1
|
Su X, Yu H, Lei Q, Chen X, Tong Y, Zhang Z, Yang W, Guo Y, Lin L. Systemic lupus erythematosus: pathogenesis and targeted therapy. MOLECULAR BIOMEDICINE 2024; 5:54. [PMID: 39472388 PMCID: PMC11522254 DOI: 10.1186/s43556-024-00217-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2024] [Accepted: 10/16/2024] [Indexed: 11/02/2024] Open
Abstract
Systemic lupus erythematosus (SLE) is a multifaceted autoimmune disorder characterized by dysregulated immune responses and autoantibody production, which affects multiple organs and varies in clinical presentation and disease severity. The development of SLE is intricate, encompassing dysregulation within the immune system, a collapse of immunological tolerance, genetic susceptibilities to the disease, and a variety of environmental factors that can act as triggers. This review provides a comprehensive discussion of the pathogenesis and treatment strategies of SLE and focuses on the progress and status of traditional and emerging treatment strategies for SLE. Traditional treatment strategies for SLE have mainly employed non-specific approaches, including cytotoxic and immunosuppressive drugs, antimalarials, glucocorticoids, and NSAIDs. These strategies are effective in mitigating the effects of the disease, but they are not a complete cure and are often accompanied by adverse reactions. Emerging targeted therapeutic drugs, on the other hand, aim to control and treat SLE by targeting B and T cells, inhibiting their activation and function, as well as the abnormal activation of the immune system. A deeper understanding of the pathogenesis of SLE and the exploration of new targeted treatment strategies are essential to advance the treatment of this complex autoimmune disease.
Collapse
Affiliation(s)
- Xu Su
- Medical Research Center, College of Medicine, The Third People's Hospital of Chengdu (Affiliated Hospital of Southwest Jiaotong University, Southwest Jiaotong University, Chengdu, 610031, Sichuan, China
| | - Hui Yu
- Department of Urology, The Third People's Hospital of Chengdu, The Affiliated Hospital of Southwest Jiaotong University, Chengdu, 610014, China
| | - Qingqiang Lei
- Center of Bone Metabolism and Repair, Department of Wound Repair and Rehabilitation Medicine, State Key Laboratory of Trauma, Burns and Combined Injury, Trauma Center, Research Institute of Surgery, Daping Hospital, Army Medical University, Chongqing, 400000, China
| | - Xuerui Chen
- Medical Research Center, College of Medicine, The Third People's Hospital of Chengdu (Affiliated Hospital of Southwest Jiaotong University, Southwest Jiaotong University, Chengdu, 610031, Sichuan, China
| | - Yanli Tong
- Université Paris Cité, INSERM U1151, CNRS UMR8253, Institut Necker Enfants Malades, Paris, F-75015, France
| | - Zhongyang Zhang
- Department of Health Technology, The Danish National Research Foundation and Villum Foundation's Center IDUN, Technical University of Denmark, Kgs. Lyngby, Denmark
| | - Wenyong Yang
- Medical Research Center, College of Medicine, The Third People's Hospital of Chengdu (Affiliated Hospital of Southwest Jiaotong University, Southwest Jiaotong University, Chengdu, 610031, Sichuan, China.
- Department of Neurosurgery, The Third People's Hospital of Chengdu, The Affiliated Hospital of Southwest Jiaotong University, Chengdu, 610014, China.
| | - Yuanbiao Guo
- Medical Research Center, College of Medicine, The Third People's Hospital of Chengdu (Affiliated Hospital of Southwest Jiaotong University, Southwest Jiaotong University, Chengdu, 610031, Sichuan, China.
| | - Liangbin Lin
- Medical Research Center, College of Medicine, The Third People's Hospital of Chengdu (Affiliated Hospital of Southwest Jiaotong University, Southwest Jiaotong University, Chengdu, 610031, Sichuan, China.
- Obesity and Metabolism Medicine-Engineering Integration Laboratory, Department of General Surgery, The Third People's Hospital of Chengdu, The Affiliated Hospital of Southwest Jiaotong University, Chengdu, 610031, China.
- The Center of Gastrointestinal and Minimally Invasive Surgery, Department of General Surgery, The Third People's Hospital of Chengdu, The Affiliated Hospital of Southwest Jiaotong University, Chengdu, 610031, China.
| |
Collapse
|
2
|
L’Estrange-Stranieri E, Gottschalk TA, Wright MD, Hibbs ML. The dualistic role of Lyn tyrosine kinase in immune cell signaling: implications for systemic lupus erythematosus. Front Immunol 2024; 15:1395427. [PMID: 39007135 PMCID: PMC11239442 DOI: 10.3389/fimmu.2024.1395427] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2024] [Accepted: 06/17/2024] [Indexed: 07/16/2024] Open
Abstract
Systemic lupus erythematosus (SLE, lupus) is a debilitating, multisystem autoimmune disease that can affect any organ in the body. The disease is characterized by circulating autoantibodies that accumulate in organs and tissues, which triggers an inflammatory response that can cause permanent damage leading to significant morbidity and mortality. Lyn, a member of the Src family of non-receptor protein tyrosine kinases, is highly implicated in SLE as remarkably both mice lacking Lyn or expressing a gain-of-function mutation in Lyn develop spontaneous lupus-like disease due to altered signaling in B lymphocytes and myeloid cells, suggesting its expression or activation state plays a critical role in maintaining tolerance. The past 30 years of research has begun to elucidate the role of Lyn in a duplicitous signaling network of activating and inhibitory immunoreceptors and related targets, including interactions with the interferon regulatory factor family in the toll-like receptor pathway. Gain-of-function mutations in Lyn have now been identified in human cases and like mouse models, cause severe systemic autoinflammation. Studies of Lyn in SLE patients have presented mixed findings, which may reflect the heterogeneity of disease processes in SLE, with impairment or enhancement in Lyn function affecting subsets of SLE patients that may be a means of stratification. In this review, we present an overview of the phosphorylation and protein-binding targets of Lyn in B lymphocytes and myeloid cells, highlighting the structural domains of the protein that are involved in its function, and provide an update on studies of Lyn in SLE patients.
Collapse
Affiliation(s)
- Elan L’Estrange-Stranieri
- Department of Immunology, School of Translational Medicine, Monash University, Melbourne, VIC, Australia
| | - Timothy A. Gottschalk
- Department of Immunology, School of Translational Medicine, Monash University, Melbourne, VIC, Australia
- Centre for Innate Immunity and Infectious Diseases, Hudson Institute of Medical Research, Clayton, VIC, Australia
- Department of Molecular and Translational Science, Monash University, Clayton, VIC, Australia
| | - Mark D. Wright
- Department of Immunology, School of Translational Medicine, Monash University, Melbourne, VIC, Australia
| | - Margaret L. Hibbs
- Department of Immunology, School of Translational Medicine, Monash University, Melbourne, VIC, Australia
| |
Collapse
|
3
|
Dong C, Guo Y, Chen Z, Li T, Ji J, Sun C, Li J, Cao H, Xia Y, Xue Z, Gu X, Liang Q, Zhao R, Fu T, Ma J, Jiang S, Wu C, Fu Q, Guo G, Bao Y, Guo H, Yang J, Xu M, Zhang X, Sheng Z, Gu Z. Single-Cell Profiling of Bone Marrow B Cells and Early B Cell Developmental Disorders Associated With Systemic Lupus Erythematosus. Arthritis Rheumatol 2024; 76:599-613. [PMID: 37946666 DOI: 10.1002/art.42750] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2023] [Revised: 10/18/2023] [Accepted: 11/07/2023] [Indexed: 11/12/2023]
Abstract
OBJECTIVE The peripheral B cell compartment is heavily disturbed in systemic lupus erythematosus (SLE), but whether B cells develop aberrantly in the bone marrow (BM) is largely unknown. METHODS We performed single-cell RNA/B cell receptor (BCR) sequencing and immune profiling of BM B cells and classified patients with SLE into two groups: early B cell (Pro-B and Pre-B) normal (EBnor) and EB defective/low (EBlo) groups. RESULTS The SLE-EBlo group exhibited more severe disease activity and proinflammatory status, overaction of type I interferon signaling and metabolic pathways within the B cell compartment, and aberrant BCR repertoires compared with the SLE-EBnor group. Moreover, in one patient with SLE who was initially classified in the SLE-EBlo group, early B cell deficiency and associated abnormalities were largely rectified in a second BM sample at the remission phase. CONCLUSION In summary, this study suggests that early B cell loss in BM defines a unique pathological state in a subset of patients with SLE that may play an active role in the dysregulated autoimmune responses.
Collapse
Affiliation(s)
- Chen Dong
- Department of Rheumatology, Affiliated Hospital of Nantong University, Medical School of Nantong University, Nantong University, Nantong, China
| | - Yicheng Guo
- Zukerman Mind Brain Behavior Institute, Columbia University, New York
- Aaron Diamond AIDS Research Center, Columbia University Vagelos College of Physicians and Surgeons, New York
| | - Zechuan Chen
- Shanghai Institute of Immunity and Infection, Chinese Academy of Sciences, Shanghai, China; University of Chinese Academy of Sciences, Beijing, China
| | - Teng Li
- Shanghai Institute of Immunity and Infection, Chinese Academy of Sciences, Shanghai, China; University of Chinese Academy of Sciences, Beijing, China
| | - Juan Ji
- Department of Rheumatology, Affiliated Hospital of Nantong University, Medical School of Nantong University, Nantong University, Nantong, China
| | - Chi Sun
- Department of Geriatrics, Affiliated Hospital of Nantong University, Nantong, China
| | - Jing Li
- Department of Rheumatology, Affiliated Hospital of Nantong University, Medical School of Nantong University, Nantong University, Nantong, China
| | - Haixia Cao
- Department of Rheumatology, Affiliated Hospital of Nantong University, Medical School of Nantong University, Nantong University, Nantong, China
| | - Yunfei Xia
- Department of Rheumatology, Affiliated Hospital of Nantong University, Medical School of Nantong University, Nantong University, Nantong, China
| | - Zhonghui Xue
- Research Center of Clinical Medicine, Research Center of Clinical Immunology, Affiliated Hospital of Nantong University, Nantong, China
| | - Xixi Gu
- Shanghai Institute of Immunity and Infection, Chinese Academy of Sciences, Shanghai, China; University of Chinese Academy of Sciences, Beijing, China
| | - Qian Liang
- Research Center of Clinical Medicine, Research Center of Clinical Immunology, Affiliated Hospital of Nantong University, Nantong, China
| | - Rui Zhao
- Research Center of Clinical Medicine, Research Center of Clinical Immunology, Affiliated Hospital of Nantong University, Nantong, China
| | - Ting Fu
- Research Center of Clinical Medicine, Research Center of Clinical Immunology, Affiliated Hospital of Nantong University, Nantong, China
| | - Jiaqiang Ma
- Shanghai Institute of Immunity and Infection, Chinese Academy of Sciences, Shanghai, China; University of Chinese Academy of Sciences, Beijing, China
| | - Shan Jiang
- Shanghai Institute of Immunity and Infection, Chinese Academy of Sciences, Shanghai, China; University of Chinese Academy of Sciences, Beijing, China
| | - Chunmei Wu
- Department of Rheumatology, Renji Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, China
| | - Qiong Fu
- Department of Rheumatology, Renji Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, China
| | - Genkai Guo
- Department of Rheumatology, Affiliated Hospital of Nantong University, Medical School of Nantong University, Nantong University, Nantong, China
| | - Yanfeng Bao
- Department of Rheumatology, Affiliated Hospital of Nantong University, Medical School of Nantong University, Nantong University, Nantong, China
| | - Hua Guo
- Department of Rheumatology, Affiliated Hospital of Nantong University, Medical School of Nantong University, Nantong University, Nantong, China
| | - Junling Yang
- Research Center of Clinical Medicine, Research Center of Clinical Immunology, Affiliated Hospital of Nantong University, Nantong, China
| | - Min Xu
- Research Center of Clinical Medicine, Research Center of Clinical Immunology, Affiliated Hospital of Nantong University, Nantong, China
| | - Xiaoming Zhang
- Shanghai Institute of Immunity and Infection, Chinese Academy of Sciences, Shanghai, China; University of Chinese Academy of Sciences, Beijing, China
| | - Zizhang Sheng
- Zukerman Mind Brain Behavior Institute, Columbia University, New York
- Aaron Diamond AIDS Research Center, Columbia University Vagelos College of Physicians and Surgeons, New York
| | - Zhifeng Gu
- Department of Rheumatology, Affiliated Hospital of Nantong University, Medical School of Nantong University, Nantong University, Nantong, China
| |
Collapse
|
4
|
Deng Y, Pacheco JA, Ghosh A, Chung A, Mao C, Smith JC, Zhao J, Wei WQ, Barnado A, Dorn C, Weng C, Liu C, Cordon A, Yu J, Tedla Y, Kho A, Ramsey-Goldman R, Walunas T, Luo Y. Natural language processing to identify lupus nephritis phenotype in electronic health records. BMC Med Inform Decis Mak 2024; 22:348. [PMID: 38433189 PMCID: PMC10910523 DOI: 10.1186/s12911-024-02420-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2021] [Accepted: 01/09/2024] [Indexed: 03/05/2024] Open
Abstract
BACKGROUND Systemic lupus erythematosus (SLE) is a rare autoimmune disorder characterized by an unpredictable course of flares and remission with diverse manifestations. Lupus nephritis, one of the major disease manifestations of SLE for organ damage and mortality, is a key component of lupus classification criteria. Accurately identifying lupus nephritis in electronic health records (EHRs) would therefore benefit large cohort observational studies and clinical trials where characterization of the patient population is critical for recruitment, study design, and analysis. Lupus nephritis can be recognized through procedure codes and structured data, such as laboratory tests. However, other critical information documenting lupus nephritis, such as histologic reports from kidney biopsies and prior medical history narratives, require sophisticated text processing to mine information from pathology reports and clinical notes. In this study, we developed algorithms to identify lupus nephritis with and without natural language processing (NLP) using EHR data from the Northwestern Medicine Enterprise Data Warehouse (NMEDW). METHODS We developed five algorithms: a rule-based algorithm using only structured data (baseline algorithm) and four algorithms using different NLP models. The first NLP model applied simple regular expression for keywords search combined with structured data. The other three NLP models were based on regularized logistic regression and used different sets of features including positive mention of concept unique identifiers (CUIs), number of appearances of CUIs, and a mixture of three components (i.e. a curated list of CUIs, regular expression concepts, structured data) respectively. The baseline algorithm and the best performing NLP algorithm were externally validated on a dataset from Vanderbilt University Medical Center (VUMC). RESULTS Our best performing NLP model incorporated features from both structured data, regular expression concepts, and mapped concept unique identifiers (CUIs) and showed improved F measure in both the NMEDW (0.41 vs 0.79) and VUMC (0.52 vs 0.93) datasets compared to the baseline lupus nephritis algorithm. CONCLUSION Our NLP MetaMap mixed model improved the F-measure greatly compared to the structured data only algorithm in both internal and external validation datasets. The NLP algorithms can serve as powerful tools to accurately identify lupus nephritis phenotype in EHR for clinical research and better targeted therapies.
Collapse
Affiliation(s)
- Yu Deng
- Center for Health Information Partnerships, Feinberg School of Medicine, Northwestern University, Chicago, USA
| | - Jennifer A Pacheco
- Center for Genetic Medicine, Feinberg School of Medicine, Northwestern University, Chicago, USA
| | - Anika Ghosh
- Center for Health Information Partnerships, Feinberg School of Medicine, Northwestern University, Chicago, USA
| | - Anh Chung
- Center for Health Information Partnerships, Feinberg School of Medicine, Northwestern University, Chicago, USA
- Department of Medicine/Rheumatology, Feinberg School of Medicine, Northwestern University, Chicago, USA
| | - Chengsheng Mao
- Center for Health Information Partnerships, Feinberg School of Medicine, Northwestern University, Chicago, USA
| | - Joshua C Smith
- Department of Biomedical Informatics, Vanderbilt University Medical Center, Nashville, USA
| | - Juan Zhao
- Department of Biomedical Informatics, Vanderbilt University Medical Center, Nashville, USA
| | - Wei-Qi Wei
- Department of Biomedical Informatics, Vanderbilt University Medical Center, Nashville, USA
| | - April Barnado
- Department of Medicine, Vanderbilt University Medical Center, Nashville, USA
| | - Chad Dorn
- Department of Biomedical Informatics, Vanderbilt University Medical Center, Nashville, USA
| | - Chunhua Weng
- Department of Biomedical Informatics, Columbia University, New York City, USA
| | - Cong Liu
- Department of Biomedical Informatics, Columbia University, New York City, USA
| | - Adam Cordon
- Center for Genetic Medicine, Feinberg School of Medicine, Northwestern University, Chicago, USA
| | - Jingzhi Yu
- Center for Health Information Partnerships, Feinberg School of Medicine, Northwestern University, Chicago, USA
| | - Yacob Tedla
- Center for Health Information Partnerships, Feinberg School of Medicine, Northwestern University, Chicago, USA
| | - Abel Kho
- Center for Health Information Partnerships, Feinberg School of Medicine, Northwestern University, Chicago, USA
| | - Rosalind Ramsey-Goldman
- Department of Medicine/Rheumatology, Feinberg School of Medicine, Northwestern University, Chicago, USA
| | - Theresa Walunas
- Center for Health Information Partnerships, Feinberg School of Medicine, Northwestern University, Chicago, USA.
| | - Yuan Luo
- Center for Health Information Partnerships, Feinberg School of Medicine, Northwestern University, Chicago, USA.
| |
Collapse
|
5
|
Elshaer R, Jaber S, Odeh N, Arbili L, Al-Mayouf SM. Safety and efficacy of biologics in childhood systemic lupus erythematosus: a critical systematic review. Clin Rheumatol 2024; 43:863-877. [PMID: 38079010 DOI: 10.1007/s10067-023-06833-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2023] [Revised: 10/20/2023] [Accepted: 11/24/2023] [Indexed: 02/20/2024]
Abstract
Biologic agents are increasingly being used to treat adult patients with systemic lupus erythematosus (SLE). However, the available data on biologic agents' use in childhood-onset SLE (cSLE) remains limited. To collate available evidence related to the efficacy and safety of using biologic agents in cSLE. The study followed the PRISMA checklist for reporting the data and conducted a thorough search using PubMed, Cochrane Library, and Scopus from January 2005 to August 2023. Only articles meeting specific criteria were included, focusing on cSLE, the use of biologic agents, and having outcome measures at six- and 12-month follow-ups for safety and efficacy. Case reports were excluded, and four independent reviewers screened the articles for accuracy, with a fifth reviewer resolving any discrepancies that arose to achieve a consensus. The final selection included 18 studies with a total of 593 patients treated with biologic agents for severe and/ or refractory cSLE. The most common indication for using biologic agents was lupus nephritis. Rituximab was used in 12 studies, while belimumab was used in six studies. The studies evaluated the efficacy of biologic agents based on SLE disease activity scores, laboratory parameter improvements, and reduced corticosteroid dosage. Positive outcomes were reported, with improvements in renal, hematologic, and immunologic parameters along with mild adverse effects, mostly related to mild infections and infusion reactions. Belimumab and rituximab have shown promise as potential treatments for severe and refractory cSLE cases, leading to decreased disease activity and complete or partial remission in many patients with an acceptable safety profile. However, further research is needed to better understand their benefits and potential risks in these patients. Key Points • This review emphasizes the lack of sufficient randomized controlled trials exploring the use of biologics in childhood systemic lupus erythematosus (cSLE). • Treatment plans for cSLE are being derived from those used for adult systemic lupus erythematosus. • According to current evidence, belimumab and rituximab can be potential treatment options for refractory and severe cases of cSLE. • Additional studies are required to reach more definitive conclusions.
