for Neuroinformatics & Mental Health, Montreal, Canada
| | - Yasser Iturria-Medina
- Department of Neurology and Neurosurgery, Montreal Neurological Institute, McGill University, Montreal, Quebec, Canada.
- McConnell Brain Imaging Center, Montreal Neurological Institute, Montreal, Canada.
- Ludmer Centre for Neuroinformatics & Mental Health, Montreal, Canada.
| |
Collapse
|
16
|
Yang S, Sun X, Liu D, Zhang Y, Gao X, He J, Cui M, Fu S, He D. Allantoin ameliorates dopaminergic neuronal damage in MPTP-induced Parkinson's disease mice via regulating oxidative damage, inflammation, and gut microbiota disorder. Food Funct 2024; 15:9390-9408. [PMID: 39189380 DOI: 10.1039/d4fo02167c] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/28/2024]
Abstract
Parkinson's disease (PD) is a chronic progressive neurodegenerative disease that often occurs in older people. Neuroinflammation and oxidative stress are important factors in the development of PD. Gastrointestinal dysfunction is the most common non-motor symptom, and inflammation of the gut, which activates the gut-brain axis, maybe a pathogenic factor. Previous studies have attributed anti-inflammatory and antioxidant effects to Allantoin, but its function and mechanism of action in PD are unclear. This study aimed to investigate the effect and mechanism of Allantoin on 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP)-induced PD in mice. Our results showed that Allantoin administration ameliorated motor dysfunction and neuronal damage in mice injected with MPTP by inhibiting neuroinflammation and oxidative damage. Mechanistic studies showed that Allantoin suppresses inflammatory responses by inhibiting the overactivation of the NF-κB and MAPK signaling pathways, as well as oxidative stress by regulating the AKT/Nrf2/HO-1 signaling pathway. Notably, Allantoin also restored intestinal barrier function by modulating the gut microbiota and improving antioxidant and anti-inflammatory capacities to alleviate MPTP-induced motor deficits. In conclusion, the present study shows that the administration of Allantoin attenuated neurodegeneration in mice injected with MPTP by inhibiting neuroinflammation and oxidative stress and modulating the composition of the gut microbiome.
Collapse
Affiliation(s)
- Shuo Yang
- Department of Laboratory Animals, College of Animal Sciences, Jilin University, Changchun, China
| | - Xiaojia Sun
- Department of Basic Veterinary Medicine, College of Veterinary Medicine, Jilin University, Changchun, China.
| | - Dianfeng Liu
- Department of Laboratory Animals, College of Animal Sciences, Jilin University, Changchun, China
- Chongqing Research Institute, Jilin University, Chongqing, China
| | - Yiming Zhang
- Department of Laboratory Animals, College of Animal Sciences, Jilin University, Changchun, China
| | - Xiyu Gao
- Department of Laboratory Animals, College of Animal Sciences, Jilin University, Changchun, China
| | - Jiangmei He
- Department of Laboratory Animals, College of Animal Sciences, Jilin University, Changchun, China
| | - Mingchi Cui
- Department of Basic Veterinary Medicine, College of Veterinary Medicine, Jilin University, Changchun, China.
| | - Shoupeng Fu
- Department of Basic Veterinary Medicine, College of Veterinary Medicine, Jilin University, Changchun, China.
| | - Dewei He
- Department of Basic Veterinary Medicine, College of Veterinary Medicine, Jilin University, Changchun, China.
| |
Collapse
|
17
|
Shafieinouri M, Hong S, Schuh A, Makarious MB, Sandon R, Lee PS, Simmonds E, Iwaki H, Hill G, Blauwendraat C, Escott-Price V, Qi YA, Noyce AJ, Reyes-Palomares A, Leonard HL, Tansey M, Dadu A, Faghri F, Singleton A, Nalls MA, Levine KS, Bandres-Ciga S. Gut-Brain Nexus: Mapping Multi-Modal Links to Neurodegeneration at Biobank Scale. MEDRXIV : THE PREPRINT SERVER FOR HEALTH SCIENCES 2024:2024.09.12.24313490. [PMID: 39371139 PMCID: PMC11451806 DOI: 10.1101/2024.09.12.24313490] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/08/2024]
Abstract
Alzheimer's disease (AD) and Parkinson's disease (PD) are influenced by genetic and environmental factors. Using data from UK Biobank, SAIL Biobank, and FinnGen, we conducted an unbiased, population-scale study to: 1) Investigate how 155 endocrine, nutritional, metabolic, and digestive system disorders are associated with AD and PD risk prior to their diagnosis, considering known genetic influences; 2) Assess plasma biomarkers' specificity for AD or PD in individuals with these conditions; 3) Develop a multi-modal classification model integrating genetics, proteomics, and clinical data relevant to conditions affecting the gut-brain axis. Our findings show that certain disorders elevate AD and PD risk before AD and PD diagnosis including: insulin and non-insulin dependent diabetes mellitus, noninfective gastro-enteritis and colitis, functional intestinal disorders, and bacterial intestinal infections, among others. Polygenic risk scores revealed lower genetic predisposition to AD and PD in individuals with co-occurring disorders in the study categories, underscoring the importance of regulating the gut-brain axis to potentially prevent or delay the onset of neurodegenerative diseases. The proteomic profile of AD/PD cases was influenced by comorbid endocrine, nutritional, metabolic, and digestive systems conditions. Importantly, we developed multi-modal prediction models integrating clinical, genetic, proteomic and demographic data, the combination of which performs better than any single paradigm approach in disease classification. This work aims to illuminate the intricate interplay between various physiological factors involved in the gut-brain axis and the development of AD and PD, providing a multifactorial systemic understanding that goes beyond traditional approaches.
Collapse
Affiliation(s)
- Mohammad Shafieinouri
- Center for Alzheimer’s and Related Dementias, National Institutes of Health, Bethesda, MD, USA 20892
| | - Samantha Hong
- Center for Alzheimer’s and Related Dementias, National Institutes of Health, Bethesda, MD, USA 20892
| | - Artur Schuh
- Departamento de Farmacologia, Universidade Federal do Rio Grande do Sul, Porto Alegre, Brazil
- Serviço de Neurologia, Hospital de Clínicas de Porto Alegre, Porto Alegre, Brazil
| | - Mary B. Makarious
- Center for Alzheimer’s and Related Dementias, National Institutes of Health, Bethesda, MD, USA 20892
- DataTecnica LLC, Washington, DC, USA 20037
| | - Rodrigo Sandon
- Center for Alzheimer’s and Related Dementias, National Institutes of Health, Bethesda, MD, USA 20892
| | - Paul Suhwan Lee
- Center for Alzheimer’s and Related Dementias, National Institutes of Health, Bethesda, MD, USA 20892
| | - Emily Simmonds
- UK Dementia Research Institute (UK DRI) at Cardiff University, Cardiff, UK
| | - Hirotaka Iwaki
- Center for Alzheimer’s and Related Dementias, National Institutes of Health, Bethesda, MD, USA 20892
- DataTecnica LLC, Washington, DC, USA 20037
| | - Gracelyn Hill
- Center for Alzheimer’s and Related Dementias, National Institutes of Health, Bethesda, MD, USA 20892
- DataTecnica LLC, Washington, DC, USA 20037
| | - Cornelis Blauwendraat
- Center for Alzheimer’s and Related Dementias, National Institutes of Health, Bethesda, MD, USA 20892
- Laboratory of Neurogenetics, National Institute on Aging, Bethesda, MD, USA
| | - Valentina Escott-Price
- UK Dementia Research Institute (UK DRI) at Cardiff University, Cardiff, UK
- Division of Psychological Medicine and Clinical Neurosciences, School of Medicine, Cardiff University, Cardiff, UK
| | - Yue A. Qi
- Center for Alzheimer’s and Related Dementias, National Institutes of Health, Bethesda, MD, USA 20892
| | - Alastair J. Noyce
- Centre for Preventive Neurology, Wolfson Institute of Population Health, Queen Mary University of London, London, UK
| | - Armando Reyes-Palomares
- Department of Molecular Biology and Biochemistry, Faculty of Sciences, University of Málaga, Málaga, Spain
| | - Hampton L. Leonard
- Center for Alzheimer’s and Related Dementias, National Institutes of Health, Bethesda, MD, USA 20892
- DataTecnica LLC, Washington, DC, USA 20037
| | - Malu Tansey
- Department of Neuroscience, Center for Translational Research in Neurodegenerative Disease, University of Florida College of Medicine, Gainesville, FL, USA
- Department of Neurology, Norman Fixel Institute for Neurological Diseases, University of Florida Health, Gainesville, FL, USA
| | - Anant Dadu
- Center for Alzheimer’s and Related Dementias, National Institutes of Health, Bethesda, MD, USA 20892
- DataTecnica LLC, Washington, DC, USA 20037
| | - Faraz Faghri
- Center for Alzheimer’s and Related Dementias, National Institutes of Health, Bethesda, MD, USA 20892
- DataTecnica LLC, Washington, DC, USA 20037
| | - Andrew Singleton
- Center for Alzheimer’s and Related Dementias, National Institutes of Health, Bethesda, MD, USA 20892
- Laboratory of Neurogenetics, National Institute on Aging, Bethesda, MD, USA
| | - Mike A. Nalls
- Center for Alzheimer’s and Related Dementias, National Institutes of Health, Bethesda, MD, USA 20892
- DataTecnica LLC, Washington, DC, USA 20037
| | - Kristin S. Levine
- Center for Alzheimer’s and Related Dementias, National Institutes of Health, Bethesda, MD, USA 20892
- DataTecnica LLC, Washington, DC, USA 20037
| | - Sara Bandres-Ciga
- Center for Alzheimer’s and Related Dementias, National Institutes of Health, Bethesda, MD, USA 20892
| |
Collapse
|
18
|
Liang B, Deng Y, Huang Y, Zhong Y, Li Z, Du J, Ye R, Feng Y, Bai R, Fan B, Chen X, Huang X, Yang X, Xian H, Yang X, Huang Z. Fragile Guts Make Fragile Brains: Intestinal Epithelial Nrf2 Deficiency Exacerbates Neurotoxicity Induced by Polystyrene Nanoplastics. ACS NANO 2024; 18:24044-24059. [PMID: 39158845 DOI: 10.1021/acsnano.4c03874] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/20/2024]
Abstract
Oral ingestion is the primary route for human exposure to nanoplastics, making the gastrointestinal tract one of the first and most impacted organs. Given the presence of the gut-brain axis, a crucial concern arises regarding the potential impact of intestinal damage on the neurotoxic effects of nanoplastics (NPs). The intricate mechanisms underlying NP-induced neurotoxicity through the microbiome-gut-brain axis necessitate further investigation. To address this, we used mice specifically engineered with nuclear factor erythroid-derived 2-related factor 2 (Nrf2) deficiency in their intestines, a strain whose intestines are particularly susceptible to polystyrene NPs (PS-NPs). We conducted a 28-day repeated-dose oral toxicity study with 2.5 and 250 mg/kg of 50 nm PS-NPs in these mice. Our study delineated how PS-NP exposure caused gut microbiota dysbiosis, characterized by Mycoplasma and Coriobacteriaceae proliferation, resulting in increased levels of interleukin 17C (IL-17C) production in the intestines. The surplus IL-17C permeated the brain via the bloodstream, triggering inflammation and brain damage. Our investigation elucidated a direct correlation between intestinal health and neurological outcomes in the context of PS-NP exposure. Susceptible mice with fragile guts exhibited heightened neurotoxicity induced by PS-NPs. This phenomenon was attributed to the elevated abundance of microbiota associated with IL-17C production in the intestines of these mice, such as Mesorhizobium and Lwoffii, provoked by PS-NPs. Neurotoxicity was alleviated by in vivo treatment with anti-IL-17C-neutralizing antibodies or antibiotics. These findings advanced our comprehension of the regulatory mechanisms governing the gut-brain axis in PS-NP-induced neurotoxicity and underscored the critical importance of maintaining intestinal health to mitigate the neurotoxic effects of PS-NPs.
