1
|
Jiang G, Wang Y, Zhang Z, Pan W, Chen Y, Wang Y, Chen X, Song E, Huang G, He Q, Sun S, Cui J, Zhou L, Mei Y. Abnormal beam steering with kirigami reconfigurable metasurfaces. Nat Commun 2025; 16:1660. [PMID: 39955271 PMCID: PMC11829993 DOI: 10.1038/s41467-025-56211-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2024] [Accepted: 01/09/2025] [Indexed: 02/17/2025] Open
Abstract
Dynamically controlling electromagnetic waves at will is highly desired in many applications, but most previously realized mechanically reconfigurable metasurfaces are of restricted wave-control capabilities due to the limited tuning ranges of structural properties (e.g., lattice constant or meta-atoms). Here, we present mechanically reconfigurable metasurfaces in which both lattice constants and local reflection phases of constitutional meta-atoms can be synchronously controlled based on the kirigami rotation transformation, thereby exhibiting extended tuning ranges and thus wave-control capabilities. In particular, such metasurfaces can exhibit continuously varied and even re-formed reflection-phase profiles along with the kirigami rotation transformation, serving as ideal platforms to achieve reconfigurable beam steering in pre-designed manners. Using this concept, we design and fabricate two kirigami metasurfaces, working as a beam flipper and as a beam splitter for microwaves, respectively, and experimentally characterize their wave-manipulation functionalities. Experimental results are in good agreement with full-wave simulations. The proposed idea is so general that it can be applied to realize reconfigurable metasurfaces with different materials/configurations or in high frequency regimes, for controlling electromagnetic waves and other classical waves (e.g., acoustic waves).
Collapse
Affiliation(s)
- Guobang Jiang
- Department of Materials Science, Fudan University, Shanghai, 200438, People's Republic of China
- Shanghai Key Laboratory of Metasurfaces for Light Manipulation, Fudan University, Shanghai, 200433, People's Republic of China
| | - Yingying Wang
- Shanghai Key Laboratory of Metasurfaces for Light Manipulation, Fudan University, Shanghai, 200433, People's Republic of China
- Shanghai Engineering Research Centre of Ultra Precision Optical Manufacturing, Department of Optical Science and Engineering, School of Information Science and Technology, Fudan University, Shanghai, 200433, People's Republic of China
| | - Ziyu Zhang
- Department of Materials Science, Fudan University, Shanghai, 200438, People's Republic of China
| | - Weikang Pan
- Shanghai Key Laboratory of Metasurfaces for Light Manipulation, Fudan University, Shanghai, 200433, People's Republic of China
- Shanghai Engineering Research Centre of Ultra Precision Optical Manufacturing, Department of Optical Science and Engineering, School of Information Science and Technology, Fudan University, Shanghai, 200433, People's Republic of China
| | - Yizhen Chen
- Shanghai Key Laboratory of Metasurfaces for Light Manipulation, Fudan University, Shanghai, 200433, People's Republic of China
- Shanghai Engineering Research Centre of Ultra Precision Optical Manufacturing, Department of Optical Science and Engineering, School of Information Science and Technology, Fudan University, Shanghai, 200433, People's Republic of China
| | - Yang Wang
- Department of Materials Science, Fudan University, Shanghai, 200438, People's Republic of China
| | - Xiangzhong Chen
- Institute of Optoelectronics, Shanghai Frontiers Science Research Base of Intelligent Optoelectronics and Perception, Fudan University, Shanghai, 200438, People's Republic of China
- Yiwu Research Institute of Fudan University, Yiwu, 322000, Zhejiang, People's Republic of China
- International Institute of Intelligent Nanorobots and Nanosystems, Fudan University, Shanghai, 200438, People's Republic of China
| | - Enming Song
- Institute of Optoelectronics, Shanghai Frontiers Science Research Base of Intelligent Optoelectronics and Perception, Fudan University, Shanghai, 200438, People's Republic of China
- International Institute of Intelligent Nanorobots and Nanosystems, Fudan University, Shanghai, 200438, People's Republic of China
| | - Gaoshan Huang
- Department of Materials Science, Fudan University, Shanghai, 200438, People's Republic of China
- Institute of Optoelectronics, Shanghai Frontiers Science Research Base of Intelligent Optoelectronics and Perception, Fudan University, Shanghai, 200438, People's Republic of China
- Yiwu Research Institute of Fudan University, Yiwu, 322000, Zhejiang, People's Republic of China
- International Institute of Intelligent Nanorobots and Nanosystems, Fudan University, Shanghai, 200438, People's Republic of China
| | - Qiong He
- Shanghai Key Laboratory of Metasurfaces for Light Manipulation, Fudan University, Shanghai, 200433, People's Republic of China
- State Key Laboratory of Surface Physics and Key Laboratory of Micro and Nano Photonic Structures (Ministry of Education), Fudan University, Shanghai, 200433, People's Republic of China
| | - Shulin Sun
- Shanghai Key Laboratory of Metasurfaces for Light Manipulation, Fudan University, Shanghai, 200433, People's Republic of China.
- Shanghai Engineering Research Centre of Ultra Precision Optical Manufacturing, Department of Optical Science and Engineering, School of Information Science and Technology, Fudan University, Shanghai, 200433, People's Republic of China.
- Yiwu Research Institute of Fudan University, Yiwu, 322000, Zhejiang, People's Republic of China.
| | - Jizhai Cui
- Department of Materials Science, Fudan University, Shanghai, 200438, People's Republic of China.
- Shanghai Key Laboratory of Metasurfaces for Light Manipulation, Fudan University, Shanghai, 200433, People's Republic of China.
- Yiwu Research Institute of Fudan University, Yiwu, 322000, Zhejiang, People's Republic of China.
- International Institute of Intelligent Nanorobots and Nanosystems, Fudan University, Shanghai, 200438, People's Republic of China.
| | - Lei Zhou
- Shanghai Key Laboratory of Metasurfaces for Light Manipulation, Fudan University, Shanghai, 200433, People's Republic of China
- State Key Laboratory of Surface Physics and Key Laboratory of Micro and Nano Photonic Structures (Ministry of Education), Fudan University, Shanghai, 200433, People's Republic of China
| | - Yongfeng Mei
- Department of Materials Science, Fudan University, Shanghai, 200438, People's Republic of China
- Institute of Optoelectronics, Shanghai Frontiers Science Research Base of Intelligent Optoelectronics and Perception, Fudan University, Shanghai, 200438, People's Republic of China
- Yiwu Research Institute of Fudan University, Yiwu, 322000, Zhejiang, People's Republic of China
- International Institute of Intelligent Nanorobots and Nanosystems, Fudan University, Shanghai, 200438, People's Republic of China
| |
Collapse
|
2
|
Ahmed S, Perez-Mercader J. Interactions and Oscillatory Dynamics of Chemically Powered Soft Swimmers. J Phys Chem B 2025; 129:554-562. [PMID: 39714313 PMCID: PMC11726663 DOI: 10.1021/acs.jpcb.4c07069] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2024] [Revised: 12/05/2024] [Accepted: 12/09/2024] [Indexed: 12/24/2024]
Abstract
We report the interactions and dynamics of chemically powered soft swimmers that undergo autonomous oscillatory motion. The interaction of autonomous entities is the basis for the development of collective behaviors among biological organisms. Collective behaviors enable organisms to efficiently attain food and coordinate against threats. The basis of these behaviors is the interaction between nearest neighbors. Mimicking these interactions in artificial systems would enable their organization for the performance of complex tasks. Oscillatory phenomena are also ubiquitous in nature. Hence artificial oscillatory systems can serve as the most direct mimics and models of many biological systems. In this work, we report the interactions and dynamics of oscillatory swimmers propelled by the nonlinear oscillatory Belousov-Zhabotinsky (BZ) reaction. Individually, these swimmers displace by undergoing nonfully reciprocal oscillatory motion in conjunction with the BZ reaction. We find that, in addition to their individual oscillatory motion, multiple BZ swimmers exhibit successive oscillatory changes in their inter swimmer distance. This oscillatory attraction and repulsion between adjacent swimmers occurs in conjunction with the BZ waves and oxidation state of the catalyst. The effect of swimmer size and number on these dynamic interactions is interrogated. The level of chemical synchronization between multiple swimmers is determined. This work is a starting point for the design of collective behaviors utilizing autonomous chemically propelled soft swimmers.
Collapse
Affiliation(s)
- Suzanne Ahmed
- Department
of Nanoscience, Joint School of Nanoscience and Nanoengineering, University of North Carolina at Greensboro, 2907 E Gate City Blvd, Greensboro, North Carolina 27401, United States
- Department
of Earth and Planetary Sciences and Origins of Life Initiative, Harvard University, 20 Oxford Street, Cambridge, Massachusetts 02138, United States
| | - Juan Perez-Mercader
- Department
of Earth and Planetary Sciences and Origins of Life Initiative, Harvard University, 20 Oxford Street, Cambridge, Massachusetts 02138, United States
- Santa
Fe Institute, Santa Fe, New Mexico 87501, United States
| |
Collapse
|
3
|
Wang Y, Shi Y, Li L, Zhu Z, Liu M, Jin X, Li H, Jiang G, Cui J, Ma S, He Q, Zhou L, Sun S. Electromagnetic Wavefront Engineering by Switchable and Multifunctional Kirigami Metasurfaces. NANOMATERIALS (BASEL, SWITZERLAND) 2025; 15:61. [PMID: 39791820 PMCID: PMC11722745 DOI: 10.3390/nano15010061] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/14/2024] [Revised: 12/22/2024] [Accepted: 12/31/2024] [Indexed: 01/12/2025]
Abstract
Developing switchable and multifunctional metasurfaces is essential for high-integration photonics. However, most previous studies encountered challenges such as limited degrees of freedom, simple tuning of predefined functionality, and complicated control systems. Here, we develop a general strategy to construct switchable and multifunctional metasurfaces. Two spin-modulated wave-controls are enabled by the proposed high-efficiency metasurface, which is designed using both resonant and geometric phases. Furthermore, the switchable wavefront tailoring can also be achieved by flexibly altering the lattice constant and reforming the phase retardation of the metasurfaces based on the "rotating square" (RS) kirigami technique. As a proof of concept, a kirigami metasurface is designed that successfully demonstrates dynamic controls of three-channel beam steering. In addition, another kirigami metasurface is built for realizing tri-channel complex wavefront engineering, including straight beam focusing, tilted beam focusing, and anomalous reflection. By altering the polarization of input waves as well as transformation states, the functionality of the metadevice can be switched flexibly among three different channels. Microwave experiments show good agreement with full-wave simulations, clearly demonstrating the performance of the metadevices. This strategy exhibits advantages such as flexible control, low cost, and multiple and switchable functionalities, providing a new pathway for achieving switchable wavefront engineering.
Collapse
Affiliation(s)
- Yingying Wang
- Shanghai Engineering Research Centre of Ultra Precision Optical Manufacturing, Department of Optical Science and Engineering, School of Information Science and Technology, Fudan University, Shanghai 200433, China; (Y.W.); (Y.S.); (L.L.); (Z.Z.); (M.L.); (X.J.); (S.M.)
- Yiwu Research Institute, Fudan University, Chengbei Road, Yiwu 322000, China
| | - Yang Shi
- Shanghai Engineering Research Centre of Ultra Precision Optical Manufacturing, Department of Optical Science and Engineering, School of Information Science and Technology, Fudan University, Shanghai 200433, China; (Y.W.); (Y.S.); (L.L.); (Z.Z.); (M.L.); (X.J.); (S.M.)
- Yiwu Research Institute, Fudan University, Chengbei Road, Yiwu 322000, China
| | - Liangwei Li
- Shanghai Engineering Research Centre of Ultra Precision Optical Manufacturing, Department of Optical Science and Engineering, School of Information Science and Technology, Fudan University, Shanghai 200433, China; (Y.W.); (Y.S.); (L.L.); (Z.Z.); (M.L.); (X.J.); (S.M.)
- Yiwu Research Institute, Fudan University, Chengbei Road, Yiwu 322000, China
| | - Zhiyan Zhu
- Shanghai Engineering Research Centre of Ultra Precision Optical Manufacturing, Department of Optical Science and Engineering, School of Information Science and Technology, Fudan University, Shanghai 200433, China; (Y.W.); (Y.S.); (L.L.); (Z.Z.); (M.L.); (X.J.); (S.M.)
- Yiwu Research Institute, Fudan University, Chengbei Road, Yiwu 322000, China
| | - Muhan Liu
- Shanghai Engineering Research Centre of Ultra Precision Optical Manufacturing, Department of Optical Science and Engineering, School of Information Science and Technology, Fudan University, Shanghai 200433, China; (Y.W.); (Y.S.); (L.L.); (Z.Z.); (M.L.); (X.J.); (S.M.)
- Yiwu Research Institute, Fudan University, Chengbei Road, Yiwu 322000, China
| | - Xiangyu Jin
- Shanghai Engineering Research Centre of Ultra Precision Optical Manufacturing, Department of Optical Science and Engineering, School of Information Science and Technology, Fudan University, Shanghai 200433, China; (Y.W.); (Y.S.); (L.L.); (Z.Z.); (M.L.); (X.J.); (S.M.)
- Yiwu Research Institute, Fudan University, Chengbei Road, Yiwu 322000, China
| | - Haodong Li
- State Key Laboratory of Surface Physics (Ministry of Education), Fudan University, Shanghai 200433, China; (H.L.); (Q.H.)
- Key Laboratory of Micro and Nano Photonic Structures (Ministry of Education), Fudan University, Shanghai 200433, China
| | - Guobang Jiang
- Department of Materials Science and State Key Laboratory of Molecular Engineering of Polymers, Fudan University, Shanghai 200438, China; (G.J.); (J.C.)
- International Institute of Intelligent Nanorobots and Nanosystems, Fudan University, Shanghai 200438, China
| | - Jizhai Cui
- Department of Materials Science and State Key Laboratory of Molecular Engineering of Polymers, Fudan University, Shanghai 200438, China; (G.J.); (J.C.)
- International Institute of Intelligent Nanorobots and Nanosystems, Fudan University, Shanghai 200438, China
| | - Shaojie Ma
- Shanghai Engineering Research Centre of Ultra Precision Optical Manufacturing, Department of Optical Science and Engineering, School of Information Science and Technology, Fudan University, Shanghai 200433, China; (Y.W.); (Y.S.); (L.L.); (Z.Z.); (M.L.); (X.J.); (S.M.)
| | - Qiong He
- State Key Laboratory of Surface Physics (Ministry of Education), Fudan University, Shanghai 200433, China; (H.L.); (Q.H.)
- Key Laboratory of Micro and Nano Photonic Structures (Ministry of Education), Fudan University, Shanghai 200433, China
- Collaborative Innovation Center of Advanced Microstructures, Nanjing 210093, China
| | - Lei Zhou
- State Key Laboratory of Surface Physics (Ministry of Education), Fudan University, Shanghai 200433, China; (H.L.); (Q.H.)
- Key Laboratory of Micro and Nano Photonic Structures (Ministry of Education), Fudan University, Shanghai 200433, China
- Collaborative Innovation Center of Advanced Microstructures, Nanjing 210093, China
| | - Shulin Sun
- Shanghai Engineering Research Centre of Ultra Precision Optical Manufacturing, Department of Optical Science and Engineering, School of Information Science and Technology, Fudan University, Shanghai 200433, China; (Y.W.); (Y.S.); (L.L.); (Z.Z.); (M.L.); (X.J.); (S.M.)
- Yiwu Research Institute, Fudan University, Chengbei Road, Yiwu 322000, China
| |
Collapse
|
4
|
Liu Q, Wang W, Sinhmar H, Griniasty I, Kim JZ, Pelster JT, Chaudhari P, Reynolds MF, Cao MC, Muller DA, Apsel AB, Abbott NL, Kress-Gazit H, McEuen PL, Cohen I. Electronically configurable microscopic metasheet robots. NATURE MATERIALS 2025; 24:109-115. [PMID: 39261721 DOI: 10.1038/s41563-024-02007-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/21/2023] [Accepted: 08/22/2024] [Indexed: 09/13/2024]
Abstract
Shape morphing is vital to locomotion in microscopic organisms but has been challenging to achieve in sub-millimetre robots. By overcoming obstacles associated with miniaturization, we demonstrate microscopic electronically configurable morphing metasheet robots. These metabots expand locally using a kirigami structure spanning five decades in length, from 10 nm electrochemically actuated hinges to 100 μm splaying panels making up the ~1 mm robot. The panels are organized into unit cells that can expand and contract by 40% within 100 ms. These units are tiled to create metasheets with over 200 hinges and independent electronically actuating regions that enable the robot to switch between multiple target geometries with distinct curvature distributions. By electronically actuating independent regions with prescribed phase delays, we generate locomotory gaits. These results advance a metamaterial paradigm for microscopic, continuum, compliant, programmable robots and pave the way to a broad spectrum of applications, including reconfigurable micromachines, tunable optical metasurfaces and miniaturized biomedical devices.
Collapse
Affiliation(s)
- Qingkun Liu
- Laboratory of Atomic and Solid State Physics, Cornell University, Ithaca, NY, USA
- National Key Laboratory of Advanced Micro and Nano Manufacture Technology, Shanghai Jiao Tong University, Shanghai, China
| | - Wei Wang
- Laboratory of Atomic and Solid State Physics, Cornell University, Ithaca, NY, USA
- Sibley School of Mechanical and Aerospace Engineering, Cornell University, Ithaca, NY, USA
| | - Himani Sinhmar
- Sibley School of Mechanical and Aerospace Engineering, Cornell University, Ithaca, NY, USA
| | - Itay Griniasty
- Laboratory of Atomic and Solid State Physics, Cornell University, Ithaca, NY, USA
| | - Jason Z Kim
- Laboratory of Atomic and Solid State Physics, Cornell University, Ithaca, NY, USA
| | - Jacob T Pelster
- Sibley School of Mechanical and Aerospace Engineering, Cornell University, Ithaca, NY, USA
| | | | - Michael F Reynolds
- Laboratory of Atomic and Solid State Physics, Cornell University, Ithaca, NY, USA
| | - Michael C Cao
- School of Applied and Engineering Physics, Cornell University, Ithaca, NY, USA
| | - David A Muller
- School of Applied and Engineering Physics, Cornell University, Ithaca, NY, USA
| | - Alyssa B Apsel
- Electrical and Computer Engineering, Cornell University, Ithaca, NY, USA
| | - Nicholas L Abbott
- Smith School of Chemical and Biomolecular Engineering, Cornell University, Ithaca, NY, USA
| | - Hadas Kress-Gazit
- Sibley School of Mechanical and Aerospace Engineering, Cornell University, Ithaca, NY, USA
| | - Paul L McEuen
- Laboratory of Atomic and Solid State Physics, Cornell University, Ithaca, NY, USA
- Department of Physics, Cornell University, Ithaca, NY, USA
- Kavli Institute at Cornell for Nanoscale Science, Cornell University, Ithaca, NY, USA
| | - Itai Cohen
- Laboratory of Atomic and Solid State Physics, Cornell University, Ithaca, NY, USA.
