1
|
Zweng S, Mendoza-Rojas G, Lepak A, Altegoer F. Simplifying Recombinant Protein Production: Combining Golden Gate Cloning with a Standardized Protein Purification Scheme. Methods Mol Biol 2025; 2850:229-249. [PMID: 39363075 DOI: 10.1007/978-1-0716-4220-7_13] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/05/2024]
Abstract
Recombinant protein production is pivotal in molecular biology, enabling profound insights into cellular processes through biophysical, biochemical, and structural analyses of the purified samples. The demand for substantial biomolecule quantities often presents challenges, particularly for eukaryotic proteins. Escherichia coli expression systems have evolved to address these issues, offering advanced features such as solubility tags, posttranslational modification capabilities, and modular plasmid libraries. Nevertheless, existing tools are often complex, which limits their accessibility and necessitate streamlined systems for rapid screening under standardized conditions. Based on the Golden Gate cloning method, we have developed a simple "one-pot" approach for the generation of expression constructs using strategically chosen protein purification tags like hexahistidine, SUMO, MBP, GST, and GB1 to enhance solubility and expression. The system allows visual candidate screening through mScarlet fluorescence and solubility tags are removable via TEV protease cleavage. We provide a comprehensive protocol encompassing oligonucleotide design, cloning, expression, His-tag affinity chromatography, and size-exclusion chromatography. This method, therefore, streamlines prokaryotic and eukaryotic protein production, rendering it accessible to standard molecular biology laboratories with basic protein biochemical equipment.
Collapse
Affiliation(s)
- Sonja Zweng
- Institute of Microbiology, Heinrich-Heine University, Düsseldorf, Germany
| | | | - Alexander Lepak
- Center for Synthetic Microbiology, Philipps-University Marburg, Marburg, Germany
| | - Florian Altegoer
- Institute of Microbiology, Heinrich-Heine University, Düsseldorf, Germany.
| |
Collapse
|
2
|
Su Z, Niu C, Zhou S, Xu G, Zhu P, Fu Q, Zhang Y, Ming Z. Structural basis of chorismate isomerization by Arabidopsis ISOCHORISMATE SYNTHASE1. PLANT PHYSIOLOGY 2024; 196:773-787. [PMID: 38701037 DOI: 10.1093/plphys/kiae260] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/29/2024] [Revised: 04/10/2024] [Accepted: 04/15/2024] [Indexed: 05/05/2024]
Abstract
Salicylic acid (SA) plays a crucial role in plant defense against biotrophic and semibiotrophic pathogens. In Arabidopsis (Arabidopsis thaliana), isochorismate synthase 1 (AtICS1) is a key enzyme for the pathogen-induced biosynthesis of SA via catalytic conversion of chorismate into isochorismate, an essential precursor for SA synthesis. Despite the extensive knowledge of ICS1-related menaquinone, siderophore, and tryptophan (MST) enzymes in bacteria, the structural mechanisms for substrate binding and catalysis in plant isochorismate synthase (ICS) enzymes are unknown. This study reveals that plant ICS enzymes catalyze the isomerization of chorismate through a magnesium-dependent mechanism, with AtICS1 exhibiting the most substantial catalytic activity. Additionally, we present high-resolution crystal structures of apo AtICS1 and its complex with chorismate, offering detailed insights into the mechanisms of substrate recognition and catalysis. Importantly, our investigation indicates the existence of a potential substrate entrance channel and a gating mechanism regulating substrate into the catalytic site. Structural comparisons of AtICS1 with MST enzymes suggest a shared structural framework with conserved gating and catalytic mechanisms. This work provides valuable insights into the structural and regulatory mechanisms governing substrate delivery and catalysis in AtICS1, as well as other plant ICS enzymes.
Collapse
Affiliation(s)
- Zihui Su
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, College of Life Science and Technology, Guangxi Key Laboratory for Sugarcane Biology, Guangxi University, Nanning 530004, P. R. China
| | - Chengqun Niu
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, College of Life Science and Technology, Guangxi Key Laboratory for Sugarcane Biology, Guangxi University, Nanning 530004, P. R. China
| | - Sicong Zhou
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, College of Life Science and Technology, Guangxi Key Laboratory for Sugarcane Biology, Guangxi University, Nanning 530004, P. R. China
| | - Guolyu Xu
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, College of Life Science and Technology, Guangxi Key Laboratory for Sugarcane Biology, Guangxi University, Nanning 530004, P. R. China
| | - Pingchuan Zhu
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, College of Life Science and Technology, Guangxi Key Laboratory for Sugarcane Biology, Guangxi University, Nanning 530004, P. R. China
| | - Qiang Fu
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, College of Life Science and Technology, Guangxi Key Laboratory for Sugarcane Biology, Guangxi University, Nanning 530004, P. R. China
| | - Yuelin Zhang
- Department of Botany, University of British Columbia, Vancouver, BC, Canada V6T 1Z4
| | - Zhenhua Ming
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, College of Life Science and Technology, Guangxi Key Laboratory for Sugarcane Biology, Guangxi University, Nanning 530004, P. R. China
| |
Collapse
|
3
|
Ren RC, Kong LG, Zheng GM, Zhao YJ, Jiang X, Wu JW, Liu C, Chu J, Ding XH, Zhang XS, Wang GF, Zhao XY. Maize requires arogenate dehydratase 2 for resistance to Ustilago maydis and plant development. PLANT PHYSIOLOGY 2024; 195:1642-1659. [PMID: 38431524 DOI: 10.1093/plphys/kiae115] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/13/2023] [Revised: 01/05/2024] [Accepted: 01/23/2024] [Indexed: 03/05/2024]
Abstract
Maize (Zea mays) smut is a common biotrophic fungal disease caused by Ustilago maydis and leads to low maize yield. Maize resistance to U. maydis is a quantitative trait. However, the molecular mechanism underlying the resistance of maize to U. maydis is poorly understood. Here, we reported that a maize mutant caused by a single gene mutation exhibited defects in both fungal resistance and plant development. maize mutant highly susceptible to U. maydis (mmsu) with a dwarf phenotype forms tumors in the ear. A map-based cloning and allelism test demonstrated that 1 gene encoding a putative arogenate dehydratase/prephenate dehydratase (ADT/PDT) is responsible for the phenotypes of the mmsu and was designated as ZmADT2. Combined transcriptomic and metabolomic analyses revealed that mmsu had substantial differences in multiple metabolic pathways in response to U. maydis infection compared with the wild type. Disruption of ZmADT2 caused damage to the chloroplast ultrastructure and function, metabolic flux redirection, and reduced the amounts of salicylic acid (SA) and lignin, leading to susceptibility to U. maydis and dwarf phenotype. These results suggested that ZmADT2 is required for maintaining metabolic flux, as well as resistance to U. maydis and plant development in maize. Meanwhile, our findings provided insights into the maize response mechanism to U. maydis infection.
Collapse
Affiliation(s)
- Ru Chang Ren
- State Key Laboratory of Crop Biology, College of Life Sciences, Shandong Agricultural University, Taian, Shandong 271018, China
| | - Ling Guang Kong
- State Key Laboratory of Crop Biology, Shandong Provincial Key Laboratory for Biology of Vegetable Diseases and Insect Pests, College of Plant Protection, Shandong Agricultural University, Taian, Shandong 271018, China
| | - Guang Ming Zheng
- State Key Laboratory of Crop Biology, College of Life Sciences, Shandong Agricultural University, Taian, Shandong 271018, China
| | - Ya Jie Zhao
- State Key Laboratory of Crop Biology, College of Life Sciences, Shandong Agricultural University, Taian, Shandong 271018, China
| | - Xin Jiang
- State Key Laboratory of Crop Biology, College of Life Sciences, Shandong Agricultural University, Taian, Shandong 271018, China
| | - Jia Wen Wu
- State Key Laboratory of Crop Biology, College of Life Sciences, Shandong Agricultural University, Taian, Shandong 271018, China
| | - Cuimei Liu
- Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, National Centre for Plant Gene Research (Beijing), Beijing 100101, China
| | - Jinfang Chu
- Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, National Centre for Plant Gene Research (Beijing), Beijing 100101, China
- College of Advanced Agricultural Sciences, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Xin Hua Ding
- State Key Laboratory of Crop Biology, Shandong Provincial Key Laboratory for Biology of Vegetable Diseases and Insect Pests, College of Plant Protection, Shandong Agricultural University, Taian, Shandong 271018, China
| | - Xian Sheng Zhang
- State Key Laboratory of Crop Biology, College of Life Sciences, Shandong Agricultural University, Taian, Shandong 271018, China
| | - Guan Feng Wang
- The Key Laboratory of Plant Development and Environmental Adaptation Biology, Ministry of Education, School of Life Sciences, Shandong University, Qingdao, Shandong 266237, China
| | - Xiang Yu Zhao
- State Key Laboratory of Crop Biology, College of Life Sciences, Shandong Agricultural University, Taian, Shandong 271018, China
| |
Collapse
|
4
|
Jaswal R, Rajarammohan S, Dubey H, Kiran K, Rawal H, Sonah H, Deshmukh R, Sharma TR. Intrinsically Disordered Kiwellin Protein-Like Effectors Target Plant Chloroplasts and are Extensively Present in Rust Fungi. Mol Biotechnol 2024; 66:845-864. [PMID: 37000361 DOI: 10.1007/s12033-023-00717-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2022] [Accepted: 03/08/2023] [Indexed: 04/01/2023]
Abstract
The effector proteins produced by plant pathogens are one of the essential components of host-pathogen interaction. Despite being important, most of the effector proteins remain unexplored due to the diversity in their primary sequence generated by the high selection pressure of the host immune system. However to maintain the primary function in the infection process, these effectors may tend to maintain their native protein fold to perform the corresponding biological function. In the present study, unannotated candidate secretory effector proteins of sixteen major plant fungal pathogens were analyzed to find the conserved known protein folds using homology, ab initio, and Alpha Fold/Rosetta Fold protein dimensional (3D) structure approaches. Several unannotated candidate effector proteins were found to match various known conserved protein families potentially involved in host defense manipulation in different plant pathogens. Surprisingly a large number of plant Kiwellin proteins fold like secretory proteins (> 100) were found in studied rust fungal pathogens. Many of them were predicted as potential effector proteins. Furthermore, template independent modelling using Alpha Fold/Rosetta Fold analysis and structural comparison of these candidates also predicted them to match with plant Kiwellin proteins. We also found plant Kiwellin matching proteins outside rusts including several non-pathogenic fungi suggesting the broad function of these proteins. One of the highest confidently modeled Kiwellin matching candidates effectors, Pstr_13960 (97.8%), from the Indian P. striiformis race Yr9 was characterized using overexpression, localization, and deletion studies in Nicotiana benthamiana. The Pstr_13960 suppressed the BAX-induced cell death and localized in the chloroplast. Furthermore, the expression of the Kiwellin matching region (Pst_13960_kiwi) alone suppressed the BAX-induced cell death in N. benthamiana despite the change of location to the cytoplasm and nucleus, suggesting the novel function of the Kiwellin core fold in rust fungi. Molecular docking showed that Pstr_13960 can interact with plant Chorismate mutases (CMs) using three loops conserved in plant and rust Kiwellins. Further analysis of Pstr_13960 showed to contain Intrinsically disordered regions (IDRs) in place of the N-terminal β1/β2 region found in plant Kiwellins suggesting the evolution of rust Kiwellins-like effectors (KLEs). Overall, this study reports the presence of a Kiwellin protein-like fold containing a novel effector protein family in rust fungi depicting a classical example of the evolution of effectors at the structure level as Kiwellin effectors show very low significant similarity to plant Kiwellin at the sequence level.
Collapse
Affiliation(s)
- Rajdeep Jaswal
- National Agri-Food Biotechnology Institute (NABI), Mohali, Punjab, 140306, India
| | | | - Himanshu Dubey
- National Institute On Plant Biotechnology, Pusa Campus, New Delhi, 110012, India
| | - Kanti Kiran
- National Institute On Plant Biotechnology, Pusa Campus, New Delhi, 110012, India
| | - Hukam Rawal
- National Institute On Plant Biotechnology, Pusa Campus, New Delhi, 110012, India
| | - Humira Sonah
- National Agri-Food Biotechnology Institute (NABI), Mohali, Punjab, 140306, India
| | - Rupesh Deshmukh
- National Agri-Food Biotechnology Institute (NABI), Mohali, Punjab, 140306, India
| | - Tilak Raj Sharma
- National Agri-Food Biotechnology Institute (NABI), Mohali, Punjab, 140306, India.
- Division of Crop Science, Indian Council of Agricultural Research, Krishi Bhavan, New Delhi, 110001, India.
| |
Collapse
|
5
|
Schuster M, Schweizer G, Reißmann S, Happel P, Aßmann D, Rössel N, Güldener U, Mannhaupt G, Ludwig N, Winterberg S, Pellegrin C, Tanaka S, Vincon V, Presti LL, Wang L, Bender L, Gonzalez C, Vranes M, Kämper J, Seong K, Krasileva K, Kahmann R. Novel Secreted Effectors Conserved Among Smut Fungi Contribute to the Virulence of Ustilago maydis. MOLECULAR PLANT-MICROBE INTERACTIONS : MPMI 2024; 37:250-263. [PMID: 38416124 DOI: 10.1094/mpmi-09-23-0139-fi] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/29/2024]
Abstract
Fungal pathogens deploy a set of molecules (proteins, specialized metabolites, and sRNAs), so-called effectors, to aid the infection process. In comparison to other plant pathogens, smut fungi have small genomes and secretomes of 20 Mb and around 500 proteins, respectively. Previous comparative genomic studies have shown that many secreted effector proteins without known domains, i.e., novel, are conserved only in the Ustilaginaceae family. By analyzing the secretomes of 11 species within Ustilaginaceae, we identified 53 core homologous groups commonly present in this lineage. By collecting existing mutants and generating additional ones, we gathered 44 Ustilago maydis strains lacking single core effectors as well as 9 strains containing multiple deletions of core effector gene families. Pathogenicity assays revealed that 20 of these 53 mutant strains were affected in virulence. Among the 33 mutants that had no obvious phenotypic changes, 13 carried additional, sequence-divergent, structurally similar paralogs. We report a virulence contribution of seven previously uncharacterized single core effectors and of one effector family. Our results help to prioritize effectors for understanding U. maydis virulence and provide genetic resources for further characterization. [Formula: see text] Copyright © 2024 The Author(s). This is an open access article distributed under the CC BY-NC-ND 4.0 International license.
