1
|
Xiong L, Wang YT, Zhou MH, Takagi H, Qin J, Zhao XQ. Overexpression of arginase gene CAR1 renders yeast Saccharomyces cerevisiae acetic acid tolerance. Synth Syst Biotechnol 2024; 9:723-732. [PMID: 38882181 PMCID: PMC11178985 DOI: 10.1016/j.synbio.2024.05.013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/29/2024] [Revised: 05/12/2024] [Accepted: 05/28/2024] [Indexed: 06/18/2024] Open
Abstract
Acetic acid is a common inhibitor present in lignocellulose hydrolysate, which inhibits the ethanol production by yeast strains. Therefore, the cellulosic ethanol industry requires yeast strains that can tolerate acetic acid stress. Here we demonstrate that overexpressing a yeast native arginase-encoding gene, CAR1, renders Saccharomyces cerevisiae acetic acid tolerance. Specifically, ethanol yield increased by 27.3% in the CAR1-overexpressing strain compared to the control strain under 5.0 g/L acetic acid stress. The global intracellular amino acid level and compositions were further analyzed, and we found that CAR1 overexpression reduced the total amino acid content in response to acetic acid stress. Moreover, the CAR1 overexpressing strain showed increased ATP level and improved cell membrane integrity. Notably, we demonstrated that the effect of CAR1 overexpression was independent of the spermidine and proline metabolism, which indicates novel mechanisms for enhancing yeast stress tolerance. Our studies also suggest that CAR1 is a novel genetic element to be used in synthetic biology of yeast for efficient production of fuel ethanol.
Collapse
Affiliation(s)
- Liang Xiong
- School of Life Science and Biotechnology, Dalian University of Technology, Dalian, 116024, China
| | - Ya-Ting Wang
- State Key Laboratory of Microbial Metabolism, Joint International Research Laboratory of Metabolic and Developmental Science, and School of Life Science and Biotechnology, Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Ming-Hai Zhou
- State Key Laboratory of Microbial Metabolism, Joint International Research Laboratory of Metabolic and Developmental Science, and School of Life Science and Biotechnology, Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Hiroshi Takagi
- Institute for Research Initiatives, Nara Institute of Science and Technology, 8916-5 Takayama, Ikoma, Nara 630-0192, Japan
| | - Jiufu Qin
- College of Biomass Science and Engineering, Sichuan University, Chengdu, 610065, China
| | - Xin-Qing Zhao
- State Key Laboratory of Microbial Metabolism, Joint International Research Laboratory of Metabolic and Developmental Science, and School of Life Science and Biotechnology, Shanghai Jiao Tong University, Shanghai, 200240, China
| |
Collapse
|
2
|
Carter EL, Waterfield NR, Constantinidou C, Alam MT. A temperature-induced metabolic shift in the emerging human pathogen Photorhabdus asymbiotica. mSystems 2024:e0097023. [PMID: 39445821 DOI: 10.1128/msystems.00970-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2023] [Accepted: 11/29/2023] [Indexed: 10/25/2024] Open
Abstract
Photorhabdus is a bacterial genus containing both insect and emerging human pathogens. Most insect-restricted species display temperature restriction, unable to grow above 34°C, while Photorhabdus asymbiotica can grow at 37°C to infect mammalian hosts and cause Photorhabdosis. Metabolic adaptations have been proposed to facilitate the survival of this pathogen at higher temperatures, yet the biological mechanisms underlying these are poorly understood. We have reconstructed an extensively manually curated genome-scale metabolic model of P. asymbiotica (iEC1073, BioModels ID MODEL2309110001), validated through in silico gene knockout and nutrient utilization experiments with an excellent agreement between experimental data and model predictions. Integration of iEC1073 with transcriptomics data obtained for P. asymbiotica at temperatures of 28°C and 37°C allowed the development of temperature-specific reconstructions representing metabolic adaptations the pathogen undergoes when shifting to a higher temperature in a mammalian compared to insect host. Analysis of these temperature-specific reconstructions reveals that nucleotide metabolism is enriched with predicted upregulated and downregulated reactions. iEC1073 could be used as a powerful tool to study the metabolism of P. asymbiotica, in different genetic or environmental conditions. IMPORTANCE Photorhabdus bacterial species contain both human and insect pathogens, and most of these species cannot grow in higher temperatures. However, Photorhabdus asymbiotica, which infects both humans and insects, can grow in higher temperatures and undergoes metabolic adaptations at a temperature of 37°C compared to that of insect body temperature. Therefore, it is important to examine how this bacterial species can metabolically adapt to survive in higher temperatures. In this work, using a mathematical model, we have examined the metabolic shift that takes place when the bacteria switch from growth conditions in 28°C to 37°C. We show that P. asymbiotica potentially experiences predicted temperature-induced metabolic adaptations at 37°C predominantly clustered within the nucleotide metabolism pathway.
Collapse
Affiliation(s)
- Elena Lucy Carter
- Warwick Medical School, University of Warwick, Gibbet Hill Campus, Coventry, United Kingdom
| | - Nicholas R Waterfield
- Warwick Medical School, University of Warwick, Gibbet Hill Campus, Coventry, United Kingdom
| | - Chrystala Constantinidou
- Warwick Medical School, University of Warwick, Gibbet Hill Campus, Coventry, United Kingdom
- Bioinformatics Research Technology Platform, University of Warwick, Warwick, United Kingdom
| | - Mohammad Tauqeer Alam
- Department of Biology, College of Science, United Arab Emirates University, Al-Ain, United Arab Emirates
| |
Collapse
|
3
|
Wang J, Sun H, Mou H, Yang S. Protein and lysine improvement harnessed by a signal chain of red light-emitting diode light in Chlorella pyrenoidosa. BIORESOURCE TECHNOLOGY 2024; 414:131620. [PMID: 39393645 DOI: 10.1016/j.biortech.2024.131620] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/18/2024] [Revised: 10/04/2024] [Accepted: 10/08/2024] [Indexed: 10/13/2024]
Abstract
Microalgae are emerging as a novel single-cell protein source that can substitute traditional plant protein feeds. In this investigation, lysine and protein accumulation in Chlorella pyrenoidosa were significantly enhanced under red light-emitting diode light, addressing challenge of limiting amino acid in plant proteins. The study employed targeted metabolomics, HPLC, and qRT-PCR to validate the light-induced pathway triggering lysine biosynthesis. Specifically, the pathway involves Ca2+-CaM as an intermediary in signal transduction, which directly inhibits PEPC activity. This inhibition directs a significant carbon flux towards central carbon metabolism, resulting in increased pyruvate levels-a critical precursor for lysine biosynthesis via the diaminopimelate pathway. Ultimately, the content of protein and lysine under red light increased by 36.02 % and 99.56 %, respectively, compared to those under white light. These findings provide a novel orientation for the precise regulation of lysine accumulation in microalgae, and moreover lay a solid theoretical foundation for producing microalgal proteins.
Collapse
Affiliation(s)
- Jia Wang
- College of Food Science and Engineering, Ocean University of China, Qingdao 266003, China
| | - Han Sun
- School of Resources and Environment, Nanchang University, Nanchang 330031, China
| | - Haijin Mou
- College of Food Science and Engineering, Ocean University of China, Qingdao 266003, China.
| | - Shufang Yang
- College of Chemistry and Environmental Engineering, Shenzhen University, Shenzhen 518060, China.
| |
Collapse
|
4
|
Zhang Y, Cai Y, Zhang B, Zhang YHPJ. Spatially structured exchange of metabolites enhances bacterial survival and resilience in biofilms. Nat Commun 2024; 15:7575. [PMID: 39217184 PMCID: PMC11366000 DOI: 10.1038/s41467-024-51940-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2024] [Accepted: 08/21/2024] [Indexed: 09/04/2024] Open
Abstract
Biofilm formation enhances bacterial survival and antibiotic tolerance, but the underlying mechanisms are incompletely understood. Here, we show that biofilm growth is accompanied by a reduction in bacterial energy metabolism and membrane potential, together with metabolic exchanges between the inner and outer regions in biofilms. More specifically, nutrient-starved cells in the interior supply amino acids to cells in the periphery, while peripheral cells experience a decrease in membrane potential and provide fatty acids to interior cells. Fatty acids facilitate the repair of starvation-induced membrane damage in inner cells and enhance their survival in the presence of antibiotics. Thus, metabolic exchanges between inner and outer cells contribute to survival of the nutrient-starved inner cells and contribute to antibiotic tolerance within the biofilm.
Collapse
Affiliation(s)
- Yuzhen Zhang
- Key Laboratory of Engineering Biology for Low-Carbon Manufacturing, In Vitro Synthetic Biology Center, Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin, China.
| | - Yukmi Cai
- Key Laboratory of Engineering Biology for Low-Carbon Manufacturing, In Vitro Synthetic Biology Center, Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin, China
| | - Bing Zhang
- School of Information Science and Engineering, Yanshan University, Qinhuangdao, China
| | - Yi-Heng P Job Zhang
- Key Laboratory of Engineering Biology for Low-Carbon Manufacturing, In Vitro Synthetic Biology Center, Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin, China.
| |
Collapse
|
5
|
Gupta R, Adhikary S, Dalpatraj N, Laxman S. An economic demand-based framework for prioritization strategies in response to transient amino acid limitations. Nat Commun 2024; 15:7254. [PMID: 39179593 PMCID: PMC11344141 DOI: 10.1038/s41467-024-51769-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2023] [Accepted: 08/15/2024] [Indexed: 08/26/2024] Open
Abstract
Cells contain disparate amounts of distinct amino acids, each of which has different metabolic and chemical origins, but the supply cost vs demand requirements of each is unclear. Here, using yeast we quantify the restoration-responses after disrupting amino acid supply, and uncover a hierarchically prioritized restoration strategy for distinct amino acids. We comprehensively calculate individual amino acid biosynthetic supply costs, quantify total demand for an amino acid, and estimate cumulative supply/demand requirements for each amino acid. Through this, we discover that the restoration priority is driven by the gross demand for an amino acid, which is itself coupled to low supply costs for that amino acid. Demand from metabolic requirements dominate the demand-pulls for an amino acid, as exemplified by the largest restoration response upon disrupting arginine supply. Collectively, this demand-driven framework that drives the amino acid economy can identify novel amino acid responses, and help design metabolic engineering applications.
Collapse
Affiliation(s)
- Ritu Gupta
- Institute for Stem Cell Science and Regenerative Medicine (inStem), GKVK Post Bellary Road, Bangalore, India
- Section on Nutrient Control of Gene Expression, Division of Molecular and Cellular Biology, Eunice Kennedy Shriver National Institute of Child Health and Human Development, NIH, Bethesda, MD, USA
| | - Swagata Adhikary
- Institute for Stem Cell Science and Regenerative Medicine (inStem), GKVK Post Bellary Road, Bangalore, India
- Manipal Academy of Higher Education, Manipal, India
| | - Nidhi Dalpatraj
- Institute for Stem Cell Science and Regenerative Medicine (inStem), GKVK Post Bellary Road, Bangalore, India
| | - Sunil Laxman
- Institute for Stem Cell Science and Regenerative Medicine (inStem), GKVK Post Bellary Road, Bangalore, India.
| |
Collapse
|
6
|
Scarinci G, Ariens JL, Angelidou G, Schmidt S, Glatter T, Paczia N, Sourjik V. Enhanced metabolic entanglement emerges during the evolution of an interkingdom microbial community. Nat Commun 2024; 15:7238. [PMID: 39174531 PMCID: PMC11341674 DOI: 10.1038/s41467-024-51702-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2024] [Accepted: 08/15/2024] [Indexed: 08/24/2024] Open
Abstract
While different stages of mutualism can be observed in natural communities, the dynamics and mechanisms underlying the gradual erosion of independence of the initially autonomous organisms are not yet fully understood. In this study, by conducting the laboratory evolution on an engineered microbial community, we reproduce and molecularly track the stepwise progression towards enhanced partner entanglement. We observe that the evolution of the community both strengthens the existing metabolic interactions and leads to the emergence of de novo interdependence between partners for nitrogen metabolism, which is a common feature of natural symbiotic interactions. Selection for enhanced metabolic entanglement during the community evolution repeatedly occurred indirectly, via pleiotropies and trade-offs within cellular regulatory networks, and with no evidence of group selection. The indirect positive selection of metabolic dependencies between microbial community members, which results from the direct selection of other coupled traits in the same regulatory network, may therefore be a common but underappreciated driving force guiding the evolution of natural mutualistic communities.
Collapse
Affiliation(s)
- Giovanni Scarinci
- Max Planck Institute for Terrestrial Microbiology, Marburg, Germany
- Center for Synthetic Microbiology (SYNMIKRO), Marburg, Germany
| | - Jan-Luca Ariens
- Max Planck Institute for Terrestrial Microbiology, Marburg, Germany
- Center for Synthetic Microbiology (SYNMIKRO), Marburg, Germany
| | | | - Sebastian Schmidt
- Max Planck Institute for Terrestrial Microbiology, Marburg, Germany
- Center for Synthetic Microbiology (SYNMIKRO), Marburg, Germany
| | - Timo Glatter
- Max Planck Institute for Terrestrial Microbiology, Marburg, Germany
| | - Nicole Paczia
- Max Planck Institute for Terrestrial Microbiology, Marburg, Germany
| | - Victor Sourjik
- Max Planck Institute for Terrestrial Microbiology, Marburg, Germany.
- Center for Synthetic Microbiology (SYNMIKRO), Marburg, Germany.
| |
Collapse
|
7
|
Trivellin C, Torello Pianale L, Olsson L. Robustness quantification of a mutant library screen revealed key genetic markers in yeast. Microb Cell Fact 2024; 23:218. [PMID: 39098937 PMCID: PMC11298085 DOI: 10.1186/s12934-024-02490-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2023] [Accepted: 07/24/2024] [Indexed: 08/06/2024] Open
Abstract
BACKGROUND Microbial robustness is crucial for developing cell factories that maintain consistent performance in a challenging environment such as large-scale bioreactors. Although tools exist to assess and understand robustness at a phenotypic level, the underlying metabolic and genetic mechanisms are not well defined, which limits our ability to engineer more strains with robust functions. RESULTS This study encompassed four steps. (I) Fitness and robustness were analyzed from a published dataset of yeast mutants grown in multiple environments. (II) Genes and metabolic processes affecting robustness or fitness were identified, and 14 of these genes were deleted in Saccharomyces cerevisiae CEN.PK113-7D. (III) The mutants bearing gene deletions were cultivated in three perturbation spaces mimicking typical industrial processes. (IV) Fitness and robustness were determined for each mutant in each perturbation space. We report that robustness varied according to the perturbation space. We identified genes associated with increased robustness such as MET28, linked to sulfur metabolism; as well as genes associated with decreased robustness, including TIR3 and WWM1, both involved in stress response and apoptosis. CONCLUSION The present study demonstrates how phenomics datasets can be analyzed to reveal the relationship between phenotypic response and associated genes. Specifically, robustness analysis makes it possible to study the influence of single genes and metabolic processes on stable microbial performance in different perturbation spaces. Ultimately, this information can be used to enhance robustness in targeted strains.
Collapse
Affiliation(s)
- Cecilia Trivellin
- Department of Life Sciences, Division of Industrial Biotechnology, Chalmers University of Technology, 412 96, Gothenburg, Sweden
| | - Luca Torello Pianale
- Department of Life Sciences, Division of Industrial Biotechnology, Chalmers University of Technology, 412 96, Gothenburg, Sweden
| | - Lisbeth Olsson
- Department of Life Sciences, Division of Industrial Biotechnology, Chalmers University of Technology, 412 96, Gothenburg, Sweden.
| |
Collapse
|
8
|
Zhu Y, Tong X, Xue J, Qiu H, Zhang D, Zheng DQ, Tu ZC, Ye C. Phospholipid biosynthesis modulates nucleotide metabolism and reductive capacity. Nat Chem Biol 2024:10.1038/s41589-024-01689-z. [PMID: 39060393 DOI: 10.1038/s41589-024-01689-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2023] [Accepted: 07/02/2024] [Indexed: 07/28/2024]
Abstract
Phospholipid and nucleotide syntheses are fundamental metabolic processes in eukaryotic organisms, with their dysregulation implicated in various disease states. Despite their importance, the interplay between these pathways remains poorly understood. Using genetic and metabolic analyses in Saccharomyces cerevisiae, we elucidate how cytidine triphosphate usage in the Kennedy pathway for phospholipid synthesis influences nucleotide metabolism and redox balance. We find that deficiencies in the Kennedy pathway limit nucleotide salvage, prompting compensatory activation of de novo nucleotide synthesis and the pentose phosphate pathway. This metabolic shift enhances the production of antioxidants such as NADPH and glutathione. Moreover, we observe that the Kennedy pathway for phospholipid synthesis is inhibited during replicative aging, indicating its role in antioxidative defense as an adaptive mechanism in aged cells. Our findings highlight the critical role of phospholipid synthesis pathway choice in the integrative regulation of nucleotide metabolism, redox balance and membrane properties for cellular defense.
Collapse
Affiliation(s)
- Yibing Zhu
- Zhejiang Provincial Key Laboratory for Cancer Molecular Cell Biology, Life Sciences Institute, Zhejiang University, Hangzhou, China
| | - Xiaomeng Tong
- Zhejiang Provincial Key Laboratory for Cancer Molecular Cell Biology, Life Sciences Institute, Zhejiang University, Hangzhou, China
| | - Jingyuan Xue
- Zhejiang Provincial Key Laboratory for Cancer Molecular Cell Biology, Life Sciences Institute, Zhejiang University, Hangzhou, China
| | - Hong Qiu
- Zhejiang Provincial Key Laboratory for Cancer Molecular Cell Biology, Life Sciences Institute, Zhejiang University, Hangzhou, China
| | - Dan Zhang
- Department of Reproductive Endocrinology, Women's Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Dao-Qiong Zheng
- Ocean College, Zhejiang University, Zhoushan, China
- Hainan Institute, Zhejiang University, Sanya, China
| | - Zong-Cai Tu
- National R&D Center for Freshwater Fish Processing, Jiangxi Normal University, Nanchang, China
| | - Cunqi Ye
- Zhejiang Provincial Key Laboratory for Cancer Molecular Cell Biology, Life Sciences Institute, Zhejiang University, Hangzhou, China.