- Department of Physics, Cornell University, Ithaca, NY, USA.
- Kavli Institute at Cornell for Nanoscale Science, Cornell University, Ithaca, NY, USA.
| |
Collapse
|
5
|
Smart CL, Pearson TG, Liang Z, Lim MX, Abdelrahman MI, Monticone F, Cohen I, McEuen PL. Magnetically programmed diffractive robotics. Science 2024; 386:1031-1037. [PMID: 39607909 DOI: 10.1126/science.adr2177] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2024] [Accepted: 09/27/2024] [Indexed: 11/30/2024]
Abstract
Microscopic robots with features comparable with the wavelength of light offer new ways of probing the microscopic world and controlling light at the microscale. We introduce a new class of magnetically controlled microscopic robots (microbots) that operate at the visible-light diffraction limit, which we term diffractive robots. We combined nanometer-thick mechanical membranes, programmable nanomagnets, and diffractive optical elements to create untethered microbots small enough to diffract visible light and flexible enough to undergo complex reconfigurations in millitesla-scale magnetic fields. We demonstrated their applications, including subdiffractive imaging by using a variant of structured illumination microscopy, tunable diffractive optical elements for beam steering and focusing, and force sensing with piconewton sensitivity.
Collapse
Affiliation(s)
- Conrad L Smart
- Laboratory of Atomic and Solid-State Physics, Cornell University, Ithaca, NY, USA
| | - Tanner G Pearson
- School of Applied and Engineering Physics, Cornell University, Ithaca, NY, USA
| | - Zexi Liang
- Laboratory of Atomic and Solid-State Physics, Cornell University, Ithaca, NY, USA
- Kavli Institute at Cornell for Nanoscale Science, Cornell University, Ithaca, NY, USA
| | - Melody X Lim
- Laboratory of Atomic and Solid-State Physics, Cornell University, Ithaca, NY, USA
- Kavli Institute at Cornell for Nanoscale Science, Cornell University, Ithaca, NY, USA
| | | | - Francesco Monticone
- School of Electrical and Computer Engineering, Cornell University, Ithaca, NY, USA
| | - Itai Cohen
- Laboratory of Atomic and Solid-State Physics, Cornell University, Ithaca, NY, USA
- Kavli Institute at Cornell for Nanoscale Science, Cornell University, Ithaca, NY, USA
| | - Paul L McEuen
- Laboratory of Atomic and Solid-State Physics, Cornell University, Ithaca, NY, USA
- Kavli Institute at Cornell for Nanoscale Science, Cornell University, Ithaca, NY, USA
| |
Collapse
|
6
|
Yang Z, Xu C, Lee JX, Lum GZ. Magnetic Miniature Soft Robot with Reprogrammable Drug-Dispensing Functionalities: Toward Advanced Targeted Combination Therapy. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2024; 36:e2408750. [PMID: 39246210 DOI: 10.1002/adma.202408750] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/19/2024] [Revised: 08/26/2024] [Indexed: 09/10/2024]
Abstract
Miniature robots are untethered actuators, which have great prospects to transform targeted drug delivery because they can potentially deliver high concentrations of medicine to the disease site(s) with minimal complications. However, existing miniature robots cannot perform advanced targeted combination therapy; majority of them can at most transport one type of drug, while those that can carry multiple drugs are unable to change their drug-dispensing sequence and dosage. Furthermore, the latter robots cannot transport more than three types of drugs, selectively dispense their drugs, maintain their mobility, or release their drugs at multiple sites. Here, a millimeter-scale soft robot is proposed, which can be actuated by alternating magnetic fields to dispense four types of drugs with reprogrammable drug-dispensing sequence and dosage (dispensing rates: 0.0992-0.231 µL h-1). This robot has six degrees-of-freedom motions, and it can deliver its drugs to multiple desired sites by rolling and two-anchor crawling across unstructured environments with negligible drug leakage. Such dexterity is highly desirable and unprecedented for miniature robots with drug-dispensing capabilities. The soft robot therefore has great potential to enable advanced targeted combination therapy, where four types of drugs must be delivered to various disease sites, each with a specific sequence and dosage of drugs.
Collapse
Affiliation(s)
- Zilin Yang
- School of Mechanical and Aerospace Engineering, Nanyang Technological University, 50 Nanyang Avenue, Singapore, 639798, Singapore
| | - Changyu Xu
- School of Mechanical and Aerospace Engineering, Nanyang Technological University, 50 Nanyang Avenue, Singapore, 639798, Singapore
| | - Jia Xin Lee
- Rehabilitation Research Institute of Singapore, Nanyang Technological University, 11 Mandalay Road, Singapore, 308232, Singapore
| | - Guo Zhan Lum
- School of Mechanical and Aerospace Engineering, Nanyang Technological University, 50 Nanyang Avenue, Singapore, 639798, Singapore
- Rehabilitation Research Institute of Singapore, Nanyang Technological University, 11 Mandalay Road, Singapore, 308232, Singapore
| |
Collapse
|
7
|
Shin DS, Park JW, Gal CW, Kim J, Yang WS, Yang SY, Kim MJ, Kwak HJ, Park SM, Kim JH. Development of High-Aspect-Ratio Soft Magnetic Microarrays for Magneto-Mechanical Actuation via Field-Induced Injection Molding. Polymers (Basel) 2024; 16:3003. [PMID: 39518213 PMCID: PMC11548449 DOI: 10.3390/polym16213003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2024] [Revised: 10/22/2024] [Accepted: 10/24/2024] [Indexed: 11/16/2024] Open
Abstract
Magnetorheological elastomers (MREs) are in demand in the field of high-tech microindustries and nanoindustries such as biomedical applications and soft robotics due to their exquisite magneto-sensitive response. Among various MRE applications, programmable actuators are emerging as promising soft robots because of their combined advantages of excellent flexibility and precise controllability in a magnetic system. Here, we present the development of magnetically programmable soft magnetic microarray actuators through field-induced injection molding using MREs, which consist of styrene-ethylene/butylene styrene (SEBS) elastomer and carbonyl iron powder (CIP). The ratio of the CIP/SEBS matrix was designed to maximize the CIP fraction based on a critical solids loading. Further, as part of the design of the magnetization distribution in micropillar arrays, the magnetorheological response of the molten composites was analyzed using the static and dynamic viscosity results for both the on and off magnetic states, which reflected the particle dipole interaction and subsequent particle alignment during the field-induced injection molding process. To develop a high-aspect-ratio soft magnetic microarray, X-ray lithography was applied to prepare the sacrificial molds with a height-to-width ratio of 10. The alignment of the CIP was designed to achieve a parallel magnetic direction along the micropillar columns, and consequently, the micropillar arrays successfully achieved the uniform and large bending actuation of up to approximately 81° with an applied magnetic field. This study suggests that the injection molding process offers a promising manufacturing approach to build a programmable soft magnetic microarray actuator.
Collapse
Affiliation(s)
- Da Seul Shin
- Materials Processing Research Division, Korea Institute of Materials Science, 797 Changwon-daero, Seongsan-gu, Changwon 51508, Gyeongnam, Republic of Korea; (J.W.P.); (W.S.Y.); (S.Y.Y.); (M.J.K.)
| | - Jin Wook Park
- Materials Processing Research Division, Korea Institute of Materials Science, 797 Changwon-daero, Seongsan-gu, Changwon 51508, Gyeongnam, Republic of Korea; (J.W.P.); (W.S.Y.); (S.Y.Y.); (M.J.K.)
| | - Chang Woo Gal
- Advanced Bio and Healthcare Materials Research Division, Korea Institute of Materials Science, 797 Changwon-daero, Seongsan-gu, Changwon 51508, Gyeongnam, Republic of Korea;
| | - Jina Kim
- Pohang Accelerator Laboratory (PLA), Pohang University of Science and Technology (POSTECH), 77, Cheongam-ro, Nam-gu, Pohang 37673, Gyeongbuk, Republic of Korea; (J.K.); (H.J.K.)
| | - Woo Seok Yang
- Materials Processing Research Division, Korea Institute of Materials Science, 797 Changwon-daero, Seongsan-gu, Changwon 51508, Gyeongnam, Republic of Korea; (J.W.P.); (W.S.Y.); (S.Y.Y.); (M.J.K.)
| | - Seon Yeong Yang
- Materials Processing Research Division, Korea Institute of Materials Science, 797 Changwon-daero, Seongsan-gu, Changwon 51508, Gyeongnam, Republic of Korea; (J.W.P.); (W.S.Y.); (S.Y.Y.); (M.J.K.)
| | - Min Jik Kim
- Materials Processing Research Division, Korea Institute of Materials Science, 797 Changwon-daero, Seongsan-gu, Changwon 51508, Gyeongnam, Republic of Korea; (J.W.P.); (W.S.Y.); (S.Y.Y.); (M.J.K.)
| | - Ho Jae Kwak
- Pohang Accelerator Laboratory (PLA), Pohang University of Science and Technology (POSTECH), 77, Cheongam-ro, Nam-gu, Pohang 37673, Gyeongbuk, Republic of Korea; (J.K.); (H.J.K.)
| | - Sang Min Park
- School of Mechanical Engineering, Pusan National University, 2, Busandaehak-ro 63beon-gil, Geumjeong-gu, Busan 46241, Republic of Korea;
| | - Jong Hyun Kim
- Pohang Accelerator Laboratory (PLA), Pohang University of Science and Technology (POSTECH), 77, Cheongam-ro, Nam-gu, Pohang 37673, Gyeongbuk, Republic of Korea; (J.K.); (H.J.K.)
| |
Collapse
|
8
|
Yin S, Yao DR, Song Y, Heng W, Ma X, Han H, Gao W. Wearable and Implantable Soft Robots. Chem Rev 2024; 124:11585-11636. [PMID: 39392765 DOI: 10.1021/acs.chemrev.4c00513] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/13/2024]
Abstract
Soft robotics presents innovative solutions across different scales. The flexibility and mechanical characteristics of soft robots make them particularly appealing for wearable and implantable applications. The scale and level of invasiveness required for soft robots depend on the extent of human interaction. This review provides a comprehensive overview of wearable and implantable soft robots, including applications in rehabilitation, assistance, organ simulation, surgical tools, and therapy. We discuss challenges such as the complexity of fabrication processes, the integration of responsive materials, and the need for robust control strategies, while focusing on advances in materials, actuation and sensing mechanisms, and fabrication techniques. Finally, we discuss the future outlook, highlighting key challenges and proposing potential solutions.
Collapse
Affiliation(s)
- Shukun Yin
- Andrew and Peggy Cherng Department of Medical Engineering, Division of Engineering and Applied Science, California Institute of Technology, Pasadena, California 91125, United States
| | - Dickson R Yao
- Andrew and Peggy Cherng Department of Medical Engineering, Division of Engineering and Applied Science, California Institute of Technology, Pasadena, California 91125, United States
| | - Yu Song
- Andrew and Peggy Cherng Department of Medical Engineering, Division of Engineering and Applied Science, California Institute of Technology, Pasadena, California 91125, United States
| | - Wenzheng Heng
- Andrew and Peggy Cherng Department of Medical Engineering, Division of Engineering and Applied Science, California Institute of Technology, Pasadena, California 91125, United States
| | - Xiaotian Ma
- Andrew and Peggy Cherng Department of Medical Engineering, Division of Engineering and Applied Science, California Institute of Technology, Pasadena, California 91125, United States
| | - Hong Han
- Andrew and Peggy Cherng Department of Medical Engineering, Division of Engineering and Applied Science, California Institute of Technology, Pasadena, California 91125, United States
| | - Wei Gao
- Andrew and Peggy Cherng Department of Medical Engineering, Division of Engineering and Applied Science, California Institute of Technology, Pasadena, California 91125, United States
| |
Collapse
|
9
|
Gauri HM, Patel R, Lombardo NS, Bevan MA, Bharti B. Field-Directed Motion, Cargo Capture, and Closed-Loop Controlled Navigation of Microellipsoids. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2024; 20:e2403007. [PMID: 39126239 DOI: 10.1002/smll.202403007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/15/2024] [Revised: 08/01/2024] [Indexed: 08/12/2024]
Abstract
Microrobots have the potential for diverse applications, including targeted drug delivery and minimally invasive surgery. Despite advancements in microrobot design and actuation strategies, achieving precise control over their motion remains challenging due to the dominance of viscous drag, system disturbances, physicochemical heterogeneities, and stochastic Brownian forces. Here, a precise control over the interfacial motion of model microellipsoids is demonstrated using time-varying rotating magnetic fields. The impacts of microellipsoid aspect ratio, field characteristics, and magnetic properties of the medium and the particle on the motion are investigated. The role of mobile micro-vortices generated is highlighted by rotating microellipsoids in capturing, transporting, and releasing cargo objects. Furthermore, an approach is presented for controlled navigation through mazes based on real-time particle and obstacle sensing, path planning, and magnetic field actuation without human intervention. The study introduces a mechanism of directing motion of microparticles using rotating magnetic fields, and a control scheme for precise navigation and delivery of micron-sized cargo using simple microellipsoids as microbots.
Collapse
Affiliation(s)
- Hashir M Gauri
- Cain Department of Chemical Engineering, Louisiana State University, Baton Rouge, LA, 70803, USA
| | - Ruchi Patel
- Cain Department of Chemical Engineering, Louisiana State University, Baton Rouge, LA, 70803, USA
| | - Nicholas S Lombardo
- Cain Department of Chemical Engineering, Louisiana State University, Baton Rouge, LA, 70803, USA
| | - Michael A Bevan
- Chemical and Biomolecular Engineering, Johns Hopkins University, Baltimore, MD, 21218, USA
| | - Bhuvnesh Bharti
- Cain Department of Chemical Engineering, Louisiana State University, Baton Rouge, LA, 70803, USA
| |
Collapse
|
10
|
Kim J, Mayorga-Burrezo P, Song SJ, Mayorga-Martinez CC, Medina-Sánchez M, Pané S, Pumera M. Advanced materials for micro/nanorobotics. Chem Soc Rev 2024; 53:9190-9253. [PMID: 39139002 DOI: 10.1039/d3cs00777d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/15/2024]
Abstract
Autonomous micro/nanorobots capable of performing programmed missions are at the forefront of next-generation micromachinery. These small robotic systems are predominantly constructed using functional components sourced from micro- and nanoscale materials; therefore, combining them with various advanced materials represents a pivotal direction toward achieving a higher level of intelligence and multifunctionality. This review provides a comprehensive overview of advanced materials for innovative micro/nanorobotics, focusing on the five families of materials that have witnessed the most rapid advancements over the last decade: two-dimensional materials, metal-organic frameworks, semiconductors, polymers, and biological cells. Their unique physicochemical, mechanical, optical, and biological properties have been integrated into micro/nanorobots to achieve greater maneuverability, programmability, intelligence, and multifunctionality in collective behaviors. The design and fabrication methods for hybrid robotic systems are discussed based on the material categories. In addition, their promising potential for powering motion and/or (multi-)functionality is described and the fundamental principles underlying them are explained. Finally, their extensive use in a variety of applications, including environmental remediation, (bio)sensing, therapeutics, etc., and remaining challenges and perspectives for future research are discussed.
Collapse
Affiliation(s)
- Jeonghyo Kim
- Advanced Nanorobots & Multiscale Robotics Laboratory, Faculty of Electrical Engineering and Computer Science, VSB - Technical University of Ostrava, 17. listopadu 2172/15, Ostrava 70800, Czech Republic.
| | - Paula Mayorga-Burrezo
- Future Energy and Innovation Laboratory, Central European Institute of Technology, Brno University of Technology, Purkyňova 123, Brno 61200, Czech Republic
| | - Su-Jin Song
- Advanced Nanorobots & Multiscale Robotics Laboratory, Faculty of Electrical Engineering and Computer Science, VSB - Technical University of Ostrava, 17. listopadu 2172/15, Ostrava 70800, Czech Republic.
| | - Carmen C Mayorga-Martinez
- Advanced Nanorobots & Multiscale Robotics Laboratory, Faculty of Electrical Engineering and Computer Science, VSB - Technical University of Ostrava, 17. listopadu 2172/15, Ostrava 70800, Czech Republic.
| | - Mariana Medina-Sánchez
- CIC nanoGUNE BRTA, Tolosa Hiribidea 76, San Sebastián, 20018, Spain
- IKERBASQUE, Basque Foundation for Science, Plaza Euskadi, 5, Bilbao, 48009, Spain
- Micro- and NanoBiomedical Engineering Group (MNBE), Institute for Emerging Electronic Technologies, Leibniz Institute for Solid State and Materials Research (IFW), 01069, Dresden, Germany
- Chair of Micro- and Nano-Biosystems, Center for Molecular Bioengineering (B CUBE), Dresden University of Technology, 01062, Dresden, Germany
| | - Salvador Pané
- Multi-Scale Robotics Lab, Institute of Robotics and Intelligent Systems, ETH Zürich, Tannenstrasse 3, CH-8092 Zürich, Switzerland
| | - Martin Pumera
- Advanced Nanorobots & Multiscale Robotics Laboratory, Faculty of Electrical Engineering and Computer Science, VSB - Technical University of Ostrava, 17. listopadu 2172/15, Ostrava 70800, Czech Republic.