Collapse
Affiliation(s)
- Mariana Schuster
- Max Planck Institute for Terrestrial Microbiology, 35043 Marburg, Germany
- Leibniz Institute of Plant Biochemistry, Weinberg 3, 06120 Halle, Germany
| | - Gabriel Schweizer
- Max Planck Institute for Terrestrial Microbiology, 35043 Marburg, Germany
- Independent Data Lab UG, 80937 Munich, Germany
| | - Stefanie Reißmann
- Max Planck Institute for Terrestrial Microbiology, 35043 Marburg, Germany
| | - Petra Happel
- Max Planck Institute for Terrestrial Microbiology, 35043 Marburg, Germany
| | - Daniela Aßmann
- Max Planck Institute for Terrestrial Microbiology, 35043 Marburg, Germany
| | - Nicole Rössel
- Max Planck Institute for Terrestrial Microbiology, 35043 Marburg, Germany
| | - Ulrich Güldener
- Deutsches Herzzentrum München, Technische Universität München, 80636 München, Germany
| | - Gertrud Mannhaupt
- Max Planck Institute for Terrestrial Microbiology, 35043 Marburg, Germany
| | - Nicole Ludwig
- Max Planck Institute for Terrestrial Microbiology, 35043 Marburg, Germany
- Research & Development, Weed Control Bayer AG, Crop Science Division, 65926 Frankfurt am Main, Germany
| | - Sarah Winterberg
- Max Planck Institute for Terrestrial Microbiology, 35043 Marburg, Germany
| | - Clément Pellegrin
- Max Planck Institute for Terrestrial Microbiology, 35043 Marburg, Germany
| | - Shigeyuki Tanaka
- Max Planck Institute for Terrestrial Microbiology, 35043 Marburg, Germany
| | - Volker Vincon
- Max Planck Institute for Terrestrial Microbiology, 35043 Marburg, Germany
| | - Libera Lo Presti
- Max Planck Institute for Terrestrial Microbiology, 35043 Marburg, Germany
| | - Lei Wang
- Max Planck Institute for Terrestrial Microbiology, 35043 Marburg, Germany
| | - Lena Bender
- Max Planck Institute for Terrestrial Microbiology, 35043 Marburg, Germany
- Department of Pharmaceutics and Biopharmaceutics, Phillips-University Marburg, 35037 Marburg, Germany
| | - Carla Gonzalez
- Max Planck Institute for Terrestrial Microbiology, 35043 Marburg, Germany
| | - Miroslav Vranes
- Karlsruhe Institute of Technology, Institute for Applied Biosciences, Department of Genetics, 76131 Karlsruhe, Germany
| | - Jörg Kämper
- Karlsruhe Institute of Technology, Institute for Applied Biosciences, Department of Genetics, 76131 Karlsruhe, Germany
| | - Kyungyong Seong
- Department of Plant and Microbial Biology, University of California, Berkeley, CA 94720, U.S.A
| | - Ksenia Krasileva
- Department of Plant and Microbial Biology, University of California, Berkeley, CA 94720, U.S.A
| | - Regine Kahmann
- Max Planck Institute for Terrestrial Microbiology, 35043 Marburg, Germany
| |
Collapse
|
6
|
Beernink BM, Whitham SA. Foxtail mosaic virus: A tool for gene function analysis in maize and other monocots. MOLECULAR PLANT PATHOLOGY 2023; 24:811-822. [PMID: 37036421 PMCID: PMC10257046 DOI: 10.1111/mpp.13330] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/31/2022] [Revised: 02/20/2023] [Accepted: 03/08/2023] [Indexed: 06/11/2023]
Abstract
Many plant viruses have been engineered into vectors for use in functional genomics studies, expression of heterologous proteins, and, most recently, gene editing applications. The use of viral vectors overcomes bottlenecks associated with mutagenesis and transgenesis approaches often implemented for analysis of gene function. There are several engineered viruses that are demonstrated or suggested to be useful in maize through proof-of-concept studies. However, foxtail mosaic virus (FoMV), which has a relatively broad host range, is emerging as a particularly useful virus for gene function studies in maize and other monocot crop or weed species. A few clones of FoMV have been independently engineered, and they have different features and capabilities for virus-induced gene silencing (VIGS) and virus-mediated overexpression (VOX) of proteins. In addition, FoMV can be used to deliver functional guide RNAs in maize and other plants expressing the Cas9 protein, demonstrating its potential utility in virus-induced gene editing applications. There is a growing number of studies in which FoMV vectors are being applied for VIGS or VOX in maize and the vast majority of these are related to maize-microbe interactions. In this review, we highlight the biology and engineering of FoMV as well as its applications in maize-microbe interactions and more broadly in the context of the monocot functional genomics toolbox.
Collapse
Affiliation(s)
- Bliss M. Beernink
- Department of Plant Pathology, Entomology, and MicrobiologyIowa State UniversityAmesIowaUSA
- Department of BiologyUniversity of ManitobaWinnipegManitobaCanada
| | - Steven A. Whitham
- Department of Plant Pathology, Entomology, and MicrobiologyIowa State UniversityAmesIowaUSA
| |
Collapse
|
7
|
Yu C, Qi J, Han H, Wang P, Liu C. Progress in pathogenesis research of Ustilago maydis, and the metabolites involved along with their biosynthesis. MOLECULAR PLANT PATHOLOGY 2023; 24:495-509. [PMID: 36808861 PMCID: PMC10098057 DOI: 10.1111/mpp.13307] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/30/2022] [Revised: 12/26/2022] [Accepted: 01/13/2023] [Indexed: 05/03/2023]
Abstract
Ustilago maydis is a pathogenic fungus that causes corn smut. Because of its easy cultivation and genetic transformation, U. maydis has become an important model organism for plant-pathogenic basidiomycetes. U. maydis is able to infect maize by producing effectors and secreted proteins as well as surfactant-like metabolites. In addition, the production of melanin and iron carriers is also associated with its pathogenicity. Here, advances in our understanding of the pathogenicity of U. maydis, the metabolites involved in the pathogenic process, and the biosynthesis of these metabolites, are reviewed and discussed. This summary will provide new insights into the pathogenicity of U. maydis and the functions of associated metabolites, as well as new clues for deciphering the biosynthesis of metabolites.
Collapse
Affiliation(s)
- Chunyan Yu
- Key Laboratory for Enzyme and Enzyme‐Like Material Engineering of Heilongjiang, College of Life ScienceNortheast Forestry UniversityHarbinChina
| | - Jianzhao Qi
- Key Laboratory for Enzyme and Enzyme‐Like Material Engineering of Heilongjiang, College of Life ScienceNortheast Forestry UniversityHarbinChina
- Shaanxi Key Laboratory of Natural Products & Chemical Biology, College of Chemistry & PharmacyNorthwest A&F UniversityYanglingChina
| | - Haiyan Han
- Key Laboratory for Enzyme and Enzyme‐Like Material Engineering of Heilongjiang, College of Life ScienceNortheast Forestry UniversityHarbinChina
| | - Pengchao Wang
- Key Laboratory for Enzyme and Enzyme‐Like Material Engineering of Heilongjiang, College of Life ScienceNortheast Forestry UniversityHarbinChina
| | - Chengwei Liu
- Key Laboratory for Enzyme and Enzyme‐Like Material Engineering of Heilongjiang, College of Life ScienceNortheast Forestry UniversityHarbinChina
| |
Collapse
|
8
|
Dramburg S, Hilger C, Santos AF, de Las Vecillas L, Aalberse RC, Acevedo N, Aglas L, Altmann F, Arruda KL, Asero R, Ballmer-Weber B, Barber D, Beyer K, Biedermann T, Bilo MB, Blank S, Bosshard PP, Breiteneder H, Brough HA, Bublin M, Campbell D, Caraballo L, Caubet JC, Celi G, Chapman MD, Chruszcz M, Custovic A, Czolk R, Davies J, Douladiris N, Eberlein B, Ebisawa M, Ehlers A, Eigenmann P, Gadermaier G, Giovannini M, Gomez F, Grohman R, Guillet C, Hafner C, Hamilton RG, Hauser M, Hawranek T, Hoffmann HJ, Holzhauser T, Iizuka T, Jacquet A, Jakob T, Janssen-Weets B, Jappe U, Jutel M, Kalic T, Kamath S, Kespohl S, Kleine-Tebbe J, Knol E, Knulst A, Konradsen JR, Korošec P, Kuehn A, Lack G, Le TM, Lopata A, Luengo O, Mäkelä M, Marra AM, Mills C, Morisset M, Muraro A, Nowak-Wegrzyn A, Nugraha R, Ollert M, Palosuo K, Pastorello EA, Patil SU, Platts-Mills T, Pomés A, Poncet P, Potapova E, Poulsen LK, Radauer C, Radulovic S, Raulf M, Rougé P, Sastre J, Sato S, Scala E, Schmid JM, Schmid-Grendelmeier P, Schrama D, Sénéchal H, Traidl-Hoffmann C, Valverde-Monge M, van Hage M, van Ree R, Verhoeckx K, Vieths S, Wickman M, Zakzuk J, Matricardi PM, Hoffmann-Sommergruber K. EAACI Molecular Allergology User's Guide 2.0. Pediatr Allergy Immunol 2023; 34 Suppl 28:e13854. [PMID: 37186333 DOI: 10.1111/pai.13854] [Citation(s) in RCA: 72] [Impact Index Per Article: 72.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/29/2022] [Accepted: 09/05/2022] [Indexed: 05/17/2023]
Abstract
Since the discovery of immunoglobulin E (IgE) as a mediator of allergic diseases in 1967, our knowledge about the immunological mechanisms of IgE-mediated allergies has remarkably increased. In addition to understanding the immune response and clinical symptoms, allergy diagnosis and management depend strongly on the precise identification of the elicitors of the IgE-mediated allergic reaction. In the past four decades, innovations in bioscience and technology have facilitated the identification and production of well-defined, highly pure molecules for component-resolved diagnosis (CRD), allowing a personalized diagnosis and management of the allergic disease for individual patients. The first edition of the "EAACI Molecular Allergology User's Guide" (MAUG) in 2016 rapidly became a key reference for clinicians, scientists, and interested readers with a background in allergology, immunology, biology, and medicine. Nevertheless, the field of molecular allergology is moving fast, and after 6 years, a new EAACI Taskforce was established to provide an updated document. The Molecular Allergology User's Guide 2.0 summarizes state-of-the-art information on allergen molecules, their clinical relevance, and their application in diagnostic algorithms for clinical practice. It is designed for both, clinicians and scientists, guiding health care professionals through the overwhelming list of different allergen molecules available for testing. Further, it provides diagnostic algorithms on the clinical relevance of allergenic molecules and gives an overview of their biology, the basic mechanisms of test formats, and the application of tests to measure allergen exposure.
Collapse
Affiliation(s)
- Stephanie Dramburg
- Department of Pediatric Respiratory Medicine, Immunology and Critical Care Medicine, Charité Universitätsmedizin Berlin, Berlin, Germany
| | - Christiane Hilger
- Department of Infection and Immunity, Luxembourg Institute of Health, Esch-sur-Alzette, Luxembourg
| | - Alexandra F Santos
- Department of Women and Children's Health (Pediatric Allergy), School of Life Course Sciences, Faculty of Life Sciences and Medicine, King's College London, London, United Kingdom
- Peter Gorer Department of Immunobiology, School of Immunology and Microbial Sciences, King's College London, London, United Kingdom
- Children's Allergy Service, Evelina London, Guy's and St Thomas' Hospital, London, United Kingdom
| | | | - Rob C Aalberse
- Sanquin Research, Dept Immunopathology, University of Amsterdam, Amsterdam, The Netherlands
- Landsteiner Laboratory, Academic Medical Centre, University of Amsterdam, Amsterdam, The Netherlands
| | - Nathalie Acevedo
- Institute for Immunological Research, University of Cartagena, Cartagena de Indias, Colombia, Colombia
| | - Lorenz Aglas
- Department of Biosciences and Medical Biology, Paris Lodron University Salzburg, Salzburg, Austria
| | - Friedrich Altmann
- Department of Chemistry, University of Natural Resources and Life Sciences, Vienna, Austria
| | - Karla L Arruda
- Department of Medicine, Ribeirão Preto Medical School, University of São Paulo, Ribeirão Preto, Sao Paulo, Brasil, Brazil
| | - Riccardo Asero
- Ambulatorio di Allergologia, Clinica San Carlo, Paderno Dugnano, Italy
| | - Barbara Ballmer-Weber
- Klinik für Dermatologie und Allergologie, Kantonsspital St. Gallen, St. Gallen, Switzerland
- Department of Dermatology, University Hospital Zurich, Zurich, Switzerland
| | - Domingo Barber
- Institute of Applied Molecular Medicine Nemesio Diez (IMMAND), Department of Basic Medical Sciences, Facultad de Medicina, Universidad San Pablo CEU, CEU Universities, Madrid, Spain
- RETIC ARADyAL and RICORS Enfermedades Inflamatorias (REI), Madrid, Spain
| | - Kirsten Beyer
- Department of Pediatric Respiratory Medicine, Immunology and Critical Care Medicine, Charité Universitätsmedizin Berlin, Berlin, Germany
| | - Tilo Biedermann
- Department of Dermatology and Allergy Biederstein, School of Medicine, Technical University Munich, Munich, Germany
| | - Maria Beatrice Bilo
- Department of Clinical and Molecular Sciences, Università Politecnica delle Marche, Ancona, Italy
- Allergy Unit Department of Internal Medicine, University Hospital Ospedali Riuniti di Ancona, Torrette, Italy
| | - Simon Blank
- Center of Allergy and Environment (ZAUM), Technical University of Munich, School of Medicine and Helmholtz Center Munich, German Research Center for Environmental Health, Munich, Germany
| | - Philipp P Bosshard
- Department of Dermatology, University Hospital Zurich, Zurich, Switzerland
| | - Heimo Breiteneder
- Department of Pathophysiology and Allergy Research, Medical University of Vienna, Vienna, Austria
| | - Helen A Brough
- Department of Women and Children's Health (Pediatric Allergy), School of Life Course Sciences, Faculty of Life Sciences and Medicine, King's College London, London, United Kingdom
- Children's Allergy Service, Evelina London, Guy's and St Thomas' Hospital, London, United Kingdom
| | - Merima Bublin
- Department of Pathophysiology and Allergy Research, Medical University of Vienna, Vienna, Austria
| | - Dianne Campbell
- Department of Allergy and Immunology, Children's Hospital at Westmead, Sydney Children's Hospitals Network, Sydney, New South Wales, Australia
- Child and Adolescent Health, Faculty of Medicine and Health, University of Sydney, Sydney, New South Wales, Australia
| | - Luis Caraballo
- Institute for Immunological Research, University of Cartagena, Cartagena de Indias, Colombia, Colombia
| | - Jean Christoph Caubet
- Pediatric Allergy Unit, Department of Child and Adolescent, University Hospitals of Geneva, Geneva, Switzerland
| | - Giorgio Celi
- Centro DH Allergologia e Immunologia Clinica ASST- MANTOVA (MN), Mantova, Italy
| | | | - Maksymilian Chruszcz
- Department of Chemistry and Biochemistry, University of South Carolina, Columbia, South Carolina, USA
| | - Adnan Custovic
- National Heart and Lung Institute, Imperial College London, London, UK
| | - Rebecca Czolk
- Department of Infection and Immunity, Luxembourg Institute of Health, Esch-sur-Alzette, Luxembourg
- Faculty of Science, Technology and Medicine, University of Luxembourg, Esch-sur-Alzette, Luxembourg
| | - Janet Davies
- Queensland University of Technology, Centre for Immunology and Infection Control, School of Biomedical Sciences, Herston, Queensland, Australia
- Metro North Hospital and Health Service, Emergency Operations Centre, Herston, Queensland, Australia
| | - Nikolaos Douladiris
- Allergy Department, 2nd Paediatric Clinic, National and Kapodistrian University of Athens, Athens, Greece
| | - Bernadette Eberlein
- Department of Dermatology and Allergy Biederstein, School of Medicine, Technical University Munich, Munich, Germany
| | - Motohiro Ebisawa
- Clinical Research Center for Allergy and Rheumatology, National Hospital Organization, Sagamihara National Hospital, Kanagawa, Japan
| | - Anna Ehlers
- Chemical Biology and Drug Discovery, Utrecht University, Utrecht, The Netherlands
- Center for Translational Immunology, University Medical Center Utrecht, Utrecht University, Utrecht, The Netherlands
- Department of Immunology and Dermatology/ Allergology, University Medical Center Utrecht, Utrecht University, Utrecht, The Netherlands
| | - Philippe Eigenmann
