1
|
Alassiri M, Alanazi A, Barhoumi T, Alrfaei B, Alanazi M, Rashid M, Alhazmi AS, Alasseiri M, AlMefleh A, Boudjelal M, Shaibah H, Almuhalhil K, Mansour FA, Alehaideb Z, Alghanem B. Preliminary findings on the absence of PEPITEM release in B cells isolated from Saudi donors: implications for expanded population studies. AMERICAN JOURNAL OF CLINICAL AND EXPERIMENTAL IMMUNOLOGY 2024; 13:215-225. [PMID: 39583342 PMCID: PMC11578804 DOI: 10.62347/xnno3661] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/08/2024] [Accepted: 10/08/2024] [Indexed: 11/26/2024]
Abstract
BACKGROUND Adiponectin (AQ) plays a role in regulating immune responses. Previous research indicates that B cells can affect T cell transmigration via the adiponectin-induced peptide PEPITEM in Caucasians. This study explores whether this mechanism is also applicable to Saudi populations, considering potential ethnic variations in immune response. METHODS We conducted unbiased peptidomic screen on B cells, NK cells, and monocytes isolated from the peripheral blood of male healthy Saudi donors. The cells were stimulated with AQ, and the secretion of PEPITEM and other peptides was assessed using liquid chromatography-mass spectrometry (LC-MS/MS). Flow cytometry was utilized to confirm the purity of isolated cell populations and to verify the expression of adiponectin receptors AR1 and AR2. RESULTS PEPITEM was not detected in the supernatants of AQ-stimulated B cells, NK cells, or monocytes. All three cell populations were isolated and purified with high purity, confirmed by flow cytometry showing AR1 and AR2 expression on the surface of these cells. Specifically, less than 47% of B cells expressed ARs, with AR1 at 12% and AR2 at 17%. AQ stimulation increased the number of identified peptides in B cells and monocytes but decreased peptide numbers in NK cells. Dimensionality reduction analysis demonstrated clear segregation of cell types, with strong reproducibility across technical replicates. CONCLUSION The inability of B cells to release PEPITEM in response to AQ stimulation is an interesting finding and it needs more confirmatory tests and experiments, however; a hypothesis about the impact of predisposing factors, such as ethnicity could be formulated and tested in the future.
Collapse
Affiliation(s)
- Mohammed Alassiri
- Department of Basic Sciences, College of Science and Health Professions, King Abdullah International Medical Research Center (KAIMRC), King Saud bin Abdulaziz University for Health Sciences (KSAU-HS)Riyadh, KSA
- Department of Pathology and Laboratory Medicine, King Abdulaziz Medical City (KAMC)Riyadh, KSA
| | - Asma Alanazi
- Department of Basic Medical Sciences, College of Medicine, King Abdullah International Medical Research Center (KAIMRC), King Saud bin Abdulaziz University for Health Sciences (KSAU-HS), King Abdulaziz Medical City (KAMC)Riyadh, KSA
| | - Tlili Barhoumi
- Medical Research Core Facility and Platforms, King Abdullah International Medical Research Center (KAIMRC), King Saud bin Abdulaziz University for Health Sciences (KSAU-HS), King Abdulaziz Medical City, Ministry of National Guard Health Affairs (MNGHA)Riyadh, KSA
| | - Bahauddeen Alrfaei
- Department of Basic Medical Sciences, College of Medicine, King Abdullah International Medical Research Center (KAIMRC), King Saud bin Abdulaziz University for Health Sciences (KSAU-HS), King Abdulaziz Medical City (KAMC)Riyadh, KSA
- Department of Cellular Therapy and Cancer Research, King Abdullah International Medical Research Center (KAIMRC), King Saud bin Abdulaziz University for Health Sciences (KSAU-HS), King Abdulaziz Medical City, Ministry of National Guard Health Affairs (MNGHA)Riyadh, KSA
| | - Maisa Alanazi
- Department of Cellular Therapy and Cancer Research, King Abdullah International Medical Research Center (KAIMRC), King Saud bin Abdulaziz University for Health Sciences (KSAU-HS), King Abdulaziz Medical City, Ministry of National Guard Health Affairs (MNGHA)Riyadh, KSA
| | - Mamoon Rashid
- Department of AI and Bioinformatics, King Abdullah International Medical Research Center (KAIMRC), King Saud bin Abdulaziz University for Health Sciences (KSAU-HS), King Abdulaziz Medical City, Ministry of National Guard Health Affairs (MNGHA)Riyadh, KSA
| | - Aiman S Alhazmi
- Department of Basic Sciences, College of Science and Health Professions, King Abdullah International Medical Research Center (KAIMRC), King Saud bin Abdulaziz University for Health Sciences (KSAU-HS)Riyadh, KSA
- Department of Pathology and Laboratory Medicine, King Abdulaziz Medical City (KAMC)Riyadh, KSA
| | - Mohammed Alasseiri
- Department of Medical Laboratory Technology, Faculty of Applied Medical Sciences, Prince Fahad Bin Sultan Chair for Biomedical Research, University of TabukTabuk, KSA
| | - Abdulrahman AlMefleh
- Department of Radiology, King Faisal Specialist Hospital and Research CenterRiyadh, Saudi Arabia
| | - Mohammad Boudjelal
- Medical Research Core Facility and Platforms, King Abdullah International Medical Research Center (KAIMRC), King Saud bin Abdulaziz University for Health Sciences (KSAU-HS), King Abdulaziz Medical City, Ministry of National Guard Health Affairs (MNGHA)Riyadh, KSA
| | - Hayat Shaibah
- Medical Research Core Facility and Platforms, King Abdullah International Medical Research Center (KAIMRC), King Saud bin Abdulaziz University for Health Sciences (KSAU-HS), King Abdulaziz Medical City, Ministry of National Guard Health Affairs (MNGHA)Riyadh, KSA
| | - Khawlah Almuhalhil
- Medical Research Core Facility and Platforms, King Abdullah International Medical Research Center (KAIMRC), King Saud bin Abdulaziz University for Health Sciences (KSAU-HS), King Abdulaziz Medical City, Ministry of National Guard Health Affairs (MNGHA)Riyadh, KSA
| | - Fatmah A Mansour
- Medical Research Core Facility and Platforms, King Abdullah International Medical Research Center (KAIMRC), King Saud bin Abdulaziz University for Health Sciences (KSAU-HS), King Abdulaziz Medical City, Ministry of National Guard Health Affairs (MNGHA)Riyadh, KSA
| | - Zeyad Alehaideb
- Medical Research Core Facility and Platforms, King Abdullah International Medical Research Center (KAIMRC), King Saud bin Abdulaziz University for Health Sciences (KSAU-HS), King Abdulaziz Medical City, Ministry of National Guard Health Affairs (MNGHA)Riyadh, KSA
| | - Bandar Alghanem
- Medical Research Core Facility and Platforms, King Abdullah International Medical Research Center (KAIMRC), King Saud bin Abdulaziz University for Health Sciences (KSAU-HS), King Abdulaziz Medical City, Ministry of National Guard Health Affairs (MNGHA)Riyadh, KSA
| |
Collapse
|
2
|
Yan R, Moresco P, Gegenhuber B, Fearon DT. T cell-Mediated Development of Stromal Fibroblasts with an Immune-Enhancing Chemokine Profile. Cancer Immunol Res 2023; 11:OF1-OF11. [PMID: 37285176 PMCID: PMC10700667 DOI: 10.1158/2326-6066.cir-22-0593] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2022] [Revised: 01/31/2023] [Accepted: 05/18/2023] [Indexed: 05/24/2023]
Abstract
Stromal fibroblasts reside in inflammatory tissues that are characterized by either immune suppression or activation. Whether and how fibroblasts adapt to these contrasting microenvironments remains unknown. Cancer-associated fibroblasts (CAF) mediate immune quiescence by producing the chemokine CXCL12, which coats cancer cells to suppress T-cell infiltration. We examined whether CAFs can also adopt an immune-promoting chemokine profile. Single-cell RNA sequencing of CAFs from mouse pancreatic adenocarcinomas identified a subpopulation of CAFs with decreased expression of Cxcl12 and increased expression of the T cell-attracting chemokine Cxcl9 in association with T-cell infiltration. TNFα and IFNγ containing conditioned media from activated CD8+ T cells converted stromal fibroblasts from a CXCL12+/CXCL9- immune-suppressive phenotype into a CXCL12-/CXCL9+ immune-activating phenotype. Recombinant IFNγ and TNFα acted together to augment CXCL9 expression, whereas TNFα alone suppressed CXCL12 expression. This coordinated chemokine switch led to increased T-cell infiltration in an in vitro chemotaxis assay. Our study demonstrates that CAFs have a phenotypic plasticity that allows their adaptation to contrasting immune tissue microenvironments.