Collapse
Affiliation(s)
- Boxuan Liang
- National Medical Products Administration (NMPA) Key Laboratory for Safety Evaluation of Cosmetics, Guangdong Provincial Key Laboratory of Tropical Disease Research, Department of Toxicology, School of Public Health, Southern Medical University, Guangzhou 510515, China
| | - Yanhong Deng
- National Medical Products Administration (NMPA) Key Laboratory for Safety Evaluation of Cosmetics, Guangdong Provincial Key Laboratory of Tropical Disease Research, Department of Toxicology, School of Public Health, Southern Medical University, Guangzhou 510515, China
| | - Yuji Huang
- National Medical Products Administration (NMPA) Key Laboratory for Safety Evaluation of Cosmetics, Guangdong Provincial Key Laboratory of Tropical Disease Research, Department of Toxicology, School of Public Health, Southern Medical University, Guangzhou 510515, China
- Department of Cardiovascular Surgery, Zhujiang Hospital, Southern Medical University, Guangzhou 510280, China
| | - Yizhou Zhong
- National Medical Products Administration (NMPA) Key Laboratory for Safety Evaluation of Cosmetics, Guangdong Provincial Key Laboratory of Tropical Disease Research, Department of Toxicology, School of Public Health, Southern Medical University, Guangzhou 510515, China
- Department of Cardiovascular Surgery, Zhujiang Hospital, Southern Medical University, Guangzhou 510280, China
| | - Zhiming Li
- National Medical Products Administration (NMPA) Key Laboratory for Safety Evaluation of Cosmetics, Guangdong Provincial Key Laboratory of Tropical Disease Research, Department of Toxicology, School of Public Health, Southern Medical University, Guangzhou 510515, China
| | - Jiaxin Du
- National Medical Products Administration (NMPA) Key Laboratory for Safety Evaluation of Cosmetics, Guangdong Provincial Key Laboratory of Tropical Disease Research, Department of Toxicology, School of Public Health, Southern Medical University, Guangzhou 510515, China
| | - Rongyi Ye
- National Medical Products Administration (NMPA) Key Laboratory for Safety Evaluation of Cosmetics, Guangdong Provincial Key Laboratory of Tropical Disease Research, Department of Toxicology, School of Public Health, Southern Medical University, Guangzhou 510515, China
| | - Yu Feng
- National Medical Products Administration (NMPA) Key Laboratory for Safety Evaluation of Cosmetics, Guangdong Provincial Key Laboratory of Tropical Disease Research, Department of Toxicology, School of Public Health, Southern Medical University, Guangzhou 510515, China
| | - Ruobing Bai
- National Medical Products Administration (NMPA) Key Laboratory for Safety Evaluation of Cosmetics, Guangdong Provincial Key Laboratory of Tropical Disease Research, Department of Toxicology, School of Public Health, Southern Medical University, Guangzhou 510515, China
| | - Bingchi Fan
- National Medical Products Administration (NMPA) Key Laboratory for Safety Evaluation of Cosmetics, Guangdong Provincial Key Laboratory of Tropical Disease Research, Department of Toxicology, School of Public Health, Southern Medical University, Guangzhou 510515, China
| | - Xiaoqing Chen
- National Medical Products Administration (NMPA) Key Laboratory for Safety Evaluation of Cosmetics, Guangdong Provincial Key Laboratory of Tropical Disease Research, Department of Toxicology, School of Public Health, Southern Medical University, Guangzhou 510515, China
| | - Xiyun Huang
- National Medical Products Administration (NMPA) Key Laboratory for Safety Evaluation of Cosmetics, Guangdong Provincial Key Laboratory of Tropical Disease Research, Department of Toxicology, School of Public Health, Southern Medical University, Guangzhou 510515, China
| | - Xiaohong Yang
- National Medical Products Administration (NMPA) Key Laboratory for Safety Evaluation of Cosmetics, Guangdong Provincial Key Laboratory of Tropical Disease Research, Department of Toxicology, School of Public Health, Southern Medical University, Guangzhou 510515, China
| | - Hongyi Xian
- National Medical Products Administration (NMPA) Key Laboratory for Safety Evaluation of Cosmetics, Guangdong Provincial Key Laboratory of Tropical Disease Research, Department of Toxicology, School of Public Health, Southern Medical University, Guangzhou 510515, China
| | - Xingfen Yang
- National Medical Products Administration (NMPA) Key Laboratory for Safety Evaluation of Cosmetics, Guangdong Provincial Key Laboratory of Tropical Disease Research, Department of Toxicology, School of Public Health, Southern Medical University, Guangzhou 510515, China
| | - Zhenlie Huang
- National Medical Products Administration (NMPA) Key Laboratory for Safety Evaluation of Cosmetics, Guangdong Provincial Key Laboratory of Tropical Disease Research, Department of Toxicology, School of Public Health, Southern Medical University, Guangzhou 510515, China
- Department of Cardiovascular Surgery, Zhujiang Hospital, Southern Medical University, Guangzhou 510280, China
| |
Collapse
|
19
|
Scheperjans F, Levo R, Bosch B, Lääperi M, Pereira PAB, Smolander OP, Aho VTE, Vetkas N, Toivio L, Kainulainen V, Fedorova TD, Lahtinen P, Ortiz R, Kaasinen V, Satokari R, Arkkila P. Fecal Microbiota Transplantation for Treatment of Parkinson Disease: A Randomized Clinical Trial. JAMA Neurol 2024; 81:925-938. [PMID: 39073834 PMCID: PMC11287445 DOI: 10.1001/jamaneurol.2024.2305] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2023] [Accepted: 05/03/2024] [Indexed: 07/30/2024]
Abstract
Importance Dysbiosis has been robustly demonstrated in Parkinson disease (PD), and fecal microbiota transplantation (FMT) has shown promising effects in preclinical PD models. Objective To assess the safety and symptomatic efficacy of colonic single-dose anaerobically prepared FMT. Design, Setting, and Participants This was a double-blind, placebo-controlled, randomized clinical trial conducted between November 2020 and June 2023 with a follow-up period of 12 months at 4 hospitals in Finland. Patients with PD aged 35 to 75 years in Hoehn & Yahr stage 1-3 with a mild to moderate symptom burden and dysbiosis of fecal microbiota were included. Of 229 patients screened, 48 were randomized and 47 received the intervention. One patient discontinued due to worsening of PD symptoms. Two further patients were excluded before analysis and 45 were included in the intention-to-treat analysis. Intervention Participants were randomized in a 2:1 ratio to receive FMT or placebo via colonoscopy. Main Outcomes and Measures The primary end point was the change of Movement Disorder Society Unified Parkinson's Disease Rating Scale parts I-III (part III off medication) at 6 months. Safety was assessed by recording adverse events (AEs). Results The median (IQR) age was 65 (52.5-70.0) years in the placebo group and 66 (59.25-69.75) years in the FMT group; 9 (60.0%) and 16 (53.3%) patients were male in the placebo group and the FMT group, respectively. The primary outcome did not differ between the groups (0.97 points, 95% CI, -5.10 to 7.03, P = .75). Gastrointestinal AEs were more frequent in the FMT group (16 [53%] vs 1 [7%]; P = .003). Secondary outcomes and post hoc analyses showed stronger increase of dopaminergic medication and improvement of certain motor and nonmotor outcomes in the placebo group. Microbiota changes were more pronounced after FMT but differed by donor. Nevertheless, dysbiosis status was reversed more frequently in the placebo group. Conclusions and Relevance FMT was safe but did not offer clinically meaningful improvements. Further studies-for example, through modified FMT approaches or bowel cleansing-are warranted regarding the specific impact of donor microbiota composition and dysbiosis conversion on motor and nonmotor outcomes as well as medication needs in PD. Trial Registration ClinicalTrials.gov Identifier: NCT04854291.
Collapse
Affiliation(s)
- Filip Scheperjans
- Department of Neurology, Helsinki University Hospital, Helsinki, Finland
- Clinicum, University of Helsinki, Helsinki, Finland
| | - Reeta Levo
- Department of Neurology, Helsinki University Hospital, Helsinki, Finland
| | - Berta Bosch
- Human Microbiome Research Program, Faculty of Medicine, University of Helsinki, Helsinki, Finland
| | | | | | | | - Velma T. E. Aho
- Department of Neurology, Helsinki University Hospital, Helsinki, Finland
| | - Nora Vetkas
- Department of Neurology, Helsinki University Hospital, Helsinki, Finland
- Department of Gastroenterology, Helsinki University Hospital, Helsinki, Finland
| | - Lotta Toivio
- Department of Pharmacology, University of Helsinki, Helsinki, Finland
| | - Veera Kainulainen
- Department of Neurology, Helsinki University Hospital, Helsinki, Finland
- Human Microbiome Research Program, Faculty of Medicine, University of Helsinki, Helsinki, Finland
| | - Tatyana D. Fedorova
- Department of Clinical Medicine - Nuclear Medicine and Positron Emission Tomography, Aarhus University, Denmark
| | - Perttu Lahtinen
- Department of Gastroenterology, Päijät-Häme Central Hospital, Lahti, Finland
| | - Rebekka Ortiz
- Department of Neurology, Tampere University Hospital and University of Tampere, Tampere, Finland
| | - Valtteri Kaasinen
- Clinical Neurosciences, University of Turku and Neurocenter, Turku University Hospital, Turku, Finland
| | - Reetta Satokari
- Human Microbiome Research Program, Faculty of Medicine, University of Helsinki, Helsinki, Finland
| | - Perttu Arkkila
- Clinicum, University of Helsinki, Helsinki, Finland
- Department of Gastroenterology, Helsinki University Hospital, Helsinki, Finland
| |
Collapse
|
20
|
Jakova E, Aigbogun OP, Moutaoufik MT, Allen KJH, Munir O, Brown D, Taghibiglou C, Babu M, Phenix CP, Krol ES, Cayabyab FS. The Bifunctional Dimer Caffeine-Indan Attenuates α-Synuclein Misfolding, Neurodegeneration and Behavioral Deficits after Chronic Stimulation of Adenosine A1 Receptors. Int J Mol Sci 2024; 25:9386. [PMID: 39273333 PMCID: PMC11395333 DOI: 10.3390/ijms25179386] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2024] [Revised: 08/26/2024] [Accepted: 08/28/2024] [Indexed: 09/15/2024] Open
Abstract
We previously found that chronic adenosine A1 receptor stimulation with N6-Cyclopentyladenosine increased α-synuclein misfolding and neurodegeneration in a novel α-synucleinopathy model, a hallmark of Parkinson's disease. Here, we aimed to synthesize a dimer caffeine-indan linked by a 6-carbon chain to cross the blood-brain barrier and tested its ability to bind α-synuclein, reducing misfolding, behavioral abnormalities, and neurodegeneration in our rodent model. Behavioral tests and histological stains assessed neuroprotective effects of the dimer compound. A rapid synthesis of the 18F-labeled analogue enabled Positron Emission Tomography and Computed Tomography imaging for biodistribution measurement. Molecular docking analysis showed that the dimer binds to α-synuclein N- and C-termini and the non-amyloid-β-component (NAC) domain, similar to 1-aminoindan, and this binding promotes a neuroprotective α-synuclein "loop" conformation. The dimer also binds to the orthosteric binding site for adenosine within the adenosine A1 receptor. Immunohistochemistry and confocal imaging showed the dimer abolished α-synuclein upregulation and aggregation in the substantia nigra and hippocampus, and the dimer mitigated cognitive deficits, anxiety, despair, and motor abnormalities. The 18F-labeled dimer remained stable post-injection and distributed in various organs, notably in the brain, suggesting its potential as a Positron Emission Tomography tracer for α-synuclein and adenosine A1 receptor in Parkinson's disease therapy.
Collapse
Affiliation(s)
- Elisabet Jakova
- Department of Surgery, University of Saskatchewan, Saskatoon, SK S7N 5E5, Canada
| | - Omozojie P Aigbogun
- Department of Chemistry, University of Saskatchewan, Saskatoon, SK S7N 5C9, Canada
| | | | - Kevin J H Allen
- Pharmaceutical and Nutrition Sciences Research Group, University of Saskatchewan, Saskatoon, SK S7N 5E5, Canada
- College of Pharmacy and Nutrition, University of Saskatchewan, Saskatoon, SK S7N 5E5, Canada
| | - Omer Munir
- Department of Anatomy, Physiology, Pharmacology, College of Medicine, University of Saskatchewan, Saskatoon, SK S7N 5E5, Canada
| | - Devin Brown
- Department of Chemistry, University of Saskatchewan, Saskatoon, SK S7N 5C9, Canada
| | - Changiz Taghibiglou
- Department of Anatomy, Physiology, Pharmacology, College of Medicine, University of Saskatchewan, Saskatoon, SK S7N 5E5, Canada
| | - Mohan Babu
- Department of Chemistry and Biochemistry, University of Regina, Regina, SK S4S 0A2, Canada
| | - Chris P Phenix
- Department of Chemistry, University of Saskatchewan, Saskatoon, SK S7N 5C9, Canada
| | - Ed S Krol
- College of Pharmacy and Nutrition, University of Saskatchewan, Saskatoon, SK S7N 5E5, Canada
| | - Francisco S Cayabyab
- Department of Surgery, University of Saskatchewan, Saskatoon, SK S7N 5E5, Canada
| |
Collapse
|
21
|
Zhu T, Yang Y, Hu C, Ma L, Sheng J, Chang R, Liao Y, Wang L, Zhu Y, Zhao M, Li B, Li T, Liao C. Effects of Enterobacter cloacae insecticidal protein on the Duox-ROS system and midgut bacterial community and function of Galleria mellonella larvae. Toxicon 2024; 247:107850. [PMID: 38971137 DOI: 10.1016/j.toxicon.2024.107850] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2023] [Revised: 07/01/2024] [Accepted: 07/03/2024] [Indexed: 07/08/2024]
Abstract
BACKGROUND Enterobacter cloacae insecticidal proteins have been reported to kill Galleria mellonella larvae through affecting their midgut microbiome. However, the mechanisms involved remain unclear. Here we aim to investigate how the insecticidal proteins act on the midgut Duox-ROS system and microbial community of G. mellonella larvae. METHODS Reverse transcription qPCR and fluorescence probes were utilized to assess the Duox expression levels and to evaluate quantitative changes of the ROS levels. Sequencing of the 16S rRNA gene sequences of the midgut bacteria of G. mellonella larvae was conducted for further analyses of bacterial diversity, composition, and abundance. RESULTS After the injection of the insecticidal proteins, the Duox expression levels first increased within 28 h, then dramatically peaked at 36 h, and slowly decreased thereafter. Simultaneously, the ROS levels increased significantly at 36 h, peaked at 48 h, and rapidly declined to the normal level at 60 h. Responsive to the change of the ROS levels, the structure of the midgut microbial community was altered substantially, compared to that of the untreated larvae. The relative abundance of Enterobacteriaceae and other specific pathogenic bacteria increased significantly, whereas that of Lactobacillus decreased sharply. Importantly, notable shifts were observed in the crucial midgut predicted metabolic functions, including membrane transportation, carbohydrate metabolism, and amino acid metabolism. CONCLUSION Insecticidal proteins of E. cloacae kill G. mellonella larvae mainly through generation of high oxidative stress, alterations of the midgut microbial community and function, and damage to the physiological functions. These findings provide insights into the inhibition mechanism of E. cloacae insecticidal proteins to G. mellonella larvae.
