1
|
Li Y, Lv J, Liu S, Wang Z, Gao Y, Fan Z, Huang L, Cui J, Zhang B, Liu X, Zhang Z, Liu T, Li D, Yang M. Macrophage corpses for immunoregulation and targeted drug delivery in treatment of collagen-induced arthritis mice. Biomaterials 2025; 314:122867. [PMID: 39366181 DOI: 10.1016/j.biomaterials.2024.122867] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2023] [Revised: 08/12/2024] [Accepted: 09/27/2024] [Indexed: 10/06/2024]
Abstract
The role of pro-inflammatory macrophages (M1) in rheumatoid arthritis (RA) is significant, as they produce excessive cytokines. Targeting efferocytosis is a potential manner to repolarize M1 macrophages into pro-resolving M2 phenotype, which restores immune homeostasis by releasing anti-inflammatory mediators. In this study, liquid nitrogen-treated dead macrophages (DM) are employed to act as a dead cell-derived active targeted drug carrier for shikonin (SHK) and induce efferocytosis in M1 macrophages with the enhancement of SHK as an AMP-activated protein kinase (AMPK)-activator. The synergistic activation of AMPK leads to uncoupled protein 2 (UCP2) upregulation and reprograms M1 macrophages into M2 phenotypes by promoting oxidative phosphorylation. In the mouse model of collagen-induced arthritis, the intravenous administration of DM/SHK leads to a consistent transformation of M1 macrophages into the M2 phenotype within the infiltrative synovium. This transformation of macrophages results in the restoration of immune homeostasis in the synovium through an increase in the production of pro-resolving mediators. Additionally, it inhibits synovial proliferation and infiltration and provides protection against erosion of cartilage and bone. In summary, LNT-based DM serves as an active targeting drug carrier to M1 macrophages and also acts synergistically with SHK to target immunometabolism.
Collapse
Affiliation(s)
- Yuhuan Li
- Department of Orthopedics, China-Japan Union Hospital of Jilin University, Changchun, Jilin, China
| | - Jiayin Lv
- Department of Orthopedics, China-Japan Union Hospital of Jilin University, Changchun, Jilin, China
| | - Shuchen Liu
- Jilin Provincial Key Laboratory of Tooth Development and Bone Remodeling, Hospital of Stomatology, Jilin University, Changchun, Jilin, China
| | - Zhuoran Wang
- Jilin Provincial Key Laboratory of Tooth Development and Bone Remodeling, Hospital of Stomatology, Jilin University, Changchun, Jilin, China
| | - Yu Gao
- Department of Orthopedics, China-Japan Union Hospital of Jilin University, Changchun, Jilin, China
| | - Zheyuan Fan
- Department of Orthopedics, China-Japan Union Hospital of Jilin University, Changchun, Jilin, China
| | - Lei Huang
- Jilin Provincial Key Laboratory of Tooth Development and Bone Remodeling, Hospital of Stomatology, Jilin University, Changchun, Jilin, China
| | - Jing Cui
- Jilin Provincial Key Laboratory of Tooth Development and Bone Remodeling, Hospital of Stomatology, Jilin University, Changchun, Jilin, China
| | - Boya Zhang
- Jilin Provincial Key Laboratory of Tooth Development and Bone Remodeling, Hospital of Stomatology, Jilin University, Changchun, Jilin, China
| | - Xinchen Liu
- Jilin Provincial Key Laboratory of Tooth Development and Bone Remodeling, Hospital of Stomatology, Jilin University, Changchun, Jilin, China
| | - Zhuo Zhang
- Department of Orthopedics, China-Japan Union Hospital of Jilin University, Changchun, Jilin, China
| | - Te Liu
- Scientific Research Center, China-Japan Union Hospital of Jilin University, Changchun, Jilin, China; Yibin Jilin University Research Institute, Jilin University, Yibin, Sichuan, China
| | - Daowei Li
- Jilin Provincial Key Laboratory of Tooth Development and Bone Remodeling, Hospital of Stomatology, Jilin University, Changchun, Jilin, China.
| | - Modi Yang
- Department of Orthopedics, China-Japan Union Hospital of Jilin University, Changchun, Jilin, China.
| |
Collapse
|
2
|
Wang Q, Ren J, Lin X, Zhang B, Li J, Weng Y. Inflammatory stimulus-responsive polymersomes reprogramming glucose metabolism mitigates rheumatoid arthritis. Biomaterials 2025; 312:122760. [PMID: 39163825 DOI: 10.1016/j.biomaterials.2024.122760] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2024] [Revised: 08/14/2024] [Accepted: 08/16/2024] [Indexed: 08/22/2024]
Abstract
Inflammation-resident cells within arthritic sites undergo a metabolic shift towards glycolysis, which greatly aggravates rheumatoid arthritis (RA). Reprogramming glucose metabolism can suppress abnormal proliferation and activation of inflammation-related cells without affecting normal cells, holding potential for RA therapy. Single 2-deoxy-d-glucose (2-DG, glycolysis inhibitor) treatment often cause elevated ROS, which is detrimental to RA remission. The rational combination of glycolysis inhibition with anti-inflammatory intervention might cooperatively achieve favorable RA therapy. To improve drug bioavailability and exert synergetic effect, stable co-encapsulation of drugs in long circulation and timely drug release in inflamed milieu is highly desirable. Herein, we designed a stimulus-responsive hyaluronic acid-triglycerol monostearate polymersomes (HTDD) co-delivering 2-DG and dexamethasone (Dex) to arthritic sites. After intravenous injection, HTDD polymersomes facilitated prolonged circulation and preferential distribution in inflamed sites, where overexpressed matrix metalloproteinases and acidic pH triggered drug release. Results indicated 2-DG can inhibit the excessive cell proliferation and activation, and improve Dex bioavailability by reducing Dex efflux. Dex can suppress inflammatory signaling and prevent 2-DG-induced oxidative stress. Thus, the combinational strategy ultimately mitigated RA by inhibiting glycolysis and hindering inflammatory signaling. Our study demonstrated the great potential in RA therapy by reprogramming glucose metabolism in arthritic sites.
Collapse
Affiliation(s)
- Qin Wang
- Institute of Biomedical Engineering, College of Medicine, Southwest Jiaotong University, Chengdu, 610031, China.
| | - Jianheng Ren
- Institute of Biomedical Engineering, College of Medicine, Southwest Jiaotong University, Chengdu, 610031, China
| | - Xin Lin
- Institute of Biomedical Engineering, College of Medicine, Southwest Jiaotong University, Chengdu, 610031, China
| | - Bin Zhang
- Institute of Biomedical Engineering, College of Medicine, Southwest Jiaotong University, Chengdu, 610031, China
| | - Jiao Li
- Institute of Biomedical Engineering, College of Medicine, Southwest Jiaotong University, Chengdu, 610031, China
| | - Yajun Weng
- Institute of Biomedical Engineering, College of Medicine, Southwest Jiaotong University, Chengdu, 610031, China.
| |
Collapse
|
3
|
Wei L, Zhang B, Tu Y, Liu A. Research Progress on Glycolysis Mechanism of Psoriasis. PSORIASIS (AUCKLAND, N.Z.) 2024; 14:195-206. [PMID: 39759475 PMCID: PMC11699830 DOI: 10.2147/ptt.s493315] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/27/2024] [Accepted: 12/03/2024] [Indexed: 01/07/2025]
Abstract
Psoriasis is a chronic inflammatory disease with a complex pathogenesis. Hyperplasia of glycolytic-dependent epidermal keratinocytes (KCs) is a new hallmark of psoriasis pathogenesis. Meanwhile, immune cells undergo metabolic reprogramming similar to KCs. Glycolysis provides energy for the proliferation of KCs, while it also releases lactic acid to facilitate the differentiation of immune cells. In turn, differentiated immune cells further promote KCs glycolysis by releasing inflammatory factors, thus forming an immunometabolism loop. The interaction between immune response and metabolic pathways jointly promotes the sustained proliferation of KCs and the secretion of various inflammatory factors by immune cells. Understanding the role of glycolysis in immunometabolism of psoriasis may provide new ideas for non-immunosuppressive treatment of psoriasis. This article aims to review the role of glycolysis in the pathogenesis of psoriasis and attempts to summarize the key enzymes and regulatory factors involved in psoriasis glycolysis, as well as their interactions. Finally, we discuss the pharmacological modulators of glycolysis in psoriasis.
Collapse
Affiliation(s)
- Lu Wei
- The Second Clinical Medical College, Henan University of Chinese Medicine, Zhengzhou, Henan, People’s Republic of China
| | - Buxin Zhang
- Department of Dermatology, Henan Province Hospital of Traditional Chinese Medicine (the Second Affiliated Hospital of Henan University of Chinese Medicine), Zhengzhou, Henan, People’s Republic of China
| | - Yuanhui Tu
- Department of Dermatology, Henan Province Hospital of Traditional Chinese Medicine (the Second Affiliated Hospital of Henan University of Chinese Medicine), Zhengzhou, Henan, People’s Republic of China
| | - Aimin Liu
- The Second Clinical Medical College, Henan University of Chinese Medicine, Zhengzhou, Henan, People’s Republic of China
- Department of Dermatology, Henan Province Hospital of Traditional Chinese Medicine (the Second Affiliated Hospital of Henan University of Chinese Medicine), Zhengzhou, Henan, People’s Republic of China
| |
Collapse
|
4
|
Kalliolias GD, Papavassiliou AG. Targeting hypoxia inducible factor-1 alpha in rheumatoid arthritis: Rationale, opportunities and challenges. Pharmacol Res 2024; 210:107537. [PMID: 39645066 DOI: 10.1016/j.phrs.2024.107537] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/07/2024] [Revised: 12/02/2024] [Accepted: 12/02/2024] [Indexed: 12/09/2024]
Affiliation(s)
- George D Kalliolias
- Hospital for Special Surgery, Arthritis & Tissue Degeneration, New York, NY, USA; Weill Cornell Medical College, Department of Medicine, New York, NY, USA; Regeneron Pharmaceuticals, Inc., Tarrytown, New York, USA
| | - Athanasios G Papavassiliou
- Department of Biological Chemistry, Medical School, National and Kapodistrian University of Athens, Athens, Greece.
| |
Collapse
|
5
|
Wu T, Su D, Zhang L, Liu T, Wang Q, Yan C, Liu M, Ji H, Lei J, Zheng M, Wen Z. Mitochondrial Control of Proteasomal Psmb5 Drives the Differentiation of Tissue-Resident Memory T Cells in Patients with Rheumatoid Arthritis. Arthritis Rheumatol 2024; 76:1743-1757. [PMID: 39037181 DOI: 10.1002/art.42954] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/01/2024] [Revised: 06/13/2024] [Accepted: 07/09/2024] [Indexed: 07/23/2024]
Abstract
OBJECTIVE To explore T cell-intrinsic mechanisms underpinning the mal-differentiation of tissue-resident memory T (Trm) cells in patients with rheumatoid arthritis (RA). METHODS Circulating T cells from patient with RA and healthy individuals were used for Trm cell differentiation. The role of Hobit in Trm differentiation was investigated through targeted silencing experiments. Psmb5 expression regulation was explored by identifying BRD2 as a key transcription factor, with the interaction validated through chromatin immunoprecipitation-quantitative polymerase chain reaction. The impact of BRD2 succinylation on Trm differentiation was examined by manipulating succinyl-CoA levels in T cells. Humanized NSG chimeras representing synovitis provided insights into Trm infiltration in RA synovitis and were used for translational experiments. RESULTS In patients with RA, a notable predisposition of CD4+ T cells toward differentiation into Trm cells was observed, demonstrating a positive correlation with the disease activity score 28. Remarkably, Hobit was a pivotal facilitator in the formation of RA CD4+ Trm cells. Mechanistic studies unveiled the dysregulation of proteasomal Psmb5 in T cells of patients with RA as the key factor contributing to elevated Hobit protein levels. The deficiency of proteasomal Psmb5 was intricately linked to BRD2, with succinylation exerting a significant impact on Psmb5 transcription and Trm cell differentiation. This heightened BRD2 succinylation was attributed to elevated levels of mitochondrial succinyl-CoA in RA T cells. Consequently, targeting succinyl-CoA within CD4+ T cells controlled the inflammation of synovial tissues in humanized chimeras. CONCLUSION Mitochondrial succinyl-CoA fosters the succinylation of BRD2, resulting in compromised transcription of proteasomal Psmb5 and the differentiation of Trm cells in RA.