- Department of Reproductive Endocrinology, Women's Hospital, Zhejiang University School of Medicine, Hangzhou, China.
- Hainan Institute, Zhejiang University, Sanya, China.
- National R&D Center for Freshwater Fish Processing, Jiangxi Normal University, Nanchang, China.
| |
Collapse
|
9
|
Wang H, Fu J, Wu X, Wang Y, Li W, Huang Y, Zhong J, Peng Z. Effects of Dietary Protein Level and Rumen-Protected Methionine and Lysine on Growth Performance, Rumen Fermentation and Serum Indexes for Yaks. Animals (Basel) 2024; 14:1751. [PMID: 38929369 PMCID: PMC11201000 DOI: 10.3390/ani14121751] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2024] [Revised: 06/04/2024] [Accepted: 06/06/2024] [Indexed: 06/28/2024] Open
Abstract
This study investigated the effects of the dietary protein level and rumen-protected methionine and lysine (RPML) on the growth performance, rumen fermentation, and serum indexes of yaks. Thirty-six male yaks were randomly assigned to a two by three factorial experiment with two protein levels, 15.05% and 16.51%, and three RPML levels: 0% RPML; 0.05% RPMet and 0.15% RPLys; and 0.1% RPMet and 0.3% RPLys. The trial lasted for sixty days. The results showed that the low-protein diet increased the DMI and feed conversion ratio of yaks. The diet supplemented with RPML increased the activities of IGF1 and INS and nutrient digestibility. The high-protein diet decreased the rumen butyrate concentration and increased the rumen isovalerate concentration. The low-protein diet supplemented with RPML increased the rumen pH and the concentrations of total volatile fatty acids, butyrate and NH3-N; the high-protein diet supplemented with a high level of RPML decreased the rumen pH and the concentrations of isobutyrate, isovalerate, propionate and NH3-N. The low-protein diet supplemented with RPML increased the total antioxidant capacity and glutathione peroxidase activity, along with the concentrations of malondialdehyde and amino acids such as aspartic acid, lysine, cysteine, etc. In conclusion, a low-protein diet supplemented with RPML is beneficial for rumen and body health, physiological response, and metabolic status in yaks.
Collapse
Affiliation(s)
- Haibo Wang
- Key Laboratory of Qinghai-Tibetan Plateau Animal Genetic Resource Reservation and Utilization, Ministry of Education, Southwest Minzu University, Chengdu 610041, China; (H.W.); (J.F.); (X.W.)
- Key Laboratory of Animal Science of State Ethnic Affairs Commission, Southwest Minzu University, Chengdu 610041, China
| | - Jianhui Fu
- Key Laboratory of Qinghai-Tibetan Plateau Animal Genetic Resource Reservation and Utilization, Ministry of Education, Southwest Minzu University, Chengdu 610041, China; (H.W.); (J.F.); (X.W.)
- Key Laboratory of Animal Science of State Ethnic Affairs Commission, Southwest Minzu University, Chengdu 610041, China
| | - Xia Wu
- Key Laboratory of Qinghai-Tibetan Plateau Animal Genetic Resource Reservation and Utilization, Ministry of Education, Southwest Minzu University, Chengdu 610041, China; (H.W.); (J.F.); (X.W.)
- Key Laboratory of Animal Science of State Ethnic Affairs Commission, Southwest Minzu University, Chengdu 610041, China
| | - Yadong Wang
- College of Animal and Veterinary Sciences, Southwest Minzu University, Chengdu 610041, China; (Y.W.); (W.L.); (Y.H.)
| | - Wenjie Li
- College of Animal and Veterinary Sciences, Southwest Minzu University, Chengdu 610041, China; (Y.W.); (W.L.); (Y.H.)
| | - Yanling Huang
- College of Animal and Veterinary Sciences, Southwest Minzu University, Chengdu 610041, China; (Y.W.); (W.L.); (Y.H.)
| | - Jincheng Zhong
- Key Laboratory of Qinghai-Tibetan Plateau Animal Genetic Resource Reservation and Utilization, Ministry of Education, Southwest Minzu University, Chengdu 610041, China; (H.W.); (J.F.); (X.W.)
- Key Laboratory of Animal Science of State Ethnic Affairs Commission, Southwest Minzu University, Chengdu 610041, China
| | - Zhongli Peng
- College of Animal and Veterinary Sciences, Southwest Minzu University, Chengdu 610041, China; (Y.W.); (W.L.); (Y.H.)
| |
Collapse
|
10
|
Nowrouzi B, Torres-Montero P, Kerkhoven EJ, Martínez JL, Rios-Solis L. Rewiring Saccharomyces cerevisiae metabolism for optimised Taxol® precursors production. Metab Eng Commun 2024; 18:e00229. [PMID: 38098801 PMCID: PMC10716015 DOI: 10.1016/j.mec.2023.e00229] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2023] [Revised: 10/09/2023] [Accepted: 11/04/2023] [Indexed: 12/17/2023] Open
Abstract
Saccharomyces cerevisiae has been conveniently used to produce Taxol® anticancer drug early precursors. However, the harmful impact of oxidative stress by the first cytochrome P450-reductase enzymes (CYP725A4-POR) of Taxol® pathway has hampered sufficient progress in yeast. Here, we evolved an oxidative stress-resistant yeast strain with three-fold higher titre of their substrate, taxadiene. The performance of the evolved and parent strains were then evaluated in galactose-limited chemostats before and under the oxidative stress by an oxidising agent. The interaction of evolution and oxidative stress was comprehensively evaluated through transcriptomics and metabolite profiles integration in yeast enzyme-constrained genome scale model. Overall, the evolved strain showed improved respiration, reduced overflow metabolites production and oxidative stress re-induction tolerance. The cross-protection mechanism also potentially contributed to better heme, flavin and NADPH availability, essential for CYP725A4 and POR optimal activity in yeast. The results imply that the evolved strain is a robust cell factory for future efforts towards Taxol© production.
Collapse
Affiliation(s)
- Behnaz Nowrouzi
- Institute for Bioengineering, School of Engineering, The University of Edinburgh, Edinburgh, EH9 3BF, United Kingdom
- Centre for Engineering Biology, The University of Edinburgh, Edinburgh, EH9 3BD, United Kingdom
- Department of Life Sciences, Chalmers University of Technology, Kemivägen 10, SE-412 96, Gothenburg, Sweden
- Department of Biotechnology and Biomedicine, Technical University of Denmark, Søltofts Plads Building 223, Kgs. Lyngby, 2800, Denmark
| | - Pablo Torres-Montero
- Department of Biotechnology and Biomedicine, Technical University of Denmark, Søltofts Plads Building 223, Kgs. Lyngby, 2800, Denmark
| | - Eduard J. Kerkhoven
- Department of Life Sciences, Chalmers University of Technology, Kemivägen 10, SE-412 96, Gothenburg, Sweden
- Novo Nordisk Foundation Center for Biosustainability, Technical University of Denmark, DK-2800 Kgs. Lyngby, Denmark
- SciLifeLab, Chalmers University of Technology, SE-412 96, Gothenburg, Sweden
| | - José L. Martínez
- Department of Biotechnology and Biomedicine, Technical University of Denmark, Søltofts Plads Building 223, Kgs. Lyngby, 2800, Denmark
| | - Leonardo Rios-Solis
- Institute for Bioengineering, School of Engineering, The University of Edinburgh, Edinburgh, EH9 3BF, United Kingdom
- Centre for Engineering Biology, The University of Edinburgh, Edinburgh, EH9 3BD, United Kingdom
- School of Natural and Environmental Sciences, Molecular Biology and Biotechnology Division, Newcastle University, Newcastle upon Tyne, NE1 7RU, United Kingdom
- Department of Biochemical Engineering, The Advanced Centre for Biochemical Engineering, University College London, Gower Street, London, WC1E 6BT, United Kingdom
| |
Collapse
|
11
|
Shene C, Leyton A, Flores L, Chavez D, Asenjo JA, Chisti Y. Genome-scale metabolic modeling of Thraustochytrium sp. RT2316-16: Effects of nutrients on metabolism. Biotechnol Bioeng 2024; 121:1986-2001. [PMID: 38500406 DOI: 10.1002/bit.28689] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2023] [Revised: 01/17/2024] [Accepted: 02/20/2024] [Indexed: 03/20/2024]
Abstract
Marine thraustochytrids produce metabolically important lipids such as the long-chain omega-3 polyunsaturated fatty acids, carotenoids, and sterols. The growth and lipid production in thraustochytrids depends on the composition of the culture medium that often contains yeast extract as a source of amino acids. This work discusses the effects of individual amino acids provided in the culture medium as the only source of nitrogen, on the production of biomass and lipids by the thraustochytrid Thraustochytrium sp. RT2316-16. A reconstructed metabolic network based on the annotated genome of RT2316-16 in combination with flux balance analysis was used to explain the observed growth and consumption of the nutrients. The culture kinetic parameters estimated from the experimental data were used to constrain the flux via the nutrient consumption rates and the specific growth rate of the triacylglycerol-free biomass in the genome-scale metabolic model (GEM) to predict the specific rate of ATP production for cell maintenance. A relationship was identified between the specific rate of ATP production for maintenance and the specific rate of glucose consumption. The GEM and the derived relationship for the production of ATP for maintenance were used in linear optimization problems, to successfully predict the specific growth rate of RT2316-16 in different experimental conditions.
Collapse
Affiliation(s)
- Carolina Shene
- Department of Chemical Engineering, Center of Food Biotechnology and Bioseparations, BIOREN, and Centre of Biotechnology and Bioengineering (CeBiB), Universidad de La Frontera, Temuco, Chile
| | - Allison Leyton
- Department of Chemical Engineering, Center of Food Biotechnology and Bioseparations, BIOREN, and Centre of Biotechnology and Bioengineering (CeBiB), Universidad de La Frontera, Temuco, Chile
| | - Liset Flores
- Department of Chemical Engineering, Center of Food Biotechnology and Bioseparations, BIOREN, and Centre of Biotechnology and Bioengineering (CeBiB), Universidad de La Frontera, Temuco, Chile
| | - Daniela Chavez
- Department of Chemical Engineering, Center of Food Biotechnology and Bioseparations, BIOREN, and Centre of Biotechnology and Bioengineering (CeBiB), Universidad de La Frontera, Temuco, Chile
| | - Juan A Asenjo
- Department of Chemical Engineering, Biotechnology and Materials, Centre for Biotechnology and Bioengineering (CeBiB), Universidad de Chile, Santiago, Chile
| | - Yusuf Chisti
- Institute of Tropical Aquaculture and Fisheries, Universiti Malaysia Terengganu, Kuala Nerus, Terengganu, Malaysia
| |
Collapse
|
12
|
Muenzner J, Trébulle P, Agostini F, Zauber H, Messner CB, Steger M, Kilian C, Lau K, Barthel N, Lehmann A, Textoris-Taube K, Caudal E, Egger AS, Amari F, De Chiara M, Demichev V, Gossmann TI, Mülleder M, Liti G, Schacherer J, Selbach M, Berman J, Ralser M. Natural proteome diversity links aneuploidy tolerance to protein turnover. Nature 2024; 630:149-157. [PMID: 38778096 PMCID: PMC11153158 DOI: 10.1038/s41586-024-07442-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2022] [Accepted: 04/19/2024] [Indexed: 05/25/2024]
Abstract
Accessing the natural genetic diversity of species unveils hidden genetic traits, clarifies gene functions and allows the generalizability of laboratory findings to be assessed. One notable discovery made in natural isolates of Saccharomyces cerevisiae is that aneuploidy-an imbalance in chromosome copy numbers-is frequent1,2 (around 20%), which seems to contradict the substantial fitness costs and transient nature of aneuploidy when it is engineered in the laboratory3-5. Here we generate a proteomic resource and merge it with genomic1 and transcriptomic6 data for 796 euploid and aneuploid natural isolates. We find that natural and lab-generated aneuploids differ specifically at the proteome. In lab-generated aneuploids, some proteins-especially subunits of protein complexes-show reduced expression, but the overall protein levels correspond to the aneuploid gene dosage. By contrast, in natural isolates, more than 70% of proteins encoded on aneuploid chromosomes are dosage compensated, and average protein levels are shifted towards the euploid state chromosome-wide. At the molecular level, we detect an induction of structural components of the proteasome, increased levels of ubiquitination, and reveal an interdependency of protein turnover rates and attenuation. Our study thus highlights the role of protein turnover in mediating aneuploidy tolerance, and shows the utility of exploiting the natural diversity of species to attain generalizable molecular insights into complex biological processes.
Collapse
Affiliation(s)
- Julia Muenzner
- Department of Biochemistry, Charité Universitätsmedizin, Berlin, Germany
| | - Pauline Trébulle
- Molecular Biology of Metabolism Laboratory, Francis Crick Institute, London, UK
- Centre for Human Genetics, Nuffield Department of Medicine, University of Oxford, Oxford, UK
| | - Federica Agostini
- Department of Biochemistry, Charité Universitätsmedizin, Berlin, Germany
| | - Henrik Zauber
- Max Delbrück Center for Molecular Medicine, Berlin, Germany
| | - Christoph B Messner
- Molecular Biology of Metabolism Laboratory, Francis Crick Institute, London, UK
- Precision Proteomics Center, Swiss Institute of Allergy and Asthma Research (SIAF), University of Zurich, Davos, Switzerland
| | - Martin Steger
- Evotec (München), Martinsried, Germany
- NEOsphere Biotechnologies, Martinsried, Germany
| | - Christiane Kilian
- Department of Biochemistry, Charité Universitätsmedizin, Berlin, Germany
| | - Kate Lau
- Department of Biochemistry, Charité Universitätsmedizin, Berlin, Germany
| | - Natalie Barthel
- Department of Biochemistry, Charité Universitätsmedizin, Berlin, Germany
| | - Andrea Lehmann
- Department of Biochemistry, Charité Universitätsmedizin, Berlin, Germany
| | - Kathrin Textoris-Taube
- Department of Biochemistry, Charité Universitätsmedizin, Berlin, Germany
- Core Facility High-Throughput Mass Spectrometry, Charité Universitätsmedizin, Berlin, Germany
| | - Elodie Caudal
- Université de Strasbourg, CNRS GMGM UMR 7156, Strasbourg, France
| | - Anna-Sophia Egger
- Molecular Biology of Metabolism Laboratory, Francis Crick Institute, London, UK
| | - Fatma Amari
- Department of Biochemistry, Charité Universitätsmedizin, Berlin, Germany
- Core Facility High-Throughput Mass Spectrometry, Charité Universitätsmedizin, Berlin, Germany
| | | | - Vadim Demichev
- Department of Biochemistry, Charité Universitätsmedizin, Berlin, Germany
- Molecular Biology of Metabolism Laboratory, Francis Crick Institute, London, UK
| | - Toni I Gossmann
- Computational Systems Biology, Faculty of Biochemical and Chemical Engineering, TU Dortmund University, Dortmund, Germany
| | - Michael Mülleder
- Core Facility High-Throughput Mass Spectrometry, Charité Universitätsmedizin, Berlin, Germany
| | - Gianni Liti
- Université Côte d'Azur, CNRS, INSERM, IRCAN, Nice, France
| | - Joseph Schacherer
- Université de Strasbourg, CNRS GMGM UMR 7156, Strasbourg, France
- Institut Universitaire de France (IUF), Paris, France
| | | | - Judith Berman
- Shmunis School of Biomedical and Cancer Research, George S. Wise Faculty of Life Sciences, Tel Aviv University, Ramat Aviv, Israel.
| | - Markus Ralser
- Department of Biochemistry, Charité Universitätsmedizin, Berlin, Germany.
- Molecular Biology of Metabolism Laboratory, Francis Crick Institute, London, UK.
- Centre for Human Genetics, Nuffield Department of Medicine, University of Oxford, Oxford, UK.
- Max Planck Institute for Molecular Genetics, Berlin, Germany.
| |
Collapse
|
13
|
Matsuzaki J, Kurokawa S, Iwamoto C, Miyaho K, Takamiya A, Ishii C, Hirayama A, Sanada K, Fukuda S, Mimura M, Kishimoto T, Saito Y. Intestinal metabolites predict treatment resistance of patients with depression and anxiety. Gut Pathog 2024; 16:8. [PMID: 38336806 PMCID: PMC10854080 DOI: 10.1186/s13099-024-00601-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/23/2023] [Accepted: 01/17/2024] [Indexed: 02/12/2024] Open
Abstract
BACKGROUND The impact of the gut microbiota on neuropsychiatric disorders has gained much attention in recent years; however, comprehensive data on the relationship between the gut microbiome and its metabolites and resistance to treatment for depression and anxiety is lacking. Here, we investigated intestinal metabolites in patients with depression and anxiety disorders, and their possible roles in treatment resistance. RESULTS We analyzed fecal metabolites and microbiomes in 34 participants with depression and anxiety disorders. Fecal samples were obtained three times for each participant during the treatment. Propensity score matching led us to analyze data from nine treatment responders and nine non-responders, and the results were validated in the residual sample sets. Using elastic net regression analysis, we identified several metabolites, including N-ε-acetyllysine; baseline levels of the former were low in responders (AUC = 0.86; 95% confidence interval, 0.69-1). In addition, fecal levels of N-ε-acetyllysine were negatively associated with the abundance of Odoribacter. N-ε-acetyllysine levels increased as symptoms improved with treatment. CONCLUSION Fecal N-ε-acetyllysine levels before treatment may be a predictive biomarker of treatment-refractory depression and anxiety. Odoribacter may play a role in the homeostasis of intestinal L-lysine levels. More attention should be paid to the importance of L-lysine metabolism in those with depression and anxiety.