- Future Energy and Innovation Laboratory, Central European Institute of Technology, Brno University of Technology, Purkyňova 123, Brno 61200, Czech Republic
- Department of Chemical and Biomolecular Engineering, Yonsei University, 50 Yonsei-ro, Seodaemun-gu, Seoul 03722, Republic of Korea
- Department of Medical Research, China Medical University Hospital, China Medical University, No. 91 Hsueh-Shih Road, Taichung, Taiwan
| |
Collapse
|
11
|
An S, Li X, Guo Z, Huang Y, Zhang Y, Jiang H. Energy-efficient dynamic 3D metasurfaces via spatiotemporal jamming interleaved assemblies for tactile interfaces. Nat Commun 2024; 15:7340. [PMID: 39187536 PMCID: PMC11347642 DOI: 10.1038/s41467-024-51865-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2024] [Accepted: 08/19/2024] [Indexed: 08/28/2024] Open
Abstract
Inspired by the natural shape-morphing abilities of biological organisms, we introduce a strategy for creating energy-efficient dynamic 3D metasurfaces through spatiotemporal jamming of interleaved assemblies. Our approach, diverging from traditional shape-morphing techniques reliant on continuous energy inputs, utilizes strategically jammed, paper-based interleaved assemblies. By rapidly altering their stiffness at various spatial points and temporal phases during the relaxation of the soft substrate through jamming, we enable the formation of refreshable, intricate 3D shapes with a desirable load-bearing capability. This process, which does not require ongoing energy consumption, ensures energy-efficient and lasting shape displays. Our theoretical model, linking buckling deformation to residual pre-strain, underpins the inverse design process for an array of interleaved assemblies, facilitating the creation of diverse 3D configurations. This metasurface holds notable potential for tactile displays, particularly for the visually impaired, heralding possibilities in visual impaired education, haptic feedback, and virtual/augmented reality applications.
Collapse
Affiliation(s)
- Siqi An
- School of Engineering, Westlake University, Hangzhou, Zhejiang, 310030, China
- Westlake Institute for Advanced Study, Hangzhou, Zhejiang, 310024, China
| | - Xiaowen Li
- School of Engineering, Westlake University, Hangzhou, Zhejiang, 310030, China
- Westlake Institute for Advanced Study, Hangzhou, Zhejiang, 310024, China
| | - Zengrong Guo
- School of Engineering, Westlake University, Hangzhou, Zhejiang, 310030, China
| | - Yi Huang
- School of Engineering, Westlake University, Hangzhou, Zhejiang, 310030, China
| | - Yanlin Zhang
- School of Engineering, Westlake University, Hangzhou, Zhejiang, 310030, China
- Westlake Institute for Advanced Study, Hangzhou, Zhejiang, 310024, China
| | - Hanqing Jiang
- School of Engineering, Westlake University, Hangzhou, Zhejiang, 310030, China.
- Westlake Institute for Advanced Study, Hangzhou, Zhejiang, 310024, China.
- Research Center for Industries of the Future, Westlake University, Hangzhou, Zhejiang, 310030, China.
| |
Collapse
|
12
|
Sun M, Wu Y, Zhang J, Zhang H, Liu Z, Li M, Wang C, Sitti M. Versatile, modular, and customizable magnetic solid-droplet systems. Proc Natl Acad Sci U S A 2024; 121:e2405095121. [PMID: 39088393 PMCID: PMC11317579 DOI: 10.1073/pnas.2405095121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2024] [Accepted: 06/21/2024] [Indexed: 08/03/2024] Open
Abstract
Magnetic miniature robotic systems have attracted broad research interest because of their precise maneuverability in confined spaces and adaptability to diverse environments, holding significant promise for applications in both industrial infrastructures and biomedical fields. However, the predominant construction methodology involves the preprogramming of magnetic components into the system's structure. While this approach allows for intricate shape transformations, it exhibits limited flexibility in terms of reconfiguration and presents challenges when adapting to diverse materials, combining, and decoupling multiple functionalities. Here, we propose a construction strategy that facilitates the on-demand assembly of magnetic components, integrating ferrofluid droplets with the system's structural body. This approach enables the creation of complex solid-droplet robotic systems across a spectrum of length scales, ranging from 0.8 mm to 1.5 cm. It offers a diverse selection of materials and structural configurations, akin to assembling components like building blocks, thus allowing for the seamless integration of various functionalities. Moreover, it incorporates decoupling mechanisms to enable selective control over multiple functions, leveraging the fluidity, fission/fusion, and magneto-responsiveness properties inherent in the ferrofluid. Various solid-droplet systems have validated the feasibility of this strategy. This study advances the complexity and functionality achievable in small-scale magnetic robots, augmenting their potential for future biomedical and other applications.
Collapse
Affiliation(s)
- Mengmeng Sun
- Physical Intelligence Department, Max Planck Institute for Intelligent Systems, Stuttgart70569, Germany
| | - Yingdan Wu
- State Key Laboratory of Robotics and Systems, Harbin Institute of Technology, Harbin150001, China
| | - Jianhua Zhang
- Physical Intelligence Department, Max Planck Institute for Intelligent Systems, Stuttgart70569, Germany
| | - Hongchuan Zhang
- Physical Intelligence Department, Max Planck Institute for Intelligent Systems, Stuttgart70569, Germany
| | - Zemin Liu
- Physical Intelligence Department, Max Planck Institute for Intelligent Systems, Stuttgart70569, Germany
- School of Medicine and College of Engineering, Koç University, Istanbul34450, Türkiye
| | - Mingtong Li
- Physical Intelligence Department, Max Planck Institute for Intelligent Systems, Stuttgart70569, Germany
| | - Chunxiang Wang
- Physical Intelligence Department, Max Planck Institute for Intelligent Systems, Stuttgart70569, Germany
- School of Medicine and College of Engineering, Koç University, Istanbul34450, Türkiye
| | - Metin Sitti
- Physical Intelligence Department, Max Planck Institute for Intelligent Systems, Stuttgart70569, Germany
- School of Medicine and College of Engineering, Koç University, Istanbul34450, Türkiye
| |
Collapse
|
13
|
Gao Y, Ou L, Liu K, Guo Y, Li W, Xiong Z, Wu C, Wang J, Tang J, Li D. Template-Guided Silicon Micromotor Assembly for Enhanced Cell Manipulation. Angew Chem Int Ed Engl 2024; 63:e202405895. [PMID: 38660927 DOI: 10.1002/anie.202405895] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2024] [Revised: 04/23/2024] [Accepted: 04/24/2024] [Indexed: 04/26/2024]
Abstract
Light-driven micro/nanorobots (LMNRs) are tiny, untethered machines with great potential in fields like precision medicine, nano manufacturing, and various other domains. However, their practicality hinges on developing light-manipulation strategies that combine versatile functionalities, flexible design options, and precise controllability. Our study introduces an innovative approach to construct micro/nanorobots (MNRs) by utilizing micro/nanomotors as fundamental building blocks. Inspired by silicon Metal-Insulator-Semiconductor (MIS) solar cell principles, we design a new type of optomagnetic hybrid micromotors (OHMs). These OHMs have been skillfully optimized with integrated magnetic constituent, resulting in efficient light propulsion, precise magnetic navigation, and the potential for controlled assembly. One of the key features of the OHMs is their ability to exhibit diverse motion modes influenced by fracture surfaces and interactions with the environment, streamlining cargo conveyance along "micro expressway"-the predesigned microchannels. Further enhancing their versatility, a template-guided assembly strategy facilitates the assembly of these micromotors into functional microrobots, encompassing various configurations such as "V-shaped", "N-shaped", and 3D structured microrobots. The heightened capabilities of these microrobots, underscore the innovative potential inherent in hybrid micromotor design and assembly, which provides a foundational platform for the realization of multi-component microrobots. Our work moves a step toward forthcoming microrobotic entities boasting advanced functionalities.
Collapse
Affiliation(s)
- Yuxin Gao
- College of Chemistry and Materials Science, Guangdong Provincial Key Laboratory of Functional Supramolecular Coordination Materials and Applications, Jinan University, Guangzhou, Guangdong, 510632, P. R. China
| | - Leyan Ou
- College of Chemistry and Materials Science, Guangdong Provincial Key Laboratory of Functional Supramolecular Coordination Materials and Applications, Jinan University, Guangzhou, Guangdong, 510632, P. R. China
| | - Kunfeng Liu
- College of Chemistry and Materials Science, Guangdong Provincial Key Laboratory of Functional Supramolecular Coordination Materials and Applications, Jinan University, Guangzhou, Guangdong, 510632, P. R. China
| | - Yuan Guo
- The Third People's Hospital of Ganzhou, Ganzhou City, Jiangxi Province, 341000, P. R. China
| | - Wanyuan Li
- College of Chemistry and Materials Science, Guangdong Provincial Key Laboratory of Functional Supramolecular Coordination Materials and Applications, Jinan University, Guangzhou, Guangdong, 510632, P. R. China
| | - Ze Xiong
- Wireless and Smart Bioelectronics Lab, School of Biomedical Engineering, ShanghaiTech University, Shanghai, 201210, P. R. China
| | - Changjin Wu
- Department of Chemistry, The University of Hong Kong, Pokfulam Road, Hong Kong, P. R. China
| | - Jizhuang Wang
- College of Chemistry and Materials Science, Guangdong Provincial Key Laboratory of Functional Supramolecular Coordination Materials and Applications, Jinan University, Guangzhou, Guangdong, 510632, P. R. China
| | - Jinyao Tang
- Department of Chemistry, The University of Hong Kong, Pokfulam Road, Hong Kong, P. R. China
| | - Dan Li
- College of Chemistry and Materials Science, Guangdong Provincial Key Laboratory of Functional Supramolecular Coordination Materials and Applications, Jinan University, Guangzhou, Guangdong, 510632, P. R. China
| |
Collapse
|
14
|
Cao Y, Huang Y, Zheng J, Chen J, Zeng B, Cheng X, Wu C, Wang J, Tang J. Bipolar Photoelectrochemistry for Phase-Modulated Optoelectronic Hybrid Nanomotor. J Am Chem Soc 2024; 146:17931-17939. [PMID: 38877992 DOI: 10.1021/jacs.4c03810] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/04/2024]
Abstract
Complex micro/nanorobots may be constructed by integrating several independent, controlled nanomotors for high degrees of freedom of maneuvering and manipulation. However, designing nanomotors with distinctive responses to the same global stimuli is challenging due to the nanomotors' simple structure and limited material composition. In this work, we demonstrate that a nanomotor can be designed with the same principles of electronic circuits, where the motion of semiconductor particles can be controlled with synchronized electric and optical signals. This technique relies on transient bipolar photoelectrochemistry in semiconductor microparticles, where the reaction site selectivity is realized by modulating the light pulse in the time domain. Due to the microparticles' intrinsic resistance and surface capacitance, the nanomotors can be designed as an electronic circuit, enabling distinctive responses to the global electric/optical field and achieving the desired movement or deflection/rotation. This work gives new insight into the manipulation technique for independent and untethered nanomotor control. Ultimately, it exploits the potential for particle sorting based on geometry in time and frequency domain modulation.
Collapse
Affiliation(s)
- Yingnan Cao
- Department of Chemistry, The University of Hong Kong, Hong Kong 999077, China
| | - Yaxin Huang
- Department of Chemistry, The University of Hong Kong, Hong Kong 999077, China
| | - Jing Zheng
- State Key Laboratory of Physical Chemistry of Solid Surfaces, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, China
| | - Jingyuan Chen
- Department of Chemistry, The University of Hong Kong, Hong Kong 999077, China
| | - Binglin Zeng
- Department of Chemistry, The University of Hong Kong, Hong Kong 999077, China
| | - Xiang Cheng
- Department of Chemistry, The University of Hong Kong, Hong Kong 999077, China
| | - Changjin Wu
- Department of Chemistry, The University of Hong Kong, Hong Kong 999077, China
| | - Jizhuang Wang
- College of Chemistry and Materials Science, Jinan University, Guangzhou 510632, China
| | - Jinyao Tang
- Department of Chemistry, The University of Hong Kong, Hong Kong 999077, China
- State Key Laboratory of Synthetic Chemistry, The University of Hong Kong, Hong Kong 999077, China
- HKU-CAS Joint Laboratory on New Materials and Department of Chemistry, Hong Kong 999077, China
| |
Collapse
|
15
|
Zhao X, Yao H, Lv Y, Chen Z, Dong L, Huang J, Mi S. Reprogrammable Magnetic Soft Actuators with Microfluidic Functional Modules via Pixel-Assembly. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2024; 20:e2310009. [PMID: 38295155 DOI: 10.1002/smll.202310009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/02/2023] [Revised: 12/31/2023] [Indexed: 02/02/2024]
Abstract
Magnetic soft actuators and robots have attracted considerable attention in biomedical applications due to their speedy response, programmability, and biocompatibility. Despite recent advancements, the fabrication process of magnetic actuators and the reprogramming approach of their magnetization profiles continue to pose challenges. Here, a facile fabrication strategy is reported based on arrangements and distributions of reusable magnetic pixels on silicone substrates, allowing for various magnetic actuators with customizable architectures, arbitrary magnetization profiles, and integration of microfluidic technology. This approach enables intricate configurations with decent deformability and programmability, as well as biomimetic movements involving grasping, swimming, and wriggling in response to magnetic actuation. Moreover, microfluidic functional modules are integrated for various purposes, such as on/off valve control, curvature adjustment, fluid mixing, dynamic microfluidic architecture, and liquid delivery robot. The proposed method fulfills the requirements of low-cost, rapid, and simplified preparation of magnetic actuators, since it eliminates the need to sustain pre-defined deformations during the magnetization process or to employ laser heating or other stimulation for reprogramming the magnetization profile. Consequently, it is envisioned that magnetic actuators fabricated via pixel-assembly will have broad prospects in microfluidics and biomedical applications.
Collapse
Affiliation(s)
- Xiaoyu Zhao
- Bio-manufacturing Engineering Laboratory, Tsinghua Shenzhen International Graduate School, Tsinghua University, Shenzhen, Guangdong, 518000, China
| | - Hongyi Yao
- Bio-manufacturing Engineering Laboratory, Tsinghua Shenzhen International Graduate School, Tsinghua University, Shenzhen, Guangdong, 518000, China
| | - Yaoyi Lv
- Bio-manufacturing Engineering Laboratory, Tsinghua Shenzhen International Graduate School, Tsinghua University, Shenzhen, Guangdong, 518000, China
| | - Zhixian Chen
- Bio-manufacturing Engineering Laboratory, Tsinghua Shenzhen International Graduate School, Tsinghua University, Shenzhen, Guangdong, 518000, China
| | - Lina Dong
- Bio-manufacturing Engineering Laboratory, Tsinghua Shenzhen International Graduate School, Tsinghua University, Shenzhen, Guangdong, 518000, China
| | - Jiajun Huang
- Bio-manufacturing Engineering Laboratory, Tsinghua Shenzhen International Graduate School, Tsinghua University, Shenzhen, Guangdong, 518000, China
- Optometry Advanced Medical Equipment R&D Center, Research Institute of Tsinghua University in Shenzhen, Shenzhen, Guangdong, 518000, China
| | - Shengli Mi
- Bio-manufacturing Engineering Laboratory, Tsinghua Shenzhen International Graduate School, Tsinghua University, Shenzhen, Guangdong, 518000, China
- Optometry Advanced Medical Equipment R&D Center, Research Institute of Tsinghua University in Shenzhen, Shenzhen, Guangdong, 518000, China
| |
Collapse
|
16
|
Tang W, Yan D, Qin K, Guo X, Zhong Y, Xu H, Yang H, Zou J. Single-Electrode Electrostatic Repulsion Phenomenon for Remote Actuation and Manipulation. RESEARCH (WASHINGTON, D.C.) 2024; 7:0393. [PMID: 38812533 PMCID: PMC11134173 DOI: 10.34133/research.0393] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 03/25/2024] [Accepted: 04/28/2024] [Indexed: 05/31/2024]
Abstract
One of the fundamental principles of electrostatics is that an uncharged object will be attracted to a charged object through electrostatic induction as the two approaches one another. We refer to the charged object as a single electrode and examine the scenario where a positive voltage is applied. Because of electrostatic induction phenomenon, single-electrode electrostatics only generates electrostatic attraction forces. Here, we discover that single-electrode electrostatics can generate electrostatic repulsion forces and define this new phenomenon as single-electrode electrostatic repulsion phenomenon. We investigate the fundamental electrostatic phenomena, giving a curve of electrostatic force versus voltage and then defining 3 regions. Remote actuation and manipulation are essential technologies that are of enormous concern, with tweezers playing an important role. Various tweezers designed on the basis of external fields of optics, acoustics, and magnetism can be used for remote actuation and manipulation, but some inherent drawbacks still exist. Tweezers would benefit greatly from our discovery in electrostatics. On the basis of this discovery, we propose the concept of electrostatic tweezers, which can achieve noncontact and remote actuation and manipulation. Experimental characterizations and successful applications in metamaterials, robots, and manipulating objects demonstrated that electrostatic tweezers can produce large deformation rates (>6,000%), fast actuation (>100 Hz), and remote manipulating distance (~15 cm) and have the advantages of simple device structure, easy control, lightweight, no dielectric breakdown, and low cost. Our work may deepen people's understanding of single-electrode electrostatics and opens new opportunities for remote actuation and manipulation.
Collapse
Affiliation(s)
- Wei Tang
- State Key Laboratory of Fluid Power and Mechatronic Systems,
Zhejiang University, Hangzhou, China
- School of Mechanical Engineering,
Zhejiang University, Hangzhou, China
- Institute of Process Equipment, College of Energy Engineering,
Zhejiang University, Hangzhou, China
| | - Dong Yan
- State Key Laboratory of Fluid Power and Mechatronic Systems,
Zhejiang University, Hangzhou, China
- School of Mechanical Engineering,
Zhejiang University, Hangzhou, China
| | - Kecheng Qin
- State Key Laboratory of Fluid Power and Mechatronic Systems,
Zhejiang University, Hangzhou, China
- School of Mechanical Engineering,
Zhejiang University, Hangzhou, China
| | - Xinyu Guo
- State Key Laboratory of Fluid Power and Mechatronic Systems,
Zhejiang University, Hangzhou, China
- School of Mechanical Engineering,
Zhejiang University, Hangzhou, China
| | - Yiding Zhong
- State Key Laboratory of Fluid Power and Mechatronic Systems,
Zhejiang University, Hangzhou, China
- School of Mechanical Engineering,
Zhejiang University, Hangzhou, China
| | - Huxiu Xu
- State Key Laboratory of Fluid Power and Mechatronic Systems,
Zhejiang University, Hangzhou, China
- School of Mechanical Engineering,
Zhejiang University, Hangzhou, China
| | - Huayong Yang
- State Key Laboratory of Fluid Power and Mechatronic Systems,
Zhejiang University, Hangzhou, China
- School of Mechanical Engineering,
Zhejiang University, Hangzhou, China
| | - Jun Zou
- State Key Laboratory of Fluid Power and Mechatronic Systems,
Zhejiang University, Hangzhou, China
- School of Mechanical Engineering,
Zhejiang University, Hangzhou, China
| |
Collapse
|
17
|
Yao DR, Kim I, Yin S, Gao W. Multimodal Soft Robotic Actuation and Locomotion. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2024; 36:e2308829. [PMID: 38305065 DOI: 10.1002/adma.202308829] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/30/2023] [Revised: 01/02/2024] [Indexed: 02/03/2024]
Abstract
Diverse and adaptable modes of complex motion observed at different scales in living creatures are challenging to reproduce in robotic systems. Achieving dexterous movement in conventional robots can be difficult due to the many limitations of applying rigid materials. Robots based on soft materials are inherently deformable, compliant, adaptable, and adjustable, making soft robotics conducive to creating machines with complicated actuation and motion gaits. This review examines the mechanisms and modalities of actuation deformation in materials that respond to various stimuli. Then, strategies based on composite materials are considered to build toward actuators that combine multiple actuation modes for sophisticated movements. Examples across literature illustrate the development of soft actuators as free-moving, entirely soft-bodied robots with multiple locomotion gaits via careful manipulation of external stimuli. The review further highlights how the application of soft functional materials into robots with rigid components further enhances their locomotive abilities. Finally, taking advantage of the shape-morphing properties of soft materials, reconfigurable soft robots have shown the capacity for adaptive gaits that enable transition across environments with different locomotive modes for optimal efficiency. Overall, soft materials enable varied multimodal motion in actuators and robots, positioning soft robotics to make real-world applications for intricate and challenging tasks.