- Pediatric Allergy Unit, Department of Child and Adolescent, University Hospitals of Geneva, Geneva, Switzerland
| | - Gabriele Gadermaier
- Department of Biosciences and Medical Biology, Paris Lodron University Salzburg, Salzburg, Austria
| | - Mattia Giovannini
- Allergy Unit, Department of Pediatrics, Meyer Children's University Hospital, Florence, Italy
| | - Francisca Gomez
- Allergy Unit IBIMA-Hospital Regional Universitario de Malaga, Malaga, Spain
- Spanish Network for Allergy research RETIC ARADyAL, Malaga, Spain
| | - Rebecca Grohman
- NYU Langone Health, Department of Internal Medicine, New York, New York, USA
| | - Carole Guillet
- Department of Dermatology, University Hospital Zurich, Zurich, Switzerland
- Faculty of Medicine, University of Zurich, Zurich, Switzerland
| | - Christine Hafner
- Department of Dermatology, University Hospital St. Poelten, Karl Landsteiner University of Health Sciences, St. Poelten, Austria
| | - Robert G Hamilton
- Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - Michael Hauser
- Department of Biosciences and Medical Biology, Paris Lodron University Salzburg, Salzburg, Austria
| | - Thomas Hawranek
- Department of Dermatology and Allergology, Paracelsus Private Medical University, Salzburg, Austria
| | - Hans Jürgen Hoffmann
- Institute for Clinical Medicine, Faculty of Health, Aarhus University, Aarhus, Denmark
- Department of Respiratory Diseases and Allergy, Aarhus University Hospital, Aarhus, Denmark
| | | | - Tomona Iizuka
- Laboratory of Protein Science, Graduate School of Life Science, Hokkaido University, Sapporo, Japan
| | - Alain Jacquet
- Department of Biochemistry, Faculty of Medicine, Chulalongkorn University, Bangkok, Thailand
| | - Thilo Jakob
- Department of Dermatology and Allergology, University Medical Center, Justus Liebig University Gießen, Gießen, Germany
| | - Bente Janssen-Weets
- Department of Infection and Immunity, Luxembourg Institute of Health, Esch-sur-Alzette, Luxembourg
- Odense Research Center for Anaphylaxis, University of Southern Denmark, Odense, Denmark
| | - Uta Jappe
- Division of Clinical and Molecular Allergology, Priority Research Area Asthma and Allergy, Research Center Borstel, Borstel, Germany
- Leibniz Lung Center, Airway Research Center North (ARCN), Member of the German Center for Lung Research, Germany
- Interdisciplinary Allergy Outpatient Clinic, Dept. of Pneumology, University of Lübeck, Lübeck, Germany
| | - Marek Jutel
- Department of Clinical Immunology, Wroclaw Medical University, Wroclaw, Poland
| | - Tanja Kalic
- Department of Pathophysiology and Allergy Research, Medical University of Vienna, Vienna, Austria
- Department of Dermatology, University Hospital St. Poelten, Karl Landsteiner University of Health Sciences, St. Poelten, Austria
| | - Sandip Kamath
- Australian Institute of Tropical Health and Medicine, James Cook University, Townsville, Queensland, Australia
- Molecular Allergy Research Laboratory, College of Public Health, Medical and Veterinary Sciences, James Cook University, Townsville, Queensland, Australia
| | - Sabine Kespohl
- Institute for Prevention and Occupational Medicine of the German Social Accident Insurance, Institute of the Ruhr- Universität Bochum, Bochum, Germany
| | - Jörg Kleine-Tebbe
- Allergy & Asthma Center Westend, Outpatient Clinic and Clinical Research Center, Berlin, Germany
| | - Edward Knol
- Department of Immunology and Dermatology/ Allergology, University Medical Center Utrecht, Utrecht University, Utrecht, The Netherlands
| | - André Knulst
- Department of Immunology and Dermatology/ Allergology, University Medical Center Utrecht, Utrecht University, Utrecht, The Netherlands
| | - Jon R Konradsen
- Department of Women's and Children's Health, Karolinska Institutet, Stockholm, Sweden
- Pediatric Allergy and Pulmonology Unit at Astrid Lindgren Children's Hospital, Karolinska University Hospital, Stockholm, Sweden
| | - Peter Korošec
- University Clinic of Respiratory and Allergic Diseases Golnik, Golnik, Slovenia
- Faculty of Pharmacy, University of Ljubljana, Ljubljana, Slovenia
| | - Annette Kuehn
- Department of Infection and Immunity, Luxembourg Institute of Health, Esch-sur-Alzette, Luxembourg
| | - Gideon Lack
- Department of Women and Children's Health (Pediatric Allergy), School of Life Course Sciences, Faculty of Life Sciences and Medicine, King's College London, London, United Kingdom
- Peter Gorer Department of Immunobiology, School of Immunology and Microbial Sciences, King's College London, London, United Kingdom
- Children's Allergy Service, Evelina London, Guy's and St Thomas' Hospital, London, United Kingdom
| | - Thuy-My Le
- Center for Translational Immunology, University Medical Center Utrecht, Utrecht University, Utrecht, The Netherlands
- Department of Immunology and Dermatology/ Allergology, University Medical Center Utrecht, Utrecht University, Utrecht, The Netherlands
| | - Andreas Lopata
- Australian Institute of Tropical Health and Medicine, James Cook University, Townsville, Queensland, Australia
- Molecular Allergy Research Laboratory, College of Public Health, Medical and Veterinary Sciences, James Cook University, Townsville, Queensland, Australia
| | - Olga Luengo
- RETIC ARADyAL and RICORS Enfermedades Inflamatorias (REI), Madrid, Spain
- Allergy Section, Internal Medicine Department, Vall d'Hebron University Hospital, Vall d'Hebron Research Institute (VHIR), Universitat Autònoma de Barcelona, Barcelona, Spain
| | - Mika Mäkelä
- Division of Allergy, Helsinki University Hospital and University of Helsinki, Helsinki, Finland
- Pediatric Department, Skin and Allergy Hospital, Helsinki University Central Hospital, Helsinki, Finland
| | | | - Clare Mills
- Division of Infection, Immunity and Respiratory Medicine, School of Biological Sciences, Manchester Institute of Biotechnology, The University of Manchester, Manchester, UK
| | | | - Antonella Muraro
- Food Allergy Referral Centre, Department of Woman and Child Health, Padua University Hospital, Padua, Italy
| | - Anna Nowak-Wegrzyn
- Division of Pediatric Allergy and Immunology, NYU Grossman School of Medicine, Hassenfeld Children's Hospital, New York, New York, USA
- Department of Pediatrics, Gastroenterology and Nutrition, Collegium Medicum, University of Warmia and Mazury, Olsztyn, Poland
| | - Roni Nugraha
- Molecular Allergy Research Laboratory, College of Public Health, Medical and Veterinary Sciences, James Cook University, Townsville, Queensland, Australia
- Department of Aquatic Product Technology, Faculty of Fisheries and Marine Science, IPB University, Bogor, Indonesia
| | - Markus Ollert
- Department of Infection and Immunity, Luxembourg Institute of Health, Esch-sur-Alzette, Luxembourg
- Odense Research Center for Anaphylaxis, University of Southern Denmark, Odense, Denmark
| | - Kati Palosuo
- Department of Allergology, Helsinki University Hospital and University of Helsinki, Helsinki, Finland
| | | | - Sarita Ulhas Patil
- Division of Rheumatology, Allergy and Immunology, Departments of Medicine, Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts, USA
- Division of Allergy and Immunology, Department of Pediatrics, Massachusetts General Hospital, Boston, Massachusetts, USA
| | - Thomas Platts-Mills
- Division of Allergy and Clinical Immunology, University of Virginia, Charlottesville, Virginia, USA
| | | | - Pascal Poncet
- Institut Pasteur, Immunology Department, Paris, France
- Allergy & Environment Research Team Armand Trousseau Children Hospital, APHP, Paris, France
| | - Ekaterina Potapova
- Department of Pediatric Respiratory Medicine, Immunology and Critical Care Medicine, Charité Universitätsmedizin Berlin, Berlin, Germany
| | - Lars K Poulsen
- Allergy Clinic, Department of Dermatology and Allergy, Copenhagen University Hospital-Herlev and Gentofte, Copenhagen, Denmark
| | - Christian Radauer
- Department of Pathophysiology and Allergy Research, Medical University of Vienna, Vienna, Austria
| | - Suzana Radulovic
- Department of Women and Children's Health (Pediatric Allergy), School of Life Course Sciences, Faculty of Life Sciences and Medicine, King's College London, London, United Kingdom
- Children's Allergy Service, Evelina London, Guy's and St Thomas' Hospital, London, United Kingdom
| | - Monika Raulf
- Institute for Prevention and Occupational Medicine of the German Social Accident Insurance, Institute of the Ruhr- Universität Bochum, Bochum, Germany
| | - Pierre Rougé
- UMR 152 PharmaDev, IRD, Université Paul Sabatier, Faculté de Pharmacie, Toulouse, France
| | - Joaquin Sastre
- Allergy Service, Fundación Jiménez Díaz; CIBER de Enfermedades Respiratorias (CIBERES); Faculty of Medicine, Universidad Autonoma de Madrid, Madrid, Spain
| | - Sakura Sato
- Allergy Department, 2nd Paediatric Clinic, National and Kapodistrian University of Athens, Athens, Greece
| | - Enrico Scala
- Clinical and Laboratory Molecular Allergy Unit - IDI- IRCCS, Fondazione L M Monti Rome, Rome, Italy
| | - Johannes M Schmid
- Department of Respiratory Diseases and Allergy, Aarhus University Hospital, Aarhus, Denmark
| | - Peter Schmid-Grendelmeier
- Department of Dermatology, University Hospital Zurich, Zurich, Switzerland
- Christine Kühne Center for Allergy Research and Education CK-CARE, Davos, Switzerland
| | - Denise Schrama
- Centre of Marine Sciences (CCMAR), Universidade do Algarve, Faro, Portugal
| | - Hélène Sénéchal
- Allergy & Environment Research Team Armand Trousseau Children Hospital, APHP, Paris, France
| | - Claudia Traidl-Hoffmann
- Christine Kühne Center for Allergy Research and Education CK-CARE, Davos, Switzerland
- Department of Environmental Medicine, Faculty of Medicine, University of Augsburg, Augsburg, Germany
| | - Marcela Valverde-Monge
- Allergy Service, Fundación Jiménez Díaz; CIBER de Enfermedades Respiratorias (CIBERES); Faculty of Medicine, Universidad Autonoma de Madrid, Madrid, Spain
| | - Marianne van Hage
- Department of Medicine Solna, Division of Immunology and Allergy, Karolinska Institutet, Stockholm, Sweden
- Department of Clinical Immunology and Transfusion Medicine, Karolinska University Hospital, Stockholm, Sweden
| | - Ronald van Ree
- Department of Experimental Immunology and Department of Otorhinolaryngology, Amsterdam University Medical Centers, Academic Medical Center, University of Amsterdam, Amsterdam, The Netherlands
| | - Kitty Verhoeckx
- Department of Immunology and Dermatology/ Allergology, University Medical Center Utrecht, Utrecht University, Utrecht, The Netherlands
| | - Stefan Vieths
- Division of Allergology, Paul-Ehrlich-Institut, Langen, Germany
| | - Magnus Wickman
- Department of Environmental Medicine, Karolinska Institutet, Stockholm, Sweden
| | - Josefina Zakzuk
- Institute for Immunological Research, University of Cartagena, Cartagena de Indias, Colombia, Colombia
| | - Paolo M Matricardi
- Department of Pediatric Respiratory Medicine, Immunology and Critical Care Medicine, Charité Universitätsmedizin Berlin, Berlin, Germany
| | | |
Collapse
|
9
|
In vivo monitoring an important plant immune signaling molecule salicylic acid by rhodamine-engineered probes and their density functional theory (DFT) calculations. ARAB J CHEM 2023. [DOI: 10.1016/j.arabjc.2022.104476] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
|
10
|
Klemm P, Christ M, Altegoer F, Freitag J, Bange G, Lechner M. Evolutionary reconstruction, nomenclature and functional meta-analysis of the Kiwellin protein family. FRONTIERS IN PLANT SCIENCE 2022; 13:1034708. [PMID: 36618657 PMCID: PMC9813671 DOI: 10.3389/fpls.2022.1034708] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/01/2022] [Accepted: 11/09/2022] [Indexed: 06/17/2023]
Abstract
Crop diseases caused by pathogens critically affect global food security and plant ecology. Pathogens are well adapted to their host plants and have developed sophisticated mechanisms allowing successful colonization. Plants in turn have taken measures to counteract pathogen attacks resulting in an evolutionary arms race. Recent studies provided mechanistic insights into how two plant Kiwellin proteins from Zea mays mitigate the activity of the chorismate mutase Cmu1, a virulence factor secreted by the fungal pathogen Ustilago maydis during maize infection. Formerly identified as human allergens in kiwifruit, the biological function of Kiwellins is apparently linked to plant defense. We combined the analysis of proteome data with structural predictions to obtain a holistic overview of the Kiwellin protein family, that is subdivided into proteins with and without a N-terminal kissper domain. We found that Kiwellins are evolutionarily conserved in various plant species. At median five Kiwellin paralogs are encoded in each plant genome. Structural predictions revealed that Barwin-like proteins and Kiwellins cannot be discriminated purely at the sequence level. Our data shows that Kiwellins emerged in land plants (embryophyta) and are not present in fungi as suggested earlier. They evolved via three major duplication events that lead to clearly distinguishable subfamilies. We introduce a systematic Kiwellin nomenclature based on a detailed evolutionary reconstruction of this protein family. A meta-analysis of publicly available transcriptome data demonstrated that Kiwellins can be differentially regulated upon the interaction of plants with pathogens but also with symbionts. Furthermore, significant differences in Kiwellin expression levels dependent on tissues and cultivars were observed. In summary, our study sheds light on the evolution and regulation of a large protein family and provides a framework for a more detailed understanding of the molecular functions of Kiwellins.
Collapse
Affiliation(s)
- Paul Klemm
- Center for Synthetic Microbiology (SYNMIKRO), Philipps-University Marburg, Marburg, Germany
| | - Marvin Christ
- Center for Synthetic Microbiology (SYNMIKRO), Philipps-University Marburg, Marburg, Germany
| | - Florian Altegoer
- Institute of Microbiology, Heinrich Heine University Dusseldorf, Düsseldorf, Germany
| | - Johannes Freitag
- Department of Biology, Philipps-University Marburg, Marburg, Germany
| | - Gert Bange
- Center for Synthetic Microbiology (SYNMIKRO), Philipps-University Marburg, Marburg, Germany
- Molecular Physiology of Microbes, Max-Planck Institute for Terrestrial Microbiology, Marburg, Germany
| | - Marcus Lechner
- Center for Synthetic Microbiology (SYNMIKRO), Philipps-University Marburg, Marburg, Germany
| |
Collapse
|
11
|
Outram MA, Figueroa M, Sperschneider J, Williams SJ, Dodds PN. Seeing is believing: Exploiting advances in structural biology to understand and engineer plant immunity. CURRENT OPINION IN PLANT BIOLOGY 2022; 67:102210. [PMID: 35461025 DOI: 10.1016/j.pbi.2022.102210] [Citation(s) in RCA: 26] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/21/2022] [Revised: 02/27/2022] [Accepted: 03/06/2022] [Indexed: 06/14/2023]
Abstract
Filamentous plant pathogens cause disease in numerous economically important crops. These pathogens secrete virulence proteins, termed effectors, that modulate host cellular processes and promote infection. Plants have evolved immunity receptors that detect effectors and activate defence pathways, resulting in resistance to the invading pathogen. This leads to an evolutionary arms race between pathogen and host that is characterised by highly diverse effector repertoires in plant pathogens. Here, we review the recent advances in understanding host-pathogen co-evolution provided by the structural determination of effectors alone, and in complex with immunity receptors. We highlight the use of recent advances in structural prediction within this field and its role for future development of designer resistance proteins.