Collapse
Affiliation(s)
- Ran Yan
- Cold Spring Harbor Laboratory, Cold Spring Harbor, NY 11724
- School of Biological Sciences, Cold Spring Harbor Laboratory, Cold Spring Harbor, NY 11724
| | - Philip Moresco
- Cold Spring Harbor Laboratory, Cold Spring Harbor, NY 11724
- Graduate Program in Genetics, Stony Brook University, Stony Brook, NY 11794
- Medical Scientist Training Program, Stony Brook University Renaissance School of Medicine, Stony Brook University, Stony Brook, NY 11794
| | - Bruno Gegenhuber
- Department of Neurobiology, Harvard Medical School, Boston, MA 02115
| | - Douglas T. Fearon
- Cold Spring Harbor Laboratory, Cold Spring Harbor, NY 11724
- Meyer Cancer Center, Weill Cornell Medicine, New York, NY 10065
| |
Collapse
|
3
|
Xu H, Lin S, Zhou Z, Li D, Zhang X, Yu M, Zhao R, Wang Y, Qian J, Li X, Li B, Wei C, Chen K, Yoshimura T, Wang JM, Huang J. New genetic and epigenetic insights into the chemokine system: the latest discoveries aiding progression toward precision medicine. Cell Mol Immunol 2023:10.1038/s41423-023-01032-x. [PMID: 37198402 DOI: 10.1038/s41423-023-01032-x] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2022] [Accepted: 04/14/2023] [Indexed: 05/19/2023] Open
Abstract
Over the past thirty years, the importance of chemokines and their seven-transmembrane G protein-coupled receptors (GPCRs) has been increasingly recognized. Chemokine interactions with receptors trigger signaling pathway activity to form a network fundamental to diverse immune processes, including host homeostasis and responses to disease. Genetic and nongenetic regulation of both the expression and structure of chemokines and receptors conveys chemokine functional heterogeneity. Imbalances and defects in the system contribute to the pathogenesis of a variety of diseases, including cancer, immune and inflammatory diseases, and metabolic and neurological disorders, which render the system a focus of studies aiming to discover therapies and important biomarkers. The integrated view of chemokine biology underpinning divergence and plasticity has provided insights into immune dysfunction in disease states, including, among others, coronavirus disease 2019 (COVID-19). In this review, by reporting the latest advances in chemokine biology and results from analyses of a plethora of sequencing-based datasets, we outline recent advances in the understanding of the genetic variations and nongenetic heterogeneity of chemokines and receptors and provide an updated view of their contribution to the pathophysiological network, focusing on chemokine-mediated inflammation and cancer. Clarification of the molecular basis of dynamic chemokine-receptor interactions will help advance the understanding of chemokine biology to achieve precision medicine application in the clinic.
Collapse
Affiliation(s)
- Hanli Xu
- College of Life Sciences and Bioengineering, School of Physical Science and Engineering, Beijing Jiaotong University, 3 ShangyuanCun, Haidian District, 100044, Beijing, P.R. China
| | - Shuye Lin
- Cancer Research Center, Beijing Chest Hospital, Capital Medical University, Beijing Tuberculosis and Thoracic Tumor Institute, 101149, Beijing, China
| | - Ziyun Zhou
- College of Life Sciences and Bioengineering, School of Physical Science and Engineering, Beijing Jiaotong University, 3 ShangyuanCun, Haidian District, 100044, Beijing, P.R. China
| | - Duoduo Li
- College of Life Sciences and Bioengineering, School of Physical Science and Engineering, Beijing Jiaotong University, 3 ShangyuanCun, Haidian District, 100044, Beijing, P.R. China
| | - Xiting Zhang
- College of Life Sciences and Bioengineering, School of Physical Science and Engineering, Beijing Jiaotong University, 3 ShangyuanCun, Haidian District, 100044, Beijing, P.R. China
| | - Muhan Yu
- College of Life Sciences and Bioengineering, School of Physical Science and Engineering, Beijing Jiaotong University, 3 ShangyuanCun, Haidian District, 100044, Beijing, P.R. China
| | - Ruoyi Zhao
- College of Life Sciences and Bioengineering, School of Physical Science and Engineering, Beijing Jiaotong University, 3 ShangyuanCun, Haidian District, 100044, Beijing, P.R. China
| | - Yiheng Wang
- College of Life Sciences and Bioengineering, School of Physical Science and Engineering, Beijing Jiaotong University, 3 ShangyuanCun, Haidian District, 100044, Beijing, P.R. China
| | - Junru Qian
- College of Life Sciences and Bioengineering, School of Physical Science and Engineering, Beijing Jiaotong University, 3 ShangyuanCun, Haidian District, 100044, Beijing, P.R. China
| | - Xinyi Li
- College of Life Sciences and Bioengineering, School of Physical Science and Engineering, Beijing Jiaotong University, 3 ShangyuanCun, Haidian District, 100044, Beijing, P.R. China
| | - Bohan Li
- College of Life Sciences and Bioengineering, School of Physical Science and Engineering, Beijing Jiaotong University, 3 ShangyuanCun, Haidian District, 100044, Beijing, P.R. China
| | - Chuhan Wei
- College of Life Sciences and Bioengineering, School of Physical Science and Engineering, Beijing Jiaotong University, 3 ShangyuanCun, Haidian District, 100044, Beijing, P.R. China
| | - Keqiang Chen
- Laboratory of Cancer Innovation, Center for Cancer Research, National Cancer Institute at Frederick, Frederick, MD, 21702, USA
| | - Teizo Yoshimura
- Laboratory of Cancer Innovation, Center for Cancer Research, National Cancer Institute at Frederick, Frederick, MD, 21702, USA
| | - Ji Ming Wang
- Laboratory of Cancer Innovation, Center for Cancer Research, National Cancer Institute at Frederick, Frederick, MD, 21702, USA
| | - Jiaqiang Huang
- College of Life Sciences and Bioengineering, School of Physical Science and Engineering, Beijing Jiaotong University, 3 ShangyuanCun, Haidian District, 100044, Beijing, P.R. China.
- Cancer Research Center, Beijing Chest Hospital, Capital Medical University, Beijing Tuberculosis and Thoracic Tumor Institute, 101149, Beijing, China.
- Laboratory of Cancer Innovation, Center for Cancer Research, National Cancer Institute at Frederick, Frederick, MD, 21702, USA.
| |
Collapse
|
4
|
Romero-Figueroa MDS, Ramírez-Durán N, Montiel-Jarquín AJ, Horta-Baas G. Gut-joint axis: Gut dysbiosis can contribute to the onset of rheumatoid arthritis via multiple pathways. Front Cell Infect Microbiol 2023; 13:1092118. [PMID: 36779190 PMCID: PMC9911673 DOI: 10.3389/fcimb.2023.1092118] [Citation(s) in RCA: 18] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2022] [Accepted: 01/16/2023] [Indexed: 02/14/2023] Open
Abstract
Rheumatoid Arthritis (RA) is an autoimmune disease characterized by loss of immune tolerance and chronic inflammation. It is pathogenesis complex and includes interaction between genetic and environmental factors. Current evidence supports the hypothesis that gut dysbiosis may play the role of environmental triggers of arthritis in animals and humans. Progress in the understanding of the gut microbiome and RA. has been remarkable in the last decade. In vitro and in vivo experiments revealed that gut dysbiosis could shape the immune system and cause persistent immune inflammatory responses. Furthermore, gut dysbiosis could induce alterations in intestinal permeability, which have been found to predate arthritis onset. In contrast, metabolites derived from the intestinal microbiota have an immunomodulatory and anti-inflammatory effect. However, the precise underlying mechanisms by which gut dysbiosis induces the development of arthritis remain elusive. This review aimed to highlight the mechanisms by which gut dysbiosis could contribute to the pathogenesis of RA. The overall data showed that gut dysbiosis could contribute to RA pathogenesis by multiple pathways, including alterations in gut barrier function, molecular mimicry, gut dysbiosis influences the activation and the differentiation of innate and acquired immune cells, cross-talk between gut microbiota-derived metabolites and immune cells, and alterations in the microenvironment. The relative weight of each of these mechanisms in RA pathogenesis remains uncertain. Recent studies showed a substantial role for gut microbiota-derived metabolites pathway, especially butyrate, in the RA pathogenesis.