Collapse
Affiliation(s)
- Juntaro Matsuzaki
- Division of Pharmacotherapeutics, Keio University Faculty of Pharmacy, 1-5-30 Shibakoen, Minato-ku, Tokyo, 105-8512, Japan.
| | - Shunya Kurokawa
- Hills Joint Research Laboratory for Future Preventive Medicine and Wellness, Keio University School of Medicine, Azabudai Hills Mori JP Tower 7F, 1-3-1 Azabudai, Minato-ku, Tokyo, 106-0041, Japan
- Department of Neuropsychiatry, Keio University School of Medicine, Tokyo, Japan
| | - Chiaki Iwamoto
- Division of Pharmacotherapeutics, Keio University Faculty of Pharmacy, 1-5-30 Shibakoen, Minato-ku, Tokyo, 105-8512, Japan
| | - Katsuma Miyaho
- Department of Psychiatry, Showa University Graduate School of Medicine, Tokyo, Japan
| | - Akihiro Takamiya
- Hills Joint Research Laboratory for Future Preventive Medicine and Wellness, Keio University School of Medicine, Azabudai Hills Mori JP Tower 7F, 1-3-1 Azabudai, Minato-ku, Tokyo, 106-0041, Japan
- Department of Neuropsychiatry, Keio University School of Medicine, Tokyo, Japan
| | - Chiharu Ishii
- Institute for Advanced Biosciences, Keio University, Yamagata, Japan
| | - Akiyoshi Hirayama
- Institute for Advanced Biosciences, Keio University, Yamagata, Japan
| | - Kenji Sanada
- Department of Psychiatry, Showa University Graduate School of Medicine, Tokyo, Japan
| | - Shinji Fukuda
- Institute for Advanced Biosciences, Keio University, Yamagata, Japan
- Gut Environmental Design Group, Kanagawa Institute of Industrial Science and Technology, Kanagawa, Japan
- Transborder Medical Research Center, University of Tsukuba, Ibaraki, Japan
- Laboratory for Regenerative Microbiology, Juntendo University Graduate School of Medicine, Tokyo, Japan
| | - Masaru Mimura
- Department of Neuropsychiatry, Keio University School of Medicine, Tokyo, Japan
| | - Taishiro Kishimoto
- Hills Joint Research Laboratory for Future Preventive Medicine and Wellness, Keio University School of Medicine, Azabudai Hills Mori JP Tower 7F, 1-3-1 Azabudai, Minato-ku, Tokyo, 106-0041, Japan.
- Department of Neuropsychiatry, Keio University School of Medicine, Tokyo, Japan.
| | - Yoshimasa Saito
- Division of Pharmacotherapeutics, Keio University Faculty of Pharmacy, 1-5-30 Shibakoen, Minato-ku, Tokyo, 105-8512, Japan
| |
Collapse
|
14
|
Palud A, Roullier-Gall C, Alexandre H, Weidmann S. Mixed biofilm formation by Oenococcus oeni and Saccharomyces cerevisiae: A new strategy for the wine fermentation process. Food Microbiol 2024; 117:104386. [PMID: 37919010 DOI: 10.1016/j.fm.2023.104386] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2023] [Revised: 06/21/2023] [Accepted: 09/13/2023] [Indexed: 11/04/2023]
Abstract
Bacterial biofilms have attracted much attention in the food industry since this phenotype increases microbial resistance to environmental stresses. In wine-making, the biofilm produced by Oenococcus oeni is able to persist in this harsh environment and perform malolactic fermentations. Certain viticultural practices are interested in the simultaneous triggering of alcoholic fermentation by yeasts of the species Saccharomyces cerevisiae and malolactic fermentation by lactic acid bacteria. As yet, no data is available on the ability of these micro-organisms to produce mixed biofilms and promote fermentations. Here, the ability of S. cerevisiae and O. oeni to form mixed biofilms on different surfaces found in vinification was observed and analyzed using scanning electron microscopy experiments. Then, following co-inoculation with biofilm or planktonic cells microvinifications were carried out to demonstrate that the mixed biofilms developed on oak allow the efficient completion of fermentations because of their high resistance to stress. Finally, comparisons of the different metabolic profiles obtained by LC-MS were made to assess the impact of the mode of life of biofilms on wine composition.
Collapse
Affiliation(s)
- Aurore Palud
- Procédés Alimentaires et Microbiologiques (PAM), AgroSup Dijon, PAM UMR A 02.102, Laboratoire VAlMiS-IUVV, Dijon, France
| | - Chloé Roullier-Gall
- Procédés Alimentaires et Microbiologiques (PAM), AgroSup Dijon, PAM UMR A 02.102, Laboratoire VAlMiS-IUVV, Dijon, France
| | - Hervé Alexandre
- Procédés Alimentaires et Microbiologiques (PAM), AgroSup Dijon, PAM UMR A 02.102, Laboratoire VAlMiS-IUVV, Dijon, France
| | - Stéphanie Weidmann
- Procédés Alimentaires et Microbiologiques (PAM), AgroSup Dijon, PAM UMR A 02.102, Laboratoire VAlMiS-IUVV, Dijon, France.
| |
Collapse
|
15
|
Wu L, An R, Lan T, Tang Z, Xu Y, Peng X, Pang J, Sun W, Shi B, Tang Q, Xi Y, Li W, Sun Z. Isocaloric diets with varying protein levels affected energy metabolism in young adult Sprague-Dawley rats via modifying the gut microbes: A lipid imbalance was brought on by a diet with a particularly high protein content. J Nutr Biochem 2024; 124:109534. [PMID: 37977404 DOI: 10.1016/j.jnutbio.2023.109534] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2023] [Revised: 11/05/2023] [Accepted: 11/11/2023] [Indexed: 11/19/2023]
Abstract
Protein is the most important macro-nutrient when it comes to maximizing health, body composition, muscle growth, and recovery of body tissue. In recent years, it has been found that protein also plays an important role in metabolism and gut microbiota. This study was performed to investigate the effects of an isocaloric diet with different crude protein contents on the energy metabolism of Sprague-Dawley (SD) rats. Results revealed that compared with the 20% crude protein (CP; control) diet, the 38% CP diet improved serum parameters that are associated with dyslipidemia and glucose metabolic disorders in SD rats, whereas the 50% CP diet increased liver injury indicators and fatty acid synthesis-related genes and protein expression in the liver. Compared with the control diet, the 14% CP diet increased the abundance of colonic short-chain fatty acid-producing bacteria (Lachnospiraceae_NK4A136_group and Ruminiclostridium_9) and promoted colonic microbial cysteine and methionine metabolism, the 38% CP diet up-regulated colonic microbial lysine biosynthesis and degradation pathways, and the 50% CP diet down-regulated colonic mucosal cholesterol metabolism. Furthermore, the increase of multiple colonic enteropathogenic bacteria in the 50% CP group was associated with higher palmitic acid and stearic acid concentrations in the colonic microbes and lower cholesterol and arachidonic acid concentrations in the colonic mucosa. These findings revealed that the 14% CP and 38% CP diets improved rats' energy metabolism, while the 50% CP diet was accompanied by lipid metabolism imbalances and an increase in the abundance of multiple enteropathogenic bacteria.
Collapse
Affiliation(s)
- Liuting Wu
- Laboratory for Bio-feed and Molecular Nutrition, College of Animal Science and Technology, Southwest University, Chongqing, P.R. China
| | - Rui An
- Sichuan Academy of Animal Science, Chengdu, P.R. China
| | - Tianyi Lan
- Laboratory for Bio-feed and Molecular Nutrition, College of Animal Science and Technology, Southwest University, Chongqing, P.R. China
| | - Zhiru Tang
- Laboratory for Bio-feed and Molecular Nutrition, College of Animal Science and Technology, Southwest University, Chongqing, P.R. China
| | - Yetong Xu
- Laboratory for Bio-feed and Molecular Nutrition, College of Animal Science and Technology, Southwest University, Chongqing, P.R. China
| | - Xie Peng
- Laboratory for Bio-feed and Molecular Nutrition, College of Animal Science and Technology, Southwest University, Chongqing, P.R. China
| | - Jiaman Pang
- Laboratory for Bio-feed and Molecular Nutrition, College of Animal Science and Technology, Southwest University, Chongqing, P.R. China
| | - Weizhong Sun
- Laboratory for Bio-feed and Molecular Nutrition, College of Animal Science and Technology, Southwest University, Chongqing, P.R. China
| | - Baoshi Shi
- Laboratory for Bio-feed and Molecular Nutrition, College of Animal Science and Technology, Southwest University, Chongqing, P.R. China
| | - Qingsong Tang
- Laboratory for Bio-feed and Molecular Nutrition, College of Animal Science and Technology, Southwest University, Chongqing, P.R. China
| | - Yuyue Xi
- Laboratory for Bio-feed and Molecular Nutrition, College of Animal Science and Technology, Southwest University, Chongqing, P.R. China
| | - Wenxue Li
- Laboratory for Bio-feed and Molecular Nutrition, College of Animal Science and Technology, Southwest University, Chongqing, P.R. China
| | - Zhihong Sun
- Laboratory for Bio-feed and Molecular Nutrition, College of Animal Science and Technology, Southwest University, Chongqing, P.R. China.
| |
Collapse
|
16
|
David C, Czauderna A, Cheng L, Lagune M, Jung HJ, Kim SG, Pamer EG, Prados J, Chen L, Becattini S. Intestinal carbapenem-resistant Klebsiella pneumoniae undergoes complex transcriptional reprogramming following immune activation. Gut Microbes 2024; 16:2340486. [PMID: 38659243 PMCID: PMC11057644 DOI: 10.1080/19490976.2024.2340486] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/07/2023] [Accepted: 04/04/2024] [Indexed: 04/26/2024] Open
Abstract
Carbapenem-resistant Klebsiella pneumoniae (CR-Kp) is a significant threat to public health worldwide. The primary reservoir for CR-Kp is the intestinal tract. There, the bacterium is usually present at low density but can bloom following antibiotic treatment, mostly in hospital settings. The impact of disturbances in the intestinal environment on the fitness, survival, expansion, and drug susceptibility of this pathogen is not well-understood, yet it may be relevant to devise strategies to tackle CR-Kp colonization and infection. Here, we adopted an in vivo model to examine the transcriptional adaptation of a CR-Kp clinical isolate to immune activation in the intestine. We report that as early as 6 hours following host treatment with anti-CD3 antibody, CR-Kp underwent rapid transcriptional changes including downregulation of genes involved in sugar utilization and amino acid biosynthesis and upregulation of genes involved in amino acid uptake and catabolism, antibiotic resistance, and stress response. In agreement with these findings, treatment increased the concentration of oxidative species and amino acids in the mouse intestine. Genes encoding for proteins containing the domain of unknown function (DUF) 1471 were strongly upregulated, however their deletion did not impair CR-Kp fitness in vivo upon immune activation. Transcription factor enrichment analysis identified the global regulator cAMP-Receptor Protein, CRP, as a potential orchestrator of the observed transcriptional signature. In keeping with the recognized role of CRP in regulating utilization of alternative carbon sources, crp deletion in CR-Kp resulted in strongly impaired gut colonization, although this effect was not amplified by immune activation. Thus, following intestinal colonization, which occurs in a CRP-dependent manner, CR-Kp can rapidly respond to immune cues by implementing a well-defined and complex transcriptional program whose direct relevance toward bacterial fitness warrants further investigation. Additional analyses utilizing this model may identify key factors to tackle CR-Kp colonization of the intestine.
Collapse
Affiliation(s)
- Clement David
- Department of Pathology and Immunology, Faculty of Medicine, University of Geneva, Geneva, Switzerland
- Geneva Centre for Inflammation Research, Faculty of Medicine, University of Geneva, Geneva, Switzerland
| | - Aleksander Czauderna
- Department of Pathology and Immunology, Faculty of Medicine, University of Geneva, Geneva, Switzerland
- Geneva Centre for Inflammation Research, Faculty of Medicine, University of Geneva, Geneva, Switzerland
| | - Liqing Cheng
- Department of Pathology and Immunology, Faculty of Medicine, University of Geneva, Geneva, Switzerland
- Geneva Centre for Inflammation Research, Faculty of Medicine, University of Geneva, Geneva, Switzerland
| | - Marion Lagune
- Department of Pathology and Immunology, Faculty of Medicine, University of Geneva, Geneva, Switzerland
- Geneva Centre for Inflammation Research, Faculty of Medicine, University of Geneva, Geneva, Switzerland
| | - Hea-Jin Jung
- Immunology Program, Sloan Kettering Institute, Memorial Sloan-Kettering Cancer Center, New York, NY, USA
| | - Sohn G. Kim
- Immunology Program, Sloan Kettering Institute, Memorial Sloan-Kettering Cancer Center, New York, NY, USA
| | - Eric G. Pamer
- Immunology Program, Sloan Kettering Institute, Memorial Sloan-Kettering Cancer Center, New York, NY, USA
- Duchossois Family Institute, University of Chicago, Chicago, IL, USA
| | - Julien Prados
- Bioinformatics Support Platform for data analysis, Faculty of medicine, University of Geneva, Geneva, Switzerland
| | - Liang Chen
- Department of Pharmacy Practice, School of Pharmacy and Pharmaceutical Sciences, University at Buffalo, Buffalo, NY, USA
| | - Simone Becattini
- Department of Pathology and Immunology, Faculty of Medicine, University of Geneva, Geneva, Switzerland
- Geneva Centre for Inflammation Research, Faculty of Medicine, University of Geneva, Geneva, Switzerland
| |
Collapse
|
17
|
Tan Y, Chrysopoulou M, Rinschen MM. Integrative physiology of lysine metabolites. Physiol Genomics 2023; 55:579-586. [PMID: 37781739 DOI: 10.1152/physiolgenomics.00061.2023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2023] [Revised: 09/27/2023] [Accepted: 09/27/2023] [Indexed: 10/03/2023] Open
Abstract
Lysine is an essential amino acid that serves as a building block in protein synthesis. Beside this, the metabolic activity of lysine has only recently been unraveled. Lysine metabolism is tissue specific and is linked to several renal, cardiovascular, and endocrinological diseases through human metabolomics datasets. As a free molecule, lysine takes part in the antioxidant response and engages in protein modifications, and its chemistry shapes both proteome and metabolome. In the proteome, it is an acceptor for a plethora of posttranslational modifications. In the metabolome, it can be modified, conjugated, and degraded. Here, we provide an update on integrative physiology of mammalian lysine metabolites such as α-aminoadipic acid, saccharopine, pipecolic acid, and lysine conjugates such as acetyl-lysine, and sugar-lysine conjugates such as advanced glycation end products. We also comment on their emerging associative and mechanistic links to renal disease, hypertension, diabetes, and cancer.
Collapse
Affiliation(s)
- Yifan Tan
- Department of Biomedicine, Aarhus University, Aarhus, Denmark
| | | | - Markus M Rinschen
- Department of Biomedicine, Aarhus University, Aarhus, Denmark
- III Department of Medicine, University Medical Center Hamburg Eppendorf, Hamburg, Germany
- Aarhus Institute of Advanced Studies, Aarhus University, Aarhus, Denmark
| |
Collapse
|
18
|
Kost C, Patil KR, Friedman J, Garcia SL, Ralser M. Metabolic exchanges are ubiquitous in natural microbial communities. Nat Microbiol 2023; 8:2244-2252. [PMID: 37996708 DOI: 10.1038/s41564-023-01511-x] [Citation(s) in RCA: 21] [Impact Index Per Article: 21.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2022] [Accepted: 09/11/2023] [Indexed: 11/25/2023]
Abstract
Microbial communities drive global biogeochemical cycles and shape the health of plants and animals-including humans. Their structure and function are determined by ecological and environmental interactions that govern the assembly, stability and evolution of microbial communities. A widely held view is that antagonistic interactions such as competition predominate in microbial communities and are ecologically more important than synergistic interactions-for example, mutualism or commensalism. Over the past decade, however, a more nuanced picture has emerged, wherein bacteria, archaea and fungi exist within interactive networks in which they exchange essential and non-essential metabolites. These metabolic interactions profoundly impact not only the physiology, ecology and evolution of the strains involved, but are also central to the functioning of many, if not all, microbiomes. Therefore, we advocate for a balanced view of microbiome ecology that encompasses both synergistic and antagonistic interactions as key forces driving the structure and dynamics within microbial communities.
Collapse
Affiliation(s)
- Christian Kost
- Osnabrück University, Department of Ecology, School of Biology/Chemistry, Osnabrück, Germany.
| | - Kiran Raosaheb Patil
- Medical Research Council Toxicology Unit, University of Cambridge, Cambridge, UK.
| | - Jonathan Friedman
- Department of Plant Pathology and Microbiology, The Hebrew University of Jerusalem, Rehovot, Israel.
| | - Sarahi L Garcia
- Department of Ecology, Environment and Plant Sciences, Science for Life Laboratory, Stockholm University, Stockholm, Sweden.
| | - Markus Ralser
- Charité - Universitätsmedizin Berlin, Department of Biochemistry, Berlin, Germany.
- The Wellcome Centre for Human Genetics, Nuffield Department of Medicine, University of Oxford, Oxford, UK.
- Max Planck Institute for Molecular Genetics, Berlin, Germany.
| |
Collapse
|
19
|
Carter EL, Constantinidou C, Alam MT. Applications of genome-scale metabolic models to investigate microbial metabolic adaptations in response to genetic or environmental perturbations. Brief Bioinform 2023; 25:bbad439. [PMID: 38048080 PMCID: PMC10694557 DOI: 10.1093/bib/bbad439] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2023] [Revised: 09/21/2023] [Accepted: 11/08/2023] [Indexed: 12/05/2023] Open
Abstract
Environmental perturbations are encountered by microorganisms regularly and will require metabolic adaptations to ensure an organism can survive in the newly presenting conditions. In order to study the mechanisms of metabolic adaptation in such conditions, various experimental and computational approaches have been used. Genome-scale metabolic models (GEMs) are one of the most powerful approaches to study metabolism, providing a platform to study the systems level adaptations of an organism to different environments which could otherwise be infeasible experimentally. In this review, we are describing the application of GEMs in understanding how microbes reprogram their metabolic system as a result of environmental variation. In particular, we provide the details of metabolic model reconstruction approaches, various algorithms and tools for model simulation, consequences of genetic perturbations, integration of '-omics' datasets for creating context-specific models and their application in studying metabolic adaptation due to the change in environmental conditions.