Collapse
Affiliation(s)
- Megan A Outram
- Research School of Biology, The Australian National University, Canberra, ACT, 2601, Australia
| | - Melania Figueroa
- Commonwealth Scientific and Industrial Research Organisation, Agriculture and Food, Canberra, ACT, Australia
| | - Jana Sperschneider
- Commonwealth Scientific and Industrial Research Organisation, Agriculture and Food, Canberra, ACT, Australia
| | - Simon J Williams
- Research School of Biology, The Australian National University, Canberra, ACT, 2601, Australia.
| | - Peter N Dodds
- Commonwealth Scientific and Industrial Research Organisation, Agriculture and Food, Canberra, ACT, Australia.
| |
Collapse
|
12
|
Zhu MC, Li XM, Zhao N, Yang L, Zhang KQ, Yang JK. Regulatory Mechanism of Trap Formation in the Nematode-Trapping Fungi. J Fungi (Basel) 2022; 8:jof8040406. [PMID: 35448637 PMCID: PMC9031305 DOI: 10.3390/jof8040406] [Citation(s) in RCA: 24] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2022] [Revised: 04/13/2022] [Accepted: 04/14/2022] [Indexed: 01/21/2023] Open
Abstract
Nematode-trapping (NT) fungi play a significant role in the biological control of plant- parasitic nematodes. NT fungi, as a predator, can differentiate into specialized structures called “traps” to capture, kill, and consume nematodes at a nutrient-deprived condition. Therefore, trap formation is also an important indicator that NT fungi transition from a saprophytic to a predacious lifestyle. With the development of gene knockout and multiple omics such as genomics, transcriptomics, and metabolomics, increasing studies have tried to investigate the regulation mechanism of trap formation in NT fungi. This review summarizes the potential regulatory mechanism of trap formation in NT fungi based on the latest findings in this field. Signaling pathways have been confirmed to play an especially vital role in trap formation based on phenotypes of various mutants and multi-omics analysis, and the involvement of small molecule compounds, woronin body, peroxisome, autophagy, and pH-sensing receptors in the formation of traps are also discussed. In addition, we also highlight the research focus for elucidating the mechanism underlying trap formation of NT fungi in the future.
Collapse
|
13
|
Kahmann R. My Personal Journey from the Fascination for Phages to a Tumor-Inducing Fungal Pathogen of Corn. Annu Rev Microbiol 2022; 76:1-19. [PMID: 35395169 DOI: 10.1146/annurev-micro-121721-111032] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
My path in science began with a fascination for microbiology and phages and later involved a switch of subjects to the fungus Ustilago maydis and how it causes disease in maize. I will not provide a review of my work but rather focus on decisive findings, serendipitous, lucky moments when major advances made the U. maydis-maize system what it is now-a well-established model for biotrophic fungi. I also want to share with you the joy of finding the needle in a haystack at the very end of my scientific career, a fungal structure likely used for effector delivery, and how we were able to translate this into a potential application in agriculture. Expected final online publication date for the Annual Review of Microbiology, Volume 76 is September 2022. Please see http://www.annualreviews.org/page/journal/pubdates for revised estimates.
Collapse
Affiliation(s)
- Regine Kahmann
- Max Planck Institute for Terrestrial Microbiology, Marburg, Germany;
| |
Collapse
|
14
|
Fischer R, Requena N. Small-secreted proteins as virulence factors in nematode-trapping fungi. Trends Microbiol 2022; 30:615-617. [PMID: 35337698 DOI: 10.1016/j.tim.2022.03.005] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2022] [Revised: 03/03/2022] [Accepted: 03/03/2022] [Indexed: 11/16/2022]
Abstract
Nematode-trapping fungi (NTF), such as Arthrobotrys flagrans (Duddingtonia flagrans), are soil-borne fungi able to form adhesive trapping networks to attract and catch nematodes. In this forum piece we highlight some of their most fascinating features with a special focus on the role of small-secreted proteins in the predatory interaction.
Collapse
Affiliation(s)
- Reinhard Fischer
- Karlsruhe Institute of Technology (KIT), Department of Microbiology and Department of Botany, Karlsruhe, Germany.
| | - Natalia Requena
- Karlsruhe Institute of Technology (KIT), Department of Microbiology and Department of Botany, Karlsruhe, Germany
| |
Collapse
|
15
|
Zou K, Li Y, Zhang W, Jia Y, Wang Y, Ma Y, Lv X, Xuan Y, Du W. Early infection response of fungal biotroph Ustilago maydis in maize. FRONTIERS IN PLANT SCIENCE 2022; 13:970897. [PMID: 36161006 PMCID: PMC9504671 DOI: 10.3389/fpls.2022.970897] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/16/2022] [Accepted: 08/15/2022] [Indexed: 05/03/2023]
Abstract
Common smut, caused by Ustilago maydis (DC.) Corda, is a destructive fungal disease of maize worldwide; it forms large tumors, reducing corn yield and quality. However, the molecular defense mechanism to common smut in maize remains unclear. The present study aimed to use a leading maize inbred line Ye478 to analyze the response to U. maydis inoculation. The histological and cytological analyses demonstrated that U. maydis grew gradually to the host cells 6 h post-inoculation (hpi). The samples collected at 0, 3, 6, and 12 hpi were analyzed to assess the maize transcriptomic changes in response to U. maydis. The results revealed differences in hormone signaling, glycometabolism, and photosynthesis after U. maydis infection; specific changes were detected in jasmonic acid (JA), salicylic acid (SA), ethylene (ET), and abscisic acid (ABA) signaling pathways, glycolysis/gluconeogenesis, and photosystems I and II, probably related to defense response. MapMan analysis demonstrated that the differentially expressed genes between the treatment and control groups were clustered into light reaction and photorespiration pathways. In addition, U. maydis inoculation induced chloroplast swelling and damage, suggesting a significant effect on the chloroplast activity and subsequent metabolic process, especially hexose metabolism. A further genetic study using wild-type and galactinol-sucrose galactosyltransferase (gsg) and yellow-green leaf-1 (ygl-1) mutants identified that these two U. maydis-induced genes negatively regulated defense against common smut in maize. Our measurements showed the pathogen early-invasion process, and the key pathways of both chlorophyll biosynthesis and sugar transportation were critical modified in the infected maize line, thereby throwing a light on the molecular mechanisms in the maize-U. maydis interaction.
Collapse
Affiliation(s)
- Kunkun Zou
- College of Agronomy, Shenyang Agricultural University, Shenyang, China
| | - Yang Li
- College of Agronomy, Shenyang Agricultural University, Shenyang, China
| | - Wenjie Zhang
- College of Agronomy, Heilongjiang Bayi Agricultural University, Daqing, China
| | - Yunfeng Jia
- College of Agronomy, Shenyang Agricultural University, Shenyang, China
| | - Yang Wang
- College of Agronomy, Shenyang Agricultural University, Shenyang, China
| | - Yuting Ma
- College of Agronomy, Shenyang Agricultural University, Shenyang, China
| | - Xiangling Lv
- College of Agronomy, Shenyang Agricultural University, Shenyang, China
| | - Yuanhu Xuan
- College of Plant Protection, Shenyang Agricultural University, Shenyang, China
| | - Wanli Du
- College of Agronomy, Shenyang Agricultural University, Shenyang, China
- *Correspondence: Wanli Du
| |
Collapse
|
16
|
Ward FA, Salman D, Amer SA. Managing food-ecosystem synergies to sustain water resource systems. THE SCIENCE OF THE TOTAL ENVIRONMENT 2021; 796:148945. [PMID: 34328908 DOI: 10.1016/j.scitotenv.2021.148945] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/03/2021] [Revised: 07/05/2021] [Accepted: 07/05/2021] [Indexed: 06/13/2023]
Abstract
Measures implemented to restore ecosystem services are widely believed to conflict with food production in the world's irrigated regions because of their competition for scarce water. However, little integrated analysis has been conducted to test this hypothesis. This work tests that hypothesis by presenting results of a basin-scale hydroeconomic analysis linking biophysical, hydrologic, agronomic, ecological, economic, policy, and institutional dimensions of the partially-restored Mesopotamian Marshes of Western Asia. Results serve to partly reject the hypothesis: Here we find that an economically-optimized ecosystem restoration trajectory can be achieved with a minimal loss in food production or farm income where restored wetlands complement important dimensions of food production. Moreover, we find that where water shortage sharing rules can be made more flexible, ecosystem restoration more nearly complements improved food security. Our results point to previously unexplored synergies among food production, ecosystem restoration, and water laws in arid and semi-arid regions internationally.
Collapse
Affiliation(s)
- Frank A Ward
- Distinguished Achievement Professor, New Mexico State University, Las Cruces, NM 88003, USA.
| | - Dina Salman
- New Mexico State University, Las Cruces, NM 88003, USA.
| | - Saud A Amer
- U.S. Geological Survey, Virginia International Programs Office, Reston, VA 20192, USA.
| |
Collapse
|
17
|
Kinugasa S, Hidaka S, Tanaka S, Izumi E, Zaima N, Moriyama T. Kiwifruit defense protein, kiwellin (Act d 5) percutaneously sensitizes mouse models through the epidermal application of crude kiwifruit extract. Food Nutr Res 2021; 65:7610. [PMID: 34776830 PMCID: PMC8559447 DOI: 10.29219/fnr.v65.7610] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2021] [Revised: 08/22/2021] [Accepted: 08/26/2021] [Indexed: 11/29/2022] Open
Abstract
Background Kiwifruit is a popular fruit consumed worldwide and is also used as a cosmetic ingredient. However, it is known to cause allergic reactions in humans. Recent studies have suggested an association between food allergy and food allergens entering the body via the skin. However, percutaneously sensitizing kiwifruit allergens have not been identified in human studies or in animal models. Objective This study aimed to identify kiwifruit proteins that percutaneously sensitized mice through the epidermal application of crude extracts from green and gold kiwifruit on the dorsal skin, and serum IgE and IgG1 levels were used as sensitization markers. Design BALB/c mice were back-shaved and their skin was exposed to crude extracts from green and gold kiwifruit that contained sodium dodecyl sulfate. Specific IgE and IgG1 antibodies generated and secreted in response to antigens were measured using enzyme-linked immunosorbent assay or immunoblotting. Results Skin exposure to kiwifruit extract induced an increase in the levels of kiwifruit-specific IgE and IgG1, which are helper T cell 2-related allergenic antibodies in mice. These antibodies reacted with 18, 23, and 24 kDa proteins found in both green and gold kiwifruits. Thus, three percutaneously sensitizing allergens were identified and purified. Their amino acid sequences partially matched with that of kiwellin (Act d 5). Discussion and conclusion Kiwellin has been identified as a plant defense-related protein. Interestingly, many plant allergens are biodefense-related proteins belonging to the pathogenesis-related protein family. Kiwellin, which was discovered to be a transdermal sensitizing antigen, might also be categorized as a biodefense-related protein. This study is the first to identify kiwellin (Act d 5) as a percutaneously sensitizing kiwifruit allergen in a mouse model.
Collapse
Affiliation(s)
- Serina Kinugasa
- Department of Applied Biological Chemistry, Graduate School of Agriculture, Kindai University, Nara, Japan
| | - Shota Hidaka
- Department of Applied Biological Chemistry, Graduate School of Agriculture, Kindai University, Nara, Japan
| | - Serina Tanaka
- Department of Applied Biological Chemistry, Graduate School of Agriculture, Kindai University, Nara, Japan
| | - Eri Izumi
- Department of Applied Biological Chemistry, Graduate School of Agriculture, Kindai University, Nara, Japan
| | - Nobuhiro Zaima
- Department of Applied Biological Chemistry, Graduate School of Agriculture, Kindai University, Nara, Japan.,Agricultural Technology and Innovation Research Institute, Kindai University, Nara, Japan
| | - Tatsuya Moriyama
- Department of Applied Biological Chemistry, Graduate School of Agriculture, Kindai University, Nara, Japan.,Agricultural Technology and Innovation Research Institute, Kindai University, Nara, Japan
| |
Collapse
|
18
|
Wang J, Haapalainen M, Nissinen AI, Pirhonen M. Dual Transcriptional Profiling of Carrot and ' Candidatus Liberibacter solanacearum' at Different Stages of Infection Suggests Complex Host-Pathogen Interaction. MOLECULAR PLANT-MICROBE INTERACTIONS : MPMI 2021; 34:1281-1297. [PMID: 34319773 DOI: 10.1094/mpmi-10-20-0274-r] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
The interactions between the phloem-limited pathogen 'Candidatus Liberibacter solanacearum' haplotype C and carrot (Daucus carota subsp. sativus) were studied at 4, 5, and 9 weeks postinoculation (wpi), by combining dual RNA-Seq results with data on bacterial colonization and observations of the plant phenotype. In the infected plants, genes involved in jasmonate biosynthesis, salicylate signaling, pathogen-associated molecular pattern- and effector-triggered immunity, and production of pathogenesis-related proteins were up-regulated. At 4 wpi, terpenoid synthesis-related genes were up-regulated, presumably as a response to the psyllid feeding, whereas at 5 and 9 wpi, genes involved in both the terpenoid and flavonoid production were down-regulated and phenylpropanoid genes were up-regulated. Chloroplast-related gene expression was down-regulated, in concordance with the observed yellowing of the infected plant leaves. Both the RNA-Seq data and electron microscopy suggested callose accumulation in the infected phloem vessels, likely to impair the transport of photosynthates, while phloem regeneration was suggested by the formation of new sieve cells and the upregulation of cell wall-related gene expression. The 'Ca. L. solanacearum' genes involved in replication, transcription, and translation were expressed at high levels at 4 and 5 wpi, whereas, at 9 wpi, the Flp pilus genes were highly expressed, suggesting adherence and reduced mobility of the bacteria. The 'Ca. L. solanacearum' genes encoding ATP and C4-dicarboxylate uptake were differentially expressed between the early and late infection stages, suggesting a change in the dependence on different host-derived energy sources. HPE1 effector and salicylate hydroxylase were expressed, presumably to suppress host cell death and salicylic acid-dependent defenses during the infection.[Formula: see text] Copyright © 2021 The Author(s). This is an open access article distributed under the CC BY-NC-ND 4.0 International license.