Collapse
Affiliation(s)
| | - Ninfa Ramírez-Durán
- Laboratory of Medical and Environmental Microbiology, Department of Medicine, Autonomous University of the State of Mexico, Toluca, Mexico
| | - Alvaro José Montiel-Jarquín
- Dirección de Educación e Investigación en Salud, Hospital de Especialidades de Puebla, Instituto Mexicano del Seguro Social, Puebla, Mexico
| | - Gabriel Horta-Baas
- Rheumatology Service, Internal Medicine Department, Instituto Mexicano del Seguro Social, Merida, Mexico
| |
Collapse
|
5
|
Alivernini S, Firestein GS, McInnes IB. The pathogenesis of rheumatoid arthritis. Immunity 2022; 55:2255-2270. [PMID: 36516818 DOI: 10.1016/j.immuni.2022.11.009] [Citation(s) in RCA: 106] [Impact Index Per Article: 35.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2022] [Revised: 10/20/2022] [Accepted: 11/17/2022] [Indexed: 12/15/2022]
Abstract
Significant recent progress in understanding rheumatoid arthritis (RA) pathogenesis has led to improved treatment and quality of life. The introduction of targeted-biologic and -synthetic disease modifying anti-rheumatic drugs (DMARDs) has also transformed clinical outcomes. Despite this, RA remains a life-long disease without a cure. Unmet needs include partial response and non-response to treatment in many patients, failure to achieve immune homeostasis or drug free remission, and inability to repair damaged tissues. RA is now recognized as the end of a multi-year prodromal phase in which systemic immune dysregulation, likely beginning in mucosal surfaces, is followed by a symptomatic clinical phase. Inflammation and immune reactivity are primarily localized to the synovium leading to pain and articular damage, but is also associated with a broader series of comorbidities. Here, we review recently described immunologic mechanisms that drive breach of tolerance, chronic synovitis, and remission.
Collapse
Affiliation(s)
- Stefano Alivernini
- Immunology Research Core Facility, Gemelli Science and Technology Park, Fondazione Policlinico Universitario A. Gemelli IRCCS, Rome, Italy; Division of Rheumatology - Fondazione Policlinico Universitario A. Gemelli IRCCS - Università Cattolica del Sacro Cuore, Rome, Italy
| | - Gary S Firestein
- Division of Rheumatology, Allergy, and Immunology, University of California San Diego School of Medicine, La Jolla, CA 92093, USA
| | | |
Collapse
|
6
|
Adaptive discrimination between harmful and harmless antigens in the immune system by predictive coding. iScience 2022; 26:105754. [PMID: 36594030 PMCID: PMC9804113 DOI: 10.1016/j.isci.2022.105754] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2022] [Revised: 11/08/2022] [Accepted: 12/04/2022] [Indexed: 12/12/2022] Open
Abstract
The immune system discriminates between harmful and harmless antigens based on past experiences; however, the underlying mechanism is largely unknown. From the viewpoint of machine learning, the learning system predicts the observation and updates the prediction based on prediction error, a process known as "predictive coding." Here, we modeled the population dynamics of T cells by adopting the concept of predictive coding; conventional and regulatory T cells predict the antigen concentration and excessive immune response, respectively. Their prediction error signals, possibly via cytokines, induce their differentiation to memory T cells. Through numerical simulations, we found that the immune system identifies antigen risks depending on the concentration and input rapidness of the antigen. Further, our model reproduced history-dependent discrimination, as in allergy onset and subsequent therapy. Taken together, this study provided a novel framework to improve our understanding of how the immune system adaptively learns the risks of diverse antigens.
Collapse
|
7
|
Hutton J, Mease P, Jadon D. Horizon scan: State-of-the-art therapeutics for psoriatic arthritis. Best Pract Res Clin Rheumatol 2022; 36:101809. [PMID: 36567224 DOI: 10.1016/j.berh.2022.101809] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Psoriatic arthritis (PsA) is a common immune-mediated inflammatory disease (IMID) that can present with a heterogenous clinical phenotype. The advent of advanced therapies has substantially improved patient outcomes, but many patients still have suboptimal or unsustained response, resulting in morbidity, structural damage and functional impairment. There remains a need for better therapeutic options and precision medicine approaches to improve outcomes for patients with PsA. This review synthesises recently approved the state-of-the-art therapeutics for PsA, including inhibitors of IL-23, Janus kinase (JAK), tyrosine kinase 2 (TYK2) and dual-target IL-17A/F. The evidence base for emerging therapeutics, including MK-2 inhibitors, nano-IL-17 inhibitors, nanobodies and other dual-target therapies for PsA is also reviewed. Potential future therapeutic strategies and unmet research needs are discussed.
Collapse
Affiliation(s)
- Joseph Hutton
- Department of Rheumatology, Cambridge University Hospitals NHSFT, Hills Road, Cambridge, CB2 0QQ, UK.
| | - Philip Mease
- Seattle Rheumatology Associates, 601 Broadway, Suite 600, Seattle, WA 98122, USA.
| | - Deepak Jadon
- Rheumatology Research Unit, Department of Medicine, University of Cambridge, Cambridge, CB2 0QQ, UK.
| |
Collapse
|
8
|
Chidomere CI, Wahid M, Kemble S, Chadwick C, Thomas R, Hardy RS, McGettrick HM, Naylor AJ. Bench to Bedside: Modelling Inflammatory Arthritis. DISCOVERY IMMUNOLOGY 2022; 2:kyac010. [PMID: 38567064 PMCID: PMC10917191 DOI: 10.1093/discim/kyac010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/28/2022] [Revised: 11/08/2022] [Accepted: 11/20/2022] [Indexed: 04/04/2024]
Abstract
Inflammatory arthritides such as rheumatoid arthritis are a major cause of disability. Pre-clinical murine models of inflammatory arthritis continue to be invaluable tools with which to identify and validate therapeutic targets and compounds. The models used are well-characterised and, whilst none truly recapitulates the human disease, they are crucial to researchers seeking to identify novel therapeutic targets and to test efficacy during preclinical trials of novel drug candidates. The arthritis parameters recorded during clinical trials and routine clinical patient care have been carefully standardised, allowing comparison between centres, trials, and treatments. Similar standardisation of scoring across in vivo models has not occurred, which makes interpretation of published results, and comparison between arthritis models, challenging. Here, we include a detailed and readily implementable arthritis scoring system, that increases the breadth of arthritis characteristics captured during experimental arthritis and supports responsive and adaptive monitoring of disease progression in murine models of inflammatory arthritis. In addition, we reference the wider ethical and experimental factors researchers should consider during the experimental design phase, with emphasis on the continued importance of replacement, reduction, and refinement of animal usage in arthritis research.
Collapse
Affiliation(s)
- Chiamaka I Chidomere
- Rheumatology Research Group, Institute of Inflammation and Ageing, University of Birmingham, Birmingham, B15 2TT, UK
| | - Mussarat Wahid
- Rheumatology Research Group, Institute of Inflammation and Ageing, University of Birmingham, Birmingham, B15 2TT, UK
| | - Samuel Kemble
- Rheumatology Research Group, Institute of Inflammation and Ageing, University of Birmingham, Birmingham, B15 2TT, UK
| | - Caroline Chadwick
- Biomedical Services Unit, University of Birmingham, Birmingham, B15 2TT, UK
| | - Richard Thomas
- Biomedical Services Unit, University of Birmingham, Birmingham, B15 2TT, UK
| | - Rowan S Hardy
- Institute of Clinical Sciences, University of Birmingham, Birmingham, B15 2TT, UK
| | - Helen M McGettrick
- Rheumatology Research Group, Institute of Inflammation and Ageing, University of Birmingham, Birmingham, B15 2TT, UK
| | - Amy J Naylor
- Rheumatology Research Group, Institute of Inflammation and Ageing, University of Birmingham, Birmingham, B15 2TT, UK
| |
Collapse
|
9
|
Pistorius K, Ly L, Souza PR, Gomez EA, Koenis DS, Rodriguez AR, Foster J, Sosabowski J, Hopkinson M, Rajeeve V, Spur BW, Pitsillides A, Pitzalis C, Dalli J. MCTR3 reprograms arthritic monocytes to upregulate Arginase-1 and exert pro-resolving and tissue-protective functions in experimental arthritis. EBioMedicine 2022; 79:103974. [PMID: 35430453 PMCID: PMC9038546 DOI: 10.1016/j.ebiom.2022.103974] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2021] [Revised: 03/13/2022] [Accepted: 03/15/2022] [Indexed: 11/03/2022] Open
Abstract
BACKGROUND Rheumatoid arthritis (RA) is a progressive degenerative disorder that leads to joint destruction. Available treatments only target the inflammatory component with minimal impact on joint repair. We recently uncovered a previously unappreciated family of pro-resolving mediators, the maresin conjugate in tissue regeneration (MCTR), that display both immunoregulatory and tissue-protective activities. Thus, we queried whether the production of these autacoids is disrupted in RA patients and whether they can be useful in treating joint inflammation and promoting joint repair. METHODS Using a highly phenotyped RA cohort we evaluated plasma MCTR concentrations and correlated these to clinical markers of disease activity. To evaluate the immunoregulatory and tissue reparative activities we employed both in vivo models of arthritis and organ culture models. FINDINGS Herein, we observed that plasma MCTR3 concentrations were negatively correlated with joint disease activity and severity in RA patients. Evaluation of the mechanisms engaged by this mediator in arthritic mice demonstrated that MCTR3 reprograms monocytes to confer enduring joint protective properties. Single cell transcriptomic profiling and flow cytometric evaluation of macrophages from mice treated with MCTR3-reprogrammed monocytes revealed a role for Arginase-1 (Arg-1) in mediating their joint reparative and pro-resolving activities. Arg-1 inhibition reversed both the anti-arthritic and tissue reparative actions of MCTR3-reprogrammed monocytes. INTERPRETATION Our findings demonstrate that circulating MCTR3 levels are negatively correlated with disease in RA. When administered to mice in vivo, MCTR3 displayed both anti-inflammatory and joint reparative activities, protecting both cartilage and bone in murine arthritis. These activities were, at least in part, mediated via the reprogramming of mononuclear phagocyte responses. FUNDING This work was supported by funding from the European Research Council (ERC) under the European Union's Horizon 2020 research and innovation programme (grant no: 677542) and the Barts Charity (grant no: MGU0343) to J.D. J.D. is also supported by a Sir Henry Dale Fellowship jointly funded by the Wellcome Trust and the Royal Society (grant 107613/Z/15/Z).