Collapse
Affiliation(s)
- Rawan Elshaer
- College of Medicine, Alfaisal University, Riyadh, Saudi Arabia
| | - Samar Jaber
- College of Medicine, Alfaisal University, Riyadh, Saudi Arabia
| | - Nour Odeh
- College of Medicine, Alfaisal University, Riyadh, Saudi Arabia
| | - Lana Arbili
- College of Medicine, Alfaisal University, Riyadh, Saudi Arabia
| | - Sulaiman M Al-Mayouf
- College of Medicine, Alfaisal University, Riyadh, Saudi Arabia.
- Department of Pediatrics, King Faisal Specialist Hospital and Research Center, Alfaisal University, Po Box 3354, 11211, Riyadh, Saudi Arabia.
| |
Collapse
|
6
|
Song Z, Jin M, Wang S, Wu Y, Huang Q, Xu W, Fan Y, Tian F. Reciprocal regulation of SIRT1 and AMPK by Ginsenoside compound K impedes the conversion from plasma cells to mitigate for podocyte injury in MRL/ lpr mice in a B cell-specific manner. J Ginseng Res 2024; 48:190-201. [PMID: 38465215 PMCID: PMC10920007 DOI: 10.1016/j.jgr.2023.11.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2023] [Revised: 11/27/2023] [Accepted: 11/28/2023] [Indexed: 03/12/2024] Open
Abstract
Background Deposition of immune complexes drives podocyte injury acting in the initial phase of lupus nephritis (LN), a process mediated by B cell involvement. Accordingly, targeting B cell subsets represents a potential therapeutic approach for LN. Ginsenoside compound K (CK), a bioavailable component of ginseng, possesses nephritis benefits in lupus-prone mice; however, the underlying mechanisms involving B cell subpopulations remain elusive. Methods Female MRL/lpr mice were administered CK (40 mg/kg) intragastrically for 10 weeks, followed by measurements of anti-dsDNA antibodies, inflammatory chemokines, and metabolite profiles on renal samples. Podocyte function and ultrastructure were detected. Publicly available single-cell RNA sequencing data and flow cytometry analysis were employed to investigate B cell subpopulations. Metabolomics analysis was adopted. SIRT1 and AMPK expression were analyzed by immunoblotting and immunofluorescence assays. Results CK reduced proteinuria and protected podocyte ultrastructure in MRL/lpr mice by suppressing circulating anti-dsDNA antibodies and mitigating systemic inflammation. It activated B cell-specific SIRT1 and AMPK with Rhamnose accumulation, hindering the conversion of renal B cells into plasma cells. This cascade facilitated the resolution of local renal inflammation. CK facilitated the clearance of deposited immune complexes, thus reinstating podocyte morphology and mobility by normalizing the expression of nephrin and SYNPO. Conclusions Our study reveals the synergistic interplay between SIRT1 and AMPK, orchestrating the restoration of renal B cell subsets. This process effectively mitigates immune complex deposition and preserves podocyte function. Accordingly, CK emerges as a promising therapeutic agent, potentially alleviating the hyperactivity of renal B cell subsets during LN.
Collapse
Affiliation(s)
- Ziyu Song
- First School of Clinical Medicine, Zhejiang Chinese Medical University, Hangzhou, China
| | - Meng Jin
- First School of Clinical Medicine, Zhejiang Chinese Medical University, Hangzhou, China
| | - Shenglong Wang
- First School of Clinical Medicine, Zhejiang Chinese Medical University, Hangzhou, China
| | - Yanzuo Wu
- First School of Clinical Medicine, Zhejiang Chinese Medical University, Hangzhou, China
| | - Qi Huang
- Department of Endocrinology, The First Affiliated Hospital of Zhejiang Chinese Medical University, Hangzhou, China
| | - Wangda Xu
- First School of Clinical Medicine, Zhejiang Chinese Medical University, Hangzhou, China
| | - Yongsheng Fan
- College of Basic Medical Science, Institute of Basic Research in Clinical Medicine, Zhejiang Chinese Medical University, Hangzhou, China
| | - Fengyuan Tian
- First School of Clinical Medicine, Zhejiang Chinese Medical University, Hangzhou, China
- General Practice, The First Affiliated Hospital of Zhejiang Chinese Medical University, Hangzhou, China
| |
Collapse
|
7
|
Lee EG, Oh JE. From neglect to spotlight: the underappreciated role of B cells in cutaneous inflammatory diseases. Front Immunol 2024; 15:1328785. [PMID: 38426103 PMCID: PMC10902158 DOI: 10.3389/fimmu.2024.1328785] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2023] [Accepted: 01/30/2024] [Indexed: 03/02/2024] Open
Abstract
The skin, covering our entire body as its largest organ, manifests enormous complexities and a profound interplay of systemic and local responses. In this heterogeneous domain, B cells were considered strangers. Yet, recent studies have highlighted their existence in the skin and their distinct role in modulating cutaneous immunity across various immune contexts. Accumulating evidence is progressively shedding light on the significance of B cells in maintaining skin health and in skin disorders. Herein, we integrate current insights on the systemic and local contributions of B cells in three prevalent inflammatory skin conditions: Pemphigus Vulgaris (PV), Systemic Lupus Erythematosus (SLE), and Atopic Dermatitis (AD), underscoring the previously underappreciated importance of B cells within skin immunity. Moreover, we address the potential adverse effects of current treatments used for skin diseases, emphasizing their unintentional consequences on B cells. These comprehensive approaches may pave the way for innovative therapeutic strategies that effectively address the intricate nature of skin disorders.
Collapse
Affiliation(s)
- Eun-Gang Lee
- Graduate School of Medical Science and Engineering, Korea Advanced Institute of Science and Technology (KAIST), Daejeon, Republic of Korea
| | - Ji Eun Oh
- Graduate School of Medical Science and Engineering, Korea Advanced Institute of Science and Technology (KAIST), Daejeon, Republic of Korea
- BioMedical Research Center, KAIST, Daejeon, Republic of Korea
| |
Collapse
|
8
|
Gupta A, Jamal T, Rajbhar P, Gaur AS, Chauhan SS, Parthasarathi R. Cytokines inhibitory mechanism of Prunus domestica L. (Plum) peptides as potential immunomodulators against systemic lupus erythematosus: an in-silico screening. In Silico Pharmacol 2024; 12:12. [PMID: 38370860 PMCID: PMC10866836 DOI: 10.1007/s40203-023-00188-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2023] [Accepted: 12/28/2023] [Indexed: 02/20/2024] Open
Abstract
Natural bioactive peptides exhibit various chemical and structural properties to enhance the immune response against multiple inflammatory and autoimmune related disorders. The immunomodulatory function and bioactivity of seed peptides show the capability for the development of biotherapeutics that could prevent autoimmune diseases. The aim of current study is to determine the immunomodulatory function of bioactive peptides derived from the seed of plum (Prunus domestica L.) by applying various immunoinformatic approaches. A thorough analysis of forty-one peptides was performed including drug likeliness, pharmacokinetic, and bioactivity profiling studies. Further, molecular docking and molecular dynamics (MD) simulations of screened peptides were carried out with the two interleukin targets (IL-17A and IL-23) of systemic lupus erythematosus (SLE). After the systematic screening, four peptides, namely HLLP, LPLL, LPAGV, and NLPL, were found as potential inhibitors against SLE. Additionally, site-directed mutagenesis analysis was conducted to explore the role of essential amino acid residues in the binding pattern/energy change. Computational alanine screening analysis found that CYS123, CYS121 of IL-17A and ASP270, and SER249 of IL-23 as hot spot residues that could play an important role in the inhibition property of screened peptides. Overall, the methodology described in the study can be utilized for developing unique peptide inhibitors that have a preventative role against SLE. Graphical abstract Supplementary Information The online version contains supplementary material available at 10.1007/s40203-023-00188-8.
Collapse
Affiliation(s)
- Anshika Gupta
- Computational Toxicology Facility, Toxicoinformatics Research Group, CSIR-Indian Institute of Toxicology Research, Vishvigyan Bhavan 31, Mahatma Gandhi Marg, Lucknow, Uttar Pradesh 226001 India
| | - Tanya Jamal
- Computational Toxicology Facility, Toxicoinformatics Research Group, CSIR-Indian Institute of Toxicology Research, Vishvigyan Bhavan 31, Mahatma Gandhi Marg, Lucknow, Uttar Pradesh 226001 India
| | - Priyanka Rajbhar
- Computational Toxicology Facility, Toxicoinformatics Research Group, CSIR-Indian Institute of Toxicology Research, Vishvigyan Bhavan 31, Mahatma Gandhi Marg, Lucknow, Uttar Pradesh 226001 India
| | - Anamika Singh Gaur
- Computational Toxicology Facility, Toxicoinformatics Research Group, CSIR-Indian Institute of Toxicology Research, Vishvigyan Bhavan 31, Mahatma Gandhi Marg, Lucknow, Uttar Pradesh 226001 India
| | - Shweta Singh Chauhan
- Computational Toxicology Facility, Toxicoinformatics Research Group, CSIR-Indian Institute of Toxicology Research, Vishvigyan Bhavan 31, Mahatma Gandhi Marg, Lucknow, Uttar Pradesh 226001 India
- Academy of Scientific and Innovative Research (AcSIR), Uttar Pradesh, Ghaziabad, 201002 India
| | - Ramakrishnan Parthasarathi
- Computational Toxicology Facility, Toxicoinformatics Research Group, CSIR-Indian Institute of Toxicology Research, Vishvigyan Bhavan 31, Mahatma Gandhi Marg, Lucknow, Uttar Pradesh 226001 India
- Academy of Scientific and Innovative Research (AcSIR), Uttar Pradesh, Ghaziabad, 201002 India
| |
Collapse
|
9
|
Luo C, Zha AH, Luo RY, Hu ZL, Shen WY, Dai RP. ProBDNF contributed to patrolling monocyte infiltration and renal damage in systemic lupus erythematosus. Clin Immunol 2024; 259:109880. [PMID: 38142902 DOI: 10.1016/j.clim.2023.109880] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2023] [Revised: 12/07/2023] [Accepted: 12/19/2023] [Indexed: 12/26/2023]
Abstract
Monocyte aberrations have been increasingly recognized as contributors to renal damage in systemic lupus erythematosus (SLE), however, recognition of the underlying mechanisms and modulating strategies is at an early stage. Our studies have demonstrated that brain-derived neurotrophic factor precursor (proBDNF) drives the progress of SLE by perturbing antibody-secreting B cells, and proBDNF facilitates pro-inflammatory responses in monocytes. By utilizing peripheral blood from patients with SLE, GEO database and spontaneous MRL/lpr lupus mice, we demonstrated in the present study that CX3CR1+ patrolling monocytes (PMo) numbers were decreased in SLE. ProBDNF was specifically expressed in CX3CR1+ PMo and was closely correlated with disease activity and the degree of renal injury in SLE patients. In MRL/lpr mice, elevated proBDNF was found in circulating PMo and the kidney, and blockade of proBDNF restored the balance of circulating and kidney-infiltrating PMo. This blockade also led to the reversal of pro-inflammatory responses in monocytes and a noticeable improvement in renal damage in lupus mice. Overall, the results indicate that the upregulation of proBDNF in PMo plays a crucial role in their infiltration into the kidney, thereby contributing to nephritis in SLE. Targeting of proBDNF offers a potential therapeutic role in modulating monocyte-driven renal damage in SLE.
Collapse
Affiliation(s)
- Cong Luo
- Department of Anesthesiology, The Second Xiangya Hospital, Central South University, Changsha, China; Anesthesiology Research Institute of Central South University, China
| | - An-Hui Zha
- Department of Anesthesiology, The Second Xiangya Hospital, Central South University, Changsha, China; Anesthesiology Research Institute of Central South University, China
| | - Ru-Yi Luo
- Department of Anesthesiology, The Second Xiangya Hospital, Central South University, Changsha, China; Anesthesiology Research Institute of Central South University, China
| | - Zhao-Lan Hu
- Department of Anesthesiology, The Second Xiangya Hospital, Central South University, Changsha, China; Anesthesiology Research Institute of Central South University, China
| | - Wei-Yun Shen
- Department of Anesthesiology, The Second Xiangya Hospital, Central South University, Changsha, China; Anesthesiology Research Institute of Central South University, China.
| | - Ru-Ping Dai
- Department of Anesthesiology, The Second Xiangya Hospital, Central South University, Changsha, China; Anesthesiology Research Institute of Central South University, China.
| |
Collapse
|
10
|
Shao L, Yang M, Sun T, Xia H, Du D, Li X, Jie Z. Role of solute carrier transporters in regulating dendritic cell maturation and function. Eur J Immunol 2024; 54:e2350385. [PMID: 38073515 DOI: 10.1002/eji.202350385] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2023] [Revised: 12/06/2023] [Accepted: 12/07/2023] [Indexed: 02/27/2024]
Abstract
Dendritic cells (DCs) are specialized antigen-presenting cells that initiate and regulate innate and adaptive immune responses. Solute carrier (SLC) transporters mediate diverse physiological functions and maintain cellular metabolite homeostasis. Recent studies have highlighted the significance of SLCs in immune processes. Notably, upon activation, immune cells undergo rapid and robust metabolic reprogramming, largely dependent on SLCs to modulate diverse immunological responses. In this review, we explore the central roles of SLC proteins and their transported substrates in shaping DC functions. We provide a comprehensive overview of recent studies on amino acid transporters, metal ion transporters, and glucose transporters, emphasizing their essential contributions to DC homeostasis under varying pathological conditions. Finally, we propose potential strategies for targeting SLCs in DCs to bolster immunotherapy for a spectrum of human diseases.
Collapse
Affiliation(s)
- Lin Shao
- State Key Laboratory of Cellular Stress Biology, School of Life Sciences, Xiamen University, Xiamen, Fujian, China
- School of Life Sciences, Fudan University, Shanghai, China
| | - Mengxin Yang
- School of Public Health, Xiamen University, Xiamen, Fujian, China
| | - Tao Sun
- Department of Laboratory Medicine, The First Affiliated Hospital, School of Medicine, Xiamen University, Xiamen, Fujian, China
| | - Haotang Xia
- State Key Laboratory of Cellular Stress Biology, School of Life Sciences, Xiamen University, Xiamen, Fujian, China
| | - Dan Du
- Department of Stomatology, School of Medicine, Xiamen University, Xiamen, Fujian, China
- Cancer Research Center, School of Medicine, Xiamen University, Xiamen, Fujian, China
- State Key Laboratory of Cellular Stress Biology, School of Life Sciences, Faculty of Medicine and Life Sciences, Xiamen University, Xiamen, Fujian, China
| | - Xun Li
- Department of Laboratory Medicine, The First Affiliated Hospital, School of Medicine, Xiamen University, Xiamen, Fujian, China
| | - Zuliang Jie
- State Key Laboratory of Cellular Stress Biology, School of Life Sciences, Faculty of Medicine and Life Sciences, Xiamen University, Xiamen, Fujian, China
| |
Collapse
|
11
|
Yang L, Zhang T, Wang P, Chen W, Liu W, He X, Zhang Y, Jin S, Luo Z, Zhang Z, Wang X, Liu J. Imatinib and M351-0056 enhance the function of VISTA and ameliorate the development of SLE via IFN-I and noncanonical NF-κB pathway. Cell Biol Toxicol 2023; 39:3287-3304. [PMID: 37804401 DOI: 10.1007/s10565-023-09833-6] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2023] [Accepted: 09/14/2023] [Indexed: 10/09/2023]
Abstract
V-domain immunoglobulin suppressor of T-cell activation (VISTA), an important negative checkpoint protein, participates in immunoregulation. Systemic lupus erythematosus (SLE) is an autoimmune disease in which patients exhibit high levels of autoantibodies and multi-organ tissue injury, primarily involving the kidney and skin. In wild-type (WT) mice and Vsir-/- mice with pristane-induced lupus-like disease, we found that VISTA deficiency exacerbated the lupus-like disease in mice, possibly through aberrant activation of type I interferon (IFN-I) signaling, CD4+ T cell, and noncanonical nuclear factor-κB (NF-κB) pathway. Surface plasmon resonance results showed that imatinib, an FDA-approved tyrosine kinase inhibitor, may have a high affinity for human VISTA-ECD with a KD value of 0.2009 μM. The biological activities of imatinib and VISTA agonist M351-0056 were studied in monocytes and T cells and in lupus-like disease murine model of chronic graft-versus-host disease (cGVHD) and lupus-prone MRL/lpr mice. VISTA small-molecule agonist reduced the cytokine production of peripheral blood mononuclear cells (PBMCs) and Jurkat cells and inhibited PBMCs proliferation. Moreover, they attenuated the levels of autoantibodies, renal injury, inflammatory cytokines, chemokines, and immune cell expansion in the cGVHD mouse model and MRL/lpr mice. Our findings also demonstrated that VISTA small-molecule agonist ameliorated the development of SLE through improving aberrantly activated IFN-I signaling and noncanonical NF-κB pathway. In conclusion, VISTA has a protective effect on the development and progression of SLE. VISTA agonist M351-0056 and imatinib have been firstly demonstrated to attenuate SLE, suggesting interventions to enhance VISTA function may be effective in treating SLE. VISTA deficiency exacerbates pristane-induced lupus-like disease in mice by promoting activation of the IFN-I and noncanonical NF-κB pathway. Imatinib was screened as a small-molecule VISTA agonist by molecular docking, SPR, and cellular level experiments. VISTA agonists (M351-0056 and imatinib) alleviated lupus-like disease progression in the cGVHD mouse model and MRL/lpr mice by inhibiting activation of IFN-I and noncanonical NF-κB pathway.
