1
|
Wang P, Bi Y, Li M, Chen J, Wang Z, Wen H, Zhou M, Luo M, Zhang W. Cortico-striatal gamma oscillations are modulated by dopamine D3 receptors in dyskinetic rats. Neural Regen Res 2025; 20:1164-1177. [PMID: 38989954 PMCID: PMC11438323 DOI: 10.4103/nrr.nrr-d-23-01240] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2023] [Accepted: 01/16/2024] [Indexed: 07/12/2024] Open
Abstract
JOURNAL/nrgr/04.03/01300535-202504000-00031/figure1/v/2024-07-06T104127Z/r/image-tiff Long-term levodopa administration can lead to the development of levodopa-induced dyskinesia. Gamma oscillations are a widely recognized hallmark of abnormal neural electrical activity in levodopa-induced dyskinesia. Currently, studies have reported increased oscillation power in cases of levodopa-induced dyskinesia. However, little is known about how the other electrophysiological parameters of gamma oscillations are altered in levodopa-induced dyskinesia. Furthermore, the role of the dopamine D3 receptor, which is implicated in levodopa-induced dyskinesia, in movement disorder-related changes in neural oscillations is unclear. We found that the cortico-striatal functional connectivity of beta oscillations was enhanced in a model of Parkinson's disease. Furthermore, levodopa application enhanced cortical gamma oscillations in cortico-striatal projections and cortical gamma aperiodic components, as well as bidirectional primary motor cortex (M1) ↔ dorsolateral striatum gamma flow. Administration of PD128907 (a selective dopamine D3 receptor agonist) induced dyskinesia and excessive gamma oscillations with a bidirectional M1 ↔ dorsolateral striatum flow. However, administration of PG01037 (a selective dopamine D3 receptor antagonist) attenuated dyskinesia, suppressed gamma oscillations and cortical gamma aperiodic components, and decreased gamma causality in the M1 → dorsolateral striatum direction. These findings suggest that the dopamine D3 receptor plays a role in dyskinesia-related oscillatory activity, and that it has potential as a therapeutic target for levodopa-induced dyskinesia.
Collapse
Affiliation(s)
- Pengfei Wang
- Neurosurgery Center, Department of Pediatric Neurosurgery, Guangdong Provincial Key Laboratory on Brain Function Repair and Regeneration, Zhujiang Hospital, Southern Medical University, Guangzhou, Guangdong Province, China
| | | | | | | | | | | | | | | | | |
Collapse
|
2
|
Alcacer C, Klaus A, Mendonca M, Abalde S, Cenci MA, Costa RM. Abnormal hyperactivity of specific striatal ensembles encodes distinct dyskinetic behaviors revealed by high-resolution clustering. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.09.06.611664. [PMID: 39314449 PMCID: PMC11418934 DOI: 10.1101/2024.09.06.611664] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 09/25/2024]
Abstract
L-DOPA-induced dyskinesia (LID) is a debilitating complication of dopamine replacement therapy in Parkinson's disease and the most common hyperkinetic disorder of basal ganglia origin. Abnormal activity of striatal D1 and D2 spiny projection neurons (SPNs) is critical for LID, yet the link between SPN activity patterns and specific dyskinetic movements remains unknown. To explore this, we developed a novel method for clustering movements based on high-resolution motion sensors and video recordings. In a mouse model of LID, this method identified two main dyskinesia types and pathological rotations, all absent during normal behavior. Using single-cell resolution imaging, we found that specific sets of both D1 and D2-SPNs were abnormally active during these pathological movements. Under baseline conditions, the same SPN sets were active during behaviors sharing physical features with LID movements. These findings indicate that ensembles of behavior-encoding D1- and D2-SPNs form new combinations of hyperactive neurons mediating specific dyskinetic movements.
Collapse
|
3
|
Twedell EL, Bair-Marshall CJ, Girasole AE, Scaria LK, Sridhar S, Nelson AB. Striatal lateral inhibition regulates action selection in a mouse model of levodopa-induced dyskinesia. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.10.11.617939. [PMID: 39416118 PMCID: PMC11482940 DOI: 10.1101/2024.10.11.617939] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/19/2024]
Abstract
Striatal medium spiny neurons (MSNs) integrate multiple external inputs to shape motor output. In addition, MSNs form local inhibitory synaptic connections with one another. The function of striatal lateral inhibition is unknown, but one possibility is in selecting an intended action while suppressing alternatives. Action selection is disrupted in several movement disorders, including levodopa-induced dyskinesia (LID), a complication of Parkinson's disease (PD) therapy characterized by involuntary movements. Here, we identify chronic changes in the strength of striatal lateral inhibitory synapses in a mouse model of PD/LID. These synapses are also modulated by acute dopamine signaling. Chemogenetic suppression of lateral inhibition originating from dopamine D2 receptor-expressing MSNs lowers the threshold to develop involuntary movements in vivo, supporting a role in motor control. By examining the role of lateral inhibition in basal ganglia function and dysfunction, we expand the framework surrounding the role of striatal microcircuitry in action selection.
Collapse
Affiliation(s)
- Emily L Twedell
- Neuroscience Graduate Program, UCSF, San Francisco, CA 94158, USA
- Kavli Institute for Fundamental Neuroscience, UCSF, San Francisco, CA 94158, USA
- Weill Institute for Neurosciences, UCSF, San Francisco, CA 94158, USA
- Aligning Science Across Parkinson's (ASAP) Collaborative Research Network, Chevy Chase, MD 20815, USA
| | - Chloe J Bair-Marshall
- Kavli Institute for Fundamental Neuroscience, UCSF, San Francisco, CA 94158, USA
- Weill Institute for Neurosciences, UCSF, San Francisco, CA 94158, USA
- Department of Neurology, UCSF, San Francisco, CA 94158, USA
| | - Allison E Girasole
- Neuroscience Graduate Program, UCSF, San Francisco, CA 94158, USA
- Kavli Institute for Fundamental Neuroscience, UCSF, San Francisco, CA 94158, USA
- Weill Institute for Neurosciences, UCSF, San Francisco, CA 94158, USA
- Department of Neurology, UCSF, San Francisco, CA 94158, USA
| | - Lara K Scaria
- Kavli Institute for Fundamental Neuroscience, UCSF, San Francisco, CA 94158, USA
- Weill Institute for Neurosciences, UCSF, San Francisco, CA 94158, USA
- Department of Neurology, UCSF, San Francisco, CA 94158, USA
| | - Sadhana Sridhar
- Kavli Institute for Fundamental Neuroscience, UCSF, San Francisco, CA 94158, USA
- Weill Institute for Neurosciences, UCSF, San Francisco, CA 94158, USA
- Department of Neurology, UCSF, San Francisco, CA 94158, USA
- Aligning Science Across Parkinson's (ASAP) Collaborative Research Network, Chevy Chase, MD 20815, USA
| | - Alexandra B Nelson
- Neuroscience Graduate Program, UCSF, San Francisco, CA 94158, USA
- Kavli Institute for Fundamental Neuroscience, UCSF, San Francisco, CA 94158, USA
- Weill Institute for Neurosciences, UCSF, San Francisco, CA 94158, USA
- Department of Neurology, UCSF, San Francisco, CA 94158, USA
- Aligning Science Across Parkinson's (ASAP) Collaborative Research Network, Chevy Chase, MD 20815, USA
| |
Collapse
|
4
|
Roman KM, Dinasarapu AR, Cherian S, Fan X, Donsante Y, Aravind N, Chan CS, Jinnah H, Hess EJ. Striatal cell-type-specific molecular signatures reveal therapeutic targets in a model of dystonia. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.10.07.617010. [PMID: 39415987 PMCID: PMC11482807 DOI: 10.1101/2024.10.07.617010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 10/19/2024]
Abstract
Striatal dysfunction is implicated in many forms of dystonia, including idiopathic, inherited and iatrogenic dystonias. The striatum is comprised largely of GABAergic spiny projection neurons (SPNs) that are defined by their long-range efferents. Direct SPNs (dSPNs) project to the internal globus pallidus/substantia nigra reticulata whereas indirect pathway SPNs (iSPNs) project to the external pallidum; the concerted activity of both SPN subtypes modulates movement. Convergent results from genetic, imaging and physiological studies in patients suggest that abnormalities of both dSPNs and iSPNs contribute to the expression of dystonia, but the molecular adaptations underlying these abnormalities are not known. Here we provide a comprehensive analysis of SPN cell-type-specific molecular signatures in a model of DOPA-responsive dystonia (DRD mice), which is caused by gene defects that reduce dopamine neurotransmission, resulting in dystonia that is specifically associated with striatal dysfunction. Individually profiling the translatome of dSPNs and iSPNs using translating ribosome affinity purification with RNA-seq revealed hundreds of differentially translating mRNAs in each SPN subtype in DRD mice, yet there was little overlap between the dysregulated genes in dSPNs and iSPNs. Despite the paucity of shared adaptations, a disruption in glutamatergic signaling was predicted for both dSPNs and iSPNs. Indeed, we found that both AMPA and NMDA receptor-mediated currents were enhanced in dSPNs but diminished in iSPNs in DRD mice. The pattern of mRNA dysregulation was specific to dystonia as the adaptations in DRD mice were distinct from those in parkinsonian mice where the dopamine deficit occurs in adults, suggesting that the phenotypic outcome is dependent on both the timing of the dopaminergic deficit and the SPN-specific adaptions. We leveraged the unique molecular signatures of dSPNs and iSPNs in DRD mice to identify biochemical mechanisms that may be targets for therapeutics, including LRRK2 inhibition. Administration of the LRRK2 inhibitor MLi-2 ameliorated the dystonia in DRD mice suggesting a novel target for therapeutics and demonstrating that the delineation of cell-type-specific molecular signatures provides a powerful approach to revealing both CNS dysfunction and therapeutic targets in dystonia.
Collapse
Affiliation(s)
- Kaitlyn M. Roman
- Department of Pharmacology and Chemical Biology, Emory University, Atlanta, GA, USA
| | | | - Suraj Cherian
- Department of Neuroscience, Northwestern University, Chicago, Illinois, USA
| | - Xueliang Fan
- Department of Pharmacology and Chemical Biology, Emory University, Atlanta, GA, USA
| | - Yuping Donsante
- Department of Pharmacology and Chemical Biology, Emory University, Atlanta, GA, USA
| | - Nivetha Aravind
- Department of Pharmacology and Chemical Biology, Emory University, Atlanta, GA, USA
| | - C. Savio Chan
- Department of Neuroscience, Northwestern University, Chicago, Illinois, USA
| | - H.A. Jinnah
- Department of Neurology, Emory University, Atlanta, Georgia, USA
- Department of Human Genetics, Emory University, Atlanta, Georgia, USA
- Department of Pediatrics, Emory University, Atlanta, Georgia, USA
| | - Ellen J. Hess
- Department of Pharmacology and Chemical Biology, Emory University, Atlanta, GA, USA
- Department of Neurology, Emory University, Atlanta, Georgia, USA
| |
Collapse
|
5
|
Tang S, Cui L, Pan J, Xu NL. Dynamic ensemble balance in direct- and indirect-pathway striatal projection neurons underlying decision-related action selection. Cell Rep 2024; 43:114726. [PMID: 39276352 DOI: 10.1016/j.celrep.2024.114726] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2024] [Revised: 07/29/2024] [Accepted: 08/22/2024] [Indexed: 09/17/2024] Open
Abstract
The posterior dorsal striatum (pDS) plays an essential role in sensory-guided decision-making. However, it remains unclear how the antagonizing direct- and indirect-pathway striatal projection neurons (dSPNs and iSPNs) work in concert to support action selection. Here, we employed deep-brain two-photon imaging to investigate pathway-specific single-neuron and population representations during an auditory-guided decision-making task. We found that the majority of pDS projection neurons predominantly encode choice information. Both dSPNs and iSPNs comprise divergent subpopulations of comparable sizes representing competing choices, rendering a multi-ensemble balance between the two pathways. Intriguingly, such ensemble balance displays a dynamic shift during the decision period: dSPNs show a significantly stronger preference for the contraversive choice than iSPNs. This dynamic shift is further manifested in the inter-neuronal coactivity and population trajectory divergence. Our results support a balance-shift model as a neuronal population mechanism coordinating the direct and indirect striatal pathways for eliciting selected actions during decision-making.
Collapse
Affiliation(s)
- Shunhang Tang
- Institute of Neuroscience, Key Laboratory of Brain Cognition and Brain-inspired Intelligence Technology, CAS Center for Excellence in Brain Science and Intelligence Technology, Chinese Academy of Sciences, Shanghai 200031, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Lele Cui
- Institute of Neuroscience, Key Laboratory of Brain Cognition and Brain-inspired Intelligence Technology, CAS Center for Excellence in Brain Science and Intelligence Technology, Chinese Academy of Sciences, Shanghai 200031, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Jingwei Pan
- Institute of Neuroscience, Key Laboratory of Brain Cognition and Brain-inspired Intelligence Technology, CAS Center for Excellence in Brain Science and Intelligence Technology, Chinese Academy of Sciences, Shanghai 200031, China
| | - Ning-Long Xu
- Institute of Neuroscience, Key Laboratory of Brain Cognition and Brain-inspired Intelligence Technology, CAS Center for Excellence in Brain Science and Intelligence Technology, Chinese Academy of Sciences, Shanghai 200031, China; University of Chinese Academy of Sciences, Beijing 100049, China; Shanghai Center for Brain Science and Brain-Inspired Intelligence Technology, Shanghai 201210, China.
| |
Collapse
|
6
|
Jons CK, Cheng D, Dong C, Meany EL, Nassi JJ, Appel EA. Viral Vector Eluting Lenses for Single-Step Targeted Expression of Genetically-Encoded Activity Sensors for in Vivo Microendoscopic Calcium Imaging. Macromol Biosci 2024:e2400359. [PMID: 39283817 DOI: 10.1002/mabi.202400359] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2024] [Indexed: 09/25/2024]
Abstract
Optical methods for studying the brain offer powerful approaches for understanding how neural activity underlies complex behavior. These methods typically rely on genetically encoded sensors and actuators to monitor and control neural activity. For microendoscopic calcium imaging, injection of a virus followed by implantation of a lens probe is required to express a calcium sensor and enable optical access to the target brain region. This two-step process poses several challenges, chief among them being the risks associated with mistargeting and/or misalignment between virus expression zone, lens probe and target brain region. Here, an adeno-associated virus (AAV)-eluting polymer coating is engineered for gradient refractive index (GRIN) lenses enabling the expression of a genetically encoded calcium indicator (GCaMP) directly within the brain region of interest upon implantation of the lens. This approach requires only one surgical step and guarantees alignment between GCaMP expression and lens in the brain. Additionally, the slow virus release from these coatings increases the working time for surgical implantation, expanding the brain regions and species amenable to this approach. These enhanced capabilities should accelerate neuroscience research utilizing optical methods and advance the understanding of the neural circuit mechanisms underlying brain function and behavior in health and disease.
Collapse
Affiliation(s)
- Carolyn K Jons
- Department of Materials Science & Engineering, Stanford University, Stanford, CA, 94305, USA
| | - David Cheng
- Inscopix - A Bruker Company, 1212 Terra Bella Ave. Suite 200, Mountain View, CA, 94043, USA
| | - Changxin Dong
- Department of Materials Science & Engineering, Stanford University, Stanford, CA, 94305, USA
| | - Emily L Meany
- Department of Bioengineering, Stanford University, Stanford, CA, 94305, USA
| | - Jonathan J Nassi
- Inscopix - A Bruker Company, 1212 Terra Bella Ave. Suite 200, Mountain View, CA, 94043, USA
| | - Eric A Appel
- Department of Materials Science & Engineering, Stanford University, Stanford, CA, 94305, USA
- Department of Bioengineering, Stanford University, Stanford, CA, 94305, USA
- Department of Pediatrics (Endocrinology), Stanford University, Stanford, CA, 94305, USA
- ChEM-H Institute, Stanford University, Stanford, CA, 94305, USA
- Woods Institute for the Environment, Stanford University, Stanford, CA, 94305, USA
| |
Collapse
|
7
|
Sumarac S, Youn J, Fearon C, Zivkovic L, Keerthi P, Flouty O, Popovic M, Hodaie M, Kalia S, Lozano A, Hutchison W, Fasano A, Milosevic L. Clinico-physiological correlates of Parkinson's disease from multi-resolution basal ganglia recordings. NPJ Parkinsons Dis 2024; 10:175. [PMID: 39261476 PMCID: PMC11391063 DOI: 10.1038/s41531-024-00773-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2024] [Accepted: 08/05/2024] [Indexed: 09/13/2024] Open
Abstract
Parkinson's disease (PD) has been associated with pathological neural activity within the basal ganglia. Herein, we analyzed resting-state single-neuron and local field potential (LFP) activities from people with PD who underwent awake deep brain stimulation surgery of the subthalamic nucleus (STN; n = 125) or globus pallidus internus (GPi; n = 44), and correlated rate-based and oscillatory features with UPDRSIII off-medication subscores. Rate-based single-neuron features did not correlate with PD symptoms. STN single-neuron and LFP low-beta (12-21 Hz) power and burst dynamics showed modest correlations with bradykinesia and rigidity severity, while STN spiketrain theta (4-8 Hz) power correlated modestly with tremor severity. GPi low- and high-beta (21-30 Hz) power and burst dynamics correlated moderately with bradykinesia and axial symptom severity. These findings suggest that elevated single-neuron and LFP oscillations may be linked to symptoms, though modest correlations imply that the pathophysiology of PD may extend beyond resting-state beta oscillations.