Collapse
Affiliation(s)
- Tao Zhu
- College of Life Science and Engineering, Henan University of Urban Construction, Pingdingshan, Henan, China; Center of Healthy Food Engineering and Technology of Henan, Henan University of Urban Construction, Pingdingshan, Henan, China; Laboratory of Water Pollution Control and Rehabilitation Technology, Henan University of Urban Construction, Pingdingshan, Henan, China
| | - Yi Yang
- College of Life Science and Engineering, Henan University of Urban Construction, Pingdingshan, Henan, China
| | - Chao Hu
- Pingdingshan Academy of Agricultural Sciences, China
| | - Liang Ma
- College of Life Science and Engineering, Henan University of Urban Construction, Pingdingshan, Henan, China
| | - Jiaqing Sheng
- College of Life Science and Engineering, Henan University of Urban Construction, Pingdingshan, Henan, China
| | - Ruiying Chang
- College of Life Science and Engineering, Henan University of Urban Construction, Pingdingshan, Henan, China
| | - Yanfei Liao
- College of Life Science and Engineering, Henan University of Urban Construction, Pingdingshan, Henan, China
| | - Lianzhe Wang
- College of Life Science and Engineering, Henan University of Urban Construction, Pingdingshan, Henan, China; Center of Healthy Food Engineering and Technology of Henan, Henan University of Urban Construction, Pingdingshan, Henan, China; Laboratory of Water Pollution Control and Rehabilitation Technology, Henan University of Urban Construction, Pingdingshan, Henan, China
| | - Yutao Zhu
- College of Life Science and Engineering, Henan University of Urban Construction, Pingdingshan, Henan, China; Center of Healthy Food Engineering and Technology of Henan, Henan University of Urban Construction, Pingdingshan, Henan, China
| | - Mei Zhao
- College of Life Science and Engineering, Henan University of Urban Construction, Pingdingshan, Henan, China; Center of Healthy Food Engineering and Technology of Henan, Henan University of Urban Construction, Pingdingshan, Henan, China
| | - Bingbing Li
- College of Life Science and Engineering, Henan University of Urban Construction, Pingdingshan, Henan, China; Center of Healthy Food Engineering and Technology of Henan, Henan University of Urban Construction, Pingdingshan, Henan, China; Laboratory of Water Pollution Control and Rehabilitation Technology, Henan University of Urban Construction, Pingdingshan, Henan, China.
| | - Taotao Li
- College of Life Science and Engineering, Henan University of Urban Construction, Pingdingshan, Henan, China; Center of Healthy Food Engineering and Technology of Henan, Henan University of Urban Construction, Pingdingshan, Henan, China; Laboratory of Water Pollution Control and Rehabilitation Technology, Henan University of Urban Construction, Pingdingshan, Henan, China.
| | - Chunli Liao
- College of Life Science and Engineering, Henan University of Urban Construction, Pingdingshan, Henan, China; Center of Healthy Food Engineering and Technology of Henan, Henan University of Urban Construction, Pingdingshan, Henan, China; Laboratory of Water Pollution Control and Rehabilitation Technology, Henan University of Urban Construction, Pingdingshan, Henan, China.
| |
Collapse
|
22
|
Hainsworth AH, Blackburn TP, Bradshaw EM, Elahi FM, Gorelick PB, Isaacs JD, Wallin A, Williams SC. The promise of molecular science in brain health. What breakthroughs are anticipated in the next 20 years? CEREBRAL CIRCULATION - COGNITION AND BEHAVIOR 2024; 7:100364. [PMID: 39263555 PMCID: PMC11387710 DOI: 10.1016/j.cccb.2024.100364] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/12/2024] [Revised: 06/28/2024] [Accepted: 08/19/2024] [Indexed: 09/13/2024]
Abstract
Brain health means optimal physiological brain function across the normal life-course. It encompasses not only healthy brain aging but also brain diseases, their diagnosis and treatment. In all these areas, molecular science has advanced our understanding. This multi-disciplinary review combines viewpoints from laboratory science, clinical medicine and the bioscience industry. First, we review the advances that molecular science has brought to brain health in the past twenty years. These include therapeutic antibodies for CNS diseases (multiple sclerosis, Alzheimer disease) and the dramatic introduction of RNA-targeted therapeutics. Second, we highlight areas where greater molecular understanding is needed. Salient examples are the relation of brain structure to cognitive symptoms, and molecular biomarkers for diagnosis, target discovery and testing of interventions. Finally, we speculate on aspects of molecular science that are likely to advance brain health in the next twenty years. These include: cell senescence and chronobiology; gene editing (notably, CRISPR) and RNA targeting (RNA interference, miRNA manipulation); brain-immune interactions; novel drug targets (AQP4, HIF1, Toll-like receptors); and novel chemistry to make new drugs (molecular machines, quantum molecular modelling and "click" chemistry). Early testing of the relationships between molecular pathways and clinical manifestations will drive much-needed breakthroughs in neurology and psychiatry.
Collapse
Affiliation(s)
- Atticus H Hainsworth
- Molecular & Clinical Sciences Research Institute, St George's University of London, London, SW17 0RE, UK
- Department of Neurology, St George's University Hospitals NHS Foundation Trust, Blackshaw Road, London, SW17 0QT, UK
| | - Thomas P Blackburn
- Translational Pharmacology BioVentures, Leigh on Sea, Essex, SS9 2UA, UK
- TPBioVentures, Hoboken, NJ, USA
| | - Elizabeth M Bradshaw
- Carol and Gene Ludwig Center for Research on Neurodegeneration, Department of Neurology, Columbia University Irving Medical Center, New York, NY, USA
| | - Fanny M Elahi
- Departments of Neurology and Neuroscience, Ronald M. Loeb Center for Alzheimer's Disease, Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, 1 Gustave L. Levy Place, New York, NY 10029-5674, USA
- James J. Peter VA Medical Center, Bronx, NY, USA
| | - Philip B Gorelick
- Davee Department of Neurology, Northwestern University Feinberg School of Medicine, 635 N. Michigan Avenue, Chicago, IL 60611, USA
| | - Jeremy D Isaacs
- Molecular & Clinical Sciences Research Institute, St George's University of London, London, SW17 0RE, UK
- Department of Neurology, St George's University Hospitals NHS Foundation Trust, Blackshaw Road, London, SW17 0QT, UK
| | - Anders Wallin
- Department of Psychiatry and Neurochemistry, Institute of Neuroscience and Physiology, Sahlgrenska Academy, University of Gothenburg, Mölndal, Sweden
| | - Steven Cr Williams
- Department of Neuroimaging, Institute of Psychiatry, Psychology & Neuroscience, Kings College London. SE5 8AF, UK
| |
Collapse
|
23
|
Zhang J, Shi M, Zhang Q, Chen Y, Yin X, Wang X, Zhang Y. Association between Constipation and the Risk of Parkinson's Disease among Participants in the UK Biobank. Neuroepidemiology 2024:1-10. [PMID: 39159603 DOI: 10.1159/000540955] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2024] [Accepted: 07/31/2024] [Indexed: 08/21/2024] Open
Abstract
INTRODUCTION Constipation is common in patients with Parkinson's disease (PD), but its impact on incident PD remains uncertain. We aimed to prospectively investigate constipation symptoms and the risk of PD. METHODS Participants without PD at baseline from the UK Biobank were included in the study. Information on the regular use of laxatives, bowel movement frequency, and the frequency of hard or lumpy stools was collected. Incident PD was defined by the ICD-10 code. Cox proportional hazards models were used to assess the association between constipation symptoms and incident PD. RESULTS In the analysis of regular laxative use and PD, 490,797 participants were included and 2,735 incident PD were detected. The multivariable adjusted HR of PD in participants who regularly used laxatives was 1.99 (95% confidence interval [CI], 1.70-2.33) compared with those who did not. In the analysis of bowel movement frequency and hard or lumpy stools and PD, 170,017 participants were included and 519 incident PD were detected. The multivariable adjusted HRs were 2.16 (95% CI, 1.74-2.68) and 2.57 (95% CI, 2.00-3.31) for participants with a bowel movement frequency of 3-6 times/week and <3 times/week, respectively, compared with those with a bowel movement frequency of ≥7 times/week; compared with participants who never had hard or lumpy stools, multivariable adjusted HRs were 1.31 (95% CI, 1.07-1.60), 2.32 (95% CI, 1.77-3.05), and 2.94 (95% CI, 2.14-4.05) for those who sometimes had hard or lumpy stools, often had hard or lumpy stools, and most of time/always had hard or lumpy stools, respectively. CONCLUSIONS Constipation measured by the regular use of laxatives, bowel movement frequency, and the frequency of hard or lumpy stools was significantly associated with an increased risk of incident PD.
Collapse
Affiliation(s)
- Jing Zhang
- Department of Epidemiology, School of Public Health, Suzhou Medical College of Soochow University, Suzhou, China,
| | - Mengyao Shi
- Department of Epidemiology, School of Public Health, Suzhou Medical College of Soochow University, Suzhou, China
- Jiangsu Key Laboratory of Preventive and Translational Medicine for Major Chronic Non-communicable Diseases, Soochow University, Suzhou, China
| | - Qilu Zhang
- Department of Epidemiology, School of Public Health, Suzhou Medical College of Soochow University, Suzhou, China
| | - Yi Chen
- Department of Epidemiology, School of Public Health, Suzhou Medical College of Soochow University, Suzhou, China
| | - Xiangyan Yin
- Department of Epidemiology, School of Public Health, Suzhou Medical College of Soochow University, Suzhou, China
| | - Xiaoxiao Wang
- Department of Epidemiology, School of Public Health, Suzhou Medical College of Soochow University, Suzhou, China
| | - Yonghong Zhang
- Department of Epidemiology, School of Public Health, Suzhou Medical College of Soochow University, Suzhou, China
- Jiangsu Key Laboratory of Preventive and Translational Medicine for Major Chronic Non-communicable Diseases, Soochow University, Suzhou, China
| |
Collapse
|
24
|
Zhao L, Duan Y, Li Z, Li J, Li S. Unearthing the Potential Therapeutic Effects of Oxyresveratrol Based on Intrinsic Links between Pharmacological Effects: Implications for the Gut-Liver-Brain Axis. Pharmaceuticals (Basel) 2024; 17:1063. [PMID: 39204169 PMCID: PMC11359039 DOI: 10.3390/ph17081063] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2024] [Revised: 08/09/2024] [Accepted: 08/11/2024] [Indexed: 09/03/2024] Open
Abstract
Oxyresveratrol is a stilbene compound with a simple chemical structure and various therapeutic potentials. This study summarized and analyzed the multiple pharmacological effects and mechanisms of oxyresveratrol, identifying its prominent performance in neuroprotection, hepatoprotection, and anti-inflammatory activities in the intestines. By integrating the pharmacological effects of oxyresveratrol with insights from the network pharmacology and molecular docking of its interactions with targets linked to gut-liver-brain axis disorders, it has been shown that oxyresveratrol may hold promise for the treatment of gut-liver-brain axis-related disorders. The synergistic effect between various mechanisms has inspired further research and the development of oxyresveratrol's application value.
Collapse
Affiliation(s)
- Lijuan Zhao
- School of Pharmacy, Hunan University of Chinese Medicine, Changsha 410208, China; (L.Z.); (Y.D.); (J.L.)
- Hunan Engineering Technology Research Center for Bioactive Substance Discovery of Chinese Medicine, Changsha 410208, China;
- Hunan Province Sino-US International Joint Research Center for Therapeutic Drugs of Senile Degenerative Diseases, Changsha 410208, China
- College of Biology and Food Engineering, Huaihua University, Huaihua 418000, China
| | - Yan Duan
- School of Pharmacy, Hunan University of Chinese Medicine, Changsha 410208, China; (L.Z.); (Y.D.); (J.L.)
- Hunan Engineering Technology Research Center for Bioactive Substance Discovery of Chinese Medicine, Changsha 410208, China;
- Hunan Province Sino-US International Joint Research Center for Therapeutic Drugs of Senile Degenerative Diseases, Changsha 410208, China
| | - Zhaoxing Li
- Hunan Engineering Technology Research Center for Bioactive Substance Discovery of Chinese Medicine, Changsha 410208, China;
- Hunan Province Sino-US International Joint Research Center for Therapeutic Drugs of Senile Degenerative Diseases, Changsha 410208, China
- School of Pharmacy, China Pharmaceutical University, Nanjing 210009, China
| | - Juan Li
- School of Pharmacy, Hunan University of Chinese Medicine, Changsha 410208, China; (L.Z.); (Y.D.); (J.L.)
- Hunan Engineering Technology Research Center for Bioactive Substance Discovery of Chinese Medicine, Changsha 410208, China;
- Hunan Province Sino-US International Joint Research Center for Therapeutic Drugs of Senile Degenerative Diseases, Changsha 410208, China
| | - Shunxiang Li
- School of Pharmacy, Hunan University of Chinese Medicine, Changsha 410208, China; (L.Z.); (Y.D.); (J.L.)
- Hunan Engineering Technology Research Center for Bioactive Substance Discovery of Chinese Medicine, Changsha 410208, China;
- Hunan Province Sino-US International Joint Research Center for Therapeutic Drugs of Senile Degenerative Diseases, Changsha 410208, China
| |
Collapse
|
25
|
Mitchell CL, Kurouski D. Novel strategies in Parkinson's disease treatment: a review. Front Mol Neurosci 2024; 17:1431079. [PMID: 39183754 PMCID: PMC11341544 DOI: 10.3389/fnmol.2024.1431079] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2024] [Accepted: 07/29/2024] [Indexed: 08/27/2024] Open
Abstract
An unprecedented extension of life expectancy observed during the past century drastically increased the number of patients diagnosed with Parkinson's diseases (PD) worldwide. Estimated costs of PD alone reached $52 billion per year, making effective neuroprotective treatments an urgent and unmet need. Current treatments of both AD and PD focus on mitigating the symptoms associated with these pathologies and are not neuroprotective. In this review, we discuss the most advanced therapeutic strategies that can be used to treat PD. We also critically review the shift of the therapeutic paradigm from a small molecule-based inhibition of protein aggregation to the utilization of natural degradation pathways and immune cells that are capable of degrading toxic amyloid deposits in the brain of PD patients.