Collapse
Affiliation(s)
- Kimberly Pistorius
- William Harvey Research Institute, Barts and The London School of Medicine and Dentistry, Queen Mary University of London, Charterhouse Square, London, EC1M 6BQ UK
| | - Lucy Ly
- William Harvey Research Institute, Barts and The London School of Medicine and Dentistry, Queen Mary University of London, Charterhouse Square, London, EC1M 6BQ UK
| | - Patricia R Souza
- William Harvey Research Institute, Barts and The London School of Medicine and Dentistry, Queen Mary University of London, Charterhouse Square, London, EC1M 6BQ UK
| | - Esteban A Gomez
- William Harvey Research Institute, Barts and The London School of Medicine and Dentistry, Queen Mary University of London, Charterhouse Square, London, EC1M 6BQ UK
| | - Duco S Koenis
- William Harvey Research Institute, Barts and The London School of Medicine and Dentistry, Queen Mary University of London, Charterhouse Square, London, EC1M 6BQ UK
| | - Ana R Rodriguez
- Rowan University School of Osteopathic Medicine, Department of Cell Biology & Neuroscience, 2 Medical Centre Drive, Stratford NJ 08084, USA
| | - Julie Foster
- Centre for Cancer Biomarkers and Biotherapeutics, Barts Cancer Institute, Barts and The London School of Medicine and Dentistry, Queen Mary University of London, Charterhouse Square, London, EC1M 6BQ UK
| | - Jane Sosabowski
- Centre for Cancer Biomarkers and Biotherapeutics, Barts Cancer Institute, Barts and The London School of Medicine and Dentistry, Queen Mary University of London, Charterhouse Square, London, EC1M 6BQ UK
| | - Mark Hopkinson
- Department of Comparative Biomedical Sciences, Royal Veterinary College, London, UK
| | - Vinothini Rajeeve
- Mass spectrometry Laboratory, Barts Cancer Institute, Queen Mary University of London, Charterhouse Square, London, EC1M 6BQ, United Kingdom
| | - Bernd W Spur
- Rowan University School of Osteopathic Medicine, Department of Cell Biology & Neuroscience, 2 Medical Centre Drive, Stratford NJ 08084, USA
| | - Andrew Pitsillides
- Department of Comparative Biomedical Sciences, Royal Veterinary College, London, UK
| | - Costantino Pitzalis
- William Harvey Research Institute, Barts and The London School of Medicine and Dentistry, Queen Mary University of London, Charterhouse Square, London, EC1M 6BQ UK
| | - Jesmond Dalli
- William Harvey Research Institute, Barts and The London School of Medicine and Dentistry, Queen Mary University of London, Charterhouse Square, London, EC1M 6BQ UK; Centre for Inflammation and Therapeutic Innovation, Queen Mary University of London, London, UK.
| |
Collapse
|
10
|
Laranjeira P, Pedrosa M, Duarte C, Pedreiro S, Antunes B, Ribeiro T, dos Santos F, Martinho A, Fardilha M, Domingues MR, Abecasis M, Pereira da Silva JA, Paiva A. Human Bone Marrow Mesenchymal Stromal/Stem Cells Regulate the Proinflammatory Response of Monocytes and Myeloid Dendritic Cells from Patients with Rheumatoid Arthritis. Pharmaceutics 2022; 14:pharmaceutics14020404. [PMID: 35214136 PMCID: PMC8880255 DOI: 10.3390/pharmaceutics14020404] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2022] [Revised: 02/09/2022] [Accepted: 02/10/2022] [Indexed: 12/15/2022] Open
Abstract
Rheumatoid arthritis (RA) is a disabling autoimmune disease whose treatment is ineffective for one-third of patients. Thus, the immunomodulatory potential of mesenchymal stromal/stem cells (MSCs) makes MSC-based therapy a promising approach to RA. This study aimed to explore the immunomodulatory action of human bone marrow (BM)-MSCs on myeloid dendritic cells (mDCs) and monocytes, especially on cytokines/chemokines involved in RA physiopathology. For that, LPS plus IFNγ-stimulated peripheral blood mononuclear cells from RA patients (n = 12) and healthy individuals (n = 6) were co-cultured with allogeneic BM-MSCs. TNF-α, CD83, CCR7 and MIP-1β protein levels were assessed in mDCs, classical, intermediate, and non-classical monocytes. mRNA expression of other cytokines/chemokines was also evaluated. BM-MSCs effectively reduced TNF-α, CD83, CCR7 and MIP-1β protein levels in mDCs and all monocyte subsets, in RA patients. The inhibition of TNF-α production was mainly achieved by the reduction of the percentage of cellsproducing this cytokine. BM-MSCs exhibited a remarkable suppressive action over antigen-presenting cells from RA patients, potentially affecting their ability to stimulate the immune adaptive response at different levels, by hampering their migration to the lymph node and the production of proinflammatory cytokines and chemokines. Accordingly, MSC-based therapies can be a valuable approach for RA treatment, especially for non-responder patients.
Collapse
Affiliation(s)
- Paula Laranjeira
- Flow Cytometry Unit, Department of Clinical Pathology, Centro Hospitalar e Universitário de Coimbra, Av. Bissaya Barreto, Bloco de Celas, 3000-075 Coimbra, Portugal;
- Centro do Sangue e da Transplantação de Coimbra, Instituto Português do Sangue e da Transplantação, Coimbra, Portugal, Quinta da Vinha Moura, São Martinho do Bispo, 3041-861 Coimbra, Portugal; (M.P.); (S.P.); (A.M.)
- Coimbra Institute for Clinical and Biomedical Research (iCBR), Faculty of Medicine, University of Coimbra, Pólo das Ciências da Saúde, Azinhaga de Santa Comba, 3000-548 Coimbra, Portugal; (C.D.); (J.A.P.d.S.)
- Center for Innovative Biomedicine and Biotechnology (CIBB), University of Coimbra, Pólo das Ciências da Saúde, Azinhaga de Santa Comba, 3000-548 Coimbra, Portugal
- Center for Neuroscience and Cell Biology (CNC), University of Coimbra, Polo 1, 1.° Piso, FMUC, Rua Larga, 3004-504 Coimbra, Portugal
| | - Mónia Pedrosa
- Centro do Sangue e da Transplantação de Coimbra, Instituto Português do Sangue e da Transplantação, Coimbra, Portugal, Quinta da Vinha Moura, São Martinho do Bispo, 3041-861 Coimbra, Portugal; (M.P.); (S.P.); (A.M.)
- Signal Transduction Laboratory, Center of Cellular Biology, SACS and Department of Biology, University of Aveiro, Campus Universitário de Santiago, 3810-193 Aveiro, Portugal;
- Enzifarma—Diagnostica e Farmacêutica, S.A., Estrada da Luz, n.° 90, 2° F, 1600-160 Lisbon, Portugal
| | - Cátia Duarte
- Coimbra Institute for Clinical and Biomedical Research (iCBR), Faculty of Medicine, University of Coimbra, Pólo das Ciências da Saúde, Azinhaga de Santa Comba, 3000-548 Coimbra, Portugal; (C.D.); (J.A.P.d.S.)