Collapse
Affiliation(s)
- Srdjan Sumarac
- Krembil Brain Institute, University Health Network, Toronto, ON, Canada
- Institute of Biomedical Engineering, University of Toronto, Toronto, ON, Canada
| | - Jinyoung Youn
- Krembil Brain Institute, University Health Network, Toronto, ON, Canada
- Edmond J. Safra Program in Parkinson's Disease, Morton and Gloria Shulman Movement Disorders Clinic, Toronto Western Hospital, Toronto, ON, Canada
- Department of Neurology, University of Toronto, Toronto, ON, Canada
| | - Conor Fearon
- Krembil Brain Institute, University Health Network, Toronto, ON, Canada
- Edmond J. Safra Program in Parkinson's Disease, Morton and Gloria Shulman Movement Disorders Clinic, Toronto Western Hospital, Toronto, ON, Canada
- Department of Neurology, University of Toronto, Toronto, ON, Canada
| | - Luka Zivkovic
- Krembil Brain Institute, University Health Network, Toronto, ON, Canada
- Institute of Biomedical Engineering, University of Toronto, Toronto, ON, Canada
| | - Prerana Keerthi
- Krembil Brain Institute, University Health Network, Toronto, ON, Canada
- Institute of Biomedical Engineering, University of Toronto, Toronto, ON, Canada
| | - Oliver Flouty
- Krembil Brain Institute, University Health Network, Toronto, ON, Canada
- Institute of Medical Sciences, University of Toronto, Toronto, ON, Canada
- Department of Surgery, University of Toronto, Toronto, ON, Canada
- Department of Neurosurgery and Brain Repair, University of South Florida, Tampa, FL, USA
| | - Milos Popovic
- Institute of Biomedical Engineering, University of Toronto, Toronto, ON, Canada
- KITE, University Health Network, Toronto, ON, Canada
- Center for Advancing Neurotechnological Innovation to Application (CRANIA), Toronto, ON, Canada
| | - Mojgan Hodaie
- Krembil Brain Institute, University Health Network, Toronto, ON, Canada
- Institute of Medical Sciences, University of Toronto, Toronto, ON, Canada
- Department of Surgery, University of Toronto, Toronto, ON, Canada
- Center for Advancing Neurotechnological Innovation to Application (CRANIA), Toronto, ON, Canada
| | - Suneil Kalia
- Krembil Brain Institute, University Health Network, Toronto, ON, Canada
- Department of Surgery, University of Toronto, Toronto, ON, Canada
- KITE, University Health Network, Toronto, ON, Canada
- Center for Advancing Neurotechnological Innovation to Application (CRANIA), Toronto, ON, Canada
| | - Andres Lozano
- Krembil Brain Institute, University Health Network, Toronto, ON, Canada
- Institute of Medical Sciences, University of Toronto, Toronto, ON, Canada
- Department of Surgery, University of Toronto, Toronto, ON, Canada
- Center for Advancing Neurotechnological Innovation to Application (CRANIA), Toronto, ON, Canada
| | - William Hutchison
- Krembil Brain Institute, University Health Network, Toronto, ON, Canada
- Department of Surgery, University of Toronto, Toronto, ON, Canada
- Center for Advancing Neurotechnological Innovation to Application (CRANIA), Toronto, ON, Canada
- Department of Physiology, University of Toronto, Toronto, ON, Canada
| | - Alfonso Fasano
- Krembil Brain Institute, University Health Network, Toronto, ON, Canada
- Edmond J. Safra Program in Parkinson's Disease, Morton and Gloria Shulman Movement Disorders Clinic, Toronto Western Hospital, Toronto, ON, Canada
- Department of Neurology, University of Toronto, Toronto, ON, Canada
- Institute of Medical Sciences, University of Toronto, Toronto, ON, Canada
- KITE, University Health Network, Toronto, ON, Canada
- Center for Advancing Neurotechnological Innovation to Application (CRANIA), Toronto, ON, Canada
| | - Luka Milosevic
- Krembil Brain Institute, University Health Network, Toronto, ON, Canada.
- Institute of Biomedical Engineering, University of Toronto, Toronto, ON, Canada.
- Institute of Medical Sciences, University of Toronto, Toronto, ON, Canada.
- KITE, University Health Network, Toronto, ON, Canada.
- Center for Advancing Neurotechnological Innovation to Application (CRANIA), Toronto, ON, Canada.
| |
Collapse
|
8
|
Jons CK, Cheng D, Dong C, Meany EL, Nassi JJ, Appel EA. Viral vector eluting lenses for single-step targeted expression of genetically-encoded activity sensors for in vivo microendoscopic calcium imaging. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2023.11.09.566491. [PMID: 38014217 PMCID: PMC10680654 DOI: 10.1101/2023.11.09.566491] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/29/2023]
Abstract
Optical methods for studying the brain offer powerful approaches for understanding how neural activity underlies complex behavior. These methods typically rely on genetically encoded sensors and actuators to monitor and control neural activity. For microendoscopic calcium imaging, injection of a virus followed by implantation of a lens probe is required to express a calcium sensor and enable optical access to the target brain region. This two-step process poses several challenges, chief among them being the risks associated with mistargeting and/or misalignment between virus expression zone, lens probe and target brain region. Here, we engineer an adeno-associated virus (AAV)-eluting polymer coating for gradient refractive index (GRIN) lenses enabling expression of a genetically encoded calcium indicator (GCaMP) directly within the brain region of interest upon implantation of the lens. This approach requires only one surgical step and guarantees alignment between GCaMP expression and lens in the brain. Additionally, the slow virus release from these coatings increases the working time for surgical implantation, expanding the brain regions and species amenable to this approach. These enhanced capabilities should accelerate neuroscience research utilizing optical methods and advance our understanding of the neural circuit mechanisms underlying brain function and behavior in health and disease.
Collapse
|
9
|
Bonnavion P, Varin C, Fakhfouri G, Martinez Olondo P, De Groote A, Cornil A, Lorenzo Lopez R, Pozuelo Fernandez E, Isingrini E, Rainer Q, Xu K, Tzavara E, Vigneault E, Dumas S, de Kerchove d'Exaerde A, Giros B. Striatal projection neurons coexpressing dopamine D1 and D2 receptors modulate the motor function of D1- and D2-SPNs. Nat Neurosci 2024; 27:1783-1793. [PMID: 38965445 DOI: 10.1038/s41593-024-01694-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2022] [Accepted: 05/28/2024] [Indexed: 07/06/2024]
Abstract
The role of the striatum in motor control is commonly assumed to be mediated by the two striatal efferent pathways characterized by striatal projection neurons (SPNs) expressing dopamine (DA) D1 receptors or D2 receptors (D1-SPNs and D2-SPNs, respectively), without regard to SPNs coexpressing both receptors (D1/D2-SPNs). Here we developed an approach to target these hybrid SPNs in mice and demonstrate that, although these SPNs are less abundant, they have a major role in guiding the motor function of the other two populations. D1/D2-SPNs project exclusively to the external globus pallidus and have specific electrophysiological features with distinctive integration of DA signals. Gain- and loss-of-function experiments indicate that D1/D2-SPNs potentiate the prokinetic and antikinetic functions of D1-SPNs and D2-SPNs, respectively, and restrain the integrated motor response to psychostimulants. Overall, our findings demonstrate the essential role of this population of D1/D2-coexpressing neurons in orchestrating the fine-tuning of DA regulation in thalamo-cortico-striatal loops.
Collapse
Affiliation(s)
- Patricia Bonnavion
- Neurophy Lab, ULB Neuroscience Institute, Université Libre Bruxelles (ULB), Brussels, Belgium
| | - Christophe Varin
- Neurophy Lab, ULB Neuroscience Institute, Université Libre Bruxelles (ULB), Brussels, Belgium
| | - Ghazal Fakhfouri
- Department of Psychiatry, Douglas Hospital, McGill University, Montreal, Quebec, Canada
| | - Pilar Martinez Olondo
- Neurophy Lab, ULB Neuroscience Institute, Université Libre Bruxelles (ULB), Brussels, Belgium
| | - Aurélie De Groote
- Neurophy Lab, ULB Neuroscience Institute, Université Libre Bruxelles (ULB), Brussels, Belgium
| | - Amandine Cornil
- Neurophy Lab, ULB Neuroscience Institute, Université Libre Bruxelles (ULB), Brussels, Belgium
| | - Ramiro Lorenzo Lopez
- Neurophy Lab, ULB Neuroscience Institute, Université Libre Bruxelles (ULB), Brussels, Belgium
| | - Elisa Pozuelo Fernandez
- Neurophy Lab, ULB Neuroscience Institute, Université Libre Bruxelles (ULB), Brussels, Belgium
| | - Elsa Isingrini
- Department of Psychiatry, Douglas Hospital, McGill University, Montreal, Quebec, Canada
- Université Paris Cité, INCC UMR 8002, CNRS, Paris, France
| | - Quentin Rainer
- Department of Psychiatry, Douglas Hospital, McGill University, Montreal, Quebec, Canada
| | - Kathleen Xu
- Department of Psychiatry, Douglas Hospital, McGill University, Montreal, Quebec, Canada
| | - Eleni Tzavara
- Université Paris Cité, INCC UMR 8002, CNRS, Paris, France
- AP-HM, Hôpital Sainte Marguerite, Pôle Psychiatrie Universitaire Solaris, Marseille, France
| | - Erika Vigneault
- Department of Psychiatry, Douglas Hospital, McGill University, Montreal, Quebec, Canada
| | | | - Alban de Kerchove d'Exaerde
- Neurophy Lab, ULB Neuroscience Institute, Université Libre Bruxelles (ULB), Brussels, Belgium.
- WELBIO, WEL Research Institute, Wavre, Belgium.
| | - Bruno Giros
- Department of Psychiatry, Douglas Hospital, McGill University, Montreal, Quebec, Canada.
- Université Paris Cité, INCC UMR 8002, CNRS, Paris, France.
| |
Collapse
|
10
|
Shan Q, Yu X, Lin X, Tian Y. Reduced inhibitory synaptic transmission onto striatopallidal neurons may underlie aging-related motor skill deficits. Neurobiol Dis 2024; 199:106582. [PMID: 38942325 DOI: 10.1016/j.nbd.2024.106582] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2024] [Revised: 06/03/2024] [Accepted: 06/25/2024] [Indexed: 06/30/2024] Open
Abstract
Human beings are living longer than ever before and aging is accompanied by an increased incidence of motor deficits, including those associated with the neurodegenerative conditions, Parkinson's disease (PD) and Huntington's disease (HD). However, the biological correlates underlying this epidemiological finding, especially the functional basis at the synapse level, have been elusive. This study reveals that motor skill performance examined via rotarod, beam walking and pole tests is impaired in aged mice. This study, via electrophysiology recordings, further identifies an aging-related reduction in the efficacy of inhibitory synaptic transmission onto dorsolateral striatum (DLS) indirect-pathway medium spiny neurons (iMSNs), i.e., a disinhibition effect on DLS iMSNs. In addition, pharmacologically enhancing the activity of DLS iMSNs by infusing an adenosine A2A receptor (A2AR) agonist, which presumably mimics the disinhibition effect, impairs motor skill performance in young mice, simulating the behavior in aged naïve mice. Conversely, pharmacologically suppressing the activity of DLS iMSNs by infusing an A2AR antagonist, in order to offset the disinhibition effect, restores motor skill performance in aged mice, mimicking the behavior in young naïve mice. In conclusion, this study identifies a functional inhibitory synaptic plasticity in DLS iMSNs that likely contributes to the aging-related motor skill deficits, which would potentially serve as a striatal synaptic basis underlying age being a prominent risk factor for neurodegenerative motor deficits.
Collapse
Affiliation(s)
- Qiang Shan
- Laboratory for Synaptic Plasticity, Shantou University Medical College, Shantou, Guangdong 515041, China.
| | - Xiaoxuan Yu
- Laboratory for Synaptic Plasticity, Shantou University Medical College, Shantou, Guangdong 515041, China
| | - Xiaoli Lin
- Laboratory for Synaptic Plasticity, Shantou University Medical College, Shantou, Guangdong 515041, China
| | - Yao Tian
- Chern Institute of Mathematics, Nankai University, Tianjin 300071, China
| |
Collapse
|
11
|
Ryan MB, Girasole AE, Flores AJ, Twedell EL, McGregor MM, Brakaj R, Paletzki RF, Hnasko TS, Gerfen CR, Nelson AB. Excessive firing of dyskinesia-associated striatal direct pathway neurons is gated by dopamine and excitatory synaptic input. Cell Rep 2024; 43:114483. [PMID: 39024096 DOI: 10.1016/j.celrep.2024.114483] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2022] [Revised: 04/19/2024] [Accepted: 06/25/2024] [Indexed: 07/20/2024] Open
Abstract
The striatum integrates dopaminergic and glutamatergic inputs to select preferred versus alternative actions. However, the precise mechanisms underlying this process remain unclear. One way to study action selection is to understand how it breaks down in pathological states. Here, we explored the cellular and synaptic mechanisms of levodopa-induced dyskinesia (LID), a complication of Parkinson's disease therapy characterized by involuntary movements. We used an activity-dependent tool (FosTRAP) in conjunction with a mouse model of LID to investigate functionally distinct subsets of striatal direct pathway medium spiny neurons (dMSNs). In vivo, levodopa differentially activates dyskinesia-associated (TRAPed) dMSNs compared to other dMSNs. We found this differential activation of TRAPed dMSNs is likely to be driven by higher dopamine receptor expression, dopamine-dependent excitability, and excitatory input from the motor cortex and thalamus. Together, these findings suggest how the intrinsic and synaptic properties of heterogeneous dMSN subpopulations integrate to support action selection.
Collapse
Affiliation(s)
- Michael B Ryan
- Neuroscience Graduate Program, UCSF, San Francisco, CA 94158, USA; Kavli Institute for Fundamental Neuroscience, UCSF, San Francisco, CA 94158, USA; Weill Institute for Neurosciences, UCSF, San Francisco, CA 94158, USA
| | - Allison E Girasole
- Neuroscience Graduate Program, UCSF, San Francisco, CA 94158, USA; Kavli Institute for Fundamental Neuroscience, UCSF, San Francisco, CA 94158, USA; Weill Institute for Neurosciences, UCSF, San Francisco, CA 94158, USA
| | - Andrew J Flores
- Department of Neurosciences, UCSD, La Jolla, CA 92093, USA; Veterans Affairs San Diego Healthcare System, San Diego, CA 92161, USA; Aligning Science Across Parkinson's (ASAP) Collaborative Research Network, Chevy Chase, MD 20815, USA
| | - Emily L Twedell
- Neuroscience Graduate Program, UCSF, San Francisco, CA 94158, USA; Kavli Institute for Fundamental Neuroscience, UCSF, San Francisco, CA 94158, USA; Weill Institute for Neurosciences, UCSF, San Francisco, CA 94158, USA; Aligning Science Across Parkinson's (ASAP) Collaborative Research Network, Chevy Chase, MD 20815, USA
| | - Matthew M McGregor
- Neuroscience Graduate Program, UCSF, San Francisco, CA 94158, USA; Kavli Institute for Fundamental Neuroscience, UCSF, San Francisco, CA 94158, USA; Weill Institute for Neurosciences, UCSF, San Francisco, CA 94158, USA; Aligning Science Across Parkinson's (ASAP) Collaborative Research Network, Chevy Chase, MD 20815, USA
| | - Rea Brakaj
- Department of Neurology, UCSF, San Francisco, CA 94158, USA
| | - Ronald F Paletzki
- Laboratory of Systems Neuroscience, National Institute of Mental Health, Bethesda, MD 20892, USA
| | - Thomas S Hnasko
- Department of Neurosciences, UCSD, La Jolla, CA 92093, USA; Veterans Affairs San Diego Healthcare System, San Diego, CA 92161, USA; Aligning Science Across Parkinson's (ASAP) Collaborative Research Network, Chevy Chase, MD 20815, USA
| | - Charles R Gerfen
- Laboratory of Systems Neuroscience, National Institute of Mental Health, Bethesda, MD 20892, USA
| | - Alexandra B Nelson
- Neuroscience Graduate Program, UCSF, San Francisco, CA 94158, USA; Kavli Institute for Fundamental Neuroscience, UCSF, San Francisco, CA 94158, USA; Weill Institute for Neurosciences, UCSF, San Francisco, CA 94158, USA; Department of Neurology, UCSF, San Francisco, CA 94158, USA; Aligning Science Across Parkinson's (ASAP) Collaborative Research Network, Chevy Chase, MD 20815, USA.
| |
Collapse
|
12
|
Callahan JW, Morales JC, Atherton JF, Wang D, Kostic S, Bevan MD. Movement-related increases in subthalamic activity optimize locomotion. Cell Rep 2024; 43:114495. [PMID: 39068661 PMCID: PMC11407793 DOI: 10.1016/j.celrep.2024.114495] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2023] [Revised: 05/27/2024] [Accepted: 06/27/2024] [Indexed: 07/30/2024] Open
Abstract
The subthalamic nucleus (STN) is traditionally thought to restrict movement. Lesion or prolonged STN inhibition increases movement vigor and propensity, while optogenetic excitation has opposing effects. However, STN neurons often exhibit movement-related increases in firing. To address this paradox, STN activity was recorded and manipulated in head-fixed mice at rest and during self-initiated and self-paced treadmill locomotion. We found that (1) most STN neurons (type 1) exhibit locomotion-dependent increases in activity, with half firing preferentially during the propulsive phase of the contralateral locomotor cycle; (2) a minority of STN neurons exhibit dips in activity or are uncorrelated with movement; (3) brief optogenetic inhibition of the lateral STN (where type 1 neurons are concentrated) slows and prematurely terminates locomotion; and (4) in Q175 Huntington's disease mice, abnormally brief, low-velocity locomotion is associated with type 1 hypoactivity. Together, these data argue that movement-related increases in STN activity contribute to optimal locomotor performance.