Collapse
Affiliation(s)
- Lu Yang
- New Drug Screening Center, China Pharmaceutical University, Nanjing, 210009, China
| | - Tingting Zhang
- New Drug Screening Center, China Pharmaceutical University, Nanjing, 210009, China
| | - Penglu Wang
- New Drug Screening Center, China Pharmaceutical University, Nanjing, 210009, China
| | - Wenting Chen
- New Drug Screening Center, China Pharmaceutical University, Nanjing, 210009, China
| | - Wanmei Liu
- New Drug Screening Center, China Pharmaceutical University, Nanjing, 210009, China
| | - Xiaoyu He
- New Drug Screening Center, China Pharmaceutical University, Nanjing, 210009, China
| | - Yuxin Zhang
- New Drug Screening Center, China Pharmaceutical University, Nanjing, 210009, China
| | - Shasha Jin
- New Drug Screening Center, China Pharmaceutical University, Nanjing, 210009, China
| | - Zhijie Luo
- New Drug Screening Center, China Pharmaceutical University, Nanjing, 210009, China
| | - Zunjian Zhang
- New Drug Screening Center, China Pharmaceutical University, Nanjing, 210009, China.
| | - Xinzhi Wang
- New Drug Screening Center, China Pharmaceutical University, Nanjing, 210009, China.
| | - Jun Liu
- New Drug Screening Center, China Pharmaceutical University, Nanjing, 210009, China.
| |
Collapse
|
12
|
Liu Y, Xie Y, Qin Y, Xie Q, Chen X. Control Groups in RCTs Supporting Approval of Drugs for Systemic Rheumatic Diseases, 2012-2022. JAMA Netw Open 2023; 6:e2344767. [PMID: 37991756 DOI: 10.1001/jamanetworkopen.2023.44767] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/23/2023] Open
Abstract
Importance Randomized clinical trials (RCTs) testing innovative drugs must strive to use optimal control groups to reflect the best available treatments. A comprehensive evaluation of the quality of control groups in pivotal RCTs supporting systemic rheumatic disease (SRD) drug approvals by the Food and Drug Administration (FDA) is lacking. Objective To examine the proportion of pivotal RCTs that used optimal control groups among RCTs supporting newly approved SRD drugs in the US over the past decade. Design, Setting, and Participants In this study, individual RCTs supporting SRD new drug approvals by the FDA between January 2012 and October 2022 were analyzed for design, study duration, control group, and primary end point. The quality of control groups was determined by comparison with published guidelines before and during the trial. Main Outcomes and Measures The primary measure was the proportion of RCTs using optimal control groups. Differences in response rate between investigating and control groups and the response rate of placebo control groups were also examined. Results Between January 2012 and October 2022, the FDA approved 44 SRD drugs, involving 65 pivotal RCTs. Overall, 16 RCTs used optimal control groups. In 55 trials, no active groups were used, and more than 80% of these trials were suboptimal (47 trials [85.5%]). Among 56 trials for systemic arthritis, 49 trials used suboptimal control groups, mainly placebo or dose-response controls (47 trials), with a few active controls (2 trials). Studies of other SRDs frequently used placebo or dose-response controls but were considered optimal controls (8 trials). There was significant improvement in response rates of investigating compared with placebo groups, with relative risk mostly exceeding 1.50 (range, 0.90; 95% CI, 0.69-1.17 for anifrolumab to 11.00; 95% CI, 2.69-44.96 for mepolizumab). In all placebo-controlled trials, the median (IQR) response rate in placebo groups was 26.0% (19.2%-32.3%). Conclusions and Relevance These findings suggest that the quality of control groups in RCTs leading to SRD drug approval needs improvement and that despite challenges in translating scientific theories to clinical scenarios, it is crucial to consistently prioritize efforts to promote appropriate control group selection to ensure the accurate assessment of innovative drug efficacy.
Collapse
Affiliation(s)
- Yang Liu
- Tsinghua Clinical Research Institute, School of Medicine, Tsinghua University, Beijing, China
- Office of Clinical Trial Institute, Beijing Tsinghua Changgung Hospital, Beijing, China
| | - Yan Xie
- Department of Rheumatology and Immunology, West China Hospital, Sichuan University, Chengdu, China
| | - Yunhe Qin
- Pharmcube (Beijing) Co, Ltd, Beijing, China
| | - Qibing Xie
- Department of Rheumatology and Immunology, West China Hospital, Sichuan University, Chengdu, China
| | - Xiaoyuan Chen
- Tsinghua Clinical Research Institute, School of Medicine, Tsinghua University, Beijing, China
- Office of Clinical Trial Institute, Beijing Tsinghua Changgung Hospital, Beijing, China
| |
Collapse
|
13
|
Boeszoermenyi A, Bernaleau L, Chen X, Kartnig F, Xie M, Zhang H, Zhang S, Delacrétaz M, Koren A, Hopp AK, Dvorak V, Kubicek S, Aletaha D, Yang M, Rebsamen M, Heinz LX, Superti-Furga G. A conformation-locking inhibitor of SLC15A4 with TASL proteostatic anti-inflammatory activity. Nat Commun 2023; 14:6626. [PMID: 37863876 PMCID: PMC10589233 DOI: 10.1038/s41467-023-42070-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2023] [Accepted: 09/29/2023] [Indexed: 10/22/2023] Open
Abstract
Dysregulation of pathogen-recognition pathways of the innate immune system is associated with multiple autoimmune disorders. Due to the intricacies of the molecular network involved, the identification of pathway- and disease-specific therapeutics has been challenging. Using a phenotypic assay monitoring the degradation of the immune adapter TASL, we identify feeblin, a chemical entity which inhibits the nucleic acid-sensing TLR7/8 pathway activating IRF5 by disrupting the SLC15A4-TASL adapter module. A high-resolution cryo-EM structure of feeblin with SLC15A4 reveals that the inhibitor binds a lysosomal outward-open conformation incompatible with TASL binding on the cytoplasmic side, leading to degradation of TASL. This mechanism of action exploits a conformational switch and converts a target-binding event into proteostatic regulation of the effector protein TASL, interrupting the TLR7/8-IRF5 signaling pathway and preventing downstream proinflammatory responses. Considering that all components involved have been genetically associated with systemic lupus erythematosus and that feeblin blocks responses in disease-relevant human immune cells from patients, the study represents a proof-of-concept for the development of therapeutics against this disease.
Collapse
Affiliation(s)
- Andras Boeszoermenyi
- CeMM Research Center for Molecular Medicine of the Austrian Academy of Sciences, Vienna, Austria
| | - Léa Bernaleau
- Department of Immunobiology, University of Lausanne, Epalinges, Switzerland
| | - Xudong Chen
- Ministry of Education Key Laboratory of Protein Science, Tsinghua-Peking Center for Life Sciences, Beijing Advanced Innovation Center for Structural Biology, School of Life Sciences, Tsinghua University, Beijing, China
| | - Felix Kartnig
- CeMM Research Center for Molecular Medicine of the Austrian Academy of Sciences, Vienna, Austria
- Division of Rheumatology, Department of Internal Medicine III, Medical University of Vienna, Vienna, Austria
| | - Min Xie
- Ministry of Education Key Laboratory of Protein Science, Tsinghua-Peking Center for Life Sciences, Beijing Advanced Innovation Center for Structural Biology, School of Life Sciences, Tsinghua University, Beijing, China
| | - Haobo Zhang
- Department of Immunobiology, University of Lausanne, Epalinges, Switzerland
| | - Sensen Zhang
- Ministry of Education Key Laboratory of Protein Science, Tsinghua-Peking Center for Life Sciences, Beijing Advanced Innovation Center for Structural Biology, School of Life Sciences, Tsinghua University, Beijing, China
| | - Maeva Delacrétaz
- Department of Immunobiology, University of Lausanne, Epalinges, Switzerland
| | - Anna Koren
- CeMM Research Center for Molecular Medicine of the Austrian Academy of Sciences, Vienna, Austria
| | - Ann-Katrin Hopp
- CeMM Research Center for Molecular Medicine of the Austrian Academy of Sciences, Vienna, Austria
| | - Vojtech Dvorak
- CeMM Research Center for Molecular Medicine of the Austrian Academy of Sciences, Vienna, Austria
| | - Stefan Kubicek
- CeMM Research Center for Molecular Medicine of the Austrian Academy of Sciences, Vienna, Austria
| | - Daniel Aletaha
- Division of Rheumatology, Department of Internal Medicine III, Medical University of Vienna, Vienna, Austria
| | - Maojun Yang
- Ministry of Education Key Laboratory of Protein Science, Tsinghua-Peking Center for Life Sciences, Beijing Advanced Innovation Center for Structural Biology, School of Life Sciences, Tsinghua University, Beijing, China
- Cryo-EM Facility Center, Southern University of Science & Technology, Shenzhen, Guangdong, China
| | - Manuele Rebsamen
- Department of Immunobiology, University of Lausanne, Epalinges, Switzerland.
| | - Leonhard X Heinz
- Division of Rheumatology, Department of Internal Medicine III, Medical University of Vienna, Vienna, Austria.
| | - Giulio Superti-Furga
- CeMM Research Center for Molecular Medicine of the Austrian Academy of Sciences, Vienna, Austria.
- Center for Physiology and Pharmacology, Medical University of Vienna, Vienna, Austria.
| |
Collapse
|
14
|
Fujimoto S, Arinobu Y, Miyawaki K, Ayano M, Mitoma H, Kimoto Y, Ono N, Akashi K, Horiuchi T, Niiro H. Anti-dsDNA IgE induces IL-4 production from basophils, potentially involved in B-cell differentiation in systemic lupus erythematosus. Rheumatology (Oxford) 2023; 62:3480-3489. [PMID: 36810600 DOI: 10.1093/rheumatology/kead082] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2022] [Revised: 01/26/2023] [Accepted: 02/06/2023] [Indexed: 02/24/2023] Open
Abstract
OBJECTIVES Recently, the involvement of basophils and IgE-type autoantibodies in the pathogenesis of SLE has been elucidated using mouse models; however, few studies have been conducted in humans. In this study, the role of basophils and anti-double-stranded DNA (dsDNA) IgE in SLE was examined using human samples. METHODS The correlation between disease activity and serum levels of anti-dsDNA IgE in SLE was evaluated using enzyme-linked immunosorbent assay. Cytokines produced by IgE-stimulated basophils from healthy subjects were assessed using RNA sequences. The interaction of basophils and B cells to promote B cell differentiation was investigated using a co-culture system. The ability of basophils from patients with SLE with anti-dsDNA IgE to create cytokines that may be involved in B cell differentiation in response to dsDNA was examined using real-time PCR. RESULTS Anti-dsDNA IgE levels in the serum of patients with SLE correlated with disease activity. Healthy donor basophils produced IL-3, IL-4 and TGF-β1 after anti-IgE stimulation. Co-culture of B cells with anti-IgE-stimulated basophils increased plasmablasts which were cancelled by neutralizing IL-4. After encountering the antigen, basophils released IL-4 more quickly than follicular helper T cells. Basophils isolated from patients with anti-dsDNA IgE promoted IL-4 expression by adding dsDNA. CONCLUSIONS These results suggest that basophils contribute to the pathogenesis of SLE by promoting B cell differentiation via dsDNA-specific IgE in patients similar to the process described in mouse models.
Collapse
Affiliation(s)
- Sho Fujimoto
- Department of Clinical Immunology and Rheumatology/Infectious Disease, Kyushu University Hospital, Fukuoka, Japan
| | - Yojiro Arinobu
- Department of Clinical Immunology and Rheumatology/Infectious Disease, Kyushu University Hospital, Fukuoka, Japan
| | - Kohta Miyawaki
- Department of Medicine and Biosystemic Science, Kyushu University Graduate School of Medical Sciences, Fukuoka, Japan
| | - Masahiro Ayano
- Department of Cancer Stem Cell Research, Kyushu University Graduate School of Medical Sciences, Fukuoka, Japan
| | - Hiroki Mitoma
- Department of Clinical Immunology and Rheumatology/Infectious Disease, Kyushu University Hospital, Fukuoka, Japan
| | - Yasutaka Kimoto
- Department of Internal Medicine, Kyushu University Beppu Hospital, Oita, Japan
| | - Nobuyuki Ono
- Department of Clinical Immunology and Rheumatology/Infectious Disease, Kyushu University Hospital, Fukuoka, Japan
| | - Koichi Akashi
- Department of Medicine and Biosystemic Science, Kyushu University Graduate School of Medical Sciences, Fukuoka, Japan
| | - Takahiko Horiuchi
- Department of Internal Medicine, Kyushu University Beppu Hospital, Oita, Japan
| | - Hiroaki Niiro
- Department of Medical Education, Faculty of Medical Sciences, Kyushu University Graduate School of Medical Sciences, Fukuoka, Japan
| |
Collapse
|
15
|
Guo F, Pan Q, Chen T, Liao S, Li S, Li A, Chen S, Chen J, Xiao Z, Su H, Yang L, Yang C, Liu HF, Pan Q. hUC-MSC transplantation therapy effects on lupus-prone MRL/lpr mice at early disease stages. Stem Cell Res Ther 2023; 14:211. [PMID: 37605271 PMCID: PMC10441722 DOI: 10.1186/s13287-023-03432-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2023] [Accepted: 07/26/2023] [Indexed: 08/23/2023] Open
Abstract
BACKGROUND The efficacy of human umbilical cord mesenchymal stem cell (hUC-MSC) transplantation in treating systemic lupus erythematosus (SLE) has been confirmed by small-scale clinical trials. However, these trials focused on severe or refractory SLE, while few studies focused on mild SLE. Therefore, this study focused on the therapeutic effects of hUC-MSC transplantation in early-stage or mild MRL/lpr lupus model mice. METHODS Commercially available hUC-MSCs were transplanted into 8-week-old MRL/lpr mice by tail vein injection. Flow cytometry was used to analyze B cells and their subsets in the peripheral blood. Further, plasma inflammatory factors, autoantibodies, and plasma biochemical indices were detected using protein chip technology and ELISA kits. In addition, pathological staining and immunofluorescence were performed to detect kidney injury in mice. RESULTS hUC-MSC transplantation did not affect the mice's body weight, and both middle and high dose hUC-MSC transplantation (MD and HD group) actually reduced spleen weight. hUC-MSC transplantation significantly decreased the proportion of plasmablasts (PB), IgG1- PB, IgG1+ PB, IgG1+ memory B (MB) cells, IgG1+ DN MB, and IgG1+ SP MB cells. The hUC-MSC transplantation had significantly reduced plasma levels of inflammatory factors, such as TNF-α, IFN-γ, IL-6, and IL-13. Pathological staining showed that the infiltration of glomerular inflammatory cells was significantly reduced and that the level of glomerular fibrosis was significantly alleviated in hUC-MSC-transplanted mice. Immunofluorescence assays showed that the deposition of IgG and IgM antibodies in the kidneys of hUC-MSC-transplanted mice was significantly lower than in the control. CONCLUSION hUC-MSC transplantation could inhibit the proliferation and differentiation of peripheral blood B cells in the early-stage of MRL/lpr mice, thereby alleviating the plasma inflammatory environment in mice, leading to kidney injury remission. The study provides a new and feasible strategy for SLE treatment.
Collapse
Affiliation(s)
- Fengbiao Guo
- Guangdong Provincial Key Laboratory of Autophagy and Major Chronic Non-Communicable Diseases, Affiliated Hospital of Guangdong Medical University, Zhanjiang, 524001, Guangdong, China
| | - Quanren Pan
- Guangdong Provincial Key Laboratory of Autophagy and Major Chronic Non-Communicable Diseases, Affiliated Hospital of Guangdong Medical University, Zhanjiang, 524001, Guangdong, China
| | - Ting Chen
- Guangdong Provincial Key Laboratory of Autophagy and Major Chronic Non-Communicable Diseases, Affiliated Hospital of Guangdong Medical University, Zhanjiang, 524001, Guangdong, China
| | - Shuzhen Liao
- Guangdong Provincial Key Laboratory of Autophagy and Major Chronic Non-Communicable Diseases, Affiliated Hospital of Guangdong Medical University, Zhanjiang, 524001, Guangdong, China
| | - Shangmei Li
- Guangdong Provincial Key Laboratory of Autophagy and Major Chronic Non-Communicable Diseases, Affiliated Hospital of Guangdong Medical University, Zhanjiang, 524001, Guangdong, China
| | - Aifen Li
- Guangdong Provincial Key Laboratory of Autophagy and Major Chronic Non-Communicable Diseases, Affiliated Hospital of Guangdong Medical University, Zhanjiang, 524001, Guangdong, China
| | - Shuxian Chen
- Guangdong Provincial Key Laboratory of Autophagy and Major Chronic Non-Communicable Diseases, Affiliated Hospital of Guangdong Medical University, Zhanjiang, 524001, Guangdong, China
| | - Jiaxuan Chen
- Guangdong Provincial Key Laboratory of Autophagy and Major Chronic Non-Communicable Diseases, Affiliated Hospital of Guangdong Medical University, Zhanjiang, 524001, Guangdong, China
| | - Zengzhi Xiao
- Guangdong Provincial Key Laboratory of Autophagy and Major Chronic Non-Communicable Diseases, Affiliated Hospital of Guangdong Medical University, Zhanjiang, 524001, Guangdong, China
| | - Hongyong Su
- Guangdong Provincial Key Laboratory of Autophagy and Major Chronic Non-Communicable Diseases, Affiliated Hospital of Guangdong Medical University, Zhanjiang, 524001, Guangdong, China
| | - Lawei Yang
- Guangdong Provincial Key Laboratory of Autophagy and Major Chronic Non-Communicable Diseases, Affiliated Hospital of Guangdong Medical University, Zhanjiang, 524001, Guangdong, China
| | - Chen Yang
- Guangdong Provincial Key Laboratory of Autophagy and Major Chronic Non-Communicable Diseases, Affiliated Hospital of Guangdong Medical University, Zhanjiang, 524001, Guangdong, China
| | - Hua-Feng Liu
- Guangdong Provincial Key Laboratory of Autophagy and Major Chronic Non-Communicable Diseases, Affiliated Hospital of Guangdong Medical University, Zhanjiang, 524001, Guangdong, China.
| | - Qingjun Pan
- Guangdong Provincial Key Laboratory of Autophagy and Major Chronic Non-Communicable Diseases, Affiliated Hospital of Guangdong Medical University, Zhanjiang, 524001, Guangdong, China.
| |
Collapse
|
16
|
Capdevila O, Mitjavila F, Espinosa G, Caminal-Montero L, Marín-Ballvè A, González León R, Castro A, Canora J, Pinilla B, Fonseca E, Ruiz-Irastorza G. Predictive Factors of the Use of Rituximab and Belimumab in Spanish Lupus Patients. MEDICINA (KAUNAS, LITHUANIA) 2023; 59:1362. [PMID: 37629652 PMCID: PMC10456702 DOI: 10.3390/medicina59081362] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/27/2023] [Revised: 06/21/2023] [Accepted: 07/17/2023] [Indexed: 08/27/2023]
Abstract
Objectives: To analyze the characteristics and the predictive factors of the use of rituximab and belimumab in daily practice in patients from the inception cohort Registro Español de Lupus (RELES). Material and methods: The study included 518 patients. We considered patients treated with biologics who received at least one dose of rituximab or belimumab, and possible indications of those manifestations registered at the same time or in the previous 2 months of the start of the therapy. Results: In our cohort, 37 (7%) patients received at least one biological treatment. Rituximab was prescribed in 26 patients and belimumab in 11. Rituximab was mainly prescribed for hemolytic anemia or thrombocytopenia (11 patients, 42%), lupus nephritis and neuropsychiatric lupus (5 patients each, 19%). Belimumab was mostly used for arthritis (8 patients, 73%). In the univariate analysis, the predictive factors at diagnosis for the use of biologic therapy were younger age (p = 0.022), a higher SLEDAI (p = 0.001) and the presence of psychosis (p = 0.011), organic mental syndrome (SOCA) (p = 0.006), hemolytic anemia (p = 0.001), or thrombocytopenia (p = 0.01). In the multivariant model, only younger age, psychosis, and hemolytic anemia were independent predictors of the use of biologics. Conclusions: Rituximab is usually given to patients with hematological, neuropsychiatric and renal involvement and belimumab for arthritis. Psychosis, hemolytic anemia and age at the diagnosis of lupus were independent predictive factors of the use of biological agents. Their global effects are beneficial, with a significant reduction in SLE activity and a low rate of side effects.