Collapse
Affiliation(s)
- Tong Wu
- Soochow University, Suzhou, China
| | | | | | - Ting Liu
- Nanjing Medical University, Wuxi, China
| | | | | | | | | | | | | | | |
Collapse
|
6
|
Gong X, Yang SY, Wang ZY, Tang M. The role of hypoxic microenvironment in autoimmune diseases. Front Immunol 2024; 15:1435306. [PMID: 39575238 PMCID: PMC11578973 DOI: 10.3389/fimmu.2024.1435306] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2024] [Accepted: 10/21/2024] [Indexed: 11/24/2024] Open
Abstract
The hypoxic microenvironment, characterized by significantly reduced oxygen levels within tissues, has emerged as a critical factor in the pathogenesis and progression of various autoimmune diseases (AIDs). Central to this process is the hypoxia-inducible factor-1 (HIF-1), which orchestrates a wide array of cellular responses under low oxygen conditions. This review delves into the multifaceted roles of the hypoxic microenvironment in modulating immune cell function, particularly highlighting its impact on immune activation, metabolic reprogramming, and angiogenesis. Specific focus is given to the mechanisms by which hypoxia contributes to the development and exacerbation of diseases such as rheumatoid arthritis (RA), systemic lupus erythematosus (SLE), multiple sclerosis (MS), and dermatomyositis (DM). In these conditions, the hypoxic microenvironment not only disrupts immune tolerance but also enhances inflammatory responses and promotes tissue damage. The review also discusses emerging therapeutic strategies aimed at targeting the hypoxic pathways, including the application of HIF-1α inhibitors, mTOR inhibitors, and other modulators of the hypoxic response. By providing a comprehensive overview of the interplay between hypoxia and immune dysfunction in AIDs, this review offers new perspectives on the underlying mechanisms of these diseases and highlights potential avenues for therapeutic intervention.
Collapse
Affiliation(s)
- Xun Gong
- Department of Rheumatology and Immunology, Affiliated Hospital of Jiangsu University, Zhenjiang, China
| | - Su-Yin Yang
- Department of Rheumatology and Immunology, Affiliated Hospital of Jiangsu University, Zhenjiang, China
| | - Zhen-Yu Wang
- Department of Rheumatology and Immunology, Affiliated Hospital of Jiangsu University, Zhenjiang, China
| | - Min Tang
- School of Life Sciences, Jiangsu University, Zhenjiang, China
| |
Collapse
|
7
|
Chao M, Hua Z, Zhu J, Wu G, Fan L, Tang R, Chen H, Gao F. Hyaluronic acid modified prussian blue analogs/TiO₂ janus nanostructures through efficient charge separation to enhance photocatalytic-driven dual gas for achieve multimodal treatment of rheumatoid arthritis. Int J Biol Macromol 2024; 281:136567. [PMID: 39419160 DOI: 10.1016/j.ijbiomac.2024.136567] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2024] [Revised: 10/10/2024] [Accepted: 10/11/2024] [Indexed: 10/19/2024]
Abstract
Rheumatoid arthritis (RA) is a chronic autoimmune disease characterized by the abnormal proliferation of fibroblast-like synoviocytes and changes in the joint synovium, including elevated reactive oxygen species, decreased pH, and reduced oxygen content. In this study, we synthesized a novel nanocomposite material, namely HA-PBA-TiO2 Janus nanocomposite, by in situ etching in prussian blue analogs doped with Co and Ni, followed by the growth of TiO2 nano-flowers and encapsulation in hyaluronic acid. When these janus nanoparticles diffused to the inflammatory sites of RA, they exhibited outstanding photocatalytic water-splitting ability under 660 nm laser irradiation, generating H2 and O2. This capability helps ameliorate the hypoxic microenvironment at RA inflammatory sites by eliminating reactive oxygen species (ROS) and enhancing antioxidation and oxygenation. Furthermore, owing to the doping of Co and Ni, HA-PBA-TiO2 exhibits photothermal conversion capability, which significant damage to FLS upon exposure to 660 nm laser irradiation, thereby controlling their aberrant proliferation. Through a series of in vitro and in vivo experiments, we validated the significant therapeutic efficacy of HA-PBA-TiO2 in treating RA, highlighting its broad prospects for application.
Collapse
Affiliation(s)
- Minghao Chao
- Department of Orthopedics, Affiliated Hospital of Xuzhou Medical University, Xuzhou, Jiangsu 221002, China; Jiangsu Key Laboratory of New Drug Research and Clinical Pharmacy, Xuzhou Medical University, Xuzhou, Jiangsu 221004, China; Department of Orthopaedic Surgery, Lishui Central Hospital and Fifth Affiliated Hospital of Wenzhou Medical University, Lishui 323000, Zhejiang Province, China
| | - Zhiyuan Hua
- Department of Orthopedics, Affiliated Hospital of Xuzhou Medical University, Xuzhou, Jiangsu 221002, China; Jiangsu Key Laboratory of New Drug Research and Clinical Pharmacy, Xuzhou Medical University, Xuzhou, Jiangsu 221004, China
| | - Jun Zhu
- Department of Orthopedics, The Affiliated Huai'an Hospital of Xuzhou Medical University, The Second People's Hospital of Huai'an, Huai'an 223002, China
| | - Guoquan Wu
- Department of Orthopedics, Affiliated Hospital of Xuzhou Medical University, Xuzhou, Jiangsu 221002, China; Jiangsu Key Laboratory of New Drug Research and Clinical Pharmacy, Xuzhou Medical University, Xuzhou, Jiangsu 221004, China
| | - Liying Fan
- Department of Orthopedics, Affiliated Hospital of Xuzhou Medical University, Xuzhou, Jiangsu 221002, China; Jiangsu Key Laboratory of New Drug Research and Clinical Pharmacy, Xuzhou Medical University, Xuzhou, Jiangsu 221004, China
| | - Rongze Tang
- Department of Orthopedics, Affiliated Hospital of Xuzhou Medical University, Xuzhou, Jiangsu 221002, China; Jiangsu Key Laboratory of New Drug Research and Clinical Pharmacy, Xuzhou Medical University, Xuzhou, Jiangsu 221004, China
| | - Hongliang Chen
- Department of Orthopedics, Affiliated Hospital of Xuzhou Medical University, Xuzhou, Jiangsu 221002, China.
| | - Fenglei Gao
- Jiangsu Key Laboratory of New Drug Research and Clinical Pharmacy, Xuzhou Medical University, Xuzhou, Jiangsu 221004, China.
| |
Collapse
|
8
|
Wang F, Han X, Cui W. The precise spatial control device for cellular signaling: DNA origami. Sci Bull (Beijing) 2024:S2095-9273(24)00758-8. [PMID: 39490330 DOI: 10.1016/j.scib.2024.10.019] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2024]
Affiliation(s)
- Fan Wang
- Department of Orthopaedics, Shanghai Key Laboratory for Prevention and Treatment of Bone and Joint Diseases, Shanghai Institute of Traumatology and Orthopaedics, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China
| | - Xiaoyu Han
- Department of Orthopaedics, Shanghai Key Laboratory for Prevention and Treatment of Bone and Joint Diseases, Shanghai Institute of Traumatology and Orthopaedics, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China
| | - Wenguo Cui
- Department of Orthopaedics, Shanghai Key Laboratory for Prevention and Treatment of Bone and Joint Diseases, Shanghai Institute of Traumatology and Orthopaedics, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China.
| |
Collapse
|
9
|
Zhang F, Zhang Y, Zhou J, Cai Y, Li Z, Sun J, Xie Z, Hao G. Metabolic effects of quercetin on inflammatory and autoimmune responses in rheumatoid arthritis are mediated through the inhibition of JAK1/STAT3/HIF-1α signaling. Mol Med 2024; 30:170. [PMID: 39390367 PMCID: PMC11468292 DOI: 10.1186/s10020-024-00929-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2024] [Accepted: 09/06/2024] [Indexed: 10/12/2024] Open
Abstract
BACKGROUND Rheumatoid arthritis, a chronic autoimmune disease, is characterized by synovial hyperplasia and cartilage erosion. Here, we investigated the potential mechanism of action of quercetin, the main component of flavonoids, in treating rheumatoid arthritis. OBJECT To examine the anti-arthritic effects of quercetin and elucidate the specific mechanisms that differentiate its metabolic effects on autoimmune and inflammatory responses at the synovial cell level. METHODS We created a collagen-induced arthritis (CIA) model in Wistar rats, which were administered quercetin (50 or 100 mg/kg) continuously for four weeks via stomach perfusion. The arthritis score, histopathological staining, radiological assessment, and serum biochemical parameters were used to study the impact of quercetin on disease improvement. Additionally, immunofluorescence was employed to detect JAK1/STAT3/HIF-1α expression in rat joints. Moreover, the effects of quercetin (20, 40, and 80 µmol/L) on the properties and behavior of synovial fibroblasts were evaluated in an in vitro MH7A cell model using flow cytometry, CCK8, and transwell assays. Further, the mRNA expression levels of inflammatory cytokines IL1β, IL6, IL17, and TNFα were assessed by quantitative real-time PCR. Glucose, lactate, lactate dehydrogenase, pyruvate, pyruvate dehydrogenase, and adenosine triphosphate assay kits were employed to measure the metabolic effects of quercetin on synovial fibroblasts. Finally, immunoblotting was used to examine the impact of quercetin on the JAK1/STAT3/HIF-1α signaling pathway in synovial fibroblasts. RESULTS In vivo experiments confirmed the favorable effects of quercetin in CIA rats, including an improved arthritis score and reduced ankle bone destruction, in addition to a decrease in the pro-inflammatory cytokines IL-1β, IL-6, IL-17, and TNF-α in serum. Immunofluorescence verified that quercetin may ameliorate joint injury in rats with CIA by inhibiting JAK1/STAT3/HIF-1α signaling. Various in vitro experiments demonstrated that quercetin effectively inhibits IL-6-induced proliferation of MH7A cells and reduces their migratory and invasive behavior, while inducing apoptosis and reducing the expression of the pro-inflammatory cytokines IL1β, IL6, IL17, and TNFα at the mRNA level. Quercetin caused inhibition of glucose, lactate, lactate dehydrogenase, pyruvate, and adenosine triphosphate and increased pyruvate dehydrogenase expression in MH7A cells. It was further confirmed that quercetin may inhibit energy metabolism and inflammatory factor secretion in MH7A cells through JAK1/STAT3/HIF-1α signaling. CONCLUSIONS Quercetin's action on multiple target molecules and pathways makes it a promising treatment for cartilage injury in rheumatoid arthritis. By reducing joint inflammation, improving joint metabolic homeostasis, and decreasing immune system activation energy, quercetin inhibits the JAK1/STAT3/HIF-1α signaling pathway to improve disease status.