Collapse
Affiliation(s)
- Joshua W Callahan
- Department of Neuroscience, Feinberg School of Medicine, Northwestern University, Chicago, IL 60611, USA
| | - Juan Carlos Morales
- Department of Neuroscience, Feinberg School of Medicine, Northwestern University, Chicago, IL 60611, USA
| | - Jeremy F Atherton
- Department of Neuroscience, Feinberg School of Medicine, Northwestern University, Chicago, IL 60611, USA
| | - Dorothy Wang
- Department of Neuroscience, Feinberg School of Medicine, Northwestern University, Chicago, IL 60611, USA
| | - Selena Kostic
- Department of Neuroscience, Feinberg School of Medicine, Northwestern University, Chicago, IL 60611, USA
| | - Mark D Bevan
- Department of Neuroscience, Feinberg School of Medicine, Northwestern University, Chicago, IL 60611, USA.
| |
Collapse
|
13
|
Carli S, Brugnano L, Caligiore D. Simulating combined monoaminergic depletions in a PD animal model through a bio-constrained differential equations system. Front Comput Neurosci 2024; 18:1386841. [PMID: 39247252 PMCID: PMC11378529 DOI: 10.3389/fncom.2024.1386841] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2024] [Accepted: 07/31/2024] [Indexed: 09/10/2024] Open
Abstract
Introduction Historically, Parkinson's Disease (PD) research has focused on the dysfunction of dopamine-producing cells in the substantia nigra pars compacta, which is linked to motor regulation in the basal ganglia. Therapies have mainly aimed at restoring dopamine (DA) levels, showing effectiveness but variable outcomes and side effects. Recent evidence indicates that PD complexity implicates disruptions in DA, noradrenaline (NA), and serotonin (5-HT) systems, which may underlie the variations in therapy effects. Methods We present a system-level bio-constrained computational model that comprehensively investigates the dynamic interactions between these neurotransmitter systems. The model was designed to replicate experimental data demonstrating the impact of NA and 5-HT depletion in a PD animal model, providing insights into the causal relationships between basal ganglia regions and neuromodulator release areas. Results The model successfully replicates experimental data and generates predictions regarding changes in unexplored brain regions, suggesting avenues for further investigation. It highlights the potential efficacy of alternative treatments targeting the locus coeruleus and dorsal raphe nucleus, though these preliminary findings require further validation. Sensitivity analysis identifies critical model parameters, offering insights into key factors influencing brain area activity. A stability analysis underscores the robustness of our mathematical formulation, bolstering the model validity. Discussion Our holistic approach emphasizes that PD is a multifactorial disorder and opens promising avenues for early diagnostic tools that harness the intricate interactions among monoaminergic systems. Investigating NA and 5-HT systems alongside the DA system may yield more effective, subtype-specific therapies. The exploration of multisystem dysregulation in PD is poised to revolutionize our understanding and management of this complex neurodegenerative disorder.
Collapse
Affiliation(s)
- Samuele Carli
- Computational and Translational Neuroscience Laboratory, Institute of Cognitive Sciences and Technologies, National Research Council (CTNLab-ISTC-CNR), Rome, Italy
- Entersys s.r.l., Padua, Italy
- AI2Life s.r.l., Innovative Start-Up, ISTC-CNR Spin-Off, Rome, Italy
- Department of Mathematics and Computer Science "U. Dini", University of Florence, Florence, Italy
| | - Luigi Brugnano
- Department of Mathematics and Computer Science "U. Dini", University of Florence, Florence, Italy
| | - Daniele Caligiore
- Computational and Translational Neuroscience Laboratory, Institute of Cognitive Sciences and Technologies, National Research Council (CTNLab-ISTC-CNR), Rome, Italy
- AI2Life s.r.l., Innovative Start-Up, ISTC-CNR Spin-Off, Rome, Italy
| |
Collapse
|
14
|
Shi Z, Wen K, Zou Z, Fu W, Guo K, Sammudin NH, Ruan X, Sullere S, Wang S, Zhang X, Thinakaran G, He C, Zhuang X. YTHDF1 mediates translational control by m6A mRNA methylation in adaptation to environmental challenges. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.08.07.607063. [PMID: 39149343 PMCID: PMC11326287 DOI: 10.1101/2024.08.07.607063] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 08/17/2024]
Abstract
Animals adapt to environmental challenges with long-term changes at the behavioral, circuit, cellular, and synaptic levels which often require new protein synthesis. The discovery of reversible N6-methyladenosine (m6A) modifications of mRNA has revealed an important layer of post-transcriptional regulation which affects almost every phase of mRNA metabolism and therefore translational control. Many in vitro and in vivo studies have demonstrated the significant role of m6A in cell differentiation and survival, but its role in adult neurons is understudied. We used cell-type specific gene deletion of Mettl14, which encodes one of the subunits of the m6A methyltransferase, and Ythdf1, which encodes one of the cytoplasmic m6A reader proteins, in dopamine D1 receptor expressing or D2 receptor expressing neurons. Mettl14 or Ythdf1 deficiency blunted responses to environmental challenges at the behavioral, cellular, and molecular levels. In three different behavioral paradigms, gene deletion of either Mettl14 or Ythdf1 in D1 neurons impaired D1-dependent learning, whereas gene deletion of either Mettl14 or Ythdf1 in D2 neurons impaired D2-dependent learning. At the cellular level, modulation of D1 and D2 neuron firing in response to changes in environments was blunted in all three behavioral paradigms in mutant mice. Ythdf1 deletion resembled impairment caused by Mettl14 deletion in a cell type-specific manner, suggesting YTHDF1 is the main mediator of the functional consequences of m6A mRNA methylation in the striatum. At the molecular level, while striatal neurons in control mice responded to elevated cAMP by increasing de novo protein synthesis, striatal neurons in Ythdf1 knockout mice didn't. Finally, boosting dopamine release by cocaine drastically increased YTHDF1 binding to many mRNA targets in the striatum, especially those that encode structural proteins, suggesting the initiation of long-term neuronal and/or synaptic structural changes. While the m6A-YTHDF1 pathway has similar functional significance at cellular level, its cell type specific deficiency in D1 and D2 neurons often resulted in contrasting behavioral phenotypes, allowing us to cleanly dissociate the opposing yet cooperative roles of D1 and D2 neurons.
Collapse
Affiliation(s)
- Zhuoyue Shi
- The Department of Neurobiology, University of Chicago, Chicago, IL 60637, USA
| | - Kailong Wen
- Committee on Neurobiology, University of Chicago, Chicago, IL 60637, USA
| | - Zhongyu Zou
- Department of Chemistry, The University of Chicago, Chicago, IL 60637, USA
| | - Wenqin Fu
- The Department of Neurobiology, University of Chicago, Chicago, IL 60637, USA
| | - Kathryn Guo
- The Department of Neurobiology, University of Chicago, Chicago, IL 60637, USA
| | - Nabilah H Sammudin
- Committee on Neurobiology, University of Chicago, Chicago, IL 60637, USA
| | - Xiangbin Ruan
- Department of Human Genetics, The University of Chicago, Chicago, IL 60637, USA
| | - Shivang Sullere
- Committee on Neurobiology, University of Chicago, Chicago, IL 60637, USA
| | - Shuai Wang
- Byrd Alzheimer's Center and Research Institute, University of South Florida, Tampa, FL 33613, USA
| | - Xiaochang Zhang
- Department of Human Genetics, The University of Chicago, Chicago, IL 60637, USA
- The Neuroscience Institute, The University of Chicago, Chicago, IL 60637, USA
| | - Gopal Thinakaran
- Byrd Alzheimer's Center and Research Institute, University of South Florida, Tampa, FL 33613, USA
- Department of Molecular Medicine, Morsani College of Medicine, University of South Florida, Tampa, FL 33612, USA
| | - Chuan He
- Department of Chemistry, The University of Chicago, Chicago, IL 60637, USA
- Howard Hughes Medical Institute, The University of Chicago, IL 60637, USA
| | - Xiaoxi Zhuang
- The Department of Neurobiology, University of Chicago, Chicago, IL 60637, USA
- The Neuroscience Institute, The University of Chicago, Chicago, IL 60637, USA
| |
Collapse
|
15
|
Roth RH, Ding JB. Cortico-basal ganglia plasticity in motor learning. Neuron 2024; 112:2486-2502. [PMID: 39002543 PMCID: PMC11309896 DOI: 10.1016/j.neuron.2024.06.014] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/29/2024] [Revised: 05/29/2024] [Accepted: 06/17/2024] [Indexed: 07/15/2024]
Abstract
One key function of the brain is to control our body's movements, allowing us to interact with the world around us. Yet, many motor behaviors are not innate but require learning through repeated practice. Among the brain's motor regions, the cortico-basal ganglia circuit is particularly crucial for acquiring and executing motor skills, and neuronal activity in these regions is directly linked to movement parameters. Cell-type-specific adaptations of activity patterns and synaptic connectivity support the learning of new motor skills. Functionally, neuronal activity sequences become structured and associated with learned movements. On the synaptic level, specific connections become potentiated during learning through mechanisms such as long-term synaptic plasticity and dendritic spine dynamics, which are thought to mediate functional circuit plasticity. These synaptic and circuit adaptations within the cortico-basal ganglia circuitry are thus critical for motor skill acquisition, and disruptions in this plasticity can contribute to movement disorders.
Collapse
Affiliation(s)
- Richard H Roth
- Department of Neurosurgery, Stanford University, Stanford, CA 94305, USA; Aligning Science Across Parkinson's (ASAP) Collaborative Research Network, Chevy Chase, MD 20815, USA.
| | - Jun B Ding
- Department of Neurosurgery, Stanford University, Stanford, CA 94305, USA; Aligning Science Across Parkinson's (ASAP) Collaborative Research Network, Chevy Chase, MD 20815, USA; Department of Neurology and Neurological Sciences, Stanford University, Stanford, CA 94305, USA; The Phil & Penny Knight Initiative for Brain Resilience at the Wu Tsai Neurosciences Institute, Stanford University, Stanford, CA, USA.
| |
Collapse
|
16
|
Clapp M, Bahuguna J, Giossi C, Rubin JE, Verstynen T, Vich C. CBGTPy: An extensible cortico-basal ganglia-thalamic framework for modeling biological decision making. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2023.09.05.556301. [PMID: 37732280 PMCID: PMC10508778 DOI: 10.1101/2023.09.05.556301] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/22/2023]
Abstract
Here we introduce CBGTPy, a virtual environment for designing and testing goal-directed agents with internal dynamics that are modeled on the cortico-basal-ganglia-thalamic (CBGT) pathways in the mammalian brain. CBGTPy enables researchers to investigate the internal dynamics of the CBGT system during a variety of tasks, allowing for the formation of testable predictions about animal behavior and neural activity. The framework has been designed around the principle of flexibility, such that many experimental parameters in a decision making paradigm can be easily defined and modified. Here we demonstrate the capabilities of CBGTPy across a range of single and multi-choice tasks, highlighting the ease of set up and the biologically realistic behavior that it produces. We show that CBGTPy is extensible enough to apply to a range of experimental protocols and to allow for the implementation of model extensions with minimal developmental effort.
Collapse
Affiliation(s)
- Matthew Clapp
- Department of Psychology & Neuroscience Institute, Carnegie Mellon University, Pittsburgh, Pennsylvania, United States of America
| | - Jyotika Bahuguna
- Department of Psychology & Neuroscience Institute, Carnegie Mellon University, Pittsburgh, Pennsylvania, United States of America
| | - Cristina Giossi
- Departament de Ciències Matemàtiques i Informàtica, Universitat de les Illes Balears, Palma, Spain
- Institute of Applied Computing and Community Code, Palma, Spain
| | - Jonathan E. Rubin
- Center for the Neural Basis of Cognition, Pittsburgh, Pennsylvania, United States of America
- Department of Mathematics, University of Pittsburgh, Pittsburgh, Pennsylvania, United States of America
| | - Timothy Verstynen
- Department of Psychology & Neuroscience Institute, Carnegie Mellon University, Pittsburgh, Pennsylvania, United States of America
- Center for the Neural Basis of Cognition, Pittsburgh, Pennsylvania, United States of America
| | - Catalina Vich
- Departament de Ciències Matemàtiques i Informàtica, Universitat de les Illes Balears, Palma, Spain
- Institute of Applied Computing and Community Code, Palma, Spain
| |
Collapse
|
17
|
Gittis AH, Sillitoe RV. Circuit-Specific Deep Brain Stimulation Provides Insights into Movement Control. Annu Rev Neurosci 2024; 47:63-83. [PMID: 38424473 DOI: 10.1146/annurev-neuro-092823-104810] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/02/2024]
Abstract
Deep brain stimulation (DBS), a method in which electrical stimulation is delivered to specific areas of the brain, is an effective treatment for managing symptoms of a number of neurological and neuropsychiatric disorders. Clinical access to neural circuits during DBS provides an opportunity to study the functional link between neural circuits and behavior. This review discusses how the use of DBS in Parkinson's disease and dystonia has provided insights into the brain networks and physiological mechanisms that underlie motor control. In parallel, insights from basic science about how patterns of electrical stimulation impact plasticity and communication within neural circuits are transforming DBS from a therapy for treating symptoms to a therapy for treating circuits, with the goal of training the brain out of its diseased state.
Collapse
Affiliation(s)
- Aryn H Gittis
- Department of Biological Sciences and Neuroscience Institute, Carnegie Mellon University, Pittsburgh, Pennsylvania, USA;
| | - Roy V Sillitoe
- Departments of Neuroscience, Pathology & Immunology, and Pediatrics; and Development, Disease Models & Therapeutics Graduate Program, Baylor College of Medicine, Houston, Texas, USA
- Jan and Dan Duncan Neurological Research Institute at Texas Children's Hospital, Houston, Texas, USA
| |
Collapse
|
18
|
Beck DW, Heaton CN, Davila LD, Rakocevic LI, Drammis SM, Tyulmankov D, Vara P, Giri A, Umashankar Beck S, Zhang Q, Pokojovy M, Negishi K, Batson SA, Salcido AA, Reyes NF, Macias AY, Ibanez-Alcala RJ, Hossain SB, Waller GL, O'Dell LE, Moschak TM, Goosens KA, Friedman A. Model of a striatal circuit exploring biological mechanisms underlying decision-making during normal and disordered states. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.07.29.605535. [PMID: 39211231 PMCID: PMC11361035 DOI: 10.1101/2024.07.29.605535] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/04/2024]
Abstract
Decision-making requires continuous adaptation to internal and external contexts. Changes in decision-making are reliable transdiagnostic symptoms of neuropsychiatric disorders. We created a computational model demonstrating how the striosome compartment of the striatum constructs a mathematical space for decision-making computations depending on context, and how the matrix compartment defines action value depending on the space. The model explains multiple experimental results and unifies other theories like reward prediction error, roles of the direct versus indirect pathways, and roles of the striosome versus matrix, under one framework. We also found, through new analyses, that striosome and matrix neurons increase their synchrony during difficult tasks, caused by a necessary increase in dimensionality of the space. The model makes testable predictions about individual differences in disorder susceptibility, decision-making symptoms shared among neuropsychiatric disorders, and differences in neuropsychiatric disorder symptom presentation. The model reframes the role of the striosomal circuit in neuroeconomic and disorder-affected decision-making. Highlights Striosomes prioritize decision-related data used by matrix to set action values. Striosomes and matrix have different roles in the direct and indirect pathways. Abnormal information organization/valuation alters disorder presentation. Variance in data prioritization may explain individual differences in disorders. eTOC Beck et al. developed a computational model of how a striatal circuit functions during decision-making. The model unifies and extends theories about the direct versus indirect pathways. It further suggests how aberrant circuit function underlies decision-making phenomena observed in neuropsychiatric disorders.
Collapse
|
19
|
Mitra S, Werner CT, Shwani T, Lopez AG, Federico D, Higdon K, Li X, Gobira PH, Thomas SA, Martin JA, An C, Chandra R, Maze I, Neve R, Lobo MK, Gancarz AM, Dietz DM. A Novel Role for the Histone Demethylase JMJD3 in Mediating Heroin-Induced Relapse-Like Behaviors. Biol Psychiatry 2024:S0006-3223(24)01452-5. [PMID: 39019389 DOI: 10.1016/j.biopsych.2024.06.028] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/02/2023] [Revised: 06/10/2024] [Accepted: 06/25/2024] [Indexed: 07/19/2024]
Abstract
BACKGROUND Epigenetic changes that lead to long-term neuroadaptations following opioid exposure are not well understood. We examined how histone demethylase JMJD3 in the nucleus accumbens (NAc) influences heroin seeking after abstinence from self-administration. METHODS Male Sprague Dawley rats were trained to self-administer heroin. Western blotting and quantitative polymerase chain reaction were performed to quantify JMJD3 and bone morphogenetic protein (BMP) pathway expression in the NAc (n = 7-11/group). Pharmacological inhibitors or viral expression vectors were microinfused into the NAc to manipulate JMJD3 or the BMP pathway member SMAD1 (n = 9-11/group). The RiboTag capture method (n = 3-5/group) and viral vectors (n = 7-8/group) were used in male transgenic rats to identify the contributions of D1- and D2-expressing medium spiny neurons in the NAc. Drug seeking was tested by cue-induced response previously paired with drug infusion. RESULTS Levels of JMJD3 and phosphorylated SMAD1/5 in the NAc were increased after 14 days of abstinence from heroin self-administration. Pharmacological and virus-mediated inhibition of JMJD3 or the BMP pathway attenuated cue-induced seeking. Pharmacological inhibition of BMP signaling reduced JMJD3 expression and H3K27me3 levels. JMJD3 bidirectionally affected seeking: expression of the wild-type increased cue-induced seeking whereas expression of a catalytic dead mutant decreased it. JMJD3 expression was increased in D2+ but not D1+ medium spiny neurons. Expression of the mutant JMJD3 in D2+ neurons was sufficient to decrease cue-induced heroin seeking. CONCLUSIONS JMJD3 mediates persistent cellular and behavioral adaptations that underlie heroin relapse, and this activity is regulated by the BMP pathway.