Collapse
Affiliation(s)
- Jinhui Wang
- University of Helsinki, Department of Agricultural Sciences, P. O. Box 27, FI-00014 University of Helsinki, Finland
| | - Minna Haapalainen
- University of Helsinki, Department of Agricultural Sciences, P. O. Box 27, FI-00014 University of Helsinki, Finland
| | - Anne I Nissinen
- Natural Resources Institute Finland (Luke), Natural Resources, Tietotie 2C, FI-31600 Jokioinen, Finland
| | - Minna Pirhonen
- University of Helsinki, Department of Agricultural Sciences, P. O. Box 27, FI-00014 University of Helsinki, Finland
| |
Collapse
|
19
|
Bauters L, Stojilković B, Gheysen G. Pathogens pulling the strings: Effectors manipulating salicylic acid and phenylpropanoid biosynthesis in plants. MOLECULAR PLANT PATHOLOGY 2021; 22:1436-1448. [PMID: 34414650 PMCID: PMC8518561 DOI: 10.1111/mpp.13123] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/27/2021] [Revised: 07/15/2021] [Accepted: 08/01/2021] [Indexed: 06/01/2023]
Abstract
During evolution, plants have developed sophisticated ways to cope with different biotic and abiotic stresses. Phytohormones and secondary metabolites are known to play pivotal roles in defence responses against invading pathogens. One of the key hormones involved in plant immunity is salicylic acid (SA), of which the role in plant defence is well established and documented. Plants produce an array of secondary metabolites categorized in different classes, with the phenylpropanoids as major players in plant immunity. Both SA and phenylpropanoids are needed for an effective immune response by the plant. To successfully infect the host, pathogens secrete proteins, called effectors, into the plant tissue to lower defence. Secreted effectors can interfere with several metabolic or signalling pathways in the host to facilitate infection. In this review, we will focus on the different strategies pathogens have developed to affect the levels of SA and phenylpropanoids to increase plant susceptibility.
Collapse
Affiliation(s)
- Lander Bauters
- Department of BiotechnologyFaculty of Bioscience EngineeringGhent UniversityGhentBelgium
| | - Boris Stojilković
- Department of BiotechnologyFaculty of Bioscience EngineeringGhent UniversityGhentBelgium
| | - Godelieve Gheysen
- Department of BiotechnologyFaculty of Bioscience EngineeringGhent UniversityGhentBelgium
| |
Collapse
|
20
|
Tariqjaveed M, Mateen A, Wang S, Qiu S, Zheng X, Zhang J, Bhadauria V, Sun W. Versatile effectors of phytopathogenic fungi target host immunity. JOURNAL OF INTEGRATIVE PLANT BIOLOGY 2021; 63:1856-1873. [PMID: 34383388 DOI: 10.1111/jipb.13162] [Citation(s) in RCA: 27] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/06/2021] [Accepted: 08/10/2021] [Indexed: 06/13/2023]
Abstract
Phytopathogenic fungi secrete a large arsenal of effector molecules, including proteinaceous effectors, small RNAs, phytohormones and derivatives thereof. The pathogenicity of fungal pathogens is primarily determined by these effectors that are secreted into host cells to undermine innate immunity, as well as to facilitate the acquisition of nutrients for their in planta growth and proliferation. After conventional and non-conventional secretion, fungal effectors are translocated into different subcellular compartments of the host cells to interfere with various biological processes. In extracellular spaces, apoplastic effectors cope with physical and chemical barriers to break the first line of plant defenses. Intracellular effectors target essential immune components on the plasma membrane, in the cytosol, including cytosolic organelles, and in the nucleus to suppress host immunity and reprogram host physiology, favoring pathogen colonization. In this review, we comprehensively summarize the recent advances in fungal effector biology, with a focus on the versatile virulence functions of fungal effectors in promoting pathogen infection and colonization. A perspective of future research on fungal effector biology is also discussed.
Collapse
Affiliation(s)
- Muhammad Tariqjaveed
- Department of Plant Pathology, College of Plant Protection, China Agricultural University, Beijing, 100193, China
- The Ministry of Agriculture Key Laboratory of Pest Monitoring and Green Management, and Joint Laboratory for International Cooperation in Crop Molecular Breeding, Ministry of Education, China Agricultural University, Beijing, 100193, China
| | - Abdul Mateen
- Department of Plant Pathology, College of Plant Protection, China Agricultural University, Beijing, 100193, China
- The Ministry of Agriculture Key Laboratory of Pest Monitoring and Green Management, and Joint Laboratory for International Cooperation in Crop Molecular Breeding, Ministry of Education, China Agricultural University, Beijing, 100193, China
| | - Shanzhi Wang
- Department of Plant Pathology, College of Plant Protection, China Agricultural University, Beijing, 100193, China
- The Ministry of Agriculture Key Laboratory of Pest Monitoring and Green Management, and Joint Laboratory for International Cooperation in Crop Molecular Breeding, Ministry of Education, China Agricultural University, Beijing, 100193, China
| | - Shanshan Qiu
- Department of Plant Pathology, College of Plant Protection, China Agricultural University, Beijing, 100193, China
- The Ministry of Agriculture Key Laboratory of Pest Monitoring and Green Management, and Joint Laboratory for International Cooperation in Crop Molecular Breeding, Ministry of Education, China Agricultural University, Beijing, 100193, China
| | - Xinhang Zheng
- Department of Plant Pathology, College of Plant Protection, China Agricultural University, Beijing, 100193, China
- The Ministry of Agriculture Key Laboratory of Pest Monitoring and Green Management, and Joint Laboratory for International Cooperation in Crop Molecular Breeding, Ministry of Education, China Agricultural University, Beijing, 100193, China
| | - Jie Zhang
- Institute of Microbiology, The Chinese Academy of Sciences, Beijing, 100101, China
| | - Vijai Bhadauria
- Department of Plant Pathology, College of Plant Protection, China Agricultural University, Beijing, 100193, China
| | - Wenxian Sun
- Department of Plant Pathology, College of Plant Protection, China Agricultural University, Beijing, 100193, China
- The Ministry of Agriculture Key Laboratory of Pest Monitoring and Green Management, and Joint Laboratory for International Cooperation in Crop Molecular Breeding, Ministry of Education, China Agricultural University, Beijing, 100193, China
- Department of Plant Pathology, College of Plant Protection, Jilin Agricultural University, Changchun, 130118, China
| |
Collapse
|
21
|
Chen Y, Zhang M, Wang L, Yu X, Li X, Jin D, Zeng J, Ren H, Wang F, Song S, Yan X, Zhao J, Pei Y. GhKWL1 Upregulates GhERF105 but Its Function Is Impaired by Binding with VdISC1, a Pathogenic Effector of Verticillium dahliae. Int J Mol Sci 2021; 22:7328. [PMID: 34298948 PMCID: PMC8306359 DOI: 10.3390/ijms22147328] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2021] [Revised: 06/27/2021] [Accepted: 07/02/2021] [Indexed: 01/08/2023] Open
Abstract
Verticillium wilt, caused by Verticillium dahliae, is a devastating disease for many important crops, including cotton. Kiwellins (KWLs), a group of cysteine-rich proteins synthesized in many plants, have been shown to be involved in response to various phytopathogens. To evaluate genes for their function in resistance to Verticillium wilt, we investigated KWL homologs in cotton. Thirty-five KWL genes (GhKWLs) were identified from the genome of upland cotton (Gossypium hirsutum). Among them, GhKWL1 was shown to be localized in nucleus and cytosol, and its gene expression is induced by the infection of V. dahliae. We revealed that GhKWL1 was a positive regulator of GhERF105. Silencing of GhKWL1 resulted in a decrease, whereas overexpression led to an increase in resistance of transgenic plants to Verticillium wilt. Interestingly, through binding to GhKWL1, the pathogenic effector protein VdISC1 produced by V. dahliae could impair the defense response mediated by GhKWL1. Therefore, our study suggests there is a GhKWL1-mediated defense response in cotton, which can be hijacked by V. dahliae through the interaction of VdISC1 with GhKWL1.
Collapse
Affiliation(s)
- Yang Chen
- Biotechnology Research Center, Southwest University, No. 2 Tiansheng Road, Beibei, Chongqing 400716, China
| | - Mi Zhang
- Biotechnology Research Center, Southwest University, No. 2 Tiansheng Road, Beibei, Chongqing 400716, China
| | - Lei Wang
- Biotechnology Research Center, Southwest University, No. 2 Tiansheng Road, Beibei, Chongqing 400716, China
| | - Xiaohan Yu
- Biotechnology Research Center, Southwest University, No. 2 Tiansheng Road, Beibei, Chongqing 400716, China
| | - Xianbi Li
- Biotechnology Research Center, Southwest University, No. 2 Tiansheng Road, Beibei, Chongqing 400716, China
| | - Dan Jin
- Biotechnology Research Center, Southwest University, No. 2 Tiansheng Road, Beibei, Chongqing 400716, China
| | - Jianyan Zeng
- Biotechnology Research Center, Southwest University, No. 2 Tiansheng Road, Beibei, Chongqing 400716, China
| | - Hui Ren
- Biotechnology Research Center, Southwest University, No. 2 Tiansheng Road, Beibei, Chongqing 400716, China
| | - Fanlong Wang
- Biotechnology Research Center, Southwest University, No. 2 Tiansheng Road, Beibei, Chongqing 400716, China
| | - Shuiqing Song
- Biotechnology Research Center, Southwest University, No. 2 Tiansheng Road, Beibei, Chongqing 400716, China
| | - Xingying Yan
- Biotechnology Research Center, Southwest University, No. 2 Tiansheng Road, Beibei, Chongqing 400716, China
| | - Juan Zhao
- Biotechnology Research Center, Southwest University, No. 2 Tiansheng Road, Beibei, Chongqing 400716, China
| | - Yan Pei
- Biotechnology Research Center, Southwest University, No. 2 Tiansheng Road, Beibei, Chongqing 400716, China
| |
Collapse
|
22
|
Zhang B, Zhang N, Zhang Q, Xu Q, Zhong T, Zhang K, Xu M. Transcriptome Profiles of Sporisorium reilianum during the Early Infection of Resistant and Susceptible Maize Isogenic Lines. J Fungi (Basel) 2021; 7:jof7020150. [PMID: 33669631 PMCID: PMC7922634 DOI: 10.3390/jof7020150] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2021] [Revised: 02/10/2021] [Accepted: 02/16/2021] [Indexed: 12/24/2022] Open
Abstract
The biotrophic fungus Sporisorium reilianum causes destructive head smut disease in maize (Zea mays L.). To explore the pathogenicity arsenal of this fungus, we tracked its transcriptome changes during infection of the maize seedling mesocotyls of two near-isogenic lines, HZ4 and HZ4R, differing solely in the disease resistance gene ZmWAK. Parasitic growth of S. reilianum resulted in thousands of differentially expressed genes (DEGs) compared with growth in axenic culture. The protein synthesis and energy metabolism of S. reilianum were predominantly enriched with down-regulated DEGs, consistent with the arrested hyphal growth observed following colonization. Nutrition-related metabolic processes were enriched with both up- and down-regulated DEGs, which, together with activated transmembrane transport, reflected a potential transition in nutrition uptake of S. reilianum once it invaded maize. Notably, genes encoding secreted proteins of S. reilianum were mostly up-regulated during biotrophy. ZmWAK-mediated resistance to head smut disease reduced the number of DEGs of S. reilianum, particularly those related to the secretome. These observations deepen our understanding of the mechanisms underlying S. reilianum pathogenicity and ZmWAK-induced innate immunity.
Collapse
Affiliation(s)
- Boqi Zhang
- State Key Laboratory of Plant Physiology and Biochemistry, College of Agronomy and Biotechnology, National Maize Improvement Center, Center for Crop Functional Genomics and Molecular Breeding, China Agricultural University, 2 West Yuanmingyuan Road, Beijing 100193, China; (B.Z.); (N.Z.); (Q.Z.); (Q.X.); (T.Z.); (K.Z.)
| | - Nan Zhang
- State Key Laboratory of Plant Physiology and Biochemistry, College of Agronomy and Biotechnology, National Maize Improvement Center, Center for Crop Functional Genomics and Molecular Breeding, China Agricultural University, 2 West Yuanmingyuan Road, Beijing 100193, China; (B.Z.); (N.Z.); (Q.Z.); (Q.X.); (T.Z.); (K.Z.)
- Crops Research Institute, Guangdong Academy of Agricultural Sciences, Jinying 2 West Road, Tianhe District, Guangzhou 510640, China
| | - Qianqian Zhang
- State Key Laboratory of Plant Physiology and Biochemistry, College of Agronomy and Biotechnology, National Maize Improvement Center, Center for Crop Functional Genomics and Molecular Breeding, China Agricultural University, 2 West Yuanmingyuan Road, Beijing 100193, China; (B.Z.); (N.Z.); (Q.Z.); (Q.X.); (T.Z.); (K.Z.)
| | - Qianya Xu
- State Key Laboratory of Plant Physiology and Biochemistry, College of Agronomy and Biotechnology, National Maize Improvement Center, Center for Crop Functional Genomics and Molecular Breeding, China Agricultural University, 2 West Yuanmingyuan Road, Beijing 100193, China; (B.Z.); (N.Z.); (Q.Z.); (Q.X.); (T.Z.); (K.Z.)
| | - Tao Zhong
- State Key Laboratory of Plant Physiology and Biochemistry, College of Agronomy and Biotechnology, National Maize Improvement Center, Center for Crop Functional Genomics and Molecular Breeding, China Agricultural University, 2 West Yuanmingyuan Road, Beijing 100193, China; (B.Z.); (N.Z.); (Q.Z.); (Q.X.); (T.Z.); (K.Z.)
| | - Kaiyue Zhang
- State Key Laboratory of Plant Physiology and Biochemistry, College of Agronomy and Biotechnology, National Maize Improvement Center, Center for Crop Functional Genomics and Molecular Breeding, China Agricultural University, 2 West Yuanmingyuan Road, Beijing 100193, China; (B.Z.); (N.Z.); (Q.Z.); (Q.X.); (T.Z.); (K.Z.)
| | - Mingliang Xu
- State Key Laboratory of Plant Physiology and Biochemistry, College of Agronomy and Biotechnology, National Maize Improvement Center, Center for Crop Functional Genomics and Molecular Breeding, China Agricultural University, 2 West Yuanmingyuan Road, Beijing 100193, China; (B.Z.); (N.Z.); (Q.Z.); (Q.X.); (T.Z.); (K.Z.)
- Correspondence: ; Tel.: +86-010-6273-3166
| |
Collapse
|
23
|
Abstract
Plant-colonizing fungi secrete a cocktail of effector proteins during colonization. After secretion, some of these effectors are delivered into plant cells to directly dampen the plant immune system or redirect host processes benefitting fungal growth. Other effectors function in the apoplastic space either as released proteins modulating the activity of plant enzymes associated with plant defense or as proteins bound to the fungal cell wall. For such fungal cell wall-bound effectors, we know particularly little about their molecular function. In this review, we describe effectors that are associated with the fungal cell wall and discuss how they contribute to colonization.
Collapse
Affiliation(s)
- Shigeyuki Tanaka
- Department of Organismic Interactions, Max Planck Institute for Terrestrial Microbiology, Karl-von-Frisch Straße 10, Marburg 35043, Germany
| | - Regine Kahmann
- Department of Organismic Interactions, Max Planck Institute for Terrestrial Microbiology, Karl-von-Frisch Straße 10, Marburg 35043, Germany
| |
Collapse
|
24
|
Ludwig N, Reissmann S, Schipper K, Gonzalez C, Assmann D, Glatter T, Moretti M, Ma LS, Rexer KH, Snetselaar K, Kahmann R. A cell surface-exposed protein complex with an essential virulence function in Ustilago maydis. Nat Microbiol 2021; 6:722-730. [PMID: 33941900 PMCID: PMC8159752 DOI: 10.1038/s41564-021-00896-x] [Citation(s) in RCA: 26] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2021] [Accepted: 03/24/2021] [Indexed: 02/02/2023]
Abstract
Plant pathogenic fungi colonizing living plant tissue secrete a cocktail of effector proteins to suppress plant immunity and reprogramme host cells. Although many of these effectors function inside host cells, delivery systems used by pathogenic bacteria to translocate effectors into host cells have not been detected in fungi. Here, we show that five unrelated effectors and two membrane proteins from Ustilago maydis, a biotrophic fungus causing smut disease in corn, form a stable protein complex. All seven genes appear co-regulated and are only expressed during colonization. Single mutants arrest in the epidermal layer, fail to suppress host defence responses and fail to induce non-host resistance, two reactions that likely depend on translocated effectors. The complex is anchored in the fungal membrane, protrudes into host cells and likely contacts channel-forming plant plasma membrane proteins. Constitutive expression of all seven complex members resulted in a surface-exposed form in cultured U. maydis cells. As orthologues of the complex-forming proteins are conserved in smut fungi, the complex may become an interesting fungicide target.