Collapse
Affiliation(s)
- FengQi Zhang
- Key Laboratory of Chinese Medicine Rheumatology of Zhejiang Province, School of Basic Medical Sciences, Zhejiang Chinese Medical University, Binwen Road 548, Binjiang District, Hangzhou, Zhejiang, 310053, China
| | - YiYang Zhang
- Key Laboratory of Chinese Medicine Rheumatology of Zhejiang Province, School of Basic Medical Sciences, Zhejiang Chinese Medical University, Binwen Road 548, Binjiang District, Hangzhou, Zhejiang, 310053, China
| | - JiaWang Zhou
- Key Laboratory of Chinese Medicine Rheumatology of Zhejiang Province, School of Basic Medical Sciences, Zhejiang Chinese Medical University, Binwen Road 548, Binjiang District, Hangzhou, Zhejiang, 310053, China
| | - Ying Cai
- Key Laboratory of Chinese Medicine Rheumatology of Zhejiang Province, School of Basic Medical Sciences, Zhejiang Chinese Medical University, Binwen Road 548, Binjiang District, Hangzhou, Zhejiang, 310053, China
| | - ZhiYu Li
- The First Affiliated Hospital of Zhejiang Chinese Medical University (Zhejiang Provincial Hospital of Chinese Medicine), Zhejiang Chinese Medical University, Hangzhou, China
| | - Jing Sun
- The Second School of Clinical Medicine, Zhejiang Chinese Medical University, Hangzhou, China
| | - ZhiJun Xie
- Key Laboratory of Chinese Medicine Rheumatology of Zhejiang Province, School of Basic Medical Sciences, Zhejiang Chinese Medical University, Binwen Road 548, Binjiang District, Hangzhou, Zhejiang, 310053, China.
| | - GuiFeng Hao
- Center for General Practice Medicine, Department of Rheumatology and Immunology, Zhejiang Provincial People's Hospital (Affiliated People's Hospital), Hangzhou Medical College, Hangzhou, Zhejiang, 310014, China.
| |
Collapse
|
10
|
Fu W, Wang T, Lu Y, Shi T, Yang Q. The role of lactylation in plasma cells and its impact on rheumatoid arthritis pathogenesis: insights from single-cell RNA sequencing and machine learning. Front Immunol 2024; 15:1453587. [PMID: 39421742 PMCID: PMC11484267 DOI: 10.3389/fimmu.2024.1453587] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2024] [Accepted: 09/19/2024] [Indexed: 10/19/2024] Open
Abstract
Introduction Rheumatoid arthritis (RA) is a chronic autoimmune disorder characterized by persistent synovitis, systemic inflammation, and autoantibody production. This study aims to explore the role of lactylation in plasma cells and its impact on RA pathogenesis. Methods We utilized single-cell RNA sequencing (scRNA-seq) data and applied bioinformatics and machine learning techniques. A total of 10,163 cells were retained for analysis after quality control. Clustering analysis identified 13 cell clusters, with plasma cells displaying the highest lactylation scores. We performed pathway enrichment analysis to examine metabolic activity, such as oxidative phosphorylation and glycolysis, in highly lactylated plasma cells. Additionally, we employed 134 machine learning algorithms to identify seven core lactylation-promoting genes and constructed a diagnostic model with an average AUC of 0.918. Results The RA lactylation score (RAlac_score) was significantly elevated in RA patients and positively correlated with immune cell infiltration and immune checkpoint molecule expression. Differential expression analysis between two plasma cell clusters revealed distinct metabolic and immunological profiles, with cluster 2 demonstrating increased immune activity and extracellular matrix interactions. qRT-PCR validation confirmed that NDUFB3, NGLY1, and SLC25A4 are highly expressed in RA. Conclusion This study highlights the critical role of lactylation in plasma cells for RA pathogenesis and identifies potential biomarkers and therapeutic targets, which may offer insights for future therapeutic strategies.
Collapse
Affiliation(s)
| | | | | | - Tiejun Shi
- Department of Orthopedics, Affiliated Jinhua Hospital, Zhejiang University School of Medicine, Jinhua Municipal Central Hospital, Jinhua, Zhejiang, China
| | - Qining Yang
- Department of Orthopedics, Affiliated Jinhua Hospital, Zhejiang University School of Medicine, Jinhua Municipal Central Hospital, Jinhua, Zhejiang, China
| |
Collapse
|
11
|
Li Y, Wang X, Gao Y, Zhang Z, Liu T, Zhang Z, Wang Y, Chang F, Yang M. Hyaluronic acid-coated polypeptide nanogel enhances specific distribution and therapy of tacrolimus in rheumatoid arthritis. J Nanobiotechnology 2024; 22:547. [PMID: 39238027 PMCID: PMC11378632 DOI: 10.1186/s12951-024-02784-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2024] [Accepted: 08/18/2024] [Indexed: 09/07/2024] Open
Abstract
Rheumatoid arthritis (RA) involves chronic inflammation, oxidative stress, and complex immune cell interactions, leading to joint destruction. Traditional treatments are often limited by off-target effects and systemic toxicity. This study introduces a novel therapeutic approach using hyaluronic acid (HA)-conjugated, redox-responsive polyamino acid nanogels (HA-NG) to deliver tacrolimus (TAC) specifically to inflamed joints. The nanogels' disulfide bonds enable controlled TAC release in response to high intracellular glutathione (GSH) levels in activated macrophages, prevalent in RA-affected tissues. In vitro results demonstrated that HA-NG/TAC significantly reduced TAC toxicity to normal macrophages and showed high biocompatibility. In vivo, HA-NG/TAC accumulated more in inflamed joints compared to non-targeted NG/TAC, enhancing therapeutic efficacy and minimizing side effects. Therapeutic evaluation in collagen-induced arthritis (CIA) mice revealed HA-NG/TAC substantially reduced paw swelling, arthritis scores, synovial inflammation, and bone erosion while suppressing pro-inflammatory cytokine levels. These findings suggest that HA-NG/TAC represents a promising targeted drug delivery system for RA, offering potential for more effective and safer clinical applications.
Collapse
Affiliation(s)
- Yuhuan Li
- Department of Orthopedics, China-Japan Union Hospital of Jilin University, Changchun, 130033, PR China
| | - Xin Wang
- Department of Orthopedics, The Second Hospital of Jilin University, Changchun, 130041, PR China
| | - Yu Gao
- Department of Orthopedics, China-Japan Union Hospital of Jilin University, Changchun, 130033, PR China
- Department of Orthopedics, The Second Hospital of Jilin University, Changchun, 130041, PR China
| | - Ziyi Zhang
- Department of Orthopedics, China-Japan Union Hospital of Jilin University, Changchun, 130033, PR China
| | - Te Liu
- Scientific Research Center, China-Japan Union Hospital of Jilin University, Changchun, Jilin, China
- Yibin Jilin University Research Institute, Jilin University, Yibin, Sichuan, China
| | - Zhuo Zhang
- Department of Orthopedics, China-Japan Union Hospital of Jilin University, Changchun, 130033, PR China
| | - Yinan Wang
- Department of Biobank, Division of Clinical Research, The First Hospital of Jilin University, Changchun, China
| | - Fei Chang
- Department of Orthopedics, The Second Hospital of Jilin University, Changchun, 130041, PR China.
| | - Modi Yang
- Department of Orthopedics, China-Japan Union Hospital of Jilin University, Changchun, 130033, PR China.
| |
Collapse
|
12
|
Onuora S. Itaconate targets fibroblast-like synoviocytes in RA. Nat Rev Rheumatol 2024; 20:456. [PMID: 38987353 DOI: 10.1038/s41584-024-01142-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/12/2024]
|
13
|
Chen L, Zhao M, Kang W, Yu L, Zhang C, Wu S, Song X, Zhao K, Liu P, Liu Q, Dai R, Zheng Z, Zhang R. Endogenous Melanin and Hydrogen-Based Specific Activated Theranostics Nanoagents: A Novel Multi-Treatment Paradigm for Rheumatoid Arthritis. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2024; 11:e2401046. [PMID: 38666450 PMCID: PMC11220692 DOI: 10.1002/advs.202401046] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/28/2024] [Revised: 03/20/2024] [Indexed: 07/04/2024]
Abstract
Rheumatoid arthritis (RA) is a systemic autoimmune disorder characterized by excessive proliferation of rheumatoid arthritis synovial fibroblasts (RASFs) and accumulation of inflammatory cytokines. Exploring the suppression of RASFs and modulation of the RA microenvironment is considered a comprehensive strategy for RA. In this work, specifically activated nanoagents (MAHI NGs) based on the hypoxic and weakly acidic RA microenvironment are developed to achieve a second near-infrared fluorescence (NIR-II FL)/photoacoustic (PA) dual-model imaging-guided multi-treatment. Due to optimal size, the MAHI NGs passively accumulate in the diseased joint region and undergo rapid responsive degradation, precisely releasing functionalized components: endogenous melanin-nanoparticles (MNPs), hydrogen gas (H2), and indocyanine green (ICG). The released MNPs play a crucial role in ablating RASFs within the RA microenvironment through photothermal therapy (PTT) guided by accurate PA imaging. However, the regional hyperthermia generated by PTT may exacerbate reactive oxygen species (ROS) production and inflammatory response following cell lysis. Remarkably, under the acidic microenvironment, the controlled release of H2 exhibits precise synergistic antioxidant and anti-inflammatory effects with MNPs. Moreover, the ICG, the second near-infrared dye currently approved for clinical use, possesses excellent NIR-II FL imaging properties that facilitate the diagnosis of deep tissue diseases and provide the right time-point for PTT.
Collapse
Affiliation(s)
- Lin Chen
- Department of RadiologyFifth Hospital of Shanxi Medical University (Shanxi Provincial People's Hospital)Taiyuan030000China
- Academy of Medical SciencesShanxi Medical UniversityTaiyuan030001China
| | - Mingxin Zhao
- Department of RadiologyFifth Hospital of Shanxi Medical University (Shanxi Provincial People's Hospital)Taiyuan030000China
| | - Weiwei Kang
- Department of RadiologyFifth Hospital of Shanxi Medical University (Shanxi Provincial People's Hospital)Taiyuan030000China
| | - Lujie Yu
- Department of RadiologyFifth Hospital of Shanxi Medical University (Shanxi Provincial People's Hospital)Taiyuan030000China
- Academy of Medical SciencesShanxi Medical UniversityTaiyuan030001China
| | - Chongqing Zhang
- Medical Imaging DepartmentShanxi Province Cancer Hospital (Shanxi Hospital Affiliated to Cancer HospitalChinese Academy of Medical Sciences/Cancer Hospital Affiliated to Shanxi Medical University)Taiyuan030001China
| | - Shutong Wu
- Department of RadiologyFifth Hospital of Shanxi Medical University (Shanxi Provincial People's Hospital)Taiyuan030000China
| | - Xiaorui Song
- Department of RadiologyFifth Hospital of Shanxi Medical University (Shanxi Provincial People's Hospital)Taiyuan030000China
- Academy of Medical SciencesShanxi Medical UniversityTaiyuan030001China
| | - Keqi Zhao
- Department of RadiologyFifth Hospital of Shanxi Medical University (Shanxi Provincial People's Hospital)Taiyuan030000China
- Academy of Medical SciencesShanxi Medical UniversityTaiyuan030001China
| | - Pengmin Liu
- Shanxi Bethune Hospital, Shanxi Academy of Medical SciencesTongji Shanxi Hospital, Third Hospital of Shanxi Medical UniversityTaiyuan030032China
| | - Qin Liu
- Shanxi Bethune Hospital, Shanxi Academy of Medical SciencesTongji Shanxi Hospital, Third Hospital of Shanxi Medical UniversityTaiyuan030032China
| | - Rong Dai
- Department of RadiologyFifth Hospital of Shanxi Medical University (Shanxi Provincial People's Hospital)Taiyuan030000China
- Medical Imaging DepartmentShanxi Province Cancer Hospital (Shanxi Hospital Affiliated to Cancer HospitalChinese Academy of Medical Sciences/Cancer Hospital Affiliated to Shanxi Medical University)Taiyuan030001China
| | - Ziliang Zheng
- Department of RadiologyFifth Hospital of Shanxi Medical University (Shanxi Provincial People's Hospital)Taiyuan030000China
- Academy of Medical SciencesShanxi Medical UniversityTaiyuan030001China
| | - Ruiping Zhang
- Department of RadiologyFifth Hospital of Shanxi Medical University (Shanxi Provincial People's Hospital)Taiyuan030000China
| |
Collapse
|
14
|
Tada M, Kudo Y, Kono M, Kanda M, Takeyama S, Sakiyama K, Ishizu H, Shimizu T, Endo T, Hisada R, Fujieda Y, Kato M, Amengual O, Iwasaki N, Atsumi T. Itaconate reduces proliferation and migration of fibroblast-like synoviocytes and ameliorates arthritis models. Clin Immunol 2024; 264:110255. [PMID: 38763433 DOI: 10.1016/j.clim.2024.110255] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2024] [Revised: 04/24/2024] [Accepted: 05/08/2024] [Indexed: 05/21/2024]
Abstract
Fibroblast-like synoviocytes (FLS) play critical roles in rheumatoid arthritis (RA). Itaconate (ITA), an endogenous metabolite derived from the tricarboxylic acid (TCA) cycle, has attracted attention because of its anti-inflammatory, antiviral, and antimicrobial effects. This study evaluated the effect of ITA on FLS and its potential to treat RA. ITA significantly decreased FLS proliferation and migration in vitro, as well as mitochondrial oxidative phosphorylation and glycolysis measured by an extracellular flux analyzer. ITA accumulates metabolites including succinate and citrate in the TCA cycle. In rats with type II collagen-induced arthritis (CIA), intra-articular injection of ITA reduced arthritis and bone erosion. Irg1-deficient mice lacking the ability to produce ITA had more severe arthritis than control mice in the collagen antibody-induced arthritis. ITA ameliorated CIA by inhibiting FLS proliferation and migration. Thus, ITA may be a novel therapeutic agent for RA.