Collapse
Affiliation(s)
- Swarup Mitra
- Department of Pharmacology and Toxicology, Program in Neuroscience, Jacobs School of Medicine and Biomedical Sciences, University at Buffalo, The State University of New York, Buffalo, New York
| | - Craig T Werner
- Department of Pharmacology and Toxicology, Program in Neuroscience, Jacobs School of Medicine and Biomedical Sciences, University at Buffalo, The State University of New York, Buffalo, New York
| | - Treefa Shwani
- Department of Pharmacology and Toxicology, Program in Neuroscience, Jacobs School of Medicine and Biomedical Sciences, University at Buffalo, The State University of New York, Buffalo, New York
| | - Ana Garcia Lopez
- Department of Pharmacology and Toxicology, Program in Neuroscience, Jacobs School of Medicine and Biomedical Sciences, University at Buffalo, The State University of New York, Buffalo, New York
| | - Dale Federico
- Department of Pharmacology and Toxicology, Program in Neuroscience, Jacobs School of Medicine and Biomedical Sciences, University at Buffalo, The State University of New York, Buffalo, New York
| | - Kate Higdon
- Department of Pharmacology and Toxicology, Program in Neuroscience, Jacobs School of Medicine and Biomedical Sciences, University at Buffalo, The State University of New York, Buffalo, New York
| | - Xiaofang Li
- Department of Pharmacology and Toxicology, Program in Neuroscience, Jacobs School of Medicine and Biomedical Sciences, University at Buffalo, The State University of New York, Buffalo, New York
| | - Pedro H Gobira
- Department of Pharmacology and Toxicology, Program in Neuroscience, Jacobs School of Medicine and Biomedical Sciences, University at Buffalo, The State University of New York, Buffalo, New York
| | - Shruthi A Thomas
- Department of Pharmacology and Toxicology, Program in Neuroscience, Jacobs School of Medicine and Biomedical Sciences, University at Buffalo, The State University of New York, Buffalo, New York
| | - Jennifer A Martin
- Department of Pharmacology and Toxicology, Program in Neuroscience, Jacobs School of Medicine and Biomedical Sciences, University at Buffalo, The State University of New York, Buffalo, New York
| | - Chunna An
- Department of Pharmacology and Toxicology, Program in Neuroscience, Jacobs School of Medicine and Biomedical Sciences, University at Buffalo, The State University of New York, Buffalo, New York
| | - Ramesh Chandra
- Department of Anatomy and Neurobiology, University of Maryland School of Medicine, Baltimore, Maryland
| | - Ian Maze
- Nash Family Department of Neuroscience, Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, New York; Howard Hughes Medical Institute, Icahn School of Medicine at Mount Sinai, New York, New York
| | - Rachel Neve
- Gene Technology Core, Massachusetts General Hospital, Cambridge, Massachusetts
| | - Mary Kay Lobo
- Department of Anatomy and Neurobiology, University of Maryland School of Medicine, Baltimore, Maryland
| | - Amy M Gancarz
- Department of Psychology, California State University, Bakersfield, Bakersfield, California
| | - David M Dietz
- Department of Pharmacology and Toxicology, Program in Neuroscience, Jacobs School of Medicine and Biomedical Sciences, University at Buffalo, The State University of New York, Buffalo, New York.
| |
Collapse
|
20
|
Meng L, Akhoundian M, Al Azawi A, Shoja Y, Chi PY, Meinander K, Suihkonen S, Franssila S. Ultrasensitive Monolithic Dopamine Microsensors Employing Vertically Aligned Carbon Nanofibers. Adv Healthc Mater 2024; 13:e2303872. [PMID: 38837670 DOI: 10.1002/adhm.202303872] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2023] [Revised: 03/19/2024] [Indexed: 06/07/2024]
Abstract
Brain-on-Chip devices, which facilitate on-chip cultures of neurons to simulate brain functions, are receiving tremendous attention from both fundamental and clinical research. Consequently, microsensors are being developed to accomplish real-time monitoring of neurotransmitters, which are the benchmarks for neuron network operation. Among these, electrochemical sensors have emerged as promising candidates for detecting a critical neurotransmitter, dopamine. However, current state-of-the-art electrochemical dopamine sensors are suffering from issues like limited sensitivity and cumbersome fabrication. Here, a novel route in monolithically microfabricating vertically aligned carbon nanofiber electrochemical dopamine microsensors is reported with an anti-blistering slow cooling process. Thanks to the microfabrication process, microsensors is created with complete insulation and large surface areas. The champion device shows extremely high sensitivity of 4.52× 104 µAµM-1·cm-2, which is two-orders-of-magnitude higher than current devices, and a highly competitive limit of detection of 0.243 nM. These remarkable figures-of-merit will open new windows for applications such as electrochemical recording from a single neuron.
Collapse
Affiliation(s)
- Lingju Meng
- Department of Chemistry and Materials Science, Aalto University, Espoo, 02150, Finland
- Micronova Nanofabrication Centre, Aalto University, Espoo, 02150, Finland
| | - Maedeh Akhoundian
- Department of Electrical Engineering and Automation, Aalto University, Espoo, 02150, Finland
| | - Anas Al Azawi
- Department of Chemistry and Materials Science, Aalto University, Espoo, 02150, Finland
- Micronova Nanofabrication Centre, Aalto University, Espoo, 02150, Finland
| | - Yalda Shoja
- Department of Chemistry and Materials Science, Aalto University, Espoo, 02150, Finland
- Micronova Nanofabrication Centre, Aalto University, Espoo, 02150, Finland
| | - Pei-Yin Chi
- Department of Chemistry and Materials Science, Aalto University, Espoo, 02150, Finland
- Micronova Nanofabrication Centre, Aalto University, Espoo, 02150, Finland
| | - Kristoffer Meinander
- Department of Bioproducts and Biosystems, Aalto University, Espoo, 02150, Finland
| | - Sami Suihkonen
- Department of Electronics and Nanoengineering, Aalto University, Espoo, 02150, Finland
| | - Sami Franssila
- Department of Chemistry and Materials Science, Aalto University, Espoo, 02150, Finland
- Micronova Nanofabrication Centre, Aalto University, Espoo, 02150, Finland
| |
Collapse
|
21
|
Coventry BS, Bartlett EL. Practical Bayesian Inference in Neuroscience: Or How I Learned to Stop Worrying and Embrace the Distribution. eNeuro 2024; 11:ENEURO.0484-23.2024. [PMID: 38918054 PMCID: PMC11270157 DOI: 10.1523/eneuro.0484-23.2024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2023] [Revised: 05/17/2024] [Accepted: 06/18/2024] [Indexed: 06/27/2024] Open
Abstract
Typical statistical practices in the biological sciences have been increasingly called into question due to difficulties in the replication of an increasing number of studies, many of which are confounded by the relative difficulty of null significance hypothesis testing designs and interpretation of p-values. Bayesian inference, representing a fundamentally different approach to hypothesis testing, is receiving renewed interest as a potential alternative or complement to traditional null significance hypothesis testing due to its ease of interpretation and explicit declarations of prior assumptions. Bayesian models are more mathematically complex than equivalent frequentist approaches, which have historically limited applications to simplified analysis cases. However, the advent of probability distribution sampling tools with exponential increases in computational power now allows for quick and robust inference under any distribution of data. Here we present a practical tutorial on the use of Bayesian inference in the context of neuroscientific studies in both rat electrophysiological and computational modeling data. We first start with an intuitive discussion of Bayes' rule and inference followed by the formulation of Bayesian-based regression and ANOVA models using data from a variety of neuroscientific studies. We show how Bayesian inference leads to easily interpretable analysis of data while providing an open-source toolbox to facilitate the use of Bayesian tools.
Collapse
Affiliation(s)
- Brandon S Coventry
- Department of Neurological Surgery and the Wisconsin Institute for Translational Neuroengineering, University of Wisconsin-Madison, Madison, Wisconsin 53705
| | - Edward L Bartlett
- Weldon School of Biomedical Engineering, Department of Biological Sciences, and the Institute for Integrative Neuroscience, Purdue University, West Lafayette, Indiana 47907
| |
Collapse
|
22
|
Linsley JW, Reisine T, Finkbeiner S. Three dimensional and four dimensional live imaging to study mechanisms of progressive neurodegeneration. J Biol Chem 2024; 300:107433. [PMID: 38825007 PMCID: PMC11261153 DOI: 10.1016/j.jbc.2024.107433] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2023] [Revised: 05/20/2024] [Accepted: 05/26/2024] [Indexed: 06/04/2024] Open
Abstract
Neurodegenerative diseases are complex and progressive, posing challenges to their study and understanding. Recent advances in microscopy imaging technologies have enabled the exploration of neurons in three spatial dimensions (3D) over time (4D). When applied to 3D cultures, tissues, or animals, these technologies can provide valuable insights into the dynamic and spatial nature of neurodegenerative diseases. This review focuses on the use of imaging techniques and neurodegenerative disease models to study neurodegeneration in 4D. Imaging techniques such as confocal microscopy, two-photon microscopy, miniscope imaging, light sheet microscopy, and robotic microscopy offer powerful tools to visualize and analyze neuronal changes over time in 3D tissue. Application of these technologies to in vitro models of neurodegeneration such as mouse organotypic culture systems and human organoid models provide versatile platforms to study neurodegeneration in a physiologically relevant context. Additionally, use of 4D imaging in vivo, including in mouse and zebrafish models of neurodegenerative diseases, allows for the investigation of early dysfunction and behavioral changes associated with neurodegeneration. We propose that these studies have the power to overcome the limitations of two-dimensional monolayer neuronal cultures and pave the way for improved understanding of the dynamics of neurodegenerative diseases and the development of effective therapeutic strategies.
Collapse
Affiliation(s)
- Jeremy W Linsley
- Center for Systems and Therapeutics, Gladstone Institutes, San Francisco, California, USA; Operant Biopharma, San Francisco, California, USA
| | - Terry Reisine
- Independent Scientific Consultant, Santa Cruz, California, USA
| | - Steven Finkbeiner
- Center for Systems and Therapeutics, Gladstone Institutes, San Francisco, California, USA; Operant Biopharma, San Francisco, California, USA; Taube/Koret Center for Neurodegenerative Disease, Gladstone Institutes, San Francisco, California, USA; Departments of Neurology and Physiology, University of California, San Francisco, California, USA; Neuroscience Graduate Program, University of California, San Francisco, California, USA; Biomedical Sciences Graduate Program, University of California, San Francisco, California, USA.
| |
Collapse
|
23
|
Wu Y, Hu K, Liu S. Computational models advance deep brain stimulation for Parkinson's disease. NETWORK (BRISTOL, ENGLAND) 2024:1-32. [PMID: 38923890 DOI: 10.1080/0954898x.2024.2361799] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/04/2023] [Accepted: 05/25/2024] [Indexed: 06/28/2024]
Abstract
Deep brain stimulation(DBS) has become an effective intervention for advanced Parkinson's disease(PD), but the exact mechanism of DBS is still unclear. In this review, we discuss the history of DBS, the anatomy and internal architecture of the basal ganglia (BG), the abnormal pathological changes of the BG in PD, and how computational models can help understand and advance DBS. We also describe two types of models: mathematical theoretical models and clinical predictive models. Mathematical theoretical models simulate neurons or neural networks of BG to shed light on the mechanistic principle underlying DBS, while clinical predictive models focus more on patients' outcomes, helping to adapt treatment plans for each patient and advance novel electrode designs. Finally, we provide insights and an outlook on future technologies.
Collapse
Affiliation(s)
- Yongtong Wu
- School of Mathematics, South China University of Technology, Guangzhou, Guangdong, China
| | - Kejia Hu
- Department of Neurosurgery, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- Center for Functional Neurosurgery, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Shenquan Liu
- School of Mathematics, South China University of Technology, Guangzhou, Guangdong, China
| |
Collapse
|
24
|
Shen C, Shen B, Liu D, Han L, Zou K, Gan L, Ren J, Wu B, Tang Y, Zhao J, Sun Y, Liu F, Yu W, Yao H, Wu J, Wang J. Bidirectional regulation of levodopa-induced dyskinesia by a specific neural ensemble in globus pallidus external segment. Cell Rep Med 2024; 5:101566. [PMID: 38759649 PMCID: PMC11228392 DOI: 10.1016/j.xcrm.2024.101566] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2023] [Revised: 02/15/2024] [Accepted: 04/19/2024] [Indexed: 05/19/2024]
Abstract
Levodopa-induced dyskinesia (LID) is an intractable motor complication arising in Parkinson's disease with the progression of disease and chronic treatment of levodopa. However, the specific cell assemblies mediating dyskinesia have not been fully elucidated. Here, we utilize the activity-dependent tool to identify three brain regions (globus pallidus external segment [GPe], parafascicular thalamic nucleus, and subthalamic nucleus) that specifically contain dyskinesia-activated ensembles. An intensity-dependent hyperactivity in the dyskinesia-activated subpopulation in GPe (GPeTRAPed in LID) is observed during dyskinesia. Optogenetic inhibition of GPeTRAPed in LID significantly ameliorates LID, whereas reactivation of GPeTRAPed in LID evokes dyskinetic behavior in the levodopa-off state. Simultaneous chemogenetic reactivation of GPeTRAPed in LID and another previously reported ensemble in striatum fully reproduces the dyskinesia induced by high-dose levodopa. Finally, we characterize GPeTRAPed in LID as a subset of prototypic neurons in GPe. These findings provide theoretical foundations for precision medication and modulation of LID in the future.
Collapse
Affiliation(s)
- Cong Shen
- Department of Neurology and National Research Center for Aging and Medicine & National Center for Neurological Disorders, State Key Laboratory of Medical Neurobiology, Huashan Hospital, Fudan University, Shanghai, China
| | - Bo Shen
- Department of Neurology and National Research Center for Aging and Medicine & National Center for Neurological Disorders, State Key Laboratory of Medical Neurobiology, Huashan Hospital, Fudan University, Shanghai, China
| | - Dechen Liu
- Institute of Neuroscience, State Key Laboratory of Neuroscience, Key Laboratory of Brain Cognition and Brain-inspired Intelligence Technology, CAS Center for Excellence in Brain Science and Intelligence Technology, Chinese Academy of Sciences, Shanghai, China
| | - Linlin Han
- Department of Neurology and National Research Center for Aging and Medicine & National Center for Neurological Disorders, State Key Laboratory of Medical Neurobiology, Huashan Hospital, Fudan University, Shanghai, China
| | - Kexin Zou
- Institute of Neuroscience, State Key Laboratory of Neuroscience, Key Laboratory of Brain Cognition and Brain-inspired Intelligence Technology, CAS Center for Excellence in Brain Science and Intelligence Technology, Chinese Academy of Sciences, Shanghai, China
| | - Linhua Gan
- Department of Neurology and National Research Center for Aging and Medicine & National Center for Neurological Disorders, State Key Laboratory of Medical Neurobiology, Huashan Hospital, Fudan University, Shanghai, China
| | - Jingyu Ren
- Institute of Neuroscience, State Key Laboratory of Neuroscience, Key Laboratory of Brain Cognition and Brain-inspired Intelligence Technology, CAS Center for Excellence in Brain Science and Intelligence Technology, Chinese Academy of Sciences, Shanghai, China
| | - Bin Wu
- Department of Neurology and National Research Center for Aging and Medicine & National Center for Neurological Disorders, State Key Laboratory of Medical Neurobiology, Huashan Hospital, Fudan University, Shanghai, China
| | - Yilin Tang
- Department of Neurology and National Research Center for Aging and Medicine & National Center for Neurological Disorders, State Key Laboratory of Medical Neurobiology, Huashan Hospital, Fudan University, Shanghai, China
| | - Jue Zhao
- Department of Neurology and National Research Center for Aging and Medicine & National Center for Neurological Disorders, State Key Laboratory of Medical Neurobiology, Huashan Hospital, Fudan University, Shanghai, China
| | - Yimin Sun
- Department of Neurology and National Research Center for Aging and Medicine & National Center for Neurological Disorders, State Key Laboratory of Medical Neurobiology, Huashan Hospital, Fudan University, Shanghai, China
| | - Fengtao Liu
- Department of Neurology and National Research Center for Aging and Medicine & National Center for Neurological Disorders, State Key Laboratory of Medical Neurobiology, Huashan Hospital, Fudan University, Shanghai, China
| | - Wenbo Yu
- Department of Neurology and National Research Center for Aging and Medicine & National Center for Neurological Disorders, State Key Laboratory of Medical Neurobiology, Huashan Hospital, Fudan University, Shanghai, China
| | - Haishan Yao
- Institute of Neuroscience, State Key Laboratory of Neuroscience, Key Laboratory of Brain Cognition and Brain-inspired Intelligence Technology, CAS Center for Excellence in Brain Science and Intelligence Technology, Chinese Academy of Sciences, Shanghai, China.
| | - Jianjun Wu
- Department of Neurology and National Research Center for Aging and Medicine & National Center for Neurological Disorders, State Key Laboratory of Medical Neurobiology, Huashan Hospital, Fudan University, Shanghai, China.
| | - Jian Wang
- Department of Neurology and National Research Center for Aging and Medicine & National Center for Neurological Disorders, State Key Laboratory of Medical Neurobiology, Huashan Hospital, Fudan University, Shanghai, China.
| |
Collapse
|
25
|
Correa A, Ponzi A, Calderón VM, Migliore R. Pathological cell assembly dynamics in a striatal MSN network model. Front Comput Neurosci 2024; 18:1410335. [PMID: 38903730 PMCID: PMC11188713 DOI: 10.3389/fncom.2024.1410335] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2024] [Accepted: 05/15/2024] [Indexed: 06/22/2024] Open
Abstract
Under normal conditions the principal cells of the striatum, medium spiny neurons (MSNs), show structured cell assembly activity patterns which alternate sequentially over exceedingly long timescales of many minutes. It is important to understand this activity since it is characteristically disrupted in multiple pathologies, such as Parkinson's disease and dyskinesia, and thought to be caused by alterations in the MSN to MSN lateral inhibitory connections and in the strength and distribution of cortical excitation to MSNs. To understand how these long timescales arise we extended a previous network model of MSN cells to include synapses with short-term plasticity, with parameters taken from a recent detailed striatal connectome study. We first confirmed the presence of sequentially switching cell clusters using the non-linear dimensionality reduction technique, Uniform Manifold Approximation and Projection (UMAP). We found that the network could generate non-stationary activity patterns varying extremely slowly on the order of minutes under biologically realistic conditions. Next we used Simulation Based Inference (SBI) to train a deep net to map features of the MSN network generated cell assembly activity to MSN network parameters. We used the trained SBI model to estimate MSN network parameters from ex-vivo brain slice calcium imaging data. We found that best fit network parameters were very close to their physiologically observed values. On the other hand network parameters estimated from Parkinsonian, decorticated and dyskinetic ex-vivo slice preparations were different. Our work may provide a pipeline for diagnosis of basal ganglia pathology from spiking data as well as for the design pharmacological treatments.