- Center for Innovative Biomedicine and Biotechnology (CIBB), University of Coimbra, Pólo das Ciências da Saúde, Azinhaga de Santa Comba, 3000-548 Coimbra, Portugal
- Rheumatology Department, Hospitais da Universidade de Coimbra, Centro Hospitalar e Universitário de Coimbra, Praceta Professor Mota Pinto, 3000-075 Coimbra, Portugal
| | - Susana Pedreiro
- Centro do Sangue e da Transplantação de Coimbra, Instituto Português do Sangue e da Transplantação, Coimbra, Portugal, Quinta da Vinha Moura, São Martinho do Bispo, 3041-861 Coimbra, Portugal; (M.P.); (S.P.); (A.M.)
| | - Brígida Antunes
- Cell2B Advanced Therapeutics, SA, Biocant Park, Núcleo 04, Lote 4A, 3060-197 Cantanhede, Portugal; ; (B.A.); (T.R.); (F.d.S.)
| | - Tânia Ribeiro
- Cell2B Advanced Therapeutics, SA, Biocant Park, Núcleo 04, Lote 4A, 3060-197 Cantanhede, Portugal; ; (B.A.); (T.R.); (F.d.S.)
| | - Francisco dos Santos
- Cell2B Advanced Therapeutics, SA, Biocant Park, Núcleo 04, Lote 4A, 3060-197 Cantanhede, Portugal; ; (B.A.); (T.R.); (F.d.S.)
- Stemlab SA, Biocant Park, Núcleo 04, Lote 2, 3060-197 Cantanhede, Portugal
| | - António Martinho
- Centro do Sangue e da Transplantação de Coimbra, Instituto Português do Sangue e da Transplantação, Coimbra, Portugal, Quinta da Vinha Moura, São Martinho do Bispo, 3041-861 Coimbra, Portugal; (M.P.); (S.P.); (A.M.)
| | - Margarida Fardilha
- Signal Transduction Laboratory, Center of Cellular Biology, SACS and Department of Biology, University of Aveiro, Campus Universitário de Santiago, 3810-193 Aveiro, Portugal;
- Laboratory of Signal Transduction, Institute of Biomedicine—iBiMED, Department of Medical Sciences, University of Aveiro, Campus Universitário de Santiago, 3810-193 Aveiro, Portugal
| | - M. Rosário Domingues
- Mass Spectrometry Centre, LAQV REQUIMTE, Department of Chemistry, University of Aveiro, Santiago University Campus, 3810-193 Aveiro, Portugal;
- Centre for Environmental and Marine Studies (CESAM), Department of Chemistry, University of Aveiro, Santiago University Campus, 3810-193 Aveiro, Portugal
| | - Manuel Abecasis
- Serviço de Transplantação de Progenitores Hematopoiéticos (UTM), Instituto Português de Oncologia de Lisboa Francisco Gentil, Rua Professor Lima Basto, 1099-023 Lisbon, Portugal;
- Instituto Português do Sangue e da Transplantação—CEDACE, Alameda das Linhas de Torres, 117, 1769-001 Lisbon, Portugal
| | - José António Pereira da Silva
- Coimbra Institute for Clinical and Biomedical Research (iCBR), Faculty of Medicine, University of Coimbra, Pólo das Ciências da Saúde, Azinhaga de Santa Comba, 3000-548 Coimbra, Portugal; (C.D.); (J.A.P.d.S.)
- Center for Innovative Biomedicine and Biotechnology (CIBB), University of Coimbra, Pólo das Ciências da Saúde, Azinhaga de Santa Comba, 3000-548 Coimbra, Portugal
- Rheumatology Department, Hospitais da Universidade de Coimbra, Centro Hospitalar e Universitário de Coimbra, Praceta Professor Mota Pinto, 3000-075 Coimbra, Portugal
| | - Artur Paiva
- Flow Cytometry Unit, Department of Clinical Pathology, Centro Hospitalar e Universitário de Coimbra, Av. Bissaya Barreto, Bloco de Celas, 3000-075 Coimbra, Portugal;
- Centro do Sangue e da Transplantação de Coimbra, Instituto Português do Sangue e da Transplantação, Coimbra, Portugal, Quinta da Vinha Moura, São Martinho do Bispo, 3041-861 Coimbra, Portugal; (M.P.); (S.P.); (A.M.)
- Coimbra Institute for Clinical and Biomedical Research (iCBR), Faculty of Medicine, University of Coimbra, Pólo das Ciências da Saúde, Azinhaga de Santa Comba, 3000-548 Coimbra, Portugal; (C.D.); (J.A.P.d.S.)
- Center for Innovative Biomedicine and Biotechnology (CIBB), University of Coimbra, Pólo das Ciências da Saúde, Azinhaga de Santa Comba, 3000-548 Coimbra, Portugal
- Instituto Politécnico de Coimbra, ESTESC-Coimbra Health School, Ciências Biomédicas Laboratoriais, Rua 5 de Outubro, 3046-854 Coimbra, Portugal
- Correspondence: ; Tel.: +351-239-488-700
| |
Collapse
|
11
|
Kumar N, Saraber P, Ding Z, Kusumbe AP. Diversity of Vascular Niches in Bones and Joints During Homeostasis, Ageing, and Diseases. Front Immunol 2021; 12:798211. [PMID: 34975909 PMCID: PMC8718446 DOI: 10.3389/fimmu.2021.798211] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2021] [Accepted: 11/19/2021] [Indexed: 12/29/2022] Open
Abstract
The bones and joints in the skeletal system are composed of diverse cell types, including vascular niches, bone cells, connective tissue cells and mineral deposits and regulate whole-body homeostasis. The capacity of maintaining strength and generation of blood lineages lies within the skeletal system. Bone harbours blood and immune cells and their progenitors, and vascular cells provide several immune cell type niches. Blood vessels in bone are phenotypically and functionally diverse, with distinct capillary subtypes exhibiting striking changes with age. The bone vasculature has a special impact on osteogenesis and haematopoiesis, and dysregulation of the vasculature is associated with diverse blood and bone diseases. Ageing is associated with perturbed haematopoiesis, loss of osteogenesis, increased adipogenesis and diminished immune response and immune cell production. Endothelial and perivascular cells impact immune cell production and play a crucial role during inflammation. Here, we discuss normal and maladapted vascular niches in bone during development, homeostasis, ageing and bone diseases such as rheumatoid arthritis and osteoarthritis. Further, we discuss the role of vascular niches during bone malignancy.
Collapse
Affiliation(s)
| | | | | | - Anjali P. Kusumbe
- Nuffield Department of Orthopaedics, Rheumatology and Musculoskeletal Sciences (NDORMS), Tissue and Tumor Microenvironments Group, University of Oxford, Oxford, United Kingdom
| |
Collapse
|
12
|
Kemble S, Croft AP. Critical Role of Synovial Tissue-Resident Macrophage and Fibroblast Subsets in the Persistence of Joint Inflammation. Front Immunol 2021; 12:715894. [PMID: 34539648 PMCID: PMC8446662 DOI: 10.3389/fimmu.2021.715894] [Citation(s) in RCA: 59] [Impact Index Per Article: 14.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2021] [Accepted: 08/17/2021] [Indexed: 12/11/2022] Open
Abstract
Rheumatoid arthritis (RA) is a chronic prototypic immune-mediated inflammatory disease which is characterized by persistent synovial inflammation, leading to progressive joint destruction. Whilst the introduction of targeted biological drugs has led to a step change in the management of RA, 30-40% of patients do not respond adequately to these treatments, regardless of the mechanism of action of the drug used (ceiling of therapeutic response). In addition, many patients who acheive clinical remission, quickly relapse following the withdrawal of treatment. These observations suggest the existence of additional pathways of disease persistence that remain to be identified and targeted therapeutically. A major barrier for the identification of therapeutic targets and successful clinical translation is the limited understanding of the cellular mechanisms that operate within the synovial microenvironment to sustain joint inflammation. Recent insights into the heterogeneity of tissue resident synovial cells, including macropahges and fibroblasts has revealed distinct subsets of these cells that differentially regulate specific aspects of inflammatory joint pathology, paving the way for targeted interventions to specifically modulate the behaviour of these cells. In this review, we will discuss the phenotypic and functional heterogeneity of tissue resident synovial cells and how this cellular diversity contributes to joint inflammation. We discuss how critical interactions between tissue resident cell types regulate the disease state by establishing critical cellular checkpoints within the synovium designed to suppress inflammation and restore joint homeostasis. We propose that failure of these cellular checkpoints leads to the emergence of imprinted pathogenic fibroblast cell states that drive the persistence of joint inflammation. Finally, we discuss therapeutic strategies that could be employed to specifically target pathogenic subsets of fibroblasts in RA.