Collapse
Affiliation(s)
- Maria Tada
- Department of Rheumatology, Endocrinology and Nephrology, Faculty of Medicine and Graduate School of Medicine, Hokkaido University, Sapporo, Japan
| | - Yuki Kudo
- Department of Rheumatology, Endocrinology and Nephrology, Faculty of Medicine and Graduate School of Medicine, Hokkaido University, Sapporo, Japan
| | - Michihito Kono
- Department of Rheumatology, Endocrinology and Nephrology, Faculty of Medicine and Graduate School of Medicine, Hokkaido University, Sapporo, Japan.
| | - Masatoshi Kanda
- Department of Rheumatology and Clinical Immunology, Sapporo Medical University, Sapporo, Japan
| | - Shuhei Takeyama
- Department of Rheumatology, Endocrinology and Nephrology, Faculty of Medicine and Graduate School of Medicine, Hokkaido University, Sapporo, Japan
| | - Kodai Sakiyama
- Department of Rheumatology, Endocrinology and Nephrology, Faculty of Medicine and Graduate School of Medicine, Hokkaido University, Sapporo, Japan
| | - Hotaka Ishizu
- Department of Orthopaedic Surgery, Faculty of Medicine and Graduate School of Medicine, Hokkaido University, Sapporo, Japan
| | - Tomohiro Shimizu
- Department of Orthopaedic Surgery, Faculty of Medicine and Graduate School of Medicine, Hokkaido University, Sapporo, Japan
| | - Tsutomu Endo
- Department of Orthopaedic Surgery, Faculty of Medicine and Graduate School of Medicine, Hokkaido University, Sapporo, Japan
| | - Ryo Hisada
- Department of Rheumatology, Endocrinology and Nephrology, Faculty of Medicine and Graduate School of Medicine, Hokkaido University, Sapporo, Japan
| | - Yuichiro Fujieda
- Department of Rheumatology, Endocrinology and Nephrology, Faculty of Medicine and Graduate School of Medicine, Hokkaido University, Sapporo, Japan
| | - Masaru Kato
- Department of Rheumatology, Endocrinology and Nephrology, Faculty of Medicine and Graduate School of Medicine, Hokkaido University, Sapporo, Japan
| | - Olga Amengual
- Department of Rheumatology, Endocrinology and Nephrology, Faculty of Medicine and Graduate School of Medicine, Hokkaido University, Sapporo, Japan
| | - Norimasa Iwasaki
- Department of Orthopaedic Surgery, Faculty of Medicine and Graduate School of Medicine, Hokkaido University, Sapporo, Japan
| | - Tatsuya Atsumi
- Department of Rheumatology, Endocrinology and Nephrology, Faculty of Medicine and Graduate School of Medicine, Hokkaido University, Sapporo, Japan
| |
Collapse
|
15
|
Wang Y, Wang J, Ma M, Gao R, Wu Y, Zhang C, Huang P, Wang W, Feng Z, Gao J. Hyaluronic-Acid-Nanomedicine Hydrogel for Enhanced Treatment of Rheumatoid Arthritis by Mediating Macrophage-Synovial Fibroblast Cross-Talk. Biomater Res 2024; 28:0046. [PMID: 38894889 PMCID: PMC11185174 DOI: 10.34133/bmr.0046] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2024] [Accepted: 05/13/2024] [Indexed: 06/21/2024] Open
Abstract
The occurrence of rheumatoid arthritis (RA) is highly correlated with progressive and irreversible damage of articular cartilage and continuous inflammatory response. Here, inspired by the unique structure of synovial lipid-hyaluronic acid (HA) complex, we developed supramolecular HA-nanomedicine hydrogels for RA treatment by mediating macrophage-synovial fibroblast cross-talk through locally sustained release of celastrol (CEL). Molecular dynamics simulation confirmed that HA conjugated with hydrophobic segments could interspersed into the CEL-loaded [poly(ε-caprolactone-co-1,4,8-trioxa[4.6]spiro-9-undecanone)-poly(ethylene glycol)-poly(ε-caprolaone-co-1,4,8-trioxa[4.6]spiro-9-undecanone] (PECT) nanoparticles to form the supramolecular nanomedicine hydrogel HA-poly(ε-caprolactone-co-1,4,8-trioxa[4.6]spiro-9-un-decanone)/PECT@CEL (HP@CEL), enabling fast hydrogel formation after injection and providing a 3-dimensional environment similar with synovial region. More importantly, the controlled release of CEL from HP@CEL inhibited the macrophage polarization toward the proinflammatory M1 phenotype and further suppressed the proliferation of synovial fibroblasts by regulating the Toll-like receptor pathway. In collagen-induced arthritis model in mice, HP@CEL hydrogel treatment substantial attenuated clinical symptoms and bone erosion and improved the extracellular matrix deposition and bone regeneration in ankle joint. Altogether, such a bioinspired injectable polymer-nanomedicine hydrogel represents an effective and promising strategy for suppressing RA progression through augmenting the cross-talk of macrophages and synovial fibroblast for regulation of chronic inflammation.
Collapse
Affiliation(s)
- Yaping Wang
- Medical 3D Printing Center,
The First Affiliated Hospital of Zhengzhou University, Zhengzhou 450000, China
| | - Jingrong Wang
- Tianjin Key Laboratory of Biomaterial Research, Institute of Biomedical Engineering,
Chinese Academy of Medical Sciences and Peking Union Medical College, Tianjin 300192, China
| | - Mengze Ma
- Medical 3D Printing Center,
The First Affiliated Hospital of Zhengzhou University, Zhengzhou 450000, China
| | - Rui Gao
- Tianjin Key Laboratory of Biomaterial Research, Institute of Biomedical Engineering,
Chinese Academy of Medical Sciences and Peking Union Medical College, Tianjin 300192, China
| | - Yan Wu
- Medical 3D Printing Center,
The First Affiliated Hospital of Zhengzhou University, Zhengzhou 450000, China
| | - Chuangnian Zhang
- Tianjin Key Laboratory of Biomaterial Research, Institute of Biomedical Engineering,
Chinese Academy of Medical Sciences and Peking Union Medical College, Tianjin 300192, China
| | - Pingsheng Huang
- Tianjin Key Laboratory of Biomaterial Research, Institute of Biomedical Engineering,
Chinese Academy of Medical Sciences and Peking Union Medical College, Tianjin 300192, China
| | - Weiwei Wang
- Tianjin Key Laboratory of Biomaterial Research, Institute of Biomedical Engineering,
Chinese Academy of Medical Sciences and Peking Union Medical College, Tianjin 300192, China
- Key Laboratory of Innovative Cardiovascular Devices,
Chinese Academy of Medical Sciences, Beijing 100144, China
| | - Zujian Feng
- Tianjin Key Laboratory of Biomaterial Research, Institute of Biomedical Engineering,
Chinese Academy of Medical Sciences and Peking Union Medical College, Tianjin 300192, China
| | - Jianbo Gao
- Medical 3D Printing Center,
The First Affiliated Hospital of Zhengzhou University, Zhengzhou 450000, China
| |
Collapse
|
16
|
Tang Z, Meng S, Yang X, Xiao Y, Wang W, Liu Y, Wu K, Zhang X, Guo H, Zhu YZ, Wang X. Neutrophil-Mimetic, ROS Responsive, and Oxygen Generating Nanovesicles for Targeted Interventions of Refractory Rheumatoid Arthritis. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2024; 20:e2307379. [PMID: 38084463 DOI: 10.1002/smll.202307379] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/25/2023] [Revised: 11/28/2023] [Indexed: 05/18/2024]
Abstract
Rheumatoid arthritis (RA) is the most prevalent inflammatory joint disease worldwide, leading to irreversible disability and even mortality. Unfortunately, current treatment regimens fail to cure RA due to low therapeutic responses and off-target side effects. Herein, a neutrophil membrane-cloaked, natural anti-arthritic agent leonurine (Leo), and catalase (CAT) co-loaded nanoliposomal system (Leo@CAT@NM-Lipo) is constructed to remodel the hostile microenvironment for RA remission. Due to the inflammation tropism inherited from neutrophils, Leo@CAT@NM-Lipo can target and accumulate in the inflamed joint cavity where high-level ROS can be catalyzed into oxygen by CAT to simultaneously accelerate the drug release and alleviate hypoxia at the lesion site. Besides, the neutrophil membrane camouflaging also enhances the anti-inflammatory potentials of Leo@CAT@NM-Lipo by robustly absorbing pro-arthritogenic cytokines and chemokines. Consequently, Leo@CAT@NM-Lipo successfully alleviated paw swelling, reduced arthritis score, mitigated bone and cartilage damage, and reversed multiple organ dysfunctions in adjuvant-induced arthritis rats (AIA) rats by synergistic effects of macrophage polarization, inflammation resolution, ROS scavenging, and hypoxia relief. Furthermore, Leo@CAT@NM-Lipo manifested excellent biocompatibility both at the cellular and animal levels. Taken together, the study provided a neutrophil-mimetic and ROS responsive nanoplatform for targeted RA therapy and represented a promising paradigm for the treatment of a variety of inflammation-dominated diseases.
Collapse
Affiliation(s)
- Zhuang Tang
- School of Pharmacy and State Key Laboratory of Quality Research in Chinese Medicine, Macau University of Science and Technology, Macao, 999078, China
| | - Shiyu Meng
- School of Pharmacy and State Key Laboratory of Quality Research in Chinese Medicine, Macau University of Science and Technology, Macao, 999078, China
| | - Xiaoxue Yang
- School of Pharmacy and State Key Laboratory of Quality Research in Chinese Medicine, Macau University of Science and Technology, Macao, 999078, China
| | - Yi Xiao
- School of Pharmacy and State Key Laboratory of Quality Research in Chinese Medicine, Macau University of Science and Technology, Macao, 999078, China
| | - Wentao Wang
- School of Pharmacy and State Key Laboratory of Quality Research in Chinese Medicine, Macau University of Science and Technology, Macao, 999078, China
| | - Yonghang Liu
- School of Pharmacy and State Key Laboratory of Quality Research in Chinese Medicine, Macau University of Science and Technology, Macao, 999078, China
| | - Kefan Wu
- School of Pharmacy and State Key Laboratory of Quality Research in Chinese Medicine, Macau University of Science and Technology, Macao, 999078, China
| | - Xican Zhang
- School of Pharmacy and State Key Laboratory of Quality Research in Chinese Medicine, Macau University of Science and Technology, Macao, 999078, China
| | - Hui Guo
- School of Chemical Engineering and Technology, Sun Yat-sen University, Zhuhai, 519082, China
| | - Yi Zhun Zhu
- School of Pharmacy and State Key Laboratory of Quality Research in Chinese Medicine, Macau University of Science and Technology, Macao, 999078, China
| | - Xiaolin Wang
- School of Pharmacy and State Key Laboratory of Quality Research in Chinese Medicine, Macau University of Science and Technology, Macao, 999078, China
| |
Collapse
|
17
|
Welte-Jzyk C, Plümer V, Schumann S, Pautz A, Erbe C. Effect of the antirheumatic medication methotrexate (MTX) on biomechanical compressed human periodontal ligament fibroblasts (hPDLFs). BMC Oral Health 2024; 24:329. [PMID: 38475789 DOI: 10.1186/s12903-024-04092-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2023] [Accepted: 03/02/2024] [Indexed: 03/14/2024] Open
Abstract
BACKGROUND The aim of this study was to investigate the in vitro effect of the antirheumatic drug methotrexate (MTX) on biomechanically compressed human periodontal ligament fibroblasts (hPDLFs), focusing on the expression of interleukin 6 (IL-6), as its upregulation is relevant to orthodontic tooth movement. METHODS Human PDLFs were subjected to pressure and simultaneously treated with MTX. Cell proliferation, viability and morphology were studied, as was the gene and protein expression of IL-6. RESULTS Compared with that in untreated fibroblasts, IL-6 mRNA expression in mechanically compressed ligament fibroblasts was increased (two to sixfold; ****p < 0.0001). Under compression, hPDLFs exhibited a significantly more expanded shape with an increase of cell extensions. MTX with and without pressure did not affect IL-6 mRNA expression or the morphology of hPDLFs. CONCLUSION MTX has no effect on IL-6 expression in compressed ligament fibroblasts.