Collapse
Affiliation(s)
- O. Capdevila
- Autoimmune Diseases Unit, Department of Internal Medicine, Hospital Universitari de Bellvitge, L’Hospitalet de Llobregat, 08907 Barcelona, Spain;
| | - F. Mitjavila
- Autoimmune Diseases Unit, Department of Internal Medicine, Hospital Universitari de Bellvitge, L’Hospitalet de Llobregat, 08907 Barcelona, Spain;
- Bellvitge Biomedical Research Institute (IDIBELL), L’Hospitalet de Llobregat, 08907 Barcelona, Spain
| | - G. Espinosa
- Department of Autoimmune Diseases, Hospital Clinic, 08036 Barcelona, Spain;
| | - L. Caminal-Montero
- Group of Basic and Translational Research in Inflammatory Diseases, Departament of Internal Medicine, Hospital Universitario Central de Asturias, Instituto de Investigación Sanitaria del Principado de Asturias (ISPA), 33011 Oviedo, Spain;
| | - A. Marín-Ballvè
- Department of Internal Medicine, Hospital Clínico Universitario Lozano Blesa, 50009 Zaragoza, Spain
| | - R. González León
- Department of Internal Medicine, Hospital Universitario Virgen del Rocío, 41013 Seville, Spain;
| | - A. Castro
- Department of Internal Medicine, Hospital Universitari Sant Joan de Reus, 43204 Reus, Spain
| | - J. Canora
- Department of Internal Medicine, Hospital Universitario de Fuenlabrada, 28942 Madrid, Spain
| | - B. Pinilla
- Department of Internal Medicine, Hospital General Universitario Gregorio Marañón, 28007 Madrid, Spain;
| | - E. Fonseca
- Department of Internal Medicine, Hospital de Cabueñes, 33394 Gijón, Spain;
| | - G. Ruiz-Irastorza
- Autoimmune Diseases Research Unit, Department of Internal Medicine, BioCruces Bizkaia Health Research Institute, Hospital Universitario Cruces, UPV/EHU, 48903 Barakaldo, Spain
| |
Collapse
|
17
|
Park J, Wu Y, Li Q, Choi J, Ju H, Cai Y, Lee J, Oh YK. Nanomaterials for antigen-specific immune tolerance therapy. Drug Deliv Transl Res 2023; 13:1859-1881. [PMID: 36094655 DOI: 10.1007/s13346-022-01233-3] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/25/2022] [Indexed: 11/26/2022]
Abstract
Impairment of immune tolerance might cause autologous tissue damage or overactive immune response against non-pathogenic molecules. Although autoimmune disease and allergy have complicated pathologies, the current strategies have mainly focused on symptom amelioration or systemic immunosuppression which can lead to fatal adverse events. The induction of antigen-specific immune tolerance may provide therapeutic benefits to autoimmune disease and allergic response, while reducing nonspecific immune adverse responses. Diverse nanomaterials have been studied to induce antigen-specific immune tolerance therapy. This review will cover the immunological background of antigen-specific tolerance, clinical importance of antigen-specific immune tolerance, and nanomaterials designed for autoimmune and allergic diseases. As nanomaterials for modulating immune tolerances, lipid-based nanoparticles, polymeric nanoparticles, and biological carriers have been covered. Strategies to provide antigen-specific immune tolerance have been addressed. Finally, current challenges and perspectives of nanomaterials for antigen-specific immune tolerance therapy will be discussed.
Collapse
Affiliation(s)
- Jinwon Park
- College of Pharmacy and Research Institute of Pharmaceutical Sciences, Seoul National University, Seoul, 08826, Republic of Korea
| | - Yina Wu
- College of Pharmacy and Research Institute of Pharmaceutical Sciences, Seoul National University, Seoul, 08826, Republic of Korea
| | - Qiaoyun Li
- College of Pharmacy and Research Institute of Pharmaceutical Sciences, Seoul National University, Seoul, 08826, Republic of Korea
| | - Jaehyun Choi
- College of Pharmacy and Research Institute of Pharmaceutical Sciences, Seoul National University, Seoul, 08826, Republic of Korea
| | - Hyemin Ju
- College of Pharmacy and Research Institute of Pharmaceutical Sciences, Seoul National University, Seoul, 08826, Republic of Korea
| | - Yu Cai
- College of Pharmacy, Jinan University, Guangzhou, 510632, China
| | - Jaiwoo Lee
- College of Pharmacy and Research Institute of Pharmaceutical Sciences, Seoul National University, Seoul, 08826, Republic of Korea
| | - Yu-Kyoung Oh
- College of Pharmacy and Research Institute of Pharmaceutical Sciences, Seoul National University, Seoul, 08826, Republic of Korea.
| |
Collapse
|
18
|
Yue C, Wang W, Gao S, Ye J, Zhang T, Xing Z, Xie Y, Qian H, Zhou X, Li S, Yu A, Wang L, Wang J, Hua C. Agomir miRNA-150-5p alleviates pristane-induced lupus by suppressing myeloid dendritic cells activation and inflammation via TREM-1 axis. Inflamm Res 2023:10.1007/s00011-023-01754-8. [PMID: 37326693 DOI: 10.1007/s00011-023-01754-8] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2023] [Revised: 05/12/2023] [Accepted: 05/30/2023] [Indexed: 06/17/2023] Open
Abstract
OBJECTIVE Triggering receptors expressed on myeloid cells-1 (TREM-1) has been shown to participate in inflammatory autoimmune diseases. Nevertheless, the detailed underlying mechanisms and therapeutic benefits by targeting TREM-1 remain elusive, especially in myeloid dendritic cells (mDCs) and systemic lupus erythematosus (SLE). Disorders of epigenetic processes including non-coding RNAs give rise to SLE, resulting in complicated syndromes. Here, we aim to address this issue and explore the miRNA to inhibit the activation of mDCs and alleviate the progress of SLE by targeting TREM-1 signal axis. METHODS Bioinformatics methods were used to analyze the differentially expressed genes (DEGs) between patients with SLE and healthy individuals by four mRNA microarray datasets from Gene Expression Omnibus (GEO). Then we identified the expression of TREM-1 and its soluble form (sTREM-1) in clinical samples by ELISA, quantitative real-time PCR and Western blot. Phenotypic and functional changes of mDCs elicited by TREM-1 agonist were determined. Three databases of miRNAs target prediction and a dual-luciferase reporter assay were used to screen and verify miRNAs that can directly inhibit TREM-1 expression in vitro. Moreover, pristane-induced lupus mice were injected with miR-150-5p agomir to evaluate the effects of miR-150-5p on mDCs in lymphatic organs and disease activity in vivo. RESULTS We screened TREM-1 as one of the hub genes closely correlated with the progression of SLE and identified sTREM-1 in serum as a valuable diagnostic biomarker for SLE. Moreover, activation of TREM-1 by its agonist promoted activation and chemotaxis of mDCs and increased the production of inflammatory cytokines and chemokines, showing higher expression of IL-6, TNF-α, and MCP-1. We showed that lupus mice displayed a unique miRNA signature in spleen, among which miR-150 was the most significantly expressed miRNA that targeting TREM-1 compared with wild type group. Transfection of miRNA-150-5p mimics directly suppressed the expression of TREM-1 by binding to its 3' UTR. Our in vivo experiments first indicated that administration of miR-150-5p agomir effectively ameliorated lupus symptoms. Intriguingly, miR-150 inhibited the over activation of mDCs through TREM-1 signal pathway in lymphatic organs and renal tissues. CONCLUSIONS TREM-1 represents a potentially novel therapeutic target and we identify miR-150-5p as one of the mechanisms to alleviate lupus disease, which is attributable for inhibiting mDCs activation through TREM-1 signaling pathway.
Collapse
Affiliation(s)
- Chenran Yue
- School of Basic Medical Sciences, Wenzhou Medical University, Wenzhou, 325035, Zhejiang Province, China
| | - Wenqian Wang
- Department of Plastic Surgery, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, 325035, Zhejiang Province, China
| | - Sheng Gao
- Laboratory Animal Center, Wenzhou Medical University, Wenzhou, 325035, Zhejiang Province, China
| | - Jianzhong Ye
- Department of Clinical Laboratory, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, 325035, Zhejiang Province, China
| | - Ting Zhang
- Department of Rheumatology, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, 325035, Zhejiang Province, China
| | - Zhouhang Xing
- School of Basic Medical Sciences, Wenzhou Medical University, Wenzhou, 325035, Zhejiang Province, China
| | - Yuanyuan Xie
- School of Basic Medical Sciences, Wenzhou Medical University, Wenzhou, 325035, Zhejiang Province, China
| | - Hengrong Qian
- School of the 2Nd Clinical Medical Sciences, Wenzhou Medical University, Wenzhou, 325035, Zhejiang Province, China
| | - Xueyin Zhou
- School of the 2Nd Clinical Medical Sciences, Wenzhou Medical University, Wenzhou, 325035, Zhejiang Province, China
| | - Shuting Li
- School of the 2Nd Clinical Medical Sciences, Wenzhou Medical University, Wenzhou, 325035, Zhejiang Province, China
| | - Anni Yu
- School of the 2Nd Clinical Medical Sciences, Wenzhou Medical University, Wenzhou, 325035, Zhejiang Province, China
| | - Liangxing Wang
- Key Laboratory of Heart and Lung, Division of Pulmonary Medicine, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, 325035, Zhejiang Province, China.
| | - Jianguang Wang
- School of Basic Medical Sciences, Wenzhou Medical University, Wenzhou, 325035, Zhejiang Province, China.
| | - Chunyan Hua
- School of Basic Medical Sciences, Wenzhou Medical University, Wenzhou, 325035, Zhejiang Province, China.
| |
Collapse
|
19
|
Cai B, Lu H, Ye Q, Xiao Q, Wu X, Xu H. Identification of potent target and its mechanism of action of Tripterygium wilfordii Hook F in the treatment of lupus nephritis. Int J Rheum Dis 2023. [PMID: 37317623 DOI: 10.1111/1756-185x.14780] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2023] [Revised: 04/11/2023] [Accepted: 05/28/2023] [Indexed: 06/16/2023]
Abstract
AIM The Chinese anti-rheumatic herbal remedy Tripterygium wilfordii Hook F (TWHF) has been widely shown to be effective in treating lupus nephritis (LN), but the therapeutic targets and mechanisms of action are still unclear. In this study, we aimed to combine mRNA expression profile analysis and network pharmacology analysis to screen the pathogenic genes and pathways involved in LN and to explore the potential targets of TWHF in the treatment of LN. METHODS The mRNA expression profiles of LN patients were used to screen differentially expressed genes (DEGs) and to predict associated pathogenic pathways and networks via the Ingenuity Pathway Analysis database. Through molecular docking, we predicted the mechanism by which TWHF interacts with candidate targets. RESULTS A total of 351 DEGs were screened from the glomeruli of LN patients and were mainly concentrated in the role of pattern recognition receptors in the recognition of bacteria and viruses and interferon signaling pathways. A total of 130 DEGs were screened from the tubulointerstitium of LN patients, which were concentrated in the interferon signaling pathway. TWHF might be effective in treating LN by hydrogen bonding to regulate the functions of 24 DEGs (including HMOX1, ALB, and CASP1), which are mainly concentrated in the B-cell signaling pathway. CONCLUSION The mRNA expression profile of renal tissue from LN patients revealed a large number of DEGs. TWHF has been shown to interact with the DEGs (including HMOX1, ALB and CASP1) through hydrogen bonding to treat LN.
Collapse
Affiliation(s)
- Bin Cai
- Department of Rheumatology and Immunology, Shanghai Changzheng Hospital, Naval Medical University, Shanghai, China
| | - Hongjuan Lu
- Department of Rheumatology and Immunology, Shanghai Changzheng Hospital, Naval Medical University, Shanghai, China
| | - Qianyi Ye
- Department of Rheumatology and Immunology, Shanghai Changzheng Hospital, Naval Medical University, Shanghai, China
| | - Qingqing Xiao
- Department of Cardiology, Shanghai Chest Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, China
| | - Xin Wu
- Department of Rheumatology and Immunology, Shanghai Changzheng Hospital, Naval Medical University, Shanghai, China
| | - Huji Xu
- Department of Rheumatology and Immunology, Shanghai Changzheng Hospital, Naval Medical University, Shanghai, China
- School of Medicine, Tsinghua University, Beijing, China
- Peking-Tsinghua Center for Life Sciences, Tsinghua University, Beijing, China
| |
Collapse
|
20
|
Nakayamada S, Tanaka Y. Immune Phenotype as a Biomarker for Systemic Lupus Erythematosus. Biomolecules 2023; 13:960. [PMID: 37371540 DOI: 10.3390/biom13060960] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2023] [Revised: 05/29/2023] [Accepted: 06/06/2023] [Indexed: 06/29/2023] Open
Abstract
The treatment of rheumatoid arthritis was revolutionized with the use of molecular-targeted drugs that target immunoregulatory molecules. The success of treatment with these drugs prompted the development of molecular-targeted drugs for systemic lupus erythematosus. However, systemic lupus erythematosus is a disease with high heterogeneous immune abnormalities, and diverse cells or molecules can be treatment targets. Thus, the identification of subpopulations based on immune abnormalities is essential for the development of effective treatment. One analytical method used to identify subpopulations is the immunophenotyping of peripheral blood samples of patients. This analysis evaluates the validity of target molecules for peripheral blood immune cell subsets, which are expected to be developed as biomarkers for precision medicine in which appropriate treatment targets are set for each subpopulation.
Collapse
Affiliation(s)
- Shingo Nakayamada
- The First Department of Internal Medicine, School of Medicine, University of Occupational and Environmental Health, Japan, 1-1 Iseigaoka, Yahata-nishi-ku, Kitakyushu 807-8555, Fukuoka, Japan
| | - Yoshiya Tanaka
- The First Department of Internal Medicine, School of Medicine, University of Occupational and Environmental Health, Japan, 1-1 Iseigaoka, Yahata-nishi-ku, Kitakyushu 807-8555, Fukuoka, Japan
| |
Collapse
|
21
|
Javmen A, Zou J, Nallar SC, Szmacinski H, Lakowicz JR, Gewirtz AT, Toshchakov VY. TLR5-Derived, TIR-Interacting Decoy Peptides to Inhibit TLR Signaling. JOURNAL OF IMMUNOLOGY (BALTIMORE, MD. : 1950) 2023; 210:1419-1427. [PMID: 36946775 PMCID: PMC10121880 DOI: 10.4049/jimmunol.2200394] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/02/2022] [Accepted: 02/22/2023] [Indexed: 03/23/2023]
Abstract
TLR5, which is activated by flagellin, plays an important role in initiating immune response to a broad spectrum of motile bacterial pathogens. TLRs induce intracellular signaling via dimerization of their TIR domains followed by adapter recruitment through multiple interactions of receptor and adapter TIRs. Here, a library of cell-permeable decoy peptides derived from the TLR5 TIR was screened for TLR5 signaling inhibition in the HEK-Blue-mTLR5 reporter cell line. The peptide demonstrating the strongest inhibition, 5R667, corresponded to the second helix of the region between the third and fourth β-strands (helix C″). In addition to the TLR5-induced cytokine expression, 5R667 inhibited cytokine expression elicited by TLR4, TLR2, and TLR9. 5R667 also suppressed the systemic cytokine induction elicited by LPS administration in mice. 5R667 binding specificity was studied by time-resolved fluorescence spectroscopy in a cell-based assay. 5R667 demonstrated a multispecific binding pattern with respect to TIR domains: It bound TIRs of TLR adapters of the MyD88-dependent pathway, Toll/interleukin-1 receptor domain-containing adapter protein/MyD88 adapter-like (TIRAP) and MyD88, and also the TIR of TLR5. TR667, the peptide derived from the TIRAP region, which is structurally homologous to 5R667, demonstrated binding and inhibitory properties similar to that of 5R667. The surface-exposed residues within TIR regions represented by 5R667 and TR667 form motifs, which are nearly 90% conserved in vertebrate evolution and are distinctive of TLR5 and TIRAP TIR domains. Thus, we have identified an evolutionary conserved adapter recruitment motif within TLR5 TIR, the function of which can be inhibited by selective cell-permeable decoy peptides, which can serve as pan-specific TLR inhibitors.
Collapse
Affiliation(s)
- Artur Javmen
- Department of Microbiology and Immunology, University of Maryland School of Medicine, Baltimore, MD 21201
| | - Jun Zou
- Institute for Biomedical Sciences, Georgia State University, Atlanta, Georgia, United States of America
| | - Shreeram C. Nallar
- Department of Microbiology and Immunology, University of Maryland School of Medicine, Baltimore, MD 21201
| | - Henryk Szmacinski
- Center for Fluorescence Spectroscopy, Department of Biochemistry and Molecular Biology, University of Maryland School of Medicine, Baltimore, MD 21201
| | - Joseph R. Lakowicz
- Center for Fluorescence Spectroscopy, Department of Biochemistry and Molecular Biology, University of Maryland School of Medicine, Baltimore, MD 21201
| | - Andrew T. Gewirtz
- Institute for Biomedical Sciences, Georgia State University, Atlanta, Georgia, United States of America
| | - Vladimir Y. Toshchakov
- Department of Microbiology and Immunology, University of Maryland School of Medicine, Baltimore, MD 21201
| |
Collapse
|
22
|
Acharya C, Magnusson MO, Vajjah P, Oliver R, Zamacona M. Population Pharmacokinetics and Exposure-Response for Dapirolizumab Pegol From a Phase 2b Trial in Patients With Systemic Lupus Erythematosus. J Clin Pharmacol 2023; 63:435-444. [PMID: 36453450 DOI: 10.1002/jcph.2188] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2022] [Accepted: 10/14/2022] [Indexed: 12/05/2022]
Abstract
Systemic lupus erythematosus (SLE) is a systemic, autoimmune disease characterized by chronic inflammation and organ damage. Dapirolizumab pegol inhibits CD40 ligand (CD40L) and is currently undergoing phase 3 trials for the treatment of SLE. To describe the pharmacokinetic characteristics of dapirolizumab pegol and the relationship between exposure and probability of achieving a British Isles Lupus Assessment Group-based Composite Lupus Assessment (BICLA) response, a population pharmacokinetic (popPK) model and an exposure-response model were developed, based on results of the phase 2b trial (RISE; NCT02804763) of dapirolizumab pegol in SLE. Dapirolizumab pegol pharmacokinetics were found to be dose proportional and well described by a 2-compartment model with first-order elimination from the central compartment. In the popPK model, body weight was the only significant covariate. The average concentration of dapirolizumab pegol, derived from the popPK model, was incorporated into the exposure-response model. Overall, the exposure-response model showed that treatment with dapirolizumab pegol increased the probability of transitioning from BICLA "Nonresponder" to "Responder." No significant covariates on BICLA responder status were identified. Notably, the half maximal effective concentration was greater for the transition from "Responder" to "Nonresponder" (150 µg/mL) than the transition from "Nonresponder" to "Responder" (12 µg/mL), indicating that sustained dapirolizumab pegol concentrations may be required to maintain BICLA response. In conclusion, dapirolizumab pegol pharmacokinetics were as expected for a PEGylated molecule and results from the exposure-response model indicate that a favorable dapirolizumab pegol effect was identified for both BICLA "Nonresponder" to "Responder" and "Responder" to "Nonresponder" transition probabilities.