Collapse
Affiliation(s)
- Elena Lucy Carter
- Warwick Medical School, University of Warwick, Coventry, CV4 7HL, UK
| | | | | |
Collapse
|
20
|
Alam S, Doherty E, Ortega-Prieto P, Arizanova J, Fets L. Membrane transporters in cell physiology, cancer metabolism and drug response. Dis Model Mech 2023; 16:dmm050404. [PMID: 38037877 PMCID: PMC10695176 DOI: 10.1242/dmm.050404] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/02/2023] Open
Abstract
By controlling the passage of small molecules across lipid bilayers, membrane transporters influence not only the uptake and efflux of nutrients, but also the metabolic state of the cell. With more than 450 members, the Solute Carriers (SLCs) are the largest transporter super-family, clustering into families with different substrate specificities and regulatory properties. Cells of different types are, therefore, able to tailor their transporter expression signatures depending on their metabolic requirements, and the physiological importance of these proteins is illustrated by their mis-regulation in a number of disease states. In cancer, transporter expression is heterogeneous, and the SLC family has been shown to facilitate the accumulation of biomass, influence redox homeostasis, and also mediate metabolic crosstalk with other cell types within the tumour microenvironment. This Review explores the roles of membrane transporters in physiological and malignant settings, and how these roles can affect drug response, through either indirect modulation of sensitivity or the direct transport of small-molecule therapeutic compounds into cells.
Collapse
Affiliation(s)
- Sara Alam
- Drug Transport and Tumour Metabolism Lab, MRC Laboratory of Medical Sciences, Hammersmith Hospital Campus, Du Cane Road, London, W12 0NN, UK
| | - Emily Doherty
- Drug Transport and Tumour Metabolism Lab, MRC Laboratory of Medical Sciences, Hammersmith Hospital Campus, Du Cane Road, London, W12 0NN, UK
| | - Paula Ortega-Prieto
- Drug Transport and Tumour Metabolism Lab, MRC Laboratory of Medical Sciences, Hammersmith Hospital Campus, Du Cane Road, London, W12 0NN, UK
| | - Julia Arizanova
- Drug Transport and Tumour Metabolism Lab, MRC Laboratory of Medical Sciences, Hammersmith Hospital Campus, Du Cane Road, London, W12 0NN, UK
| | - Louise Fets
- Drug Transport and Tumour Metabolism Lab, MRC Laboratory of Medical Sciences, Hammersmith Hospital Campus, Du Cane Road, London, W12 0NN, UK
| |
Collapse
|
21
|
Bennis M, Kaddouri K, Badaoui B, Bouhnik O, Chaddad Z, Perez-Tapia V, Lamin H, Alami S, Lamrabet M, Abdelmoumen H, Bedmar EJ, Missbah El Idrissi M. Plant growth promoting activities of Pseudomonas sp. and Enterobacter sp. isolated from the rhizosphere of Vachellia gummifera in Morocco. FEMS Microbiol Ecol 2023; 99:fiad114. [PMID: 37742210 DOI: 10.1093/femsec/fiad114] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2023] [Revised: 08/22/2023] [Accepted: 09/19/2023] [Indexed: 09/26/2023] Open
Abstract
The Moroccan endemic Vachellia gummifera grows wild under extreme desert conditions. This plant could be used as an alternative fodder for goats, and camels, in order to protect the Argan forests against overgrazing in Central and Southwestern Moroccan semiarid areas. With the aim to improve the V. gummifera population's density in semiarid areas, we proposed its inoculation with performing plant growth-promoting bacteria. Hence, 500 bacteria were isolated from the plant rhizosphere. From these, 291 isolates were retained for plant growth-promoting (PGP) activities assessment. A total of 44 isolates showed the best phosphates solubilization potential, as well as siderophore and auxin production. The combination of REP-PCR (repetitive extragenic palindromic-polymerase chain reaction) fingerprinting, PGP activities, and phenotypic properties, allowed the selection of three strains for the inoculation experiments. The three selected strains' 16S rRNA sequencing showed that they are members of the Enterobacter and Pseudomonas genera. The inoculation with three strains had diverse effects on V. gummifera growth parameters. All single and combined inoculations improved the plant shoot weight by more than 200%, and the root length by up to 139%, while some combinations further improved protein and chlorophyll content, thereby improving the plant's forage value. The three selected strains constitute an effective inoculum for use in the arid and semiarid zones of southern Morocco.
Collapse
Affiliation(s)
- Meryeme Bennis
- Equipe de Microbiologie et Biologie Moléculaire, Centre de Biotechnologies végétales et microbiennes, Biodiversité et Environnement, Faculty of Sciences, Mohammed V University in Rabat, 4 Avenue Ibn Battouta, Agdal, B.P. 1014 RP, Rabat 10080, Morocco
| | - Koutar Kaddouri
- Equipe de Microbiologie et Biologie Moléculaire, Centre de Biotechnologies végétales et microbiennes, Biodiversité et Environnement, Faculty of Sciences, Mohammed V University in Rabat, 4 Avenue Ibn Battouta, Agdal, B.P. 1014 RP, Rabat 10080, Morocco
| | - Bouabid Badaoui
- Laboratoire de Zoologie et de Biologie Générale, Centre de Biotechnologies végétales et microbiennes, Biodiversité et Environnement, Faculty of Sciences, Mohammed V University in Rabat, 4 Avenue Ibn Battouta, Agdal, B.P. 1014 RP, Rabat 10080, Morocco
| | - Omar Bouhnik
- Equipe de Microbiologie et Biologie Moléculaire, Centre de Biotechnologies végétales et microbiennes, Biodiversité et Environnement, Faculty of Sciences, Mohammed V University in Rabat, 4 Avenue Ibn Battouta, Agdal, B.P. 1014 RP, Rabat 10080, Morocco
| | - Zohra Chaddad
- Equipe de Microbiologie et Biologie Moléculaire, Centre de Biotechnologies végétales et microbiennes, Biodiversité et Environnement, Faculty of Sciences, Mohammed V University in Rabat, 4 Avenue Ibn Battouta, Agdal, B.P. 1014 RP, Rabat 10080, Morocco
| | - Vicente Perez-Tapia
- Departamento de Microbiología del Suelo y Sistemas Simbíoticos Estacíon Experimental del Zaidín, CSIC, Apartado Postal 419, 18008 Granada, Spain
| | - Hanane Lamin
- Equipe de Microbiologie et Biologie Moléculaire, Centre de Biotechnologies végétales et microbiennes, Biodiversité et Environnement, Faculty of Sciences, Mohammed V University in Rabat, 4 Avenue Ibn Battouta, Agdal, B.P. 1014 RP, Rabat 10080, Morocco
| | - Soufiane Alami
- Equipe de Microbiologie et Biologie Moléculaire, Centre de Biotechnologies végétales et microbiennes, Biodiversité et Environnement, Faculty of Sciences, Mohammed V University in Rabat, 4 Avenue Ibn Battouta, Agdal, B.P. 1014 RP, Rabat 10080, Morocco
| | - Mouad Lamrabet
- Equipe de Microbiologie et Biologie Moléculaire, Centre de Biotechnologies végétales et microbiennes, Biodiversité et Environnement, Faculty of Sciences, Mohammed V University in Rabat, 4 Avenue Ibn Battouta, Agdal, B.P. 1014 RP, Rabat 10080, Morocco
| | - Hanaa Abdelmoumen
- Equipe de Microbiologie et Biologie Moléculaire, Centre de Biotechnologies végétales et microbiennes, Biodiversité et Environnement, Faculty of Sciences, Mohammed V University in Rabat, 4 Avenue Ibn Battouta, Agdal, B.P. 1014 RP, Rabat 10080, Morocco
| | - Eulogio J Bedmar
- Departamento de Microbiología del Suelo y Sistemas Simbíoticos Estacíon Experimental del Zaidín, CSIC, Apartado Postal 419, 18008 Granada, Spain
| | - Mustapha Missbah El Idrissi
- Equipe de Microbiologie et Biologie Moléculaire, Centre de Biotechnologies végétales et microbiennes, Biodiversité et Environnement, Faculty of Sciences, Mohammed V University in Rabat, 4 Avenue Ibn Battouta, Agdal, B.P. 1014 RP, Rabat 10080, Morocco
| |
Collapse
|
22
|
Bei Q, Reitz T, Schnabel B, Eisenhauer N, Schädler M, Buscot F, Heintz-Buschart A. Extreme summers impact cropland and grassland soil microbiomes. THE ISME JOURNAL 2023; 17:1589-1600. [PMID: 37419993 PMCID: PMC10504347 DOI: 10.1038/s41396-023-01470-5] [Citation(s) in RCA: 14] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/23/2023] [Revised: 06/20/2023] [Accepted: 06/23/2023] [Indexed: 07/09/2023]
Abstract
The increasing frequency of extreme weather events highlights the need to understand how soil microbiomes respond to such disturbances. Here, metagenomics was used to investigate the effects of future climate scenarios (+0.6 °C warming and altered precipitation) on soil microbiomes during the summers of 2014-2019. Unexpectedly, Central Europe experienced extreme heatwaves and droughts during 2018-2019, causing significant impacts on the structure, assembly, and function of soil microbiomes. Specifically, the relative abundance of Actinobacteria (bacteria), Eurotiales (fungi), and Vilmaviridae (viruses) was significantly increased in both cropland and grassland. The contribution of homogeneous selection to bacterial community assembly increased significantly from 40.0% in normal summers to 51.9% in extreme summers. Moreover, genes associated with microbial antioxidant (Ni-SOD), cell wall biosynthesis (glmSMU, murABCDEF), heat shock proteins (GroES/GroEL, Hsp40), and sporulation (spoIID, spoVK) were identified as potential contributors to drought-enriched taxa, and their expressions were confirmed by metatranscriptomics in 2022. The impact of extreme summers was further evident in the taxonomic profiles of 721 recovered metagenome-assembled genomes (MAGs). Annotation of contigs and MAGs suggested that Actinobacteria may have a competitive advantage in extreme summers due to the biosynthesis of geosmin and 2-methylisoborneol. Future climate scenarios caused a similar pattern of changes in microbial communities as extreme summers, but to a much lesser extent. Soil microbiomes in grassland showed greater resilience to climate change than those in cropland. Overall, this study provides a comprehensive framework for understanding the response of soil microbiomes to extreme summers.
Collapse
Affiliation(s)
- Qicheng Bei
- German Centre for Integrative Biodiversity Research (iDiv) Halle-Jena-Leipzig, Leipzig, Germany.
- Department of Soil Ecology, Helmholtz Centre for Environmental Research - UFZ, Halle (Saale), Germany.
| | - Thomas Reitz
- German Centre for Integrative Biodiversity Research (iDiv) Halle-Jena-Leipzig, Leipzig, Germany
- Department of Soil Ecology, Helmholtz Centre for Environmental Research - UFZ, Halle (Saale), Germany
| | - Beatrix Schnabel
- Department of Soil Ecology, Helmholtz Centre for Environmental Research - UFZ, Halle (Saale), Germany
| | - Nico Eisenhauer
- German Centre for Integrative Biodiversity Research (iDiv) Halle-Jena-Leipzig, Leipzig, Germany
- Institute of Biology, Leipzig University, Leipzig, Germany
| | - Martin Schädler
- German Centre for Integrative Biodiversity Research (iDiv) Halle-Jena-Leipzig, Leipzig, Germany
- Department of Community Ecology, Helmholtz Centre for Environmental Research - UFZ, Halle (Saale), Germany
| | - François Buscot
- German Centre for Integrative Biodiversity Research (iDiv) Halle-Jena-Leipzig, Leipzig, Germany
- Department of Soil Ecology, Helmholtz Centre for Environmental Research - UFZ, Halle (Saale), Germany
| | - Anna Heintz-Buschart
- Swammerdam Institute for Life Sciences, University of Amsterdam, Amsterdam, The Netherlands.
| |
Collapse
|
23
|
Pattinson A, Bahia S, Le Gall G, Morris CJ, Harding SV, McArthur M. Using a multi-omic approach to investigate the mechanism of 12-bis-THA activity against Burkholderia thailandensis. Front Microbiol 2023; 13:1092230. [PMID: 37252207 PMCID: PMC10213367 DOI: 10.3389/fmicb.2022.1092230] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2022] [Accepted: 12/28/2022] [Indexed: 05/31/2023] Open
Abstract
Burkholderia pseudomallei is the causative agent of the tropical disease, melioidosis. It is intrinsically resistant to many antimicrobials and treatment requires an onerous regimen of intravenous and orally administered drugs. Relapse of disease and high rates of mortality following treatment are common, demonstrating the need for new anti-Burkholderia agents. The cationic bola-amphiphile, 12,12'-(dodecane-1,12-diyl) bis (9-amino-1,2,3,4-tetrahydroacridinium), referred to as 12-bis-THA, is a molecule with the potential to treat Burkholderia infections. 12-bis-THA spontaneously forms cationic nanoparticles that bind anionic phospholipids in the prokaryotic membrane and are readily internalized. In this study, we examine the antimicrobial activity of 12-bis-THA against strains of Burkholderia thailandensis. As B. pseudomallei produces a polysaccharide capsule we first examined if this extra barrier influenced the activity of 12-bis-THA which is known to act on the bacterial envelope. Therefore two strains of B. thailandensis were selected for further testing, strain E264 which does not produce a capsule and strain E555 which does produce a capsule that is chemically similar to that found in B. pseudomallei. In this study no difference in the minimum inhibitory concentration (MIC) was observed when capsulated (E555) and unencapsulated (E264) strains of B. thailandensis were compared, however time-kill analysis showed that the unencapsulated strain was more susceptible to 12-bis-THA. The presence of the capsule did not affect the membrane permeation of 12-bis-THA at MIC concentrations. Proteomic and metabolomic analyses showed that 12-bis-THA causes a shift in central metabolism away from glycolysis and glyoxylate cycle, and suppressed the production of the F1 domain of ATP synthase. In summary, we provide insight into the molecular mechanisms underpinning the activity of 12-bis-THA against B. thailandensis and discuss its potential for further development.
Collapse
Affiliation(s)
- Adam Pattinson
- Norwich Medical School, Bob Champion Building for Research and Education, University of East Anglia, Norwich, United Kingdom
| | - Sandeep Bahia
- School of Pharmacy, University of East Anglia, Norwich, United Kingdom
| | - Gwénaëlle Le Gall
- Norwich Medical School, Bob Champion Building for Research and Education, University of East Anglia, Norwich, United Kingdom
| | | | - Sarah V. Harding
- CBR Division, Defense Science and Technology Laboratory, Salisbury, United Kingdom
- Department of Respiratory Sciences, University of Leicester, Leicester, United Kingdom
| | - Michael McArthur
- Norwich Medical School, Bob Champion Building for Research and Education, University of East Anglia, Norwich, United Kingdom
| |
Collapse
|
24
|
Yuan H, Wu X, Wu Q, Chatoff A, Megill E, Gao J, Huang T, Duan T, Yang K, Jin C, Yuan F, Wang S, Zhao L, Zinn PO, Abdullah KG, Zhao Y, Snyder NW, Rich JN. Lysine catabolism reprograms tumour immunity through histone crotonylation. Nature 2023; 617:818-826. [PMID: 37198486 PMCID: PMC11089809 DOI: 10.1038/s41586-023-06061-0] [Citation(s) in RCA: 44] [Impact Index Per Article: 44.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2022] [Accepted: 04/06/2023] [Indexed: 05/19/2023]
Abstract
Cancer cells rewire metabolism to favour the generation of specialized metabolites that support tumour growth and reshape the tumour microenvironment1,2. Lysine functions as a biosynthetic molecule, energy source and antioxidant3-5, but little is known about its pathological role in cancer. Here we show that glioblastoma stem cells (GSCs) reprogram lysine catabolism through the upregulation of lysine transporter SLC7A2 and crotonyl-coenzyme A (crotonyl-CoA)-producing enzyme glutaryl-CoA dehydrogenase (GCDH) with downregulation of the crotonyl-CoA hydratase enoyl-CoA hydratase short chain 1 (ECHS1), leading to accumulation of intracellular crotonyl-CoA and histone H4 lysine crotonylation. A reduction in histone lysine crotonylation by either genetic manipulation or lysine restriction impaired tumour growth. In the nucleus, GCDH interacts with the crotonyltransferase CBP to promote histone lysine crotonylation. Loss of histone lysine crotonylation promotes immunogenic cytosolic double-stranded RNA (dsRNA) and dsDNA generation through enhanced H3K27ac, which stimulates the RNA sensor MDA5 and DNA sensor cyclic GMP-AMP synthase (cGAS) to boost type I interferon signalling, leading to compromised GSC tumorigenic potential and elevated CD8+ T cell infiltration. A lysine-restricted diet synergized with MYC inhibition or anti-PD-1 therapy to slow tumour growth. Collectively, GSCs co-opt lysine uptake and degradation to shunt the production of crotonyl-CoA, remodelling the chromatin landscape to evade interferon-induced intrinsic effects on GSC maintenance and extrinsic effects on immune response.