Collapse
Affiliation(s)
- Astrid Correa
- Institute of Biophysics, National Research Council, Palermo, Italy
| | - Adam Ponzi
- Institute of Biophysics, National Research Council, Palermo, Italy
- Center for Human Nature, Artificial Intelligence, and Neuroscience, Hokkaido University, Sapporo, Japan
| | - Vladimir M. Calderón
- Department of Developmental Neurobiology and Neurophysiology, Neurobiology Institute, National Autonomous University of Mexico, Querétaro, Mexico
| | - Rosanna Migliore
- Institute of Biophysics, National Research Council, Palermo, Italy
| |
Collapse
|
26
|
Callahan JW, Morales JC, Atherton JF, Wang D, Kostic S, Bevan MD. Movement-related increases in subthalamic activity optimize locomotion. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2023.12.07.570617. [PMID: 38105984 PMCID: PMC10723456 DOI: 10.1101/2023.12.07.570617] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/19/2023]
Abstract
The subthalamic nucleus (STN) is traditionally thought to restrict movement. Lesion or prolonged STN inhibition increases movement vigor and propensity, while ontogenetic excitation typically has opposing effects. Subthalamic and motor activity are also inversely correlated in movement disorders. However, most STN neurons exhibit movement-related increases in firing. To address this paradox, STN activity was recorded and manipulated in head-fixed mice at rest and during self-initiated treadmill locomotion. The majority of STN neurons (type 1) exhibited locomotion-dependent increases in activity, with half encoding the locomotor cycle. A minority of neurons exhibited dips in activity or were uncorrelated with movement. Brief optogenetic inhibition of the dorsolateral STN (where type 1 neurons are concentrated) slowed and prematurely terminated locomotion. In Q175 Huntington's disease mice abnormally brief, low-velocity locomotion was specifically associated with type 1 hyperactivity. Together these data argue that movement-related increases in STN activity contribute to optimal locomotor performance.
Collapse
|
27
|
Wang Y, Wei L, Tan M, Yang Z, Gao B, Li J, Liu Y, Zikereya T, Shi K, Chen W. Aerobic exercise improves motor dysfunction in Parkinson's model mice via differential regulation of striatal medium spiny neuron. Sci Rep 2024; 14:12132. [PMID: 38802497 PMCID: PMC11130133 DOI: 10.1038/s41598-024-63045-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2024] [Accepted: 05/23/2024] [Indexed: 05/29/2024] Open
Abstract
The striatum plays a crucial role in providing input to the basal ganglia circuit and is implicated in the pathological process of Parkinson's disease (PD). Disruption of the dynamic equilibrium in the basal ganglia loop can be attributed to the abnormal functioning of the medium spiny neurons (MSNs) within the striatum, potentially acting as a trigger for PD. Exercise has been shown to mitigate striatal neuronal dysfunction through neuroprotective and neurorestorative effects and to improve behavioral deficits in PD model mice. In addition, this effect is offset by the activation of MSNs expressing dopamine D2 receptors (D2-MSNs). In the current study, we investigated the underlying neurobiological mechanisms of this effect. Our findings indicated that exercise reduces the power spectral density of the beta-band in the striatum and decreases the overall firing frequency of MSNs, particularly in the case of striatal D2-MSNs. These observations were consistent with the results of molecular biology experiments, which revealed that aerobic training specifically enhanced the expression of striatal dopamine D2 receptors (D2R). Taken together, our results suggest that aerobic training aimed at upregulating striatal D2R expression to inhibit the functional activity of D2-MSNs represents a potential therapeutic strategy for the amelioration of motor dysfunction in PD.
Collapse
Affiliation(s)
- Yinhao Wang
- School of Physical Education, Hebei Normal University, Shijiazhuang, China
- Key Laboratory of Measurement and Evaluation in Exercise Bioinformation of Hebei Province, Shijiazhuang, China
| | - Longwei Wei
- School of Physical Education, Hebei Normal University, Shijiazhuang, China
- Key Laboratory of Measurement and Evaluation in Exercise Bioinformation of Hebei Province, Shijiazhuang, China
| | - Mingli Tan
- School of Physical Education, Hebei Normal University, Shijiazhuang, China
- Key Laboratory of Measurement and Evaluation in Exercise Bioinformation of Hebei Province, Shijiazhuang, China
| | - Zizheng Yang
- School of Physical Education, Hebei Normal University, Shijiazhuang, China
- Key Laboratory of Measurement and Evaluation in Exercise Bioinformation of Hebei Province, Shijiazhuang, China
| | - Bo Gao
- School of Physical Education, Hebei Normal University, Shijiazhuang, China
- Key Laboratory of Measurement and Evaluation in Exercise Bioinformation of Hebei Province, Shijiazhuang, China
| | - Juan Li
- School of Physical Education, Hebei Normal University, Shijiazhuang, China
- Key Laboratory of Measurement and Evaluation in Exercise Bioinformation of Hebei Province, Shijiazhuang, China
| | - Yang Liu
- School of Physical Education, Hebei Normal University, Shijiazhuang, China
- Key Laboratory of Measurement and Evaluation in Exercise Bioinformation of Hebei Province, Shijiazhuang, China
| | - Talifu Zikereya
- Department of Physical Education, China University of Geoscience, Beijing, China
| | - Kaixuan Shi
- Department of Physical Education, China University of Geoscience, Beijing, China.
| | - Wei Chen
- School of Physical Education, Hebei Normal University, Shijiazhuang, China.
- Key Laboratory of Measurement and Evaluation in Exercise Bioinformation of Hebei Province, Shijiazhuang, China.
| |
Collapse
|
28
|
Piantadosi SC, Manning EE, Chamberlain BL, Hyde J, LaPalombara Z, Bannon NM, Pierson JL, K Namboodiri VM, Ahmari SE. Hyperactivity of indirect pathway-projecting spiny projection neurons promotes compulsive behavior. Nat Commun 2024; 15:4434. [PMID: 38789416 PMCID: PMC11126597 DOI: 10.1038/s41467-024-48331-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2023] [Accepted: 04/26/2024] [Indexed: 05/26/2024] Open
Abstract
Compulsive behaviors are a hallmark symptom of obsessive compulsive disorder (OCD). Striatal hyperactivity has been linked to compulsive behavior generation in correlative studies in humans and causal studies in rodents. However, the contribution of the two distinct striatal output populations to the generation and treatment of compulsive behavior is unknown. These populations of direct and indirect pathway-projecting spiny projection neurons (SPNs) have classically been thought to promote or suppress actions, respectively, leading to a long-held hypothesis that increased output of direct relative to indirect pathway promotes compulsive behavior. Contrary to this hypothesis, here we find that indirect pathway hyperactivity is associated with compulsive grooming in the Sapap3-knockout mouse model of OCD-relevant behavior. Furthermore, we show that suppression of indirect pathway activity using optogenetics or treatment with the first-line OCD pharmacotherapy fluoxetine is associated with reduced grooming in Sapap3-knockouts. Together, these findings highlight the striatal indirect pathway as a potential treatment target for compulsive behavior.
Collapse
Affiliation(s)
- Sean C Piantadosi
- Center for Neuroscience, University of Pittsburgh, Pittsburgh, PA, USA
- Department of Psychiatry, University of Pittsburgh, Pittsburgh, PA, USA
- Department of Anesthesiology and Pain Medicine, University of Washington, Seattle, WA, USA
| | - Elizabeth E Manning
- Department of Psychiatry, University of Pittsburgh, Pittsburgh, PA, USA
- School of Biomedical Sciences and Pharmacy, University of Newcastle, Callaghan, NSW, Australia
| | - Brittany L Chamberlain
- Center for Neuroscience, University of Pittsburgh, Pittsburgh, PA, USA
- Department of Psychiatry, University of Pittsburgh, Pittsburgh, PA, USA
| | - James Hyde
- Department of Psychiatry, University of Pittsburgh, Pittsburgh, PA, USA
- Department of Biology, Southern Arkansas University, Magnolia, AK, USA
| | - Zoe LaPalombara
- Center for Neuroscience, University of Pittsburgh, Pittsburgh, PA, USA
- Department of Psychiatry, University of Pittsburgh, Pittsburgh, PA, USA
| | - Nicholas M Bannon
- Department of Psychiatry, University of Pittsburgh, Pittsburgh, PA, USA
| | - Jamie L Pierson
- Department of Psychiatry, University of Pittsburgh, Pittsburgh, PA, USA
| | | | - Susanne E Ahmari
- Center for Neuroscience, University of Pittsburgh, Pittsburgh, PA, USA.
- Department of Psychiatry, University of Pittsburgh, Pittsburgh, PA, USA.
| |
Collapse
|
29
|
Druart M, Kori M, Chaimowitz C, Fan C, Sippy T. Cell-type specific auditory responses in the striatum are shaped by feed forward inhibition. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.05.09.592848. [PMID: 38766066 PMCID: PMC11100736 DOI: 10.1101/2024.05.09.592848] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/22/2024]
Abstract
The posterior "tail" region of the striatum receives dense innervation from sensory brain regions and has been demonstrated to play a role in behaviors that require sensorimotor integration including discrimination 1,2 , avoidance 3 and defense 4 responses. The output neurons of the striatum, the D1 and D2 striatal projection neurons (SPNs) that make up the direct and indirect pathways, respectively, are thought to play differential roles in these behavioral responses, although it remains unclear if or how these neurons display differential responsivity to sensory stimuli. Here, we used whole-cell recordings in vivo and ex vivo to examine the strength of excitatory and inhibitory synaptic inputs onto D1 and D2 SPNs following the stimulation of upstream auditory pathways. While D1 and D2 SPNs both displayed stimulus-evoked depolarizations, D1 SPN responses were stronger and faster for all stimuli tested in vivo as well as in brain slices. This difference did not arise from differences in the strength of excitatory inputs but from differences in the strength of feed forward inhibition. Indeed, fast spiking interneurons, which are readily engaged by auditory afferents exerted stronger inhibition onto D2 SPNs compared to D1 SPNs. Our results support a model in which differences in feed forward inhibition enable the preferential recruitment of the direct pathway in response to auditory stimuli, positioning this pathway to initiate sound-driven actions.
Collapse
|
30
|
Wang Q, Wang Y, Liao FF, Zhou FM. Dopaminergic inhibition of the inwardly rectifying potassium current in direct pathway medium spiny neurons in normal and parkinsonian striatum. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.04.29.590632. [PMID: 38746264 PMCID: PMC11092482 DOI: 10.1101/2024.04.29.590632] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/16/2024]
Abstract
Despite the profound behavioral effects of the striatal dopamine (DA) activity and the inwardly rectifying potassium channel ( Kir ) being a key determinant of striatal medium spiny neuron (MSN) activity that also profoundly affects behavior, previously reported DA regulations of Kir are conflicting and incompatible with MSN function in behavior. Here we show that in normal mice with an intact striatal DA system, the predominant effect of DA activation of D1Rs in D1-MSNs is to cause a modest depolarization and increase in input resistance by inhibiting Kir, thus moderately increasing the spike outputs from behavior-promoting D1-MSNs. In parkinsonian (DA-depleted) striatum, DA increases D1-MSN intrinsic excitability more strongly than in normal striatum, consequently strongly increasing D1-MSN spike firing that is behavior-promoting; this DA excitation of D1-MSNs is stronger when the DA depletion is more severe. The DA inhibition of Kir is occluded by the Kir blocker barium chloride (BaCl 2 ). In behaving parkinsonian mice, BaCl 2 microinjection into the dorsal striatum stimulates movement but occludes the motor stimulation of D1R agonism. Taken together, our results resolve the long-standing question about what D1R agonism does to D1-MSN excitability in normal and parkinsonian striatum and strongly indicate that D1R inhibition of Kir is a key ion channel mechanism that mediates D1R agonistic behavioral stimulation in normal and parkinsonian animals.
Collapse
|
31
|
Yokoyama T, Manita S, Uwamori H, Tajiri M, Imayoshi I, Yagishita S, Murayama M, Kitamura K, Sakamoto M. A multicolor suite for deciphering population coding of calcium and cAMP in vivo. Nat Methods 2024; 21:897-907. [PMID: 38514778 PMCID: PMC11093745 DOI: 10.1038/s41592-024-02222-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2023] [Accepted: 02/21/2024] [Indexed: 03/23/2024]
Abstract
cAMP is a universal second messenger regulated by various upstream pathways including Ca2+ and G-protein-coupled receptors (GPCRs). To decipher in vivo cAMP dynamics, we rationally designed cAMPinG1, a sensitive genetically encoded green cAMP indicator that outperformed its predecessors in both dynamic range and cAMP affinity. Two-photon cAMPinG1 imaging detected cAMP transients in the somata and dendritic spines of neurons in the mouse visual cortex on the order of tens of seconds. In addition, multicolor imaging with a sensitive red Ca2+ indicator RCaMP3 allowed simultaneous measurement of population patterns in Ca2+ and cAMP in hundreds of neurons. We found Ca2+-related cAMP responses that represented specific information, such as direction selectivity in vision and locomotion, as well as GPCR-related cAMP responses. Overall, our multicolor suite will facilitate analysis of the interaction between the Ca2+, GPCR and cAMP signaling at single-cell resolution both in vitro and in vivo.
Collapse
Affiliation(s)
- Tatsushi Yokoyama
- Department of Optical Neural and Molecular Physiology, Graduate School of Biostudies, Kyoto University, Kyoto, Japan.
- Center for Living Systems Information Science, Graduate School of Biostudies, Kyoto University, Kyoto, Japan.
- Department of Brain Development and Regeneration, Graduate School of Biostudies, Kyoto University, Kyoto, Japan.
- Laboratory of Deconstruction of Stem Cells, Institute for Frontier Life and Medical Sciences, Kyoto University, Kyoto, Japan.
| | - Satoshi Manita
- Department of Neurophysiology, Graduate School of Medicine, University of Yamanashi, Chuo, Yamanashi, Japan
| | - Hiroyuki Uwamori
- Laboratory for Haptic Perception and Cognitive Physiology, Center for Brain Science, RIKEN, Wako, Saitama, Japan
| | - Mio Tajiri
- Department of Structural Physiology, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan
| | - Itaru Imayoshi
- Center for Living Systems Information Science, Graduate School of Biostudies, Kyoto University, Kyoto, Japan
- Department of Brain Development and Regeneration, Graduate School of Biostudies, Kyoto University, Kyoto, Japan
- Laboratory of Deconstruction of Stem Cells, Institute for Frontier Life and Medical Sciences, Kyoto University, Kyoto, Japan
| | - Sho Yagishita
- Department of Structural Physiology, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan
| | - Masanori Murayama
- Laboratory for Haptic Perception and Cognitive Physiology, Center for Brain Science, RIKEN, Wako, Saitama, Japan
| | - Kazuo Kitamura
- Department of Neurophysiology, Graduate School of Medicine, University of Yamanashi, Chuo, Yamanashi, Japan
| | - Masayuki Sakamoto
- Department of Optical Neural and Molecular Physiology, Graduate School of Biostudies, Kyoto University, Kyoto, Japan.
- Center for Living Systems Information Science, Graduate School of Biostudies, Kyoto University, Kyoto, Japan.
- Department of Brain Development and Regeneration, Graduate School of Biostudies, Kyoto University, Kyoto, Japan.
- Laboratory of Deconstruction of Stem Cells, Institute for Frontier Life and Medical Sciences, Kyoto University, Kyoto, Japan.
- Precursory Research for Embryonic Science and Technology (PRESTO), Japan Science and Technology Agency, Kyoto, Japan.
| |
Collapse
|
32
|
Do QB, Noor H, Marquez-Gomez R, Cramb KML, Ng B, Abbey A, Ibarra-Aizpurua N, Caiazza MC, Sharifi P, Lang C, Beccano-Kelly D, Baleriola J, Bengoa-Vergniory N, Wade-Martins R. Early deficits in an in vitro striatal microcircuit model carrying the Parkinson's GBA-N370S mutation. NPJ Parkinsons Dis 2024; 10:82. [PMID: 38609392 PMCID: PMC11014935 DOI: 10.1038/s41531-024-00694-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2023] [Accepted: 03/26/2024] [Indexed: 04/14/2024] Open
Abstract
Understanding medium spiny neuron (MSN) physiology is essential to understand motor impairments in Parkinson's disease (PD) given the architecture of the basal ganglia. Here, we developed a custom three-chambered microfluidic platform and established a cortico-striato-nigral microcircuit partially recapitulating the striatal presynaptic landscape in vitro using induced pluripotent stem cell (iPSC)-derived neurons. We found that, cortical glutamatergic projections facilitated MSN synaptic activity, and dopaminergic transmission enhanced maturation of MSNs in vitro. Replacement of wild-type iPSC-derived dopamine neurons (iPSC-DaNs) in the striatal microcircuit with those carrying the PD-related GBA-N370S mutation led to a depolarisation of resting membrane potential and an increase in rheobase in iPSC-MSNs, as well as a reduction in both voltage-gated sodium and potassium currents. Such deficits were resolved in late microcircuit cultures, and could be reversed in younger cultures with antagonism of protein kinase A activity in iPSC-MSNs. Taken together, our results highlight the unique utility of modelling striatal neurons in a modular physiological circuit to reveal mechanistic insights into GBA1 mutations in PD.