Collapse
Affiliation(s)
- Dickson R Yao
- Andrew and Peggy Cherng Department of Medical Engineering, Division of Engineering and Applied Science, California Institute of Technology, Pasadena, CA, 91125, USA
| | - Inho Kim
- Andrew and Peggy Cherng Department of Medical Engineering, Division of Engineering and Applied Science, California Institute of Technology, Pasadena, CA, 91125, USA
| | - Shukun Yin
- Andrew and Peggy Cherng Department of Medical Engineering, Division of Engineering and Applied Science, California Institute of Technology, Pasadena, CA, 91125, USA
| | - Wei Gao
- Andrew and Peggy Cherng Department of Medical Engineering, Division of Engineering and Applied Science, California Institute of Technology, Pasadena, CA, 91125, USA
| |
Collapse
|
18
|
Hong X, Xu B, Li G, Nan F, Wang X, Liang Q, Dong W, Dong W, Sun H, Zhang Y, Li C, Fu R, Wang Z, Shen G, Wang Y, Yao Y, Zhang S, Li J. Optoelectronically navigated nano-kirigami microrotors. SCIENCE ADVANCES 2024; 10:eadn7582. [PMID: 38657056 PMCID: PMC11042735 DOI: 10.1126/sciadv.adn7582] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/08/2024] [Accepted: 03/25/2024] [Indexed: 04/26/2024]
Abstract
With the rapid development of micro/nanofabrication technologies, the concept of transformable kirigami has been applied for device fabrication in the microscopic world. However, most nano-kirigami structures and devices were typically fabricated or transformed at fixed positions and restricted to limited mechanical motion along a single axis due to their small sizes, which significantly limits their functionalities and applications. Here, we demonstrate the precise shaping and position control of nano-kirigami microrotors. Metallic microrotors with size of ~10 micrometers were deliberately released from the substrates and readily manipulated through the multimode actuation with controllable speed and direction using an advanced optoelectronic tweezers technique. The underlying mechanisms of versatile interactions between the microrotors and electric field are uncovered by theoretical modeling and systematic analysis. This work reports a novel methodology to fabricate and manipulate micro/nanorotors with well-designed and sophisticated kirigami morphologies, providing new solutions for future advanced optoelectronic micro/nanomachinery.
Collapse
Affiliation(s)
- Xiaorong Hong
- Key Lab of Advanced Optoelectronic Quantum Architecture and Measurement (Ministry of Education), Beijing Key Lab of Nanophotonics & Ultrafine Optoelectronic Systems, and School of Physics, Beijing Institute of Technology, Beijing 100081, China
| | - Bingrui Xu
- Beijing Advanced Innovation Center for Intelligent Robots and Systems, School of Mechatronical Engineering, Beijing Institute of Technology, Beijing 100081, China
| | - Gong Li
- Beijing Advanced Innovation Center for Intelligent Robots and Systems, School of Mechatronical Engineering, Beijing Institute of Technology, Beijing 100081, China
| | - Fan Nan
- Institute of Nanophotonics, Jinan University, Guangzhou 511443, China
| | - Xian Wang
- Department of Mechanical and Industrial Engineering, University of Toronto, Toronto, Ontario M5S 3G8, Canada
| | - Qinghua Liang
- Key Lab of Advanced Optoelectronic Quantum Architecture and Measurement (Ministry of Education), Beijing Key Lab of Nanophotonics & Ultrafine Optoelectronic Systems, and School of Physics, Beijing Institute of Technology, Beijing 100081, China
| | - Wenbo Dong
- Beijing Advanced Innovation Center for Intelligent Robots and Systems, School of Mechatronical Engineering, Beijing Institute of Technology, Beijing 100081, China
| | - Weikang Dong
- Key Lab of Advanced Optoelectronic Quantum Architecture and Measurement (Ministry of Education), Beijing Key Lab of Nanophotonics & Ultrafine Optoelectronic Systems, and School of Physics, Beijing Institute of Technology, Beijing 100081, China
| | - Haozhe Sun
- Key Lab of Advanced Optoelectronic Quantum Architecture and Measurement (Ministry of Education), Beijing Key Lab of Nanophotonics & Ultrafine Optoelectronic Systems, and School of Physics, Beijing Institute of Technology, Beijing 100081, China
| | - Yongyue Zhang
- Key Lab of Advanced Optoelectronic Quantum Architecture and Measurement (Ministry of Education), Beijing Key Lab of Nanophotonics & Ultrafine Optoelectronic Systems, and School of Physics, Beijing Institute of Technology, Beijing 100081, China
| | - Chongrui Li
- Key Lab of Advanced Optoelectronic Quantum Architecture and Measurement (Ministry of Education), Beijing Key Lab of Nanophotonics & Ultrafine Optoelectronic Systems, and School of Physics, Beijing Institute of Technology, Beijing 100081, China
| | - Rongxin Fu
- School of Medical Technology, Beijing Institute of Technology, Beijing 100081, China
| | - Zhuoran Wang
- School of Integrated Circuits and Electronics, Engineering Research Center of Integrated Acousto-opto-electronic Microsystems (Ministry of Education of China), Beijing Institute of Technology, Beijing 100081, China
| | - Guozhen Shen
- School of Integrated Circuits and Electronics, Engineering Research Center of Integrated Acousto-opto-electronic Microsystems (Ministry of Education of China), Beijing Institute of Technology, Beijing 100081, China
| | - Yeliang Wang
- School of Integrated Circuits and Electronics, Engineering Research Center of Integrated Acousto-opto-electronic Microsystems (Ministry of Education of China), Beijing Institute of Technology, Beijing 100081, China
| | - Yugui Yao
- Key Lab of Advanced Optoelectronic Quantum Architecture and Measurement (Ministry of Education), Beijing Key Lab of Nanophotonics & Ultrafine Optoelectronic Systems, and School of Physics, Beijing Institute of Technology, Beijing 100081, China
| | - Shuailong Zhang
- Beijing Advanced Innovation Center for Intelligent Robots and Systems, School of Mechatronical Engineering, Beijing Institute of Technology, Beijing 100081, China
- School of Integrated Circuits and Electronics, Engineering Research Center of Integrated Acousto-opto-electronic Microsystems (Ministry of Education of China), Beijing Institute of Technology, Beijing 100081, China
| | - Jiafang Li
- Key Lab of Advanced Optoelectronic Quantum Architecture and Measurement (Ministry of Education), Beijing Key Lab of Nanophotonics & Ultrafine Optoelectronic Systems, and School of Physics, Beijing Institute of Technology, Beijing 100081, China
| |
Collapse
|
19
|
Jung Y, Kwon K, Lee J, Ko SH. Untethered soft actuators for soft standalone robotics. Nat Commun 2024; 15:3510. [PMID: 38664373 PMCID: PMC11045848 DOI: 10.1038/s41467-024-47639-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2023] [Accepted: 04/08/2024] [Indexed: 04/28/2024] Open
Abstract
Soft actuators produce the mechanical force needed for the functional movements of soft robots, but they suffer from critical drawbacks since previously reported soft actuators often rely on electrical wires or pneumatic tubes for the power supply, which would limit the potential usage of soft robots in various practical applications. In this article, we review the new types of untethered soft actuators that represent breakthroughs and discuss the future perspective of soft actuators. We discuss the functional materials and innovative strategies that gave rise to untethered soft actuators and deliver our perspective on challenges and opportunities for future-generation soft actuators.
Collapse
Affiliation(s)
- Yeongju Jung
- Applied Nano and Thermal Science Lab, Department of Mechanical Engineering, Seoul National University, 1 Gwanak-ro, Gwanak-gu, Seoul, 08826, South Korea
| | - Kangkyu Kwon
- Applied Nano and Thermal Science Lab, Department of Mechanical Engineering, Seoul National University, 1 Gwanak-ro, Gwanak-gu, Seoul, 08826, South Korea
| | - Jinwoo Lee
- Department of Mechanical, Robotics, and Energy Engineering, Dongguk University, 30 Pildong-ro 1-gil, Jung-gu, Seoul, 04620, South Korea.
| | - Seung Hwan Ko
- Applied Nano and Thermal Science Lab, Department of Mechanical Engineering, Seoul National University, 1 Gwanak-ro, Gwanak-gu, Seoul, 08826, South Korea.
- Institute of Engineering Research / Institute of Advanced Machinery and Design (SNU-IAMD), Seoul National University, 1 Gwanak-ro, Gwanak-gu, Seoul, 08826, South Korea.
- Interdisciplinary Program in Bioengineering, Seoul National University, 1 Gwanak-ro, Gwanak-gu, Seoul, 08826, Korea.
| |
Collapse
|
20
|
Zhang Z, Wu B, Wang Y, Cai T, Ma M, You C, Liu C, Jiang G, Hu Y, Li X, Chen XZ, Song E, Cui J, Huang G, Kiravittaya S, Mei Y. Multilevel design and construction in nanomembrane rolling for three-dimensional angle-sensitive photodetection. Nat Commun 2024; 15:3066. [PMID: 38594254 PMCID: PMC11004118 DOI: 10.1038/s41467-024-47405-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2023] [Accepted: 04/01/2024] [Indexed: 04/11/2024] Open
Abstract
Releasing pre-strained two-dimensional nanomembranes to assemble on-chip three-dimensional devices is crucial for upcoming advanced electronic and optoelectronic applications. However, the release process is affected by many unclear factors, hindering the transition from laboratory to industrial applications. Here, we propose a quasistatic multilevel finite element modeling to assemble three-dimensional structures from two-dimensional nanomembranes and offer verification results by various bilayer nanomembranes. Take Si/Cr nanomembrane as an example, we confirm that the three-dimensional structural formation is governed by both the minimum energy state and the geometric constraints imposed by the edges of the sacrificial layer. Large-scale, high-yield fabrication of three-dimensional structures is achieved, and two distinct three-dimensional structures are assembled from the same precursor. Six types of three-dimensional Si/Cr photodetectors are then prepared to resolve the incident angle of light with a deep neural network model, opening up possibilities for the design and manufacturing methods of More-than-Moore-era devices.
Collapse
Affiliation(s)
- Ziyu Zhang
- Department of Materials Science & State Key Laboratory of Molecular Engineering of Polymer, Fudan University, Shanghai, 200438, People's Republic of China
| | - Binmin Wu
- Department of Materials Science & State Key Laboratory of Molecular Engineering of Polymer, Fudan University, Shanghai, 200438, People's Republic of China
| | - Yang Wang
- Department of Materials Science & State Key Laboratory of Molecular Engineering of Polymer, Fudan University, Shanghai, 200438, People's Republic of China
| | - Tianjun Cai
- Department of Materials Science & State Key Laboratory of Molecular Engineering of Polymer, Fudan University, Shanghai, 200438, People's Republic of China
| | - Mingze Ma
- Department of Materials Science & State Key Laboratory of Molecular Engineering of Polymer, Fudan University, Shanghai, 200438, People's Republic of China
| | - Chunyu You
- Department of Materials Science & State Key Laboratory of Molecular Engineering of Polymer, Fudan University, Shanghai, 200438, People's Republic of China
| | - Chang Liu
- Department of Materials Science & State Key Laboratory of Molecular Engineering of Polymer, Fudan University, Shanghai, 200438, People's Republic of China
| | - Guobang Jiang
- Department of Materials Science & State Key Laboratory of Molecular Engineering of Polymer, Fudan University, Shanghai, 200438, People's Republic of China
| | - Yuhang Hu
- Department of Materials Science & State Key Laboratory of Molecular Engineering of Polymer, Fudan University, Shanghai, 200438, People's Republic of China
| | - Xing Li
- Department of Materials Science & State Key Laboratory of Molecular Engineering of Polymer, Fudan University, Shanghai, 200438, People's Republic of China
| | - Xiang-Zhong Chen
- Shanghai Frontiers Science Research Base of Intelligent Optoelectronics and Perception, Institute of Optoelectronics, Fudan University, Shanghai, 200438, People's Republic of China
- Yiwu Research Institute of Fudan University, Yiwu, 322000, Zhejiang, People's Republic of China
- International Institute of Intelligent Nanorobots and Nanosystems, Fudan University, Shanghai, 200438, People's Republic of China
| | - Enming Song
- Shanghai Frontiers Science Research Base of Intelligent Optoelectronics and Perception, Institute of Optoelectronics, Fudan University, Shanghai, 200438, People's Republic of China
- International Institute of Intelligent Nanorobots and Nanosystems, Fudan University, Shanghai, 200438, People's Republic of China
| | - Jizhai Cui
- Department of Materials Science & State Key Laboratory of Molecular Engineering of Polymer, Fudan University, Shanghai, 200438, People's Republic of China
- International Institute of Intelligent Nanorobots and Nanosystems, Fudan University, Shanghai, 200438, People's Republic of China
| | - Gaoshan Huang
- Department of Materials Science & State Key Laboratory of Molecular Engineering of Polymer, Fudan University, Shanghai, 200438, People's Republic of China
- Yiwu Research Institute of Fudan University, Yiwu, 322000, Zhejiang, People's Republic of China
- International Institute of Intelligent Nanorobots and Nanosystems, Fudan University, Shanghai, 200438, People's Republic of China
| | - Suwit Kiravittaya
- Department of Electrical Engineering, Faculty of Engineering, Chulalongkorn University, Bangkok, Thailand
| | - Yongfeng Mei
- Department of Materials Science & State Key Laboratory of Molecular Engineering of Polymer, Fudan University, Shanghai, 200438, People's Republic of China.
- Shanghai Frontiers Science Research Base of Intelligent Optoelectronics and Perception, Institute of Optoelectronics, Fudan University, Shanghai, 200438, People's Republic of China.
- Yiwu Research Institute of Fudan University, Yiwu, 322000, Zhejiang, People's Republic of China.
- International Institute of Intelligent Nanorobots and Nanosystems, Fudan University, Shanghai, 200438, People's Republic of China.
| |
Collapse
|
21
|
Xu H, Wu S, Liu Y, Wang X, Efremov AK, Wang L, McCaskill JS, Medina-Sánchez M, Schmidt OG. 3D nanofabricated soft microrobots with super-compliant picoforce springs as onboard sensors and actuators. NATURE NANOTECHNOLOGY 2024; 19:494-503. [PMID: 38172430 PMCID: PMC11026159 DOI: 10.1038/s41565-023-01567-0] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/27/2023] [Accepted: 11/06/2023] [Indexed: 01/05/2024]
Abstract
Microscale organisms and specialized motile cells use protein-based spring-like responsive structures to sense, grasp and move. Rendering this biomechanical transduction functionality in an artificial micromachine for applications in single-cell manipulations is challenging due to the need for a bio-applicable nanoscale spring system with a large and programmable strain response to piconewton-scale forces. Here we present three-dimensional nanofabrication and monolithic integration, based on an acrylic elastomer photoresist, of a magnetic spring system with quantifiable compliance sensitive to 0.5 pN, constructed with customized elasticity and magnetization distributions at the nanoscale. We demonstrate the effective design programmability of these 'picospring' ensembles as energy transduction mechanisms for the integrated construction of customized soft micromachines, with onboard sensing and actuation functions at the single-cell scale for microrobotic grasping and locomotion. The integration of active soft springs into three-dimensional nanofabrication offers an avenue to create biocompatible soft microrobots for non-disruptive interactions with biological entities.
Collapse
Affiliation(s)
- Haifeng Xu
- Shenzhen Institute of Advanced Technology (SIAT), Chinese Academy of Sciences, Shenzhen, China.
- Leibniz Institute for Solid State and Materials Research Dresden (Leibniz IFW Dresden), Dresden, Germany.
| | - Song Wu
- Leibniz Institute for Solid State and Materials Research Dresden (Leibniz IFW Dresden), Dresden, Germany
| | - Yuan Liu
- Shenzhen Institute of Advanced Technology (SIAT), Chinese Academy of Sciences, Shenzhen, China
| | - Xiaopu Wang
- Shenzhen Institute of Artificial Intelligence and Robotics for Society, Shenzhen, China
| | | | - Lei Wang
- Shenzhen Institute of Advanced Technology (SIAT), Chinese Academy of Sciences, Shenzhen, China
| | - John S McCaskill
- Research Center for Materials, Architectures and Integration of Nanomembranes (MAIN), Chemnitz University of Technology, Chemnitz, Germany
| | - Mariana Medina-Sánchez
- Leibniz Institute for Solid State and Materials Research Dresden (Leibniz IFW Dresden), Dresden, Germany.