Collapse
Affiliation(s)
- Huairui Yuan
- Hillman Cancer Center and Department of Neurology, University of Pittsburgh Medical Center, Pittsburgh, PA, USA
| | - Xujia Wu
- Hillman Cancer Center and Department of Neurology, University of Pittsburgh Medical Center, Pittsburgh, PA, USA
| | - Qiulian Wu
- Hillman Cancer Center and Department of Neurology, University of Pittsburgh Medical Center, Pittsburgh, PA, USA
| | - Adam Chatoff
- Department of Cardiovascular Sciences, Lewis Katz School of Medicine at Temple University, Philadelphia, PA, USA
| | - Emily Megill
- Department of Cardiovascular Sciences, Lewis Katz School of Medicine at Temple University, Philadelphia, PA, USA
| | - Jinjun Gao
- Ben May Department for Cancer Research, The University of Chicago, Chicago, IL, USA
| | - Tengfei Huang
- Hillman Cancer Center and Department of Neurology, University of Pittsburgh Medical Center, Pittsburgh, PA, USA
| | - Tingting Duan
- Hillman Cancer Center and Department of Neurology, University of Pittsburgh Medical Center, Pittsburgh, PA, USA
| | - Kailin Yang
- Department of Radiation Oncology, Taussig Cancer Center, Cleveland Clinic, Cleveland, OH, USA
| | - Chunyu Jin
- Department and School of Medicine, University of California, San Diego, CA, USA
| | - Fanen Yuan
- Hillman Cancer Center and Department of Neurology, University of Pittsburgh Medical Center, Pittsburgh, PA, USA
| | - Shuai Wang
- Hillman Cancer Center and Department of Neurology, University of Pittsburgh Medical Center, Pittsburgh, PA, USA
| | - Linjie Zhao
- Hillman Cancer Center and Department of Neurology, University of Pittsburgh Medical Center, Pittsburgh, PA, USA
| | - Pascal O Zinn
- Hillman Cancer Center and Department of Neurology, University of Pittsburgh Medical Center, Pittsburgh, PA, USA
- Department of Neurosurgery, University of Pittsburgh Medical Center, Pittsburgh, PA, USA
| | - Kalil G Abdullah
- Hillman Cancer Center and Department of Neurology, University of Pittsburgh Medical Center, Pittsburgh, PA, USA
- Department of Neurosurgery, University of Pittsburgh Medical Center, Pittsburgh, PA, USA
| | - Yingming Zhao
- Ben May Department for Cancer Research, The University of Chicago, Chicago, IL, USA
| | - Nathaniel W Snyder
- Department of Cardiovascular Sciences, Lewis Katz School of Medicine at Temple University, Philadelphia, PA, USA
| | - Jeremy N Rich
- Hillman Cancer Center and Department of Neurology, University of Pittsburgh Medical Center, Pittsburgh, PA, USA.
- Department of Neurology, University of Pittsburgh Medical Center, Pittsburgh, PA, USA.
| |
Collapse
|
25
|
Druseikis M, Mottola A, Berman J. The Metabolism of Susceptibility: Clearing the FoG Between Tolerance and Resistance in Candida albicans. CURRENT CLINICAL MICROBIOLOGY REPORTS 2023; 10:36-46. [DOI: 10.1007/s40588-023-00189-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/30/2023]
|
26
|
Soluble dietary fiber from Prunus persica dregs alleviates gut microbiota dysfunction through lead excretion. Food Chem Toxicol 2023; 175:113725. [PMID: 36925041 DOI: 10.1016/j.fct.2023.113725] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2022] [Revised: 02/28/2023] [Accepted: 03/13/2023] [Indexed: 03/17/2023]
Abstract
Lead (Pb) can pollute the environment and food through air, water and other means, resulting in human exposure to lead pollution, and there is no threshold level of lead toxicity, even small doses of lead will have a range of harmful effects in humans. This study demonstrates for the first time that dietary addition of soluble dietary fiber (SDF) from Prunus persica dregs reduces lead bioaccumulation in mice, and eliminates lead through feces. Compared with lead-exposed mice, SDF supplementation effectively prevented lead-induced changes in colon tissue, and increased expression of tight junction proteins (ZO-1 and occludin). We analyzed the effects of SDF on gut microbiota and metabolites by a combination of 16S rRNA high-throughput sequencing and untargeted metabolomics. The results showed that SDF altered lead-induced perturbations in the layout and structure of the gut microbiota, including increased Desulfovibrio and Alistipes abundance and decreased Bacteroidetes abundance. Meanwhile, we also provide evidence that SDF supplementation alters the levels of amino acids, bile acids, and lipids in the gut, and that these metabolites are closely associated with microbiota with good lead binding capacity. Therefore, we speculate that SDF has the potential to provide a protective effect against intestinal damage by promoting lead excretion.
Collapse
|
27
|
Kamrad S, Correia-Melo C, Szyrwiel L, Aulakh SK, Bähler J, Demichev V, Mülleder M, Ralser M. Metabolic heterogeneity and cross-feeding within isogenic yeast populations captured by DILAC. Nat Microbiol 2023; 8:441-454. [PMID: 36797484 PMCID: PMC9981460 DOI: 10.1038/s41564-022-01304-8] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2022] [Accepted: 12/13/2022] [Indexed: 02/18/2023]
Abstract
Genetically identical cells are known to differ in many physiological parameters such as growth rate and drug tolerance. Metabolic specialization is believed to be a cause of such phenotypic heterogeneity, but detection of metabolically divergent subpopulations remains technically challenging. We developed a proteomics-based technology, termed differential isotope labelling by amino acids (DILAC), that can detect producer and consumer subpopulations of a particular amino acid within an isogenic cell population by monitoring peptides with multiple occurrences of the amino acid. We reveal that young, morphologically undifferentiated yeast colonies contain subpopulations of lysine producers and consumers that emerge due to nutrient gradients. Deconvoluting their proteomes using DILAC, we find evidence for in situ cross-feeding where rapidly growing cells ferment and provide the more slowly growing, respiring cells with ethanol. Finally, by combining DILAC with fluorescence-activated cell sorting, we show that the metabolic subpopulations diverge phenotypically, as exemplified by a different tolerance to the antifungal drug amphotericin B. Overall, DILAC captures previously unnoticed metabolic heterogeneity and provides experimental evidence for the role of metabolic specialization and cross-feeding interactions as a source of phenotypic heterogeneity in isogenic cell populations.
Collapse
Affiliation(s)
- Stephan Kamrad
- Department of Biochemistry, Charité Universitätsmedizin Berlin, Berlin, Germany
- Molecular Biology of Metabolism Laboratory, The Francis Crick Institute, London, UK
| | - Clara Correia-Melo
- Department of Biochemistry, Charité Universitätsmedizin Berlin, Berlin, Germany
- Molecular Biology of Metabolism Laboratory, The Francis Crick Institute, London, UK
| | - Lukasz Szyrwiel
- Department of Biochemistry, Charité Universitätsmedizin Berlin, Berlin, Germany
| | - Simran Kaur Aulakh
- Molecular Biology of Metabolism Laboratory, The Francis Crick Institute, London, UK
| | - Jürg Bähler
- Institute of Healthy Ageing and Department of Genetics, Evolution and Environment, University College London, London, UK
| | - Vadim Demichev
- Department of Biochemistry, Charité Universitätsmedizin Berlin, Berlin, Germany
- Molecular Biology of Metabolism Laboratory, The Francis Crick Institute, London, UK
| | - Michael Mülleder
- Core Facility-High-Throughput Mass Spectrometry, Charité Universitätsmedizin Berlin, Berlin, Germany
| | - Markus Ralser
- Department of Biochemistry, Charité Universitätsmedizin Berlin, Berlin, Germany.
- Molecular Biology of Metabolism Laboratory, The Francis Crick Institute, London, UK.
- The Wellcome Centre for Human Genetics, Nuffield Department of Medicine, University of Oxford, Oxford, UK.
- Max Planck Institute for Molecular Genetics, Berlin, Germany.
| |
Collapse
|
28
|
West R, Delattre H, Noor E, Feliu E, Soyer OS. Dynamics of co-substrate pools can constrain and regulate metabolic fluxes. eLife 2023; 12:84379. [PMID: 36799616 PMCID: PMC10027320 DOI: 10.7554/elife.84379] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2022] [Accepted: 02/16/2023] [Indexed: 02/18/2023] Open
Abstract
Cycling of co-substrates, whereby a metabolite is converted among alternate forms via different reactions, is ubiquitous in metabolism. Several cycled co-substrates are well known as energy and electron carriers (e.g. ATP and NAD(P)H), but there are also other metabolites that act as cycled co-substrates in different parts of central metabolism. Here, we develop a mathematical framework to analyse the effect of co-substrate cycling on metabolic flux. In the cases of a single reaction and linear pathways, we find that co-substrate cycling imposes an additional flux limit on a reaction, distinct to the limit imposed by the kinetics of the primary enzyme catalysing that reaction. Using analytical methods, we show that this additional limit is a function of the total pool size and turnover rate of the cycled co-substrate. Expanding from this insight and using simulations, we show that regulation of these two parameters can allow regulation of flux dynamics in branched and coupled pathways. To support these theoretical insights, we analysed existing flux measurements and enzyme levels from the central carbon metabolism and identified several reactions that could be limited by the dynamics of co-substrate cycling. We discuss how the limitations imposed by co-substrate cycling provide experimentally testable hypotheses on specific metabolic phenotypes. We conclude that measuring and controlling co-substrate dynamics is crucial for understanding and engineering metabolic fluxes in cells.
Collapse
Affiliation(s)
- Robert West
- School of Life Sciences, University of Warwick, Warwick, United Kingdom
| | - Hadrien Delattre
- School of Life Sciences, University of Warwick, Warwick, United Kingdom
| | - Elad Noor
- Department of Plant and Environmental Sciences, Weizmann Institute of Science, Rehovot, Israel
| | - Elisenda Feliu
- Department of Mathematics, University of Copenhagen, Copenhagen, Denmark
| | - Orkun S Soyer
- School of Life Sciences, University of Warwick, Warwick, United Kingdom
| |
Collapse
|
29
|
Real-time monitoring of subcellular states with genetically encoded redox biosensor system (RBS) in yeast cell factories. Biosens Bioelectron 2023; 222:114988. [PMID: 36521204 DOI: 10.1016/j.bios.2022.114988] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2022] [Revised: 11/22/2022] [Accepted: 12/04/2022] [Indexed: 12/12/2022]
Abstract
During industrial fermentation, microbial cell factories are usually confronted with environmental or metabolic stresses, leading to the imbalance of intracellular redox and the reduction of cell metabolic capacity. Here, we constructed the genetically encoded redox biosensor system (RBS) based on redox-sensitive fluorescent proteins to detect redox metabolites, including reactive oxygen species (ROS), oxidized glutathione, NADH, and NADPH in Saccharomyces cerevisiae. The functional biosensors were quantitatively characterized and the orthogonal redox biosensor system (oRBS) was designed for detecting multiple redox metabolites. Furthermore, the compartment targeted redox biosensor system (ctRBS) was constructed to detect ROS and NADPH, revealing the distribution and spatiotemporal dynamics of ROS in yeast under various stress conditions. As a proof-of-concept, RBS was applied to evaluate the redox states of engineered yeast with stress resistance and heterogenous triterpene synthesis in vivo, elucidating the redox balance significantly affecting the growth and production phenotypes. The RBS in this study allowed the exploration of the diversity of compartmental redox state and real-time monitoring of the production process of yeast, providing a reliable and effective approach for accurate and in-depth profiling of bottlenecks of yeast cell factories.
Collapse
|
30
|
Correia-Melo C, Kamrad S, Tengölics R, Messner CB, Trebulle P, Townsend S, Jayasree Varma S, Freiwald A, Heineike BM, Campbell K, Herrera-Dominguez L, Kaur Aulakh S, Szyrwiel L, Yu JSL, Zelezniak A, Demichev V, Mülleder M, Papp B, Alam MT, Ralser M. Cell-cell metabolite exchange creates a pro-survival metabolic environment that extends lifespan. Cell 2023; 186:63-79.e21. [PMID: 36608659 DOI: 10.1016/j.cell.2022.12.007] [Citation(s) in RCA: 16] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2022] [Revised: 09/07/2022] [Accepted: 12/05/2022] [Indexed: 01/07/2023]
Abstract
Metabolism is deeply intertwined with aging. Effects of metabolic interventions on aging have been explained with intracellular metabolism, growth control, and signaling. Studying chronological aging in yeast, we reveal a so far overlooked metabolic property that influences aging via the exchange of metabolites. We observed that metabolites exported by young cells are re-imported by chronologically aging cells, resulting in cross-generational metabolic interactions. Then, we used self-establishing metabolically cooperating communities (SeMeCo) as a tool to increase metabolite exchange and observed significant lifespan extensions. The longevity of the SeMeCo was attributable to metabolic reconfigurations in methionine consumer cells. These obtained a more glycolytic metabolism and increased the export of protective metabolites that in turn extended the lifespan of cells that supplied them with methionine. Our results establish metabolite exchange interactions as a determinant of cellular aging and show that metabolically cooperating cells can shape the metabolic environment to extend their lifespan.
Collapse
Affiliation(s)
- Clara Correia-Melo
- The Molecular Biology of Metabolism Laboratory, The Francis Crick Institute, London NW1 1AT, UK; Department of Biochemistry, University of Cambridge, Cambridge CB2 1QW, UK; Department of Biochemistry, Charité - Universitätsmedizin Berlin, 10117 Berlin, Germany.
| | - Stephan Kamrad
- The Molecular Biology of Metabolism Laboratory, The Francis Crick Institute, London NW1 1AT, UK
| | - Roland Tengölics
- Synthetic and Systems Biology Unit, Institute of Biochemistry, Biological Research Centre, Eötvös Loránd Research Network, Szeged 6726, Hungary; HCEMM-BRC Metabolic Systems Biology Lab, Szeged 6726, Hungary
| | - Christoph B Messner
- The Molecular Biology of Metabolism Laboratory, The Francis Crick Institute, London NW1 1AT, UK; Precision Proteomics Center, Swiss Institute of Allergy and Asthma Research (SIAF), University of Zurich, 7265 Davos, Switzerland
| | - Pauline Trebulle
- The Molecular Biology of Metabolism Laboratory, The Francis Crick Institute, London NW1 1AT, UK; The Wellcome Centre for Human Genetics, Nuffield Department of Medicine, University of Oxford, Oxford OX3 7BN, UK
| | - StJohn Townsend
- The Molecular Biology of Metabolism Laboratory, The Francis Crick Institute, London NW1 1AT, UK; Department of Biochemistry, Charité - Universitätsmedizin Berlin, 10117 Berlin, Germany
| | | | - Anja Freiwald
- Department of Biochemistry, Charité - Universitätsmedizin Berlin, 10117 Berlin, Germany; Core Facility - High Throughput Mass Spectrometry, Charité - Universitätsmedizin Berlin, 10117 Berlin, Germany
| | - Benjamin M Heineike
- The Molecular Biology of Metabolism Laboratory, The Francis Crick Institute, London NW1 1AT, UK; The Wellcome Centre for Human Genetics, Nuffield Department of Medicine, University of Oxford, Oxford OX3 7BN, UK; Quantitative Gene Expression Research Group, MRC London Institute of Medical Sciences (LMS), London W12 0HS, UK; Quantitative Gene Expression Research Group, Institute of Clinical Sciences (ICS), Faculty of Medicine, Imperial College London, London SW2 2AZ, UK
| | - Kate Campbell
- Department of Biochemistry, University of Cambridge, Cambridge CB2 1QW, UK
| | - Lucía Herrera-Dominguez
- The Molecular Biology of Metabolism Laboratory, The Francis Crick Institute, London NW1 1AT, UK
| | - Simran Kaur Aulakh
- The Molecular Biology of Metabolism Laboratory, The Francis Crick Institute, London NW1 1AT, UK; The Wellcome Centre for Human Genetics, Nuffield Department of Medicine, University of Oxford, Oxford OX3 7BN, UK
| | - Lukasz Szyrwiel
- The Molecular Biology of Metabolism Laboratory, The Francis Crick Institute, London NW1 1AT, UK; Department of Biochemistry, Charité - Universitätsmedizin Berlin, 10117 Berlin, Germany
| | - Jason S L Yu
- The Molecular Biology of Metabolism Laboratory, The Francis Crick Institute, London NW1 1AT, UK
| | - Aleksej Zelezniak
- The Molecular Biology of Metabolism Laboratory, The Francis Crick Institute, London NW1 1AT, UK; Department of Biology and Biological Engineering, Chalmers University of Technology, 412 96 Gothenburg, Sweden; Randall Centre for Cell & Molecular Biophysics, King's College London, New Hunt's House, Guy's Campus, London SE1 1UL, UK; Institute of Biotechnology, Life Sciences Center, Vilnius University, Vilnius 10257, Lithuania
| | - Vadim Demichev
- The Molecular Biology of Metabolism Laboratory, The Francis Crick Institute, London NW1 1AT, UK; Department of Biochemistry, University of Cambridge, Cambridge CB2 1QW, UK; Department of Biochemistry, Charité - Universitätsmedizin Berlin, 10117 Berlin, Germany
| | - Michael Mülleder
- The Molecular Biology of Metabolism Laboratory, The Francis Crick Institute, London NW1 1AT, UK; Department of Biochemistry, University of Cambridge, Cambridge CB2 1QW, UK; Core Facility - High Throughput Mass Spectrometry, Charité - Universitätsmedizin Berlin, 10117 Berlin, Germany
| | - Balázs Papp
- Synthetic and Systems Biology Unit, Institute of Biochemistry, Biological Research Centre, Eötvös Loránd Research Network, Szeged 6726, Hungary; HCEMM-BRC Metabolic Systems Biology Lab, Szeged 6726, Hungary
| | - Mohammad Tauqeer Alam
- Department of Biology, College of Science, United Arab Emirates University, P.O.Box 15551, Al-Ain, United Arab Emirates
| | - Markus Ralser
- The Molecular Biology of Metabolism Laboratory, The Francis Crick Institute, London NW1 1AT, UK; Department of Biochemistry, University of Cambridge, Cambridge CB2 1QW, UK; Department of Biochemistry, Charité - Universitätsmedizin Berlin, 10117 Berlin, Germany; The Wellcome Centre for Human Genetics, Nuffield Department of Medicine, University of Oxford, Oxford OX3 7BN, UK.
| |
Collapse
|
31
|
Fu TT, Sun YB, Gao W, Long CB, Yang CH, Yang XW, Zhang Y, Lan XQ, Huang S, Jin JQ, Murphy RW, Zhang Y, Lai R, Hillis DM, Zhang YP, Che J. The highest-elevation frog provides insights into mechanisms and evolution of defenses against high UV radiation. Proc Natl Acad Sci U S A 2022; 119:e2212406119. [PMID: 36346846 PMCID: PMC9674958 DOI: 10.1073/pnas.2212406119] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2022] [Accepted: 09/15/2022] [Indexed: 11/09/2022] Open
Abstract
Defense against ultraviolet (UV) radiation exposure is essential for survival, especially in high-elevation species. Although some specific genes involved in UV response have been reported, the full view of UV defense mechanisms remains largely unexplored. Herein, we used integrated approaches to analyze UV responses in the highest-elevation frog, Nanorana parkeri. We show less damage and more efficient antioxidant activity in skin of this frog than those of its lower-elevation relatives after UV exposure. We also reveal genes related to UV defense and a corresponding temporal expression pattern in N. parkeri. Genomic and metabolomic analysis along with large-scale transcriptomic profiling revealed a time-dependent coordinated defense mechanism in N. parkeri. We also identified several microRNAs that play important regulatory roles, especially in decreasing the expression levels of cell cycle genes. Moreover, multiple defense genes (i.e., TYR for melanogenesis) exhibit positive selection with function-enhancing substitutions. Thus, both expression shifts and gene mutations contribute to UV adaptation in N. parkeri. Our work demonstrates a genetic framework for evolution of UV defense in a natural environment.