Collapse
Affiliation(s)
- Quyen B Do
- Oxford Parkinson's Disease Centre and Department of Physiology, Anatomy and Genetics, University of Oxford, South Park Road, Oxford, OX1 3QU, UK
- Kavli Institute for Neuroscience Discovery, University of Oxford, Dorothy Crowfoot Hodgkin Building, South Park Road, Oxford, OX1 3QU, UK
- Aligning Science Across Parkinson's (ASAP) Collaborative Research Network, Chevy Chase, MD, 20815, USA
| | - Humaira Noor
- Oxford Parkinson's Disease Centre and Department of Physiology, Anatomy and Genetics, University of Oxford, South Park Road, Oxford, OX1 3QU, UK
- Kavli Institute for Neuroscience Discovery, University of Oxford, Dorothy Crowfoot Hodgkin Building, South Park Road, Oxford, OX1 3QU, UK
- Aligning Science Across Parkinson's (ASAP) Collaborative Research Network, Chevy Chase, MD, 20815, USA
- Nuffield Department of Medicine (NDM), University of Oxford, Henry Wellcome Building for Molecular Physiology, Old Road, Oxford, OX3 7BN, UK
| | - Ricardo Marquez-Gomez
- Oxford Parkinson's Disease Centre and Department of Physiology, Anatomy and Genetics, University of Oxford, South Park Road, Oxford, OX1 3QU, UK
- Kavli Institute for Neuroscience Discovery, University of Oxford, Dorothy Crowfoot Hodgkin Building, South Park Road, Oxford, OX1 3QU, UK
- Aligning Science Across Parkinson's (ASAP) Collaborative Research Network, Chevy Chase, MD, 20815, USA
| | - Kaitlyn M L Cramb
- Oxford Parkinson's Disease Centre and Department of Physiology, Anatomy and Genetics, University of Oxford, South Park Road, Oxford, OX1 3QU, UK
- Kavli Institute for Neuroscience Discovery, University of Oxford, Dorothy Crowfoot Hodgkin Building, South Park Road, Oxford, OX1 3QU, UK
- Aligning Science Across Parkinson's (ASAP) Collaborative Research Network, Chevy Chase, MD, 20815, USA
| | - Bryan Ng
- Oxford Parkinson's Disease Centre and Department of Physiology, Anatomy and Genetics, University of Oxford, South Park Road, Oxford, OX1 3QU, UK
- Kavli Institute for Neuroscience Discovery, University of Oxford, Dorothy Crowfoot Hodgkin Building, South Park Road, Oxford, OX1 3QU, UK
| | - Ajantha Abbey
- Oxford Parkinson's Disease Centre and Department of Physiology, Anatomy and Genetics, University of Oxford, South Park Road, Oxford, OX1 3QU, UK
- Kavli Institute for Neuroscience Discovery, University of Oxford, Dorothy Crowfoot Hodgkin Building, South Park Road, Oxford, OX1 3QU, UK
| | - Naroa Ibarra-Aizpurua
- Oxford Parkinson's Disease Centre and Department of Physiology, Anatomy and Genetics, University of Oxford, South Park Road, Oxford, OX1 3QU, UK
- Kavli Institute for Neuroscience Discovery, University of Oxford, Dorothy Crowfoot Hodgkin Building, South Park Road, Oxford, OX1 3QU, UK
| | - Maria Claudia Caiazza
- Oxford Parkinson's Disease Centre and Department of Physiology, Anatomy and Genetics, University of Oxford, South Park Road, Oxford, OX1 3QU, UK
- Kavli Institute for Neuroscience Discovery, University of Oxford, Dorothy Crowfoot Hodgkin Building, South Park Road, Oxford, OX1 3QU, UK
- Aligning Science Across Parkinson's (ASAP) Collaborative Research Network, Chevy Chase, MD, 20815, USA
| | - Parnaz Sharifi
- Oxford Parkinson's Disease Centre and Department of Physiology, Anatomy and Genetics, University of Oxford, South Park Road, Oxford, OX1 3QU, UK
- Kavli Institute for Neuroscience Discovery, University of Oxford, Dorothy Crowfoot Hodgkin Building, South Park Road, Oxford, OX1 3QU, UK
| | - Charmaine Lang
- Oxford Parkinson's Disease Centre and Department of Physiology, Anatomy and Genetics, University of Oxford, South Park Road, Oxford, OX1 3QU, UK
- Kavli Institute for Neuroscience Discovery, University of Oxford, Dorothy Crowfoot Hodgkin Building, South Park Road, Oxford, OX1 3QU, UK
- Aligning Science Across Parkinson's (ASAP) Collaborative Research Network, Chevy Chase, MD, 20815, USA
| | - Dayne Beccano-Kelly
- Oxford Parkinson's Disease Centre and Department of Physiology, Anatomy and Genetics, University of Oxford, South Park Road, Oxford, OX1 3QU, UK
| | - Jimena Baleriola
- Achucarro Basque Center for Neuroscience, Leioa, Spain
- Ikerbasque-Basque Foundation for Science, Bilbao, Spain
| | - Nora Bengoa-Vergniory
- Oxford Parkinson's Disease Centre and Department of Physiology, Anatomy and Genetics, University of Oxford, South Park Road, Oxford, OX1 3QU, UK.
- Kavli Institute for Neuroscience Discovery, University of Oxford, Dorothy Crowfoot Hodgkin Building, South Park Road, Oxford, OX1 3QU, UK.
- Aligning Science Across Parkinson's (ASAP) Collaborative Research Network, Chevy Chase, MD, 20815, USA.
- Achucarro Basque Center for Neuroscience, Leioa, Spain.
- Ikerbasque-Basque Foundation for Science, Bilbao, Spain.
- University of the Basque Country (UPV/EHU), Department of Neuroscience, Leioa, Spain.
| | - Richard Wade-Martins
- Oxford Parkinson's Disease Centre and Department of Physiology, Anatomy and Genetics, University of Oxford, South Park Road, Oxford, OX1 3QU, UK.
- Kavli Institute for Neuroscience Discovery, University of Oxford, Dorothy Crowfoot Hodgkin Building, South Park Road, Oxford, OX1 3QU, UK.
- Aligning Science Across Parkinson's (ASAP) Collaborative Research Network, Chevy Chase, MD, 20815, USA.
| |
Collapse
|
33
|
Evans WR, Baskar SS, Costa ARCE, Ravoori S, Arigbe A, Huda R. Functional activation of dorsal striatum astrocytes improves movement deficits in hemi-parkinsonian mice. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.04.02.587694. [PMID: 38617230 PMCID: PMC11014576 DOI: 10.1101/2024.04.02.587694] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/16/2024]
Abstract
Parkinson's disease (PD) is characterized by the degeneration of dopaminergic nigrostriatal inputs, which causes striatal network dysfunction and leads to pronounced motor deficits. Recent evidence highlights astrocytes as a potential local source of striatal network modulation. However, it remains unknown how dopamine loss affects striatal astrocyte activity and whether astrocyte activity regulates behavioral deficits in PD. We addressed these questions by performing astrocyte-specific calcium recordings and manipulations using in vivo fiber photometry and chemogenetics. We find that locomotion elicits astrocyte calcium activity over a slower timescale than neurons. Unilateral dopamine depletion reduced locomotion-related astrocyte responses. Chemogenetic activation facilitated astrocyte activity, and improved asymmetrical motor deficits and open field exploratory behavior in dopamine lesioned mice. Together, our results establish a novel role for functional striatal astrocyte signaling in modulating motor function in PD and highlight non-neuronal targets for potential PD therapeutics.
Collapse
Affiliation(s)
- Wesley R. Evans
- WM Keck Center for Collaborative Neuroscience, Rutgers University, Piscataway NJ, 08854, USA
| | - Sindhuja S. Baskar
- WM Keck Center for Collaborative Neuroscience, Rutgers University, Piscataway NJ, 08854, USA
| | | | - Sanya Ravoori
- WM Keck Center for Collaborative Neuroscience, Rutgers University, Piscataway NJ, 08854, USA
| | - Abimbola Arigbe
- WM Keck Center for Collaborative Neuroscience, Rutgers University, Piscataway NJ, 08854, USA
| | - Rafiq Huda
- WM Keck Center for Collaborative Neuroscience, Rutgers University, Piscataway NJ, 08854, USA
- Department of Cell Biology and Neuroscience, Rutgers University, Piscataway NJ, 08854, USA
| |
Collapse
|
34
|
Yang L, Singla D, Wu AK, Cross KA, Masmanidis SC. Dopamine lesions alter the striatal encoding of single-limb gait. eLife 2024; 12:RP92821. [PMID: 38526916 PMCID: PMC10963031 DOI: 10.7554/elife.92821] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/27/2024] Open
Abstract
The striatum serves an important role in motor control, and neurons in this area encode the body's initiation, cessation, and speed of locomotion. However, it remains unclear whether the same neurons also encode the step-by-step rhythmic motor patterns of individual limbs that characterize gait. By combining high-speed video tracking, electrophysiology, and optogenetic tagging, we found that a sizable population of both D1 and D2 receptor expressing medium spiny projection neurons (MSNs) were phase-locked to the gait cycle of individual limbs in mice. Healthy animals showed balanced limb phase-locking between D1 and D2 MSNs, while dopamine depletion led to stronger phase-locking in D2 MSNs. These findings indicate that striatal neurons represent gait on a single-limb and step basis, and suggest that elevated limb phase-locking of D2 MSNs may underlie some of the gait impairments associated with dopamine loss.
Collapse
Affiliation(s)
- Long Yang
- Department of Neurobiology, University of California Los AngelesLos AngelesUnited States
| | - Deepak Singla
- Department of Bioengineering, University of California Los AngelesLos AngelesUnited States
| | - Alexander K Wu
- Department of Neurobiology, University of California Los AngelesLos AngelesUnited States
| | - Katy A Cross
- Department of Neurology, University of California Los AngelesLos AngelesUnited States
| | - Sotiris C Masmanidis
- Department of Neurobiology, University of California Los AngelesLos AngelesUnited States
- California Nanosystems Institute, University of California Los AngelesLos AngelesUnited States
| |
Collapse
|
35
|
Zachry JE, Kutlu MG, Yoon HJ, Leonard MZ, Chevée M, Patel DD, Gaidici A, Kondev V, Thibeault KC, Bethi R, Tat J, Melugin PR, Isiktas AU, Joffe ME, Cai DJ, Conn PJ, Grueter BA, Calipari ES. D1 and D2 medium spiny neurons in the nucleus accumbens core have distinct and valence-independent roles in learning. Neuron 2024; 112:835-849.e7. [PMID: 38134921 PMCID: PMC10939818 DOI: 10.1016/j.neuron.2023.11.023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2022] [Revised: 10/03/2023] [Accepted: 11/22/2023] [Indexed: 12/24/2023]
Abstract
At the core of value-based learning is the nucleus accumbens (NAc). D1- and D2-receptor-containing medium spiny neurons (MSNs) in the NAc core are hypothesized to have opposing valence-based roles in behavior. Using optical imaging and manipulation approaches in mice, we show that neither D1 nor D2 MSNs signal valence. D1 MSN responses were evoked by stimuli regardless of valence or contingency. D2 MSNs were evoked by both cues and outcomes, were dynamically changed with learning, and tracked valence-free prediction error at the population and individual neuron level. Finally, D2 MSN responses to cues were necessary for associative learning. Thus, D1 and D2 MSNs work in tandem, rather than in opposition, by signaling specific properties of stimuli to control learning.
Collapse
Affiliation(s)
- Jennifer E Zachry
- Department of Pharmacology, Vanderbilt University, Nashville, TN 37232, USA; Vanderbilt Center for Addiction Research, Vanderbilt University, Nashville, TN 37232, USA
| | - Munir Gunes Kutlu
- Department of Pharmacology, Vanderbilt University, Nashville, TN 37232, USA; Vanderbilt Center for Addiction Research, Vanderbilt University, Nashville, TN 37232, USA
| | - Hye Jean Yoon
- Department of Pharmacology, Vanderbilt University, Nashville, TN 37232, USA; Vanderbilt Center for Addiction Research, Vanderbilt University, Nashville, TN 37232, USA
| | - Michael Z Leonard
- Department of Pharmacology, Vanderbilt University, Nashville, TN 37232, USA; Vanderbilt Center for Addiction Research, Vanderbilt University, Nashville, TN 37232, USA
| | - Maxime Chevée
- Department of Pharmacology, Vanderbilt University, Nashville, TN 37232, USA; Vanderbilt Center for Addiction Research, Vanderbilt University, Nashville, TN 37232, USA
| | - Dev D Patel
- Department of Pharmacology, Vanderbilt University, Nashville, TN 37232, USA; Vanderbilt Center for Addiction Research, Vanderbilt University, Nashville, TN 37232, USA
| | - Anthony Gaidici
- Department of Pharmacology, Vanderbilt University, Nashville, TN 37232, USA; Vanderbilt Center for Addiction Research, Vanderbilt University, Nashville, TN 37232, USA
| | - Veronika Kondev
- Department of Pharmacology, Vanderbilt University, Nashville, TN 37232, USA; Vanderbilt Center for Addiction Research, Vanderbilt University, Nashville, TN 37232, USA
| | - Kimberly C Thibeault
- Department of Pharmacology, Vanderbilt University, Nashville, TN 37232, USA; Vanderbilt Center for Addiction Research, Vanderbilt University, Nashville, TN 37232, USA
| | - Rishik Bethi
- Department of Pharmacology, Vanderbilt University, Nashville, TN 37232, USA; Vanderbilt Center for Addiction Research, Vanderbilt University, Nashville, TN 37232, USA
| | - Jennifer Tat
- Department of Pharmacology, Vanderbilt University, Nashville, TN 37232, USA; Vanderbilt Center for Addiction Research, Vanderbilt University, Nashville, TN 37232, USA
| | - Patrick R Melugin
- Department of Pharmacology, Vanderbilt University, Nashville, TN 37232, USA; Vanderbilt Center for Addiction Research, Vanderbilt University, Nashville, TN 37232, USA
| | - Atagun U Isiktas
- Department of Pharmacology, Vanderbilt University, Nashville, TN 37232, USA; Vanderbilt Center for Addiction Research, Vanderbilt University, Nashville, TN 37232, USA; Department of Neuroscience, Yale University, New Haven, CT 06520, USA
| | - Max E Joffe
- Department of Pharmacology, Vanderbilt University, Nashville, TN 37232, USA; Vanderbilt Center for Addiction Research, Vanderbilt University, Nashville, TN 37232, USA; Department of Psychiatry, University of Pittsburgh, Pittsburgh, PA 15219, USA
| | - Denise J Cai
- Nash Family Department of Neuroscience, Icahn School of Medicine, Mount Sinai, New York, NY 10029, USA
| | - P Jeffrey Conn
- Department of Pharmacology, Vanderbilt University, Nashville, TN 37232, USA; Vanderbilt Center for Addiction Research, Vanderbilt University, Nashville, TN 37232, USA
| | - Brad A Grueter
- Department of Pharmacology, Vanderbilt University, Nashville, TN 37232, USA; Vanderbilt Center for Addiction Research, Vanderbilt University, Nashville, TN 37232, USA; Department of Anesthesiology, Vanderbilt University Medical Center, Nashville, TN 37232, USA
| | - Erin S Calipari
- Department of Pharmacology, Vanderbilt University, Nashville, TN 37232, USA; Vanderbilt Center for Addiction Research, Vanderbilt University, Nashville, TN 37232, USA.
| |
Collapse
|
36
|
Coelho PD, Mendonça MD. Learning to Have a Long-Duration Response. Mov Disord 2024; 39:485. [PMID: 38362826 DOI: 10.1002/mds.29743] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2023] [Accepted: 01/25/2024] [Indexed: 02/17/2024] Open
Affiliation(s)
- Pedro Daniel Coelho
- Champalimaud Research, Champalimaud Centre for the Unknown, Lisbon, Portugal
- NOVA Medical School|Faculdade de Ciências Médicas, Universidade Nova de Lisboa, Lisbon, Portugal
| | - Marcelo D Mendonça
- Champalimaud Research, Champalimaud Centre for the Unknown, Lisbon, Portugal
- NOVA Medical School|Faculdade de Ciências Médicas, Universidade Nova de Lisboa, Lisbon, Portugal
- Champalimaud Clinical Centre, Champalimaud Centre for the Unknown, Lisbon, Portugal
| |
Collapse
|
37
|
Li C, Elabi OF, Fieblinger T, Cenci MA. Structural-functional properties of direct-pathway striatal neurons at early and chronic stages of dopamine denervation. Eur J Neurosci 2024; 59:1227-1241. [PMID: 37876330 DOI: 10.1111/ejn.16166] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2023] [Revised: 09/22/2023] [Accepted: 09/25/2023] [Indexed: 10/26/2023]
Abstract
The dendritic arbour of striatal projection neurons (SPNs) is the primary anatomical site where dopamine and glutamate inputs to the basal ganglia functionally interact to control movement. These dendritic arbourisations undergo atrophic changes in Parkinson's disease. A reduction in the dendritic complexity of SPNs is found also in animal models with severe striatal dopamine denervation. Using 6-hydroxydopamine (6-OHDA) lesions of the medial forebrain bundle as a model, we set out to compare morphological and electrophysiological properties of SPNs at an early versus a chronic stage of dopaminergic degeneration. Ex vivo recordings were performed in transgenic mice where SPNs forming the direct pathway (dSPNs) express a fluorescent reporter protein. At both the time points studied (5 and 28 days following 6-OHDA lesion), there was a complete loss of dopaminergic fibres through the dorsolateral striatum. A reduction in dSPN dendritic complexity and spine density was manifest at 28, but not 5 days post-lesion. At the late time point, dSPN also exhibited a marked increase in intrinsic excitability (reduced rheobase current, increased input resistance, more evoked action potentials in response to depolarising currents), which was not present at 5 days. The increase in neuronal excitability was accompanied by a marked reduction in inward-rectifying potassium (Kir) currents (which dampen the SPN response to depolarising stimuli). Our results show that dSPNs undergo delayed coordinate changes in dendritic morphology, intrinsic excitability and Kir conductance following dopamine denervation. These changes are predicted to interfere with the dSPN capacity to produce a normal movement-related output.