Collapse
Affiliation(s)
- Nicole Ludwig
- grid.419554.80000 0004 0491 8361Department of Organismic Interactions, Max Planck Institute for Terrestrial Microbiology, Marburg, Germany
| | - Stefanie Reissmann
- grid.419554.80000 0004 0491 8361Department of Organismic Interactions, Max Planck Institute for Terrestrial Microbiology, Marburg, Germany
| | - Kerstin Schipper
- grid.419554.80000 0004 0491 8361Department of Organismic Interactions, Max Planck Institute for Terrestrial Microbiology, Marburg, Germany ,grid.411327.20000 0001 2176 9917Present Address: Institut für Mikrobiologie, Heinrich-Heine-Universität Düsseldorf, Düsseldorf, Germany
| | - Carla Gonzalez
- grid.419554.80000 0004 0491 8361Department of Organismic Interactions, Max Planck Institute for Terrestrial Microbiology, Marburg, Germany
| | - Daniela Assmann
- grid.419554.80000 0004 0491 8361Department of Organismic Interactions, Max Planck Institute for Terrestrial Microbiology, Marburg, Germany
| | - Timo Glatter
- grid.419554.80000 0004 0491 8361Mass Spectrometry and Proteomics, Max Planck Institute for Terrestrial Microbiology, Marburg, Germany
| | - Marino Moretti
- grid.419554.80000 0004 0491 8361Department of Organismic Interactions, Max Planck Institute for Terrestrial Microbiology, Marburg, Germany
| | - Lay-Sun Ma
- grid.419554.80000 0004 0491 8361Department of Organismic Interactions, Max Planck Institute for Terrestrial Microbiology, Marburg, Germany ,grid.28665.3f0000 0001 2287 1366Present Address: Institute of Plant and Microbial Biology, Academia Sinica, Taipei, Taiwan
| | - Karl-Heinz Rexer
- grid.10253.350000 0004 1936 9756Department of Evolutionary Ecology of Plants, Philipps-Universität Marburg, Marburg, Germany
| | - Karen Snetselaar
- grid.262952.80000 0001 0699 5924Department of Biology, Saint Joseph’s University, Philadelphia, PA USA
| | - Regine Kahmann
- grid.419554.80000 0004 0491 8361Department of Organismic Interactions, Max Planck Institute for Terrestrial Microbiology, Marburg, Germany
| |
Collapse
|
25
|
Song W, Forderer A, Yu D, Chai J. Structural biology of plant defence. THE NEW PHYTOLOGIST 2021; 229:692-711. [PMID: 32880948 DOI: 10.1111/nph.16906] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/09/2020] [Accepted: 07/14/2020] [Indexed: 06/11/2023]
Abstract
Plants employ the innate immune system to discriminate between self and invaders through two types of immune receptors, one on the plasma membrane and the other in the intracellular space. The immune receptors on the plasma membrane are pattern recognition receptors (PRRs) that can perceive pathogen-associated molecular patterns (PAMPs) or host-derived damage-associated molecular patterns (DAMPs) leading to pattern-triggered immunity (PTI). Particular pathogens are capable of overcoming PTI by secreting specific effectors into plant cells to perturb different components of PTI signalling through various mechanisms. Most of the immune receptors from the intracellular space are the nucleotide-binding leucine-rich repeat receptors (NLRs), which specifically recognize pathogen-secreted effectors to mediate effector-triggered immunity (ETI). In this review, we will summarize recent progress in structural studies of PRRs, NLRs, and effectors, and discuss how these studies shed light on ligand recognition and activation mechanisms of the two types of immune receptors and the diversified mechanisms used by effectors to manipulate plant immune signalling.
Collapse
Affiliation(s)
- Wen Song
- Max-Planck Institute for Plant Breeding Research, Cologne, 50829, Germany
- Institute of Biochemistry, University of Cologne, Cologne, 50923, Germany
| | - Alexander Forderer
- Max-Planck Institute for Plant Breeding Research, Cologne, 50829, Germany
- Institute of Biochemistry, University of Cologne, Cologne, 50923, Germany
| | - Dongli Yu
- Max-Planck Institute for Plant Breeding Research, Cologne, 50829, Germany
- Institute of Biochemistry, University of Cologne, Cologne, 50923, Germany
| | - Jijie Chai
- Max-Planck Institute for Plant Breeding Research, Cologne, 50829, Germany
- Institute of Biochemistry, University of Cologne, Cologne, 50923, Germany
| |
Collapse
|
26
|
Junglas B, Orru R, Axt A, Siebenaller C, Steinchen W, Heidrich J, Hellmich UA, Hellmann N, Wolf E, Weber SAL, Schneider D. IM30 IDPs form a membrane-protective carpet upon super-complex disassembly. Commun Biol 2020; 3:595. [PMID: 33087858 PMCID: PMC7577978 DOI: 10.1038/s42003-020-01314-4] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2020] [Accepted: 09/22/2020] [Indexed: 12/26/2022] Open
Abstract
Members of the phage shock protein A (PspA) family, including the inner membrane-associated protein of 30 kDa (IM30), are suggested to stabilize stressed cellular membranes. Furthermore, IM30 is essential in thylakoid membrane-containing chloroplasts and cyanobacteria, where it is involved in membrane biogenesis and/or remodeling. While it is well known that PspA and IM30 bind to membranes, the mechanism of membrane stabilization is still enigmatic. Here we report that ring-shaped IM30 super-complexes disassemble on membranes, resulting in formation of a membrane-protecting protein carpet. Upon ring dissociation, the C-terminal domain of IM30 unfolds, and the protomers self-assemble on membranes. IM30 assemblies at membranes have been observed before in vivo and were associated with stress response in cyanobacteria and chloroplasts. These assemblies likely correspond to the here identified carpet structures. Our study defines the thus far enigmatic structural basis for the physiological function of IM30 and related proteins, including PspA, and highlights a hitherto unrecognized concept of membrane stabilization by intrinsically disordered proteins.
Collapse
Affiliation(s)
- Benedikt Junglas
- Department of Chemistry, Biochemistry, Johannes Gutenberg University Mainz, 55128, Mainz, Germany
| | - Roberto Orru
- Institute of Molecular Physiology, Johannes Gutenberg University Mainz, 55128, Mainz, Germany
| | - Amelie Axt
- Max Planck-Institute for Polymer Research, 55128, Mainz, Germany
- Institute of Physics, Johannes Gutenberg University Mainz, 55099, Mainz, Germany
| | - Carmen Siebenaller
- Department of Chemistry, Biochemistry, Johannes Gutenberg University Mainz, 55128, Mainz, Germany
| | - Wieland Steinchen
- Philipps-University Marburg, Center for Synthetic Microbiology (SYNMIKRO) and Department of Chemistry, 35032, Marburg, Germany
| | - Jennifer Heidrich
- Department of Chemistry, Biochemistry, Johannes Gutenberg University Mainz, 55128, Mainz, Germany
| | - Ute A Hellmich
- Department of Chemistry, Biochemistry, Johannes Gutenberg University Mainz, 55128, Mainz, Germany
- Centre for Biomolecular Magnetic Resonance (BMRZ), Goethe-University Frankfurt, 60438, Frankfurt, Germany
| | - Nadja Hellmann
- Department of Chemistry, Biochemistry, Johannes Gutenberg University Mainz, 55128, Mainz, Germany
| | - Eva Wolf
- Institute of Molecular Physiology, Johannes Gutenberg University Mainz, 55128, Mainz, Germany
- Institute of Molecular Biology (IMB), 55128, Mainz, Germany
| | - Stefan A L Weber
- Max Planck-Institute for Polymer Research, 55128, Mainz, Germany
- Institute of Physics, Johannes Gutenberg University Mainz, 55099, Mainz, Germany
| | - Dirk Schneider
- Department of Chemistry, Biochemistry, Johannes Gutenberg University Mainz, 55128, Mainz, Germany.
| |
Collapse
|
27
|
Wang D, Peng C, Zheng X, Chang L, Xu B, Tong Z. Secretome Analysis of the Banana Fusarium Wilt Fungi Foc R1 and Foc TR4 Reveals a New Effector OASTL Required for Full Pathogenicity of Foc TR4 in Banana. Biomolecules 2020; 10:E1430. [PMID: 33050283 PMCID: PMC7601907 DOI: 10.3390/biom10101430] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2020] [Revised: 09/25/2020] [Accepted: 10/07/2020] [Indexed: 12/16/2022] Open
Abstract
Banana Fusarium wilt (BFW), which is one of the most important banana diseases worldwide, is mainly caused by Fusarium oxysporum f. sp. cubense tropic race 4 (Foc TR4). In this study, we conducted secretome analysis of Foc R1 and Foc TR4 and discovered a total of 120 and 109 secretory proteins (SPs) from Foc R1 cultured alone or with banana roots, respectively, and 129 and 105 SPs respectively from Foc TR4 cultured under the same conditions. Foc R1 and Foc TR4 shared numerous SPs associated with hydrolase activity, oxidoreductase activity, and transferase activity. Furthermore, in culture with banana roots, Foc R1 and Foc TR4 secreted many novel SPs, of which approximately 90% (Foc R1; 57/66; Foc TR4; 50/55) were unconventional SPs without signal peptides. Comparative analysis of SPs in Foc R1 and Foc TR4 revealed that Foc TR4 not only generated more specific SPs but also had a higher proportion of SPs involved in various metabolic pathways, such as phenylalanine metabolism and cysteine and methionine metabolism. The cysteine biosynthesis enzyme O-acetylhomoserine (thiol)-lyase (OASTL) was the most abundant root inducible Foc TR4-specific SP. In addition, knockout of the OASTL gene did not affect growth of Foc TR4; but resulted in the loss of pathogenicity in banana 'Brazil'. We speculated that OASTL functions in banana by interfering with the biosynthesis of cysteine, which is the precursor of an enormous number of sulfur-containing defense compounds. Overall, our studies provide a basic understanding of the SPs in Foc R1 and Foc TR4; including a novel effector in Foc TR4.
Collapse
Affiliation(s)
- Dan Wang
- Institute of Tropical Bioscience and Biotechnology, Chinese Academy of Tropical Agricultural Sciences, Haikou 571101, China; (D.W.); (C.P.); (X.Z.); (L.C.)
- Hainan Key Laboratory for Protection and Utilization of Tropical Bioresources, Hainan Institute for Tropical Agricultural Resources, Chinese Academy of Tropical Agricultural Sciences, Haikou 571101, China
| | - Cunzhi Peng
- Institute of Tropical Bioscience and Biotechnology, Chinese Academy of Tropical Agricultural Sciences, Haikou 571101, China; (D.W.); (C.P.); (X.Z.); (L.C.)
- Hainan Key Laboratory for Protection and Utilization of Tropical Bioresources, Hainan Institute for Tropical Agricultural Resources, Chinese Academy of Tropical Agricultural Sciences, Haikou 571101, China
| | - Xingmei Zheng
- Institute of Tropical Bioscience and Biotechnology, Chinese Academy of Tropical Agricultural Sciences, Haikou 571101, China; (D.W.); (C.P.); (X.Z.); (L.C.)
- Hainan Key Laboratory for Protection and Utilization of Tropical Bioresources, Hainan Institute for Tropical Agricultural Resources, Chinese Academy of Tropical Agricultural Sciences, Haikou 571101, China
| | - Lili Chang
- Institute of Tropical Bioscience and Biotechnology, Chinese Academy of Tropical Agricultural Sciences, Haikou 571101, China; (D.W.); (C.P.); (X.Z.); (L.C.)
- Hainan Key Laboratory for Protection and Utilization of Tropical Bioresources, Hainan Institute for Tropical Agricultural Resources, Chinese Academy of Tropical Agricultural Sciences, Haikou 571101, China
| | - Bingqiang Xu
- Haikou Experimental Station (Institute of Tropical Fruit Tree Research) Chinese Academy of Tropical Agricultural Sciences, Haikou 571101, China
- Key Laboratory of Banana Genetics and Improvement, Haikou 571101, China
| | - Zheng Tong
- Institute of Tropical Bioscience and Biotechnology, Chinese Academy of Tropical Agricultural Sciences, Haikou 571101, China; (D.W.); (C.P.); (X.Z.); (L.C.)
- Hainan Key Laboratory for Protection and Utilization of Tropical Bioresources, Hainan Institute for Tropical Agricultural Resources, Chinese Academy of Tropical Agricultural Sciences, Haikou 571101, China
| |
Collapse
|
28
|
Corrales-Guerrero L, He B, Refes Y, Panis G, Bange G, Viollier PH, Steinchen W, Thanbichler M. Molecular architecture of the DNA-binding sites of the P-loop ATPases MipZ and ParA from Caulobacter crescentus. Nucleic Acids Res 2020; 48:4769-4779. [PMID: 32232335 PMCID: PMC7229837 DOI: 10.1093/nar/gkaa192] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2019] [Revised: 02/18/2020] [Accepted: 03/17/2020] [Indexed: 12/21/2022] Open
Abstract
The spatiotemporal regulation of chromosome segregation and cell division in Caulobacter crescentus is mediated by two different P-loop ATPases, ParA and MipZ. Both of these proteins form dynamic concentration gradients that control the positioning of regulatory targets within the cell. Their proper localization depends on their nucleotide-dependent cycling between a monomeric and a dimeric state and on the ability of the dimeric species to associate with the nucleoid. In this study, we use a combination of genetic screening, biochemical analysis and hydrogen/deuterium exchange mass spectrometry to comprehensively map the residues mediating the interactions of MipZ and ParA with DNA. We show that MipZ has non-specific DNA-binding activity that relies on an array of positively charged and hydrophobic residues lining both sides of the dimer interface. Extending our analysis to ParA, we find that the MipZ and ParA DNA-binding sites differ markedly in composition, although their relative positions on the dimer surface and their mode of DNA binding are conserved. In line with previous experimental work, bioinformatic analysis suggests that the same principles may apply to other members of the P-loop ATPase family. P-loop ATPases thus share common mechanistic features, although their functions have diverged considerably during the course of evolution.