Collapse
Affiliation(s)
- Claudia Welte-Jzyk
- Department of Orthodontics, University Medical Center of the Johannes Gutenberg-University, 55131, Mainz, Germany.
| | - Vera Plümer
- Department of Orthodontics, University Medical Center of the Johannes Gutenberg-University, 55131, Mainz, Germany
| | - Sven Schumann
- Institute of Anatomy, University Medical Center of the Johannes Gutenberg-University Mainz, 55128, Mainz, Germany
| | - Andrea Pautz
- Department of Pharmacology, University Medical Center of the Johannes Gutenberg University, 55131, Mainz, Germany
| | - Christina Erbe
- Department of Orthodontics, University Medical Center of the Johannes Gutenberg-University, 55131, Mainz, Germany
| |
Collapse
|
18
|
Atta A, Salem MM, El-Said KS, Mohamed TM. Mechanistic role of quercetin as inhibitor for adenosine deaminase enzyme in rheumatoid arthritis: systematic review. Cell Mol Biol Lett 2024; 29:14. [PMID: 38225555 PMCID: PMC10790468 DOI: 10.1186/s11658-024-00531-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2023] [Accepted: 01/04/2024] [Indexed: 01/17/2024] Open
Abstract
Rheumatoid arthritis (RA) is an autoimmune disease involving T and B lymphocytes. Autoantibodies contribute to joint deterioration and worsening symptoms. Adenosine deaminase (ADA), an enzyme in purine metabolism, influences adenosine levels and joint inflammation. Inhibiting ADA could impact RA progression. Intracellular ATP breakdown generates adenosine, which increases in hypoxic and inflammatory conditions. Lymphocytes with ADA play a role in RA. Inhibiting lymphocytic ADA activity has an immune-regulatory effect. Synovial fluid levels of ADA are closely associated with the disease's systemic activity, making it a useful parameter for evaluating joint inflammation. Flavonoids, such as quercetin (QUE), are natural substances that can inhibit ADA activity. QUE demonstrates immune-regulatory effects and restores T-cell homeostasis, making it a promising candidate for RA therapy. In this review, we will explore the impact of QUE in suppressing ADA and reducing produced the inflammation in RA, including preclinical investigations and clinical trials.
Collapse
Affiliation(s)
- Amira Atta
- Biochemistry Division, Chemistry Department, Faculty of Science, Tanta University, Tanta, 31527, Egypt
| | - Maha M Salem
- Biochemistry Division, Chemistry Department, Faculty of Science, Tanta University, Tanta, 31527, Egypt.
| | - Karim Samy El-Said
- Biochemistry Division, Chemistry Department, Faculty of Science, Tanta University, Tanta, 31527, Egypt
| | - Tarek M Mohamed
- Biochemistry Division, Chemistry Department, Faculty of Science, Tanta University, Tanta, 31527, Egypt
| |
Collapse
|
19
|
Shamsi A, Roghani SA, Abdan Z, Soufivand P, Pournazari M, Bahrehmand F, Vafaei A, Salari N, Soroush MG, Taghadosi M. CXCL9 and its Receptor CXCR3, an Important Link Between Inflammation and Cardiovascular Risks in RA Patients. Inflammation 2023; 46:2374-2385. [PMID: 37542661 DOI: 10.1007/s10753-023-01884-5] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2023] [Revised: 07/24/2023] [Accepted: 07/31/2023] [Indexed: 08/07/2023]
Abstract
Cardiovascular disease (CVD) is the most common cause of mortality in rheumatoid arthritis (RA), and Inflammation has a decisive role in its pathogenesis. CXCL9 contributes to multi aspects of inflammatory reactions associated with the pathogenesis of CVD. In the current study, we evaluated the association of plasma CXCL9 and CXCR3 gene expression with Cardiovascular risk factors in RA patients for the first time. Thirty newly diagnosed, 30 on-treatment RA patients, and 30 healthy subjects were recruited in this study. The plasma concentration of CXCL9 and CXCR3 gene expression were measured using ELISA and Real-Time PCR, respectively. The CVD risk was evaluated using Framingham Risk Score (FRS) and Systematic Coronary Risk Evaluation (SCORE). The plasma levels of CXCL9 were significantly higher in the newly diagnosed and on-treatment RA patients compared to the control group (P < 0.0001 and P < 0.001, respectively). Also, The CXCR3 gene expression was strongly elevated in newly diagnosed and on-treatment patients (P < 0.001 and P < 0.01, respectively). The CXCL9 and CXCR3 were significantly associated with RA disease activity (P = 0.0005, r = 0.436; P = 0.0002, r = 0.463, respectively). The FRS was remarkably higher in newly diagnosed and on-treatment patients (P = 0.014 and P = 0.035, respectively). The CXCR3 gene expression significantly correlated with age, systolic blood pressure, FRS, and SCORE (P = 0.020, r = 0.298; P = 0.006, r = 0.346; P = 0.006, r = 0.349; P = 0.007, r = 0.341, respectively). The CXCL9 plasma concentration had a significant negative correlation with plasma HDL and LDL levels (P = 0.033, r = -0.275; P = 0.021, r = -0.296, respectively). CXCL9 and CXCR3 correlates with different variables of CVD in RA.
Collapse
Affiliation(s)
- Afsaneh Shamsi
- Immunology Department, Faculty of Medicine, Kermanshah University of Medical Sciences, Kermanshah, Iran
| | - Seyed Askar Roghani
- Immunology Department, Faculty of Medicine, Kermanshah University of Medical Sciences, Kermanshah, Iran
- Medical Biology Research Center, Health Technology Institute, Kermanshah University of Medical Sciences, Kermanshah, Iran
- Clinical Research Development Center, Imam Reza Hospital, Kermanshah University of Medical Sciences, Kermanshah, Iran
| | - Zahra Abdan
- Clinical Research Development Center, Imam Reza Hospital, Kermanshah University of Medical Sciences, Kermanshah, Iran
| | - Parviz Soufivand
- Clinical Research Development Center, Imam Reza Hospital, Kermanshah University of Medical Sciences, Kermanshah, Iran
| | - Mehran Pournazari
- Clinical Research Development Center, Imam Reza Hospital, Kermanshah University of Medical Sciences, Kermanshah, Iran
| | - Fariborz Bahrehmand
- Medical Biology Research Center, Kermanshah University of Medical Sciences, Kermanshah, Iran
| | - Ali Vafaei
- Department of Medical Biotechnology, Faculty of Medicine, Kermanshah University of Medical Sciences, Kermanshah, Iran
| | - Nader Salari
- Medical Biology Research Center, Health Technology Institute, Kermanshah University of Medical Sciences, Kermanshah, Iran
- Department of Biostatistics, School of Health, Kermanshah University of Medical Sciences, Kermanshah, Iran
| | - Masood Ghasemzade Soroush
- Immunology Department, Faculty of Medicine, Kermanshah University of Medical Sciences, Kermanshah, Iran
| | - Mahdi Taghadosi
- Immunology Department, Faculty of Medicine, Kermanshah University of Medical Sciences, Kermanshah, Iran.
| |
Collapse
|
20
|
Luan H, Chen S, Zhao L, Liu S, Luan T. Precise Lipidomics Decipher Circulating Ceramide and Sphingomyelin Cycle Associated with the Progression of Rheumatoid Arthritis. J Proteome Res 2023; 22:3893-3900. [PMID: 37883661 DOI: 10.1021/acs.jproteome.3c00574] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/28/2023]
Abstract
Rheumatoid arthritis (RA) is a long-term autoimmune condition that causes joint and surrounding tissue inflammation. Lipid mediators are involved in inflammation and deterioration of the joints. Despite attempts to discover effective drug targets to intervene with lipid metabolism in the disease, progress has been limited. In this study, precise lipidomic technology was employed to quantify a broad range of serum ceramides and sphingomyelin (SM) in a large cohort, revealing an association between the accumulation of circulating ceramides and disturbed ceramide/SM cycles during the progression of RA. In our investigation, we discovered that eight ceramides exhibited a positive correlation with the activity of RA, thereby enhancing the accuracy of RA diagnosis, particularly in patients with serum antibody-negative RA. Furthermore, the enzyme SM phosphodiesterase 3 (SMPD3) was found to disrupt the circulating SM cycle and accelerate the progression of RA. The activity of SMPD3 can be inhibited by methotrexate, resulting in decreased metabolic conversion of SM to ceramide. These findings suggest that targeting the SM cycle may provide a new therapeutic option for RA.
Collapse
Affiliation(s)
- Hemi Luan
- Department of Biomedical Engineering, School of Biomedical and Pharmaceutical Sciences, Guangdong University of Technology, Guangzhou, Guangdong 510006, China
| | - Shuailong Chen
- School of Pharmacy, Shenyang Pharmaceutical University, Shenyang, Liaoning 110016, China
| | - Longshan Zhao
- School of Pharmacy, Shenyang Pharmaceutical University, Shenyang, Liaoning 110016, China
| | - Shijia Liu
- Affiliated Hospital of Nanjing University of Chinese Medicine, Jiangsu Province Hospital of Chinese Medicin, Nanjing, Jiangsu 210029, China
| | - Tiangang Luan
- Department of Biomedical Engineering, School of Biomedical and Pharmaceutical Sciences, Guangdong University of Technology, Guangzhou, Guangdong 510006, China
- Institute of Environmental and Ecological Engineering, Guangdong University of Technology, Guangzhou 510006, China
- School of Life Sciences, Sun Yat-Sen University, Guangzhou 510275, China
| |
Collapse
|
21
|
Jin Y, Ge X, Xu Y, Wang S, Lu Q, Deng A, Li J, Gu Z. A pH-Responsive DNA Tetrahedron/Methotrexate Drug Delivery System Used for Rheumatoid Arthritis Treatment. J Funct Biomater 2023; 14:541. [PMID: 37998110 PMCID: PMC10672632 DOI: 10.3390/jfb14110541] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2023] [Revised: 10/05/2023] [Accepted: 10/26/2023] [Indexed: 11/25/2023] Open
Abstract
Rheumatoid arthritis (RA) is a chronic autoimmune disorder that leads to progressive and aggressive joint inflammation. The disease process is characterized by the activation of macrophages, which then release tumor necrosis factor-α (TNF-α) and interleukin-1β (IL-1β), accelerating tissue damage. Tackling tissue damage is a crucial target in the treatment of RA. In this study, a macrophage-targeted and pH-response DNA tetrahedron/methotrexate drug delivery system was constructed by loading methotrexate (MTX) onto a DNA duplex. MTX was used as a drug model, and a pH-response DNA tetrahedron (TET) was used as the drug carrier, which was modified with hyaluronic acid (HA) to target macrophages. The aim of this study was to evaluate the potential of TET as an effective drug carrier for the treatment of RA. On this basis, we successfully prepared TETs loaded with MTX, and in vitro assays showed that the MTX-TET treatment could successfully target macrophages and induce macrophages to polarize to M1 phenotype. At the same time, we also injected MTX-TET intravenously into collagen-induced arthritis (CIA) model mice, and the redness and swelling of the paws of mice were significantly alleviated, proving that the MTX-TET could successfully target inflamed joints and release MTX to treat joint swelling. In addition, the histochemical results showed that the MTX-TET could reduce synovitis and joint swelling in CIA mice, reduce the level of inflammatory factors in vivo, and improve the disease status while maintaining a good biosafety profile. This study showed that the MTX-TET treatment has beneficial therapeutic effects on RA, providing a new strategy for the clinical treatment of RA.