Collapse
Affiliation(s)
- Ting-Ting Fu
- State Key Laboratory of Genetic Resource and Evolution & Yunnan Key Laboratory of Biodiversity and Ecological Security of Gaoligong Mountain, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming 650223, China
- Kunming College of Life Science, University of Chinese Academy of Sciences, Kunming 650204, China
- Department of Integrative Biology and Biodiversity Center, University of Texas at Austin, Austin, TX 78712, U.S.A.
| | - Yan-Bo Sun
- State Key Laboratory of Genetic Resource and Evolution & Yunnan Key Laboratory of Biodiversity and Ecological Security of Gaoligong Mountain, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming 650223, China
| | - Wei Gao
- State Key Laboratory of Genetic Resource and Evolution & Yunnan Key Laboratory of Biodiversity and Ecological Security of Gaoligong Mountain, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming 650223, China
| | - Cheng-Bo Long
- Key Laboratory of Animal Models and Human Disease Mechanisms of Chinese Academy of Sciences/Key Laboratory of Bioactive Peptides of Yunnan Province, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming 650223, China
| | - Chun-Hua Yang
- State Key Laboratory of Genetic Resource and Evolution & Yunnan Key Laboratory of Biodiversity and Ecological Security of Gaoligong Mountain, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming 650223, China
- Kunming College of Life Science, University of Chinese Academy of Sciences, Kunming 650204, China
| | - Xin-Wang Yang
- Key Laboratory of Animal Models and Human Disease Mechanisms of Chinese Academy of Sciences/Key Laboratory of Bioactive Peptides of Yunnan Province, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming 650223, China
| | - Yi Zhang
- State Key Laboratory of Genetic Resource and Evolution & Yunnan Key Laboratory of Biodiversity and Ecological Security of Gaoligong Mountain, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming 650223, China
- Kunming College of Life Science, University of Chinese Academy of Sciences, Kunming 650204, China
| | - Xin-Qiang Lan
- Kunming College of Life Science, University of Chinese Academy of Sciences, Kunming 650204, China
- Key Laboratory of Animal Models and Human Disease Mechanisms of Chinese Academy of Sciences/Key Laboratory of Bioactive Peptides of Yunnan Province, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming 650223, China
| | - Song Huang
- College of Life Sciences, Anhui Normal University, Wuhu 241000, China
| | - Jie-Qiong Jin
- State Key Laboratory of Genetic Resource and Evolution & Yunnan Key Laboratory of Biodiversity and Ecological Security of Gaoligong Mountain, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming 650223, China
| | - Robert W. Murphy
- State Key Laboratory of Genetic Resource and Evolution & Yunnan Key Laboratory of Biodiversity and Ecological Security of Gaoligong Mountain, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming 650223, China
- Centre for Biodiversity and Conservation Biology, Royal Ontario Museum, Toronto, ON M5S 2C6, Canada
| | - Yun Zhang
- Key Laboratory of Animal Models and Human Disease Mechanisms of Chinese Academy of Sciences/Key Laboratory of Bioactive Peptides of Yunnan Province, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming 650223, China
- Center for Excellence in Animal Evolution and Genetics, Chinese Academy of Sciences, Kunming 650223, China
| | - Ren Lai
- Key Laboratory of Animal Models and Human Disease Mechanisms of Chinese Academy of Sciences/Key Laboratory of Bioactive Peptides of Yunnan Province, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming 650223, China
| | - David M. Hillis
- Department of Integrative Biology and Biodiversity Center, University of Texas at Austin, Austin, TX 78712, U.S.A.
| | - Ya-Ping Zhang
- State Key Laboratory of Genetic Resource and Evolution & Yunnan Key Laboratory of Biodiversity and Ecological Security of Gaoligong Mountain, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming 650223, China
- Center for Excellence in Animal Evolution and Genetics, Chinese Academy of Sciences, Kunming 650223, China
| | - Jing Che
- State Key Laboratory of Genetic Resource and Evolution & Yunnan Key Laboratory of Biodiversity and Ecological Security of Gaoligong Mountain, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming 650223, China
- Center for Excellence in Animal Evolution and Genetics, Chinese Academy of Sciences, Kunming 650223, China
| |
Collapse
|
32
|
Guo MF, Zhang HH, Zhong P, Xu JD, Zhou SS, Long F, Kong M, Mao Q, Li SL. Integrating Multi-Type Component Determination and Anti-Oxidant/-Inflammatory Assay to Evaluate the Impact of Pre-Molting Washing on the Quality and Bioactivity of Cicadae Periostracum. MOLECULES (BASEL, SWITZERLAND) 2022; 27:molecules27227683. [PMID: 36431784 PMCID: PMC9699411 DOI: 10.3390/molecules27227683] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/15/2022] [Revised: 09/08/2022] [Accepted: 11/03/2022] [Indexed: 11/11/2022]
Abstract
Cicadae Periostracum (CP) is a traditional Chinese medicinal herb derived from the slough that is molted from the nymph of the insect Cryptotympana pustulata Fabricius. Washing with water to remove residual silt is a primary processing method of CP that is recommended by the Chinese Pharmacopoeia, but how washing methods affect the quality and bioactivity of CP is unknown. In this study, the quality and bioactivity of non-washed CP (CP-NW), post-molting-washed CP (CP-WAT), and pre-molting-washed CP (CP-WBT) were comparatively investigated. The quality of these CP samples was evaluated in terms of the UPLC-QTOF-MS/MS-based chemical profiling and semi-quantification of 39 N-acetyldopamine oligomers (belonging to six chemical types), the HPLC-UV-based quantification of 17 amino acids, the ICP-MS-based quantification of four heavy metals, and the contents of ash; the bioactivities of the samples were compared regarding their anti-oxidant and anti-inflammatory activities. It was found that, compared with CP-NW, both CP-WBT and CP-WAT had significantly lower contents of ash and heavy metals. Moreover, compared with CP-WAT, CP-WBT contained lower levels of total ash, acid-insoluble ash, and heavy metals and higher contents of N-acetyldopamine oligomers and amino acids. It also had enhanced anti-oxidant and anti-inflammatory activities. A Spearman's correlation analysis found that the contents of N-acetyldopamine oligomers and free amino acids were positively correlated with the anti-oxidant/-inflammatory activities of CP. All these results suggest that pre-molting washing can not only remove the residual silt but can also avoid the loss of the bioactive components and assure higher bioactivities. It is concluded that pre-molting washing could enhance the quality and bioactivity of CP and should be a superior alternative method for the primary processing of qualified CP.
Collapse
Affiliation(s)
- Meng-Fei Guo
- Department of Pharmaceutical Analysis, Affiliated Hospital of Integrated Traditional Chinese and Western Medicine, Nanjing University of Chinese Medicine, Nanjing 210028, China
| | - Huan-Huan Zhang
- Department of Pharmaceutical Analysis, Affiliated Hospital of Integrated Traditional Chinese and Western Medicine, Nanjing University of Chinese Medicine, Nanjing 210028, China
| | - Ping Zhong
- Department of Pharmaceutical Analysis, Affiliated Hospital of Integrated Traditional Chinese and Western Medicine, Nanjing University of Chinese Medicine, Nanjing 210028, China
| | - Jin-Di Xu
- Department of Metabolomics, Jiangsu Province Academy of Traditional Chinese Medicine, Nanjing 210028, China
| | - Shan-Shan Zhou
- Department of Metabolomics, Jiangsu Province Academy of Traditional Chinese Medicine, Nanjing 210028, China
| | - Fang Long
- Department of Metabolomics, Jiangsu Province Academy of Traditional Chinese Medicine, Nanjing 210028, China
| | - Ming Kong
- Department of Metabolomics, Jiangsu Province Academy of Traditional Chinese Medicine, Nanjing 210028, China
| | - Qian Mao
- Department of Pharmaceutical Analysis, Affiliated Hospital of Integrated Traditional Chinese and Western Medicine, Nanjing University of Chinese Medicine, Nanjing 210028, China
- Department of Metabolomics, Jiangsu Province Academy of Traditional Chinese Medicine, Nanjing 210028, China
- Correspondence: (Q.M.); (S.-L.L.); Tel./Fax: +86-025-85639640 (S.-L.L.)
| | - Song-Lin Li
- Department of Pharmaceutical Analysis, Affiliated Hospital of Integrated Traditional Chinese and Western Medicine, Nanjing University of Chinese Medicine, Nanjing 210028, China
- Department of Metabolomics, Jiangsu Province Academy of Traditional Chinese Medicine, Nanjing 210028, China
- Correspondence: (Q.M.); (S.-L.L.); Tel./Fax: +86-025-85639640 (S.-L.L.)
| |
Collapse
|
33
|
Akhova AV, Tkachenko AG. Cadaverine Biosynthesis in Escherichia сoli Adaptation to Hydrogen Peroxide. APPL BIOCHEM MICRO+ 2022. [DOI: 10.1134/s0003683822050039] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
34
|
Chen H, Zheng Y, Wang M, Wu Y, Yao M. Gene-Regulated Release of Distinctive Volatile Organic Compounds from Stressed Living Cells. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2022; 56:9546-9555. [PMID: 35729728 DOI: 10.1021/acs.est.2c01774] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
Breath-borne volatile organic compounds (VOCs) have been increasingly studied as non-invasive biomarkers in both medical diagnosis and environmental health research. Recently, changes in breath-borne VOC fingerprints were demonstrated in rats and humans following pollutant exposures. In this study, the eukaryotic model Saccharomyces cerevisiae was used to study the release of cellular VOCs resulting from toxicant exposures (i.e., O3, H2O2, and CO2) and its underlying biological mechanism. Our results showed that different toxicant exposures caused the release of distinctive VOC profiles of yeast cells. The levels of ethyl acetate and ethyl n-propionate were altered in response to all the toxicants used in this study and could thus be targeted for future environmental toxicity monitoring. The RNA-seq results revealed significant changes in the metabolic or signaling pathways related to the ribosome, carbohydrate, and amino acid metabolisms after exposures. Notably, the shift from glycolysis to the pentose phosphate pathway of carbohydrate metabolism and the inhabitation of the aspartate pathway in the lysine synthesis was essential to the cellular antioxidation by providing reduced nicotinamide adenine dinucleotide phosphate (NADPH). The reprogrammed metabolisms could have resulted in the observed changes of VOCs released, e.g., the production of ethyl acetate for detoxification from yeast cells. This study provides further evidence that VOCs released from living organisms could be used to monitor and guard against toxic exposures while providing better mechanistic insights of the changes in breath-borne VOCs previously observed in rats and humans exposed to air toxicants.
Collapse
Affiliation(s)
- Haoxuan Chen
- State Key Joint Laboratory of Environmental Simulation and Pollution Control, College of Environmental Sciences and Engineering, Peking University, Beijing 100871, China
| | - Yunhao Zheng
- Institute of Environment and Sustainable Development in Agriculture, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Mingyu Wang
- State Key Laboratory of Microbial Technology, Microbial Technology Institute, Shandong University, Qingdao 266237, China
| | - Yan Wu
- School of Environmental Science and Engineering, Shandong University, Qingdao 266237, China
| | - Maosheng Yao
- State Key Joint Laboratory of Environmental Simulation and Pollution Control, College of Environmental Sciences and Engineering, Peking University, Beijing 100871, China
| |
Collapse
|
35
|
Cheng Z, Shi C, Gao X, Wang X, Kan G. Biochemical and Metabolomic Responses of Antarctic Bacterium Planococcus sp. O5 Induced by Copper Ion. TOXICS 2022; 10:toxics10060302. [PMID: 35736910 PMCID: PMC9230899 DOI: 10.3390/toxics10060302] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/26/2022] [Revised: 05/29/2022] [Accepted: 05/30/2022] [Indexed: 01/27/2023]
Abstract
Heavy metal pollution in the Antarctic has gone beyond our imagination. Copper toxicity is a selective pressure on Planococcus sp. O5. We observed relatively broad tolerance in the polar bacterium. The heavy metal resistance pattern is Pb2+ > Cu2+ > Cd2+ > Hg2+ > Zn2+. In the study, we combined biochemical and metabolomics approaches to investigate the Cu2+ adaptation mechanisms of the Antarctic bacterium. Biochemical analysis revealed that copper treatment elevated the activity of antioxidants and enzymes, maintaining the bacterial redox state balance and normal cell division and growth. Metabolomics analysis demonstrated that fatty acids, amino acids, and carbohydrates played dominant roles in copper stress adaptation. The findings suggested that the adaptive mechanisms of strain O5 to copper stress included protein synthesis and repair, accumulation of organic permeable substances, up-regulation of energy metabolism, and the formation of fatty acids.
Collapse
|
36
|
Feng D, Li H, Xu T, Zheng F, Hu C, Shi X, Xu G. High-throughput single cell metabolomics and cellular heterogeneity exploration by inertial microfluidics coupled with pulsed electric field-induced electrospray ionization-high resolution mass spectrometry. Anal Chim Acta 2022; 1221:340116. [DOI: 10.1016/j.aca.2022.340116] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2022] [Revised: 06/20/2022] [Accepted: 06/22/2022] [Indexed: 11/15/2022]
|
37
|
Xie T, Chen M, Nielsen J, Xia J. Multi-omics analyses of the transition to the Crabtree effect in S. cerevisiae reveals a key role for the citric acid shuttle. FEMS Yeast Res 2022; 22:6590040. [PMID: 35595470 DOI: 10.1093/femsyr/foac030] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2022] [Revised: 04/30/2022] [Accepted: 05/18/2022] [Indexed: 11/14/2022] Open
Abstract
The Crabtree effect in the yeast, Saccharomyces cerevisiae, has been extensively studied, but only few studies have analyzed the dynamic conditions across the critical specific growth rate where the Crabtree effect sets in. Here, we carried out a multi-omics analysis of S. cerevisiae undergoing a specific growth rate transition from 0.2 h-1 to 0.35 h-1. The extracellular metabolome, the transcriptome and the proteome were analyzed in an 8-hour transition period after the specific growth rate shifted from 0.2 h-1 to 0.35 h-1. The changing trends of both the transcriptome and proteome were analyzed using principal component analysis, which showed that the transcriptome clustered together after 60 min, while the proteome reached steady-state much later. Focusing on central carbon metabolism, we analyzed both the changes in the transcriptome and proteome, and observed an interesting changing pattern in the tricarboxylic acid (TCA) pathway, which indicates an important role for citric acid shuttling across the mitochondrial membrane for α-ketoglutarate accumulation during the transition from respiratory to respiro-fermentative metabolism. This was supported by a change in the oxaloacetate and malate shuttle. Together, our findings shed new light into the onset of the Crabtree effect in S. cerevisiae.
Collapse
Affiliation(s)
- Tingting Xie
- State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, Shanghai 200237, China
| | - Min Chen
- State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, Shanghai 200237, China
| | - Jens Nielsen
- Department of Biology and Biological Engineering, Chalmers University of Technology, Gothenburg, SE41296, Sweden.,BioInnovation Institute, Ole Maaløes Vej 3, DK2200 Copenhagen N, Denmark
| | - Jianye Xia
- State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, Shanghai 200237, China.,Key Laboratory of Systems Microbial Biotechnology, Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin, 300308, China
| |
Collapse
|
38
|
David Y, Castro IG, Yifrach E, Bibi C, Katawi E, Yahav Har-Shai D, Brodsky S, Barkai N, Ravid T, Eisenstein M, Pietrokovski S, Schuldiner M, Zalckvar E. Pls1 Is a Peroxisomal Matrix Protein with a Role in Regulating Lysine Biosynthesis. Cells 2022; 11:1426. [PMID: 35563734 PMCID: PMC9104712 DOI: 10.3390/cells11091426] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2022] [Revised: 04/13/2022] [Accepted: 04/16/2022] [Indexed: 12/04/2022] Open
Abstract
Peroxisomes host essential metabolic enzymes and are crucial for human health and survival. Although peroxisomes were first described over 60 years ago, their entire proteome has not yet been identified. As a basis for understanding the variety of peroxisomal functions, we used a high-throughput screen to discover peroxisomal proteins in yeast. To visualize low abundance proteins, we utilized a collection of strains containing a peroxisomal marker in which each protein is expressed from the constitutive and strong TEF2 promoter. Using this approach, we uncovered 18 proteins that were not observed in peroxisomes before and could show their metabolic and targeting factor dependence for peroxisomal localization. We focus on one newly identified and uncharacterized matrix protein, Ynl097c-b, and show that it localizes to peroxisomes upon lysine deprivation and that its localization to peroxisomes depends on the lysine biosynthesis enzyme, Lys1. We demonstrate that Ynl097c-b affects the abundance of Lys1 and the lysine biosynthesis pathway. We have therefore renamed this protein Pls1 for Peroxisomal Lys1 Stabilizing 1. Our work uncovers an additional layer of regulation on the central lysine biosynthesis pathway. More generally it highlights how the discovery of peroxisomal proteins can expand our understanding of cellular metabolism.