Collapse
Affiliation(s)
| | - Adam P. Croft
- Rheumatology Research Group, Institute of Inflammation and Ageing (IIA), University of Birmingham, Queen Elizabeth Hospital, Birmingham, United Kingdom
| |
Collapse
|
13
|
Manning JE, Lewis JW, Marsh LJ, McGettrick HM. Insights Into Leukocyte Trafficking in Inflammatory Arthritis - Imaging the Joint. Front Cell Dev Biol 2021; 9:635102. [PMID: 33768093 PMCID: PMC7985076 DOI: 10.3389/fcell.2021.635102] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2020] [Accepted: 02/11/2021] [Indexed: 01/13/2023] Open
Abstract
The inappropriate accumulation and activation of leukocytes is a shared pathological feature of immune-mediated inflammatory diseases (IMIDs), such as rheumatoid arthritis (RA) and psoriatic arthritis (PsA). Cellular accumulation is therefore an attractive target for therapeutic intervention. However, attempts to modulate leukocyte entry and exit from the joint have proven unsuccessful to date, indicating that gaps in our knowledge remain. Technological advancements are now allowing real-time tracking of leukocyte movement through arthritic joints or in vitro joint constructs. Coupling this technology with improvements in analyzing the cellular composition, location and interactions of leukocytes with neighboring cells has increased our understanding of the temporal dynamics and molecular mechanisms underpinning pathological accumulation of leukocytes in arthritic joints. In this review, we explore our current understanding of the mechanisms leading to inappropriate leukocyte trafficking in inflammatory arthritis, and how these evolve with disease progression. Moreover, we highlight the advances in imaging of human and murine joints, along with multi-cellular ex vivo joint constructs that have led to our current knowledge base.
Collapse
Affiliation(s)
| | | | | | - Helen M. McGettrick
- Rheumatology Research Group, Institute of Inflammation and Ageing, University of Birmingham, Birmingham, United Kingdom
| |
Collapse
|
14
|
Effects of Biological Therapies on Molecular Features of Rheumatoid Arthritis. Int J Mol Sci 2020; 21:ijms21239067. [PMID: 33260629 PMCID: PMC7731249 DOI: 10.3390/ijms21239067] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2020] [Revised: 11/16/2020] [Accepted: 11/27/2020] [Indexed: 12/15/2022] Open
Abstract
Rheumatoid arthritis (RA) is an autoimmune and chronic inflammatory disease primarily affecting the joints, and closely related to specific autoantibodies that mostly target modified self-epitopes. Relevant findings in the field of RA pathogenesis have been described. In particular, new insights come from studies on synovial fibroblasts and cells belonging to the innate and adaptive immune system, which documented the aberrant production of inflammatory mediators, oxidative stress and NETosis, along with relevant alterations of the genome and on the regulatory epigenetic mechanisms. In recent years, the advances in the understanding of RA pathogenesis by identifying key cells and cytokines allowed the development of new targeted disease-modifying antirheumatic drugs (DMARDs). These drugs considerably improved treatment outcomes for the majority of patients. Moreover, numerous studies demonstrated that the pharmacological therapy with biologic DMARDs (bDMARDs) promotes, in parallel to their clinical efficacy, significant improvement in all these altered molecular mechanisms. Thus, continuous updating of the knowledge of molecular processes associated with the pathogenesis of RA, and on the specific effects of bDMARDs in the correction of their dysregulation, are essential in the early and correct approach to the treatment of this complex autoimmune disorder. The present review details basic mechanisms related to the physiopathology of RA, along with the core mechanisms of response to bDMARDs.
Collapse
|
15
|
Jeengar MK, Narendra SC, Thummuri D, Magnusson M, Naidu VGM, Uppugunduri S. Local administration of 4-Thiouridine, a novel molecule with potent anti-inflammatory properties, protects against experimental colitis and arthritis. Int Immunopharmacol 2020; 85:106598. [PMID: 32442901 DOI: 10.1016/j.intimp.2020.106598] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2020] [Revised: 05/07/2020] [Accepted: 05/10/2020] [Indexed: 01/10/2023]
Abstract
Previous studies in a rat model of Sephadex induced lung inflammation showed that 4-Thiouridine (4SU), a thiol substituted nucleoside, was very effective in reducing edema, leukocyte influx and TNF levels in bronchoalvelolar lavage fluid. However, little is known about the factors and mechanisms underlying these effects. In the present study, we have used two separate mouse models of chronic inflammation, a model of dextran sulphate sodium (DSS) induced colitis and a model of antigen induced arthritis, to evaluate the anti-inflammatory effect of 4-thiouridine. We have analyzed a broad spectrum of inflammatory mediators in order to delineate the mechanisms behind a potential anti-inflammatory effect of 4SU. Colitis was induced in C57BL/6 mice by administration of 3.5% DSS in drinking water for 5 days and the potential anti-colitic effect of 4SU was assessed by monitoring the disease activity index (DAI), measurement of colon length and histopathological analysis of colon tissue. We analyzed tissue myeloperoxidase (MPO) activity, serum pro-inflammatory cytokines (IL-1β, IL-6 and TNF), mRNA and protein expression of pro-inflammatory cytokines, COX-2, and NF-κB activity in colitis tissue. Intracolonic administration of 4SU (5 mg/kg & 10 mg/kg.) significantly inhibited MPO activity and reduced the levels of pro-inflammatory cytokines (IL-1β, IL-6 and TNF) as well as COX-2. Further, NF-κB activation was also blocked by attenuating the phosphorylation of IkB kinase (IKK α/β) in DSS-induced colitis tissues. Arthritis was induced by intra-articular injection of mBSA in the knee of NMRI mice pre-immunized with mBSA and 4SU was administered locally by direct injection into the knee joint. The antiarthritic potential of 4SU was calculated by histopathological scores and histochemical analysis of joint tissue. Further, immunohistochemistry was used to study inflammatory cell infiltration and expression of cytokines and adhesion molecules in the synovium. Local administration of 50-100 mg/kg 4SU at the time of arthritis onset clearly prevented development of joint inflammation and efficiently inhibited synovial expression of CD18, local cytokine production and recruitment of leukocytes to the synovium. Taken together, our data clearly demonstrates a potent anti-inflammatory effect of 4SU in two experimental models. In conclusion 4SU could be a new promising candidate for therapeutic modulation of chronic inflammatory diseases like ulcerative colitis and arthritis.
Collapse
Affiliation(s)
- Manish Kumar Jeengar
- Autoimmunity & Immune Regulation (AIR), Department of Biomedical and Clinical Sciences, Linköping University, Linköping, Sweden; Regional Cancer Center South East Sweden and Department of Biomedical and Clinical Sciences, Linköping University, Linköping, Sweden.
| | - Sudeep Chenna Narendra
- Autoimmunity & Immune Regulation (AIR), Department of Biomedical and Clinical Sciences, Linköping University, Linköping, Sweden
| | - Dinesh Thummuri
- Department of Pharmacology & Toxicology, National Institute of Pharmaceutical Education & Research Institute (NIPER), Hyderabad 500037, Telangana, India
| | | | - V G M Naidu
- Department of Pharmacology & Toxicology, National Institute of Pharmaceutical Education & Research Institute (NIPER), Guwahati 781032, Assam, India
| | - Srinivas Uppugunduri
- Regional Cancer Center South East Sweden and Department of Biomedical and Clinical Sciences, Linköping University, Linköping, Sweden
| |
Collapse
|
16
|
Dinesh P, Rasool M. Berberine mitigates IL-21/IL-21R mediated autophagic influx in fibroblast-like synoviocytes and regulates Th17/Treg imbalance in rheumatoid arthritis. Apoptosis 2020; 24:644-661. [PMID: 31111379 DOI: 10.1007/s10495-019-01548-6] [Citation(s) in RCA: 54] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
In our previous study, we explored the therapeutic effect of berberine (BBR) against IL-21/IL-21R mediated inflammatory proliferation of adjuvant-induced arthritic fibroblast-like synoviocytes (AA-FLS) through the PI3K/Akt pathway. The current study was designed to explore the therapeutic potential of BBR (15-45 µM) against IL-21/IL-21R mediated autophagy in AA-FLS mediated through PI3K/Akt signaling and Th17/Treg imbalance. Upon IL-21 stimulation, AA-FLS expressed elevated levels of autophagy-related 5 (Atg5), Beclin-1 and LC3-phosphatidylethanolamine conjugate 3-II (LC3-II) through the utilization of p62 and inhibition of C/EBP homologous protein (CHOP). BBR (15-45 µM) inhibited autophagy in AA-FLS cells mediated through PI3K/Akt signaling via suppressing autophagic elements, p62 sequestration and induction of CHOP in a dose-dependent manner. Moreover, IL-21 promoted the uncontrolled proliferation of AA-FLS through induction of B cell lymphoma-2 (Bcl-2) and diminished expression of Bcl-2 associated X protein (BAX) via PI3K/Akt signaling. BBR inhibited the proliferation of AA-FLS via promoting apoptosis through increased expression of BAX and diminished Bcl-2 transcription factor levels. Furthermore, T cells stimulated with IL-21 induced CD4+ CD196+ Th17 cells proliferation through RORγt activation mediated in a PI3K/Akt dependent manner. BBR inhibited the proliferation of Th17 cells through downregulation of RORγt in a concentration-dependent manner. BBR also promoted the differentiation of CD4+ CD25+ Treg cells through induction of forkhead box P3 (Foxp3) activation via aryl hydrocarbon receptor (AhR) and upregulation of cytochrome P450 family 1, subfamily A, polypeptide 1 (CYP1A1). Collectively, we conclude that BBR might attenuate AA-FLS proliferation through inhibition of IL-21/IL-21R dependent autophagy and regulates the Th17/Treg imbalance in RA.