Collapse
Affiliation(s)
- Yi Jin
- Department of Rheumatology, Affiliated Hospital of Nantong University, Medical School of Nantong University, Nantong 226000, China; (Y.J.)
- Research Center of Clinical Medicine, Affiliated Hospital of Nantong University, Nantong 226000, China
| | - Xingyu Ge
- Department of Rheumatology, Yancheng Third People’s Hospital, Yancheng 224000, China;
| | - Yinjin Xu
- Department of Rheumatology, Affiliated Hospital of Nantong University, Medical School of Nantong University, Nantong 226000, China; (Y.J.)
| | - Siyi Wang
- Department of Rheumatology, Affiliated Hospital of Nantong University, Medical School of Nantong University, Nantong 226000, China; (Y.J.)
| | - Qian Lu
- Department of Rheumatology, Affiliated Hospital of Nantong University, Medical School of Nantong University, Nantong 226000, China; (Y.J.)
| | - Aidong Deng
- Department of Hand Surgery, Affiliated Hospital of Nantong University, Nantong 226000, China
| | - Jingjing Li
- Research Center of Clinical Medicine, Affiliated Hospital of Nantong University, Nantong 226000, China
| | - Zhifeng Gu
- Department of Hand Surgery, Affiliated Hospital of Nantong University, Nantong 226000, China
| |
Collapse
|
22
|
Lu B, Li C, Jing L, Zhuang F, Xiang H, Chen Y, Huang B. Rosmarinic acid nanomedicine for rheumatoid arthritis therapy: Targeted RONS scavenging and macrophage repolarization. J Control Release 2023; 362:631-646. [PMID: 37708976 DOI: 10.1016/j.jconrel.2023.09.012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2023] [Revised: 08/30/2023] [Accepted: 09/04/2023] [Indexed: 09/16/2023]
Abstract
The infiltration of inflammatory cells, especially macrophages, integrated with the production of reactive oxygen and nitrogen species (RONS) and the release of inflammatory cytokines play a crucial role in the pathogenesis of rheumatoid arthritis (RA). Synergistic combination of RONS scavenging and macrophage repolarization from pro-inflammatory M1 phenotype towards anti-inflammatory M2 phenotype, provides a promising strategy for efficient RA treatment. Herein, this study reported a unique self-assembly strategy to construct distinct rosmarinic acid nanoparticles (RNPs) for efficient RA treatment using the naturally occurring polyphenol-based compound, rosmarinic acid (RosA). The designed RNPs exhibited favorable capability in scavenging RONS and pro-inflammatory cytokines produced by macrophages. Attributing to the widened vascular endothelial-cell gap at inflammation sites, RNPs could target and accumulate at the inflammatory joints of collagen-induced arthritis (CIA) rats for guaranteeing therapeutic effect. In vivo investigation demonstrated that RNPs alleviated the symptoms of RA, including joint swelling, synovial hyperplasia, cartilage degradation, and bone erosion in CIA rats. Additionally, the designed RNPs promoted macrophage polarization from M1 phenotype towards M2 phenotype, resulting in the suppressed progression of RA. Therefore, this research represents the representative paradigm for RA therapy using antioxidative nanomedicine deriving from the natural polyphenol-based compound.
Collapse
Affiliation(s)
- Beilei Lu
- Department of Ultrasound, Zhongshan Hospital, Fudan University, Shanghai 200032, PR China; Shanghai Institute of Medical Imaging, Shanghai 200032, PR China; Institute of Medical Ultrasound and Engineering, Fudan University, Shanghai 200032, PR China
| | - Cuixian Li
- Department of Ultrasound, Zhongshan Hospital, Fudan University, Shanghai 200032, PR China; Shanghai Institute of Medical Imaging, Shanghai 200032, PR China; Institute of Medical Ultrasound and Engineering, Fudan University, Shanghai 200032, PR China
| | - Luxia Jing
- Department of Ultrasound, Zhongshan Hospital, Fudan University, Shanghai 200032, PR China; Shanghai Institute of Medical Imaging, Shanghai 200032, PR China; Institute of Medical Ultrasound and Engineering, Fudan University, Shanghai 200032, PR China
| | - Fan Zhuang
- Department of Ultrasound, Zhongshan Hospital, Fudan University, Shanghai 200032, PR China; Shanghai Institute of Medical Imaging, Shanghai 200032, PR China; Institute of Medical Ultrasound and Engineering, Fudan University, Shanghai 200032, PR China
| | - Huijing Xiang
- Materdicine Lab, School of Life Sciences, Shanghai University, Shanghai 200444, PR China.
| | - Yu Chen
- Materdicine Lab, School of Life Sciences, Shanghai University, Shanghai 200444, PR China.
| | - Beijian Huang
- Department of Ultrasound, Zhongshan Hospital, Fudan University, Shanghai 200032, PR China; Shanghai Institute of Medical Imaging, Shanghai 200032, PR China; Institute of Medical Ultrasound and Engineering, Fudan University, Shanghai 200032, PR China.
| |
Collapse
|
23
|
Wang Z, Zhao Z, Li Z, Xu L, Li H, Zhu H, Cheng G, Yao R, Pei W, Liang R, Liang R, Ye H, Jiang S, Niu H, Sun X, Su Y. Tyro3 receptor tyrosine kinase contributes to pathogenic phenotypes of fibroblast-like synoviocytes in rheumatoid arthritis and disturbs immune cell balance in experimental arthritis. Clin Immunol 2023; 255:109753. [PMID: 37678714 DOI: 10.1016/j.clim.2023.109753] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2023] [Revised: 08/21/2023] [Accepted: 08/22/2023] [Indexed: 09/09/2023]
Abstract
Rheumatoid arthritis (RA) is a systemic autoimmune disorder characterized by synovitis and joint damage, the underlying causes of which remain unclear. Our prior investigations revealed a notable correlation between the expression of Tyro3 Protein Tyrosine Kinase (Tyro3TK) and the progression of RA. To further elucidate the pathogenic role of Tyro3TK in RA, we analyzed the influence of Tyro3TK on pathogenic phenotypes of RA fibroblast like synoviocyte (FLS) in vitro and compared disease severity, joint damages and immunological parameters of K/BxN serum transfer arthritis (STA) in Tyro3TK-/- deficient mice and wild type controls. Our findings underscored the remarkable effectiveness of Tyro3TK blockade, as evidenced by diminished secretion of inflammatory cytokines and matrix metalloproteinases (MMPs), curtailed migration and invasiveness of RAFLS, and attenuated differentiation of pathogenic helper T cell subsets mediated by RAFLS. Correspondingly, our in vivo investigations illuminated the more favorable outcomes in Tyro3TK-deficient mice, characterized by reduced joint pathology, tempered synovial inflammation, and restored immune cell equilibrium. These data suggested that Tyro3TK might contribute to aggravated autoimmune arthritis and immunological pathology and act as a potential therapeutic target for RA.
Collapse
Affiliation(s)
- Ziye Wang
- Department of Rheumatology and Immunology, Peking University People's Hospital, Beijing Key Laboratory for Rheumatism Mechanism and Immune Diagnosis (BZ0135), Beijing, China
| | - Zhen Zhao
- Department of Rheumatology and Immunology, Henan Provincial People's Hospital, People's Hospital of Zhengzhou University, People's Hospital of Henan University, Zhengzhou 450003, China
| | - Zhichang Li
- Department of Orthopedics, Peking University People's Hospital, Beijing, China
| | - Liling Xu
- Department of Rheumatology and Immunology, Peking University People's Hospital, Beijing Key Laboratory for Rheumatism Mechanism and Immune Diagnosis (BZ0135), Beijing, China
| | - Hongchao Li
- Department of Rheumatology, Beijing Jishuitan Hospital, Fourth Clinical College of Peking University, Beijing, China
| | - Huaqun Zhu
- Department of Rheumatology and Immunology, Peking University People's Hospital, Beijing Key Laboratory for Rheumatism Mechanism and Immune Diagnosis (BZ0135), Beijing, China
| | - Gong Cheng
- Department of Rheumatology and Immunology, Peking University People's Hospital, Beijing Key Laboratory for Rheumatism Mechanism and Immune Diagnosis (BZ0135), Beijing, China
| | - RanRan Yao
- Department of Rheumatology and Immunology, Peking University People's Hospital, Beijing Key Laboratory for Rheumatism Mechanism and Immune Diagnosis (BZ0135), Beijing, China
| | - Wenwen Pei
- Department of Rheumatology and Immunology, Peking University People's Hospital, Beijing Key Laboratory for Rheumatism Mechanism and Immune Diagnosis (BZ0135), Beijing, China
| | - Ruyu Liang
- Department of Rheumatology and Immunology, Peking University People's Hospital, Beijing Key Laboratory for Rheumatism Mechanism and Immune Diagnosis (BZ0135), Beijing, China
| | - Renge Liang
- Department of Rheumatology and Immunology, Peking University People's Hospital, Beijing Key Laboratory for Rheumatism Mechanism and Immune Diagnosis (BZ0135), Beijing, China
| | - Hua Ye
- Department of Rheumatology and Immunology, Peking University People's Hospital, Beijing Key Laboratory for Rheumatism Mechanism and Immune Diagnosis (BZ0135), Beijing, China
| | - Shan Jiang
- Guangzhou Key Laboratory for Germ-Free Animals and Microbiota Application, School of Medicine, Jinan University, Guangzhou, China
| | - Haitao Niu
- Guangzhou Key Laboratory for Germ-Free Animals and Microbiota Application, School of Medicine, Jinan University, Guangzhou, China.
| | - Xiaolin Sun
- Department of Rheumatology and Immunology, Peking University People's Hospital, Beijing Key Laboratory for Rheumatism Mechanism and Immune Diagnosis (BZ0135), Beijing, China.
| | - Yin Su
- Department of Rheumatology and Immunology, Peking University People's Hospital, Beijing Key Laboratory for Rheumatism Mechanism and Immune Diagnosis (BZ0135), Beijing, China.
| |
Collapse
|
24
|
Yang B, Shi J. Ferrihydrite Nanoparticles Alleviate Rheumatoid Arthritis by Nanocatalytic Antioxidation and Oxygenation. NANO LETTERS 2023; 23:8355-8362. [PMID: 37656434 DOI: 10.1021/acs.nanolett.3c02743] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/02/2023]
Abstract
Oxidative stress and hypoxia are two key biochemical factors in the development of rheumatoid arthritis (RA). As both reactive oxygen species (ROS) and oxygen gas (O2) are oxygen-related chemicals, we suggest that a redox reaction converting ROS into O2 can mitigate oxidative stress and hypoxia concurrently, synergistically modulating the inflammatory microenvironment. In this work, ferrihydrite, a typical iron oxyhydroxide, is prepared in nanodimensions in which tetrahedrally coordinated Fe can form a composite catalytic center by coupling with an adjacent hydroxyl group, cooperatively facilitating H2O2 decomposition and O2 generation, presenting a high catalase-like activity. In the RA region, the nanomaterial catalyzes the conversion of excess H2O2 into O2, achieving both antioxidation and oxygenation favoring the alleviation of inflammation. Both cellular and in vivo experiments demonstrate the desirable efficacy of ferrihydrite nanoparticles for RA treatment. This work provides a methodology for the catalytic therapy of inflammatory diseases featuring both oxidative stress and hypoxia.