- Chair of Micro- and NanoSystems, Center for Molecular Bioengineering (B CUBE), Dresden University of Technology, Dresden, Germany.
| | - Oliver G Schmidt
- Research Center for Materials, Architectures and Integration of Nanomembranes (MAIN), Chemnitz University of Technology, Chemnitz, Germany.
| |
Collapse
|
22
|
Xu R, Xu Q. A Survey of Recent Developments in Magnetic Microrobots for Micro-/Nano-Manipulation. MICROMACHINES 2024; 15:468. [PMID: 38675279 PMCID: PMC11052276 DOI: 10.3390/mi15040468] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/12/2024] [Revised: 03/23/2024] [Accepted: 03/28/2024] [Indexed: 04/28/2024]
Abstract
Magnetically actuated microrobots have become a research hotspot in recent years due to their tiny size, untethered control, and rapid response capability. Moreover, an increasing number of researchers are applying them for micro-/nano-manipulation in the biomedical field. This survey provides a comprehensive overview of the recent developments in magnetic microrobots, focusing on materials, propulsion mechanisms, design strategies, fabrication techniques, and diverse micro-/nano-manipulation applications. The exploration of magnetic materials, biosafety considerations, and propulsion methods serves as a foundation for the diverse designs discussed in this review. The paper delves into the design categories, encompassing helical, surface, ciliary, scaffold, and biohybrid microrobots, with each demonstrating unique capabilities. Furthermore, various fabrication techniques, including direct laser writing, glancing angle deposition, biotemplating synthesis, template-assisted electrochemical deposition, and magnetic self-assembly, are examined owing to their contributions to the realization of magnetic microrobots. The potential impact of magnetic microrobots across multidisciplinary domains is presented through various application areas, such as drug delivery, minimally invasive surgery, cell manipulation, and environmental remediation. This review highlights a comprehensive summary of the current challenges, hurdles to overcome, and future directions in magnetic microrobot research across different fields.
Collapse
Affiliation(s)
| | - Qingsong Xu
- Department of Electromechanical Engineering, Faculty of Science and Technology, University of Macau, Avenida da Universidade, Taipa, Macau, China;
| |
Collapse
|
23
|
Liu Y, Huang J, Liu C, Song Z, Wu J, Zhao Q, Li Y, Dong F, Wang L, Xu H. Soft Millirobot Capable of Switching Motion Modes on the Fly for Targeted Drug Delivery in the Oviduct. ACS NANO 2024; 18:8694-8705. [PMID: 38466230 DOI: 10.1021/acsnano.3c09753] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/12/2024]
Abstract
Small-scale magnetic robots with fixed magnetizations have limited locomotion modes, restricting their applications in complex environments in vivo. Here we present a morphology-reconfigurable millirobot that can switch the locomotion modes locally by reprogramming its magnetizations during navigation, in response to distinct magnetic field patterns. By continuously switching its locomotion modes between the high-velocity rigid motion and high-adaptability soft actuation, the millirobot efficiently navigates in small lumens with intricate internal structures and complex surface topographies. As demonstrations, the millirobot performs multimodal locomotion including woodlouse-like rolling and flipping, sperm-like rotating, and snake-like gliding to negotiate different terrains, including the unrestricted channel and high platform, narrow channel, and solid-liquid interface, respectively. Finally, we demonstrate the drug delivery capability of the millirobot through the oviduct-mimicking phantom and ex vivo oviduct. The magnetization reprogramming strategy during navigation represents a promising approach for developing self-adaptive robots for performing complex tasks in vivo.
Collapse
Affiliation(s)
- Yuan Liu
- Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, Guangdong Province, P. R. China, 1068 Xueyuan Avenue, Shenzhen 518055, China
| | - Jing Huang
- Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, Guangdong Province, P. R. China, 1068 Xueyuan Avenue, Shenzhen 518055, China
- Department of Polymer Materials and Engineering, College of Materials and Metallurgy, Guizhou University, Guiyang 550025, China
| | - Chu Liu
- Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, Guangdong Province, P. R. China, 1068 Xueyuan Avenue, Shenzhen 518055, China
| | - Zhongyi Song
- Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, Guangdong Province, P. R. China, 1068 Xueyuan Avenue, Shenzhen 518055, China
| | - Jiandong Wu
- Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, Guangdong Province, P. R. China, 1068 Xueyuan Avenue, Shenzhen 518055, China
| | - Qilong Zhao
- Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, Guangdong Province, P. R. China, 1068 Xueyuan Avenue, Shenzhen 518055, China
| | - Yingtian Li
- Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, Guangdong Province, P. R. China, 1068 Xueyuan Avenue, Shenzhen 518055, China
| | - Fuping Dong
- Department of Polymer Materials and Engineering, College of Materials and Metallurgy, Guizhou University, Guiyang 550025, China
| | - Lei Wang
- Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, Guangdong Province, P. R. China, 1068 Xueyuan Avenue, Shenzhen 518055, China
| | - Haifeng Xu
- Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, Guangdong Province, P. R. China, 1068 Xueyuan Avenue, Shenzhen 518055, China
| |
Collapse
|
24
|
Leanza S, Wu S, Sun X, Qi HJ, Zhao RR. Active Materials for Functional Origami. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2024; 36:e2302066. [PMID: 37120795 DOI: 10.1002/adma.202302066] [Citation(s) in RCA: 13] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/04/2023] [Revised: 04/13/2023] [Indexed: 06/19/2023]
Abstract
In recent decades, origami has been explored to aid in the design of engineering structures. These structures span multiple scales and have been demonstrated to be used toward various areas such as aerospace, metamaterial, biomedical, robotics, and architectural applications. Conventionally, origami or deployable structures have been actuated by hands, motors, or pneumatic actuators, which can result in heavy or bulky structures. On the other hand, active materials, which reconfigure in response to external stimulus, eliminate the need for external mechanical loads and bulky actuation systems. Thus, in recent years, active materials incorporated with deployable structures have shown promise for remote actuation of light weight, programmable origami. In this review, active materials such as shape memory polymers (SMPs) and alloys (SMAs), hydrogels, liquid crystal elastomers (LCEs), magnetic soft materials (MSMs), and covalent adaptable network (CAN) polymers, their actuation mechanisms, as well as how they have been utilized for active origami and where these structures are applicable is discussed. Additionally, the state-of-the-art fabrication methods to construct active origami are highlighted. The existing structural modeling strategies for origami, the constitutive models used to describe active materials, and the largest challenges and future directions for active origami research are summarized.
Collapse
Affiliation(s)
- Sophie Leanza
- Department of Mechanical Engineering, Stanford University, Stanford, CA, 94305, USA
| | - Shuai Wu
- Department of Mechanical Engineering, Stanford University, Stanford, CA, 94305, USA
| | - Xiaohao Sun
- The George W. Woodruff School of Mechanical Engineering, Georgia Institute of Technology, Atlanta, GA, 30332, USA
| | - H Jerry Qi
- The George W. Woodruff School of Mechanical Engineering, Georgia Institute of Technology, Atlanta, GA, 30332, USA
| | - Ruike Renee Zhao
- Department of Mechanical Engineering, Stanford University, Stanford, CA, 94305, USA
| |
Collapse
|
25
|
Wang Z, Chen Y, Ma Y, Wang J. Bioinspired Stimuli-Responsive Materials for Soft Actuators. Biomimetics (Basel) 2024; 9:128. [PMID: 38534813 DOI: 10.3390/biomimetics9030128] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2024] [Revised: 02/16/2024] [Accepted: 02/19/2024] [Indexed: 03/28/2024] Open
Abstract
Biological species can walk, swim, fly, jump, and climb with fast response speeds and motion complexity. These remarkable functions are accomplished by means of soft actuation organisms, which are commonly composed of muscle tissue systems. To achieve the creation of their biomimetic artificial counterparts, various biomimetic stimuli-responsive materials have been synthesized and developed in recent decades. They can respond to various external stimuli in the form of structural or morphological transformations by actively or passively converting input energy into mechanical energy. They are the core element of soft actuators for typical smart devices like soft robots, artificial muscles, intelligent sensors and nanogenerators. Significant progress has been made in the development of bioinspired stimuli-responsive materials. However, these materials have not been comprehensively summarized with specific actuation mechanisms in the literature. In this review, we will discuss recent advances in biomimetic stimuli-responsive materials that are instrumental for soft actuators. Firstly, different stimuli-responsive principles for soft actuators are discussed, including fluidic, electrical, thermal, magnetic, light, and chemical stimuli. We further summarize the state-of-the-art stimuli-responsive materials for soft actuators and explore the advantages and disadvantages of using electroactive polymers, magnetic soft composites, photo-thermal responsive polymers, shape memory alloys and other responsive soft materials. Finally, we provide a critical outlook on the field of stimuli-responsive soft actuators and emphasize the challenges in the process of their implementation to various industries.
Collapse
Affiliation(s)
- Zhongbao Wang
- State Key Laboratory of Mechanical System and Vibration, School of Mechanical Engineering, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Yixin Chen
- State Key Laboratory of Mechanical System and Vibration, School of Mechanical Engineering, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Yuan Ma
- Department of Mechanical Engineering, Research Institute for Intelligent Wearable Systems, The Hong Kong Polytechnic University, Hong Kong 999077, China
| | - Jing Wang
- State Key Laboratory of Mechanical System and Vibration, School of Mechanical Engineering, Shanghai Jiao Tong University, Shanghai 200240, China
| |
Collapse
|
26
|
Zhang Z, Shi Z, Ahmed D. SonoTransformers: Transformable acoustically activated wireless microscale machines. Proc Natl Acad Sci U S A 2024; 121:e2314661121. [PMID: 38289954 PMCID: PMC10861920 DOI: 10.1073/pnas.2314661121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2023] [Accepted: 12/22/2023] [Indexed: 02/01/2024] Open
Abstract
Shape transformation, a key mechanism for organismal survival and adaptation, has gained importance in developing synthetic shape-shifting systems with diverse applications ranging from robotics to bioengineering. However, designing and controlling microscale shape-shifting materials remains a fundamental challenge in various actuation modalities. As materials and structures are scaled down to the microscale, they often exhibit size-dependent characteristics, and the underlying physical mechanisms can be significantly affected or rendered ineffective. Additionally, surface forces such as van der Waals forces and electrostatic forces become dominant at the microscale, resulting in stiction and adhesion between small structures, making them fracture and more difficult to deform. Furthermore, despite various actuation approaches, acoustics have received limited attention despite their potential advantages. Here, we introduce "SonoTransformer," the acoustically activated micromachine that delivers shape transformability using preprogrammed soft hinges with different stiffnesses. When exposed to an acoustic field, these hinges concentrate sound energy through intensified oscillation and provide the necessary force and torque for the transformation of the entire micromachine within milliseconds. We have created machine designs to predetermine the folding state, enabling precise programming and customization of the acoustic transformation. Additionally, we have shown selective shape transformable microrobots by adjusting acoustic power, realizing high degrees of control and functional versatility. Our findings open new research avenues in acoustics, physics, and soft matter, offering new design paradigms and development opportunities in robotics, metamaterials, adaptive optics, flexible electronics, and microtechnology.
Collapse
Affiliation(s)
- Zhiyuan Zhang
- Acoustic Robotics Systems Lab, Institute of Robotics and Intelligent Systems, Department of Mechanical and Process Engineering, ETH Zurich, ZurichCH-8803, Switzerland
| | - Zhan Shi
- Acoustic Robotics Systems Lab, Institute of Robotics and Intelligent Systems, Department of Mechanical and Process Engineering, ETH Zurich, ZurichCH-8803, Switzerland
| | - Daniel Ahmed
- Acoustic Robotics Systems Lab, Institute of Robotics and Intelligent Systems, Department of Mechanical and Process Engineering, ETH Zurich, ZurichCH-8803, Switzerland
| |
Collapse
|
27
|
Zhang G, Zhang Q, Guo Z, Li C, Ge F, Zhang Q. Reconfiguration, Welding, Reprogramming, and Complex Shape Transformation of An Optical Shape Memory Polymer Network Enabled by Patterned Secondary Crosslinking. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2024; 20:e2306312. [PMID: 37817361 DOI: 10.1002/smll.202306312] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/25/2023] [Revised: 10/03/2023] [Indexed: 10/12/2023]
Abstract
Stimuli-triggered generation of complicated 3D shapes from 2D strips or plates without using sophisticated molds is desirable and achieving such 2D-to-3D shape transformation in combination with shape reconfiguration, welding, and reprogramming on a single material is very challenging. Here, a convenient and facile strategy using the solution of a disulfide-containing diamine for patterned secondary crosslinking of an optical shape-memory polymer network is developed to integrate the above performances. The dangling thiolectones attached to the backbones react with the diamine in the solution-deposited region so that the secondary crosslinking may not only weld individual strips into assembled 3D shapes but also suppress the relaxation of the deformed polymer chains to different extents for shape reconfiguration or heating-induced complex 3D deformations. In addition, as the dynamic disulfide bonds can be thermally activated to erase the initial programming information and the excessive thiolectones are available for subsequent patterned crosslinking, the material also allows shape reprogramming. Combining welding with patterning treatment, it is further demonstrated that a gripper can be assembled and photothermally controlled to readily grasp an object.
Collapse
Affiliation(s)
- Guoxian Zhang
- Key Laboratory of Special Functional and Smart Polymer Materials of Ministry of Industry and Information Technology, School of Chemistry and Chemical Engineering, Northwestern Polytechnical University, Xi'an, Shaanxi, 710072, P. R. China
| | - Qing Zhang
- Key Laboratory of Special Functional and Smart Polymer Materials of Ministry of Industry and Information Technology, School of Chemistry and Chemical Engineering, Northwestern Polytechnical University, Xi'an, Shaanxi, 710072, P. R. China
| | - Zijian Guo
- Key Laboratory of Special Functional and Smart Polymer Materials of Ministry of Industry and Information Technology, School of Chemistry and Chemical Engineering, Northwestern Polytechnical University, Xi'an, Shaanxi, 710072, P. R. China
| | - Chunmei Li
- Key Laboratory of Special Functional and Smart Polymer Materials of Ministry of Industry and Information Technology, School of Chemistry and Chemical Engineering, Northwestern Polytechnical University, Xi'an, Shaanxi, 710072, P. R. China
| | - Feijie Ge
- Key Laboratory of Special Functional and Smart Polymer Materials of Ministry of Industry and Information Technology, School of Chemistry and Chemical Engineering, Northwestern Polytechnical University, Xi'an, Shaanxi, 710072, P. R. China
| | - Qiuyu Zhang
- Key Laboratory of Special Functional and Smart Polymer Materials of Ministry of Industry and Information Technology, School of Chemistry and Chemical Engineering, Northwestern Polytechnical University, Xi'an, Shaanxi, 710072, P. R. China
| |
Collapse
|
28
|
Ren Z, Sitti M. Design and build of small-scale magnetic soft-bodied robots with multimodal locomotion. Nat Protoc 2024; 19:441-486. [PMID: 38097687 DOI: 10.1038/s41596-023-00916-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2023] [Accepted: 09/21/2023] [Indexed: 02/12/2024]
Abstract
Small-scale magnetic soft-bodied robots can be designed to operate based on different locomotion modes to navigate and function inside unstructured, confined and varying environments. These soft millirobots may be useful for medical applications where the robots are tasked with moving inside the human body. Here we cover the entire process of developing small-scale magnetic soft-bodied millirobots with multimodal locomotion capability, including robot design, material preparation, robot fabrication, locomotion control and locomotion optimization. We describe in detail the design, fabrication and control of a sheet-shaped soft millirobot with 12 different locomotion modes for traversing different terrains, an ephyra jellyfish-inspired soft millirobot that can manipulate objects in liquids through various swimming modes, a larval zebrafish-inspired soft millirobot that can adjust its body stiffness for efficient propulsion in different swimming speeds and a dual stimuli-responsive sheet-shaped soft millirobot that can switch its locomotion modes automatically by responding to changes in the environmental temperature. The procedure is aimed at users with basic expertise in soft robot development. The procedure requires from a few days to several weeks to complete, depending on the degree of characterization required.
Collapse
Affiliation(s)
- Ziyu Ren
- Physical Intelligence Department, Max Planck Institute for Intelligent Systems, Stuttgart, Germany
| | - Metin Sitti
- Physical Intelligence Department, Max Planck Institute for Intelligent Systems, Stuttgart, Germany.
- Institute for Biomedical Engineering, ETH Zurich, Zurich, Switzerland.
- School of Medicine and College of Engineering, Koç University, Istanbul, Turkey.
| |
Collapse
|
29
|
Wei H, Sun B, Zhang S, Tang J. Magnetoactive Millirobots with Ternary Phase Transition. ACS APPLIED MATERIALS & INTERFACES 2024; 16:3944-3954. [PMID: 38214466 DOI: 10.1021/acsami.3c13627] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/13/2024]
Abstract
Magnetoactive soft millirobots have made significant advances in programmable deformation, multimodal locomotion, and untethered manipulation in unreachable regions. However, the inherent limitations are manifested in the solid-phase millirobot as limited deformability and in the liquid-phase millirobot as low stiffness. Herein, we propose a ternary-state magnetoactive millirobot based on a phase transitional polymer embedded with magnetic nanoparticles. The millirobot can reversibly transit among the liquid, solid, and viscous-fluid phases through heating and cooling. The liquid-phase millirobot has elastic deformation and mobility for unimpeded navigation in a constrained space. The viscous-fluid phase millirobot shows irreversible deformation and large ductility. The solid-phase millirobot shows good shape stability and controllable locomotion. Moreover, the ternary-state magnetoactive millirobot can achieve prominent capabilities including stiffness change and shape reconfiguration through phase transition. The millirobot can perform potential functions of navigation in complex terrain, three-dimensional circuit connection, and simulated treatment in a stomach model. This magnetoactive millirobot may find new applications in flexible electronics and biomedicine.
Collapse
Affiliation(s)
- Huangsan Wei
- State Key Lab for Strength and Vibration of Mechanical Structures, Department of Engineering Mechanics, Xi'an Jiaotong University, Xi'an 710049, China
| | - Bonan Sun
- State Key Lab for Strength and Vibration of Mechanical Structures, Department of Engineering Mechanics, Xi'an Jiaotong University, Xi'an 710049, China
| | - Shengyuan Zhang
- State Key Lab for Strength and Vibration of Mechanical Structures, Department of Engineering Mechanics, Xi'an Jiaotong University, Xi'an 710049, China
| | - Jingda Tang
- State Key Lab for Strength and Vibration of Mechanical Structures, Department of Engineering Mechanics, Xi'an Jiaotong University, Xi'an 710049, China
| |
Collapse
|
30
|
McCaskill JS, Karnaushenko D, Zhu M, Schmidt OG. Microelectronic Morphogenesis: Smart Materials with Electronics Assembling into Artificial Organisms. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2023; 35:e2306344. [PMID: 37814374 DOI: 10.1002/adma.202306344] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/30/2023] [Revised: 08/27/2023] [Indexed: 10/11/2023]
Abstract
Microelectronic morphogenesis is the creation and maintenance of complex functional structures by microelectronic information within shape-changing materials. Only recently has in-built information technology begun to be used to reshape materials and their functions in three dimensions to form smart microdevices and microrobots. Electronic information that controls morphology is inheritable like its biological counterpart, genetic information, and is set to open new vistas of technology leading to artificial organisms when coupled with modular design and self-assembly that can make reversible microscopic electrical connections. Three core capabilities of cells in organisms, self-maintenance (homeostatic metabolism utilizing free energy), self-containment (distinguishing self from nonself), and self-reproduction (cell division with inherited properties), once well out of reach for technology, are now within the grasp of information-directed materials. Construction-aware electronics can be used to proof-read and initiate game-changing error correction in microelectronic self-assembly. Furthermore, noncontact communication and electronically supported learning enable one to implement guided self-assembly and enhance functionality. Here, the fundamental breakthroughs that have opened the pathway to this prospective path are reviewed, the extent and way in which the core properties of life can be addressed are analyzed, and the potential and indeed necessity of such technology for sustainable high technology in society is discussed.