Collapse
Affiliation(s)
- Charles L. Mitchell
- Interdisciplinary Program in Genetics and Genomics, Texas A&M University, College Station, TX, United States
- Department of Biochemistry and Biophysics, Texas A&M University, College Station, TX, United States
| | - Dmitry Kurouski
- Interdisciplinary Program in Genetics and Genomics, Texas A&M University, College Station, TX, United States
- Department of Biochemistry and Biophysics, Texas A&M University, College Station, TX, United States
| |
Collapse
|
26
|
Wolff A, Demleitner AF, Feneberg E, Lingor P. [Smell the smoke before one sees the fire-The oligosymptomatic prodromal phase of neurodegenerative diseases]. DER NERVENARZT 2024; 95:689-696. [PMID: 38630299 DOI: 10.1007/s00115-024-01654-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Accepted: 03/12/2024] [Indexed: 08/03/2024]
Abstract
BACKGROUND With the increasing development of disease-modifying causative treatment, the importance of early diagnosis and detection of asymptomatic or oligosymptomatic early stages of neurodegenerative diseases is increasing. OBJECTIVE Presentation of early stages of neurodegenerative diseases, diagnostic procedures for the early detection and possible treatment consequences. MATERIAL AND METHODS Selective literature search, discussion of basic research and expert recommendations. RESULTS Many neurodegenerative diseases have a prodromal phase preceding the manifest disease that can be diagnosed with current criteria. In this prodromal phase, those affected are often oligosymptomatic but in some cases can already be identified using biomarkers. These developments are already taken into account in diagnostic criteria for some of these prodromal phases. The prodromal phase, in turn, is preceded by an asymptomatic phase which, however, already shows molecular changes and can be identified by biomarkers in some diseases. The early identification and stratification of patients is particularly important when planning studies for disease-modifying treatment, and biomarkers are already being used in clinical trials for this purpose. DISCUSSION Biomarker-based identification of individuals in the prodromal phase of neurodegenerative diseases is already possible for some entities. People who show the first signs of a neurodegenerative disease can be referred to centers for clinical trials and observational studies.
Collapse
Affiliation(s)
| | | | | | - Paul Lingor
- Klinik und Poliklinik für Neurologie, School of Medicine, Klinikum rechts der Isar, Technische Universität München, Ismaninger Straße 22, 81675, München, Deutschland.
- Deutsches Zentrum für Neurodegenerative Erkrankungen (DZNE), München, Deutschland.
- Munich Cluster for Systems Neurology (SyNergy), München, Deutschland.
| |
Collapse
|
27
|
Abbasi A, Bazzaz S, Da Cruz AG, Khorshidian N, Saadat YR, Sabahi S, Ozma MA, Lahouty M, Aslani R, Mortazavian AM. A Critical Review on Akkermansia muciniphila: Functional Mechanisms, Technological Challenges, and Safety Issues. Probiotics Antimicrob Proteins 2024; 16:1376-1398. [PMID: 37432597 DOI: 10.1007/s12602-023-10118-x] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/28/2023] [Indexed: 07/12/2023]
Abstract
Due to its physiological benefits from in vitro and in vivo points of view, Akkermansia muciniphila, a common colonizer in the human gut mucous layer, has consistently been identified as an option for the next-generation probiotic. A. muciniphila is a significant bacterium that promotes host physiology. However, it also has a great deal of potential to become a probiotic due to its physiological advantages in a variety of therapeutic circumstances. Therefore, it can be established that the abundance of A. muciniphila in the gut environment, which is controlled by many genetic and dietary variables, is related to the biological behaviors of the intestinal microbiota and gut dysbiosis/eubiosis circumstances. Before A. muciniphila is widely utilized as a next-generation probiotic, regulatory obstacles, the necessity for significant clinical trials, and the sustainability of manufacturing must be eliminated. In this review, the outcomes of recent experimental and clinical reports are comprehensively reviewed, and common colonization patterns, main factors involved in the colonization of A. muciniphila in the gut milieu, their functional mechanisms in establishing homeostasis in the metabolic and energy pathways, the promising delivery role of microencapsulation, potential genetic engineering strategies, and eventually safety issues of A. muciniphila have been discussed.
Collapse
Affiliation(s)
- Amin Abbasi
- Student Research Committee, Department of Food Science and Technology, National Nutrition and Food Technology Research Institute, Faculty of Nutrition Science and Food Technology, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Sara Bazzaz
- Department of Food Science and Technology, National Nutrition and Food Technology Research Institute, Faculty of Nutrition Science and Food Technology, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Adriano G Da Cruz
- Department of Food Processing, Federal Institute of Science and Technology Education of Rio de Janeiro (IFRJ) - Campus Maracanã, Rio de Janeiro, Rio de Janeiro, Brazil
| | - Nasim Khorshidian
- Department of Food Science and Technology, National Nutrition and Food Technology Research Institute, Faculty of Nutrition Science and Food Technology, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | | | - Sahar Sabahi
- Department of Nutrition, School of Allied Medical Sciences, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
| | - Mahdi Asghari Ozma
- Department of Medical Bacteriology and Virology, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Masoud Lahouty
- Department of Microbiology, Faculty of Medicine, Urmia University of Medical Sciences, Urmia, Iran
| | - Ramin Aslani
- Food Safety and Hygiene Division, Department of Environmental Health Engineering, School of Public Health, Tehran University of Medical Sciences, Tehran, Iran
| | - Amir M Mortazavian
- Department of Food Science and Technology, National Nutrition and Food Technology Research Institute, Faculty of Nutrition Science and Food Technology, Shahid Beheshti University of Medical Sciences, Tehran, Iran.
| |
Collapse
|
28
|
Liang Y, Liu C, Cheng M, Geng L, Li J, Du W, Song M, Chen N, Yeleen TAN, Song L, Wang X, Han Y, Sheng C. The link between gut microbiome and Alzheimer's disease: From the perspective of new revised criteria for diagnosis and staging of Alzheimer's disease. Alzheimers Dement 2024; 20:5771-5788. [PMID: 38940631 PMCID: PMC11350031 DOI: 10.1002/alz.14057] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2024] [Revised: 05/20/2024] [Accepted: 05/22/2024] [Indexed: 06/29/2024]
Abstract
Over the past decades, accumulating evidence suggests that the gut microbiome exerts a key role in Alzheimer's disease (AD). The Alzheimer's Association Workgroup is updating the diagnostic criteria for AD, which changed the profiles and categorization of biomarkers from "AT(N)" to "ATNIVS." Previously, most of studies focus on the correlation between the gut microbiome and amyloid beta deposition ("A"), the initial AD pathological feature triggering the "downstream" tauopathy and neurodegeneration. However, limited research investigated the interactions between the gut microbiome and other AD pathogenesis ("TNIVS"). In this review, we summarize current findings of the gut microbial characteristics in the whole spectrum of AD. Then, we describe the association of the gut microbiome with updated biomarker categories of AD pathogenesis. In addition, we outline the gut microbiome-related therapeutic strategies for AD. Finally, we discuss current key issues of the gut microbiome research in the AD field and future research directions. HIGHLIGHTS: The new revised criteria for Alzheimer's disease (AD) proposed by the Alzheimer's Association Workgroup have updated the profiles and categorization of biomarkers from "AT(N)" to "ATNIVS." The associations of the gut microbiome with updated biomarker categories of AD pathogenesis are described. Current findings of the gut microbial characteristics in the whole spectrum of AD are summarized. Therapeutic strategies for AD based on the gut microbiome are proposed.
Collapse
Affiliation(s)
- Yuan Liang
- Department of NeurologyThe Affiliated Hospital of Jining Medical UniversityJiningChina
| | - Congcong Liu
- Department of NeurologyThe Affiliated Hospital of Jining Medical UniversityJiningChina
| | - Manman Cheng
- Department of Respiratory MedicineThe Affiliated Hospital of Jining Medical UniversityJiningChina
| | - Lijie Geng
- Department of RadiologyThe People's Hospital of YanzhouJiningChina
| | - Jing Li
- Department of EmergencyThe Affiliated Hospital of Jining Medical UniversityJiningChina
| | - Wenying Du
- Department of NeurologyChina‐Japan Friendship HospitalBeijingChina
| | - Minfang Song
- Department of NeurologyThe Affiliated Hospital of Jining Medical UniversityJiningChina
| | - Nian Chen
- Department of NeurologyThe Affiliated Hospital of Jining Medical UniversityJiningChina
| | | | - Li Song
- Department of NeurologyThe Affiliated Hospital of Jining Medical UniversityJiningChina
| | - Xiaoni Wang
- Department of NeurologySir Run Shaw HospitalSchool of MedicineZhejiang UniversityHangzhouChina
| | - Ying Han
- Department of NeurologyXuanwu Hospital of Capital Medical UniversityBeijingChina
- Key Laboratory of Biomedical Engineering of Hainan ProvinceSchool of Biomedical EngineeringHainan UniversityHaikouChina
- Center of Alzheimer's DiseaseBeijing Institute for Brain DisordersBeijingChina
- National Clinical Research Center for Geriatric DisordersBeijingChina
| | - Can Sheng
- Department of NeurologyThe Affiliated Hospital of Jining Medical UniversityJiningChina
| |
Collapse
|
29
|
Taghizadeh Ghassab F, Shamlou Mahmoudi F, Taheri Tinjani R, Emami Meibodi A, Zali MR, Yadegar A. Probiotics and the microbiota-gut-brain axis in neurodegeneration: Beneficial effects and mechanistic insights. Life Sci 2024; 350:122748. [PMID: 38843992 DOI: 10.1016/j.lfs.2024.122748] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2023] [Revised: 03/21/2024] [Accepted: 05/23/2024] [Indexed: 06/10/2024]
Abstract
Neurodegenerative diseases (NDs) are a group of heterogeneous disorders with a high socioeconomic burden. Although pharmacotherapy is currently the principal therapeutic approach for the management of NDs, mounting evidence supports the notion that the protracted application of available drugs would abate their dopaminergic outcomes in the long run. The therapeutic application of microbiome-based modalities has received escalating attention in biomedical works. In-depth investigations of the bidirectional communication between the microbiome in the gut and the brain offer a multitude of targets for the treatment of NDs or maximizing the patient's quality of life. Probiotic administration is a well-known microbial-oriented approach to modulate the gut microbiota and potentially influence the process of neurodegeneration. Of note, there is a strong need for further investigation to map out the mechanistic prospects for the gut-brain axis and the clinical efficacy of probiotics. In this review, we discuss the importance of microbiome modulation and hemostasis via probiotics, prebiotics, postbiotics and synbiotics in ameliorating pathological neurodegenerative events. Also, we meticulously describe the underlying mechanism of action of probiotics and their metabolites on the gut-brain axis in different NDs. We suppose that the present work will provide a functional direction for the use of probiotic-based modalities in promoting current practical treatments for the management of neurodegenerative-related diseases.
Collapse
Affiliation(s)
- Fatemeh Taghizadeh Ghassab
- Foodborne and Waterborne Diseases Research Center, Research Institute for Gastroenterology and Liver Diseases, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Fatemeh Shamlou Mahmoudi
- Foodborne and Waterborne Diseases Research Center, Research Institute for Gastroenterology and Liver Diseases, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Reyhaneh Taheri Tinjani
- Foodborne and Waterborne Diseases Research Center, Research Institute for Gastroenterology and Liver Diseases, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Armitasadat Emami Meibodi
- Foodborne and Waterborne Diseases Research Center, Research Institute for Gastroenterology and Liver Diseases, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Mohammad Reza Zali
- Gastroenterology and Liver Diseases Research Center, Research Institute for Gastroenterology and Liver Diseases, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Abbas Yadegar
- Foodborne and Waterborne Diseases Research Center, Research Institute for Gastroenterology and Liver Diseases, Shahid Beheshti University of Medical Sciences, Tehran, Iran; Basic and Molecular Epidemiology of Gastrointestinal Disorders Research Center, Research Institute for Gastroenterology and Liver Diseases, Shahid Beheshti University of Medical Sciences, Tehran, Iran.
| |
Collapse
|
30
|
Chen T, Jin N, Zhang Q, Li Z, Wang Q, Fang X. Auraptene Mitigates Colitis Induced by Dextran Sulfate Sodium in Mice by Regulating Specific Intestinal Flora and Repairing the Intestinal Barrier. Inflammation 2024; 47:1127-1141. [PMID: 38236384 DOI: 10.1007/s10753-023-01965-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2023] [Revised: 12/11/2023] [Accepted: 12/29/2023] [Indexed: 01/19/2024]
Abstract
Auraptene (AUT) is widely known to possess both antioxidant and anti-inflammatory properties. This study attempted to evaluate the protective effects of AUT in dextran sodium sulfate (DSS)-induced colitis in mice and to determine the underlying molecular mechanisms. Our results suggest that AUT substantially minimizes the severity and worsening of DSS-induced colitis in mice, indicated by the lengthening of the colon, lower disease activity index, reduced oxidation levels, and attenuated inflammatory factors. Molecular studies revealed that AUT reduces the nuclear translocation of nuclear factor-κB (NF-κB), thereby inhibiting the expression of inflammatory factors. Additionally, AUT promotes the diversity of the intestinal flora in mice with colitis by increasing the number of beneficial bacteria such as Lactobacillaceae and lowering the number of harmful bacteria. In conclusion, AUT mitigates DSS-induced colitis by maintaining the integrity of the intestinal barrier and modulating the levels of the intestinal microbial species.