Collapse
Affiliation(s)
- Yotam David
- Department of Molecular Genetics, Weizmann Institute of Science, Rehovot 7610001, Israel; (Y.D.); (I.G.C.); (E.Y.); (C.B.); (E.K.); (D.Y.H.-S.); (S.B.); (N.B.); (M.E.); (S.P.)
| | - Inês Gomes Castro
- Department of Molecular Genetics, Weizmann Institute of Science, Rehovot 7610001, Israel; (Y.D.); (I.G.C.); (E.Y.); (C.B.); (E.K.); (D.Y.H.-S.); (S.B.); (N.B.); (M.E.); (S.P.)
| | - Eden Yifrach
- Department of Molecular Genetics, Weizmann Institute of Science, Rehovot 7610001, Israel; (Y.D.); (I.G.C.); (E.Y.); (C.B.); (E.K.); (D.Y.H.-S.); (S.B.); (N.B.); (M.E.); (S.P.)
| | - Chen Bibi
- Department of Molecular Genetics, Weizmann Institute of Science, Rehovot 7610001, Israel; (Y.D.); (I.G.C.); (E.Y.); (C.B.); (E.K.); (D.Y.H.-S.); (S.B.); (N.B.); (M.E.); (S.P.)
| | - Enas Katawi
- Department of Molecular Genetics, Weizmann Institute of Science, Rehovot 7610001, Israel; (Y.D.); (I.G.C.); (E.Y.); (C.B.); (E.K.); (D.Y.H.-S.); (S.B.); (N.B.); (M.E.); (S.P.)
| | - Dekel Yahav Har-Shai
- Department of Molecular Genetics, Weizmann Institute of Science, Rehovot 7610001, Israel; (Y.D.); (I.G.C.); (E.Y.); (C.B.); (E.K.); (D.Y.H.-S.); (S.B.); (N.B.); (M.E.); (S.P.)
| | - Sagie Brodsky
- Department of Molecular Genetics, Weizmann Institute of Science, Rehovot 7610001, Israel; (Y.D.); (I.G.C.); (E.Y.); (C.B.); (E.K.); (D.Y.H.-S.); (S.B.); (N.B.); (M.E.); (S.P.)
| | - Naama Barkai
- Department of Molecular Genetics, Weizmann Institute of Science, Rehovot 7610001, Israel; (Y.D.); (I.G.C.); (E.Y.); (C.B.); (E.K.); (D.Y.H.-S.); (S.B.); (N.B.); (M.E.); (S.P.)
| | - Tommer Ravid
- Department of Biological Chemistry, Hebrew University of Jerusalem, Jerusalem 91904, Israel;
| | - Miriam Eisenstein
- Department of Molecular Genetics, Weizmann Institute of Science, Rehovot 7610001, Israel; (Y.D.); (I.G.C.); (E.Y.); (C.B.); (E.K.); (D.Y.H.-S.); (S.B.); (N.B.); (M.E.); (S.P.)
| | - Shmuel Pietrokovski
- Department of Molecular Genetics, Weizmann Institute of Science, Rehovot 7610001, Israel; (Y.D.); (I.G.C.); (E.Y.); (C.B.); (E.K.); (D.Y.H.-S.); (S.B.); (N.B.); (M.E.); (S.P.)
| | - Maya Schuldiner
- Department of Molecular Genetics, Weizmann Institute of Science, Rehovot 7610001, Israel; (Y.D.); (I.G.C.); (E.Y.); (C.B.); (E.K.); (D.Y.H.-S.); (S.B.); (N.B.); (M.E.); (S.P.)
| | - Einat Zalckvar
- Department of Molecular Genetics, Weizmann Institute of Science, Rehovot 7610001, Israel; (Y.D.); (I.G.C.); (E.Y.); (C.B.); (E.K.); (D.Y.H.-S.); (S.B.); (N.B.); (M.E.); (S.P.)
| |
Collapse
|
39
|
Jiang YQ, Lin JP. Recent progress in strategies for steroid production in yeasts. World J Microbiol Biotechnol 2022; 38:93. [PMID: 35441962 DOI: 10.1007/s11274-022-03276-7] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2022] [Accepted: 03/24/2022] [Indexed: 10/18/2022]
Abstract
As essential structural molecules of fungal cell membrane, ergosterol is not only an important component of fungal growth and stress-resistance but also a key precursor for manufacturing steroid drugs of pharmaceutical or agricultural significance. So far, ergosterol biosynthesis in yeast has been elucidated elaborately, and efforts have been made to increase ergosterol production through regulation of ergosterol metabolism and storage. Furthermore, the same intermediates shared by yeasts and animals or plants make the construction of heterologous sterol pathways in yeast a promising approach to synthesize valuable steroids, such as phytosteroids and animal steroid hormones. During these challenging processes, several obstacles have arisen and been combated with great endeavors. This paper reviews recent research progress of yeast metabolic engineering for improving the production of ergosterol and heterologous steroids. The remaining tactics are also discussed.
Collapse
Affiliation(s)
- Yi-Qi Jiang
- Key Laboratory of Biomass Chemical Engineering of Ministry of Education, College of Chemical and Biological Engineering, Zhejiang University, Hangzhou, 310027, China
| | - Jian-Ping Lin
- Key Laboratory of Biomass Chemical Engineering of Ministry of Education, College of Chemical and Biological Engineering, Zhejiang University, Hangzhou, 310027, China.
| |
Collapse
|
40
|
Segal-Kischinevzky C, Romero-Aguilar L, Alcaraz LD, López-Ortiz G, Martínez-Castillo B, Torres-Ramírez N, Sandoval G, González J. Yeasts Inhabiting Extreme Environments and Their Biotechnological Applications. Microorganisms 2022; 10:794. [PMID: 35456844 PMCID: PMC9028089 DOI: 10.3390/microorganisms10040794] [Citation(s) in RCA: 25] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2022] [Revised: 04/06/2022] [Accepted: 04/06/2022] [Indexed: 11/17/2022] Open
Abstract
Yeasts are microscopic fungi inhabiting all Earth environments, including those inhospitable for most life forms, considered extreme environments. According to their habitats, yeasts could be extremotolerant or extremophiles. Some are polyextremophiles, depending on their growth capacity, tolerance, and survival in the face of their habitat's physical and chemical constitution. The extreme yeasts are relevant for the industrial production of value-added compounds, such as biofuels, lipids, carotenoids, recombinant proteins, enzymes, among others. This review calls attention to the importance of yeasts inhabiting extreme environments, including metabolic and adaptive aspects to tolerate conditions of cold, heat, water availability, pH, salinity, osmolarity, UV radiation, and metal toxicity, which are relevant for biotechnological applications. We explore the habitats of extreme yeasts, highlighting key species, physiology, adaptations, and molecular identification. Finally, we summarize several findings related to the industrially-important extremophilic yeasts and describe current trends in biotechnological applications that will impact the bioeconomy.
Collapse
Affiliation(s)
- Claudia Segal-Kischinevzky
- Departamento de Biología Celular, Facultad de Ciencias, Universidad Nacional Autónoma de México, Avenida Universidad 3000, Coyoacán, Mexico City 04510, Mexico; (C.S.-K.); (L.D.A.); (B.M.-C.); (N.T.-R.)
| | - Lucero Romero-Aguilar
- Departamento de Bioquímica, Facultad de Medicina, Universidad Nacional Autónoma de México, Avenida Universidad 3000, Coyoacán, Mexico City 04510, Mexico;
| | - Luis D. Alcaraz
- Departamento de Biología Celular, Facultad de Ciencias, Universidad Nacional Autónoma de México, Avenida Universidad 3000, Coyoacán, Mexico City 04510, Mexico; (C.S.-K.); (L.D.A.); (B.M.-C.); (N.T.-R.)
| | - Geovani López-Ortiz
- Subdivisión de Medicina Familiar, Facultad de Medicina, Universidad Nacional Autónoma de México, Avenida Universidad 3000, Coyoacán, Mexico City 04510, Mexico;
| | - Blanca Martínez-Castillo
- Departamento de Biología Celular, Facultad de Ciencias, Universidad Nacional Autónoma de México, Avenida Universidad 3000, Coyoacán, Mexico City 04510, Mexico; (C.S.-K.); (L.D.A.); (B.M.-C.); (N.T.-R.)
| | - Nayeli Torres-Ramírez
- Departamento de Biología Celular, Facultad de Ciencias, Universidad Nacional Autónoma de México, Avenida Universidad 3000, Coyoacán, Mexico City 04510, Mexico; (C.S.-K.); (L.D.A.); (B.M.-C.); (N.T.-R.)
| | - Georgina Sandoval
- Laboratorio de Innovación en Bioenergéticos y Bioprocesos Avanzados (LIBBA), Unidad de Biotecnología Industrial, Centro de Investigación y Asistencia en Tecnología y Diseño del Estado de Jalisco AC (CIATEJ), Av. Normalistas No. 800 Col. Colinas de la Normal, Guadalajara 44270, Mexico;
| | - James González
- Departamento de Biología Celular, Facultad de Ciencias, Universidad Nacional Autónoma de México, Avenida Universidad 3000, Coyoacán, Mexico City 04510, Mexico; (C.S.-K.); (L.D.A.); (B.M.-C.); (N.T.-R.)
| |
Collapse
|
41
|
Mediator Engineering of Saccharomyces cerevisiae To Improve Multidimensional Stress Tolerance. Appl Environ Microbiol 2022; 88:e0162721. [PMID: 35369708 DOI: 10.1128/aem.01627-21] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Saccharomyces cerevisiae is a well-performing workhorse in chemical production, which encounters complex environmental stresses during industrial processes. We constructed a multiple stress tolerance mutant, Med15V76R/R84K, that was obtained by engineering the KIX domain of Mediator tail subunit Med15. Med15V76R/R84K interacted with transcription factor Hap5 to improve ARV1 expression for sterol homeostasis for decreasing membrane fluidity and thereby enhancing acid tolerance. Med15V76R/R84K interacted with transcription factor Mga2 to improve GIT1 expression for phospholipid biosynthesis for increasing membrane integrity and thereby improving oxidative tolerance. Med15V76R/R84K interacted with transcription factor Aft1 to improve NFT1 expression for inorganic ion transport for reducing membrane permeability and thereby enhancing osmotic tolerance. Based on this Med15 mutation, Med15V76R/R84K, the engineered S. cerevisiae strain, showed a 28.1% increase in pyruvate production in a 1.0-L bioreactor compared to that of S. cerevisiae with its native Med15. These results indicated that Mediator engineering provides a potential alternative for improving multidimensional stress tolerance in S. cerevisiae. IMPORTANCE This study identified the role of the KIX domain of Mediator tail subunit Med15 in response to acetic acid, H2O2, and NaCl in S. cerevisiae. Engineered KIX domain by protein engineering, the mutant strain Med15V76R/R84K, increased multidimensional stress tolerance and pyruvate production compared with that of S. cerevisiae with its native Med15. The Med15V76R/R84K could increase membrane related genes expression possibly by enhancing interaction with transcription factor to improve membrane physiological functions under stress conditions.
Collapse
|
42
|
Yu JSL, Correia-Melo C, Zorrilla F, Herrera-Dominguez L, Wu MY, Hartl J, Campbell K, Blasche S, Kreidl M, Egger AS, Messner CB, Demichev V, Freiwald A, Mülleder M, Howell M, Berman J, Patil KR, Alam MT, Ralser M. Microbial communities form rich extracellular metabolomes that foster metabolic interactions and promote drug tolerance. Nat Microbiol 2022; 7:542-555. [PMID: 35314781 PMCID: PMC8975748 DOI: 10.1038/s41564-022-01072-5] [Citation(s) in RCA: 49] [Impact Index Per Article: 24.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2021] [Accepted: 01/28/2022] [Indexed: 12/30/2022]
Abstract
Microbial communities are composed of cells of varying metabolic capacity, and regularly include auxotrophs that lack essential metabolic pathways. Through analysis of auxotrophs for amino acid biosynthesis pathways in microbiome data derived from >12,000 natural microbial communities obtained as part of the Earth Microbiome Project (EMP), and study of auxotrophic–prototrophic interactions in self-establishing metabolically cooperating yeast communities (SeMeCos), we reveal a metabolically imprinted mechanism that links the presence of auxotrophs to an increase in metabolic interactions and gains in antimicrobial drug tolerance. As a consequence of the metabolic adaptations necessary to uptake specific metabolites, auxotrophs obtain altered metabolic flux distributions, export more metabolites and, in this way, enrich community environments in metabolites. Moreover, increased efflux activities reduce intracellular drug concentrations, allowing cells to grow in the presence of drug levels above minimal inhibitory concentrations. For example, we show that the antifungal action of azoles is greatly diminished in yeast cells that uptake metabolites from a metabolically enriched environment. Our results hence provide a mechanism that explains why cells are more robust to drug exposure when they interact metabolically. Using microbiome data analysis and a self-establishing metabolically cooperating yeast community model, the authors show that the presence of auxotrophs in a microbial community increases metabolic interactions between cells and fosters antimicrobial drug tolerance.
Collapse
Affiliation(s)
- Jason S L Yu
- The Molecular Biology of Metabolism Laboratory, The Francis Crick Institute, London, UK
| | - Clara Correia-Melo
- The Molecular Biology of Metabolism Laboratory, The Francis Crick Institute, London, UK.,Department of Biochemistry, University of Cambridge, Cambridge, UK
| | - Francisco Zorrilla
- Medical Research Council Toxicology Unit, University of Cambridge, Cambridge, UK.,Structural and Computational Biology Unit, European Molecular Biology Laboratory, Heidelberg, Germany
| | - Lucia Herrera-Dominguez
- The Molecular Biology of Metabolism Laboratory, The Francis Crick Institute, London, UK.,Department of Biochemistry, Charité University Medicine, Berlin, Germany
| | - Mary Y Wu
- High-Throughput Screening, The Francis Crick Institute, London, UK
| | - Johannes Hartl
- Department of Biochemistry, Charité University Medicine, Berlin, Germany
| | - Kate Campbell
- Department of Biochemistry, University of Cambridge, Cambridge, UK
| | - Sonja Blasche
- Medical Research Council Toxicology Unit, University of Cambridge, Cambridge, UK.,Structural and Computational Biology Unit, European Molecular Biology Laboratory, Heidelberg, Germany
| | - Marco Kreidl
- The Molecular Biology of Metabolism Laboratory, The Francis Crick Institute, London, UK
| | - Anna-Sophia Egger
- The Molecular Biology of Metabolism Laboratory, The Francis Crick Institute, London, UK
| | - Christoph B Messner
- The Molecular Biology of Metabolism Laboratory, The Francis Crick Institute, London, UK.,Department of Biochemistry, University of Cambridge, Cambridge, UK
| | - Vadim Demichev
- The Molecular Biology of Metabolism Laboratory, The Francis Crick Institute, London, UK.,Department of Biochemistry, University of Cambridge, Cambridge, UK
| | - Anja Freiwald
- Department of Biochemistry, Charité University Medicine, Berlin, Germany.,Core Facility - High Throughput Mass Spectrometry, Charité University Medicine, Berlin, Germany
| | - Michael Mülleder
- Core Facility - High Throughput Mass Spectrometry, Charité University Medicine, Berlin, Germany
| | - Michael Howell
- High-Throughput Screening, The Francis Crick Institute, London, UK
| | - Judith Berman
- Shmunis School of Biomedical and Cancer Research, George S. Wise Faculty of Life Sciences, Tel Aviv University, Ramat Aviv, Israel
| | - Kiran R Patil
- Medical Research Council Toxicology Unit, University of Cambridge, Cambridge, UK.,Structural and Computational Biology Unit, European Molecular Biology Laboratory, Heidelberg, Germany
| | - Mohammad Tauqeer Alam
- Department of Biology, College of Science, United Arab Emirates University, Al-Ain, UAE. .,Warwick Medical School, University of Warwick, Coventry, UK.
| | - Markus Ralser
- The Molecular Biology of Metabolism Laboratory, The Francis Crick Institute, London, UK. .,Department of Biochemistry, Charité University Medicine, Berlin, Germany. .,Core Facility - High Throughput Mass Spectrometry, Charité University Medicine, Berlin, Germany.
| |
Collapse
|
43
|
Stifel U, Wolfschmitt EM, Vogt J, Wachter U, Vettorazzi S, Tews D, Hogg M, Zink F, Koll NM, Winning S, Mounier R, Chazaud B, Radermacher P, Fischer-Posovszky P, Caratti G, Tuckermann J. Glucocorticoids coordinate macrophage metabolism through the regulation of the tricarboxylic acid cycle. Mol Metab 2022; 57:101424. [PMID: 34954109 PMCID: PMC8783148 DOI: 10.1016/j.molmet.2021.101424] [Citation(s) in RCA: 18] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/22/2021] [Revised: 12/13/2021] [Accepted: 12/20/2021] [Indexed: 11/23/2022] Open
Abstract
OBJECTIVES Glucocorticoids (GCs) are one of the most widely prescribed anti-inflammatory drugs. By acting through their cognate receptor, the glucocorticoid receptor (GR), GCs downregulate the expression of pro-inflammatory genes and upregulate the expression of anti-inflammatory genes. Metabolic pathways have recently been identified as key parts of both the inflammatory activation and anti-inflammatory polarization of macrophages, immune cells responsible for acute inflammation and tissue repair. It is currently unknown whether GCs control macrophage metabolism, and if so, to what extent metabolic regulation by GCs confers anti-inflammatory activity. METHODS Using transcriptomic and metabolomic profiling of macrophages, we identified GC-controlled pathways involved in metabolism, especially in mitochondrial function. RESULTS Metabolic analyses revealed that GCs repress glycolysis in inflammatory myeloid cells and promote tricarboxylic acid (TCA) cycle flux, promoting succinate metabolism and preventing intracellular accumulation of succinate. Inhibition of ATP synthase attenuated GC-induced transcriptional changes, likely through stalling of TCA cycle anaplerosis. We further identified a glycolytic regulatory transcription factor, HIF1α, as regulated by GCs, and as a key regulator of GC responsiveness during inflammatory challenge. CONCLUSIONS Our findings link metabolism to gene regulation by GCs in macrophages.