Collapse
Affiliation(s)
- John S McCaskill
- Research Center for Materials, Architectures and Integration of Nanomembranes (MAIN), Chemnitz University of Technology, 09126, Chemnitz, Germany
- Material Systems for Nanoelectronics, Chemnitz University of Technology, 09126, Chemnitz, Germany
- European Centre for Living Technology (ECLT), Ca' Bottacin, Dorsoduro 3911, Venice, 30123, Italy
| | - Daniil Karnaushenko
- Research Center for Materials, Architectures and Integration of Nanomembranes (MAIN), Chemnitz University of Technology, 09126, Chemnitz, Germany
- Material Systems for Nanoelectronics, Chemnitz University of Technology, 09126, Chemnitz, Germany
| | - Minshen Zhu
- Research Center for Materials, Architectures and Integration of Nanomembranes (MAIN), Chemnitz University of Technology, 09126, Chemnitz, Germany
- Material Systems for Nanoelectronics, Chemnitz University of Technology, 09126, Chemnitz, Germany
| | - Oliver G Schmidt
- Research Center for Materials, Architectures and Integration of Nanomembranes (MAIN), Chemnitz University of Technology, 09126, Chemnitz, Germany
- Material Systems for Nanoelectronics, Chemnitz University of Technology, 09126, Chemnitz, Germany
- European Centre for Living Technology (ECLT), Ca' Bottacin, Dorsoduro 3911, Venice, 30123, Italy
| |
Collapse
|
31
|
Ganguly S, Margel S. Fabrication and Applications of Magnetic Polymer Composites for Soft Robotics. MICROMACHINES 2023; 14:2173. [PMID: 38138344 PMCID: PMC10745923 DOI: 10.3390/mi14122173] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/07/2023] [Revised: 11/26/2023] [Accepted: 11/28/2023] [Indexed: 12/24/2023]
Abstract
The emergence of magnetic polymer composites has had a transformative impact on the field of soft robotics. This overview will examine the various methods by which innovative materials can be synthesized and utilized. The advancement of soft robotic systems has been significantly enhanced by the utilization of magnetic polymer composites, which amalgamate the pliability of polymers with the reactivity of magnetic materials. This study extensively examines the production methodologies involved in dispersing magnetic particles within polymer matrices and controlling their spatial distribution. The objective is to gain insights into the strategies required to attain the desired mechanical and magnetic properties. Additionally, this study delves into the potential applications of these composites in the field of soft robotics, encompassing various devices such as soft actuators, grippers, and wearable gadgets. The study emphasizes the transformative capabilities of magnetic polymer composites, which offer a novel framework for the advancement of biocompatible, versatile soft robotic systems that utilize magnetic actuation.
Collapse
Affiliation(s)
- Sayan Ganguly
- Department of Chemistry, Bar-Ilan Institute for Nanotechnology and Advanced Materials (BINA), Bar-Ilan University, Ramat-Gan 5290002, Israel
| | - Shlomo Margel
- Department of Chemistry, Bar-Ilan Institute for Nanotechnology and Advanced Materials (BINA), Bar-Ilan University, Ramat-Gan 5290002, Israel
| |
Collapse
|
32
|
Wang T, Fan Z, Xue W, Yang H, Li RW, Xu X. Controlled Growth and Size-Dependent Magnetic Domain States of 2D γ-Fe 2O 3. NANO LETTERS 2023; 23:10498-10504. [PMID: 37939014 DOI: 10.1021/acs.nanolett.3c03276] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/10/2023]
Abstract
Nonlayered two-dimensional (2D) magnets have attracted special attention, as many of them possess magnetic order above room temperature and enhanced chemical stability compared to most existing vdW magnets, which offers remarkable opportunities for developing compact spintronic devices. However, the growth of these materials is quite challenging due to the inherent three-dimensionally bonded nature, which hampers the study of their magnetism. Here, we demonstrate the controllable growth of air-stable pure γ-Fe2O3 nanoflakes by a confined-vdW epitaxial approach. The lateral size of the nanoflakes could be adjusted from hundreds of nanometers to tens of micrometers by precisely controlling the annealing time. Interestingly, a lateral-size-dependent magnetic domain configuration was observed. As the sizes continuously increase, the magnetic domain evolves from single domain to vortex and finally to multidomain. This work provides guidance for the controllable synthesis of 2D inverse spinel-type crystals and expands the range of magnetic vortex materials into magnetic semiconductors.
Collapse
Affiliation(s)
- Tao Wang
- Key Laboratory of Magnetic Molecules and Magnetic Information Materials of Ministry of Education & School of Chemistry and Materials Science, Shanxi Normal University, Taiyuan 030031, People's Republic of China
| | - Zhiwei Fan
- Key Laboratory of Magnetic Molecules and Magnetic Information Materials of Ministry of Education & School of Chemistry and Materials Science, Shanxi Normal University, Taiyuan 030031, People's Republic of China
| | - Wuhong Xue
- Key Laboratory of Magnetic Molecules and Magnetic Information Materials of Ministry of Education & School of Chemistry and Materials Science, Shanxi Normal University, Taiyuan 030031, People's Republic of China
| | - Huali Yang
- CAS Key Laboratory of Magnetic Materials and Devices & Zhejiang Province Key Laboratory of Magnetic Materials and Application Technology, Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Ningbo 315201, People's Republic of China
| | - Run-Wei Li
- CAS Key Laboratory of Magnetic Materials and Devices & Zhejiang Province Key Laboratory of Magnetic Materials and Application Technology, Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Ningbo 315201, People's Republic of China
| | - Xiaohong Xu
- Key Laboratory of Magnetic Molecules and Magnetic Information Materials of Ministry of Education & School of Chemistry and Materials Science, Shanxi Normal University, Taiyuan 030031, People's Republic of China
| |
Collapse
|
33
|
Wang H, Liu C, Yang X, Ji F, Song W, Zhang G, Wang L, Zhu Y, Yu S, Zhang W, Li T. Multimode microdimer robot for crossing tissue morphological barrier. iScience 2023; 26:108320. [PMID: 38026188 PMCID: PMC10665815 DOI: 10.1016/j.isci.2023.108320] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2023] [Revised: 08/03/2023] [Accepted: 10/20/2023] [Indexed: 12/01/2023] Open
Abstract
Swimming microrobot energized by magnetic fields exhibits remotely propulsion and modulation in complex biological experiment with high precision. However, achieving high environment adaptability and multiple tasking capability in one configuration is still challenging. Here, we present a strategy that use oriented magnetized Janus spheres to assemble the microdimer robots with two magnetic distribution configurations of head-to-side configuration (HTS-config) and head-to-head configuration (HTH-config), achieving performance of multiple tasks through multimode transformation and locomotion. Modulating the magnetic frequency enables multimode motion transformation between tumbling, rolling, and swing motion with different velocities. The dual-asynchronization mechanisms of HTS-config and HTH-config robot dependent on magnetic dipole-dipole angle are investigated by molecular dynamic simulation. In addition, the microdimer robot can transport cell crossing morphological rugae or complete drug delivery on tissues by switching motion modes. This microdimer robot can provide versatile motion modes to address environmental variations or multitasking requirements.
Collapse
Affiliation(s)
- Haocheng Wang
- State Key Laboratory of Robotics and System, Harbin Institute of Technology, Harbin, China
| | - Chenlu Liu
- State Key Laboratory of Robotics and System, Harbin Institute of Technology, Harbin, China
| | - Xiaopeng Yang
- State Key Laboratory of Robotics and System, Harbin Institute of Technology, Harbin, China
| | - Fengtong Ji
- Cancer Research UK Gurdon Institute, University of Cambridge, Cambridge, UK
| | - Wenping Song
- State Key Laboratory of Robotics and System, Harbin Institute of Technology, Harbin, China
- Chongqing Research Institute of Harbin Institute of Technology Chongqing, Chongqing, China
| | - Guangyu Zhang
- State Key Laboratory of Robotics and System, Harbin Institute of Technology, Harbin, China
| | - Lin Wang
- State Key Laboratory of Robotics and System, Harbin Institute of Technology, Harbin, China
| | - Yanhe Zhu
- State Key Laboratory of Robotics and System, Harbin Institute of Technology, Harbin, China
| | - Shimin Yu
- College of Engineering, Ocean University of China, Qingdao, China
| | - Weiwei Zhang
- School of Mechanical and Power Engineering, Zhengzhou University, Zhengzhou, China
| | - Tianlong Li
- State Key Laboratory of Robotics and System, Harbin Institute of Technology, Harbin, China
- Chongqing Research Institute of Harbin Institute of Technology Chongqing, Chongqing, China
| |
Collapse
|
34
|
Liang X, Zhao Y, Liu D, Deng Y, Arai T, Kojima M, Liu X. Magnetic Microrobots Fabricated by Photopolymerization and Assembly. CYBORG AND BIONIC SYSTEMS 2023; 4:0060. [PMID: 38026540 PMCID: PMC10644835 DOI: 10.34133/cbsystems.0060] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2023] [Accepted: 09/13/2023] [Indexed: 12/01/2023] Open
Abstract
Magnetic soft microrobots have great potential to access narrow spaces and conduct multiple tasks in the biomedical field. Until now, drug delivery, microsurgery, disease diagnosis, and dredging the blocked blood vessel have been realized by magnetic soft microrobots in vivo or in vitro. However, as the tasks become more and more complex, more functional units have been embedded in the body of the developed magnetic microrobots. These magnetic soft microrobots with complex designed geometries, mechanisms, and magnetic orientation are now greatly challenging the fabrication of the magnetic microrobots. In this paper, we propose a new method combining photopolymerization and assembly for the fabrication of magnetic soft microrobots. Utilizing the micro-hand assembly system, magnetic modules with different shapes and materials are firstly arrayed with precise position and orientation control. Then, the developed photopolymerization system is employed to fix and link these modules with soft materials. Based on the proposed fabrication method, 3 kinds of soft magnetic microrobots were fabricated, and the fundamental locomotion was presented. We believe that the presented fabrication strategy could help accelerate the clinical application of magnetic microrobots.
Collapse
Affiliation(s)
- Xiyue Liang
- Key Laboratory of Biomimetic Robots and Systems, Ministry of Education, State Key Laboratory of Intelligent Control and Decision of Complex System, Beijing Advanced Innovation Center for Intelligent Robots and Systems, and School of Mechatronical Engineering,
Beijing Institute of Technology, Beijing 100081, China
| | - Yue Zhao
- Key Laboratory of Biomimetic Robots and Systems, Ministry of Education, State Key Laboratory of Intelligent Control and Decision of Complex System, Beijing Advanced Innovation Center for Intelligent Robots and Systems, and School of Mechatronical Engineering,
Beijing Institute of Technology, Beijing 100081, China
| | - Dan Liu
- Key Laboratory of Biomimetic Robots and Systems, Ministry of Education, State Key Laboratory of Intelligent Control and Decision of Complex System, Beijing Advanced Innovation Center for Intelligent Robots and Systems, and School of Mechatronical Engineering,
Beijing Institute of Technology, Beijing 100081, China
| | - Yan Deng
- Key Laboratory of Biomimetic Robots and Systems, Ministry of Education, State Key Laboratory of Intelligent Control and Decision of Complex System, Beijing Advanced Innovation Center for Intelligent Robots and Systems, and School of Mechatronical Engineering,
Beijing Institute of Technology, Beijing 100081, China
| | - Tatsuo Arai
- Key Laboratory of Biomimetic Robots and Systems, Ministry of Education, State Key Laboratory of Intelligent Control and Decision of Complex System, Beijing Advanced Innovation Center for Intelligent Robots and Systems, and School of Mechatronical Engineering,
Beijing Institute of Technology, Beijing 100081, China
- Center for Neuroscience and Biomedical Engineering,
The University of Electro-Communications, Tokyo 182-8585, Japan
| | - Masaru Kojima
- Department of Materials Engineering Science,
Osaka University, Osaka 560-8531, Japan
| | - Xiaoming Liu
- Key Laboratory of Biomimetic Robots and Systems, Ministry of Education, State Key Laboratory of Intelligent Control and Decision of Complex System, Beijing Advanced Innovation Center for Intelligent Robots and Systems, and School of Mechatronical Engineering,
Beijing Institute of Technology, Beijing 100081, China
| |
Collapse
|
35
|
Zhang Y, Wu X, Vadlamani RA, Lim Y, Kim J, David K, Gilbert E, Li Y, Wang R, Jiang S, Wang A, Sontheimer H, English DF, Emori S, Davalos RV, Poelzing S, Jia X. Submillimeter Multifunctional Ferromagnetic Fiber Robots for Navigation, Sensing, and Modulation. Adv Healthc Mater 2023; 12:e2300964. [PMID: 37473719 PMCID: PMC10799194 DOI: 10.1002/adhm.202300964] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2023] [Revised: 06/21/2023] [Accepted: 06/26/2023] [Indexed: 07/22/2023]
Abstract
Small-scale robots capable of remote active steering and navigation offer great potential for biomedical applications. However, the current design and manufacturing procedure impede their miniaturization and integration of various diagnostic and therapeutic functionalities. Herein, submillimeter fiber robots that can integrate navigation, sensing, and modulation functions are presented. These fiber robots are fabricated through a scalable thermal drawing process at a speed of 4 meters per minute, which enables the integration of ferromagnetic, electrical, optical, and microfluidic composite with an overall diameter of as small as 250 µm and a length of as long as 150 m. The fiber tip deflection angle can reach up to 54o under a uniform magnetic field of 45 mT. These fiber robots can navigate through complex and constrained environments, such as artificial vessels and brain phantoms. Moreover, Langendorff mouse hearts model, glioblastoma micro platforms, and in vivo mouse models are utilized to demonstrate the capabilities of sensing electrophysiology signals and performing a localized treatment. Additionally, it is demonstrated that the fiber robots can serve as endoscopes with embedded waveguides. These fiber robots provide a versatile platform for targeted multimodal detection and treatment at hard-to-reach locations in a minimally invasive and remotely controllable manner.
Collapse
Affiliation(s)
- Yujing Zhang
- Bradley Department of Electrical and Computer Engineering, Virginia Tech, Blacksburg, VA, 24061, USA
| | - Xiaobo Wu
- Translational Biology, Medicine, and Health Graduate Program, Virginia Tech, Roanoke, VA, 24016, USA
- Center for Heart and Reparative Medicine Research, Fralin Biomedical Research Institute at Virginia Tech Carilion, Roanoke, VA, 24016, USA
| | - Ram Anand Vadlamani
- Department of Biomedical Engineering and Mechanics, Virginia Tech, Blacksburg, VA, 24061, USA
| | - Youngmin Lim
- Department of Physics, Virginia Tech, Blacksburg, VA, 24061, USA
| | - Jongwoon Kim
- Bradley Department of Electrical and Computer Engineering, Virginia Tech, Blacksburg, VA, 24061, USA
| | - Kailee David
- Department of Biomedical Engineering and Mechanics, Virginia Tech, Blacksburg, VA, 24061, USA
| | - Earl Gilbert
- Department of Biomedical Engineering and Mechanics, Virginia Tech, Blacksburg, VA, 24061, USA
- School of Neuroscience, Virginia Tech, Blacksburg, VA, 24061, USA
| | - You Li
- Bradley Department of Electrical and Computer Engineering, Virginia Tech, Blacksburg, VA, 24061, USA
| | - Ruixuan Wang
- Bradley Department of Electrical and Computer Engineering, Virginia Tech, Blacksburg, VA, 24061, USA
| | - Shan Jiang
- Bradley Department of Electrical and Computer Engineering, Virginia Tech, Blacksburg, VA, 24061, USA
| | - Anbo Wang
- Bradley Department of Electrical and Computer Engineering, Virginia Tech, Blacksburg, VA, 24061, USA
| | - Harald Sontheimer
- Department of Neuroscience, University of Virginia, Charlottesville, VA, 22903, USA
| | | | - Satoru Emori
- Department of Physics, Virginia Tech, Blacksburg, VA, 24061, USA
| | - Rafael V Davalos
- Department of Biomedical Engineering and Mechanics, Virginia Tech, Blacksburg, VA, 24061, USA
| | - Steven Poelzing
- Translational Biology, Medicine, and Health Graduate Program, Virginia Tech, Roanoke, VA, 24016, USA
- Center for Heart and Reparative Medicine Research, Fralin Biomedical Research Institute at Virginia Tech Carilion, Roanoke, VA, 24016, USA
| | - Xiaoting Jia
- Bradley Department of Electrical and Computer Engineering, Virginia Tech, Blacksburg, VA, 24061, USA
- School of Neuroscience, Virginia Tech, Blacksburg, VA, 24061, USA
- Department of Materials Science and Engineering, Virginia Tech, Blacksburg, VA, 24061, USA
| |
Collapse
|
36
|
Li M, Pal A, Byun J, Gardi G, Sitti M. Magnetic Putty as a Reconfigurable, Recyclable, and Accessible Soft Robotic Material. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2023; 35:e2304825. [PMID: 37713134 DOI: 10.1002/adma.202304825] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/22/2023] [Revised: 08/31/2023] [Indexed: 09/16/2023]
Abstract
Magnetically hard materials are widely used to build soft magnetic robots, providing large magnetic force/torque and macrodomain programmability. However, their high magnetic coercivity often presents practical challenges when attempting to reconfigure magnetization patterns, requiring a large magnetic field or heating. In this study, magnetic putty is introduced as a magnetically hard and soft material with large remanence and low coercivity. It is shown that the magnetization of magnetic putty can be easily reoriented with maximum magnitude using an external field that is only one-tenth of its coercivity. Additionally, magnetic putty is a malleable, autonomous self-healing material that can be recycled and repurposed. The authors anticipate magnetic putty could provide a versatile and accessible tool for various magnetic robotics applications for fast prototyping and explorations for research and educational purposes.