Collapse
|
23
|
Fang T, Li B, Li M, Zhang Y, Jing Z, Li Y, Xue T, Zhang Z, Fang W, Lin Z, Meng F, Li L, Yang Y, Zhang X, Liang X, Chen SN, Chen J, Zhang X. Engineered Cell Membrane Vesicles Expressing CD40 Alleviate System Lupus Nephritis by Intervening B Cell Activation. SMALL METHODS 2023; 7:e2200925. [PMID: 36605001 DOI: 10.1002/smtd.202200925] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/06/2022] [Revised: 12/17/2022] [Indexed: 06/17/2023]
Abstract
Immune intervention of B cell activation to blockade the production of autoantibodies provokes intense interest in the field of systemic lupus erythematosus (SLE) therapy development. Although the survival rate for SLE is improved, many patients die untimely. Engineered cell membrane vesicles manifest remarkable capacity of targeted drug delivery and immunomodulation of immune cells such as B cells. Herein, this work engineered cellular nanovesicles (NVs) presenting CD40 (CD40 NVs) that can blunt B cells and thus alleviate SLE. CD40 NVs disrupt the CD40/CD40 ligand (CD40L) costimulatory signal axis through the blockade of CD40L on CD4+ T cells. Therefore, the CD40 NVs restrain the generation of the germinal center structure and production of antibodies from B cells. Furthermore, immunosuppressive drug mycophenolate mofetil (MMF) is also encapsulated in the vesicles (MMF-CD40 NVs), which is employed to deplete immunocytes including B cells, T cells, and dendritic cells. Together, CD40 NVs are promising formulations for relieving autoimmunity and lupus nephritis in MRL/lpr mice.
Collapse
Affiliation(s)
- Tianliang Fang
- Department of Pharmacology, Molecular Cancer Research Center, School of Medicine, Shenzhen Campus of Sun Yat-sen University, Sun Yat-sen University, Shenzhen, Guangdong, 518107, China
| | - Baoqi Li
- Department of Pharmacology, Molecular Cancer Research Center, School of Medicine, Shenzhen Campus of Sun Yat-sen University, Sun Yat-sen University, Shenzhen, Guangdong, 518107, China
| | - Meng Li
- Department of Dermatology, Shanghai Ninth People's Hospital, Affiliated to Shanghai Jiaotong University School of Medicine, Shanghai, 200011, China
| | - Yuli Zhang
- Department of Pharmacology, Molecular Cancer Research Center, School of Medicine, Shenzhen Campus of Sun Yat-sen University, Sun Yat-sen University, Shenzhen, Guangdong, 518107, China
| | - Zhangyan Jing
- Department of Pharmacology, Molecular Cancer Research Center, School of Medicine, Shenzhen Campus of Sun Yat-sen University, Sun Yat-sen University, Shenzhen, Guangdong, 518107, China
| | - Yuan Li
- Department of Pharmacology, Molecular Cancer Research Center, School of Medicine, Shenzhen Campus of Sun Yat-sen University, Sun Yat-sen University, Shenzhen, Guangdong, 518107, China
| | - Tianyuan Xue
- Department of Pharmacology, Molecular Cancer Research Center, School of Medicine, Shenzhen Campus of Sun Yat-sen University, Sun Yat-sen University, Shenzhen, Guangdong, 518107, China
| | - Zhirang Zhang
- Department of Pharmacology, Molecular Cancer Research Center, School of Medicine, Shenzhen Campus of Sun Yat-sen University, Sun Yat-sen University, Shenzhen, Guangdong, 518107, China
| | - Wenli Fang
- Department of Pharmacology, Molecular Cancer Research Center, School of Medicine, Shenzhen Campus of Sun Yat-sen University, Sun Yat-sen University, Shenzhen, Guangdong, 518107, China
| | - Zhongda Lin
- Department of Pharmacology, Molecular Cancer Research Center, School of Medicine, Shenzhen Campus of Sun Yat-sen University, Sun Yat-sen University, Shenzhen, Guangdong, 518107, China
| | - Fanqiang Meng
- Department of Pharmacology, Molecular Cancer Research Center, School of Medicine, Shenzhen Campus of Sun Yat-sen University, Sun Yat-sen University, Shenzhen, Guangdong, 518107, China
| | - Liyan Li
- Department of Pharmacology, Molecular Cancer Research Center, School of Medicine, Shenzhen Campus of Sun Yat-sen University, Sun Yat-sen University, Shenzhen, Guangdong, 518107, China
| | - Yang Yang
- Department of Thoracic Surgery, Shanghai Pulmonary Hospital, School of Medicine, Tongji University, Shanghai, 200433, China
| | - Xingding Zhang
- Department of Pharmacology, Molecular Cancer Research Center, School of Medicine, Shenzhen Campus of Sun Yat-sen University, Sun Yat-sen University, Shenzhen, Guangdong, 518107, China
| | - Xin Liang
- Guangdong Provincial Key Laboratory of Medical Molecular Diagnostics, Key Laboratory of Stem Cell and Regenerative Tissue Engineering, School of Basic Medical Sciences, Guangdong Medical University, Dongguan, 523808, China
| | - Shu-Na Chen
- Department of Pharmacology, Molecular Cancer Research Center, School of Medicine, Shenzhen Campus of Sun Yat-sen University, Sun Yat-sen University, Shenzhen, Guangdong, 518107, China
| | - Jun Chen
- Department of Dermatology, Shanghai Ninth People's Hospital, Affiliated to Shanghai Jiaotong University School of Medicine, Shanghai, 200011, China
| | - Xudong Zhang
- Department of Pharmacology, Molecular Cancer Research Center, School of Medicine, Shenzhen Campus of Sun Yat-sen University, Sun Yat-sen University, Shenzhen, Guangdong, 518107, China
| |
Collapse
|
24
|
Toumi E, Mezouar S, Plauzolles A, Chiche L, Bardin N, Halfon P, Mege JL. Gut microbiota in SLE: from animal models to clinical evidence and pharmacological perspectives. Lupus Sci Med 2023; 10:10/1/e000776. [PMID: 36813473 PMCID: PMC9950977 DOI: 10.1136/lupus-2022-000776] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2022] [Accepted: 12/16/2022] [Indexed: 02/24/2023]
Abstract
Systemic lupus erythematosus (SLE) is a multifactorial autoimmune disease driven by complex interactions between genetics and environmental factors. SLE is characterised by breaking self-immune tolerance and autoantibody production that triggers inflammation and damage of multiple organs. Given the highly heterogeneous nature of SLE, the treatments currently used are still not satisfactory with considerable side effects, and the development of new therapies is a major health issue for better patient management. In this context, mouse models significantly contribute to our knowledge of the pathogenesis of SLE and are an invaluable tool for testing novel therapeutic targets. Here, we discuss the role of the most used SLE mouse models and their contribution to therapeutic improvement. Considering the complexity of developing targeted therapies for SLE, adjuvant therapies are also increasingly proposed. Indeed, murine and human studies have recently revealed that gut microbiota is a potential target and holds great promises for successful new SLE therapies. However, the mechanisms of gut microbiota dysbiosis in SLE remain unclear to date. In this review, we propose an inventory of existing studies investigating the relationship between gut microbiota dysbiosis and SLE to establish microbiome signature that may serve as a potential biomarker of the disease and its severity as well as a new potential therapy target. This approach may open new possibilities for early diagnosis, prevention and therapeutic perspectives of SLE based on gut microbiome.
Collapse
Affiliation(s)
- Eya Toumi
- Aix-Marseille Univ, MEPHI, IRD, APHM, Marseille, France .,IHU Méditerranée Infection, Aix-Marseille Université, Marseille, France.,R&D Department, Laboratoire Alphabio, Marseille, France
| | - Soraya Mezouar
- Aix-Marseille Univ, MEPHI, IRD, APHM, Marseille, France,IHU Méditerranée Infection, Aix-Marseille Université, Marseille, France,Aix Marseille Univ, EFS, CNRS, ADES, 'Biologie des Groupes Sanguins', Marseille, France
| | | | - Laurent Chiche
- Infectious and Internal Medicine Department, Hôpital Européen Marseille, Marseille, France
| | - Nathalie Bardin
- Immunology Department, Hopital de la Conception, Marseille, France
| | - Philippe Halfon
- Aix-Marseille Univ, MEPHI, IRD, APHM, Marseille, France,IHU Méditerranée Infection, Aix-Marseille Université, Marseille, France,R&D Department, Laboratoire Alphabio, Marseille, France,Infectious and Internal Medicine Department, Hôpital Européen Marseille, Marseille, France
| | - Jean Louis Mege
- Aix-Marseille Univ, MEPHI, IRD, APHM, Marseille, France,IHU Méditerranée Infection, Aix-Marseille Université, Marseille, France,Immunology Department, Hopital de la Conception, Marseille, France
| |
Collapse
|
25
|
Hoseinzadeh A, Rezaieyazdi Z, Afshari JT, Mahmoudi A, Heydari S, Moradi R, Esmaeili SA, Mahmoudi M. Modulation of Mesenchymal Stem Cells-Mediated Adaptive Immune Effectors' Repertoire in the Recovery of Systemic Lupus Erythematosus. Stem Cell Rev Rep 2023; 19:322-344. [PMID: 36272020 DOI: 10.1007/s12015-022-10452-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/10/2022] [Indexed: 02/07/2023]
Abstract
The breakdown of self-tolerance of the immune response can lead to autoimmune conditions in which chronic inflammation induces tissue damage. Systemic lupus erythematosus (SLE) is a debilitating multisystemic autoimmune disorder with a high prevalence in women of childbearing age; however, SLE incidence, prevalence, and severity are strongly influenced by ethnicity. Although the mystery of autoimmune diseases remains unsolved, disturbance in the proportion and function of B cell subsets has a major role in SLE's pathogenesis. Additionally, colocalizing hyperactive T helper cell subgroups within inflammatory niches are indispensable. Despite significant advances in standard treatments, nonspecific immunosuppression, the risk of serious infections, and resistance to conventional therapies in some cases have raised the urgent need for new treatment strategies. Without the need to suppress the immune system, mesenchymal stem cells (MSCs), as ''smart" immune modulators, are able to control cellular and humoral auto-aggression responses by participating in precursor cell development. In lupus, due to autologous MSCs disorder, the ability of allogenic engrafted MSCs in tissue regeneration and resetting immune homeostasis with the provision of a new immunocyte repertoire has been considered simultaneously. In Brief The bone marrow mesenchymal stem cells (BM-MSCs) lineage plays a critical role in maintaining the hematopoietic stem-cell microstructure and modulating immunocytes. The impairment of BM-MSCs and their niche partially contribute to the pathogenesis of SLE-like diseases. Allogenic MSC transplantation can reconstruct BM microstructure, possibly contributing to the recovery of immunocyte phenotype restoration of immune homeostasis. In terms of future prospects of MSCs, artificially gained by ex vivo isolation and culture adaptation, the wide variety of potential mediators and mechanisms might be linked to the promotion of the immunomodulatory function of MSCs.
Collapse
Affiliation(s)
- Akram Hoseinzadeh
- Immunology Research Center, Mashhad University of Medical Sciences, Mashhad, Iran.,Department of Immunology, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Zahra Rezaieyazdi
- Department of Rheumatology, Ghaem Hospital, Mashhad University of Medical Science, Mashhad, Iran.,Rheumatic Diseases Research Center, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Jalil Tavakol Afshari
- Department of Immunology, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Ali Mahmoudi
- Department of Medical Biotechnology and Nanotechnology, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Sahar Heydari
- Department of Physiology and Pharmacology, Faculty of Medicine, Sabzevar University of Medical Sciences, Sabzevar, Iran
| | - Reza Moradi
- Nanotechnology Research Center, School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Seyed-Alireza Esmaeili
- Immunology Research Center, Mashhad University of Medical Sciences, Mashhad, Iran.,Department of Immunology, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Mahmoud Mahmoudi
- Immunology Research Center, Mashhad University of Medical Sciences, Mashhad, Iran. .,Department of Immunology, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran. .,Department of Immunology, Mashhad University of Medical Sciences, Azadi Square, Kalantari Blvd, Pardi's campusMashhad, Iran.
| |
Collapse
|
26
|
Goteti K, French J, Garcia R, Li Y, Casset‐Semanaz F, Aydemir A, Townsend R, Mateo CV, Studham M, Guenther O, Kao A, Gastonguay M, Girard P, Benincosa L, Venkatakrishnan K. Disease trajectory of SLE clinical endpoints and covariates affecting disease severity and probability of response: Analysis of pooled patient-level placebo (Standard-of-Care) data to enable model-informed drug development. CPT Pharmacometrics Syst Pharmacol 2023; 12:180-195. [PMID: 36350330 PMCID: PMC9931431 DOI: 10.1002/psp4.12888] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2022] [Revised: 10/12/2022] [Accepted: 10/27/2022] [Indexed: 11/10/2022] Open
Abstract
Systemic lupus erythematosus (SLE) is an autoimmune disease affecting multiple organ systems. Many investigational agents have failed or shown only modest effects when added to standard of care (SoC) therapy in placebo-controlled trials, and only two therapies have been approved for SLE in the last 60 years. Clinical trial outcomes have shown discordance in drug effects between clinical endpoints. Herein, we characterized longitudinal disease activity in the SLE population and the sources of variability by developing a latent disease trajectory model for SLE component endpoints (Systemic Lupus Erythematosus Disease Activity Index [SLEDAI], Physician's Global Assessment [PGA], British Isles Lupus Assessment Group Index [BILAG]) and composite endpoints (Systemic Lupus Erythematosus Responder Index [SRI], BILAG-based Composite Lupus Assessment [BICLA], and Lupus Low Disease Activity State [LLDAS]) using patient-level historical SoC data from nine phase II and III studies. Across all endpoints, in predictions up to 52 weeks from the final disease trajectory model, the following baseline covariates were associated with a greater decrease in SLE disease activity and higher response to placebo + SoC: Hispanic ethnicity from Central/South America, absence of hypocomplementemia, recent SLE diagnosis, and high baseline disease activity score using SLEDAI and BILAG separately. No discernible differences were observed in the trajectory of response to placebo + SoC across different SoC medications (antimalarial and immunosuppressant such as mycophenolate, methotrexate, and azathioprine). Across all endpoints, disease trajectory showed no difference in Asian versus non-Asian patients, supporting Asia-inclusive global SLE drug development. These results describe the first population approach to support a model-informed drug development framework in SLE.
Collapse
Affiliation(s)
- Kosalaram Goteti
- EMD Serono Research and Development Institute, Inc (an affiliate of Merck KGaA, Darmstadt Germany)BillericaMassachusettsUSA
| | | | | | - Ying Li
- EMD Serono Research and Development Institute, Inc (an affiliate of Merck KGaA, Darmstadt Germany)BillericaMassachusettsUSA
| | - Florence Casset‐Semanaz
- EMD Serono Research and Development Institute, Inc (an affiliate of Merck KGaA, Darmstadt Germany)BillericaMassachusettsUSA
| | - Aida Aydemir
- EMD Serono Research and Development Institute, Inc (an affiliate of Merck KGaA, Darmstadt Germany)BillericaMassachusettsUSA
| | - Robert Townsend
- EMD Serono Research and Development Institute, Inc (an affiliate of Merck KGaA, Darmstadt Germany)BillericaMassachusettsUSA
| | - Cristina Vazquez Mateo
- EMD Serono Research and Development Institute, Inc (an affiliate of Merck KGaA, Darmstadt Germany)BillericaMassachusettsUSA
| | - Matthew Studham
- EMD Serono Research and Development Institute, Inc (an affiliate of Merck KGaA, Darmstadt Germany)BillericaMassachusettsUSA
| | | | - Amy Kao
- EMD Serono Research and Development Institute, Inc (an affiliate of Merck KGaA, Darmstadt Germany)BillericaMassachusettsUSA
| | | | - Pascal Girard
- Merck Institute of PharmacometricsLausanneSwitzerland
| | - Lisa Benincosa
- EMD Serono Research and Development Institute, Inc (an affiliate of Merck KGaA, Darmstadt Germany)BillericaMassachusettsUSA
| | - Karthik Venkatakrishnan
- EMD Serono Research and Development Institute, Inc (an affiliate of Merck KGaA, Darmstadt Germany)BillericaMassachusettsUSA
| |
Collapse
|
27
|
Radic M, Randolph B. Autologous Anti-CD19 CAR T Cells as Therapy for Systemic Lupus Erythematosus. Transplant Cell Ther 2023; 29:3-4. [PMID: 36608961 DOI: 10.1016/j.jtct.2022.12.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Affiliation(s)
- Marko Radic
- Department of Microbiology, Immunology and Biochemistry
| | - Brion Randolph
- Department of Medicine, University of Tennessee Health Science Center, Memphis, TN 39163
| |
Collapse
|
28
|
Giordano D, Kuley R, Draves KE, Elkon KB, Giltiay NV, Clark EA. B cell-activating factor (BAFF) from dendritic cells, monocytes and neutrophils is required for B cell maturation and autoantibody production in SLE-like autoimmune disease. Front Immunol 2023; 14:1050528. [PMID: 36923413 PMCID: PMC10009188 DOI: 10.3389/fimmu.2023.1050528] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2022] [Accepted: 02/09/2023] [Indexed: 03/03/2023] Open
Abstract
Purpose and methods B cell-activating factor (BAFF) contributes to the pathogenesis of autoimmune diseases including systemic lupus erythematosus (SLE). Although several anti-BAFF Abs and derivatives have been developed for the treatment of SLE, the specific sources of BAFF that sustain autoantibody (auto-Ab) producing cells have not been definitively identified. Using BAFF-RFP reporter mice, we identified major changes in BAFF-producing cells in two mouse spontaneous lupus models (Tlr7 Tg mice and Sle1), and in a pristane-induced lupus (PIL) model. Results First, we confirmed that similar to their wildtype Tlr7 Tg and Sle1 mice counterparts, BAFF-RFP Tlr7 Tg mice and BAFF-RFP Sle1 mice had increased BAFF serum levels, which correlated with increases in plasma cells and auto-Ab production. Next, using the RFP reporter, we defined which cells had dysregulated BAFF production. BAFF-producing neutrophils (Nphs), monocytes (MOs), cDCs, T cells and B cells were all expanded in the spleens of BAFF-RFP Tlr7 Tg mice and BAFF-RFP Sle1 mice compared to controls. Furthermore, Ly6Chi inflammatory MOs and T cells had significantly increased BAFF expression per cell in both spontaneous lupus models, while CD8- DCs up-regulated BAFF expression only in the Tlr7 Tg mice. Similarly, pristane injection of BAFF-RFP mice induced increases in serum BAFF levels, auto-Abs, and the expansion of BAFF-producing Nphs, MOs, and DCs in both the spleen and peritoneal cavity. BAFF expression in MOs and DCs, in contrast to BAFF from Nphs, was required to maintain homeostatic and pristane-induced systemic BAFF levels and to sustain mature B cell pools in spleens and BMs. Although acting through different mechanisms, Nph, MO and DC sources of BAFF were each required for the development of auto-Abs in PIL mice. Conclusions Our findings underscore the importance of considering the relative roles of specific myeloid BAFF sources and B cell niches when developing treatments for SLE and other BAFF-associated autoimmune diseases.