Collapse
Affiliation(s)
- Tong Chen
- Department of Gastrointestinal Colorectal Surgery, China-Japan Union Hospital of Jilin University, Changchun, 130033, China
| | - Naizhong Jin
- Department of Gastrointestinal Colorectal Surgery, China-Japan Union Hospital of Jilin University, Changchun, 130033, China
| | - Qi Zhang
- Department of Gastrointestinal Colorectal Surgery, China-Japan Union Hospital of Jilin University, Changchun, 130033, China
| | - Zhongming Li
- Department of Gastrointestinal Colorectal Surgery, China-Japan Union Hospital of Jilin University, Changchun, 130033, China
| | - Qiutao Wang
- Department of Gastrointestinal Colorectal Surgery, China-Japan Union Hospital of Jilin University, Changchun, 130033, China
| | - Xuedong Fang
- Department of Gastrointestinal Colorectal Surgery, China-Japan Union Hospital of Jilin University, Changchun, 130033, China.
| |
Collapse
|
31
|
Kleinholdermann U, Thieken F, Ruppert-Junck MC, van Munster M, Pedrosa AJ, Stümpel J, Hammes V, Timmermann L, Woopen C, Schmitz-Luhn B, Storms A, Golla H, Nater UM, Skoluda N, Pfefferle PI, Pedrosa DJ. Study protocol of the HessenKohorte2042: a prospective, longitudinal cohort study characterising quality of life in people with Parkinson's disease and their caregivers using a bio-psycho-social approach. BMJ Open 2024; 14:e080475. [PMID: 39067880 DOI: 10.1136/bmjopen-2023-080475] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 07/30/2024] Open
Abstract
INTRODUCTION Quality of life (QoL) is of paramount importance as an outcome to monitor and guide therapies for people with Parkinson's disease (PwPD). In particular, due to the heterogeneous symptoms that PwPD may experience during their disease course, QoL can deteriorate not only in patients but also in their caregivers, with a variety of psychosocial consequences. However, there is a lack of longitudinal studies that explore how QoL evolves over time and what factors are significant. Furthermore, holistic approaches that consider bio-psycho-social determinants are rare. In the worst cases, these gaps can lead to suboptimal care and therefore unmet needs for patients and their caregivers, resulting in unnecessary symptom burden and increased healthcare costs for society. METHODS AND ANALYSIS This prospective, longitudinal study will follow 1000 PwPD along with their caregivers for 20 years, with up to 40 semi-annual assessments. Patient data and sample collection will include clinical assessments, self-reported outcome measures focusing on QoL, biospecimen collection and MRI. Caregiver burden will be systematically assessed through self-administered questionnaires. The use of digitised surveys will allow efficient data collection and convenient assessment at home. Our primary objective is to attain a holistic understanding of QoL in PwPD and establish a tool to measure it. The secondary objective is to explore the psycho-social and biological variables associated with QoL of patients and caregivers over the progression of the disease. This will provide key information for diagnostic and prognostic prediction, therapeutic patient stratification and adaptation of therapy in the future. ETHICS AND DISSEMINATION The study was approved by the local ethics committee of the University Hospital of Marburg (study number: 209/19). The results will be disseminated by means of publication in peer-reviewed journals, international conference contributions, annual patient meetings and a dedicated website. TRIAL REGISTRATION NUMBER German Clinical Trials Register (DRKS00023598).
Collapse
Affiliation(s)
| | | | - Marina Christine Ruppert-Junck
- Philipps-Universitat Marburg, Marburg, Germany
- Center of Mind, Brain and Behaviour, Philipps-Universitat Marburg, Marburg, Germany
| | - Marlena van Munster
- Philipps-Universitat Marburg, Marburg, Germany
- Care and Public Health Research Institute, Maastricht University, Maastricht, Netherlands
| | | | - Johanne Stümpel
- Philipps-Universitat Marburg, Marburg, Germany
- Center for Life Ethics, University of Bonn, Bonn, Germany
| | | | - Lars Timmermann
- Philipps-Universitat Marburg, Marburg, Germany
- Center of Mind, Brain and Behaviour, Philipps-Universitat Marburg, Marburg, Germany
| | | | | | - Anna Storms
- Katholische Akademie Die Wolfsburg, Diocese of Essen, Mülheim an der Ruhr, Germany
| | - Heidrun Golla
- Department of Palliative Medicine, University Hospital Cologne, Cologne, Germany
| | - Urs M Nater
- Department of Psychology, University of Vienna, Vienna, Austria
| | - Nadine Skoluda
- Department of Psychology, University of Vienna, Vienna, Austria
| | - Petra Ina Pfefferle
- Comprehensive Biobank Marburg (CBBMR), Philipps-Universität Marburg, Marburg, Germany
| | - David José Pedrosa
- Philipps-Universitat Marburg, Marburg, Germany
- Center of Mind, Brain and Behaviour, Philipps-Universitat Marburg, Marburg, Germany
| |
Collapse
|
32
|
Sun Q, Li YJ, Ning SB. Investigating the molecular mechanisms underlying the co-occurrence of Parkinson's disease and inflammatory bowel disease through the integration of multiple datasets. Sci Rep 2024; 14:17028. [PMID: 39043798 PMCID: PMC11266657 DOI: 10.1038/s41598-024-67890-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2024] [Accepted: 07/17/2024] [Indexed: 07/25/2024] Open
Abstract
Parkinson's disease (PD) and inflammatory bowel disease (IBD) are chronic diseases affecting the central nervous system and gastrointestinal tract, respectively. Recent research suggests a bidirectional relationship between neurodegeneration in PD and intestinal inflammation in IBD. PD patients may experience gastrointestinal dysfunction over a decade before motor symptom onset, and IBD may increase the risk of developing PD. Despite the "gut-brain axis" concept, the underlying pathophysiological mechanisms of this potential association remain unclear. This study aimed to investigate the biological mechanisms of differentially expressed genes in PD and IBD using bioinformatics tools, providing novel insights into the co-diagnosis and treatment of these diseases. We constructed a gene marker for disease diagnosis and identified five important genes (BTK, NCF2, CRH, FCGR3A and SERPINA3). Through nomogram and decision tree analyses, we found that both the IBD and PD required only the expression levels of BTK and NCF2 for accurate discrimination. Additionally, small molecule drugs RO-90-7501 and MST-312 may be useful for the treatment of both IBD and PD. These findings offer new perspectives on the co-diagnosis and treatment of PD and IBD, and suggest that targeting BTK may be a promising therapeutic strategy for both diseases.
Collapse
Affiliation(s)
- Qi Sun
- Department of Gastroenterology, Air Force Medical Center, No. 30 Fucheng Road, Haidian District, Beijing, 100142, China
| | - Yi-Jun Li
- Department of Anesthesiology, The People's Hospital of Changxing, Huzhou, 313100, Zhejiang, China
| | - Shou-Bin Ning
- Department of Gastroenterology, Air Force Medical Center, No. 30 Fucheng Road, Haidian District, Beijing, 100142, China.
| |
Collapse
|
33
|
Liu Y, Li H, Yang M, Guo J, Sun Z, Wang S, Li R, Pang X, Kim Y, Wang X, Peng Y. Sika Deer Velvet Antler Peptide Exerts Neuroprotective Effect in a Parkinson's Disease Model via Regulating Oxidative Damage and Gut Microbiota. Pharmaceuticals (Basel) 2024; 17:972. [PMID: 39065820 PMCID: PMC11280472 DOI: 10.3390/ph17070972] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2024] [Revised: 07/06/2024] [Accepted: 07/17/2024] [Indexed: 07/28/2024] Open
Abstract
Parkinson's disease (PD) is the second most common neurodegenerative disorder globally. Recognizing the potential of velvet antler in the nervous system, as shown in numerous studies, this research was aimed at evaluating the neuroprotective effects of Sika Deer velvet antler peptide (VAP), along with the underlying mechanisms in neurotoxin-induced PD models. Initially, a peptidomic analysis of the VAP, which comprised 189 varieties of peptides, was conducted using LC-MS. Nine sequences were identified as significant using Proteome Discoverer 2.5 software. In a cellular model of PD, where PC12 cells are treated with the neurotoxin 1-methyl-4-phenylpyridinium (MPP+), the administration of the VAP reduced the cell damage and apoptosis induced by MPP+. This protective effect was associated with a decrease in oxidative stress. This protective mechanism was found to be mediated through the activation of the SIRT1-dependent Akt/Nrf2/HO-1-signaling pathway. In animal models, specifically in mice with 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP)-induced PD, the administration of the VAP effectively reduced the dopaminergic neuron damage and reversed the neurobehavioral deficits. They also diminished microglia activation and apoptosis, all without any noticeable adverse effects. Additionally, the VAP was observed to beneficially alter the gut microbiota, as marked by an increase in the abundances of Prevotellaceae, Helicobacteraceae, and Prevotella. These findings suggest that VAP exerts its neuroprotective effect against neurodegeneration by inhibiting oxidative stress and modulating gut microbiota.
Collapse
Affiliation(s)
- Ying Liu
- Institute of Special Animal and Plant Sciences, Chinese Academy of Agricultural Sciences, Changchun 130112, China; (Y.L.); (M.Y.); (J.G.); (Z.S.); (R.L.); (X.P.)
| | - Hongyuan Li
- Laboratory of Chemistry Biology, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun 130022, China; (H.L.); (X.W.)
| | - Min Yang
- Institute of Special Animal and Plant Sciences, Chinese Academy of Agricultural Sciences, Changchun 130112, China; (Y.L.); (M.Y.); (J.G.); (Z.S.); (R.L.); (X.P.)
| | - Jia Guo
- Institute of Special Animal and Plant Sciences, Chinese Academy of Agricultural Sciences, Changchun 130112, China; (Y.L.); (M.Y.); (J.G.); (Z.S.); (R.L.); (X.P.)
| | - Zepeng Sun
- Institute of Special Animal and Plant Sciences, Chinese Academy of Agricultural Sciences, Changchun 130112, China; (Y.L.); (M.Y.); (J.G.); (Z.S.); (R.L.); (X.P.)
- School of Chemistry and Life Science, Changchun University of Technology, Changchun 130012, China;
| | - Shuyue Wang
- School of Chemistry and Life Science, Changchun University of Technology, Changchun 130012, China;
| | - Ru Li
- Institute of Special Animal and Plant Sciences, Chinese Academy of Agricultural Sciences, Changchun 130112, China; (Y.L.); (M.Y.); (J.G.); (Z.S.); (R.L.); (X.P.)
| | - Xin Pang
- Institute of Special Animal and Plant Sciences, Chinese Academy of Agricultural Sciences, Changchun 130112, China; (Y.L.); (M.Y.); (J.G.); (Z.S.); (R.L.); (X.P.)
- School of Chemistry and Life Science, Changchun University of Technology, Changchun 130012, China;
| | - Yumi Kim
- Department of Biomedical Engineering, Ulsan National Institute of Science and Technology (UNIST), Ulsan 44919, Republic of Korea
| | - Xiaohui Wang
- Laboratory of Chemistry Biology, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun 130022, China; (H.L.); (X.W.)
- School of Applied Chemistry and Engineering, University of Science and Technology of China, Hefei 230026, China
| | - Yinghua Peng
- Institute of Special Animal and Plant Sciences, Chinese Academy of Agricultural Sciences, Changchun 130112, China; (Y.L.); (M.Y.); (J.G.); (Z.S.); (R.L.); (X.P.)
| |
Collapse
|
34
|
Li Z, Niu Q, Yang K, Zhao K, Yin S, Zhu F. Acupuncture for constipation in Parkinson's disease: A systematic review and meta-analysis of randomized controlled trials. Medicine (Baltimore) 2024; 103:e38937. [PMID: 39029044 PMCID: PMC11398760 DOI: 10.1097/md.0000000000038937] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 07/21/2024] Open
Abstract
BACKGROUND Parkinson's disease (PD) is the second most common neurological disease worldwide, and there is a potential interaction between PD and constipation. PD constipation often causes significant trouble for patients and seriously affects their quality of life. Acupuncture is widely used for treating constipation and has been clinically proven. However, it is unclear whether the current evidence is sufficient to support acupuncture to improve PD constipation. METHODS We searched the Cochrane Central Register of Controlled Trials, Embase, PubMed, Web of Science, China National Knowledge Infrastructure, Wan Fang Data Knowledge Service Platform, and Chinese Scientific Journal Database (VIP database) for randomized controlled trials from inception through July 1, 2023. Randomized controlled trials (RCTs) included acupuncture, sham acupuncture, and medication for PD constipation. Stata 16.0 software and Cochrane RoB2.0 were used for data processing and migration risk analysis. RESULTS The 11 studies included a total of 960 patients. The results showed that acupuncture or acupuncture combined with conventional treatment seemed to have advantages in improving complete spontaneous bowel movements (WMD: 1.49, 95% CI: 0.86, 2.11; P < .00001), Patient-Assessment of Constipation Quality of Life questionnaire (WMD: -11.83, 95% CI: -15.67, -7.99; P < .00001), the chronic constipation severity scale (CCS) (SMD: -0.99, 95% CI: -1.40, -0.58; P < .01), and c(RRP) (WMD: 2.13, 95% CI: 0.44, 3.82; P < .05). CONCLUSION The present results show that compared with conventional treatment, acupuncture combined with conventional treatment seems to increase the number of spontaneous defecations in PD patients, improve quality of life, increase rectal resting pressure, and alleviate the severity of chronic constipation. Thus, acupuncture has the potential to treat PD constipation. However, due to the study's limitations, higher-quality RCTs are needed for verification.
Collapse
Affiliation(s)
- Zhao Li
- School of Clinical Medicine, Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Qun Niu
- School of Clinical Medicine, Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Kai Yang
- Department of Orthopaedics, Xi'an Hospital of Traditional Chinese Medicine, Xi'an, China
| | - Keni Zhao
- Deriatric Department, Xi'an Hospital of Traditional Chinese Medicine, Xi'an, China
| | - Shao Yin
- School of Clinical Medicine, Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Fengya Zhu
- Traditional Chinese Medicine Department, Zigong First People's Hospital, Zigong, China
| |
Collapse
|
35
|
Robinson SR, Greenway FL, Deth RC, Fayet-Moore F. Effects of Different Cow-Milk Beta-Caseins on the Gut-Brain Axis: A Narrative Review of Preclinical, Animal, and Human Studies. Nutr Rev 2024:nuae099. [PMID: 39024213 DOI: 10.1093/nutrit/nuae099] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/20/2024] Open
Abstract
The gut and brain communicate through bidirectional neural, endocrine, and immune signals to coordinate central nervous system activity with gastrointestinal function. Dysregulated inflammation can promote immune cell activation and increase entero-endocrine signaling and intestinal permeability; hence, a functional gut-brain axis is necessary for a healthy digestive system. The consumption of milk products can lead to gut discomfort via effects on gastrointestinal tract function and the inflammatory state, which, in turn, affect the brain. A1 β-casein and A2 β-casein are major components of bovine-milk protein, and their digestion may result in different physiological effects following the consumption of milk products. Peptides derived from A1 β-casein, such as β-casomorphins, may increase gut dysfunction and inflammation, thereby modulating the availability of bioactive metabolites in the bloodstream and contribute to changes in cognitive function. This narrative review examines the functional interrelationships between the consumption of cow-milk-derived β-caseins and their effect on the brain, immune system, and the gut, which together comprise the gut-brain axis.