Collapse
Affiliation(s)
- Bowen Yang
- Shanghai Institute of Ceramics, Chinese Academy of Sciences, Research Unit of Nanocatalytic Medicine in Specific Therapy for Serious Disease, Chinese Academy of Medical Sciences (2021RU012), Shanghai 200050, P. R. China
| | - Jianlin Shi
- Shanghai Institute of Ceramics, Chinese Academy of Sciences, Research Unit of Nanocatalytic Medicine in Specific Therapy for Serious Disease, Chinese Academy of Medical Sciences (2021RU012), Shanghai 200050, P. R. China
- Tenth People's Hospital and School of Medicine, Tongji University, Shanghai 200092, P. R. China
| |
Collapse
|
25
|
Zhao Y, Gao C, Liu L, Wang L, Song Z. The development and function of human monocyte-derived dendritic cells regulated by metabolic reprogramming. J Leukoc Biol 2023; 114:212-222. [PMID: 37232942 DOI: 10.1093/jleuko/qiad062] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2022] [Revised: 04/15/2023] [Accepted: 04/28/2023] [Indexed: 05/27/2023] Open
Abstract
Human monocyte-derived dendritic cells (moDCs) that develop from monocytes play a key role in innate inflammatory responses as well as T cell priming. Steady-state moDCs regulate immunogenicity and tolerogenicity by changing metabolic patterns to participate in the body's immune response. Increased glycolytic metabolism after danger signal induction may strengthen moDC immunogenicity, whereas high levels of mitochondrial oxidative phosphorylation were associated with the immaturity and tolerogenicity of moDCs. In this review, we discuss what is currently known about differential metabolic reprogramming of human moDC development and distinct functional properties.
Collapse
Affiliation(s)
- Ying Zhao
- Department of Dermatology, Southwest Hospital, Army Medical University, 30 Gaotanyan Street, District Shapingba, Chongqing, 400038, China
| | - Cuie Gao
- Department of Dermatology, Southwest Hospital, Army Medical University, 30 Gaotanyan Street, District Shapingba, Chongqing, 400038, China
| | - Lu Liu
- Department of Dermatology, Southwest Hospital, Army Medical University, 30 Gaotanyan Street, District Shapingba, Chongqing, 400038, China
| | - Li Wang
- Institute of Immunology, College of Basic Medical Sciences, Army Medical University, Chongqing, China
| | - Zhiqiang Song
- Department of Dermatology, Southwest Hospital, Army Medical University, 30 Gaotanyan Street, District Shapingba, Chongqing, 400038, China
| |
Collapse
|
26
|
Yuan H, Liu B, Liu F, Li C, Han L, Huang X, Xue J, Qu W, Xu J, Liu W, Feng F, Wang L. Enhanced Anti-Rheumatoid Arthritis Activity of Total Alkaloids from Picrasma Quassioides in Collagen-Induced Arthritis Rats by a Targeted Drug Delivery System. J Pharm Sci 2023; 112:2483-2493. [PMID: 37023852 DOI: 10.1016/j.xphs.2023.03.024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2022] [Revised: 03/30/2023] [Accepted: 03/30/2023] [Indexed: 04/08/2023]
Abstract
New drug delivery systems have rarely been used in the formulation of traditional Chinese medicine, especially those that are crude active Chinese medicinal ingredients. In the present study, hyaluronic acid decorated lipid-polymer hybrid nanoparticles were used to prepare a targeted drug delivery system (TDDS) for total alkaloid extract from Picrasma quassioides (TAPQ) to improve its targeting property and anti-inflammatory activity. Picrasma quassioides, a common-used traditional Chinese medicine (TCM), containing a series of hydrophobic total alkaloids including β-carboline and canthin-6-one alkaloids show great anti-inflammatory activity. However, its high toxicity (IC50= 8.088±0.903 μg/ml), poor water solubility (need to dissolve with 0.8% Tween-80) and poor targeting property severely limits its clinical application. Herein, hyaluronic acid (HA) decorated lipid-polymer hybrid nanoparticles loaded with TAPQ (TAPQ-NPs) were designed to overcome above mentioned deficiencies. TAPQ-NPs have good water solubility, strong anti-inflammatory activity and great joint targeting property. The in vitro anti-inflammatory activity assay showed that the efficacy of TAPQ-NPs was significantly higher than TAPQ(P<0.001). Animal experiments showed that the nanoparticles had good joint targeting property and had strong inhibitory activity against collagen-induced arthritis (CIA). These results indicate that the application of this novel targeted drug delivery system in the formulation of traditional Chinese medicine is feasible.
Collapse
Affiliation(s)
- Haixuan Yuan
- Department of Natural Medicinal Chemistry, China Pharmaceutical University, Nanjing, 210009, China
| | - Bowen Liu
- Department of Natural Medicinal Chemistry, China Pharmaceutical University, Nanjing, 210009, China
| | - Fulei Liu
- Department of Natural Medicinal Chemistry, China Pharmaceutical University, Nanjing, 210009, China; The Joint Laboratory of Chinese Pharmaceutical University and Taian City Centrol Hospitol, Taian City Central Hospitol, Taian, 271000, China; Pharmacy Department, Taian City Central Hospitol, Taian, 271000, China
| | - Cong Li
- Department of Natural Medicinal Chemistry, China Pharmaceutical University, Nanjing, 210009, China
| | - Lingfei Han
- Department of Pharmaceutical Analysis, China Pharmaceutical University, Nanjing, 210009, China
| | - Xiaoxian Huang
- Department of Natural Medicinal Chemistry, China Pharmaceutical University, Nanjing, 210009, China
| | - Jingwei Xue
- The Joint Laboratory of Chinese Pharmaceutical University and Taian City Centrol Hospitol, Taian City Central Hospitol, Taian, 271000, China; Taian City institute of Digestive Disease, Taian City Central Hospitol, Taian, 271000, China
| | - Wei Qu
- Department of Natural Medicinal Chemistry, China Pharmaceutical University, Nanjing, 210009, China
| | - Jian Xu
- Department of Natural Medicinal Chemistry, China Pharmaceutical University, Nanjing, 210009, China
| | - Wenyuan Liu
- Department of Pharmaceutical Analysis, China Pharmaceutical University, Nanjing, 210009, China
| | - Feng Feng
- Department of Natural Medicinal Chemistry, China Pharmaceutical University, Nanjing, 210009, China; Nanjing Medical University, Nanjing, 210009, China.
| | - Lei Wang
- Department of Resources Science of Traditional Chinese Medicines, China Pharmaceutical University, Nanjing, 211198, China.
| |
Collapse
|
27
|
Jeong H, Lee B, Han SJ, Sohn DH. Glucose metabolic reprogramming in autoimmune diseases. Anim Cells Syst (Seoul) 2023; 27:149-158. [PMID: 37465289 PMCID: PMC10351453 DOI: 10.1080/19768354.2023.2234986] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2023] [Revised: 07/01/2023] [Accepted: 07/04/2023] [Indexed: 07/20/2023] Open
Abstract
Autoimmune diseases are conditions in which the immune system mistakenly targets and damages healthy tissue in the body. In recent decades, the incidence of autoimmune diseases has increased, resulting in a significant disease burden. The current autoimmune therapies focus on targeting inflammation or inducing immunosuppression rather than addressing the underlying cause of the diseases. The activity of metabolic pathways is elevated in autoimmune diseases, and metabolic changes are increasingly recognized as important pathogenic processes underlying these. Therefore, metabolically targeted therapies may represent an important strategy for treating autoimmune diseases. This review provides a comprehensive overview of the evidence surrounding glucose metabolic reprogramming and its potential applications in drug discovery and development for autoimmune diseases, such as type 1 diabetes, multiple sclerosis, systemic lupus erythematosus, rheumatoid arthritis, and systemic sclerosis.
Collapse
Affiliation(s)
- Hoim Jeong
- Department of Microbiology and Immunology, Pusan National University School of Medicine, Yangsan, Republic of Korea
| | - Beomgu Lee
- Department of Microbiology and Immunology, Pusan National University School of Medicine, Yangsan, Republic of Korea
| | - Seung Jin Han
- Department of Medical Biotechnology, Inje University, Gimhae, Republic of Korea
| | - Dong Hyun Sohn
- Department of Microbiology and Immunology, Pusan National University School of Medicine, Yangsan, Republic of Korea
| |
Collapse
|
28
|
Hanlon MM, McGarry T, Marzaioli V, Amaechi S, Song Q, Nagpal S, Veale DJ, Fearon U. Rheumatoid arthritis macrophages are primed for inflammation and display bioenergetic and functional alterations. Rheumatology (Oxford) 2023; 62:2611-2620. [PMID: 36398893 PMCID: PMC10321118 DOI: 10.1093/rheumatology/keac640] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2022] [Accepted: 10/28/2022] [Indexed: 07/20/2023] Open
Abstract
OBJECTIVES Myeloid cells with a monocyte/macrophage phenotype are present in large numbers in the RA joint, significantly contributing to disease; however, distinct macrophage functions have yet to be elucidated. This study investigates the metabolic activity of infiltrating polarized macrophages and their impact on pro-inflammatory responses in RA. METHODS CD14+ monocytes from RA and healthy control (HC) bloods were isolated and examined ex vivo or following differentiation into 'M1/M2' macrophages. Inflammatory responses and metabolic analysis ± specific inhibitors were quantified by RT-PCR, western blot, Seahorse XFe technology, phagocytosis assays and transmission electron microscopy along with RNA-sequencing (RNA-seq) transcriptomic analysis. RESULTS Circulating RA monocytes are hyper-inflammatory upon stimulation, with significantly higher expression of key cytokines compared with HC (P < 0.05) a phenotype which is maintained upon differentiation into mature ex vivo polarized macrophages. This induction in pro-inflammatory mechanisms is paralleled by cellular bioenergetic changes. RA macrophages are highly metabolic, with a robust boost in both oxidative phosphorylation and glycolysis in RA along with altered mitochondrial morphology compared with HC. RNA-seq analysis revealed divergent transcriptional variance between pro- and anti-inflammatory RA macrophages, revealing a role for STAT3 and NAMPT in driving macrophage activation states. STAT3 and NAMPT inhibition results in significant decrease in pro-inflammatory gene expression observed in RA macrophages. Interestingly, NAMPT inhibition specifically restores macrophage phagocytic function and results in reciprocal STAT3 inhibition, linking these two signalling pathways. CONCLUSION This study demonstrates a unique inflammatory and metabolic phenotype of RA monocyte-derived macrophages and identifies a key role for NAMPT and STAT3 signalling in regulating this phenotype.
Collapse
Affiliation(s)
- Megan M Hanlon
- Molecular Rheumatology Research Group, Trinity Biomedical Sciences Institute, Trinity College Dublin, Dublin, Ireland
| | | | | | - Success Amaechi
- Molecular Rheumatology Research Group, Trinity Biomedical Sciences Institute, Trinity College Dublin, Dublin, Ireland
| | - Qingxuan Song
- Immunology and Discovery Sciences, Janssen Research & Development, Philadelphia, PA, USA
| | - Sunil Nagpal
- Immunology and Discovery Sciences, Janssen Research & Development, Philadelphia, PA, USA
| | - Douglas J Veale
- EULAR Centre of Excellence, Centre for Arthritis and Rheumatic Diseases, St Vincent's University Hospital, Dublin, Ireland
| | - Ursula Fearon
- Correspondence to: Ursula Fearon, Molecular Rheumatology Research Group, School of Medicine, Trinity Biomedical Sciences Institute, 152-160 Pearse Street, Trinity College Dublin D02 R590, Dublin, Ireland. E-mail:
| |
Collapse
|
29
|
Fu W, Liu CJ. Unraveling the mechanisms behind joint damage. eLife 2023; 12:e89778. [PMID: 37366155 PMCID: PMC10299819 DOI: 10.7554/elife.89778] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/28/2023] Open
Abstract
A subtype of myeloid monocyte mediates the transition from autoimmunity to joint destruction in rheumatoid arthritis.