Collapse
Affiliation(s)
- Chang Li
- Basal Ganglia Pathophysiology Unit, Department Experimental Medical Science, Wallenberg Neuroscience Center, Lund University, Lund, Sweden
| | - Osama F Elabi
- Basal Ganglia Pathophysiology Unit, Department Experimental Medical Science, Wallenberg Neuroscience Center, Lund University, Lund, Sweden
| | - Tim Fieblinger
- Basal Ganglia Pathophysiology Unit, Department Experimental Medical Science, Wallenberg Neuroscience Center, Lund University, Lund, Sweden
- Evotec SE, Hamburg, Germany
| | - M Angela Cenci
- Basal Ganglia Pathophysiology Unit, Department Experimental Medical Science, Wallenberg Neuroscience Center, Lund University, Lund, Sweden
| |
Collapse
|
38
|
Wen K, Shi Z, Yu P, Mo L, Sullere S, Yang V, Westneat N, Beeler JA, McGehee DS, Doiron B, Zhuang X. Opposing Motor Memories in the Direct and Indirect Pathways of the Basal Ganglia. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.02.26.582159. [PMID: 38463990 PMCID: PMC10925233 DOI: 10.1101/2024.02.26.582159] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/12/2024]
Abstract
Loss of dopamine neurons causes motor deterioration in Parkinson's disease patients. We have previously reported that in addition to acute motor impairment, the impaired motor behavior is encoded into long-term memory in an experience-dependent and task-specific manner, a phenomenon we refer to as aberrant inhibitory motor learning. Although normal motor learning and aberrant inhibitory learning oppose each other and this is manifested in apparent motor performance, in the present study, we found that normal motor memory acquired prior to aberrant inhibitory learning remains preserved in the brain, suggesting the existence of independent storage. To investigate the neuronal circuits underlying these two opposing memories, we took advantage of the RNA-binding protein YTHDF1, an m 6 A RNA methylation reader involved in the regulation of protein synthesis and learning/memory. Conditional deletion of Ythdf1 in either D1 or D2 receptor-expressing neurons revealed that normal motor memory is stored in the D1 (direct) pathway of the basal ganglia, while inhibitory memory is stored in the D2 (indirect) pathway. Furthermore, fiber photometry recordings of GCaMP signals from striatal D1 (dSPN) and D2 (iSPN) receptor-expressing neurons support the preservation of normal memory in the direct pathway after aberrant inhibitory learning, with activities of dSPN predictive of motor performance. Finally, a computational model based on activities of motor cortical neurons, dSPN and iSPN neurons, and their interactions through the basal ganglia loops supports the above observations. These findings have important implications for novel approaches in treating Parkinson's disease by reactivating preserved normal memory, and in treating hyperkinetic movement disorders such as chorea or tics by erasing aberrant motor memories.
Collapse
|
39
|
Azizpour Lindi S, Mallet NP, Leblois A. Synaptic Changes in Pallidostriatal Circuits Observed in the Parkinsonian Model Triggers Abnormal Beta Synchrony with Accurate Spatio-temporal Properties across the Basal Ganglia. J Neurosci 2024; 44:e0419232023. [PMID: 38123981 PMCID: PMC10903930 DOI: 10.1523/jneurosci.0419-23.2023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2023] [Revised: 11/27/2023] [Accepted: 12/07/2023] [Indexed: 12/23/2023] Open
Abstract
Excessive oscillatory activity across basal ganglia (BG) nuclei in the β frequencies (12-30 Hz) is a hallmark of Parkinson's disease (PD). While the link between oscillations and symptoms remains debated, exaggerated β oscillations constitute an important biomarker for therapeutic effectiveness in PD. The neuronal mechanisms of β-oscillation generation however remain unknown. Many existing models rely on a central role of the subthalamic nucleus (STN) or cortical inputs to BG. Contrarily, neural recordings and optogenetic manipulations in normal and parkinsonian rats recently highlighted the central role of the external pallidum (GPe) in abnormal β oscillations, while showing that the integrity of STN or motor cortex is not required. Here, we evaluate the mechanisms for the generation of abnormal β oscillations in a BG network model where neuronal and synaptic time constants, connectivity, and firing rate distributions are strongly constrained by experimental data. Guided by a mean-field approach, we show in a spiking neural network that several BG sub-circuits can drive oscillations. Strong recurrent STN-GPe connections or collateral intra-GPe connections drive γ oscillations (>40 Hz), whereas strong pallidostriatal loops drive low-β (10-15 Hz) oscillations. We show that pathophysiological strengthening of striatal and pallidal synapses following dopamine depletion leads to the emergence of synchronized oscillatory activity in the mid-β range with spike-phase relationships between BG neuronal populations in-line with experiments. Furthermore, inhibition of GPe, contrary to STN, abolishes oscillations. Our modeling study uncovers the neural mechanisms underlying PD β oscillations and may thereby guide the future development of therapeutic strategies.
Collapse
Affiliation(s)
- Shiva Azizpour Lindi
- CNRS, Institut des Maladies Neurodégénératives (IMN), UMR 5293, Université de Bordeaux, Bordeaux F-33000, France
| | - Nicolas P Mallet
- CNRS, Institut des Maladies Neurodégénératives (IMN), UMR 5293, Université de Bordeaux, Bordeaux F-33000, France
| | - Arthur Leblois
- CNRS, Institut des Maladies Neurodégénératives (IMN), UMR 5293, Université de Bordeaux, Bordeaux F-33000, France
| |
Collapse
|
40
|
Cenci MA, Kumar A. Cells, pathways, and models in dyskinesia research. Curr Opin Neurobiol 2024; 84:102833. [PMID: 38184982 DOI: 10.1016/j.conb.2023.102833] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2023] [Revised: 12/01/2023] [Accepted: 12/02/2023] [Indexed: 01/09/2024]
Abstract
L-DOPA-induced dyskinesia (LID) is the most common form of hyperkinetic movement disorder resulting from altered information processing in the cortico-basal ganglia network. We here review recent advances clarifying the altered interplay between striatal output pathways in this movement disorder. We also review studies revealing structural and synaptic changes to the striatal microcircuitry and altered cortico-striatal activity dynamics in LID. We furthermore highlight the recent progress made in understanding the involvement of cerebellar and brain stem nuclei. These recent developments illustrate that dyskinesia research continues to provide key insights into cellular and circuit-level plasticity within the cortico-basal ganglia network and its interconnected brain regions.
Collapse
Affiliation(s)
- M Angela Cenci
- Basal Ganglia Pathophysiology Unit, Department Experimental Medical Science, Lund University, Lund, Sweden.
| | - Arvind Kumar
- School of Electrical Engineering and Computer Science, KTH Royal Institute of Technology, Stockholm, Sweden. https://twitter.com/arvin_neuro
| |
Collapse
|
41
|
Park J, Kang S, Lee Y, Choi JW, Oh YS. Continuous long-range measurement of tonic dopamine with advanced FSCV for pharmacodynamic analysis of levodopa-induced dyskinesia in Parkinson's disease. Front Bioeng Biotechnol 2024; 12:1335474. [PMID: 38328444 PMCID: PMC10847580 DOI: 10.3389/fbioe.2024.1335474] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2023] [Accepted: 01/12/2024] [Indexed: 02/09/2024] Open
Abstract
Levodopa, a dopamine prodrug, alleviates the motor symptoms of Parkinson's disease (PD), but its chronic use gives rise to levodopa-induced dyskinesia (LID). However, it remains unclear whether levodopa pharmacodynamics is altered during the progressive onset of LID. Using in vivo fast-scan cyclic voltammetry and second-derivative-based background drift removal, we continuously measured tonic dopamine levels using high temporal resolution recording over 1-h. Increases to tonic dopamine levels following acute levodopa administration were slow and marginal within the naïve PD model. However, these levels increased faster and higher in the LID model. Furthermore, we identified a strong positive correlation of dyskinetic behavior with the rate of dopamine increase, but much less with its cumulative level, at each time point. Here, we identified the altered signature of striatal DA dynamics underlying LID in PD using an advanced FSCV technique that demonstrates the long-range dynamics of tonic dopamine following drug administration.
Collapse
Affiliation(s)
- Jeongrak Park
- Department of Brain Science, Daegu Gyeongbuk Institute of Science and Technology (DGIST), Daegu, Republic of Korea
| | - Seongtak Kang
- Department of Electrical Engineering and Computer Science, Daegu Gyeongbuk Institute of Science and Technology, Daegu, Republic of Korea
| | - Yaebin Lee
- Department of Electrical Engineering and Computer Science, Daegu Gyeongbuk Institute of Science and Technology, Daegu, Republic of Korea
| | - Ji-Woong Choi
- Department of Electrical Engineering and Computer Science, Daegu Gyeongbuk Institute of Science and Technology, Daegu, Republic of Korea
| | - Yong-Seok Oh
- Department of Brain Science, Daegu Gyeongbuk Institute of Science and Technology (DGIST), Daegu, Republic of Korea
| |
Collapse
|
42
|
Yang L, Singla D, Wu AK, Cross KA, Masmanidis SC. Dopamine lesions alter the striatal encoding of single-limb gait. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2023.10.06.561216. [PMID: 37873374 PMCID: PMC10592622 DOI: 10.1101/2023.10.06.561216] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/25/2023]
Abstract
The striatum serves an important role in motor control, and neurons in this area encode the body's initiation, cessation, and speed of locomotion. However, it remains unclear whether the same neurons also encode the step-by-step rhythmic motor patterns of individual limbs that characterize gait. By combining high-speed video tracking, electrophysiology, and optogenetic tagging, we found that a sizable population of both D1 and D2 receptor expressing medium spiny projection neurons (MSNs) were phase-locked to the gait cycle of individual limbs in mice. Healthy animals showed balanced limb phase-locking between D1 and D2 MSNs, while dopamine depletion led to stronger phase-locking in D2 MSNs. These findings indicate that striatal neurons represent gait on a single-limb and step basis, and suggest that elevated limb phase-locking of D2 MSNs may underlie some of the gait impairments associated with dopamine loss.
Collapse
Affiliation(s)
- Long Yang
- Department of Neurobiology, University of California Los Angeles, Los Angeles, California 90095, USA
| | - Deepak Singla
- Department of Bioengineering, University of California Los Angeles, Los Angeles, California 90095, USA
| | - Alexander K. Wu
- Department of Neurobiology, University of California Los Angeles, Los Angeles, California 90095, USA
| | - Katy A. Cross
- Department of Neurology, University of California Los Angeles, Los Angeles, California 90095, USA
| | - Sotiris C. Masmanidis
- Department of Neurobiology, University of California Los Angeles, Los Angeles, California 90095, USA
- California Nanosystems Institute, University of California Los Angeles, Los Angeles, California 90095, USA
| |
Collapse
|
43
|
Lowet AS, Zheng Q, Meng M, Matias S, Drugowitsch J, Uchida N. An opponent striatal circuit for distributional reinforcement learning. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.01.02.573966. [PMID: 38260354 PMCID: PMC10802299 DOI: 10.1101/2024.01.02.573966] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/24/2024]
Abstract
Machine learning research has achieved large performance gains on a wide range of tasks by expanding the learning target from mean rewards to entire probability distributions of rewards - an approach known as distributional reinforcement learning (RL)1. The mesolimbic dopamine system is thought to underlie RL in the mammalian brain by updating a representation of mean value in the striatum2,3, but little is known about whether, where, and how neurons in this circuit encode information about higher-order moments of reward distributions4. To fill this gap, we used high-density probes (Neuropixels) to acutely record striatal activity from well-trained, water-restricted mice performing a classical conditioning task in which reward mean, reward variance, and stimulus identity were independently manipulated. In contrast to traditional RL accounts, we found robust evidence for abstract encoding of variance in the striatum. Remarkably, chronic ablation of dopamine inputs disorganized these distributional representations in the striatum without interfering with mean value coding. Two-photon calcium imaging and optogenetics revealed that the two major classes of striatal medium spiny neurons - D1 and D2 MSNs - contributed to this code by preferentially encoding the right and left tails of the reward distribution, respectively. We synthesize these findings into a new model of the striatum and mesolimbic dopamine that harnesses the opponency between D1 and D2 MSNs5-15 to reap the computational benefits of distributional RL.
Collapse
Affiliation(s)
- Adam S. Lowet
- Center for Brain Science, Harvard University, Cambridge, MA, USA
- Department of Molecular and Cellular Biology, Harvard University, Cambridge, MA, USA
- Program in Neuroscience, Harvard University, Boston, MA, USA
| | - Qiao Zheng
- Center for Brain Science, Harvard University, Cambridge, MA, USA
- Department of Neurobiology, Harvard Medical School, Boston, MA, USA
| | - Melissa Meng
- Center for Brain Science, Harvard University, Cambridge, MA, USA
- Department of Molecular and Cellular Biology, Harvard University, Cambridge, MA, USA
| | - Sara Matias
- Center for Brain Science, Harvard University, Cambridge, MA, USA
- Department of Molecular and Cellular Biology, Harvard University, Cambridge, MA, USA
| | - Jan Drugowitsch
- Center for Brain Science, Harvard University, Cambridge, MA, USA
- Department of Neurobiology, Harvard Medical School, Boston, MA, USA
| | - Naoshige Uchida
- Center for Brain Science, Harvard University, Cambridge, MA, USA
- Department of Molecular and Cellular Biology, Harvard University, Cambridge, MA, USA
| |
Collapse
|
44
|
Fang LZ, Creed MC. Updating the striatal-pallidal wiring diagram. Nat Neurosci 2024; 27:15-27. [PMID: 38057614 DOI: 10.1038/s41593-023-01518-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2021] [Accepted: 11/06/2023] [Indexed: 12/08/2023]
Abstract
The striatal and pallidal complexes are basal ganglia structures that orchestrate learning and execution of flexible behavior. Models of how the basal ganglia subserve these functions have evolved considerably, and the advent of optogenetic and molecular tools has shed light on the heterogeneity of subcircuits within these pathways. However, a synthesis of how molecularly diverse neurons integrate into existing models of basal ganglia function is lacking. Here, we provide an overview of the neurochemical and molecular diversity of striatal and pallidal neurons and synthesize recent circuit connectivity studies in rodents that takes this diversity into account. We also highlight anatomical organizational principles that distinguish the dorsal and ventral basal ganglia pathways in rodents. Future work integrating the molecular and anatomical properties of striatal and pallidal subpopulations may resolve controversies regarding basal ganglia network function.
Collapse
Affiliation(s)
- Lisa Z Fang
- Washington University Pain Center, Department of Anesthesiology, St. Louis, MO, USA
- Division of Biomedical Sciences, Faculty of Medicine, Memorial University, St. John's, Newfoundland and Labrador, Canada
| | - Meaghan C Creed
- Washington University Pain Center, Department of Anesthesiology, St. Louis, MO, USA.
- Departments of Psychiatry, Neuroscience and Biomedical Engineering, Washington University in St. Louis, St. Louis, MO, USA.
| |
Collapse
|
45
|
Borkar CD, Stelly CE, Fu X, Dorofeikova M, Le QSE, Vutukuri R, Vo C, Walker A, Basavanhalli S, Duong A, Bean E, Resendez A, Parker JG, Tasker JG, Fadok JP. Top-down control of flight by a non-canonical cortico-amygdala pathway. Nature 2024; 625:743-749. [PMID: 38233522 PMCID: PMC10878556 DOI: 10.1038/s41586-023-06912-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2022] [Accepted: 11/29/2023] [Indexed: 01/19/2024]
Abstract
Survival requires the selection of appropriate behaviour in response to threats, and dysregulated defensive reactions are associated with psychiatric illnesses such as post-traumatic stress and panic disorder1. Threat-induced behaviours, including freezing and flight, are controlled by neuronal circuits in the central amygdala (CeA)2; however, the source of neuronal excitation of the CeA that contributes to high-intensity defensive responses is unknown. Here we used a combination of neuroanatomical mapping, in vivo calcium imaging, functional manipulations and electrophysiology to characterize a previously unknown projection from the dorsal peduncular (DP) prefrontal cortex to the CeA. DP-to-CeA neurons are glutamatergic and specifically target the medial CeA, the main amygdalar output nucleus mediating conditioned responses to threat. Using a behavioural paradigm that elicits both conditioned freezing and flight, we found that CeA-projecting DP neurons are activated by high-intensity threats in a context-dependent manner. Functional manipulations revealed that the DP-to-CeA pathway is necessary and sufficient for both avoidance behaviour and flight. Furthermore, we found that DP neurons synapse onto neurons within the medial CeA that project to midbrain flight centres. These results elucidate a non-canonical top-down pathway regulating defensive responses.