Collapse
Affiliation(s)
| | - Binbin He
- Department of Biology, University of Marburg, D-35043 Marburg, Germany
| | - Yacine Refes
- Department of Biology, University of Marburg, D-35043 Marburg, Germany
| | - Gaël Panis
- Department of Microbiology and Molecular Medicine, University of Geneva Medical School, CH-1211 Geneva, Switzerland
| | - Gert Bange
- Center for Synthetic Microbiology, D-35043 Marburg, Germany.,Department of Chemistry, University of Marburg, D-35043 Marburg, Germany
| | - Patrick H Viollier
- Department of Microbiology and Molecular Medicine, University of Geneva Medical School, CH-1211 Geneva, Switzerland
| | - Wieland Steinchen
- Center for Synthetic Microbiology, D-35043 Marburg, Germany.,Department of Chemistry, University of Marburg, D-35043 Marburg, Germany
| | - Martin Thanbichler
- Department of Biology, University of Marburg, D-35043 Marburg, Germany.,Center for Synthetic Microbiology, D-35043 Marburg, Germany.,Max Planck Fellow Group Bacterial Cell Biology, Max Planck Institute for Terrestrial Microbiology, D-35043 Marburg, Germany
| |
Collapse
|
29
|
Brouwer SM, Odilbekov F, Burra DD, Lenman M, Hedley PE, Grenville-Briggs L, Alexandersson E, Liljeroth E, Andreasson E. Intact salicylic acid signalling is required for potato defence against the necrotrophic fungus Alternaria solani. PLANT MOLECULAR BIOLOGY 2020; 104:1-19. [PMID: 32562056 PMCID: PMC7417411 DOI: 10.1007/s11103-020-01019-6] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/29/2020] [Accepted: 06/02/2020] [Indexed: 05/27/2023]
Abstract
KEY MESSAGE Using disease bioassays and transcriptomic analysis we show that intact SA-signalling is required for potato defences against the necrotrophic fungal pathogen Alternaria solani. ABSTRACT Early blight, caused by the necrotrophic fungus Alternaria solani, is an increasing problem in potato cultivation. Studies of the molecular components defining defence responses to A. solani in potato are limited. Here, we investigate plant defence signalling with a focus on salicylic acid (SA) and jasmonic acid (JA) pathways in response to A. solani. Our bioassays revealed that SA is necessary to restrict pathogen growth and early blight symptom development in both potato foliage and tubers. This result is in contrast to the documented minimal role of SA in resistance of Arabidopsis thaliana against necrotrophic pathogens. We also present transcriptomic analysis with 36 arrays of A. solani inoculated SA-deficient, JA-insensitive, and wild type plant lines. A greater number of genes are differentially expressed in the SA-deficient mutant plant line compared to the wild type and JA- insensitive line. In wild type plants, genes encoding metal ion transporters, such as copper, iron and zinc transporters were upregulated and transferase-encoding genes, for example UDP-glucoronosyltransferase and Serine-glyoxylate transferase, were downregulated. The SA-deficient plants show upregulation of genes enriched in GO terms related to oxidoreductase activity, respiratory chain and other mitochondrial-related processes. Pathogenesis-related genes, such as genes encoding chitinases and PR1, are upregulated in both the SA-deficient and wild type plants, but not in the JA-insensitive mutants. The combination of our bioassays and the transcriptomic analysis indicate that intact SA signalling, and not JA signalling, is required for potato defences against the necrotrophic pathogen A. solani. ELECTRONIC SUPPLEMENTARY MATERIAL The online version of this article (10.1007/s11103-020-01019-6) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Sophie M Brouwer
- Department of Plant Protection Biology, Swedish Agricultural University, Alnarp, Sweden
| | - Firuz Odilbekov
- Department of Plant Protection Biology, Swedish Agricultural University, Alnarp, Sweden
| | - Dharani Dhar Burra
- Department of Plant Protection Biology, Swedish Agricultural University, Alnarp, Sweden
| | - Marit Lenman
- Department of Plant Protection Biology, Swedish Agricultural University, Alnarp, Sweden
| | - Pete E Hedley
- Department of Cell and Molecular Sciences, Genome Technology, James Hutton Institute, Dundee, Scotland, UK
| | | | - Erik Alexandersson
- Department of Plant Protection Biology, Swedish Agricultural University, Alnarp, Sweden
| | - Erland Liljeroth
- Department of Plant Protection Biology, Swedish Agricultural University, Alnarp, Sweden
| | - Erik Andreasson
- Department of Plant Protection Biology, Swedish Agricultural University, Alnarp, Sweden.
| |
Collapse
|
30
|
Mais CN, Hermann L, Altegoer F, Seubert A, Richter AA, Wernersbach I, Czech L, Bremer E, Bange G. Degradation of the microbial stress protectants and chemical chaperones ectoine and hydroxyectoine by a bacterial hydrolase-deacetylase complex. J Biol Chem 2020; 295:9087-9104. [PMID: 32404365 PMCID: PMC7335791 DOI: 10.1074/jbc.ra120.012722] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2020] [Revised: 05/06/2020] [Indexed: 12/12/2022] Open
Abstract
When faced with increased osmolarity in the environment, many bacterial cells accumulate the compatible solute ectoine and its derivative 5-hydroxyectoine. Both compounds are not only potent osmostress protectants, but also serve as effective chemical chaperones stabilizing protein functionality. Ectoines are energy-rich nitrogen and carbon sources that have an ecological impact that shapes microbial communities. Although the biochemistry of ectoine and 5-hydroxyectoine biosynthesis is well understood, our understanding of their catabolism is only rudimentary. Here, we combined biochemical and structural approaches to unravel the core of ectoine and 5-hydroxy-ectoine catabolisms. We show that a conserved enzyme bimodule consisting of the EutD ectoine/5-hydroxyectoine hydrolase and the EutE deacetylase degrades both ectoines. We determined the high-resolution crystal structures of both enzymes, derived from the salt-tolerant bacteria Ruegeria pomeroyi and Halomonas elongata These structures, either in their apo-forms or in forms capturing substrates or intermediates, provided detailed insights into the catalytic cores of the EutD and EutE enzymes. The combined biochemical and structural results indicate that the EutD homodimer opens the pyrimidine ring of ectoine through an unusual covalent intermediate, N-α-2 acetyl-l-2,4-diaminobutyrate (α-ADABA). We found that α-ADABA is then deacetylated by the zinc-dependent EutE monomer into diaminobutyric acid (DABA), which is further catabolized to l-aspartate. We observed that the EutD-EutE bimodule synthesizes exclusively the α-, but not the γ-isomers of ADABA or hydroxy-ADABA. Of note, α-ADABA is known to induce the MocR/GabR-type repressor EnuR, which controls the expression of many ectoine catabolic genes clusters. We conclude that hydroxy-α-ADABA might serve a similar function.
Collapse
Affiliation(s)
- Christopher-Nils Mais
- Philipps-University Marburg, Center for Synthetic Microbiology (SYNMIKRO) & Faculty of Chemistry, Marburg, Germany
| | - Lucas Hermann
- Philipps-University Marburg, Center for Synthetic Microbiology (SYNMIKRO) & Faculty of Biology, Marburg, Germany
| | - Florian Altegoer
- Philipps-University Marburg, Center for Synthetic Microbiology (SYNMIKRO) & Faculty of Chemistry, Marburg, Germany
| | - Andreas Seubert
- Philipps-University Marburg, Faculty of Chemistry, Marburg, Germany
| | - Alexandra A Richter
- Philipps-University Marburg, Center for Synthetic Microbiology (SYNMIKRO) & Faculty of Biology, Marburg, Germany
| | - Isa Wernersbach
- Philipps-University Marburg, Center for Synthetic Microbiology (SYNMIKRO) & Faculty of Chemistry, Marburg, Germany
| | - Laura Czech
- Philipps-University Marburg, Center for Synthetic Microbiology (SYNMIKRO) & Faculty of Biology, Marburg, Germany
| | - Erhard Bremer
- Philipps-University Marburg, Center for Synthetic Microbiology (SYNMIKRO) & Faculty of Biology, Marburg, Germany.
| | - Gert Bange
- Philipps-University Marburg, Center for Synthetic Microbiology (SYNMIKRO) & Faculty of Chemistry, Marburg, Germany.
| |
Collapse
|
31
|
Altegoer F, Weiland P, Giammarinaro PI, Freibert SA, Binnebesel L, Han X, Lepak A, Kahmann R, Lechner M, Bange G. The two paralogous kiwellin proteins KWL1 and KWL1-b from maize are structurally related and have overlapping functions in plant defense. J Biol Chem 2020; 295:7816-7825. [PMID: 32350112 DOI: 10.1074/jbc.ra119.012207] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2019] [Revised: 04/23/2020] [Indexed: 12/17/2022] Open
Abstract
Many plant-pathogenic bacteria and fungi deploy effector proteins that down-regulate plant defense responses and reprogram plant metabolism for colonization and survival in planta Kiwellin (KWL) proteins are a widespread family of plant-defense proteins that target these microbial effectors. The KWL1 protein from maize (corn, Zea mays) specifically inhibits the enzymatic activity of the secreted chorismate mutase Cmu1, a virulence-promoting effector of the smut fungus Ustilago maydis. In addition to KWL1, 19 additional KWL paralogs have been identified in maize. Here, we investigated the structure and mechanism of the closest KWL1 homolog, KWL1-b (ZEAMA_GRMZM2G305329). We solved the Cmu1-KWL1-b complex to 2.75 Å resolution, revealing a highly symmetric Cmu1-KWL1-b heterotetramer in which each KWL1-b monomer interacts with a monomer of the Cmu1 homodimer. The structure also revealed that the overall architecture of the heterotetramer is highly similar to that of the previously reported Cmu1-KWL1 complex. We found that upon U. maydis infection of Z. mays, KWL1-b is expressed at significantly lower levels than KWL1 and exhibits differential tissue-specific expression patterns. We also show that KWL1-b inhibits Cmu1 activity similarly to KWL1. We conclude that KWL1 and KWL1-b are part of a redundant defense system that tissue-specifically targets Cmu1. This notion was supported by the observation that both KWL proteins are carbohydrate-binding proteins with distinct and likely tissue-related specificities. Moreover, binding by Cmu1 modulated the carbohydrate-binding properties of both KWLs. These findings indicate that KWL proteins are part of a spatiotemporally coordinated, plant-wide defense response comprising proteins with overlapping activities.
Collapse
Affiliation(s)
- Florian Altegoer
- SYNMIKRO Research Center and Department of Chemistry, Philipps-University Marburg, Marburg, Germany
| | - Paul Weiland
- SYNMIKRO Research Center and Department of Chemistry, Philipps-University Marburg, Marburg, Germany
| | - Pietro Ivan Giammarinaro
- SYNMIKRO Research Center and Department of Chemistry, Philipps-University Marburg, Marburg, Germany
| | - Sven-Andreas Freibert
- Institute for Cytobiology and Cytopathology, Philipps-University Marburg, Marburg, Germany
| | - Lynn Binnebesel
- SYNMIKRO Research Center and Department of Chemistry, Philipps-University Marburg, Marburg, Germany
| | - Xiaowei Han
- Max Planck Institute for Terrestrial Microbiology, Marburg, Germany
| | - Alexander Lepak
- SYNMIKRO Research Center and Department of Chemistry, Philipps-University Marburg, Marburg, Germany
| | - Regine Kahmann
- Max Planck Institute for Terrestrial Microbiology, Marburg, Germany
| | - Marcus Lechner
- SYNMIKRO Research Center and Department of Chemistry, Philipps-University Marburg, Marburg, Germany
| | - Gert Bange
- SYNMIKRO Research Center and Department of Chemistry, Philipps-University Marburg, Marburg, Germany
| |
Collapse
|
32
|
CdbA is a DNA-binding protein and c-di-GMP receptor important for nucleoid organization and segregation in Myxococcus xanthus. Nat Commun 2020; 11:1791. [PMID: 32286293 PMCID: PMC7156744 DOI: 10.1038/s41467-020-15628-8] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2019] [Accepted: 03/19/2020] [Indexed: 01/04/2023] Open
Abstract
Cyclic di-GMP (c-di-GMP) is a second messenger that modulates multiple responses to environmental and cellular signals in bacteria. Here we identify CdbA, a DNA-binding protein of the ribbon-helix-helix family that binds c-di-GMP in Myxococcus xanthus. CdbA is essential for viability, and its depletion causes defects in chromosome organization and segregation leading to a block in cell division. The protein binds to the M. xanthus genome at multiple sites, with moderate sequence specificity; however, its depletion causes only modest changes in transcription. The interactions of CdbA with c-di-GMP and DNA appear to be mutually exclusive and residue substitutions in CdbA regions important for c-di-GMP binding abolish binding to both c-di-GMP and DNA, rendering these protein variants non-functional in vivo. We propose that CdbA acts as a nucleoid-associated protein that contributes to chromosome organization and is modulated by c-di-GMP, thus revealing a link between c-di-GMP signaling and chromosome biology. The second messenger c-di-GMP modulates multiple responses to environmental and cellular signals in bacteria. Here, Skotnicka et al. identify a protein that binds c-di-GMP and contributes to chromosome organization and segregation in Myxococcus xanthus, with DNA-binding activity regulated by c-di-GMP.
Collapse
|
33
|
Luti S, Sella L, Quarantin A, Pazzagli L, Baccelli I. Twenty years of research on cerato-platanin family proteins: clues, conclusions, and unsolved issues. FUNGAL BIOL REV 2020. [DOI: 10.1016/j.fbr.2019.10.001] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
|
34
|
Xia W, Yu X, Ye Z. Smut fungal strategies for the successful infection. Microb Pathog 2020; 142:104039. [PMID: 32027975 DOI: 10.1016/j.micpath.2020.104039] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2019] [Revised: 12/05/2019] [Accepted: 02/02/2020] [Indexed: 01/01/2023]
Abstract
The smut fungi include a large number of plant pathogens that establish obligate biotrophic relationships with their host. Throughout the whole life inside plant tissue, smut fungi keep plant cells alive and acquire nutrients via biotrophic interfaces. This mini-review mainly summarizes the interactions between smut fungi and their host plants during the infection process. Despite various strategies recruited by plants to defense invading pathogens, smut fungi successfully evolved an arsenal for colonization. Mating of two compatible haploids gives rise to parasitic mycelium, which can sense plant surface cues such as fatty acids and hydrophobic surface, and induce the formation of appressoria for surface penetration. Plants can recognize fungal invading and activate defense response, including callose and lignin deposition, programmed cell death, and SA signaling pathway. To suppress plant immunity and alter the metabolic pathway of host plants, a cocktail of effectors is secreted by smut fungi depending on the plant organ and cell type that is infected.
Collapse
Affiliation(s)
- Wenqiang Xia
- Zhejiang Provincial Key Laboratory of Biometrology and Inspection & Quarantine, College of Life Sciences, China Jiliang University, Hangzhou, 310018, China
| | - Xiaoping Yu
- Zhejiang Provincial Key Laboratory of Biometrology and Inspection & Quarantine, College of Life Sciences, China Jiliang University, Hangzhou, 310018, China
| | - Zihong Ye
- Zhejiang Provincial Key Laboratory of Biometrology and Inspection & Quarantine, College of Life Sciences, China Jiliang University, Hangzhou, 310018, China.
| |
Collapse
|
35
|
Ruiz-Herrera J, Pérez-Rodríguez F, Velez-Haro J. The signaling mechanisms involved in the dimorphic phenomenon of the Basidiomycota fungus Ustilago maydis. Int Microbiol 2020; 23:121-126. [PMID: 31915950 DOI: 10.1007/s10123-019-00100-5] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2019] [Revised: 09/02/2019] [Accepted: 09/12/2019] [Indexed: 12/24/2022]
Abstract
In the present manuscript, we describe the mechanisms involved in the yeast-to-hypha dimorphic transition of the plant pathogenic Basidiomycota fungus Ustilago maydis. During its life cycle, U. maydis presents two stages: one in the form of haploid saprophytic yeasts that divide by budding and the other that is the product of the mating of sexually compatible yeast cells (sporidia), in the form of mycelial dikaryons that invade the plant host. The occurrence of the involved dimorphic transition is controlled by the two mating loci a and b. In addition, the dimorphic event can be obtained in vitro by different stimuli: change in the pH of the growth medium, use of different carbon sources, and by nitrogen depletion. The presence of other factors and mechanisms may affect this phenomenon; among these, we may cite the PKA and MAPK signal transduction pathways, polyamines, and factors that affect the structure of the nucleosomes. Some of these factors and conditions may affect all these dimorphic events, or they may be specific for only one or more but not all the processes involved. The conclusion reached by these experiments is that U. maydis has constituted a useful model for the analysis of the mechanisms involved in cell differentiation of fungi in general.