Collapse
Affiliation(s)
- Daniela Giordano
- Department of Medicine, Division of Rheumatology, University of Washington, Seattle, WA, United States
- *Correspondence: Daniela Giordano,
| | - Runa Kuley
- Department of Medicine, Division of Rheumatology, University of Washington, Seattle, WA, United States
| | - Kevin E. Draves
- Department of Microbiology, University of Washington, Seattle, WA, United States
| | - Keith B. Elkon
- Department of Medicine, Division of Rheumatology, University of Washington, Seattle, WA, United States
| | - Natalia V. Giltiay
- Department of Medicine, Division of Rheumatology, University of Washington, Seattle, WA, United States
| | - Edward A. Clark
- Department of Medicine, Division of Rheumatology, University of Washington, Seattle, WA, United States
- Department of Microbiology, University of Washington, Seattle, WA, United States
- Department of Immunology, University of Washington, Seattle, WA, United States
| |
Collapse
|
29
|
Abdelhamid L, Alajoleen R, Kingsmore KM, Cabana-Puig X, Lu R, Zhu J, Testerman JC, Li Y, Ross AC, Cecere TE, Reilly CM, Grammer AC, Lipsky PE, Luo XM. Hypovitaminosis A Drives the Progression of Tubulointerstitial Lupus Nephritis through Potentiating Predisease Cellular Autoreactivity. Immunohorizons 2023; 7:17-29. [PMID: 36637518 PMCID: PMC10563393 DOI: 10.4049/immunohorizons.2200015] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2022] [Accepted: 12/12/2022] [Indexed: 01/14/2023] Open
Abstract
Vitamin A (VA) deficiency (VAD) is observed in both humans and mice with lupus nephritis. However, whether VAD is a driving factor for accelerated progression of lupus nephritis is unclear. In this study, we investigated the effect of VAD on the progression of lupus nephritis in a lupus-prone mouse model, MRL/lpr. We initiated VAD either during gestation or after weaning to reveal a potential time-dependent effect. We found exacerbated lupus nephritis at ∼15 wk of age with both types of VAD that provoked tubulointerstitial nephritis leading to renal failure. This was concomitant with significantly higher mortality in all VAD mice. Importantly, restoration of VA levels after weaning reversed VAD-induced mortality. These results suggest VAD-driven acceleration of tubulointerstitial lupus nephritis. Mechanistically, at the earlier time point of 7 wk of age and before the onset of clinical lupus nephritis, continued VAD (from gestation until postweaning) enhanced plasma cell activation and augmented their autoantibody production, while also increasing the expansion of T lymphocytes that could promote plasma cell autoreactivity. Moreover, continued VAD increased the renal infiltration of plasmacytoid dendritic cells. VAD initiated after weaning, in contrast, showed modest effects on autoantibodies and renal plasmacytoid dendritic cells that were not statistically significant. Remarkably, analysis of gene expression in human kidney revealed that the retinoic acid pathway was decreased in the tubulointerstitial region of lupus nephritis, supporting our findings in MRL/lpr mice. Future studies will elucidate the underlying mechanisms of how VAD modulates cellular functions to exacerbate tubulointerstitial lupus nephritis.
Collapse
Affiliation(s)
- Leila Abdelhamid
- Department of Biomedical Sciences and Pathobiology, Virginia-Maryland College of Veterinary Medicine, Virginia Polytechnic Institute and State University, Blacksburg, VA
- Department of Microbiology, College of Veterinary Medicine, Alexandria University, Alexandria, Egypt
| | - Razan Alajoleen
- Department of Biomedical Sciences and Pathobiology, Virginia-Maryland College of Veterinary Medicine, Virginia Polytechnic Institute and State University, Blacksburg, VA
| | | | - Xavier Cabana-Puig
- Department of Biomedical Sciences and Pathobiology, Virginia-Maryland College of Veterinary Medicine, Virginia Polytechnic Institute and State University, Blacksburg, VA
| | - Ran Lu
- Department of Biomedical Sciences and Pathobiology, Virginia-Maryland College of Veterinary Medicine, Virginia Polytechnic Institute and State University, Blacksburg, VA
| | - Jing Zhu
- Department of Biomedical Sciences and Pathobiology, Virginia-Maryland College of Veterinary Medicine, Virginia Polytechnic Institute and State University, Blacksburg, VA
| | - James C. Testerman
- Department of Biomedical Sciences and Pathobiology, Virginia-Maryland College of Veterinary Medicine, Virginia Polytechnic Institute and State University, Blacksburg, VA
| | - Yaqi Li
- Department of Nutritional Sciences, Pennsylvania State University, University Park, PA; and
| | - A. Catharine Ross
- Department of Nutritional Sciences, Pennsylvania State University, University Park, PA; and
| | - Thomas E. Cecere
- Department of Biomedical Sciences and Pathobiology, Virginia-Maryland College of Veterinary Medicine, Virginia Polytechnic Institute and State University, Blacksburg, VA
| | - Christopher M. Reilly
- Department of Cell Biology and Physiology, Edward Via College of Osteopathic Medicine, Blacksburg, VA
| | | | | | - Xin M. Luo
- Department of Biomedical Sciences and Pathobiology, Virginia-Maryland College of Veterinary Medicine, Virginia Polytechnic Institute and State University, Blacksburg, VA
| |
Collapse
|
30
|
Corneth OBJ, Neys SFH, Hendriks RW. Aberrant B Cell Signaling in Autoimmune Diseases. Cells 2022; 11:cells11213391. [PMID: 36359789 PMCID: PMC9654300 DOI: 10.3390/cells11213391] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2022] [Revised: 10/15/2022] [Accepted: 10/24/2022] [Indexed: 11/30/2022] Open
Abstract
Aberrant B cell signaling plays a critical in role in various systemic and organ-specific autoimmune diseases. This is supported by genetic evidence by many functional studies in B cells from patients or specific animal models and by the observed efficacy of small-molecule inhibitors. In this review, we first discuss key signal transduction pathways downstream of the B cell receptor (BCR) that ensure that autoreactive B cells are removed from the repertoire or functionally silenced. We provide an overview of aberrant BCR signaling that is associated with inappropriate B cell repertoire selection and activation or survival of peripheral B cell populations and plasma cells, finally leading to autoantibody formation. Next to BCR signaling, abnormalities in other signal transduction pathways have been implicated in autoimmune disease. These include reduced activity of several phosphates that are downstream of co-inhibitory receptors on B cells and increased levels of BAFF and APRIL, which support survival of B cells and plasma cells. Importantly, pathogenic synergy of the BCR and Toll-like receptors (TLR), which can be activated by endogenous ligands, such as self-nucleic acids, has been shown to enhance autoimmunity. Finally, we will briefly discuss therapeutic strategies for autoimmune disease based on interfering with signal transduction in B cells.
Collapse
|
31
|
Zhang W, Shao T, Leung PSC, Tsuneyama K, Heuer L, Young HA, Ridgway WM, Gershwin ME. Dual B-cell targeting therapy ameliorates autoimmune cholangitis. J Autoimmun 2022; 132:102897. [PMID: 36029718 PMCID: PMC10311358 DOI: 10.1016/j.jaut.2022.102897] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2022] [Revised: 08/11/2022] [Accepted: 08/12/2022] [Indexed: 11/30/2022]
Abstract
OBJECTIVE The ability to regulate B cell development has long been recognized to have therapeutic potential in a variety of autoimmune diseases. However, despite the presence of a classic autoantibody in primary biliary cholangitis (PBC), B cell depleting therapy and indeed therapy with other biologic agents has been disappointing. Unsuccessful treatment using Rituximab is associated with elevation of B-cell activating factor (BAFF) level. Indeed, therapies for PBC remain directed at modulating bile salt biology, rather than targeting effector pathways. With these data in mind, we proposed that targeting two major stages of B cell development, namely long-lived memory B cells and short-lived peripheral autoreactive plasma cells would have therapeutic potential. METHODS To address this thesis, we administrated anti-BAFF and anti-CD20 monoclonal antibody to ARE-Del mice, a well-characterized murine model of human PBC. We evaluated and compared the therapeutic efficacy of the two agents individually and the combination of anti-BAFF and anti-CD20 in female mice with well-established disease. RESULTS Our data demonstrate that there was an increased level of B cell depletion that resulted in a significantly more effective clinical and serologic response using the combination of agents as compared with the use of the individual agents. The combination of anti-BAFF and anti-CD20 treatment was more effective in reducing serum levels of antimitochondrial antibody (AMA), total IgM and IgG compared to mice treated with the 2 individual agents. Combination treatment efficiently depleted B cells in the peripheral blood, peritoneal cavity and spleen. Importantly, we identified a unique IgM+ FCRL5+ B cell subset which was sensitive to dual B-cell targeting therapy and depletion of this unique population was associated with reduced portal infiltration and bile duct damage. Taken together, our data indicate that dual B cell targeting therapy with anti-BAFF and anti-CD20 not only led to the efficient depletion of B cells both in the peripheral blood and tissues, but also led to significant clinical improvement. These findings highlight the potential application of combination of anti-BAFF and anti-CD20 in treating patients with PBC. However, additional studies in other animal models of PBC should be undertaken before considering human trials in those PBC patients who have incomplete responses to conventional therapy.
Collapse
Affiliation(s)
- Weici Zhang
- Division of Rheumatology, Allergy, and Clinical Immunology, School of Medicine, University of California Davis, CA, USA.
| | - Tihong Shao
- Division of Rheumatology, Allergy, and Clinical Immunology, School of Medicine, University of California Davis, CA, USA; Department of Rheumatology and Immunology, The First Affiliated Hospital of Anhui Medical University; Hefei, China.
| | - Patrick S C Leung
- Division of Rheumatology, Allergy, and Clinical Immunology, School of Medicine, University of California Davis, CA, USA.
| | - Koichi Tsuneyama
- Department of Pathology and Laboratory Medicine, Institute of Biomedical Sciences, Tokushima University Graduate School; Tokushima, Japan.
| | - Luke Heuer
- Division of Rheumatology, Allergy, and Clinical Immunology, School of Medicine, University of California Davis, CA, USA.
| | - Howard A Young
- Center for Cancer Research, National Cancer Institute-Frederick; Frederick, MD, USA.
| | - William M Ridgway
- Division of Rheumatology, Allergy, and Clinical Immunology, School of Medicine, University of California Davis, CA, USA.
| | - M Eric Gershwin
- Division of Rheumatology, Allergy, and Clinical Immunology, School of Medicine, University of California Davis, CA, USA.
| |
Collapse
|
32
|
Rapamycin-encapsulated costimulatory ICOS/CD40L-bispecific nanoparticles restrict pathogenic helper T-B-cell interactions while in situ suppressing mTOR for lupus treatment. Biomaterials 2022; 289:121766. [DOI: 10.1016/j.biomaterials.2022.121766] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2022] [Revised: 08/16/2022] [Accepted: 08/25/2022] [Indexed: 11/23/2022]
|
33
|
Li H, Boulougoura A, Endo Y, Tsokos GC. Abnormalities of T cells in systemic lupus erythematosus: new insights in pathogenesis and therapeutic strategies. J Autoimmun 2022; 132:102870. [PMID: 35872102 DOI: 10.1016/j.jaut.2022.102870] [Citation(s) in RCA: 79] [Impact Index Per Article: 26.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2022] [Accepted: 07/09/2022] [Indexed: 11/25/2022]
Abstract
Systemic lupus erythematosus (SLE) is an autoimmune disease characterized by loss of immune tolerance and sustained production of autoantibodies. Multiple and profound T cell abnormalities in SLE are intertwined with disease expression. Both numerical and functional disturbances have been reported in main CD4+ T helper cell subsets including Th1, Th2, Th17, regulatory, and follicular helper cells. SLE CD4+ T cells are known to provide help to B cells, produce excessive IL-17 but insufficient IL-2, and infiltrate tissues. In the absence of sufficient amounts of IL-2, regulatory T cells, do not function properly to constrain inflammation. A complicated series of early signaling defects and aberrant activation of kinases and phosphatases result in complex cell phenotypes by altering the metabolic profile and the epigenetic landscape. All main metabolic pathways including glycolysis, glutaminolysis and oxidative phosphorylation are altered in T cells from lupus prone mice and patients with SLE. SLE CD8+ cytotoxic T cells display reduced cytolytic activity which accounts for higher rates of infection and the sustenance of autoimmunity. Further, CD8+ T cells in the context of rheumatic diseases lose the expression of CD8, acquire IL-17+CD4-CD8- double negative T (DNT) cell phenotype and infiltrate tissues. Herein we present an update on these T cell abnormalities along with underlying mechanisms and discuss how these advances can be exploited therapeutically. Novel strategies to correct these aberrations in T cells show promise for SLE treatment.
Collapse
Affiliation(s)
- Hao Li
- Department of Medicine, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, USA.
| | - Afroditi Boulougoura
- Department of Medicine, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, USA
| | - Yushiro Endo
- Department of Medicine, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, USA
| | - George C Tsokos
- Department of Medicine, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, USA.
| |
Collapse
|
34
|
Lou H, Ling GS, Cao X. Autoantibodies in systemic lupus erythematosus: From immunopathology to therapeutic target. J Autoimmun 2022; 132:102861. [PMID: 35872103 DOI: 10.1016/j.jaut.2022.102861] [Citation(s) in RCA: 57] [Impact Index Per Article: 19.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2022] [Accepted: 06/26/2022] [Indexed: 11/26/2022]
Abstract
Systemic lupus erythematosus (SLE) is an autoimmune disease characterized by multiple organ inflammatory damage and wide spectrum of autoantibodies. The autoantibodies, especially anti-dsDNA and anti-Sm autoantibodies are highly specific to SLE, and participate in the immune complex formation and inflammatory damage on multiple end-organs such as kidney, skin, and central nervous system (CNS). However, the underlying mechanisms of autoantibody-induced tissue damage and systemic inflammation are still not fully understood. Single cell analysis of autoreactive B cells and monoclonal antibody screening from patients with active SLE has improved our understanding on the origin of autoreactive B cells and the antigen targets of the pathogenic autoantibodies. B cell depletion therapies have been widely studied in the clinics, but the development of more specific therapies against the pathogenic B cell subset and autoantibodies with improved efficacy and safety still remain a big challenge. A more comprehensive autoantibody profiling combined with functional characterization of autoantibodies in diseases development will shed new insights on the etiology and pathogenesis of SLE and guide a specific treatment to individual SLE patients.
Collapse
Affiliation(s)
- Hantao Lou
- Ludwig Institute of Cancer Research, University of Oxford, Oxford, OX3 7DR, UK; Chinese Academy for Medical Sciences Oxford Institute, Nuffield Department of Medicine, University of Oxford, Oxford, OX3 7FZ, UK.
| | - Guang Sheng Ling
- School of Biomedical Sciences, LKS Faculty of Medicine, The University of Hong Kong, Hong Kong, China
| | - Xuetao Cao
- Chinese Academy for Medical Sciences Oxford Institute, Nuffield Department of Medicine, University of Oxford, Oxford, OX3 7FZ, UK; Nankai-Oxford International Advanced Institute, College of Life Sciences, Nankai University, Tianjin, 300071, China.
| |
Collapse
|
35
|
Jiang B, Zhang Y, Li Y, Chen Y, Sha S, Zhao L, Li D, Wen J, Lan J, Lou Y, Su H, Zhang C, Zhu J, Tao J. A Tissue-Tended Mycophenolate-Modified Nanoparticle Alleviates Systemic Lupus Erythematosus in MRL/Lpr Mouse Model Mainly by Promoting Local M2-Like Macrophagocytes Polarization. Int J Nanomedicine 2022; 17:3251-3267. [PMID: 35924257 PMCID: PMC9342721 DOI: 10.2147/ijn.s361400] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2022] [Accepted: 07/20/2022] [Indexed: 11/23/2022] Open
Abstract
Background Mycophenolate mofetil (MMF), for which the bioactive metabolite is mycophenolic acid (MPA), is a frequently used immunosuppressant for systemic lupus erythematosus (SLE). However, its short half-life and poor biodistribution into cells and tissues hinder its clinical efficacy. Our dextran mycophenolate-based nanoparticles (MPA@Dex-MPA NPs) have greatly improved the pharmacokinetics of MMF/MPA. We here tested the therapeutic efficacy of MPA@Dex-MPA NPs against SLE and investigated the underlying mechanism. Methods The tissue and immune cell biodistributions of MPA@Dex-MPA NPs were traced using live fluorescence imaging system and flow cytometry, respectively. Serological proinflammatory mediators and kidney damage were detected to assess the efficacy of MPA@Dex-MPA NPs treatments of MRL/lpr lupus-prone mice. Immune cell changes in the kidney and spleen were further analyzed post-treatment via flow cytometry. Bone marrow-derived macrophages were used to investigate the potential mechanism. Results MPA@Dex-MPA NPs exhibited superior therapeutic efficacy and safety in the MRL/lpr mice using significantly lower administration dosage (one-fifth) and frequency (once/3 days) compared to MMF/MPA used in ordinary practice. The overall prognosis of the mice was improved as they showed lower levels of serological proinflammatory mediators. Moreover, kidney injury was alleviated with reduced pathological signs and decreased urine protein-creatinine ratio. Further investigations of the underlying mechanism revealed a preferential penetration and persistent retention of MPA@Dex-MPA NPs in the spleen and kidney, where they were mostly phagocytosed by macrophages. The macrophages were found to be polarized towards a CD206+ M2-like phenotype, with a downregulation of surface CD80 and CD40, and reduced TNF-α production in the spleen and kidney and in vitro. The expansion of T cells was also significantly inhibited in these two organs. Conclusion Our research improved the efficacy of MPA for MRL/lpr mice through synthesizing MPA@Dex-MPA NPs to enhance its tissue biodistribution and explored the possible mechanism, providing a promising strategy for SLE therapy.