Collapse
Affiliation(s)
- Meng Li
- Department of Physical Intelligence, Max Planck Institute for Intelligent Systems, 70569, Stuttgart, Germany
- Department of Civil and Environmental Engineering, Massachusetts Institute of Technology, Cambridge, MA, 02139, USA
| | - Aniket Pal
- Department of Physical Intelligence, Max Planck Institute for Intelligent Systems, 70569, Stuttgart, Germany
- Institute of Applied Mechanics, University of Stuttgart, 70569, Stuttgart, Germany
| | - Junghwan Byun
- Department of Physical Intelligence, Max Planck Institute for Intelligent Systems, 70569, Stuttgart, Germany
| | - Gaurav Gardi
- Department of Physical Intelligence, Max Planck Institute for Intelligent Systems, 70569, Stuttgart, Germany
| | - Metin Sitti
- Department of Physical Intelligence, Max Planck Institute for Intelligent Systems, 70569, Stuttgart, Germany
- Institute for Biomedical Engineering, ETH Zürich, Zürich, 8092, Switzerland
- School of Medicine and College of Engineering, Koç University, Istanbul, 34450, Turkey
| |
Collapse
|
37
|
Liu X, Jing Y, Xu C, Wang X, Xie X, Zhu Y, Dai L, Wang H, Wang L, Yu S. Medical Imaging Technology for Micro/Nanorobots. NANOMATERIALS (BASEL, SWITZERLAND) 2023; 13:2872. [PMID: 37947717 PMCID: PMC10648532 DOI: 10.3390/nano13212872] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/28/2023] [Revised: 10/23/2023] [Accepted: 10/26/2023] [Indexed: 11/12/2023]
Abstract
Due to their enormous potential to be navigated through complex biological media or narrow capillaries, microrobots have demonstrated their potential in a variety of biomedical applications, such as assisted fertilization, targeted drug delivery, tissue repair, and regeneration. Numerous initial studies have been conducted to demonstrate the biomedical applications in test tubes and in vitro environments. Microrobots can reach human areas that are difficult to reach by existing medical devices through precise navigation. Medical imaging technology is essential for locating and tracking this small treatment machine for evaluation. This article discusses the progress of imaging in tracking the imaging of micro and nano robots in vivo and analyzes the current status of imaging technology for microrobots. The working principle and imaging parameters (temporal resolution, spatial resolution, and penetration depth) of each imaging technology are discussed in depth.
Collapse
Affiliation(s)
- Xuejia Liu
- State Key Laboratory of Robotics and System, Harbin Institute of Technology, Harbin 150001, China; (X.L.); (Y.J.); (C.X.); (X.W.); (X.X.); (Y.Z.); (L.D.); (L.W.)
| | - Yizhan Jing
- State Key Laboratory of Robotics and System, Harbin Institute of Technology, Harbin 150001, China; (X.L.); (Y.J.); (C.X.); (X.W.); (X.X.); (Y.Z.); (L.D.); (L.W.)
| | - Chengxin Xu
- State Key Laboratory of Robotics and System, Harbin Institute of Technology, Harbin 150001, China; (X.L.); (Y.J.); (C.X.); (X.W.); (X.X.); (Y.Z.); (L.D.); (L.W.)
| | - Xiaoxiao Wang
- State Key Laboratory of Robotics and System, Harbin Institute of Technology, Harbin 150001, China; (X.L.); (Y.J.); (C.X.); (X.W.); (X.X.); (Y.Z.); (L.D.); (L.W.)
| | - Xiaopeng Xie
- State Key Laboratory of Robotics and System, Harbin Institute of Technology, Harbin 150001, China; (X.L.); (Y.J.); (C.X.); (X.W.); (X.X.); (Y.Z.); (L.D.); (L.W.)
| | - Yanhe Zhu
- State Key Laboratory of Robotics and System, Harbin Institute of Technology, Harbin 150001, China; (X.L.); (Y.J.); (C.X.); (X.W.); (X.X.); (Y.Z.); (L.D.); (L.W.)
| | - Lizhou Dai
- State Key Laboratory of Robotics and System, Harbin Institute of Technology, Harbin 150001, China; (X.L.); (Y.J.); (C.X.); (X.W.); (X.X.); (Y.Z.); (L.D.); (L.W.)
| | - Haocheng Wang
- State Key Laboratory of Robotics and System, Harbin Institute of Technology, Harbin 150001, China; (X.L.); (Y.J.); (C.X.); (X.W.); (X.X.); (Y.Z.); (L.D.); (L.W.)
| | - Lin Wang
- State Key Laboratory of Robotics and System, Harbin Institute of Technology, Harbin 150001, China; (X.L.); (Y.J.); (C.X.); (X.W.); (X.X.); (Y.Z.); (L.D.); (L.W.)
| | - Shimin Yu
- College of Engineering, Ocean University of China, Qingdao 266100, China
| |
Collapse
|
38
|
Mazeeva A, Masaylo D, Razumov N, Konov G, Popovich A. 3D Printing Technologies for Fabrication of Magnetic Materials Based on Metal-Polymer Composites: A Review. MATERIALS (BASEL, SWITZERLAND) 2023; 16:6928. [PMID: 37959525 PMCID: PMC10648652 DOI: 10.3390/ma16216928] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/04/2023] [Revised: 10/22/2023] [Accepted: 10/26/2023] [Indexed: 11/15/2023]
Abstract
Additive manufacturing is a very rapidly developing industrial field. It opens many possibilities for the fast fabrication of complex-shaped products and devices, including functional materials and smart structures. This paper presents an overview of polymer 3D printing technologies currently used to produce magnetic materials and devices based on them. Technologies such as filament-fused modeling (FDM), direct ink writing (DIW), stereolithography (SLA), and binder jetting (BJ) are discussed. Their technological features, such as the optimal concentration of the filler, the shape and size of the filler particles, printing modes, etc., are considered to obtain bulk products with a high degree of detail and with a high level of magnetic properties. The polymer 3D technologies are compared with conventional technologies for manufacturing polymer-bonded magnets and with metal 3D technologies. This paper shows prospective areas of application of 3D polymer technologies for fabricating the magnetic elements of complex shapes, such as shim elements with an optimized shape and topology; advanced transformer cores; sensors; and, in particular, the fabrication of soft robots with a fast response to magnetic stimuli and composites based on smart fillers.
Collapse
Affiliation(s)
- Alina Mazeeva
- Institute of Machinery, Materials and Transport, Peter the Great St. Petersburg Polytechnic University, 29, Polytechnicheskaya Str., 195251 Saint Petersburg, Russia; (D.M.); (N.R.); (G.K.); (A.P.)
| | | | | | | | | |
Collapse
|
39
|
Jiang H, Gu H, Nelson BJ, Zhang T. Numerical Study of Metachronal Wave-Modulated Locomotion in Magnetic Cilia Carpets. ADVANCED INTELLIGENT SYSTEMS (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2023; 5:2300212. [PMID: 37885909 PMCID: PMC10601495 DOI: 10.1002/aisy.202300212] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 04/25/2023] [Indexed: 10/28/2023]
Abstract
Metachronal motions are ubiquitous in terrestrial and aquatic organisms and have attracted substantial attention in engineering for their potential applications. Hard-magnetic soft materials are shown to provide new opportunities for metachronal wave-modulated robotic locomotion by multi-agent active morphing in response to external magnetic fields. However, the design and optimization of such magnetic soft robots can be complex, and the fabrication and magnetization processes are often delicate and time-consuming. Herein, a computational model is developed that integrates granular models into a magnetic-lattice model, both of which are implemented in the highly efficient parallel computing platform large-scale atomic/molecular massively parallel simulator (LAMMPS). The simulations accurately reproduce the deformation of single cilium, the metachronal wave motion of multiple cilia, and the crawling and rolling locomotion of magnetic cilia soft robots. Furthermore, the simulations provide insight into the spatial and temporal variation of friction forces and trajectories of cilia tips. The results contribute to the understanding of metachronal wave-modulated locomotion and potential applications in the field of soft robotics and biomimetic engineering. The developed model also provides a versatile computational framework for simulating the movement of magnetic soft robots in realistic environments and has the potential to guide the design, optimization, and customization of these systems.
Collapse
Affiliation(s)
- Hao Jiang
- Department of Mechanical and Aerospace Engineering Syracuse University, Syracuse, NY 13244, USA; BioInspired Syracuse Syracuse, University Syracuse, NY 13244, USA
| | - Hongri Gu
- Department of Physics, University of Konstanz, 78464 Konstanz, Germany
| | - Bradley J Nelson
- Institute of Robotics and Intelligent Systems, ETH Zurich, 8092 Zurich, Switzerland
| | - Teng Zhang
- Department of Mechanical and Aerospace Engineering Syracuse University Syracuse, NY 13244, USA; BioInspired Syracuse Syracuse University Syracuse, NY 13244, USA
| |
Collapse
|
40
|
Sun J, Lerner E, Tighe B, Middlemist C, Zhao J. Embedded shape morphing for morphologically adaptive robots. Nat Commun 2023; 14:6023. [PMID: 37758737 PMCID: PMC10533550 DOI: 10.1038/s41467-023-41708-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2023] [Accepted: 09/15/2023] [Indexed: 09/29/2023] Open
Abstract
Shape-morphing robots can change their morphology to fulfill different tasks in varying environments, but existing shape-morphing capability is not embedded in a robot's body, requiring bulky supporting equipment. Here, we report an embedded shape-morphing scheme with the shape actuation, sensing, and locking, all embedded in a robot's body. We showcase this embedded scheme using three morphing robotic systems: 1) self-sensing shape-morphing grippers that can adapt to objects for adaptive grasping; 2) a quadrupedal robot that can morph its body shape for different terrestrial locomotion modes (walk, crawl, or horizontal climb); 3) an untethered robot that can morph its limbs' shape for amphibious locomotion. We also create a library of embedded morphing modules to demonstrate the versatile programmable shapes (e.g., torsion, 3D bending, surface morphing, etc.). Our embedded morphing scheme offers a promising avenue for robots to reconfigure their morphology in an embedded manner that can adapt to different environments on demand.
Collapse
Affiliation(s)
- Jiefeng Sun
- Adaptive Robotics Lab, Department of Mechanical Engineering, Colorado State University, Fort Collins, CO, USA.
- Department of Mechanical Engineering and Materials Science, Yale University, New Haven, CT, USA.
| | - Elisha Lerner
- Adaptive Robotics Lab, Department of Mechanical Engineering, Colorado State University, Fort Collins, CO, USA
| | - Brandon Tighe
- Adaptive Robotics Lab, Department of Mechanical Engineering, Colorado State University, Fort Collins, CO, USA
| | - Clint Middlemist
- Adaptive Robotics Lab, Department of Mechanical Engineering, Colorado State University, Fort Collins, CO, USA
| | - Jianguo Zhao
- Adaptive Robotics Lab, Department of Mechanical Engineering, Colorado State University, Fort Collins, CO, USA.
| |
Collapse
|
41
|
Bo R, Xu S, Yang Y, Zhang Y. Mechanically-Guided 3D Assembly for Architected Flexible Electronics. Chem Rev 2023; 123:11137-11189. [PMID: 37676059 PMCID: PMC10540141 DOI: 10.1021/acs.chemrev.3c00335] [Citation(s) in RCA: 19] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2023] [Indexed: 09/08/2023]
Abstract
Architected flexible electronic devices with rationally designed 3D geometries have found essential applications in biology, medicine, therapeutics, sensing/imaging, energy, robotics, and daily healthcare. Mechanically-guided 3D assembly methods, exploiting mechanics principles of materials and structures to transform planar electronic devices fabricated using mature semiconductor techniques into 3D architected ones, are promising routes to such architected flexible electronic devices. Here, we comprehensively review mechanically-guided 3D assembly methods for architected flexible electronics. Mainstream methods of mechanically-guided 3D assembly are classified and discussed on the basis of their fundamental deformation modes (i.e., rolling, folding, curving, and buckling). Diverse 3D interconnects and device forms are then summarized, which correspond to the two key components of an architected flexible electronic device. Afterward, structure-induced functionalities are highlighted to provide guidelines for function-driven structural designs of flexible electronics, followed by a collective summary of their resulting applications. Finally, conclusions and outlooks are given, covering routes to achieve extreme deformations and dimensions, inverse design methods, and encapsulation strategies of architected 3D flexible electronics, as well as perspectives on future applications.
Collapse
Affiliation(s)
- Renheng Bo
- Applied
Mechanics Laboratory, Department of Engineering Mechanics, Tsinghua University, 100084 Beijing, People’s Republic of China
- Laboratory
of Flexible Electronics Technology, Tsinghua
University, 100084 Beijing, People’s Republic
of China
| | - Shiwei Xu
- Applied
Mechanics Laboratory, Department of Engineering Mechanics, Tsinghua University, 100084 Beijing, People’s Republic of China
- Laboratory
of Flexible Electronics Technology, Tsinghua
University, 100084 Beijing, People’s Republic
of China
| | - Youzhou Yang
- Applied
Mechanics Laboratory, Department of Engineering Mechanics, Tsinghua University, 100084 Beijing, People’s Republic of China
- Laboratory
of Flexible Electronics Technology, Tsinghua
University, 100084 Beijing, People’s Republic
of China
| | - Yihui Zhang
- Applied
Mechanics Laboratory, Department of Engineering Mechanics, Tsinghua University, 100084 Beijing, People’s Republic of China
- Laboratory
of Flexible Electronics Technology, Tsinghua
University, 100084 Beijing, People’s Republic
of China
| |
Collapse
|
42
|
Wang L, Gan C, Sun H, Feng L. Magnetic nanoparticle swarm with upstream motility and peritumor blood vessel crossing ability. NANOSCALE 2023; 15:14227-14237. [PMID: 37599587 DOI: 10.1039/d3nr02610h] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/22/2023]
Abstract
Micro-nano-robots show great potential and value for applications in targeted drug delivery; however, very few current studies have enabled micro-nano-robots to move against blood flow, and in addition, how micro-nano-robots can penetrate endothelial cells and enter tissues via vascular permeation remains unclear. Inspired by the bionics of dynamic aggregation in wild herring schools and transvascular permeation of leukocytes, we propose a novel drug delivery strategy where thousands of magnetic nanoparticles (MNPs) can be assembled into swarms under the guidance of a specially designed electromagnetic field. The vortex-like swarms of magnetic nanoparticles exhibit excellent stability, allowing them to withstand the impact of high-speed flow and move upstream along the vessel wall, stopping at the target location. When the vortex-like swarms encounter a tumor periphery without a continuous vessel wall, their rheological properties actively adhere them to the edges of the vascular endothelial gap, using their deformability to crawl through narrow intercellular gaps, enabling large-scale targeted drug delivery. This cluster of miniature nanorobots can be reshaped and reconfigured to perform a variety of tasks according to the environmental demands of the circulatory system, providing new solutions for a variety of biomedical field applications.
Collapse
Affiliation(s)
- Luyao Wang
- School of Mechanical Engineering and Automation, Beihang University, Beijing 100191, China.
| | - Chunyuan Gan
- School of Mechanical Engineering and Automation, Beihang University, Beijing 100191, China.
| | - Hongyan Sun
- School of Mechanical Engineering and Automation, Beihang University, Beijing 100191, China.
| | - Lin Feng
- School of Mechanical Engineering and Automation, Beihang University, Beijing 100191, China.
- Beijing Advanced Innovation Center for Biomedical Engineering, Beihang University, Beijing 100191, China
| |
Collapse
|
43
|
Zhang Y, Yin M, Xu B. Elastocapillary rolling transfer weaves soft materials to spatial structures. SCIENCE ADVANCES 2023; 9:eadh9232. [PMID: 37611102 PMCID: PMC10446489 DOI: 10.1126/sciadv.adh9232] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/22/2023] [Accepted: 07/24/2023] [Indexed: 08/25/2023]
Abstract
Spatial structures of soft materials have attracted great attention because of emerging applications in wearable electronics, biomedical devices, and soft robotics, but there are no facile technologies available to assemble the soft materials into spatial structures. Here, we report a mechanical transfer route enabled by the rotational motion of curved substrates relative to the soft materials on liquid surface. This transfer can weave soft materials into a broad variety of spatial structures with controllable global weaving chirality and orders and could also produce local ear-like folds with programmable numbers and distributions. We further prove that multiple pieces of soft materials in different forms including wire, ribbon, and large-area film can be woven onto curved substrates with various three-dimensional geometry shapes. Application demonstrations on the woven freestanding spatial structures with on-demand weaving patterns and orders have been conducted to show the temperature-driven multimodal actuating functionalities for programmable robotic postures.
Collapse
Affiliation(s)
| | | | - Baoxing Xu
- Department of Mechanical and Aerospace Engineering, University of Virginia, Charlottesville, VA, USA
| |
Collapse
|
44
|
Hou G, Zhang X, Du F, Wu Y, Zhang X, Lei Z, Lu W, Zhang F, Yang G, Wang H, Liu Z, Wang R, Ge Q, Chen J, Meng G, Fang NX, Qian X. Self-regulated underwater phototaxis of a photoresponsive hydrogel-based phototactic vehicle. NATURE NANOTECHNOLOGY 2023:10.1038/s41565-023-01490-4. [PMID: 37605045 DOI: 10.1038/s41565-023-01490-4] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/21/2022] [Accepted: 07/11/2023] [Indexed: 08/23/2023]
Abstract
Incorporating a negative feedback loop in a synthetic material to enable complex self-regulative behaviours akin to living organisms remains a design challenge. Here we show that a hydrogel-based vehicle can follow the directions of photonic illumination with directional regulation inside a constraint-free, fluidic space. By manipulating the customized photothermal nanoparticles and the microscale pores in the polymeric matrix, we achieved strong chemomechanical deformation of the soft material. The vehicle swiftly assumes an optimal pose and creates directional flow around itself, which it follows to achieve robust full-space phototaxis. In addition, this phototaxis enables a series of complex underwater locomotions. We demonstrate that this versatility is generated by the synergy of photothermofluidic interactions resulting in closed-loop self-control and fast reconfigurability. The untethered, electronics-free, ambient-powered hydrogel vehicle manoeuvres through obstacles agilely, following illumination cues of moderate intensities, similar to that of natural sunlight.