Collapse
Affiliation(s)
- José Ruiz-Herrera
- Departamento de Ingeniería Genética, Unidad Irapuato, Centro de Investigación y de Estudios Avanzados del IPN, Km. 9.4 Carretera Irapuato-León, Irapuato, Gto., Mexico.
| | - Fernando Pérez-Rodríguez
- Departamento de Ingeniería Genética, Unidad Irapuato, Centro de Investigación y de Estudios Avanzados del IPN, Km. 9.4 Carretera Irapuato-León, Irapuato, Gto., Mexico
| | - John Velez-Haro
- Departamento de Ingeniería Genética, Unidad Irapuato, Centro de Investigación y de Estudios Avanzados del IPN, Km. 9.4 Carretera Irapuato-León, Irapuato, Gto., Mexico.,Instituto Tecnológico de Celaya, Celaya, Gto., Mexico
| |
Collapse
|
36
|
Künstler A, Kátay G, Gullner G, Király L. Artificial elevation of glutathione contents in salicylic acid-deficient tobacco (Nicotiana tabacum cv. Xanthi NahG) reduces susceptibility to the powdery mildew pathogen Euoidium longipes. PLANT BIOLOGY (STUTTGART, GERMANY) 2020; 22:70-80. [PMID: 31283085 DOI: 10.1111/plb.13030] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/12/2019] [Accepted: 07/12/2019] [Indexed: 06/09/2023]
Abstract
The effects of elevated glutathione levels on defence responses to powdery mildew (Euoidium longipes) were investigated in a salicylic acid-deficient tobacco (Nicotiana tabacum cv. Xanthi NahG) and wild-type cv. Xanthi plants, where salicylic acid (SA) contents are normal. Aqueous solutions of reduced glutathione (GSH) and its synthetic precursor R-2-oxothiazolidine-4-carboxylic acid (OTC) were injected into leaves of tobacco plants 3 h before powdery mildew inoculation. SA-deficient NahG tobacco was hyper-susceptible to E. longipes, as judged by significantly more severe powdery mildew symptoms and enhanced pathogen accumulation. Strikingly, elevation of GSH levels in SA-deficient NahG tobacco restored susceptibility to E. longipes to the extent seen in wild-type plants (i.e. enhanced basal resistance). However, expression of the SA-mediated pathogenesis-related gene (NtPR-1a) did not increase significantly in GSH or OTC-pretreated and powdery mildew-inoculated NahG tobacco, suggesting that the induction of this PR gene may not be directly involved in the defence responses induced by GSH. Our results demonstrate that artificial elevation of glutathione content can significantly reduce susceptibility to powdery mildew in SA-deficient tobacco.
Collapse
Affiliation(s)
- A Künstler
- Plant Protection Institute, Centre for Agricultural Research, Hungarian Academy of Sciences, Budapest, Hungary
| | - G Kátay
- Plant Protection Institute, Centre for Agricultural Research, Hungarian Academy of Sciences, Budapest, Hungary
| | - G Gullner
- Plant Protection Institute, Centre for Agricultural Research, Hungarian Academy of Sciences, Budapest, Hungary
| | - L Király
- Plant Protection Institute, Centre for Agricultural Research, Hungarian Academy of Sciences, Budapest, Hungary
| |
Collapse
|
37
|
Kretschmer M, Damoo D, Djamei A, Kronstad J. Chloroplasts and Plant Immunity: Where Are the Fungal Effectors? Pathogens 2019; 9:E19. [PMID: 31878153 PMCID: PMC7168614 DOI: 10.3390/pathogens9010019] [Citation(s) in RCA: 49] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2019] [Revised: 12/17/2019] [Accepted: 12/21/2019] [Indexed: 12/12/2022] Open
Abstract
Chloroplasts play a central role in plant immunity through the synthesis of secondary metabolites and defense compounds, as well as phytohormones, such as jasmonic acid and salicylic acid. Additionally, chloroplast metabolism results in the production of reactive oxygen species and nitric oxide as defense molecules. The impact of viral and bacterial infections on plastids and chloroplasts has been well documented. In particular, bacterial pathogens are known to introduce effectors specifically into chloroplasts, and many viral proteins interact with chloroplast proteins to influence viral replication and movement, and plant defense. By contrast, clear examples are just now emerging for chloroplast-targeted effectors from fungal and oomycete pathogens. In this review, we first present a brief overview of chloroplast contributions to plant defense and then discuss examples of connections between fungal interactions with plants and chloroplast function. We then briefly consider well-characterized bacterial effectors that target chloroplasts as a prelude to discussing the evidence for fungal effectors that impact chloroplast activities.
Collapse
Affiliation(s)
- Matthias Kretschmer
- Michael Smith Laboratories, Department of Microbiology and Immunology, University of British Columbia, Vancouver, BC V6T 1Z4, Canada; (M.K.); (D.D.)
| | - Djihane Damoo
- Michael Smith Laboratories, Department of Microbiology and Immunology, University of British Columbia, Vancouver, BC V6T 1Z4, Canada; (M.K.); (D.D.)
| | - Armin Djamei
- Leibniz Institute of Plant Genetics and Crop Plant Research (IPK) OT Gatersleben Corrensstrasse 3, D-06466 Stadt Seeland, Germany;
| | - James Kronstad
- Michael Smith Laboratories, Department of Microbiology and Immunology, University of British Columbia, Vancouver, BC V6T 1Z4, Canada; (M.K.); (D.D.)
| |
Collapse
|
38
|
Saville BJ, Perlin MH. "When worlds collide and smuts converge": Tales from the 1st International Ustilago/Smut Convergence. Fungal Genet Biol 2019; 132:103260. [PMID: 31394176 DOI: 10.1016/j.fgb.2019.103260] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2019] [Revised: 07/29/2019] [Accepted: 07/31/2019] [Indexed: 11/15/2022]
Abstract
From the evening of March 12, till dinner on March 13, 2017, the 1st International Ustilago/Smut Convergence took place as a workshop prior to the start of the 29th Fungal Genetics Conference, in Asilomar, California. The overall goals of the meeting were to expand the smut model systems being used and to expand participation by the next generations of scientists with these fungi. These goals were implemented through a combination of emphasis on student and post-doc presentations, mentoring of such individuals, and active recruitment of participation by groups under-represented at such meetings in recent years in the US, especially those from Latin America and other Spanish-speaking countries. Work was presented at the first workshop on U. maydis, Sporosorium reilianum, Microbotryum violaceum, U. esculenta, and Thecaphora thlaspeos. Students and post-doctoral researchers were encouraged to present their "just-in-time," as-yet-unpublished data, in a safe environment, with the understanding of those attending the meeting that this early access was a privilege not to be taken advantage of. The result was lively and constructive discussion, including a variety of presentations by these young scientists on putative and characterized smut effector proteins, clearly at the forefront of such research, even considering the advances presented later that week at the Fungal Genetics Conference. This review also briefly compares the first meeting with the events of the recent 2nd International Ustilago/Smut Convergence (March 11-12, 2019), which ended with a tribute to Prof. Dr. Regine Kahmann, in honor of her career, and especially for her contributions to the field of smut genetics.
Collapse
Affiliation(s)
- Barry J Saville
- Forensic Science Program, Trent University, Peterborough, Canada
| | - Michael H Perlin
- Department of Biology, Program on Disease Evolution, University of Louisville, Louisville, KY, USA.
| |
Collapse
|
39
|
Youssar L, Wernet V, Hensel N, Yu X, Hildebrand HG, Schreckenberger B, Kriegler M, Hetzer B, Frankino P, Dillin A, Fischer R. Intercellular communication is required for trap formation in the nematode-trapping fungus Duddingtonia flagrans. PLoS Genet 2019; 15:e1008029. [PMID: 30917129 PMCID: PMC6453484 DOI: 10.1371/journal.pgen.1008029] [Citation(s) in RCA: 44] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2018] [Revised: 04/08/2019] [Accepted: 02/18/2019] [Indexed: 11/21/2022] Open
Abstract
Nematode-trapping fungi (NTF) are a large and diverse group of fungi, which may switch from a saprotrophic to a predatory lifestyle if nematodes are present. Different fungi have developed different trapping devices, ranging from adhesive cells to constricting rings. After trapping, fungal hyphae penetrate the worm, secrete lytic enzymes and form a hyphal network inside the body. We sequenced the genome of Duddingtonia flagrans, a biotechnologically important NTF used to control nematode populations in fields. The 36.64 Mb genome encodes 9,927 putative proteins, among which are more than 638 predicted secreted proteins. Most secreted proteins are lytic enzymes, but more than 200 were classified as small secreted proteins (< 300 amino acids). 117 putative effector proteins were predicted, suggesting interkingdom communication during the colonization. As a first step to analyze the function of such proteins or other phenomena at the molecular level, we developed a transformation system, established the fluorescent proteins GFP and mCherry, adapted an assay to monitor protein secretion, and established gene-deletion protocols using homologous recombination or CRISPR/Cas9. One putative virulence effector protein, PefB, was transcriptionally induced during the interaction. We show that the mature protein is able to be imported into nuclei in Caenorhabditis elegans cells. In addition, we studied trap formation and show that cell-to-cell communication is required for ring closure. The availability of the genome sequence and the establishment of many molecular tools will open new avenues to studying this biotechnologically relevant nematode-trapping fungus. Nematode-trapping fungi are fascinating microorganisms, because they are able to switch from saprotrophic growth to a predatory lifestyle. Duddingtonia flagrans forms adhesive trap systems and conidia and resistant chlamydospores. Chlamydospores are ideal for dissemination in the environment to control nematode populations in the field. We show that D. flagrans is able to catch C. elegans but also the very large wine-pathogenic nematode Xiphinema index. We sequenced the D. flagrans genome and show that it encodes about 10,000 genes with a large proportion of secreted proteins. We hypothesize that virulence effector proteins are involved in the interkingdom organismic interaction and identified more than 100 candidates. In order to investigate the molecular biology of D. flagrans and its interaction with nematodes, we established a transformation system and several molecular tools. We show that cell-to-cell communication and hyphal fusion are required for trap formation. Finally, we show that one putative virulence effector protein targets nuclei when expressed in C. elegans.
Collapse
Affiliation(s)
- Loubna Youssar
- Department of Microbiology, Karlsruhe Institute of Technology (KIT)—South Campus, Institute for Applied Biosciences, Karlsruhe, Germany
| | - Valentin Wernet
- Department of Microbiology, Karlsruhe Institute of Technology (KIT)—South Campus, Institute for Applied Biosciences, Karlsruhe, Germany
| | - Nicole Hensel
- Department of Microbiology, Karlsruhe Institute of Technology (KIT)—South Campus, Institute for Applied Biosciences, Karlsruhe, Germany
| | - Xi Yu
- Department of Microbiology, Karlsruhe Institute of Technology (KIT)—South Campus, Institute for Applied Biosciences, Karlsruhe, Germany
| | - Heinz-Georg Hildebrand
- Department of Microbiology, Karlsruhe Institute of Technology (KIT)—South Campus, Institute for Applied Biosciences, Karlsruhe, Germany
| | - Birgit Schreckenberger
- Department of Microbiology, Karlsruhe Institute of Technology (KIT)—South Campus, Institute for Applied Biosciences, Karlsruhe, Germany
| | - Marius Kriegler
- Department of Microbiology, Karlsruhe Institute of Technology (KIT)—South Campus, Institute for Applied Biosciences, Karlsruhe, Germany
| | | | - Phillip Frankino
- Department of Molecular and Cell Biology, Howard Hughes Medical Institute, University of Berkeley, Berkeley, California, United States of America
| | - Andrew Dillin
- Department of Molecular and Cell Biology, Howard Hughes Medical Institute, University of Berkeley, Berkeley, California, United States of America
| | - Reinhard Fischer
- Department of Microbiology, Karlsruhe Institute of Technology (KIT)—South Campus, Institute for Applied Biosciences, Karlsruhe, Germany
- * E-mail:
| |
Collapse
|
40
|
Bange G, Altegoer F. Plants strike back: Kiwellin proteins as a modular toolbox for plant defense mechanisms. Commun Integr Biol 2019; 12:31-33. [PMID: 30891114 PMCID: PMC6419657 DOI: 10.1080/19420889.2019.1586049] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2019] [Accepted: 02/15/2019] [Indexed: 10/27/2022] Open
Abstract
Plants have to cope with numerous stresses in nature to avoid damage or cell death. We recently reported a class of plant defense proteins termed kiwellins that were initially found in kiwifruit and shown to be causative to human food allergies. While kiwifruits among other domestic fruits always contain high amounts of kiwellin protein, available transcriptome data indicate an up-regulation of kiwellin genes upon pathogen contact in various other plants. In the case of an interaction between maize plant and the smut fungus Ustilago maydis, we could identify one kiwellin (termed: ZmKWL1) highly up-regulated in response to pathogen attack. During infection of the maize plant, U. maydis secretes numerous effector proteins that modulate the host. Among 20 predicted kiwellins, ZmKWL1 specifically inhibits the metabolic activity of the secreted fungal chorismate mutase 1 (Cmu1). We expand the current knowledge on kiwellins and describe a novel class of versatile plant defense proteins.
Collapse
Affiliation(s)
- Gert Bange
- Center for Synthetic Microbiology (SYNMIKRO) and Department of Chemistry, Philipps-University Marburg, Marburg, Germany
| | - Florian Altegoer
- Center for Synthetic Microbiology (SYNMIKRO) and Department of Chemistry, Philipps-University Marburg, Marburg, Germany
| |
Collapse
|
41
|
|
42
|
Han X, Kahmann R. Manipulation of Phytohormone Pathways by Effectors of Filamentous Plant Pathogens. FRONTIERS IN PLANT SCIENCE 2019; 10:822. [PMID: 31297126 PMCID: PMC6606975 DOI: 10.3389/fpls.2019.00822] [Citation(s) in RCA: 86] [Impact Index Per Article: 17.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/09/2019] [Accepted: 06/07/2019] [Indexed: 05/19/2023]
Abstract
Phytohormones regulate a large variety of physiological processes in plants. In addition, salicylic acid (SA), jasmonic acid (JA), and ethylene (ET) are responsible for primary defense responses against abiotic and biotic stresses, while plant growth regulators, such as auxins, brassinosteroids (BRs), cytokinins (CKs), abscisic acid (ABA), and gibberellins (GAs), also contribute to plant immunity. To successfully colonize plants, filamentous pathogens like fungi and oomycetes have evolved diverse strategies to interfere with phytohormone pathways with the help of secreted effectors. These include proteins, toxins, polysaccharides as well as phytohormones or phytohormone mimics. Such pathogen effectors manipulate phytohormone pathways by directly altering hormone levels, by interfering with phytohormone biosynthesis, or by altering or blocking important components of phytohormone signaling pathways. In this review, we outline the various strategies used by filamentous phytopathogens to manipulate phytohormone pathways to cause disease.
Collapse
|