Collapse
Affiliation(s)
- Biling Jiang
- Hubei Engineering Research Center of Skin Disease Theranostics and Health, Department of Dermatology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology (HUST), Wuhan, People’s Republic of China
| | - Yamin Zhang
- Hubei Engineering Research Center of Skin Disease Theranostics and Health, Department of Dermatology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology (HUST), Wuhan, People’s Republic of China
| | - Yuce Li
- Hubei Engineering Research Center for Biomaterials and Medical Protective Materials, School of Chemistry and Chemical Engineering, HUST, Wuhan, People’s Republic of China
| | - Yu Chen
- Hubei Engineering Research Center for Biomaterials and Medical Protective Materials, School of Chemistry and Chemical Engineering, HUST, Wuhan, People’s Republic of China
| | - Shanshan Sha
- Hubei Engineering Research Center of Skin Disease Theranostics and Health, Department of Dermatology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology (HUST), Wuhan, People’s Republic of China
| | - Liang Zhao
- Hubei Engineering Research Center of Skin Disease Theranostics and Health, Department of Dermatology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology (HUST), Wuhan, People’s Republic of China
| | - Danqi Li
- Hubei Engineering Research Center of Skin Disease Theranostics and Health, Department of Dermatology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology (HUST), Wuhan, People’s Republic of China
| | - Jingjing Wen
- Hubei Engineering Research Center of Skin Disease Theranostics and Health, Department of Dermatology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology (HUST), Wuhan, People’s Republic of China
| | - Jiajia Lan
- Hubei Engineering Research Center of Skin Disease Theranostics and Health, Department of Dermatology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology (HUST), Wuhan, People’s Republic of China
| | - Yuchen Lou
- Hubei Engineering Research Center of Skin Disease Theranostics and Health, Department of Dermatology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology (HUST), Wuhan, People’s Republic of China
| | - Hua Su
- Department of Nephrology, Union Hospital, Tongji Medical College, HUST, Wuhan, People’s Republic of China
| | - Chun Zhang
- Department of Nephrology, Union Hospital, Tongji Medical College, HUST, Wuhan, People’s Republic of China
| | - Jintao Zhu
- Hubei Engineering Research Center for Biomaterials and Medical Protective Materials, School of Chemistry and Chemical Engineering, HUST, Wuhan, People’s Republic of China
| | - Juan Tao
- Hubei Engineering Research Center of Skin Disease Theranostics and Health, Department of Dermatology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology (HUST), Wuhan, People’s Republic of China
- Correspondence: Juan Tao; Jintao Zhu, Email ;
| |
Collapse
|
36
|
Gerosa M, Beretta L, Ramirez GA, Bozzolo E, Cornalba M, Bellocchi C, Argolini LM, Moroni L, Farina N, Segatto G, Dagna L, Caporali R. Long-Term Clinical Outcome in Systemic Lupus Erythematosus Patients Followed for More Than 20 Years: The Milan Systemic Lupus Erythematosus Consortium (SMiLE) Cohort. J Clin Med 2022; 11:3587. [PMID: 35806873 PMCID: PMC9267338 DOI: 10.3390/jcm11133587] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2022] [Revised: 05/31/2022] [Accepted: 06/16/2022] [Indexed: 12/14/2022] Open
Abstract
Tackling active disease to prevent damage accrual constitutes a major goal in the management of patients with systemic lupus erythematosus (SLE). Patients with early onset disease or in the early phase of the disease course are at increased risk of developing severe manifestations and subsequent damage accrual, while less is known about the course of the disease in the long term. To address this issue, we performed a multicentre retrospective observational study focused on patients living with SLE for at least 20 years and determined their disease status at 15 and 20 years after onset and at their last clinical evaluation. Disease activity was measured through the British Isles Lupus Assessment Group (BILAG) tool and late flares were defined as worsening in one or more BILAG domains after 20 years of disease. Remission was classified according to attainment of lupus low-disease-activity state (LLDAS) criteria or the Definitions Of Remission In SLE (DORIS) parameters. Damage was quantitated through the Systemic Lupus Erythematosus International Collaborating Clinics/American College of Rheumatology damage index (SLICC/ACR-DI). LLAS/DORIS remission prevalence steadily increased over time. In total, 84 patients had a late flare and 88 had late damage accrual. Lack of LLDAS/DORIS remission status at the 20 year timepoint (p = 0.0026 and p = 0.0337, respectively), prednisone dose ≥ 7.5 mg (p = 9.17 × 10-5) or active serology (either dsDNA binding, low complement or both; p = 0.001) were all associated with increased late flare risk. Late flares, in turn, heralded the development of late damage (p = 2.7 × 10-5). These data suggest that patients with longstanding SLE are frequently in remission but still at risk of disease flares and eventual damage accrual, suggesting the need for tailored monitoring and therapeutic approaches aiming at effective immunomodulation besides immunosuppression, at least by means of steroids.
Collapse
Affiliation(s)
- Maria Gerosa
- Research Centre for Adult and Pediatric Rheumatic Diseases, Department of Clinical Sciences and Community Health, University of Milan, 20129 Milan, Italy;
- ASST Pini CTO, Lupus Clinic, Division of Clinical Rheumatology, 20122 Milan, Italy; (M.C.); (L.M.A.)
| | - Lorenzo Beretta
- Fondazione IRCCS Ca’ Granda Ospedale Maggiore Policlinico di Milano, Referral Centre for Systemic Autoimmune Diseases, 20122 Milan, Italy; (L.B.); (C.B.); (G.S.)
| | - Giuseppe Alvise Ramirez
- IRCCS Ospedale San Raffaele, Unit of Immunology, Rheumatology, Allergy and Rare Diseases, 20132 Milan, Italy; (G.A.R.); (E.B.); (L.M.); (N.F.); (L.D.)
| | - Enrica Bozzolo
- IRCCS Ospedale San Raffaele, Unit of Immunology, Rheumatology, Allergy and Rare Diseases, 20132 Milan, Italy; (G.A.R.); (E.B.); (L.M.); (N.F.); (L.D.)
| | - Martina Cornalba
- ASST Pini CTO, Lupus Clinic, Division of Clinical Rheumatology, 20122 Milan, Italy; (M.C.); (L.M.A.)
| | - Chiara Bellocchi
- Fondazione IRCCS Ca’ Granda Ospedale Maggiore Policlinico di Milano, Referral Centre for Systemic Autoimmune Diseases, 20122 Milan, Italy; (L.B.); (C.B.); (G.S.)
| | - Lorenza Maria Argolini
- ASST Pini CTO, Lupus Clinic, Division of Clinical Rheumatology, 20122 Milan, Italy; (M.C.); (L.M.A.)
| | - Luca Moroni
- IRCCS Ospedale San Raffaele, Unit of Immunology, Rheumatology, Allergy and Rare Diseases, 20132 Milan, Italy; (G.A.R.); (E.B.); (L.M.); (N.F.); (L.D.)
| | - Nicola Farina
- IRCCS Ospedale San Raffaele, Unit of Immunology, Rheumatology, Allergy and Rare Diseases, 20132 Milan, Italy; (G.A.R.); (E.B.); (L.M.); (N.F.); (L.D.)
| | - Giulia Segatto
- Fondazione IRCCS Ca’ Granda Ospedale Maggiore Policlinico di Milano, Referral Centre for Systemic Autoimmune Diseases, 20122 Milan, Italy; (L.B.); (C.B.); (G.S.)
| | - Lorenzo Dagna
- IRCCS Ospedale San Raffaele, Unit of Immunology, Rheumatology, Allergy and Rare Diseases, 20132 Milan, Italy; (G.A.R.); (E.B.); (L.M.); (N.F.); (L.D.)
| | - Roberto Caporali
- Research Centre for Adult and Pediatric Rheumatic Diseases, Department of Clinical Sciences and Community Health, University of Milan, 20129 Milan, Italy;
- ASST Pini CTO, Lupus Clinic, Division of Clinical Rheumatology, 20122 Milan, Italy; (M.C.); (L.M.A.)
| |
Collapse
|
37
|
Ciurtin C, Pineda-Torra I, Jury EC, Robinson GA. CD8+ T-Cells in Juvenile-Onset SLE: From Pathogenesis to Comorbidities. Front Med (Lausanne) 2022; 9:904435. [PMID: 35801216 PMCID: PMC9254716 DOI: 10.3389/fmed.2022.904435] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2022] [Accepted: 05/26/2022] [Indexed: 11/25/2022] Open
Abstract
Diagnosis of systemic lupus erythematosus (SLE) in childhood [juvenile-onset (J) SLE], results in a more severe disease phenotype including major organ involvement, increased organ damage, cardiovascular disease risk and mortality compared to adult-onset SLE. Investigating early disease course in these younger JSLE patients could allow for timely intervention to improve long-term prognosis. However, precise mechanisms of pathogenesis are yet to be elucidated. Recently, CD8+ T-cells have emerged as a key pathogenic immune subset in JSLE, which are increased in patients compared to healthy individuals and associated with more active disease and organ involvement over time. CD8+ T-cell subsets have also been used to predict disease prognosis in adult-onset SLE, supporting the importance of studying this cell population in SLE across age. Recently, single-cell approaches have allowed for more detailed analysis of immune subsets in JSLE, where type-I IFN-signatures have been identified in CD8+ T-cells expressing high levels of granzyme K. In addition, JSLE patients with an increased cardiometabolic risk have increased CD8+ T-cells with elevated type-I IFN-signaling, activation and apoptotic pathways associated with atherosclerosis. Here we review the current evidence surrounding CD8+ T-cell dysregulation in JSLE and therapeutic strategies that could be used to reduce CD8+ T-cell inflammation to improve disease prognosis.
Collapse
Affiliation(s)
- Coziana Ciurtin
- Centre for Rheumatology Research, Division of Medicine, University College London, London, United Kingdom
- Centre for Adolescent Rheumatology Versus Arthritis, Division of Medicine, University College London, London, United Kingdom
| | - Ines Pineda-Torra
- Centre for Cardiometabolic and Vascular Science, Division of Medicine, University College London, London, United Kingdom
| | - Elizabeth C. Jury
- Centre for Rheumatology Research, Division of Medicine, University College London, London, United Kingdom
| | - George A. Robinson
- Centre for Rheumatology Research, Division of Medicine, University College London, London, United Kingdom
- Centre for Adolescent Rheumatology Versus Arthritis, Division of Medicine, University College London, London, United Kingdom
| |
Collapse
|
38
|
Guo Q, Chen C, Wu Z, Zhang W, Wang L, Yu J, Li L, Zhang J, Duan Y. Engineered PD-1/TIGIT dual-activating cell-membrane nanoparticles with dexamethasone act synergistically to shape the effector T cell/Treg balance and alleviate systemic lupus erythematosus. Biomaterials 2022; 285:121517. [DOI: 10.1016/j.biomaterials.2022.121517] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2022] [Revised: 04/01/2022] [Accepted: 04/07/2022] [Indexed: 11/16/2022]
|
39
|
Smith EMD, Egbivwie N, Jorgensen AL, Ciurtin C, Al-Abadi E, Armon K, Bailey K, Brennan M, Gardner-Medwin J, Haslam K, Hawley DP, Leahy A, Leone V, Malik G, McLaren Z, Pilkington C, Ramanan AV, Rangaraj S, Ratcliffe A, Riley P, Sen E, Sridhar A, Wilkinson N, Wood F, Beresford MW, Hedrich CM. Real world treatment of juvenile-onset systemic lupus erythematosus: Data from the UK JSLE cohort study. Clin Immunol 2022; 239:109028. [PMID: 35513304 DOI: 10.1016/j.clim.2022.109028] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2022] [Revised: 04/28/2022] [Accepted: 04/28/2022] [Indexed: 12/14/2022]
Abstract
BACKGROUND In the absence of clinical trials evidence, Juvenile-onset Systemic Lupus Erythematosus (JSLE) treatment plans vary. AIM To explore 'real world' treatment utilising longitudinal UK JSLE Cohort Study data. METHODS Data collected between 07/2009-05/2020 was used to explore the choice/sequence of immunomodulating drugs from diagnosis. Multivariate logistic regression determined how organ-domain involvement (pBILAG-2004) impacted treatment choice. RESULT 349 patients met inclusion criteria, median follow-up 4-years (IQR:2,6). Mycophenolate mofetil (MMF) was most commonly used for the majority of organ-domains, and significantly associated with renal involvement (OR:1.99, 95% CI:1.65-2.41, pc < 0.01). Analyses assessing the sequence of immunomodulators focused on 197/349 patients (meeting relevant inclusion/exclusion criteria). 10/197 (5%) solely recieved hydroxychloroquine/prednisolone, 62/197 (31%) received a single-immunomodulator, 69/197 (36%) received two, and 36/197 patients (28%) received ≥three immunomodulators. The most common first and second line immunomodulator was MMF. Rituximab was the most common third-line immunomodulator. CONCLUSIONS Most UK JSLE patients required ≥two immunomodulators, with MMF used most commonly.
Collapse
Affiliation(s)
- Eve M D Smith
- Department of Women's & Children's Health, Institute of Life Course and Medical Sciences, University of Liverpool, UK; Department of Paediatric Rheumatology, Alder Hey Children's NHS Foundation Trust Hospital, UK.
| | - Naomi Egbivwie
- Department of Women's & Children's Health, Institute of Life Course and Medical Sciences, University of Liverpool, UK; Department of Paediatric Rheumatology, Alder Hey Children's NHS Foundation Trust Hospital, UK; Liverpool University Hospitals NHS Foundation Trusts, Liverpool, UK
| | | | - Coziana Ciurtin
- Centre for Adolescent Rheumatology, University College London, London, UK
| | - Eslam Al-Abadi
- Department of Rheumatology, Birmingham Children's Hospital, Birmingham, UK
| | - Kate Armon
- Department of Paediatric Rheumatology, Cambridge University Hospitals, Cambridge, UK
| | - Kathryn Bailey
- Department of Paediatric Rheumatology, Oxford University Hospitals NHS Foundation Trust, Oxford, UK
| | - Mary Brennan
- Department of Paediatric Rheumatology, Royal Hospital for Sick Children, Edinburgh, UK
| | | | - Kirsty Haslam
- Department of Paediatrics, Bradford Royal Infirmary, Bradford, UK
| | - Daniel P Hawley
- Department of Paediatric Rheumatology, Sheffield Children's Hospital, Sheffield, UK
| | - Alice Leahy
- Department of Paediatric Rheumatology, Southampton General Hospital, Southampton, UK
| | - Valentina Leone
- Department of Paediatric Rheumatology, Leeds Children Hospital, Leeds, UK
| | - Gulshan Malik
- Paediatric Rheumatology, Royal Aberdeen Children's Hospital, Aberdeen, UK
| | - Zoe McLaren
- Liverpool University Hospitals NHS Foundation Trusts, Liverpool, UK
| | - Clarissa Pilkington
- Department of Paediatric Rheumatology, Great Ormond Street Hospital, London, UK
| | - Athimalaipet V Ramanan
- University Hospitals Bristol NHS Foundation Trust & Bristol Medical School, University of Bristol, Bristol, UK
| | - Satyapal Rangaraj
- Department of Paediatric Rheumatology, Nottingham University Hospitals, Nottingham, UK
| | - Annie Ratcliffe
- Department of Paediatrics, Taunton & Somerset NHS Foundation Trust - Musgrove Park Hospital, Taunton, UK
| | - Phil Riley
- Paediatric Rheumatology, Royal Manchester Children's Hospital, Manchester, UK
| | - Ethan Sen
- Paediatric Rheumatology, Great North Children's Hospital, Royal Victoria Infirmary, Institute of Cellular Medicine, Newcastle University, Newcastle upon Tyne, UK
| | - Arani Sridhar
- Leicester Children's Hospital, University Hospitals of Leicester NHS trust, Leicester, UK
| | - Nick Wilkinson
- Guy's & St Thomas's NHS Foundation Trust, Evelina Children's Hospital, London, UK
| | - Fiona Wood
- Department of Paediatrics, University Hospitals of Morecambe Bay NHS Foundation Trust, Royal Lancaster Infirmary, Lancaster, UK
| | - Michael W Beresford
- Department of Women's & Children's Health, Institute of Life Course and Medical Sciences, University of Liverpool, UK; Department of Paediatric Rheumatology, Alder Hey Children's NHS Foundation Trust Hospital, UK
| | - Christian M Hedrich
- Department of Women's & Children's Health, Institute of Life Course and Medical Sciences, University of Liverpool, UK; Department of Paediatric Rheumatology, Alder Hey Children's NHS Foundation Trust Hospital, UK
| |
Collapse
|
40
|
Quaglia M, Merlotti G, Fornara L, Colombatto A, Cantaluppi V. Extracellular Vesicles Released from Stem Cells as a New Therapeutic Strategy for Primary and Secondary Glomerulonephritis. Int J Mol Sci 2022; 23:ijms23105760. [PMID: 35628570 PMCID: PMC9142886 DOI: 10.3390/ijms23105760] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2022] [Revised: 05/13/2022] [Accepted: 05/20/2022] [Indexed: 12/04/2022] Open
Abstract
Current treatment of primary and secondary glomerulopathies is hampered by many limits and a significant proportion of these disorders still evolves towards end-stage renal disease. A possible answer to this unmet challenge could be represented by therapies with stem cells, which include a variety of progenitor cell types derived from embryonic or adult tissues. Stem cell self-renewal and multi-lineage differentiation ability explain their potential to protect and regenerate injured cells, including kidney tubular cells, podocytes and endothelial cells. In addition, a broad spectrum of anti-inflammatory and immunomodulatory actions appears to interfere with the pathogenic mechanisms of glomerulonephritis. Of note, mesenchymal stromal cells have been particularly investigated as therapy for Lupus Nephritis and Diabetic Nephropathy, whereas initial evidence suggest their beneficial effects in primary glomerulopathies such as IgA nephritis. Extracellular vesicles mediate a complex intercellular communication network, shuttling proteins, nucleic acids and other bioactive molecules from origin to target cells to modulate their functions. Stem cell-derived extracellular vesicles recapitulate beneficial cytoprotective, reparative and immunomodulatory properties of parental cells and are increasingly recognized as a cell-free alternative to stem cell-based therapies for different diseases including glomerulonephritis, also considering the low risk for potential adverse effects such as maldifferentiation and tumorigenesis. We herein summarize the renoprotective potential of therapies with stem cells and extracellular vesicles derived from progenitor cells in glomerulonephritis, with a focus on their different mechanisms of actions. Technological progress and growing knowledge are paving the way for wider clinical application of regenerative medicine to primary and secondary glomerulonephritis: this multi-level, pleiotropic therapy may open new scenarios overcoming the limits and side effects of traditional treatments, although the promising results of experimental models need to be confirmed in the clinical setting.
Collapse
|
41
|
Duan T, Zhu X, Zhao Q, Xiao L, He L, Liu H, Chen A, Duan S, Yuan S, Tang C, Yuan F, Zhu J, Zhu X, Cheng M, Liu Y, Liu Y, Liu F, Sun L. Association of Bowman's capsule rupture with prognosis in patients with lupus nephritis. J Nephrol 2022; 35:1193-1204. [PMID: 35435603 DOI: 10.1007/s40620-022-01316-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2021] [Accepted: 03/19/2022] [Indexed: 10/18/2022]
Abstract
BACKGROUND AND OBJECTIVE Lupus nephritis is one of the most severe manifestations of systemic lupus erythematosus. The clinical and prognostic significance of Bowman's capsule rupture in patients with lupus nephritis is unknown. METHODS One hundred eighty patients with lupus nephritis were enrolled in the study and the integrity of Bowman's capsule was assessed. Both inflammatory and proliferative cells were detected by immunochemistry staining. The primary events of interest were end-stage renal disease and death. RESULTS After retrospective analysis of the data, 52 (28.9%) patients were found to have Bowman's capsule rupture, which was accompanied by high levels of serum creatinine, 24 h urine protein, and Activity/Chronicity Index. Bowman's capsule rupture was correlated with the level of crescents, tubular atrophy, and interstitial fibrosis. The number of CD20+ cells was higher in the Bowman's capsule rupture ( +) group compared with the Bowman's capsule rupture (-) group, while no differences in other inflammatory cells were observed. In addition, the end stage renal disease-free survival in the Bowman's capsule rupture ( +) group was lower than in the Bowman's capsule rupture (-) group. Moreover, serum creatinine (HR 39.56, P < 0.001), Activity Index (HR 1.50, P < 0.05) as well as Bowman's capsule rupture (HR 1.09, P < 0.05) predicted end-stage renal disease progression. Notably, for patients with existing crescents, Bowman's capsule rupture increased the cumulative risk of end-stage renal disease. CONCLUSIONS Bowman's capsule rupture is an important renal pathological lesion, which correlates with severe clinical manifestations, pathological changes, and poor prognosis in patients with lupus nephritis.