Collapse
Affiliation(s)
- Chandrashekhar D Borkar
- Department of Psychology, Tulane University, New Orleans, LA, USA
- Tulane Brain Institute, Tulane University, New Orleans, LA, USA
| | - Claire E Stelly
- Department of Psychology, Tulane University, New Orleans, LA, USA
- Tulane Brain Institute, Tulane University, New Orleans, LA, USA
- Department of Psychological Sciences, Loyola University, New Orleans, LA, USA
| | - Xin Fu
- Tulane Brain Institute, Tulane University, New Orleans, LA, USA
- Neuroscience Program, Tulane University, New Orleans, LA, USA
| | - Maria Dorofeikova
- Department of Psychology, Tulane University, New Orleans, LA, USA
- Tulane Brain Institute, Tulane University, New Orleans, LA, USA
| | - Quan-Son Eric Le
- Tulane Brain Institute, Tulane University, New Orleans, LA, USA
- Neuroscience Program, Tulane University, New Orleans, LA, USA
| | - Rithvik Vutukuri
- Tulane Brain Institute, Tulane University, New Orleans, LA, USA
- Neuroscience Program, Tulane University, New Orleans, LA, USA
| | - Catherine Vo
- Tulane Brain Institute, Tulane University, New Orleans, LA, USA
- Neuroscience Program, Tulane University, New Orleans, LA, USA
| | - Alex Walker
- Tulane Brain Institute, Tulane University, New Orleans, LA, USA
- Neuroscience Program, Tulane University, New Orleans, LA, USA
| | - Samhita Basavanhalli
- Tulane Brain Institute, Tulane University, New Orleans, LA, USA
- Neuroscience Program, Tulane University, New Orleans, LA, USA
| | - Anh Duong
- Tulane Brain Institute, Tulane University, New Orleans, LA, USA
- Neuroscience Program, Tulane University, New Orleans, LA, USA
| | - Erin Bean
- Tulane Brain Institute, Tulane University, New Orleans, LA, USA
- Neuroscience Program, Tulane University, New Orleans, LA, USA
| | - Alexis Resendez
- Department of Psychology, Tulane University, New Orleans, LA, USA
- Tulane Brain Institute, Tulane University, New Orleans, LA, USA
| | - Jones G Parker
- Department of Neuroscience, Feinberg School of Medicine, Northwestern University, Chicago, IL, USA
| | - Jeffrey G Tasker
- Tulane Brain Institute, Tulane University, New Orleans, LA, USA
- Department of Cell and Molecular Biology, Tulane University, New Orleans, LA, USA
| | - Jonathan P Fadok
- Department of Psychology, Tulane University, New Orleans, LA, USA.
- Tulane Brain Institute, Tulane University, New Orleans, LA, USA.
| |
Collapse
|
46
|
Tiroshi L, Atamna Y, Gilin N, Berkowitz N, Goldberg JA. Striatal Neurons Are Recruited Dynamically into Collective Representations of Self-Initiated and Learned Actions in Freely Moving Mice. eNeuro 2024; 11:ENEURO.0315-23.2023. [PMID: 38164559 PMCID: PMC11057506 DOI: 10.1523/eneuro.0315-23.2023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2023] [Revised: 11/05/2023] [Accepted: 11/17/2023] [Indexed: 01/03/2024] Open
Abstract
Striatal spiny projection neurons are hyperpolarized-at-rest (HaR) and driven to action potential threshold by a small number of powerful inputs-an input-output configuration that is detrimental to response reliability. Because the striatum is important for habitual behaviors and goal-directed learning, we conducted a microendoscopic imaging in freely moving mice that express a genetically encoded Ca2+ indicator sparsely in striatal HaR neurons to evaluate their response reliability during self-initiated movements and operant conditioning. The sparse expression was critical for longitudinal studies of response reliability, and for studying correlations among HaR neurons while minimizing spurious correlations arising from contamination by the background signal. We found that HaR neurons are recruited dynamically into action representation, with distinct neuronal subsets being engaged in a moment-by-moment fashion. While individual neurons respond with little reliability, the population response remained stable across days. Moreover, we found evidence for the temporal coupling between neuronal subsets during conditioned (but not innate) behaviors.
Collapse
Affiliation(s)
- Lior Tiroshi
- Department of Medical Neurobiology, Institute of Medical Research Israel - Canada, The Faculty of Medicine, The Hebrew University of Jerusalem, 9112102, Jerusalem, Israel
| | - Yara Atamna
- Department of Medical Neurobiology, Institute of Medical Research Israel - Canada, The Faculty of Medicine, The Hebrew University of Jerusalem, 9112102, Jerusalem, Israel
| | - Naomi Gilin
- Department of Medical Neurobiology, Institute of Medical Research Israel - Canada, The Faculty of Medicine, The Hebrew University of Jerusalem, 9112102, Jerusalem, Israel
| | - Noa Berkowitz
- Department of Medical Neurobiology, Institute of Medical Research Israel - Canada, The Faculty of Medicine, The Hebrew University of Jerusalem, 9112102, Jerusalem, Israel
| | - Joshua A Goldberg
- Department of Medical Neurobiology, Institute of Medical Research Israel - Canada, The Faculty of Medicine, The Hebrew University of Jerusalem, 9112102, Jerusalem, Israel
| |
Collapse
|
47
|
Zhai S, Cui Q, Simmons DV, Surmeier DJ. Distributed dopaminergic signaling in the basal ganglia and its relationship to motor disability in Parkinson's disease. Curr Opin Neurobiol 2023; 83:102798. [PMID: 37866012 PMCID: PMC10842063 DOI: 10.1016/j.conb.2023.102798] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2023] [Revised: 09/19/2023] [Accepted: 09/20/2023] [Indexed: 10/24/2023]
Abstract
The degeneration of mesencephalic dopaminergic neurons that innervate the basal ganglia is responsible for the cardinal motor symptoms of Parkinson's disease (PD). It has been thought that loss of dopaminergic signaling in one basal ganglia region - the striatum - was solely responsible for the network pathophysiology causing PD motor symptoms. While our understanding of dopamine (DA)'s role in modulating striatal circuitry has deepened in recent years, it also has become clear that it acts in other regions of the basal ganglia to influence movement. Underscoring this point, examination of a new progressive mouse model of PD shows that striatal dopamine DA depletion alone is not sufficient to induce parkinsonism and that restoration of extra-striatal DA signaling attenuates parkinsonian motor deficits once they appear. This review summarizes recent advances in the effort to understand basal ganglia circuitry, its modulation by DA, and how its dysfunction drives PD motor symptoms.
Collapse
Affiliation(s)
- Shenyu Zhai
- Department of Neuroscience, Feinberg School of Medicine, Northwestern University, Chicago, IL 60611, USA
| | - Qiaoling Cui
- Department of Neuroscience, Feinberg School of Medicine, Northwestern University, Chicago, IL 60611, USA
| | - DeNard V Simmons
- Department of Neuroscience, Feinberg School of Medicine, Northwestern University, Chicago, IL 60611, USA
| | - D James Surmeier
- Department of Neuroscience, Feinberg School of Medicine, Northwestern University, Chicago, IL 60611, USA; Aligning Science Across Parkinson's (ASAP) Collaborative Research Network, Chevy Chase, MD 20815, USA.
| |
Collapse
|
48
|
Gómez-Ocádiz R, Silberberg G. Corticostriatal pathways for bilateral sensorimotor functions. Curr Opin Neurobiol 2023; 83:102781. [PMID: 37696188 DOI: 10.1016/j.conb.2023.102781] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2023] [Revised: 08/15/2023] [Accepted: 08/16/2023] [Indexed: 09/13/2023]
Abstract
Corticostriatal pathways are essential for a multitude of motor, sensory, cognitive, and affective functions. They are mediated by cortical pyramidal neurons, roughly divided into two projection classes: the pyramidal tract (PT) and the intratelencephalic tract (IT). These pathways have been the focus of numerous studies in recent years, revealing their distinct structural and functional properties. Notably, their synaptic connectivity within ipsi- and contralateral cortical and striatal microcircuits is characterized by a high degree of target selectivity, providing a means to regulate the local neuromodulatory landscape in the striatum. Here, we discuss recent findings regarding the functional organization of the PT and IT corticostriatal pathways and its implications for bilateral sensorimotor functions.
Collapse
Affiliation(s)
- Ruy Gómez-Ocádiz
- Department of Neuroscience, Karolinska Institutet, Stockholm 17177, Sweden. https://twitter.com/@RuyGomezOcadiz
| | - Gilad Silberberg
- Department of Neuroscience, Karolinska Institutet, Stockholm 17177, Sweden.
| |
Collapse
|
49
|
Chen Y, Hong Z, Wang J, Liu K, Liu J, Lin J, Feng S, Zhang T, Shan L, Liu T, Guo P, Lin Y, Li T, Chen Q, Jiang X, Li A, Li X, Li Y, Wilde JJ, Bao J, Dai J, Lu Z. Circuit-specific gene therapy reverses core symptoms in a primate Parkinson's disease model. Cell 2023; 186:5394-5410.e18. [PMID: 37922901 DOI: 10.1016/j.cell.2023.10.004] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2022] [Revised: 09/24/2023] [Accepted: 10/03/2023] [Indexed: 11/07/2023]
Abstract
Parkinson's disease (PD) is a debilitating neurodegenerative disorder. Its symptoms are typically treated with levodopa or dopamine receptor agonists, but its action lacks specificity due to the wide distribution of dopamine receptors in the central nervous system and periphery. Here, we report the development of a gene therapy strategy to selectively manipulate PD-affected circuitry. Targeting striatal D1 medium spiny neurons (MSNs), whose activity is chronically suppressed in PD, we engineered a therapeutic strategy comprised of a highly efficient retrograde adeno-associated virus (AAV), promoter elements with strong D1-MSN activity, and a chemogenetic effector to enable precise D1-MSN activation after systemic ligand administration. Application of this therapeutic approach rescues locomotion, tremor, and motor skill defects in both mouse and primate models of PD, supporting the feasibility of targeted circuit modulation tools for the treatment of PD in humans.
Collapse
Affiliation(s)
- Yefei Chen
- Shenzhen Technological Research Center for Primate Translational Medicine, Shenzhen Key Laboratory for Molecular Biology of Neural Development, Shenzhen-Hong Kong Institute of Brain Science, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, China
| | - Zexuan Hong
- Shenzhen Technological Research Center for Primate Translational Medicine, Shenzhen Key Laboratory for Molecular Biology of Neural Development, Shenzhen-Hong Kong Institute of Brain Science, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, China; Department of Anesthesiology, Affiliated Shenzhen Maternity & Child Healthcare Hospital, Southern Medical University, Shenzhen 518027, China
| | - Jingyi Wang
- Shenzhen Technological Research Center for Primate Translational Medicine, Shenzhen Key Laboratory for Molecular Biology of Neural Development, Shenzhen-Hong Kong Institute of Brain Science, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Kunlin Liu
- Shenzhen Technological Research Center for Primate Translational Medicine, Shenzhen Key Laboratory for Molecular Biology of Neural Development, Shenzhen-Hong Kong Institute of Brain Science, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, China; Guangdong Provincial Key Laboratory on Brain Function Repair and Regeneration, Zhujiang Hospital, Southern Medical University, Guangzhou 510282, China
| | - Jing Liu
- Shenzhen Technological Research Center for Primate Translational Medicine, Shenzhen Key Laboratory for Molecular Biology of Neural Development, Shenzhen-Hong Kong Institute of Brain Science, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, China; Department of Anesthesiology, Affiliated Shenzhen Maternity & Child Healthcare Hospital, Southern Medical University, Shenzhen 518027, China
| | - Jianbang Lin
- Shenzhen Technological Research Center for Primate Translational Medicine, Shenzhen Key Laboratory for Molecular Biology of Neural Development, Shenzhen-Hong Kong Institute of Brain Science, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Shijing Feng
- Shenzhen Technological Research Center for Primate Translational Medicine, Shenzhen Key Laboratory for Molecular Biology of Neural Development, Shenzhen-Hong Kong Institute of Brain Science, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, China
| | - Tianhui Zhang
- Shenzhen Technological Research Center for Primate Translational Medicine, Shenzhen Key Laboratory for Molecular Biology of Neural Development, Shenzhen-Hong Kong Institute of Brain Science, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, China; Jiangsu Key Laboratory of Brain Disease and Bioinformation, Research Center for Biochemistry and Molecular Biology, Xuzhou Medical University, Xuzhou 221004, China
| | - Liang Shan
- Shenzhen Technological Research Center for Primate Translational Medicine, Shenzhen Key Laboratory for Molecular Biology of Neural Development, Shenzhen-Hong Kong Institute of Brain Science, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, China
| | - Taian Liu
- Shenzhen Technological Research Center for Primate Translational Medicine, Shenzhen Key Laboratory for Molecular Biology of Neural Development, Shenzhen-Hong Kong Institute of Brain Science, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, China
| | - Pinyue Guo
- Shenzhen Technological Research Center for Primate Translational Medicine, Shenzhen Key Laboratory for Molecular Biology of Neural Development, Shenzhen-Hong Kong Institute of Brain Science, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, China
| | - Yunping Lin
- Shenzhen Technological Research Center for Primate Translational Medicine, Shenzhen Key Laboratory for Molecular Biology of Neural Development, Shenzhen-Hong Kong Institute of Brain Science, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, China
| | - Tian Li
- Shenzhen Technological Research Center for Primate Translational Medicine, Shenzhen Key Laboratory for Molecular Biology of Neural Development, Shenzhen-Hong Kong Institute of Brain Science, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, China
| | - Qian Chen
- University of Chinese Academy of Sciences, Beijing 100049, China; Zhongshan Institute for Drug Discovery, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Zhongshan 528400, China
| | - Xiaodan Jiang
- Guangdong Provincial Key Laboratory on Brain Function Repair and Regeneration, Zhujiang Hospital, Southern Medical University, Guangzhou 510282, China
| | - Anan Li
- Jiangsu Key Laboratory of Brain Disease and Bioinformation, Research Center for Biochemistry and Molecular Biology, Xuzhou Medical University, Xuzhou 221004, China
| | - Xiang Li
- Shenzhen Technological Research Center for Primate Translational Medicine, Shenzhen Key Laboratory for Molecular Biology of Neural Development, Shenzhen-Hong Kong Institute of Brain Science, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Yuantao Li
- Department of Anesthesiology, Affiliated Shenzhen Maternity & Child Healthcare Hospital, Southern Medical University, Shenzhen 518027, China; Biomedical Research Institute, Hubei University of Medicine, Shiyan 442000, China
| | | | - Jin Bao
- Shenzhen Technological Research Center for Primate Translational Medicine, Shenzhen Key Laboratory for Molecular Biology of Neural Development, Shenzhen-Hong Kong Institute of Brain Science, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, China; University of Chinese Academy of Sciences, Beijing 100049, China; Guangdong Provincial Key Laboratory of Brain Connectome and Behavior, CAS Key Laboratory of Brain Connectome and Manipulation, The Brain Cognition and Brain Disease Institute, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, China; Biomedical Imaging Science and System Key Laboratory, Chinese Academy of Sciences, Shenzhen 518055, China.
| | - Ji Dai
- Shenzhen Technological Research Center for Primate Translational Medicine, Shenzhen Key Laboratory for Molecular Biology of Neural Development, Shenzhen-Hong Kong Institute of Brain Science, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, China; University of Chinese Academy of Sciences, Beijing 100049, China; Guangdong Provincial Key Laboratory of Brain Connectome and Behavior, CAS Key Laboratory of Brain Connectome and Manipulation, The Brain Cognition and Brain Disease Institute, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, China.
| | - Zhonghua Lu
- Shenzhen Technological Research Center for Primate Translational Medicine, Shenzhen Key Laboratory for Molecular Biology of Neural Development, Shenzhen-Hong Kong Institute of Brain Science, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, China; University of Chinese Academy of Sciences, Beijing 100049, China; Guangdong Provincial Key Laboratory of Brain Connectome and Behavior, CAS Key Laboratory of Brain Connectome and Manipulation, The Brain Cognition and Brain Disease Institute, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, China; Biomedical Imaging Science and System Key Laboratory, Chinese Academy of Sciences, Shenzhen 518055, China.
| |
Collapse
|
50
|
Chen APF, Chen L, Shi KW, Cheng E, Ge S, Xiong Q. Nigrostriatal dopamine modulates the striatal-amygdala pathway in auditory fear conditioning. Nat Commun 2023; 14:7231. [PMID: 37945595 PMCID: PMC10636191 DOI: 10.1038/s41467-023-43066-9] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2023] [Accepted: 10/31/2023] [Indexed: 11/12/2023] Open
Abstract
The auditory striatum, a sensory portion of the dorsal striatum, plays an essential role in learning and memory. In contrast to its roles and underlying mechanisms in operant conditioning, however, little is known about its contribution to classical auditory fear conditioning. Here, we reveal the function of the auditory striatum in auditory-conditioned fear memory. We find that optogenetically inhibiting auditory striatal neurons impairs fear memory formation, which is mediated through the striatal-amygdala pathway. Using calcium imaging in behaving mice, we find that auditory striatal neuronal responses to conditioned tones potentiate across memory acquisition and expression. Furthermore, nigrostriatal dopaminergic projections plays an important role in modulating conditioning-induced striatal potentiation. Together, these findings demonstrate the existence of a nigro-striatal-amygdala circuit for conditioned fear memory formation and expression.
Collapse
Affiliation(s)
- Allen P F Chen
- Department of Neurobiology and Behavior, SUNY Stony Brook, Stony Brook, NY, 11794, USA
- Medical Scientist Training Program, Renaissance School of Medicine at SUNY Stony Brook, Stony Brook, NY, 11794, USA
| | - Lu Chen
- Department of Neurobiology and Behavior, SUNY Stony Brook, Stony Brook, NY, 11794, USA
| | - Kaiyo W Shi
- Department of Neurobiology and Behavior, SUNY Stony Brook, Stony Brook, NY, 11794, USA
| | - Eileen Cheng
- Department of Neurobiology and Behavior, SUNY Stony Brook, Stony Brook, NY, 11794, USA
- Department of Physiology and Biophysics, SUNY Stony Brook, Stony Brook, NY, 11794, USA
| | - Shaoyu Ge
- Department of Neurobiology and Behavior, SUNY Stony Brook, Stony Brook, NY, 11794, USA
| | - Qiaojie Xiong
- Department of Neurobiology and Behavior, SUNY Stony Brook, Stony Brook, NY, 11794, USA.
| |
Collapse
|