Collapse
Affiliation(s)
- Wenyu Fu
- Department of Orthopaedic Surgery, New York University Grossman SchoolNew YorkUnited States
- Department of Orthopaedics and Rehabilitation, Yale University School of MedicineNew HavenUnited States
| | - Chuan-ju Liu
- Department of Orthopaedic Surgery, New York University Grossman SchoolNew YorkUnited States
- Department of Orthopaedics and Rehabilitation, Yale University School of MedicineNew HavenUnited States
| |
Collapse
|
30
|
Weyand CM, Wu B, Huang T, Hu Z, Goronzy JJ. Mitochondria as disease-relevant organelles in rheumatoid arthritis. Clin Exp Immunol 2023; 211:208-223. [PMID: 36420636 PMCID: PMC10038327 DOI: 10.1093/cei/uxac107] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2022] [Revised: 10/18/2022] [Accepted: 11/18/2022] [Indexed: 11/25/2022] Open
Abstract
Mitochondria are the controllers of cell metabolism and are recognized as decision makers in cell death pathways, organizers of cytoplasmic signaling networks, managers of cellular stress responses, and regulators of nuclear gene expression. Cells of the immune system are particularly dependent on mitochondrial resources, as they must swiftly respond to danger signals with activation, trafficking, migration, and generation of daughter cells. Analogously, faulty immune responses that lead to autoimmunity and tissue inflammation rely on mitochondria to supply energy, cell building blocks and metabolic intermediates. Emerging data endorse the concept that mitochondrial fitness, and the lack of it, is of particular relevance in the autoimmune disease rheumatoid arthritis (RA) where deviations of bioenergetic and biosynthetic flux affect T cells during early and late stages of disease. During early stages of RA, mitochondrial deficiency allows naïve RA T cells to lose self-tolerance, biasing fundamental choices of the immune system toward immune-mediated tissue damage and away from host protection. During late stages of RA, mitochondrial abnormalities shape the response patterns of RA effector T cells engaged in the inflammatory lesions, enabling chronicity of tissue damage and tissue remodeling. In the inflamed joint, autoreactive T cells partner with metabolically reprogrammed tissue macrophages that specialize in antigen-presentation and survive by adapting to the glucose-deplete tissue microenvironment. Here, we summarize recent data on dysfunctional mitochondria and mitochondria-derived signals relevant in the RA disease process that offer novel opportunities to deter autoimmune tissue inflammation by metabolic interference.
Collapse
Affiliation(s)
- Cornelia M Weyand
- Department of Medicine, Mayo Clinic Alix School of Medicine, Rochester, MN 55905, USA
- Department of Medicine, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Bowen Wu
- Department of Medicine, Mayo Clinic Alix School of Medicine, Rochester, MN 55905, USA
| | - Tao Huang
- Department of Medicine, Mayo Clinic Alix School of Medicine, Rochester, MN 55905, USA
| | - Zhaolan Hu
- Department of Medicine, Mayo Clinic Alix School of Medicine, Rochester, MN 55905, USA
| | - Jörg J Goronzy
- Department of Medicine, Mayo Clinic Alix School of Medicine, Rochester, MN 55905, USA
- Department of Medicine, Stanford University School of Medicine, Stanford, CA 94305, USA
| |
Collapse
|
31
|
González-Chávez SA, Chaparro-Barrera E, Alvarado-Jáquez MF, Cuevas-Martínez R, Ochoa-Albíztegui RE, Pacheco-Tena C. Complete Freund's Adjuvant Induces a Fibroblast-like Synoviocytes (FLS) Metabolic and Migratory Phenotype in Resident Fibroblasts of the Inoculated Footpad at the Earliest Stage of Adjuvant-Induced Arthritis. Cells 2023; 12:cells12060842. [PMID: 36980183 PMCID: PMC10047124 DOI: 10.3390/cells12060842] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2023] [Revised: 03/02/2023] [Accepted: 03/06/2023] [Indexed: 03/30/2023] Open
Abstract
The fibroblast-like synoviocytes (FLS) have a crucial role in the pathogenesis of Rheumatoid Arthritis (RA); however, its precise mechanisms remain partially unknown. The involvement of the fibroblast in activating adjuvant-induced arthritis (AA) has not been previously reported. The objective was to describe the participation of footpads' fibroblasts in the critical initial process that drives the AA onset. Wistar rats were injected with Complete Freund's Adjuvant (CFA) or saline solution in the hind paws' footpads and euthanized at 24 or 48 h for genetic and histological analyses. Microarrays revealed the differentially expressed genes between the groups. The CFA dysregulated RA-linked biological processes at both times. Genes of MAPK, Jak-STAT, HIF, PI3K-Akt, TLR, TNF, and NF-κB signaling pathways were altered 24 h before the arrival of immune cells (CD4, CD8, and CD68). Key markers TNF-α, IL-1β, IL-6, NFκB, MEK-1, JAK3, Enolase, and VEGF were immunodetected in fibroblast in CFA-injected footpads at 24 h but not in the control group. Moreover, fibroblasts in the CFA inoculation site overexpressed cadherin-11, which is linked to the migration and invasion ability of RA-FLS. Our study shows that CFA induced a pathological phenotype in the fibroblast of the inoculation site at very early AA stages from 24 h, suggesting a prominent role in arthritis activation processes.
Collapse
Affiliation(s)
- Susana Aideé González-Chávez
- Laboratorio PABIOM, Facultad de Medicina y Ciencias Biomédicas, Universidad Autónoma de Chihuahua, Chihuahua 31125, Mexico
| | - Eduardo Chaparro-Barrera
- Laboratorio PABIOM, Facultad de Medicina y Ciencias Biomédicas, Universidad Autónoma de Chihuahua, Chihuahua 31125, Mexico
| | - María Fernanda Alvarado-Jáquez
- Laboratorio PABIOM, Facultad de Medicina y Ciencias Biomédicas, Universidad Autónoma de Chihuahua, Chihuahua 31125, Mexico
| | - Rubén Cuevas-Martínez
- Laboratorio PABIOM, Facultad de Medicina y Ciencias Biomédicas, Universidad Autónoma de Chihuahua, Chihuahua 31125, Mexico
| | | | - César Pacheco-Tena
- Laboratorio PABIOM, Facultad de Medicina y Ciencias Biomédicas, Universidad Autónoma de Chihuahua, Chihuahua 31125, Mexico
| |
Collapse
|
32
|
Zhou R, Chen Y, Li S, Wei X, Hu W, Tang S, Ding J, Fu W, Zhang H, Chen F, Hao W, Lin Y, Zhu R, Wang K, Dong L, Zhao Y, Feng X, Chen F, Ding C, Hu W. TRPM7 channel inhibition attenuates rheumatoid arthritis articular chondrocyte ferroptosis by suppression of the PKCα-NOX4 axis. Redox Biol 2022; 55:102411. [PMID: 35917680 PMCID: PMC9344030 DOI: 10.1016/j.redox.2022.102411] [Citation(s) in RCA: 39] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2022] [Revised: 07/12/2022] [Accepted: 07/14/2022] [Indexed: 12/26/2022] Open
Abstract
A role for ferroptosis in articular cartilage destruction associated with rheumatoid arthritis (RA) has not been identified. We previously reported transient receptor potential melastatin 7 (TRPM7) expression was correlated with RA cartilage destruction. Herein, we further characterized a role for TRPM7 in chondrocyte ferroptosis. The expression of TRPM7 was found to be elevated in articular chondrocytes derived from adjuvant arthritis (AA) rats, human RA patients, and cultured chondrocytes treated with the ferroptosis inducer, erastin. TRPM7 knockdown or pharmacological inhibition protected primary rat articular chondrocytes and human chondrocytes (C28/I2 cells) from ferroptosis. Moreover, TRPM7 channel activity was demonstrated to contribute to chondrocyte ferroptosis by elevation of intracellular Ca2+. Mechanistically, the PKCα-NOX4 axis was found to respond to stimulation with erastin, which resulted in TRPM7-mediated chondrocyte ferroptosis. Meanwhile, PKCα was shown to directly bind to NOX4, which could be reduced by TRPM7 channel inhibition. Adeno-associated virus 9-mediated TRPM7 silencing or TRPM7 blockade with 2-APB alleviated articular cartilage destruction in AA rats and inhibited chondrocyte ferroptosis. Collectively, both genetic and pharmacological inhibitions of TRPM7 attenuated articular cartilage damage and chondrocyte ferroptosis via the PKCα-NOX4 axis, suggesting that TRPM7-mediated chondrocyte ferroptosis is a promising target for the prevention and treatment of RA.
Collapse
Affiliation(s)
- Renpeng Zhou
- Department of Clinical Pharmacology, The Second Hospital of Anhui Medical University, Hefei, 230601, China; The Key Laboratory of Anti-inflammatory and Immune Medicine, Anhui Medical University, Ministry of Education, Hefei, 230032, China
| | - Yong Chen
- Department of Clinical Pharmacology, The Second Hospital of Anhui Medical University, Hefei, 230601, China
| | - Shufang Li
- Department of Clinical Pharmacology, The Second Hospital of Anhui Medical University, Hefei, 230601, China
| | - Xin Wei
- The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, 230001, PR China
| | - Weirong Hu
- The Key Laboratory of Major Autoimmune Diseases, Anhui Institute of Innovative Drugs, School of Pharmacy, Anhui Medical University, Hefei, 230032, China
| | - Su'an Tang
- Clinical Research Centre, Zhujiang Hospital, Southern Medical University, Guangzhou, Guangdong, China
| | - Jie Ding
- Department of Clinical Pharmacology, The Second Hospital of Anhui Medical University, Hefei, 230601, China
| | - Wanjin Fu
- Department of Clinical Pharmacology, The Second Hospital of Anhui Medical University, Hefei, 230601, China
| | - Hailin Zhang
- Department of Clinical Pharmacology, The Second Hospital of Anhui Medical University, Hefei, 230601, China; The Key Laboratory of Major Autoimmune Diseases, Anhui Institute of Innovative Drugs, School of Pharmacy, Anhui Medical University, Hefei, 230032, China
| | - Fan Chen
- Department of Clinical Pharmacology, The Second Hospital of Anhui Medical University, Hefei, 230601, China; The Key Laboratory of Major Autoimmune Diseases, Anhui Institute of Innovative Drugs, School of Pharmacy, Anhui Medical University, Hefei, 230032, China
| | - Wenjuan Hao
- Department of Clinical Pharmacology, The Second Hospital of Anhui Medical University, Hefei, 230601, China; The Key Laboratory of Major Autoimmune Diseases, Anhui Institute of Innovative Drugs, School of Pharmacy, Anhui Medical University, Hefei, 230032, China
| | - Yi Lin
- Department of Clinical Pharmacology, The Second Hospital of Anhui Medical University, Hefei, 230601, China; The Key Laboratory of Major Autoimmune Diseases, Anhui Institute of Innovative Drugs, School of Pharmacy, Anhui Medical University, Hefei, 230032, China
| | - Rendi Zhu
- Department of Clinical Pharmacology, The Second Hospital of Anhui Medical University, Hefei, 230601, China; The Key Laboratory of Major Autoimmune Diseases, Anhui Institute of Innovative Drugs, School of Pharmacy, Anhui Medical University, Hefei, 230032, China
| | - Ke Wang
- The Key Laboratory of Major Autoimmune Diseases, Anhui Institute of Innovative Drugs, School of Pharmacy, Anhui Medical University, Hefei, 230032, China
| | - Lei Dong
- Department of Clinical Pharmacology, The Second Hospital of Anhui Medical University, Hefei, 230601, China; The Key Laboratory of Major Autoimmune Diseases, Anhui Institute of Innovative Drugs, School of Pharmacy, Anhui Medical University, Hefei, 230032, China
| | - Yingjie Zhao
- Department of Clinical Pharmacology, The Second Hospital of Anhui Medical University, Hefei, 230601, China; The Key Laboratory of Anti-inflammatory and Immune Medicine, Anhui Medical University, Ministry of Education, Hefei, 230032, China
| | - Xiaowen Feng
- The Key Laboratory of Major Autoimmune Diseases, Anhui Institute of Innovative Drugs, School of Pharmacy, Anhui Medical University, Hefei, 230032, China
| | - Feihu Chen
- The Key Laboratory of Major Autoimmune Diseases, Anhui Institute of Innovative Drugs, School of Pharmacy, Anhui Medical University, Hefei, 230032, China
| | - Changhai Ding
- Clinical Research Centre, Zhujiang Hospital, Southern Medical University, Guangzhou, Guangdong, China; Menzies Institute for Medical Research, University of Tasmania, Hobart, Tasmania, Australia.
| | - Wei Hu
- Department of Clinical Pharmacology, The Second Hospital of Anhui Medical University, Hefei, 230601, China; The Key Laboratory of Anti-inflammatory and Immune Medicine, Anhui Medical University, Ministry of Education, Hefei, 230032, China.
| |
Collapse
|