Collapse
Affiliation(s)
- Palani Dinesh
- Immunopathology Lab, School of Bio Sciences and Technology, Vellore Institute of Technology, Vellore, Tamil Nadu, 632 014, India
| | - MahaboobKhan Rasool
- Immunopathology Lab, School of Bio Sciences and Technology, Vellore Institute of Technology, Vellore, Tamil Nadu, 632 014, India. .,SMV 240, Immunopathology Lab, School of Bio Sciences and Technology, VIT, Vellore, Tamil Nadu, 632 014, India.
| |
Collapse
|
17
|
Krishna MT, Subramanian A, Adderley NJ, Zemedikun DT, Gkoutos GV, Nirantharakumar K. Allergic diseases and long-term risk of autoimmune disorders: longitudinal cohort study and cluster analysis. Eur Respir J 2019; 54:13993003.00476-2019. [PMID: 31413164 DOI: 10.1183/13993003.00476-2019] [Citation(s) in RCA: 58] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2019] [Accepted: 08/08/2019] [Indexed: 12/16/2022]
Abstract
INTRODUCTION The association between allergic diseases and autoimmune disorders is not well established. Our objective was to determine incidence rates of autoimmune disorders in allergic rhinitis/conjunctivitis (ARC), atopic eczema and asthma, and to investigate for co-occurring patterns. METHODS This was a retrospective cohort study (1990-2018) employing data extracted from The Health Improvement Network (UK primary care database). The exposure group comprised ARC, atopic eczema and asthma (all ages). For each exposed patient, up to two randomly selected age- and sex-matched controls with no documented allergic disease were used. Adjusted incidence rate ratios (aIRRs) were calculated using Poisson regression. A cross-sectional study was also conducted employing Association Rule Mining (ARM) to investigate disease clusters. RESULTS 782 320, 1 393 570 and 1 049 868 patients with ARC, atopic eczema and asthma, respectively, were included. aIRRs of systemic lupus erythematosus (SLE), Sjögren's syndrome, vitiligo, rheumatoid arthritis, psoriasis, pernicious anaemia, inflammatory bowel disease, coeliac disease and autoimmune thyroiditis were uniformly higher in the three allergic diseases compared with controls. Specifically, aIRRs of SLE (1.45) and Sjögren's syndrome (1.88) were higher in ARC; aIRRs of SLE (1.44), Sjögren's syndrome (1.61) and myasthenia (1.56) were higher in asthma; and aIRRs of SLE (1.86), Sjögren's syndrome (1.48), vitiligo (1.54) and psoriasis (2.41) were higher in atopic eczema. There was no significant effect of the three allergic diseases on multiple sclerosis or of ARC and atopic eczema on myasthenia. Using ARM, allergic diseases clustered with multiple autoimmune disorders. Three age- and sex-related clusters were identified, with a relatively complex pattern in females ≥55 years old. CONCLUSIONS The long-term risks of autoimmune disorders are significantly higher in patients with allergic diseases. Allergic diseases and autoimmune disorders show age- and sex-related clustering patterns.
Collapse
Affiliation(s)
- Mamidipudi Thirumala Krishna
- Dept of Allergy and Immunology, University Hospitals Birmingham NHS Foundation Trust, Birmingham, UK .,Institute of Immunology and Immunotherapy, University of Birmingham, Birmingham, UK
| | | | - Nicola J Adderley
- Institute of Applied Health Research, University of Birmingham, Birmingham, UK
| | - Dawit T Zemedikun
- Institute of Applied Health Research, University of Birmingham, Birmingham, UK
| | - Georgios V Gkoutos
- Institute of Cancer and Genomics, University of Birmingham, Birmingham, UK.,Midlands Health Data Research UK, Birmingham, UK
| | - Krishnarajah Nirantharakumar
- Institute of Applied Health Research, University of Birmingham, Birmingham, UK.,Midlands Health Data Research UK, Birmingham, UK
| |
Collapse
|
18
|
Abstract
Knowledge of how the joint functions as an integrated unit in health and disease requires an understanding of the stromal cells populating the joint mesenchyme, including fibroblasts, tissue-resident macrophages and endothelial cells. Knowledge of the physiological and pathological mechanisms that involve joint mesenchymal stromal cells has begun to cast new light on why joint inflammation persists. The shared embryological origins of fibroblasts and endothelial cells might shape the behaviour of these cell types in diseased adult tissues. Cells of mesenchymal origin sustain inflammation in the synovial membrane and tendons by various mechanisms, and the important contribution of newly discovered fibroblast subtypes and their associated crosstalk with endothelial cells, tissue-resident macrophages and leukocytes is beginning to emerge. Knowledge of these mechanisms should help to shape the future therapeutic landscape and emphasizes the requirement for new strategies to address the pathogenic stroma and associated crosstalk between leukocytes and cells of mesenchymal origin.
Collapse
|
19
|
Bonelli M, Dalwigk K, Platzer A, Olmos Calvo I, Hayer S, Niederreiter B, Holinka J, Sevelda F, Pap T, Steiner G, Superti-Furga G, Smolen JS, Kiener HP, Karonitsch T. IRF1 is critical for the TNF-driven interferon response in rheumatoid fibroblast-like synoviocytes : JAKinibs suppress the interferon response in RA-FLSs. Exp Mol Med 2019; 51:1-11. [PMID: 31285419 PMCID: PMC6802656 DOI: 10.1038/s12276-019-0267-6] [Citation(s) in RCA: 53] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2018] [Revised: 02/20/2019] [Accepted: 03/11/2019] [Indexed: 12/28/2022] Open
Abstract
Rheumatoid arthritis (RA) is an autoimmune disease characterized by persistent synovial inflammation. The major drivers of synovial inflammation are cytokines and chemokines. Among these molecules, TNF activates fibroblast-like synoviocytes (FLSs), which leads to the production of inflammatory mediators. Here, we show that TNF regulates the expression of the transcription factor interferon regulatory factor 1 (IRF1) in human FLSs as well as in a TNF transgenic arthritis mouse model. Transcriptomic analyses of IRF1-deficient, TNF-stimulated FLSs define the interferon (IFN) pathway as a major target of IRF1. IRF1 expression is associated with the expression of IFNβ, which leads to the activation of the JAK-STAT pathway. Blocking the JAK-STAT pathway with the Janus kinase inhibitor (JAKinib) baricitinib or tofacitinib reduces the expression of IFN-regulated genes (IRGs) in TNF-activated FLSs. Therefore, we conclude that TNF induces a distinct inflammatory cascade, in which IRGs are key elements, in FLSs. The IFN-signature might be a promising biomarker for the efficient and personalized use of new treatment strategies for RA, such as JAKinibs.