Collapse
Affiliation(s)
- Stephen R Robinson
- School of Health and Biomedical Sciences, RMIT University, Bundoora, 3083 Victoria, Australia
| | - Frank L Greenway
- Pennington Biomedical Research Center, Louisiana State University System, Baton Rouge, LA 70808, United States
| | - Richard C Deth
- Department of Pharmaceutical Sciences, Nova Southeastern University, Fort Lauderdale, FL 33328, United States
| | - Flavia Fayet-Moore
- Department of Science, FOODiQ, New South Wales, Sydney, Australia
- School of Environmental and Life Sciences, The University of Newcastle, Ourimbah, 2258 New South Wales, Australia
| |
Collapse
|
36
|
Ghosh N, Sinha K, Sil PC. Pesticides and the Gut Microbiota: Implications for Parkinson's Disease. Chem Res Toxicol 2024; 37:1071-1085. [PMID: 38958636 DOI: 10.1021/acs.chemrestox.4c00057] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/04/2024]
Abstract
Parkinson's disease (PD) affects more people worldwide than just aging alone can explain. This is likely due to environmental influences, genetic makeup, and changes in daily habits. The disease develops in a complex way, with movement problems caused by Lewy bodies and the loss of dopamine-producing neurons. Some research suggests Lewy bodies might start in the gut, hinting at a connection between these structures and gut health in PD patients. These patients often have different gut bacteria and metabolites. Pesticides are known to increase the risk of PD, with evidence showing they harm more than just dopamine neurons. Long-term exposure to pesticides in food might affect the gut barrier, gut bacteria, and the blood-brain barrier, but the exact link is still unknown. This review looks at how pesticides and gut bacteria separately influence PD development and progression, highlighting the harmful effects of pesticides and changes in gut bacteria. We have examined the interaction between pesticides and gut bacteria in PD patients, summarizing how pesticides cause imbalances in gut bacteria, the resulting changes, and their overall effects on the PD prognosis.
Collapse
Affiliation(s)
- Nabanita Ghosh
- Assistant Professor in Zoology, Maulana Azad College, Kolkata 700013, India
| | - Krishnendu Sinha
- Assistant Professor in Zoology, Jhargram Raj College, Jhargram 721507 India
| | - Parames C Sil
- Professor, Division of Molecular Medicine, Bose Institute, Kolkata 700054 India
| |
Collapse
|
37
|
He X, Lai Y, Mo C, Zhang Y, Ai P, Xu S, Qian Y, Xiao Q, Yang X. Association between Fecal Bile Acids and Levodopa Response in Patients with Parkinson's Disease. Microorganisms 2024; 12:1432. [PMID: 39065200 PMCID: PMC11278915 DOI: 10.3390/microorganisms12071432] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2024] [Revised: 06/24/2024] [Accepted: 07/11/2024] [Indexed: 07/28/2024] Open
Abstract
Levodopa is the mainstay of treatments for Parkinson's disease (PD), but large heterogeneity exists in patient response. Increasing evidence implicates bile acids (BAs) involved in the pathogenesis of PD. Furthermore, BAs have also participated in drug bioavailability. However, the impact of BAs on levodopa response (LR) has not been investigated. This study evaluated the association between fecal BAs and LR. Levodopa challenge test (LCT) was conducted in 92 PD patients to assess LR. A total of 36 fecal BAs and plasma levodopa concentrations were detected using LC-MS/MS. The difference of BAs between subgroups with bottom and top 30% LR were analyzed and fecal samples from the two groups were collected for metagenomic shotgun analysis. No fecal BAs were significantly correlated with LR, except for chenodeoxycholic acid-3-β-D-glucuronide (CDCA-3-β-glucuronide, R = -0.228, p-value = 0.039). We found no significant difference in BAs between subgroups with bottom and top 30% LR. What is more, no significant changes in bacterial species composition related to bile acids metabolism or in the proportional representation of genes encoding known bile acids enzymes were observed between the groups. Overall, our data do not support an association between fecal BAs and levodopa response in PD patients. More precise macro-metabolomic approaches are needed to reveal the potential association between gut microbial interactions and the treatment effect of levodopa.
Collapse
Affiliation(s)
- Xiaoqin He
- Department of Neurology and Institute of Neurology, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China; (X.H.); (C.M.); (P.A.); (Y.Q.)
| | - Yiqiu Lai
- Department of Neurology and Institute of Neurology, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China; (X.H.); (C.M.); (P.A.); (Y.Q.)
| | - Chengjun Mo
- Department of Neurology and Institute of Neurology, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China; (X.H.); (C.M.); (P.A.); (Y.Q.)
| | - Yi Zhang
- Department of Neurology and Institute of Neurology, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China; (X.H.); (C.M.); (P.A.); (Y.Q.)
| | - Penghui Ai
- Department of Neurology and Institute of Neurology, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China; (X.H.); (C.M.); (P.A.); (Y.Q.)
| | - Shaoqing Xu
- Department of Geriatrics, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China;
| | - Yiwei Qian
- Department of Neurology and Institute of Neurology, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China; (X.H.); (C.M.); (P.A.); (Y.Q.)
| | - Qin Xiao
- Department of Neurology and Institute of Neurology, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China; (X.H.); (C.M.); (P.A.); (Y.Q.)
| | - Xiaodong Yang
- Department of Neurology and Institute of Neurology, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China; (X.H.); (C.M.); (P.A.); (Y.Q.)
| |
Collapse
|
38
|
Soni D, Upadhayay S, Dhureja M, Arthur R, Kumar P. Crosstalk between gut-brain axis: unveiling the mysteries of gut ROS in progression of Parkinson's disease. Inflammopharmacology 2024:10.1007/s10787-024-01510-2. [PMID: 38992324 DOI: 10.1007/s10787-024-01510-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2024] [Accepted: 06/06/2024] [Indexed: 07/13/2024]
Abstract
"Path to a good mood lies through the gut." This statement seems to imply that it has long been believed that the gut is connected with the brain. Research has shown that eating food activates the reward system and releases dopamine (DA), establishing a link between the peripheral and central nervous system. At the same time, researchers also trust that the gut is involved in the onset of many diseases, including Parkinson's disease (PD), in which gastrointestinal dysfunction is considered a prevalent symptom. Reports suggest that PD starts from the gut and reaches the brain via the vagus nerve. Recent studies have revealed an intriguing interaction between the gut and brain, which links gut dysbiosis to the etiology of PD. This review aims to explore the mechanistic pathway how reactive oxygen species (ROS) generation in the gut affects the makeup and operation of the dopamine circuitry in the brain. Our primary concern is ROS generation in the gut, which disrupts the gut microbiome (GM), causing α-synuclein accumulation and inflammation. This trio contributes to the loss of DA neurons in the brain, resulting in PD development. This review also compiles pre-clinical and clinical studies on antioxidants, demonstrating that antioxidants reduce ROS and increase DA levels. Collectively, the study highlights the necessity of comprehending the gut-brain axis for unraveling the riddles of PD pathogenesis and considering new therapeutic approaches.
Collapse
Affiliation(s)
- Divya Soni
- Department of Pharmacology, Central University of Punjab, Ghudda, Bathinda, 151401, Punjab, India
| | - Shubham Upadhayay
- Department of Pharmacology, Central University of Punjab, Ghudda, Bathinda, 151401, Punjab, India
| | - Maanvi Dhureja
- Department of Pharmacology, Central University of Punjab, Ghudda, Bathinda, 151401, Punjab, India
| | - Richmond Arthur
- Department of Pharmacology, Central University of Punjab, Ghudda, Bathinda, 151401, Punjab, India
| | - Puneet Kumar
- Department of Pharmacology, Central University of Punjab, Ghudda, Bathinda, 151401, Punjab, India.
| |
Collapse
|
39
|
Yang Y, Xu Z, Guo J, Xiong Z, Hu B. Exploring the gut microbiome-Postoperative Cognitive Dysfunction connection: Mechanisms, clinical implications, and future directions. Brain Behav Immun Health 2024; 38:100763. [PMID: 38682010 PMCID: PMC11052898 DOI: 10.1016/j.bbih.2024.100763] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2024] [Revised: 03/22/2024] [Accepted: 03/28/2024] [Indexed: 05/01/2024] Open
Abstract
Postoperative Cognitive Dysfunction (POCD) is a common yet poorly understood complication of surgery that can lead to long-term cognitive decline. The gut-brain axis, a bidirectional communication system between the central nervous system and the gut microbiota, plays a significant role in maintaining cognitive health. The potential for anesthetic agents and perioperative medications to modulate the gut microbiota and influence the trajectory of POCD suggests the need for a more integrated approach in perioperative care. Perioperative medications, including opioids and antibiotics, further compound these disruptions, leading to dysbiosis and consequent systemic and neuroinflammation implicated in cognitive impairment. Understanding how surgical interventions and associated treatments affect this relationship is crucial for developing strategies to reduce the incidence of POCD. Strategies to preserve and promote a healthy gut microbiome may mitigate the risk and severity of POCD. Future research should aim to clarify the mechanisms linking gut flora alterations to cognitive outcomes and explore targeted interventions, such as probiotic supplementation and microbiota-friendly prescription practices, to safeguard cognitive function postoperatively.
Collapse
Affiliation(s)
- Yan Yang
- Department of Anesthesiology, Xuzhou Renci Hospital, Xuzhou, 221000, Jiangsu Province, China
| | - Zhipeng Xu
- Department of Anesthesiology, Shanghai Pudong Hospital, Fudan University Pudong Medical Center, 2800 Gongwei Road, Pudong, Shanghai, 201399, China
| | - Jianrong Guo
- School of Gongli Hospital Medical Technology, University of Shanghai for Science and Technology, Shanghai, 200093, China
| | - Zhiqiang Xiong
- Shanghai Engineering Research Center of Food Microbiology, School of Health Science and Engineering, University of Shanghai for Science and Technology, Shanghai, 200093, China
| | - Baoji Hu
- Department of Anesthesiology, Shanghai Pudong Hospital, Fudan University Pudong Medical Center, 2800 Gongwei Road, Pudong, Shanghai, 201399, China
- School of Gongli Hospital Medical Technology, University of Shanghai for Science and Technology, Shanghai, 200093, China
| |
Collapse
|
40
|
Jain N. The molecular interplay between human and bacterial amyloids: Implications in neurodegenerative diseases. BIOCHIMICA ET BIOPHYSICA ACTA. PROTEINS AND PROTEOMICS 2024; 1872:141018. [PMID: 38641088 DOI: 10.1016/j.bbapap.2024.141018] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/14/2024] [Revised: 03/19/2024] [Accepted: 04/14/2024] [Indexed: 04/21/2024]
Abstract
Neurodegenerative disorders such as Parkinson's (PD) and Alzheimer's diseases (AD) are linked with the assembly and accumulation of proteins into structured scaffold called amyloids. These diseases pose significant challenges due to their complex and multifaceted nature. While the primary focus has been on endogenous amyloids, recent evidence suggests that bacterial amyloids may contribute to the development and exacerbation of such disorders. The gut-brain axis is emerging as a communication pathway between bacterial and human amyloids. This review delves into the novel role and potential mechanism of bacterial amyloids in modulating human amyloid formation and the progression of AD and PD.
Collapse
Affiliation(s)
- Neha Jain
- Department of Bioscience and Bioengineering, Indian Institute of Technology Jodhpur, NH 62, Surpura Bypass, Karwar, 342030, Rajasthan, India.
| |
Collapse
|
41
|
Xie L, He M, Ying C, Chu H. Mechanisms of inflammation after ischemic stroke in brain-peripheral crosstalk. Front Mol Neurosci 2024; 17:1400808. [PMID: 38932932 PMCID: PMC11199882 DOI: 10.3389/fnmol.2024.1400808] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2024] [Accepted: 05/28/2024] [Indexed: 06/28/2024] Open
Abstract
Stroke is a devastating disease with high morbidity, disability, and mortality, among which ischemic stroke is more common. However, there is still a lack of effective methods to improve the prognosis and reduce the incidence of its complications. At present, there is evidence that peripheral organs are involved in the inflammatory response after stroke. Moreover, the interaction between central and peripheral inflammation includes the activation of resident and peripheral immune cells, as well as the activation of inflammation-related signaling pathways, which all play an important role in the pathophysiology of stroke. In this review, we discuss the mechanisms of inflammatory response after ischemic stroke, as well as the interactions through circulatory pathways between peripheral organs (such as the gut, heart, lung and spleen) and the brain to mediate and regulate inflammation after ischemic stroke. We also propose the potential role of meningeal lymphatic vessels (MLVs)-cervical lymph nodes (CLNs) as a brain-peripheral crosstalk lymphatic pathway in ischemic stroke. In addition, we also summarize the mechanisms of anti-inflammatory drugs in the treatment of ischemic stroke.