Collapse
Affiliation(s)
- Guodong Hou
- State Key Laboratory of Mechanical System and Vibration, Shanghai Jiao Tong University, Shanghai, China
- Interdisciplinary Research Centre for Engineering Science, School of Mechanical Engineering, Shanghai Jiao Tong University, Shanghai, China
- Institute of Refrigeration and Cryogenics, School of Mechanical Engineering, Shanghai Jiao Tong University, Shanghai, China
- Institute of Engineering Thermophysics, School of Mechanical Engineering, Shanghai Jiao Tong University, Shanghai, China
| | - Xu Zhang
- State Key Laboratory of Mechanical System and Vibration, Shanghai Jiao Tong University, Shanghai, China
| | - Feihong Du
- State Key Laboratory of Mechanical System and Vibration, Shanghai Jiao Tong University, Shanghai, China
- Interdisciplinary Research Centre for Engineering Science, School of Mechanical Engineering, Shanghai Jiao Tong University, Shanghai, China
- Institute of Refrigeration and Cryogenics, School of Mechanical Engineering, Shanghai Jiao Tong University, Shanghai, China
| | - Yadong Wu
- Institute of Aerospace Propulsion, School of Mechanical Engineering, Shanghai Jiao Tong University, Shanghai, China
| | - Xing Zhang
- State Key Laboratory of Mechanical System and Vibration, Shanghai Jiao Tong University, Shanghai, China
| | - Zhijie Lei
- State Key Laboratory of Mechanical System and Vibration, Shanghai Jiao Tong University, Shanghai, China
- Interdisciplinary Research Centre for Engineering Science, School of Mechanical Engineering, Shanghai Jiao Tong University, Shanghai, China
- Institute of Refrigeration and Cryogenics, School of Mechanical Engineering, Shanghai Jiao Tong University, Shanghai, China
| | - Wei Lu
- State Key Laboratory of Mechanical System and Vibration, Shanghai Jiao Tong University, Shanghai, China
- Interdisciplinary Research Centre for Engineering Science, School of Mechanical Engineering, Shanghai Jiao Tong University, Shanghai, China
- Institute of Refrigeration and Cryogenics, School of Mechanical Engineering, Shanghai Jiao Tong University, Shanghai, China
| | - Feiyu Zhang
- State Key Laboratory of Mechanical System and Vibration, Shanghai Jiao Tong University, Shanghai, China
- Interdisciplinary Research Centre for Engineering Science, School of Mechanical Engineering, Shanghai Jiao Tong University, Shanghai, China
- Institute of Refrigeration and Cryogenics, School of Mechanical Engineering, Shanghai Jiao Tong University, Shanghai, China
| | - Guang Yang
- Institute of Refrigeration and Cryogenics, School of Mechanical Engineering, Shanghai Jiao Tong University, Shanghai, China
| | - Huamiao Wang
- State Key Laboratory of Mechanical System and Vibration, Shanghai Jiao Tong University, Shanghai, China
| | - Zhenyu Liu
- Institute of Engineering Thermophysics, School of Mechanical Engineering, Shanghai Jiao Tong University, Shanghai, China
| | - Rong Wang
- Department of Mechanical and Energy Engineering, Southern University of Science and Technology, Shenzhen, China
| | - Qi Ge
- Department of Mechanical and Energy Engineering, Southern University of Science and Technology, Shenzhen, China
| | - Jiangping Chen
- State Key Laboratory of Mechanical System and Vibration, Shanghai Jiao Tong University, Shanghai, China
- Institute of Refrigeration and Cryogenics, School of Mechanical Engineering, Shanghai Jiao Tong University, Shanghai, China
| | - Guang Meng
- State Key Laboratory of Mechanical System and Vibration, Shanghai Jiao Tong University, Shanghai, China
- Interdisciplinary Research Centre for Engineering Science, School of Mechanical Engineering, Shanghai Jiao Tong University, Shanghai, China
| | - Nicholas X Fang
- Department of Mechanical Engineering, The University of Hong Kong, Hong Kong, China.
| | - Xiaoshi Qian
- State Key Laboratory of Mechanical System and Vibration, Shanghai Jiao Tong University, Shanghai, China.
- Interdisciplinary Research Centre for Engineering Science, School of Mechanical Engineering, Shanghai Jiao Tong University, Shanghai, China.
- Institute of Refrigeration and Cryogenics, School of Mechanical Engineering, Shanghai Jiao Tong University, Shanghai, China.
| |
Collapse
|
45
|
Darmawan BA, Park JO, Go G, Choi E. Four-Dimensional-Printed Microrobots and Their Applications: A Review. MICROMACHINES 2023; 14:1607. [PMID: 37630143 PMCID: PMC10456732 DOI: 10.3390/mi14081607] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/19/2023] [Revised: 08/11/2023] [Accepted: 08/13/2023] [Indexed: 08/27/2023]
Abstract
Owing to their small size, microrobots have many potential applications. In addition, four-dimensional (4D) printing facilitates reversible shape transformation over time or upon the application of stimuli. By combining the concept of microrobots and 4D printing, it may be possible to realize more sophisticated next-generation microrobot designs that can be actuated by applying various stimuli, and also demonstrates profound implications for various applications, including drug delivery, cells delivery, soft robotics, object release and others. Herein, recent advances in 4D-printed microrobots are reviewed, including strategies for facilitating shape transformations, diverse types of external stimuli, and medical and nonmedical applications of microrobots. Finally, to conclude the paper, the challenges and the prospects of 4D-printed microrobots are highlighted.
Collapse
Affiliation(s)
- Bobby Aditya Darmawan
- Korea Institute of Medical Microrobotics, 43-26, Cheomdangwagi-ro 208-beon-gil, Buk-gu, Gwangju 61011, Republic of Korea; (B.A.D.); (J.-O.P.)
| | - Jong-Oh Park
- Korea Institute of Medical Microrobotics, 43-26, Cheomdangwagi-ro 208-beon-gil, Buk-gu, Gwangju 61011, Republic of Korea; (B.A.D.); (J.-O.P.)
| | - Gwangjun Go
- Korea Institute of Medical Microrobotics, 43-26, Cheomdangwagi-ro 208-beon-gil, Buk-gu, Gwangju 61011, Republic of Korea; (B.A.D.); (J.-O.P.)
- Department of Mechanical Engineering, Chosun University, 309 Pilmun-daero, Dong-gu, Gwangju 61452, Republic of Korea
| | - Eunpyo Choi
- Korea Institute of Medical Microrobotics, 43-26, Cheomdangwagi-ro 208-beon-gil, Buk-gu, Gwangju 61011, Republic of Korea; (B.A.D.); (J.-O.P.)
- School of Mechanical Engineering, Chonnam National University, 77 Yongbong-ro, Buk-gu, Gwangju 61186, Republic of Korea
| |
Collapse
|
46
|
Banerjee H, Leber A, Laperrousaz S, La Polla R, Dong C, Mansour S, Wan X, Sorin F. Soft Multimaterial Magnetic Fibers and Textiles. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2023; 35:e2212202. [PMID: 37080546 DOI: 10.1002/adma.202212202] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/28/2022] [Revised: 03/17/2023] [Indexed: 05/03/2023]
Abstract
Magnetically responsive soft materials are promising building blocks for the next generation of soft robotics, prosthesis, surgical tools, and smart textiles. To date, however, the fabrication of highly integrated magnetic fibers with extreme aspect ratios, that can be used as steerable catheters, endoscopes, or within functional textiles remains challenging. Here, multimaterial thermal drawing is proposed as a material and processing platform to realize 10s of meters long soft, ultrastretchable, yet highly resilient magnetic fibers. Fibers with a diameter as low as 300 µm and an aspect ratio of 105 are demonstrated, integrating nanocomposite domains with ferromagnetic microparticles embedded in a soft elastomeric matrix. With the proper choice of filler content that must strike the right balance between magnetization density and mechanical stiffness, fibers withstanding strains of >1000% are shown, which can be magnetically actuated and lift up to 370 times their own weight. Magnetic fibers can also integrate other functionalities like microfluidic channels, and be weaved into conventional textiles. It is shown that the novel magnetic textiles can be washed and sustain extreme mechanical constraints, as well as be folded into arbitrary shapes when magnetically actuated, paving the way toward novel intriguing opportunities in medical textiles and soft magnetic systems.
Collapse
Affiliation(s)
- Hritwick Banerjee
- Institute of Materials, École Polytechnique Fédérale de Lausanne, 1015, Lausanne, Switzerland
| | - Andreas Leber
- Institute of Materials, École Polytechnique Fédérale de Lausanne, 1015, Lausanne, Switzerland
| | - Stella Laperrousaz
- Institute of Materials, École Polytechnique Fédérale de Lausanne, 1015, Lausanne, Switzerland
| | - Rémi La Polla
- Institute of Materials, École Polytechnique Fédérale de Lausanne, 1015, Lausanne, Switzerland
| | - Chaoqun Dong
- Institute of Materials, École Polytechnique Fédérale de Lausanne, 1015, Lausanne, Switzerland
| | - Syrine Mansour
- Institute of Materials, École Polytechnique Fédérale de Lausanne, 1015, Lausanne, Switzerland
| | - Xue Wan
- Institute of Materials, École Polytechnique Fédérale de Lausanne, 1015, Lausanne, Switzerland
| | - Fabien Sorin
- Institute of Materials, École Polytechnique Fédérale de Lausanne, 1015, Lausanne, Switzerland
| |
Collapse
|
47
|
Richter M, Sikorski J, Makushko P, Zabila Y, Venkiteswaran VK, Makarov D, Misra S. Locally Addressable Energy Efficient Actuation of Magnetic Soft Actuator Array Systems. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2023; 10:e2302077. [PMID: 37330643 PMCID: PMC10460866 DOI: 10.1002/advs.202302077] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/30/2023] [Revised: 05/21/2023] [Indexed: 06/19/2023]
Abstract
Advances in magnetoresponsive composites and (electro-)magnetic actuators have led to development of magnetic soft machines (MSMs) as building blocks for small-scale robotic devices. Near-field MSMs offer energy efficiency and compactness by bringing the field source and effectors in close proximity. Current challenges of near-field MSM are limited programmability of effector motion, dimensionality, ability to perform collaborative tasks, and structural flexibility. Herein, a new class of near-field MSMs is demonstrated that combines microscale thickness flexible planar coils with magnetoresponsive polymer effectors. Ultrathin manufacturing and magnetic programming of effectors is used to tailor their response to the nonhomogeneous near-field distribution on the coil surface. The MSMs are demonstrated to lift, tilt, pull, or grasp in close proximity to each other. These ultrathin (80 µm) and lightweight (100 gm-2 ) MSMs can operate at high frequency (25 Hz) and low energy consumption (0.5 W), required for the use of MSMs in portable electronics.
Collapse
Affiliation(s)
- Michiel Richter
- Surgical Robotics LaboratoryDepartment of Biomechanical EngineeringUniversity of TwenteDrienerlolaan 5Enschede7500 AEThe Netherlands
| | - Jakub Sikorski
- Surgical Robotics LaboratoryDepartment of Biomechanical EngineeringUniversity of TwenteDrienerlolaan 5Enschede7500 AEThe Netherlands
- Surgical Robotics LaboratoryDepartment of Biomedical EngineeringUniversity of Groningen and UniversityMedical Centre Groningen, Hanzeplein 1Groningen9713 GZThe Netherlands
| | - Pavlo Makushko
- Institute of Ion Beam Physics and Materials Research, Helmholtz‐Zentrum Dresden‐Rossendorf e.V.Bautzner, Landstraße 40001328DresdenGermany
| | - Yevhen Zabila
- Institute of Ion Beam Physics and Materials Research, Helmholtz‐Zentrum Dresden‐Rossendorf e.V.Bautzner, Landstraße 40001328DresdenGermany
- The H. Niewodniczanski Institute of Nuclear Physics, Polish Academy of SciencesKrakow31‐342Poland
| | | | - Denys Makarov
- Institute of Ion Beam Physics and Materials Research, Helmholtz‐Zentrum Dresden‐Rossendorf e.V.Bautzner, Landstraße 40001328DresdenGermany
| | - Sarthak Misra
- Surgical Robotics LaboratoryDepartment of Biomechanical EngineeringUniversity of TwenteDrienerlolaan 5Enschede7500 AEThe Netherlands
- Surgical Robotics LaboratoryDepartment of Biomedical EngineeringUniversity of Groningen and UniversityMedical Centre Groningen, Hanzeplein 1Groningen9713 GZThe Netherlands
| |
Collapse
|
48
|
Kim MS, Heo JK, Rodrigue H, Lee HT, Pané S, Han MW, Ahn SH. Shape Memory Alloy (SMA) Actuators: The Role of Material, Form, and Scaling Effects. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2023; 35:e2208517. [PMID: 37074738 DOI: 10.1002/adma.202208517] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/16/2022] [Revised: 04/11/2023] [Indexed: 05/03/2023]
Abstract
Shape memory alloys (SMAs) are smart materials that are widely used to create intelligent devices because of their high energy density, actuation strain, and biocompatibility characteristics. Given their unique properties, SMAs are found to have significant potential for implementation in many emerging applications in mobile robots, robotic hands, wearable devices, aerospace/automotive components, and biomedical devices. Here, the state-of-the-art of thermal and magnetic SMA actuators in terms of their constituent materials, form, and scaling effects are summarized, including their surface treatments and functionalities. The motion performance of various SMA architectures (wires, springs, smart soft composites, and knitted/woven actuators) is also analyzed. Based on the assessment, current challenges of SMAs that need to be addressed for their practical application are emphasized. Finally, how to advance SMAs by synergistically considering the effects of material, form, and scale is suggested.
Collapse
Affiliation(s)
- Min-Soo Kim
- Institute of Robotics and Intelligent Systems, ETH Zurich, Zurich, CH-8092, Switzerland
| | - Jae-Kyung Heo
- Department of Mechanical Engineering, Seoul National University, Seoul, 08826, Republic of Korea
| | - Hugo Rodrigue
- School of Mechanical Engineering, Sungkyunkwan University, Gyeonggido, 16419, Republic of Korea
| | - Hyun-Taek Lee
- Department of Mechanical Engineering, Inha University, Incheon, 22212, Republic of Korea
| | - Salvador Pané
- Institute of Robotics and Intelligent Systems, ETH Zurich, Zurich, CH-8092, Switzerland
| | - Min-Woo Han
- Department of Mechanical, Robotics and Energy Engineering, Dongguk University, Seoul, 04620, Republic of Korea
| | - Sung-Hoon Ahn
- Department of Mechanical Engineering, Seoul National University, Seoul, 08826, Republic of Korea
- Institute of Advanced Machines and Design, Seoul National University, Seoul, 08826, Republic of Korea
| |
Collapse
|
49
|
Wang J, Sotzing M, Lee M, Chortos A. Passively addressed robotic morphing surface (PARMS) based on machine learning. SCIENCE ADVANCES 2023; 9:eadg8019. [PMID: 37478174 PMCID: PMC10361599 DOI: 10.1126/sciadv.adg8019] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/06/2023] [Accepted: 06/21/2023] [Indexed: 07/23/2023]
Abstract
Reconfigurable morphing surfaces provide new opportunities for advanced human-machine interfaces and bio-inspired robotics. Morphing into arbitrary surfaces on demand requires a device with a sufficiently large number of actuators and an inverse control strategy. Developing compact, efficient control interfaces and algorithms is vital for broader adoption. In this work, we describe a passively addressed robotic morphing surface (PARMS) composed of matrix-arranged ionic actuators. To reduce the complexity of the physical control interface, we introduce passive matrix addressing. Matrix addressing allows the control of N2 independent actuators using only 2N control inputs, which is substantially lower than traditional direct addressing (N2 control inputs). Using machine learning with finite element simulations for training, our control algorithm enables real-time, high-precision forward and inverse control, allowing PARMS to dynamically morph into arbitrary achievable predefined surfaces on demand. These innovations may enable the future implementation of PARMS in wearables, haptics, and augmented reality/virtual reality.
Collapse
Affiliation(s)
- Jue Wang
- Department of Mechanical Engineering, Purdue University, 500 Central Dr, Lafayette, IN 47907, USA
| | - Michael Sotzing
- Department of Mechanical Engineering, Purdue University, 500 Central Dr, Lafayette, IN 47907, USA
| | - Mina Lee
- Department of Mechanical Engineering, Purdue University, 500 Central Dr, Lafayette, IN 47907, USA
| | - Alex Chortos
- Department of Mechanical Engineering, Purdue University, 500 Central Dr, Lafayette, IN 47907, USA
| |
Collapse
|
50
|
Lyu D, Xu W, Zhou N, Duan W, Wang Z, Mu Y, Zhou R, Wang Y. Biomimetic thermoresponsive superstructures by colloidal soft-and-hard co-assembly. SCIENCE ADVANCES 2023; 9:eadh2250. [PMID: 37390212 PMCID: PMC10313167 DOI: 10.1126/sciadv.adh2250] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/18/2023] [Accepted: 05/30/2023] [Indexed: 07/02/2023]
Abstract
Soft-and-hard hybrid structures are ubiquitous in biological systems and have inspired the design of man-made mechanical devices, actuators, and robots. The realization of these structures, however, has been challenging at microscale, where material integration and actuation become exceedingly less practical. Here, through simple colloidal assembly, we create microscale superstructures consisting of soft and hard materials, which, serving as microactuators, have thermoresponsive shape-transforming properties. In this case, anisotropic metal-organic framework (MOF) particles as the hard components are integrated with liquid droplets, forming spine-mimicking colloidal chains via valence-limited assembly. The chains, with alternating soft and hard segments, are referred to as MicroSpine and can reversibly change shape, switching between straight and curved states through a thermoresponsive swelling/deswelling mechanism. By solidification of the liquid parts within a chain with prescribed patterns, we design various chain morphologies, such as "colloidal arms," with controlled actuating behaviors. The chains are further used to build colloidal capsules, which encapsulate and release guests by the temperature-programmed actuation.
Collapse
Affiliation(s)
- Dengping Lyu
- Department of Chemistry, The University of Hong Kong, Pokfulam Road, Hong Kong SAR, China
| | - Wei Xu
- Department of Chemistry, The University of Hong Kong, Pokfulam Road, Hong Kong SAR, China
| | - Nansen Zhou
- Department of Biomedical Engineering, The Chinese University of Hong Kong, Shatin, Hong Kong SAR, China
| | - Wendi Duan
- Department of Chemistry, The University of Hong Kong, Pokfulam Road, Hong Kong SAR, China
| | - Zhisheng Wang
- Department of Chemistry, The University of Hong Kong, Pokfulam Road, Hong Kong SAR, China
| | - Yijiang Mu
- Department of Chemistry, The University of Hong Kong, Pokfulam Road, Hong Kong SAR, China
| | - Renjie Zhou
- Department of Biomedical Engineering, The Chinese University of Hong Kong, Shatin, Hong Kong SAR, China
| | - Yufeng Wang
- Department of Chemistry, The University of Hong Kong, Pokfulam Road, Hong Kong SAR, China
| |
Collapse
|