Collapse
Affiliation(s)
- Ulrich Stifel
- Institute of Comparative Molecular Endocrinology (CME), Ulm University, Ulm, Germany
| | - Eva-Maria Wolfschmitt
- Institute for Anesthesiological Pathophysiology and Process Engineering, and Department of Anesthesiology, University Hospital, Ulm, Germany
| | - Josef Vogt
- Institute for Anesthesiological Pathophysiology and Process Engineering, and Department of Anesthesiology, University Hospital, Ulm, Germany
| | - Ulrich Wachter
- Institute for Anesthesiological Pathophysiology and Process Engineering, and Department of Anesthesiology, University Hospital, Ulm, Germany
| | - Sabine Vettorazzi
- Institute of Comparative Molecular Endocrinology (CME), Ulm University, Ulm, Germany
| | - Daniel Tews
- Division of Pediatric Endocrinology and Diabetes, Department of Pediatric and Adolescent Medicine, Ulm University Medical Center, Ulm, Germany
| | - Melanie Hogg
- Institute for Anesthesiological Pathophysiology and Process Engineering, and Department of Anesthesiology, University Hospital, Ulm, Germany
| | - Fabian Zink
- Institute for Anesthesiological Pathophysiology and Process Engineering, and Department of Anesthesiology, University Hospital, Ulm, Germany
| | - Nora Maria Koll
- Institut fürPhysiologie, Universitätsklinikum Essen, Universität Duisburg-Essen, 45122, Essen, Germany
| | - Sandra Winning
- Institut fürPhysiologie, Universitätsklinikum Essen, Universität Duisburg-Essen, 45122, Essen, Germany
| | - Rémi Mounier
- Institut NeuroMyoGène, Université Claude Bernard Lyon 1, CNRS UMR 5310, INSERM U1217, Université Lyon, Lyon, France
| | - Bénédicte Chazaud
- Institut NeuroMyoGène, Université Claude Bernard Lyon 1, CNRS UMR 5310, INSERM U1217, Université Lyon, Lyon, France
| | - Peter Radermacher
- Institute for Anesthesiological Pathophysiology and Process Engineering, and Department of Anesthesiology, University Hospital, Ulm, Germany
| | | | - Giorgio Caratti
- Institute of Comparative Molecular Endocrinology (CME), Ulm University, Ulm, Germany.
| | - Jan Tuckermann
- Institute of Comparative Molecular Endocrinology (CME), Ulm University, Ulm, Germany.
| |
Collapse
|
44
|
Zhang K, Li X, Zhao J, Wang Y, Hao X, Liu K, Liu H. Protective effects of chlorogenic acid on the meat quality of oxidatively stressed broilers revealed by integrated metabolomics and antioxidant analysis. Food Funct 2022; 13:2238-2252. [PMID: 35133368 DOI: 10.1039/d1fo03622j] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
Abstract
Oxidation is a major cause of meat quality deterioration during broiler production, which leads to undesirable meat color and impaired water holding capacity (WHC), thereby impacting consumer appeal and satisfaction. Chlorogenic acid (CGA), a natural phenolic acid, is regarded as a potential, safer and healthier antioxidant to improve meat quality. To investigate the protective effects of CGA on the meat quality of oxidatively stressed broilers, 240 one-day-old male Cobb broiler chickens were allocated to four treatments: basal diet (control group), basal diet + dexamethasone (DEX) injection (DEX group), basal diet containing 500 mg kg-1 CGA (CGA group), and basal diet containing 500 mg kg-1 CGA + DEX injection (DEX_CGA group). Meat quality, antioxidant capacity, the nuclear factor erythroid 2-related factor 2 (Nrf2) pathway, and metabolomic profile were detected in the breast muscle of broilers. Then, correlation analysis between meat quality and antioxidant capacity, antioxidant-related genes, and metabolites was performed. The results indicated that CGA supplementation improved the growth performance and meat quality traits (pH, WHC, and meat color) and enhanced the antioxidant enzyme activity by activating the Nrf2 pathway in the breast muscle of oxidatively stressed broilers. A total of 619 metabolites were identified, among which 93 differential metabolites were found between control and DEX groups, and 65 differential metabolites were observed between DEX and DEX_CGA groups. Breast metabolic profiles were changed by DEX treatment, while CGA supplementation could normalize the metabolic changes in DEX-challenged broilers. Metabolic pathway analysis revealed that most of the differential metabolites between DEX and DEX_CGA groups were involved in pyrimidine/purine, propanoate and phenylalanine metabolism, primary bile acid biosynthesis, and lysine metabolism, which may contribute to explain the protective effects of CGA on meat quality. Moreover, according to the correlation analysis, four metabolites were identified as potential biomarkers to predict the meat quality. In conclusion, our findings demonstrate that CGA is an effective, natural and safe antioxidant to enhance the quality of meat from intensive industrial poultry production.
Collapse
Affiliation(s)
- Kai Zhang
- College of Animal Science and Technology, Qingdao Agricultural University, Qingdao 266109, China.
| | - Xuemin Li
- College of Animal Science and Technology, Qingdao Agricultural University, Qingdao 266109, China.
| | - Jinshan Zhao
- College of Animal Science and Technology, Qingdao Agricultural University, Qingdao 266109, China.
| | - Yang Wang
- College of Animal Science and Technology, Qingdao Agricultural University, Qingdao 266109, China.
| | - Xiaojing Hao
- Qingdao Institute of Animal Science and Veterinary Medicine, Qingdao, 266199, China
| | - Kaidong Liu
- Qingdao Institute of Animal Science and Veterinary Medicine, Qingdao, 266199, China
| | - Huawei Liu
- College of Animal Science and Technology, Qingdao Agricultural University, Qingdao 266109, China.
| |
Collapse
|
45
|
Nasr M, Abd-Allah H, Ahmed-Farid OAH, Bakeer RM, Hassan NS, Ahmed RF. A comparative study between curcumin and curcumin nanoemulsion on high-fat, high-fructose diet-induced impaired spermatogenesis in rats. J Pharm Pharmacol 2022; 74:268-281. [DOI: 10.1093/jpp/rgab172] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/02/2023]
Abstract
Abstract
Objectives
Curcumin is a promising nutraceutical with reported diverse therapeutic properties, but of limited oral bioavailability. The current manuscript investigates the role of encapsulation of curcumin in nanoemulsion form in counteracting the adverse effect of chronic ingestion of a high-fat high-fructose diet (HFHF) by juvenile male rats regarding testicular abnormalities and declined spermatogenesis.
Methods
Curcumin nanoemulsion was administered orally to Wistar rats at a dose of 5 or 10 mg/kg and compared with curcumin powder, followed by a pharmacological and histological assessment.
Key findings
Results demonstrated that curcumin nanoemulsion was superior to curcumin powder, particularly in enhancing the percentage progressive motility of spermatozoa, normalization of essential and non-essential amino acids in semen, normalization of serum leptin and testosterone levels, as well as normalization of oxidative and nitrosative parameters. It was also proven to reduce testicular DNA fragmentation, while elevating testicular cellular energy. In addition, curcumin nanoemulsion administered at a dose of 10 mg/kg induced the highest level of spermatogenesis, delineated by histological examination of the seminiferous tubules.
Conclusions
It can be concluded that curcumin nanoemulsion administered at a dose of 10 mg/kg successfully ameliorates the adverse effects of a HFHF on spermatogenesis.
Collapse
Affiliation(s)
- Maha Nasr
- Department of Pharmaceutics and Industrial Pharmacy, Faculty of Pharmacy, Ain Shams University, Cairo, Egypt
| | - Hend Abd-Allah
- Department of Pharmaceutics and Industrial Pharmacy, Faculty of Pharmacy, Ain Shams University, Cairo, Egypt
| | - Omar A H Ahmed-Farid
- Department of Physiology, National Organization for Drug Control and Research, Giza, Egypt
| | - Rofanda M Bakeer
- Department of Pathology, Faculty of Medicine, Helwan University, Helwan, Egypt
| | - Nabila S Hassan
- Department of Pathology, Medical Research and Clinical Studies Institute, National Research Centre, Giza, Egypt
| | - Rania F Ahmed
- Department of Pharmacology, Medical Research and Clinical Studies Institute, National Research Centre, Giza, Egypt
| |
Collapse
|
46
|
Bono S, Feligioni M, Corbo M. Impaired antioxidant KEAP1-NRF2 system in amyotrophic lateral sclerosis: NRF2 activation as a potential therapeutic strategy. Mol Neurodegener 2021; 16:71. [PMID: 34663413 PMCID: PMC8521937 DOI: 10.1186/s13024-021-00479-8] [Citation(s) in RCA: 30] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2021] [Accepted: 08/03/2021] [Indexed: 12/12/2022] Open
Abstract
BACKGROUND Oxidative stress (OS) is an imbalance between oxidant and antioxidant species and, together with other numerous pathological mechanisms, leads to the degeneration and death of motor neurons (MNs) in amyotrophic lateral sclerosis (ALS). MAIN BODY Two of the main players in the molecular and cellular response to OS are NRF2, the transcription nuclear factor erythroid 2-related factor 2, and its principal negative regulator, KEAP1, Kelch-like ECH (erythroid cell-derived protein with CNC homology)-associated protein 1. Here we first provide an overview of the structural organization, regulation, and critical role of the KEAP1-NRF2 system in counteracting OS, with a focus on its alteration in ALS. We then examine several compounds capable of promoting NRF2 activity thereby inducing cytoprotective effects, and which are currently in different stages of clinical development for many pathologies, including neurodegenerative diseases. CONCLUSIONS Although challenges associated with some of these compounds remain, important advances have been made in the development of safer and more effective drugs that could actually represent a breakthrough for fatal degenerative diseases such as ALS.
Collapse
Affiliation(s)
- Silvia Bono
- Need Institute, Laboratory of Neurobiology for Translational Medicine, c/o Casa di Cura del Policlinico (CCP), Via Dezza 48, 20144 Milan, Italy
| | - Marco Feligioni
- Need Institute, Laboratory of Neurobiology for Translational Medicine, c/o Casa di Cura del Policlinico (CCP), Via Dezza 48, 20144 Milan, Italy
- Laboratory of Neuronal Cell Signaling, EBRI Rita Levi-Montalcini Foundation, 00161 Rome, Italy
| | - Massimo Corbo
- Department of Neurorehabilitation Sciences, Casa di Cura del Policlinico (CCP), Via Dezza 48, 20144 Milan, Italy
| |
Collapse
|
47
|
Li M, Qin J, Xiong K, Jiang B, Zhang T. Review of arginase as a promising biocatalyst: characteristics, preparation, applications and future challenges. Crit Rev Biotechnol 2021; 42:651-667. [PMID: 34612104 DOI: 10.1080/07388551.2021.1947962] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023]
Abstract
As a committed step in the urea cycle, arginase cleaves l-arginine to form l-ornithine and urea. l-Ornithine is essential to: cell proliferation, collagen formation and other physiological functions, while the urea cycle itself converts highly toxic ammonia to urea for excretion. Recently, arginase was exploited as an efficient catalyst for the environmentally friendly synthesis of l-ornithine, an abundant nonprotein amino acid that is widely employed as a food supplement and nutrition product. It was also proposed as an arginine-reducing agent in order to treat arginase deficiency and to be a means of depleting arginine to treat arginine auxotrophic tumors. Targeting arginase inhibitors of the arginase/ornithine pathway offers great promise as a therapy for: cardiovascular, central nervous system diseases and cancers with high arginase expression. In this review, recent advances in the characteristics, structure, catalytic mechanism and preparation of arginase were summarized, with a focus being placed on the biotechnical and medical applications of arginase. In particular, perspectives have been presented on the challenges and opportunities for the environmentally friendly utilization of arginase during l-ornithine production and in therapies.
Collapse
Affiliation(s)
- Mengli Li
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu, China
| | - Jiufu Qin
- Novo Nordisk Foundation Center for Biosustainability, Technical University of Denmark, Lyngby, Denmark
| | - Kai Xiong
- Novo Nordisk Foundation Center for Biosustainability, Technical University of Denmark, Lyngby, Denmark
| | - Bo Jiang
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu, China.,International Joint Laboratory on Food Safety, Jiangnan University, Wuxi, Jiangsu, China
| | - Tao Zhang
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu, China
| |
Collapse
|
48
|
Varahan S, Laxman S. Bend or break: how biochemically versatile molecules enable metabolic division of labor in clonal microbial communities. Genetics 2021; 219:iyab109. [PMID: 34849891 PMCID: PMC8633146 DOI: 10.1093/genetics/iyab109] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2021] [Accepted: 06/29/2021] [Indexed: 02/05/2023] Open
Abstract
In fluctuating nutrient environments, isogenic microbial cells transition into "multicellular" communities composed of phenotypically heterogeneous cells, showing functional specialization. In fungi (such as budding yeast), phenotypic heterogeneity is often described in the context of cells switching between different morphotypes (e.g., yeast to hyphae/pseudohyphae or white/opaque transitions in Candida albicans). However, more fundamental forms of metabolic heterogeneity are seen in clonal Saccharomyces cerevisiae communities growing in nutrient-limited conditions. Cells within such communities exhibit contrasting, specialized metabolic states, and are arranged in distinct, spatially organized groups. In this study, we explain how such an organization can stem from self-organizing biochemical reactions that depend on special metabolites. These metabolites exhibit plasticity in function, wherein the same metabolites are metabolized and utilized for distinct purposes by different cells. This in turn allows cell groups to function as specialized, interdependent cross-feeding systems which support distinct metabolic processes. Exemplifying a system where cells exhibit either gluconeogenic or glycolytic states, we highlight how available metabolites can drive favored biochemical pathways to produce new, limiting resources. These new resources can themselves be consumed or utilized distinctly by cells in different metabolic states. This thereby enables cell groups to sustain contrasting, even apparently impossible metabolic states with stable transcriptional and metabolic signatures for a given environment, and divide labor in order to increase community fitness or survival. We speculate on possible evolutionary implications of such metabolic specialization and division of labor in isogenic microbial communities.
Collapse
Affiliation(s)
- Sriram Varahan
- Institute for Stem Cell Science and Regenerative Medicine (inStem), Bengaluru 560065, India
| | - Sunil Laxman
- Institute for Stem Cell Science and Regenerative Medicine (inStem), Bengaluru 560065, India
| |
Collapse
|
49
|
Wang B, Tan F, Chu R, Li G, Li L, Yang T, Zhang M. The effect of non-Saccharomyces yeasts on biogenic amines in wine. Trends Food Sci Technol 2021. [DOI: 10.1016/j.tifs.2021.09.008] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
|
50
|
Megarioti AH, Primo C, Kapetanakis GC, Athanasopoulos A, Sophianopoulou V, André B, Gournas C. The Bul1/2 Alpha-Arrestins Promote Ubiquitylation and Endocytosis of the Can1 Permease upon Cycloheximide-Induced TORC1-Hyperactivation. Int J Mol Sci 2021; 22:10208. [PMID: 34638549 PMCID: PMC8508209 DOI: 10.3390/ijms221910208] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2021] [Revised: 09/15/2021] [Accepted: 09/16/2021] [Indexed: 12/12/2022] Open
Abstract
Selective endocytosis followed by degradation is a major mechanism for downregulating plasma membrane transporters in response to specific environmental cues. In Saccharomyces cerevisiae, this endocytosis is promoted by ubiquitylation catalyzed by the Rsp5 ubiquitin-ligase, targeted to transporters via adaptors of the alpha-arrestin family. However, the molecular mechanisms of this targeting and their control according to conditions remain incompletely understood. In this work, we dissect the molecular mechanisms eliciting the endocytosis of Can1, the arginine permease, in response to cycloheximide-induced TORC1 hyperactivation. We show that cycloheximide promotes Rsp5-dependent Can1 ubiquitylation and endocytosis in a manner dependent on the Bul1/2 alpha-arrestins. Also crucial for this downregulation is a short acidic patch sequence in the N-terminus of Can1 likely acting as a binding site for Bul1/2. The previously reported inhibition by cycloheximide of transporter recycling, from the trans-Golgi network to the plasma membrane, seems to additionally contribute to efficient Can1 downregulation. Our results also indicate that, contrary to the previously described substrate-transport elicited Can1 endocytosis mediated by the Art1 alpha-arrestin, Bul1/2-mediated Can1 ubiquitylation occurs independently of the conformation of the transporter. This study provides further insights into how distinct alpha-arrestins control the ubiquitin-dependent downregulation of a specific amino acid transporter under different conditions.
Collapse
Affiliation(s)
- Amalia H. Megarioti
- Microbial Molecular Genetics Laboratory, Institute of Biosciences and Applications, National Centre for Scientific Research “Demokritos”, Patr. Grigoriou E & 27 Neapoleos St., 15341 Agia Paraskevi, Greece; (A.H.M.); (A.A.); (V.S.)
| | - Cecilia Primo
- Molecular Physiology of the Cell Laboratory, Université Libre de Bruxelles (ULB), IBMM, 6041 Gosselies, Belgium; (C.P.); (G.C.K.)
| | - George C. Kapetanakis
- Molecular Physiology of the Cell Laboratory, Université Libre de Bruxelles (ULB), IBMM, 6041 Gosselies, Belgium; (C.P.); (G.C.K.)
| | - Alexandros Athanasopoulos
- Microbial Molecular Genetics Laboratory, Institute of Biosciences and Applications, National Centre for Scientific Research “Demokritos”, Patr. Grigoriou E & 27 Neapoleos St., 15341 Agia Paraskevi, Greece; (A.H.M.); (A.A.); (V.S.)
| | - Vicky Sophianopoulou
- Microbial Molecular Genetics Laboratory, Institute of Biosciences and Applications, National Centre for Scientific Research “Demokritos”, Patr. Grigoriou E & 27 Neapoleos St., 15341 Agia Paraskevi, Greece; (A.H.M.); (A.A.); (V.S.)
| | - Bruno André
- Molecular Physiology of the Cell Laboratory, Université Libre de Bruxelles (ULB), IBMM, 6041 Gosselies, Belgium; (C.P.); (G.C.K.)
| | - Christos Gournas
- Microbial Molecular Genetics Laboratory, Institute of Biosciences and Applications, National Centre for Scientific Research “Demokritos”, Patr. Grigoriou E & 27 Neapoleos St., 15341 Agia Paraskevi, Greece; (A.H.M.); (A.A.); (V.S.)
| |
Collapse
|