Collapse
Affiliation(s)
- Ling Xie
- Department of Critical Medicine, First People's Hospital of Linping District, Hangzhou, China
| | - Ming He
- Department of Critical Medicine, First People's Hospital of Linping District, Hangzhou, China
| | - Caidi Ying
- Department of Hepatobiliary and Pancreatic Surgery, The Traditional Chinese Medicine Hospital of Ningbo, Ningbo, China
| | - Haifeng Chu
- Department of Neurosurgery, The Traditional Chinese Medicine Hospital of Linping District, Hangzhou, China
| |
Collapse
|
42
|
Deliz JR, Tanner CM, Gonzalez-Latapi P. Epidemiology of Parkinson's Disease: An Update. Curr Neurol Neurosci Rep 2024; 24:163-179. [PMID: 38642225 DOI: 10.1007/s11910-024-01339-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/12/2024] [Indexed: 04/22/2024]
Abstract
PURPOSE OF REVIEW In recent decades, epidemiological understanding of Parkinson disease (PD) has evolved significantly. Major discoveries in genetics and large epidemiological investigations have provided a better understanding of the genetic, behavioral, and environmental factors that play a role in the pathogenesis and progression of PD. In this review, we provide an epidemiological update of PD with a particular focus on advances in the last five years of published literature. RECENT FINDINGS We include an overview of PD pathophysiology, followed by a detailed discussion of the known distribution of disease and varied determinants of disease. We describe investigations of risk factors for PD, and provide a critical summary of current knowledge, knowledge gaps, and both clinical and research implications. We emphasize the need to characterize the epidemiology of the disease in diverse populations. Despite increasing understanding of PD epidemiology, recent paradigm shifts in the conceptualization of PD as a biological entity will also impact epidemiological research moving forward and guide further work in this field.
Collapse
Affiliation(s)
- Juan R Deliz
- Ken and Ruth Davee Department of Neurology, Northwestern University, Feinberg School of Medicine, Chicago, Illinois, USA
| | - Caroline M Tanner
- Weill Institute for Neurosciences, Department of Neurology, University of California -San Francisco, San Francisco, CA, USA
| | - Paulina Gonzalez-Latapi
- Ken and Ruth Davee Department of Neurology, Northwestern University, Feinberg School of Medicine, Chicago, Illinois, USA.
| |
Collapse
|
43
|
Ratajska AM, Etheridge CB, Lopez FV, Kenney LE, Rodriguez K, Schade RN, Gertler J, Bowers D. The Relationship Between Autonomic Dysfunction and Mood Symptoms in De Novo Parkinson's Disease Patients Over Time. J Geriatr Psychiatry Neurol 2024; 37:242-252. [PMID: 37831611 PMCID: PMC10990848 DOI: 10.1177/08919887231204542] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 10/15/2023]
Abstract
BACKGROUND Autonomic dysfunction is prevalent in Parkinson's disease (PD) and can worsen quality of life. We examined: (a) whether specific autonomic symptoms were more strongly associated with anxiety or depression in PD and (b) whether overall autonomic dysfunction predicted mood trajectories over a 5-year period. METHODS Newly diagnosed individuals with PD (N = 414) from the Parkinson's Progression Markers Initiative completed self-report measures of depression, anxiety, and autonomic symptoms annually. Cross-sectional linear regressions examined relationships between specific autonomic subdomains (gastrointestinal, cardiovascular, thermoregulatory, etc.) and mood. Multilevel modeling examined longitudinal relationships with total autonomic load. RESULTS Gastrointestinal symptoms were associated with both higher anxiety (b = 1.04, 95% CI [.55, 1.53], P < .001) and depression (b = .24, 95% CI [.11, .37], P = .012), as were thermoregulatory symptoms (anxiety: b = 1.06, 95% CI [.46, 1.65], P = .004; depression: b = .25, 95% CI [.09, .42], P = .013), while cardiovascular (b = .36, 95% CI [.10, .62], P = .012) and urinary symptoms (b = .10, 95% CI [.01, .20], P = .037) were associated only with depression. Longitudinally, higher total autonomic load was associated with increases in both depression (b = .01, 95% CI [.00, .02], P = .015) and anxiety (b = .04, 95% CI [.01, .06], P < .001) over time, as well as occasion-to-occasion fluctuations (depression: b = .08, 95% CI [.05, .10], P < .001; anxiety: b = .24, 95% CI [.15, .32], P < .001). CONCLUSION Findings suggest autonomic dysfunction, particularly gastrointestinal and thermoregulatory symptoms, may be an indicator for elevated anxiety/depression and a potential treatment target early on in PD.
Collapse
Affiliation(s)
- Adrianna M. Ratajska
- Department of Clinical and Health Psychology, University of Florida, Gainesville, FL, USA
| | - Connor B. Etheridge
- Department of Neurology, Norman Fixel Institute for Neurological Diseases, University of Florida, Gainesville, FL, USA
| | - Francesca V. Lopez
- Department of Clinical and Health Psychology, University of Florida, Gainesville, FL, USA
| | - Lauren E. Kenney
- Department of Clinical and Health Psychology, University of Florida, Gainesville, FL, USA
| | - Katie Rodriguez
- Department of Clinical and Health Psychology, University of Florida, Gainesville, FL, USA
| | - Rachel N. Schade
- Department of Clinical and Health Psychology, University of Florida, Gainesville, FL, USA
| | - Joshua Gertler
- Department of Clinical and Health Psychology, University of Florida, Gainesville, FL, USA
| | - Dawn Bowers
- Department of Clinical and Health Psychology, University of Florida, Gainesville, FL, USA
- Department of Neurology, Norman Fixel Institute for Neurological Diseases, University of Florida, Gainesville, FL, USA
| |
Collapse
|
44
|
Ali NH, Al‐Kuraishy HM, Al‐Gareeb AI, Alexiou A, Papadakis M, AlAseeri AA, Alruwaili M, Saad HM, Batiha GE. BDNF/TrkB activators in Parkinson's disease: A new therapeutic strategy. J Cell Mol Med 2024; 28:e18368. [PMID: 38752280 PMCID: PMC11096816 DOI: 10.1111/jcmm.18368] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2023] [Revised: 03/22/2024] [Accepted: 04/17/2024] [Indexed: 05/18/2024] Open
Abstract
Parkinson's disease (PD) is a neurodegenerative disorder of the brain and is manifested by motor and non-motor symptoms because of degenerative changes in dopaminergic neurons of the substantia nigra. PD neuropathology is associated with mitochondrial dysfunction, oxidative damage and apoptosis. Thus, the modulation of mitochondrial dysfunction, oxidative damage and apoptosis by growth factors could be a novel boulevard in the management of PD. Brain-derived neurotrophic factor (BDNF) and its receptor tropomyosin receptor kinase type B (TrkB) are chiefly involved in PD neuropathology. BDNF promotes the survival of dopaminergic neurons in the substantia nigra and enhances the functional activity of striatal neurons. Deficiency of the TrkB receptor triggers degeneration of dopaminergic neurons and accumulation of α-Syn in the substantia nigra. As well, BDNF/TrkB signalling is reduced in the early phase of PD neuropathology. Targeting of BDNF/TrkB signalling by specific activators may attenuate PD neuropathology. Thus, this review aimed to discuss the potential role of BDNF/TrkB activators against PD. In conclusion, BDNF/TrkB signalling is decreased in PD and linked with disease severity and long-term complications. Activation of BDNF/TrkB by specific activators may attenuate PD neuropathology.
Collapse
Affiliation(s)
- Naif H. Ali
- Department of Internal Medicine, Medical CollegeNajran UniversityNajranSaudi Arabia
| | - Hayder M. Al‐Kuraishy
- Department of Clinical Pharmacology and Medicine, College of MedicineMustansiriyah UniversityBaghdadIraq
| | | | - Athanasios Alexiou
- University Centre for Research and Development, Chandigarh UniversityMohaliPunjabIndia
- Department of Research and DevelopmentFunogenAthensGreece
- Department of Research and DevelopmentAFNP MedWienAustria
- Department of Science and EngineeringNovel Global Community Educational FoundationHebershamNew South WalesAustralia
| | - Marios Papadakis
- Department of Surgery IIUniversity Hospital Witten‐Herdecke, University of Witten‐HerdeckeWuppertalGermany
| | - Ali Abdullah AlAseeri
- Department of Internal MedicineCollege of Medicine, Prince Sattam bin Abdulaziz UniversityAl‐KharjSaudi Arabia
| | - Mubarak Alruwaili
- Department of Internal Medicine, College of MedicineJouf UniversitySakakaSaudi Arabia
| | - Hebatallah M. Saad
- Department of Pathology, Faculty of Veterinary MedicineMatrouh UniversityMatrouhEgypt
| | - Gaber El‐Saber Batiha
- Department of Pharmacology and Therapeutics, Faculty of Veterinary MedicineDamanhour UniversityDamanhourEgypt
| |
Collapse
|
45
|
Gu R, Pan J, Awan MUN, Sun X, Yan F, Bai L, Bai J. The major histocompatibility complex participates in Parkinson's disease. Pharmacol Res 2024; 203:107168. [PMID: 38583689 DOI: 10.1016/j.phrs.2024.107168] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/25/2023] [Revised: 03/23/2024] [Accepted: 04/02/2024] [Indexed: 04/09/2024]
Abstract
Parkinson's disease (PD) is a common neurodegenerative disease characterized by progressive loss of dopaminergic neurons in the substantia nigra and the aggregation of alpha-synuclein (α-syn). The central nervous system (CNS) has previously been considered as an immune-privileged area. However, studies have shown that the immune responses are involved in PD. The major histocompatibility complex (MHC) presents antigens from antigen-presenting cells (APCs) to T lymphocytes, immune responses will be induced. MHCs are expressed in microglia, astrocytes, and dopaminergic neurons. Single nucleotide polymorphisms in MHC are related to the risk of PD. The aggregated α-syn triggers the expression of MHCs by activating glia cells. CD4+ and CD8+ T lymphocytes responses and microglia activation are detected in brains of PD patients. In addiction immune responses further increase blood-brain barrier (BBB) permeability and T cell infiltration in PD. Thus, MHCs are involved in PD through participating in immune and inflammatory responses.
Collapse
Affiliation(s)
- Rou Gu
- Faculty of Life Science and Technology, Kunming University of Science and Technology, Kunming 650500, China; Medical School, Kunming University of Science and Technology, Kunming 650500, China
| | - Jianyu Pan
- Medical School, Kunming University of Science and Technology, Kunming 650500, China
| | - Maher Un Nisa Awan
- Medical School, Kunming University of Science and Technology, Kunming 650500, China; Department of Neurology, The Affiliated Hospital of Yunnan University, Kunming 650500, China
| | - Xiaowei Sun
- Faculty of Life Science and Technology, Kunming University of Science and Technology, Kunming 650500, China; Medical School, Kunming University of Science and Technology, Kunming 650500, China
| | - Fang Yan
- Faculty of Life Science and Technology, Kunming University of Science and Technology, Kunming 650500, China; Medical School, Kunming University of Science and Technology, Kunming 650500, China
| | - Liping Bai
- Medical School, Kunming University of Science and Technology, Kunming 650500, China
| | - Jie Bai
- Medical School, Kunming University of Science and Technology, Kunming 650500, China.
| |
Collapse
|
46
|
Wang B, Geng L, Wang J, Wei Y, Yan C, Wu N, Yue Y, Zhang Q. Optimization of the Preparation Process of Glucuronomannan Oligosaccharides and Their Effects on the Gut Microbiota in MPTP-Induced PD Model Mice. Mar Drugs 2024; 22:193. [PMID: 38786584 PMCID: PMC11123026 DOI: 10.3390/md22050193] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2024] [Revised: 04/10/2024] [Accepted: 04/22/2024] [Indexed: 05/25/2024] Open
Abstract
Parkinson's disease (PD) is a prevalent neurodegenerative disorder, and accumulating evidence suggests a link between dysbiosis of the gut microbiota and the onset and progression of PD. In our previous investigations, we discovered that intraperitoneal administration of glucuronomannan oligosaccharides (GMn) derived from Saccharina japonica exhibited neuroprotective effects in a 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP)-induced PD mouse model. However, the complicated preparation process, difficulties in isolation, and remarkably low yield have constrained further exploration of GMn. In this study, we optimized the degradation conditions in the preparation process of GMn through orthogonal experiments. Subsequently, an MPTP-induced PD model was established, followed by oral administration of GMn. Through a stepwise optimization, we successfully increased the yield of GMn, separated from crude fucoidan, from 1~2/10,000 to 4~8/1000 and indicated the effects on the amelioration of MPTP-induced motor deficits, preservation of dopamine neurons, and elevation in striatal neurotransmitter levels. Importantly, GMn mitigated gut microbiota dysbiosis induced by MPTP in mice. In particular, GM2 significantly reduced the levels of Akkermansia, Verrucomicrobiota, and Lactobacillus, while promoting the abundance of Roseburia and Prevotella compared to the model group. These findings suggest that GM2 can potentially suppress PD by modulating the gut microbiota, providing a foundation for the development of a novel and effective anti-PD marine drug.
Collapse
Affiliation(s)
- Baoxiang Wang
- College of Life Sciences, Qingdao University, 308 Ningxia Road, Qingdao 266003, China; (B.W.); (Y.W.)
- CAS and Shandong Province Key Laboratory of Experimental Marine Biology, Institute of Oceanology, Chinese Academy of Sciences, Qingdao 266071, China; (J.W.); (C.Y.); (N.W.); (Y.Y.)
| | - Lihua Geng
- CAS and Shandong Province Key Laboratory of Experimental Marine Biology, Institute of Oceanology, Chinese Academy of Sciences, Qingdao 266071, China; (J.W.); (C.Y.); (N.W.); (Y.Y.)
- Laboratory for Marine Biology and Biotechnology, Qingdao Marine Science and Technology Center, Qingdao 266237, China
- Center for Ocean Mega-Science, Chinese Academy of Sciences, Qingdao 266071, China
| | - Jing Wang
- CAS and Shandong Province Key Laboratory of Experimental Marine Biology, Institute of Oceanology, Chinese Academy of Sciences, Qingdao 266071, China; (J.W.); (C.Y.); (N.W.); (Y.Y.)