Collapse
Affiliation(s)
- Tongyue Duan
- Department of Nephrology, The Second Xiangya Hospital, Central South University, Key Laboratory of Kidney Disease and Blood Purification, Changsha, Hunan, China
| | - Xuejing Zhu
- Department of Nephrology, The Second Xiangya Hospital, Central South University, Key Laboratory of Kidney Disease and Blood Purification, Changsha, Hunan, China
| | - Qing Zhao
- Department of Nephrology, The Second Xiangya Hospital, Central South University, Key Laboratory of Kidney Disease and Blood Purification, Changsha, Hunan, China
| | - Li Xiao
- Department of Nephrology, The Second Xiangya Hospital, Central South University, Key Laboratory of Kidney Disease and Blood Purification, Changsha, Hunan, China
| | - Liyu He
- Department of Nephrology, The Second Xiangya Hospital, Central South University, Key Laboratory of Kidney Disease and Blood Purification, Changsha, Hunan, China
| | - Hong Liu
- Department of Nephrology, The Second Xiangya Hospital, Central South University, Key Laboratory of Kidney Disease and Blood Purification, Changsha, Hunan, China
| | - Anqun Chen
- Department of Nephrology, The Second Xiangya Hospital, Central South University, Key Laboratory of Kidney Disease and Blood Purification, Changsha, Hunan, China
| | - Shaobin Duan
- Department of Nephrology, The Second Xiangya Hospital, Central South University, Key Laboratory of Kidney Disease and Blood Purification, Changsha, Hunan, China
| | - Shuguang Yuan
- Department of Nephrology, The Second Xiangya Hospital, Central South University, Key Laboratory of Kidney Disease and Blood Purification, Changsha, Hunan, China
| | - Chengyuan Tang
- Department of Nephrology, The Second Xiangya Hospital, Central South University, Key Laboratory of Kidney Disease and Blood Purification, Changsha, Hunan, China
| | - Fang Yuan
- Department of Nephrology, The Second Xiangya Hospital, Central South University, Key Laboratory of Kidney Disease and Blood Purification, Changsha, Hunan, China
| | - Jianling Zhu
- Department of Nephrology, The Second Xiangya Hospital, Central South University, Key Laboratory of Kidney Disease and Blood Purification, Changsha, Hunan, China
| | - Xiaoping Zhu
- Department of Nephrology, The Second Xiangya Hospital, Central South University, Key Laboratory of Kidney Disease and Blood Purification, Changsha, Hunan, China
| | - Meichu Cheng
- Department of Nephrology, The Second Xiangya Hospital, Central South University, Key Laboratory of Kidney Disease and Blood Purification, Changsha, Hunan, China
| | - Yinghong Liu
- Department of Nephrology, The Second Xiangya Hospital, Central South University, Key Laboratory of Kidney Disease and Blood Purification, Changsha, Hunan, China
| | - Yu Liu
- Department of Nephrology, The Second Xiangya Hospital, Central South University, Key Laboratory of Kidney Disease and Blood Purification, Changsha, Hunan, China
| | - Fuyou Liu
- Department of Nephrology, The Second Xiangya Hospital, Central South University, Key Laboratory of Kidney Disease and Blood Purification, Changsha, Hunan, China
| | - Lin Sun
- Department of Nephrology, The Second Xiangya Hospital, Central South University, Key Laboratory of Kidney Disease and Blood Purification, Changsha, Hunan, China.
| |
Collapse
|
42
|
Murphy L. Systemic lupus erythematosus: overview, management and COVID-19. BRITISH JOURNAL OF NURSING (MARK ALLEN PUBLISHING) 2022; 31:348-355. [PMID: 35404655 DOI: 10.12968/bjon.2022.31.7.348] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
Systemic lupus erythematosus is a complex multi-system disease affecting various systems of the body. The aetiology remains unclear; however, it is thought that immune system dysregulation, environmental factors and viral susceptibility can trigger the disease. Mortality remains high due to cardiovascular disease, infection and lupus nephritis. Clinical assessment should comprise an extensive history, detailed physical examination and relevant laboratory tests. Management begins with an in-depth understanding of disease-specific complications and associated comorbidities. Treatments should be based on a shared decision-making process between the patient and the clinician. Review by a specialist nurse is vital for ongoing support and education. Current treatments can increase the risk of COVID-19 infection and disease severity, so caution is needed in the current climate. New treatments are emerging and offer hope to those with refractory disease.
Collapse
Affiliation(s)
- Louise Murphy
- Registered Advanced Nurse Practitioner in Rheumatology, Department of Rheumatology, Cork University Hospital, Ireland
| |
Collapse
|
43
|
Xin Y, Zhang B, Zhao J, Liu Q, Yin H, Lu Q. Animal models of systemic lupus erythematosus and their applications in drug discovery. Expert Opin Drug Discov 2022; 17:489-500. [PMID: 35287523 DOI: 10.1080/17460441.2022.2050691] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022]
Abstract
INTRODUCTION Systemic lupus erythematosus (SLE) is a multisystem autoimmune disease with substantial phenotypic heterogeneity. Currently, our understanding of the pathogenesis is still limited, and as a result, specific and efficacious therapies are lacking. Various mouse models have been established to serve as powerful tools that will promote a better understanding of the disease and the ability to test novel drugs before clinical application. AREAS COVERED The authors review the existing mouse models of SLE in terms of pathogenesis and manifestations, as well as their applications in drug discovery and development. The areas of focus include promising novel therapeutics that could benefit patients in the future and the contribution of mouse models used in preclinical studies. EXPERT OPINION Given the diversity of SLE mouse models with different characteristics, researchers must select a suitable model based on the mechanism involved. The use of multiple models is needed for drug testing studies to evaluate drug efficacy on different genetic backgrounds and other mechanisms to provide a reference for clinical trials.
Collapse
Affiliation(s)
- Yue Xin
- Institute of Dermatology, Chinese Academy of Medical Sciences and Peking Union Medical College, Nanjing, Jiangsu, China.,Key Laboratory of Basic and Translational Research on Immune-Mediated Skin Diseases, Chinese Academy of Medical Sciences, Nanjing, Jiangsu, China.,Jiangsu Key Laboratory of Molecular Biology for Skin Diseases and STIs, Nanjing, Jiangsu, China
| | - Bo Zhang
- Institute of Dermatology, Chinese Academy of Medical Sciences and Peking Union Medical College, Nanjing, Jiangsu, China.,Key Laboratory of Basic and Translational Research on Immune-Mediated Skin Diseases, Chinese Academy of Medical Sciences, Nanjing, Jiangsu, China.,Jiangsu Key Laboratory of Molecular Biology for Skin Diseases and STIs, Nanjing, Jiangsu, China
| | - Junpeng Zhao
- Institute of Dermatology, Chinese Academy of Medical Sciences and Peking Union Medical College, Nanjing, Jiangsu, China.,Key Laboratory of Basic and Translational Research on Immune-Mediated Skin Diseases, Chinese Academy of Medical Sciences, Nanjing, Jiangsu, China.,Jiangsu Key Laboratory of Molecular Biology for Skin Diseases and STIs, Nanjing, Jiangsu, China
| | - Qianmei Liu
- Institute of Dermatology, Chinese Academy of Medical Sciences and Peking Union Medical College, Nanjing, Jiangsu, China.,Key Laboratory of Basic and Translational Research on Immune-Mediated Skin Diseases, Chinese Academy of Medical Sciences, Nanjing, Jiangsu, China.,Jiangsu Key Laboratory of Molecular Biology for Skin Diseases and STIs, Nanjing, Jiangsu, China
| | - Haoyuan Yin
- Institute of Dermatology, Chinese Academy of Medical Sciences and Peking Union Medical College, Nanjing, Jiangsu, China.,Key Laboratory of Basic and Translational Research on Immune-Mediated Skin Diseases, Chinese Academy of Medical Sciences, Nanjing, Jiangsu, China.,Jiangsu Key Laboratory of Molecular Biology for Skin Diseases and STIs, Nanjing, Jiangsu, China
| | - Qianjin Lu
- Institute of Dermatology, Chinese Academy of Medical Sciences and Peking Union Medical College, Nanjing, Jiangsu, China.,Key Laboratory of Basic and Translational Research on Immune-Mediated Skin Diseases, Chinese Academy of Medical Sciences, Nanjing, Jiangsu, China.,Jiangsu Key Laboratory of Molecular Biology for Skin Diseases and STIs, Nanjing, Jiangsu, China
| |
Collapse
|
44
|
Tanaka Y, Luo Y, O'Shea JJ, Nakayamada S. Janus kinase-targeting therapies in rheumatology: a mechanisms-based approach. Nat Rev Rheumatol 2022; 18:133-145. [PMID: 34987201 PMCID: PMC8730299 DOI: 10.1038/s41584-021-00726-8] [Citation(s) in RCA: 254] [Impact Index Per Article: 84.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/18/2021] [Indexed: 02/06/2023]
Abstract
The four Janus kinase (JAK) proteins and seven signal transducer and activator of transcription (STAT) transcription factors mediate intracellular signal transduction downstream of cytokine receptors, which are implicated in the pathology of autoimmune, allergic and inflammatory diseases. Development of targeted small-molecule therapies such as JAK inhibitors, which have varied selective inhibitory profiles, has enabled a paradigm shift in the treatment of diverse disorders. JAK inhibitors suppress intracellular signalling mediated by multiple cytokines involved in the pathological processes of rheumatoid arthritis and many other immune and inflammatory diseases, and therefore have the capacity to target multiple aspects of those diseases. In addition to rheumatoid arthritis, JAK inhibition has potential for treatment of autoimmune diseases including systemic lupus erythematosus, spondyloarthritis, inflammatory bowel disease and alopecia areata, in which stimulation of innate immunity activates adaptive immunity, leading to generation of autoreactive T cells and activation and differentiation of B cells. JAK inhibitors are also effective in the treatment of allergic disorders, such as atopic dermatitis, and can even be used for the COVID-19-related cytokine storm. Mechanism-based treatments targeting JAK-STAT pathways have the potential to provide positive outcomes by minimizing the use of glucocorticoids and/or non-specific immunosuppressants in the treatment of systemic immune-mediated inflammatory diseases.
Collapse
Affiliation(s)
- Yoshiya Tanaka
- The First Department of Internal Medicine, School of Medicine, University of Occupational and Environmental Health, Japan, Kitakyushu, Japan.
| | - Yiming Luo
- Vasculitis Translational Research Program Systemic Autoimmunity Branch, National Institute of Arthritis, Musculoskeletal, and Skin Diseases NIH, Bethesda, MD, USA
| | - John J O'Shea
- Molecular Immunology & Inflammation Branch, and Translational Immunology Section, National Institute of Arthritis & Musculoskeletal and Skin Diseases, NIH, Bethesda, MD, USA
| | - Shingo Nakayamada
- The First Department of Internal Medicine, School of Medicine, University of Occupational and Environmental Health, Japan, Kitakyushu, Japan
| |
Collapse
|
45
|
Nakayamada S, Tanaka Y. Pathological relevance and treatment perspective of JAK targeting in systemic lupus erythematosus. Expert Rev Clin Immunol 2022; 18:245-252. [PMID: 35138987 DOI: 10.1080/1744666x.2022.2040988] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
Abstract
INTRODUCTION The pathogenesis of systemic lupus erythematosus (SLE) involves abnormalities in both acquired and innate immune system, which is mediated by numerous cytokines. Janus kinase (JAK) plays important roles in the signaling pathways of those cytokines and is an attractive therapeutic target for SLE. Currently, multiple clinical trials using JAK inhibitors with different selectivities for JAK family proteins are being conducted in SLE. AREA COVERED In this article, we provide an overview of the pathological relevance of JAK and the clinical implications of JAK inhibitors in SLE based on recent reports. EXPERT OPINION JAK inhibitors have the potential to modulate various immune networks through a variety of mechanisms, potentially regulating the complex immunopathogenesis in SLE. SLE is a clinically and immunologically heterogeneous disease; therefore, precision medicine is required to maximize the efficacy of JAK inhibitors. Further studies are needed to determine their risk-benefit ratio and selection of the most appropriate patients for JAK inhibitors.
Collapse
Affiliation(s)
- Shingo Nakayamada
- The First Department of Internal Medicine, School of Medicine, University of Occupational and Environmental Health, Japan
| | - Yoshiya Tanaka
- The First Department of Internal Medicine, School of Medicine, University of Occupational and Environmental Health, Japan
| |
Collapse
|
46
|
Radic M, Neeli I, Marion T. Prospects for CAR T cell immunotherapy in autoimmune diseases: clues from Lupus. Expert Opin Biol Ther 2022; 22:499-507. [PMID: 35089116 DOI: 10.1080/14712598.2022.2026921] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022]
Abstract
INTRODUCTION Medicine stands at the threshold of a new era heralded by the vast potential of cell engineering. Like advances made possible by genetic engineering, current prospects for purposeful control of cell functions through cell engineering may bring breakthroughs in the treatment of previously intractable diseases. AREAS COVERED Engineering of cytotoxic T cells for expression of chimeric antigen receptors (CARs) instructs them to attack and destroy malignant cells and thus provides an exciting new approach in oncology. A decade of practical experience and first-in-human trials encourage the search for new and broader uses of CAR technology, including in autoimmune diseases. EXPERT OPINION Systemic lupus erythematosus is an example of a broader category of autoimmune diseases, for which cell engineering will provide a powerful new therapeutic approach. This article describes different types of CAR T cell strategies that will provide new treatment options for patients with autoimmune diseases and replace conventional therapies.
Collapse
Affiliation(s)
- Marko Radic
- Department of Microbiology, Immunology and Biochemistry, University of Tennessee Health Science Center, Memphis, TN (USA)
| | - Indira Neeli
- Department of Microbiology, Immunology and Biochemistry, University of Tennessee Health Science Center, Memphis, TN (USA)
| | - Tony Marion
- Department of Microbiology, Immunology and Biochemistry, University of Tennessee Health Science Center, Memphis, TN (USA)
| |
Collapse
|
47
|
Chen J, Liao S, Zhou H, Yang L, Guo F, Chen S, Li A, Pan Q, Yang C, Liu HF, Pan Q. Humanized Mouse Models of Systemic Lupus Erythematosus: Opportunities and Challenges. Front Immunol 2022; 12:816956. [PMID: 35116040 PMCID: PMC8804209 DOI: 10.3389/fimmu.2021.816956] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2021] [Accepted: 12/30/2021] [Indexed: 12/11/2022] Open
Abstract
Animal models have played a crucial role in the understanding of the mechanisms and treatments of human diseases; however, owing to the large differences in genetic background and disease-specific characteristics, animal models cannot fully simulate the occurrence and progression of human diseases. Recently, humanized immune system mice, based on immunodeficient mice, have been developed that allow for the partial reconstruction of the human immune system and mimic the human in vivo microenvironment. Systemic lupus erythematosus (SLE) is a complex disease characterized by the loss of tolerance to autoantigens, overproduction of autoantibodies, and inflammation in multiple organ systems. The detailed immunological events that trigger the onset of clinical manifestations in patients with SLE are still not well known. Two methods have been adopted for the development of humanized SLE mice. They include transferring peripheral blood mononuclear cells from patients with SLE to immunodeficient mice or transferring human hematopoietic stem cells to immunodeficient mice followed by intraperitoneal injection with pristane to induce lupus. However, there are still several challenges to be overcome, such as how to improve the efficiency of reconstruction of the human B cell immune response, how to extend the lifespan and improve the survival rate of mice to extend the observation period, and how to improve the development of standardized commercialized models and use them. In summary, there are opportunities and challenges for the development of humanized mouse models of SLE, which will provide novel strategies for understanding the mechanisms and treatments of SLE.
Collapse
Affiliation(s)
- Jiaxuan Chen
- Key Laboratory of Prevention and Management of Chronic Kidney Disease of Zhanjiang City, Institute of Nephrology, Affiliated Hospital of Guangdong Medical University, Zhanjiang, China
| | - Shuzhen Liao
- Key Laboratory of Prevention and Management of Chronic Kidney Disease of Zhanjiang City, Institute of Nephrology, Affiliated Hospital of Guangdong Medical University, Zhanjiang, China
| | - Huimin Zhou
- Zhanjiang Central Hospital, Guangdong Medical University, Zhanjiang, China
| | - Lawei Yang
- Key Laboratory of Prevention and Management of Chronic Kidney Disease of Zhanjiang City, Institute of Nephrology, Affiliated Hospital of Guangdong Medical University, Zhanjiang, China
| | - Fengbiao Guo
- Key Laboratory of Prevention and Management of Chronic Kidney Disease of Zhanjiang City, Institute of Nephrology, Affiliated Hospital of Guangdong Medical University, Zhanjiang, China
| | - Shuxian Chen
- Key Laboratory of Prevention and Management of Chronic Kidney Disease of Zhanjiang City, Institute of Nephrology, Affiliated Hospital of Guangdong Medical University, Zhanjiang, China
| | - Aifen Li
- Key Laboratory of Prevention and Management of Chronic Kidney Disease of Zhanjiang City, Institute of Nephrology, Affiliated Hospital of Guangdong Medical University, Zhanjiang, China
| | - Quanren Pan
- Key Laboratory of Prevention and Management of Chronic Kidney Disease of Zhanjiang City, Institute of Nephrology, Affiliated Hospital of Guangdong Medical University, Zhanjiang, China
| | - Chen Yang
- Key Laboratory of Prevention and Management of Chronic Kidney Disease of Zhanjiang City, Institute of Nephrology, Affiliated Hospital of Guangdong Medical University, Zhanjiang, China
| | - Hua-feng Liu
- Key Laboratory of Prevention and Management of Chronic Kidney Disease of Zhanjiang City, Institute of Nephrology, Affiliated Hospital of Guangdong Medical University, Zhanjiang, China
- *Correspondence: Hua-feng Liu, ; Qingjun Pan,
| | - Qingjun Pan
- Key Laboratory of Prevention and Management of Chronic Kidney Disease of Zhanjiang City, Institute of Nephrology, Affiliated Hospital of Guangdong Medical University, Zhanjiang, China
- *Correspondence: Hua-feng Liu, ; Qingjun Pan,
| |
Collapse
|
48
|
Discovery and mechanistic study of thiazole-4-acylsulfonamide derivatives as potent and orally active ChemR23 inhibitors with a long-acting effect in cynomolgus monkeys. Bioorg Med Chem 2022; 56:116587. [DOI: 10.1016/j.bmc.2021.116587] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2021] [Revised: 12/15/2021] [Accepted: 12/17/2021] [Indexed: 11/20/2022]
|
49
|
Tanaka Y. Belimumab: A BAFF-specific Inhibitor for the Treatment of Systemic Lupus Erythematosus and Lupus Nephritis. Rheumatology (Oxford) 2022. [DOI: 10.17925/rmd.2022.1.1.32] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
Abstract
Systemic lupus erythematosus (SLE) is a systemic autoimmune disease that affects multiple organs. In particular, the presence of renal involvement, known as lupus nephritis, is a major determinant of prognosis. Conventional treatments for SLE include hydroxychloroquine, glucocorticoid and immunosuppressive agents. However, the use of such non-specific drugs increases the risk of side effects, such as infections. Soluble B-cell-activating factor (BAFF), belonging to the tumour necrosis factor family, is produced by dendritic cells and induces class switching of B cells and differentiation into antibody-producing cells. International phase III studies demonstrated the efficacy and safety of belimumab (a monoclonal antibody against soluble BAFF) not only in patients with SLE, but also in those with active lupus nephritis. There were no significant differences between the belimumab and placebo groups in the incidence of adverse events, including serious events and events necessitating drug cessation. Thus, belimumab could become an alternative induction treatment for lupus nephritis. This article describes the pathogenesis of SLE and lupus nephritis, and reviews the results of recent phase III trials of belimumab and its promising role for the treatment of patients.
Collapse
|
50
|
Mathew J, Padiyar S, Manwatkar A, Ganapati A, Roy S. Overlap of IgG4-Related disease with autoimmune rheumatic diseases: Report of 2 cases and review of literature. INDIAN JOURNAL OF RHEUMATOLOGY 2022. [DOI: 10.4103/injr.injr_265_21] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022] Open
|