Collapse
Affiliation(s)
- Michael Bonelli
- Division of Rheumatology, Department of Medicine 3, Medical University of Vienna, 1090, Vienna, Austria
| | - Karolina Dalwigk
- Division of Rheumatology, Department of Medicine 3, Medical University of Vienna, 1090, Vienna, Austria
| | - Alexander Platzer
- Division of Rheumatology, Department of Medicine 3, Medical University of Vienna, 1090, Vienna, Austria
| | - Isabel Olmos Calvo
- Division of Rheumatology, Department of Medicine 3, Medical University of Vienna, 1090, Vienna, Austria
| | - Silvia Hayer
- Division of Rheumatology, Department of Medicine 3, Medical University of Vienna, 1090, Vienna, Austria
| | - Birgit Niederreiter
- Division of Rheumatology, Department of Medicine 3, Medical University of Vienna, 1090, Vienna, Austria
| | - Johannes Holinka
- Department of Orthopaedics, Medical University of Vienna, 1090, Vienna, Austria
| | - Florian Sevelda
- Department of Orthopaedics, Medical University of Vienna, 1090, Vienna, Austria
| | - Thomas Pap
- Institute of Musculoskeletal Medicine, University Hospital Muenster, 48149, Muenster, Germany
| | - Günter Steiner
- Division of Rheumatology, Department of Medicine 3, Medical University of Vienna, 1090, Vienna, Austria.,Ludwig Boltzmann Institute for Arthritis and Rehabilitation, Vienna, Austria
| | - Giulio Superti-Furga
- CeMM Research Center for Molecular Medicine of the Austrian Academy of Sciences, 1090, Vienna, Austria
| | - Josef S Smolen
- Division of Rheumatology, Department of Medicine 3, Medical University of Vienna, 1090, Vienna, Austria
| | - Hans P Kiener
- Division of Rheumatology, Department of Medicine 3, Medical University of Vienna, 1090, Vienna, Austria
| | - Thomas Karonitsch
- Division of Rheumatology, Department of Medicine 3, Medical University of Vienna, 1090, Vienna, Austria.
| |
Collapse
|
20
|
Langan D, Kim EY, Moudgil KD. Modulation of autoimmune arthritis by environmental 'hygiene' and commensal microbiota. Cell Immunol 2019; 339:59-67. [PMID: 30638679 PMCID: PMC8056395 DOI: 10.1016/j.cellimm.2018.12.005] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2018] [Revised: 12/09/2018] [Accepted: 12/09/2018] [Indexed: 12/20/2022]
Abstract
Observations in patients with autoimmune diseases and studies in animal models of autoimmunity have revealed that external environmental factors including exposure to microbes and the state of the host gut microbiota can influence susceptibility to autoimmunity and subsequent disease development. Mechanisms underlying these outcomes continue to be elucidated. These include deviation of the cytokine response and imbalance between pathogenic versus regulatory T cell subsets. Furthermore, specific commensal organisms are associated with enhanced severity of arthritis in susceptible individuals, while exposure to certain microbes or helminths can afford protection against this disease. In addition, the role of metabolites (e.g., short-chain fatty acids, tryptophan catabolites), produced either by the microbes themselves or from their action on dietary products, in modulation of arthritis is increasingly being realized. In this context, re-setting of the microbial dysbiosis in RA using prebiotics, probiotics, or fecal microbial transplant is emerging as a promising approach for the prevention and treatment of arthritis. It is hoped that advances in defining the interplay between gut microbiota, dietary products, and bioactive metabolites would help in the development of therapeutic regimen customized for the needs of individual patients in the near future.
Collapse
Affiliation(s)
- David Langan
- Department of Microbiology and Immunology, University of Maryland School of Medicine, Baltimore, MD 21201, United States; Baltimore VA Medical Center, Baltimore, MD 21201, United States
| | - Eugene Y Kim
- Department of Microbiology and Immunology, University of Maryland School of Medicine, Baltimore, MD 21201, United States; Department of Biomedical Sciences, Washington State University, Spokane, WA 99224, United States
| | - Kamal D Moudgil
- Department of Microbiology and Immunology, University of Maryland School of Medicine, Baltimore, MD 21201, United States; Department of Medicine, Division of Rheumatology, University of Maryland School of Medicine, Baltimore, MD 21201, United States; Baltimore VA Medical Center, Baltimore, MD 21201, United States.
| |
Collapse
|
21
|
Ouboussad L, Burska AN, Melville A, Buch MH. Synovial Tissue Heterogeneity in Rheumatoid Arthritis and Changes With Biologic and Targeted Synthetic Therapies to Inform Stratified Therapy. Front Med (Lausanne) 2019; 6:45. [PMID: 30941350 PMCID: PMC6433846 DOI: 10.3389/fmed.2019.00045] [Citation(s) in RCA: 30] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2018] [Accepted: 02/20/2019] [Indexed: 12/11/2022] Open
Abstract
The treatment of rheumatoid arthritis (RA) has been transformed with the introduction of biologic disease modifying anti-rheumatic drugs (bDMARD) and more recently, targeted synthetic DMARD (tsDMARD) therapies in the form of janus-kinase inhibitors. Nevertheless, response to these agents varies such that a trial and error approach is adopted; leading to poor patient quality of life, and long-term outcomes. There is thus an urgent need to identify effective biomarkers to guide treatment selection. A wealth of research has been invested in this field but with minimal progress. Increasingly recognized is the importance of evaluating synovial tissue, the primary site of RA, as opposed to peripheral blood-based investigation. In this mini-review, we summarize the literature supporting synovial tissue heterogeneity, the conceptual basis for stratified therapy. This includes recognition of distinct synovial pathobiological subtypes and associated molecular pathways. We also review synovial tissue studies that have been conducted to evaluate the effect of individual bDMARD and tsDMARD on the cellular and molecular characteristics, with a view to identifying tissue predictors of response. Initial observations are being brought into the clinical trial landscape with stratified biopsy trials to validate toward implementation. Furthermore, development of tissue based omics technology holds still more promise in advancing our understanding of disease processes and guiding future drug selection.
Collapse
Affiliation(s)
- Lylia Ouboussad
- Leeds Institute of Rheumatic and Musculoskeletal Medicine, University of Leeds, Leeds, United Kingdom
| | - Agata N. Burska
- Leeds Institute of Rheumatic and Musculoskeletal Medicine, University of Leeds, Leeds, United Kingdom
| | - Andrew Melville
- Leeds Institute of Rheumatic and Musculoskeletal Medicine, University of Leeds, Leeds, United Kingdom
| | - Maya H. Buch
- Leeds Institute of Rheumatic and Musculoskeletal Medicine, University of Leeds, Leeds, United Kingdom
- NIHR Leeds Biomedical Research Centre, Leeds Teaching Hospitals NHS Trust, Leeds, United Kingdom
| |
Collapse
|
22
|
Hopkin SJ, Lewis JW, Krautter F, Chimen M, McGettrick HM. Triggering the Resolution of Immune Mediated Inflammatory Diseases: Can Targeting Leukocyte Migration Be the Answer? Front Pharmacol 2019; 10:184. [PMID: 30881306 PMCID: PMC6407428 DOI: 10.3389/fphar.2019.00184] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2018] [Accepted: 02/14/2019] [Indexed: 12/16/2022] Open
Abstract
Leukocyte recruitment is a pivotal process in the regulation and resolution of an inflammatory episode. It is vital for the protective responses to microbial infection and tissue damage, but is the unwanted reaction contributing to pathology in many immune mediated inflammatory diseases (IMIDs). Indeed, it is now recognized that patients with IMIDs have defects in at least one, if not multiple, check-points regulating the entry and exit of leukocytes from the inflamed site. In this review, we will explore our understanding of the imbalance in recruitment that permits the accumulation and persistence of leukocytes in IMIDs. We will highlight old and novel pharmacological tools targeting these processes in an attempt to trigger resolution of the inflammatory response. In this context, we will focus on cytokines, chemokines, known pro-resolving lipid mediators and potential novel lipids (e.g., sphingosine-1-phosphate), along with the actions of glucocorticoids mediated by 11-beta hydroxysteroid dehydrogenase 1 and 2.
Collapse
Affiliation(s)
- Sophie J. Hopkin
- Institute of Cardiovascular Sciences, University of Birmingham, Birmingham, United Kingdom
| | - Jonathan W. Lewis
- Rheumatology Research Group, Arthritis Research UK Centre of Excellence in the Pathogenesis of Rheumatoid Arthritis, Institute of Inflammation and Ageing, University of Birmingham, Birmingham, United Kingdom
| | - Franziska Krautter
- Institute of Cardiovascular Sciences, University of Birmingham, Birmingham, United Kingdom
| | - Myriam Chimen
- Institute of Cardiovascular Sciences, University of Birmingham, Birmingham, United Kingdom
| | - Helen M. McGettrick
- Rheumatology Research Group, Arthritis Research UK Centre of Excellence in the Pathogenesis of Rheumatoid Arthritis, Institute of Inflammation and Ageing, University of Birmingham, Birmingham, United Kingdom
| |
Collapse
|
23
|
Novel n-3 Docosapentaneoic Acid-Derived Pro-resolving Mediators Are Vasculoprotective and Mediate the Actions of Statins in Controlling Inflammation. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2019; 1161:65-75. [DOI: 10.1007/978-3-030-21735-8_7] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
|