- Laboratory for Marine Biology and Biotechnology, Qingdao Marine Science and Technology Center, Qingdao 266237, China
- Center for Ocean Mega-Science, Chinese Academy of Sciences, Qingdao 266071, China
| | - Yuxi Wei
- College of Life Sciences, Qingdao University, 308 Ningxia Road, Qingdao 266003, China; (B.W.); (Y.W.)
| | - Changhui Yan
- CAS and Shandong Province Key Laboratory of Experimental Marine Biology, Institute of Oceanology, Chinese Academy of Sciences, Qingdao 266071, China; (J.W.); (C.Y.); (N.W.); (Y.Y.)
- Key Laboratory of Optic-Electric Sensing and Analytical Chemistry for Life Science, MOE, College of Chemistry and Molecular Engineering, Qingdao University of Science and Technology, Qingdao 266042, China
| | - Ning Wu
- CAS and Shandong Province Key Laboratory of Experimental Marine Biology, Institute of Oceanology, Chinese Academy of Sciences, Qingdao 266071, China; (J.W.); (C.Y.); (N.W.); (Y.Y.)
- Center for Ocean Mega-Science, Chinese Academy of Sciences, Qingdao 266071, China
| | - Yang Yue
- CAS and Shandong Province Key Laboratory of Experimental Marine Biology, Institute of Oceanology, Chinese Academy of Sciences, Qingdao 266071, China; (J.W.); (C.Y.); (N.W.); (Y.Y.)
- Laboratory for Marine Biology and Biotechnology, Qingdao Marine Science and Technology Center, Qingdao 266237, China
- Center for Ocean Mega-Science, Chinese Academy of Sciences, Qingdao 266071, China
| | - Quanbin Zhang
- CAS and Shandong Province Key Laboratory of Experimental Marine Biology, Institute of Oceanology, Chinese Academy of Sciences, Qingdao 266071, China; (J.W.); (C.Y.); (N.W.); (Y.Y.)
- Laboratory for Marine Biology and Biotechnology, Qingdao Marine Science and Technology Center, Qingdao 266237, China
- Center for Ocean Mega-Science, Chinese Academy of Sciences, Qingdao 266071, China
| |
Collapse
|
47
|
Zapata-Acevedo JF, Mantilla-Galindo A, Vargas-Sánchez K, González-Reyes RE. Blood-brain barrier biomarkers. Adv Clin Chem 2024; 121:1-88. [PMID: 38797540 DOI: 10.1016/bs.acc.2024.04.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/29/2024]
Abstract
The blood-brain barrier (BBB) is a dynamic interface that regulates the exchange of molecules and cells between the brain parenchyma and the peripheral blood. The BBB is mainly composed of endothelial cells, astrocytes and pericytes. The integrity of this structure is essential for maintaining brain and spinal cord homeostasis and protection from injury or disease. However, in various neurological disorders, such as traumatic brain injury, Alzheimer's disease, and multiple sclerosis, the BBB can become compromised thus allowing passage of molecules and cells in and out of the central nervous system parenchyma. These agents, however, can serve as biomarkers of BBB permeability and neuronal damage, and provide valuable information for diagnosis, prognosis and treatment. Herein, we provide an overview of the BBB and changes due to aging, and summarize current knowledge on biomarkers of BBB disruption and neurodegeneration, including permeability, cellular, molecular and imaging biomarkers. We also discuss the challenges and opportunities for developing a biomarker toolkit that can reliably assess the BBB in physiologic and pathophysiologic states.
Collapse
Affiliation(s)
- Juan F Zapata-Acevedo
- Grupo de Investigación en Neurociencias, Centro de Neurociencia Neurovitae-UR, Instituto de Medicina Traslacional, Escuela de Medicina y Ciencias de la Salud, Universidad del Rosario, Bogotá, Colombia
| | - Alejandra Mantilla-Galindo
- Grupo de Investigación en Neurociencias, Centro de Neurociencia Neurovitae-UR, Instituto de Medicina Traslacional, Escuela de Medicina y Ciencias de la Salud, Universidad del Rosario, Bogotá, Colombia
| | - Karina Vargas-Sánchez
- Laboratorio de Neurofisiología Celular, Grupo de Neurociencia Traslacional, Facultad de Medicina, Universidad de los Andes, Bogotá, Colombia
| | - Rodrigo E González-Reyes
- Grupo de Investigación en Neurociencias, Centro de Neurociencia Neurovitae-UR, Instituto de Medicina Traslacional, Escuela de Medicina y Ciencias de la Salud, Universidad del Rosario, Bogotá, Colombia.
| |
Collapse
|
48
|
Sun T, Chen G, Jiang W, Xu W, You L, Jiang C, Chen S, Wang D, Zheng X, Yuan Y. Distinguishing bipolar depression, bipolar mania, and major depressive disorder by gut microbial characteristics. Bipolar Disord 2024. [PMID: 38647010 DOI: 10.1111/bdi.13439] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 04/25/2024]
Abstract
BACKGROUND Gut microbial disturbance has been widely confirmed in mood disorders. However, little is known about whether gut microbial characteristics can distinguish major depressive disorder (MDD), bipolar depression (BP-D), and bipolar mania (BP-M). METHODS This was a prospective case-control study. The composition of gut microbiota was profiled using 16S ribosomal RNA (rRNA) gene sequencing of fecal samples and compared between healthy controls (HC; n = 46), MDD (n = 51), BP-D (n = 44), and patients with BP-M (n = 45). RESULTS Gut microbial compositions were remarkably changed in the patients with MDD, BP-D, and BP-M. Compared to HC, distinct gut microbiome signatures were found in MDD, BP-D, and BP-M, and some gut microbial changes were overlapping between the three mood disorders. Furthermore, we identified a signature of 7 operational taxonomic units (OUT; Prevotellaceae-related OUT22, Prevotellaceae-related OUT31, Prevotellaceae-related OTU770, Ruminococcaceae-related OUT70, Bacteroidaceae-related OTU1536, Propionibacteriaceae-related OTU97, Acidaminococcaceae-related OTU34) that can distinguish patients with MDD from those with BP-D, BP-M, or HC, with area under the curve (AUC) values ranging from 0.910 to 0.996. CONCLUSION Our results provide the clinical rationale for the discriminative diagnosis of MDD, BP-D, and BP-M by characteristic gut microbial features.
Collapse
Affiliation(s)
- Taipeng Sun
- Department of Psychosomatics and Psychiatry, ZhongDa Hospital; School of Medicine, Southeast University, Nanjing, Jiangsu, China
- Department of Medical Psychology, Huai'an Third People's Hospital, Huaian, Jiangsu, China
| | - Gang Chen
- Department of Psychosomatics and Psychiatry, ZhongDa Hospital; School of Medicine, Southeast University, Nanjing, Jiangsu, China
- Department of Medical Psychology, Huai'an Third People's Hospital, Huaian, Jiangsu, China
| | - Wenhao Jiang
- Department of Psychosomatics and Psychiatry, ZhongDa Hospital; School of Medicine, Southeast University, Nanjing, Jiangsu, China
| | - Wei Xu
- Department of Psychosomatics and Psychiatry, ZhongDa Hospital; School of Medicine, Southeast University, Nanjing, Jiangsu, China
| | - Linlin You
- Department of Psychosomatics and Psychiatry, ZhongDa Hospital; School of Medicine, Southeast University, Nanjing, Jiangsu, China
| | - Chenguang Jiang
- Department of Psychosomatics and Psychiatry, ZhongDa Hospital; School of Medicine, Southeast University, Nanjing, Jiangsu, China
| | - Suzhen Chen
- Department of Psychosomatics and Psychiatry, ZhongDa Hospital; School of Medicine, Southeast University, Nanjing, Jiangsu, China
| | - Dan Wang
- Department of Psychosomatics and Psychiatry, ZhongDa Hospital; School of Medicine, Southeast University, Nanjing, Jiangsu, China
| | - Xiao Zheng
- State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing, China
| | - Yonggui Yuan
- Department of Psychosomatics and Psychiatry, ZhongDa Hospital; School of Medicine, Southeast University, Nanjing, Jiangsu, China
| |
Collapse
|
49
|
Elford JD, Becht N, Garssen J, Kraneveld AD, Perez-Pardo P. Buty and the beast: the complex role of butyrate in Parkinson's disease. Front Pharmacol 2024; 15:1388401. [PMID: 38694925 PMCID: PMC11061429 DOI: 10.3389/fphar.2024.1388401] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2024] [Accepted: 04/02/2024] [Indexed: 05/04/2024] Open
Abstract
Parkinson's disease (PD) is a complex neurodegenerative disease which is often associated with gastrointestinal (GI) dysfunction. The GI tract is home to a wide range of microorganisms, among which bacteria, that can influence the host through various mechanisms. Products produced by these bacteria can act in the gut but can also exert effects in the brain via what is now well established to be the microbiota-gut-brain axis. In those with PD the gut-bacteria composition is often found to be different to that of non-PD individuals. In addition to compositional changes, the metabolic activity of the gut-microbiota is also changed in PD. Specifically, it is often reported that key producers of short chain fatty acids (SCFAs) as well as the concentration of SCFAs themselves are altered in the stool and blood of those with PD. These SCFAs, among which butyrate, are essential nutrients for the host and are a major energy source for epithelial cells of the GI tract. Additionally, butyrate plays a key role in regulating various host responses particularly in relation to inflammation. Studies have demonstrated that a reduction in butyrate levels can have a critical role in the onset and progression of PD. Furthermore, it has been shown that restoring butyrate levels in those with PD through methods such as probiotics, prebiotics, sodium butyrate supplementation, and fecal transplantation can have a beneficial effect on both motor and non-motor outcomes of the disease. This review presents an overview of evidence for the altered gut-bacteria composition and corresponding metabolite production in those with PD, with a particular focus on the SCFA butyrate. In addition to presenting current studies regarding SCFA in clinical and preclinical reports, evidence for the possibility to target butyrate production using microbiome based approaches in a therapeutic context is discussed.
Collapse
Affiliation(s)
- Joshua D. Elford
- Division of Pharmacology, Utrecht Institute for Pharmaceutical Sciences, Faculty of Science, Utrecht University, Utrecht, Netherlands
| | - Nanette Becht
- Division of Pharmacology, Utrecht Institute for Pharmaceutical Sciences, Faculty of Science, Utrecht University, Utrecht, Netherlands
| | - Johan Garssen
- Division of Pharmacology, Utrecht Institute for Pharmaceutical Sciences, Faculty of Science, Utrecht University, Utrecht, Netherlands
- Danone Nutricia Research, Utrecht, Netherlands
| | - Aletta D. Kraneveld
- Division of Pharmacology, Utrecht Institute for Pharmaceutical Sciences, Faculty of Science, Utrecht University, Utrecht, Netherlands
- Department of Neuroscience, Faculty of Science, Vrije Universiteit, Amsterdam, Netherlands
| | - Paula Perez-Pardo
- Division of Pharmacology, Utrecht Institute for Pharmaceutical Sciences, Faculty of Science, Utrecht University, Utrecht, Netherlands
| |
Collapse
|
50
|
Sun H, Yang B, Zhu X, Li Q, Song E, Song Y. Oral exposure of polystyrene microplastics and doxycycline affects mice neurological function via gut microbiota disruption: The orchestrating role of fecal microbiota transplantation. JOURNAL OF HAZARDOUS MATERIALS 2024; 467:133714. [PMID: 38340564 DOI: 10.1016/j.jhazmat.2024.133714] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/19/2023] [Revised: 02/01/2024] [Accepted: 02/01/2024] [Indexed: 02/12/2024]
Abstract
The debris of plastics with a size < 5 mm, called microplastics, possess long-lived legacies of plastic pollution and a growing threat to human beings. The adverse effects and corresponding molecular mechanisms of microplastics are still largely unknown and must be prioritized. Antibiotics commonly co-existed with microplastics; the current study investigated the syngenetic toxic effect of doxycycline (Dox) and polystyrene microplastics (PS). Specifically, we found that Dox combined with PS exposure perturbed gut microbiota homeostasis in mice, which mediated brain lesions and inflammation with a concomitant decline in learning and memory behaviors through the gut-brain axis. Of note, PS exposure resulted in intestinal damage and structural change, but Dox did not accelerate the disruption of intestinal barrier integrity in PS-treated mice. Interestingly, fecal microbiota transplantation (FMT) can reverse neurological impairment caused by combined PS and Dox exposure via compensating gut microbes; therefore, the learning and memory abilities of mice were also recovered. This work not only provides insights into the syngenetic effect of microplastics and antibiotics and highlights their distal neurotoxicity through the gut-brain axis but also offers a promising strategy against their combined toxicity.
Collapse
Affiliation(s)
- Hang Sun
- Key Laboratory of Luminescence Analysis and Molecular Sensing, Ministry of Education, College of Pharmaceutical Sciences, Southwest University, Chongqing 400715, China; State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
| | - Bingwei Yang
- Key Laboratory of Luminescence Analysis and Molecular Sensing, Ministry of Education, College of Pharmaceutical Sciences, Southwest University, Chongqing 400715, China; State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
| | - Xiaokang Zhu
- Key Laboratory of Luminescence Analysis and Molecular Sensing, Ministry of Education, College of Pharmaceutical Sciences, Southwest University, Chongqing 400715, China
| | - Qiong Li
- Key Laboratory of Luminescence Analysis and Molecular Sensing, Ministry of Education, College of Pharmaceutical Sciences, Southwest University, Chongqing 400715, China
| | - Erqun Song
- Key Laboratory of Luminescence Analysis and Molecular Sensing, Ministry of Education, College of Pharmaceutical Sciences, Southwest University, Chongqing 400715, China
| | - Yang Song
- Key Laboratory of Luminescence Analysis and Molecular Sensing, Ministry of Education, College of Pharmaceutical Sciences, Southwest University, Chongqing 400715, China; State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China.
| |
Collapse
|