1
|
Gozashti L, Nakamoto A, Russell S, Corbett-Detig R. Horizontal transmission of functionally diverse transposons is a major source of new introns. Proc Natl Acad Sci U S A 2025; 122:e2414761122. [PMID: 40402243 DOI: 10.1073/pnas.2414761122] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2024] [Accepted: 03/28/2025] [Indexed: 05/23/2025] Open
Abstract
Since the discovery of spliceosomal introns in eukaryotic genomes, the proximate molecular and evolutionary processes that generate new introns have remained a critical mystery. Specialized transposable elements (TEs), introners, are thought to be one of the major drivers of intron gain in diverse eukaryotes. However, the molecular mechanism(s) and evolutionary processes driving introner propagation within and between lineages remain elusive. Here, we analyze 8,716 genomes, revealing 1,093 introner families in 201 species spanning 1.7 billion years of evolution. Introners are derived from functionally diverse TEs including families of terminal-inverted-repeat DNA TEs, retrotransposons, cryptons, and helitrons as well as mobile elements with unknown molecular mechanisms. We identify eight cases where introners recently transferred between divergent host species and show that giant viruses that integrate into genomes may facilitate introner transfer across lineages. We propose that ongoing intron gain is primarily a consequence of TE activity in eukaryotes, thereby resolving a key mystery of genome structure evolution.
Collapse
Affiliation(s)
- Landen Gozashti
- Department of Organismic and Evolutionary Biology, Harvard University, Cambridge, MA 02138
- Museum of Comparative Zoology, Harvard University, Cambridge, MA 02138
- HHMI, Harvard University, Cambridge, MA 02138
| | - Anne Nakamoto
- Department of Biomolecular Engineering, University of California Santa Cruz, Santa Cruz, CA 95064
- Genomics Institute, University of California Santa Cruz, Santa Cruz, CA 95064
| | - Shelbi Russell
- Department of Biomolecular Engineering, University of California Santa Cruz, Santa Cruz, CA 95064
- Genomics Institute, University of California Santa Cruz, Santa Cruz, CA 95064
| | - Russell Corbett-Detig
- Department of Biomolecular Engineering, University of California Santa Cruz, Santa Cruz, CA 95064
- Genomics Institute, University of California Santa Cruz, Santa Cruz, CA 95064
| |
Collapse
|
2
|
Nash D, Palermo CN, Inamoto I, Charles TC, Nissimov JI, Short SM. Hybrid sequencing reveals the genome of a Chrysochromulina parva virus and highlight its distinct replication strategy. BMC Genomics 2025; 26:498. [PMID: 40382578 PMCID: PMC12085832 DOI: 10.1186/s12864-025-11700-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2025] [Accepted: 05/12/2025] [Indexed: 05/20/2025] Open
Abstract
Chrysochromulina parva (C. parva) is a eukaryotic freshwater haptophyte algae found in lakes and rivers worldwide. It is known to be infected by viruses, yet knowledge of the diversity and activity of these viruses is still very limited. Based on sequences of PCR-amplified DNA polymerase B (polB) gene fragments, Chrysochromulina parva virus BQ1 (CpV-BQ1) was the first known lytic agent of C. parva, and was considered a member of the virus family Phycodnaviridae, order Algavirales. However, the genome of a different C. parva-infecting virus (CpV-BQ2, or Tethysvirus ontarioense) from another virus family, the Mesomimiviridae, order Imitervirales, was the first sequenced. Here, we report the complete genome sequence of the putative phycodnavirus CpV-BQ1, accession PQ783904. The complete CpV-BQ1 genome sequence is 165,454 bp with a GC content of 32.32% and it encodes 193 open reading frames. Phylogenetic analyses of several virus hallmark genes including the polB, the late gene transcription factor (VLTF-3), and the putative A32-like virion packaging ATPase (Viral A32) all demonstrate that CpV-BQ1 is most closely related to other viruses in the phylum Megaviricetes within the order Algavirales, family Phycodnaviridae.
Collapse
Affiliation(s)
- Delaney Nash
- Department of Biology, University of Waterloo, Waterloo, ON, N2L 3G1, Canada.
| | - Christine N Palermo
- Department of Biology, University of Toronto Mississauga, Mississauga, ON, L5L 1C6, Canada
| | - Ichiro Inamoto
- Department of Biology, University of Toronto Mississauga, Mississauga, ON, L5L 1C6, Canada
| | - Trevor C Charles
- Department of Biology, University of Waterloo, Waterloo, ON, N2L 3G1, Canada
| | - Jozef I Nissimov
- Department of Biology, University of Waterloo, Waterloo, ON, N2L 3G1, Canada.
| | - Steven M Short
- Department of Biology, University of Toronto Mississauga, Mississauga, ON, L5L 1C6, Canada.
| |
Collapse
|
3
|
Minch B, Moniruzzaman M. Expansion of the genomic and functional diversity of global ocean giant viruses. NPJ VIRUSES 2025; 3:32. [PMID: 40295861 PMCID: PMC12012013 DOI: 10.1038/s44298-025-00122-z] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/08/2024] [Accepted: 04/14/2025] [Indexed: 04/30/2025]
Abstract
Giant viruses (GVs) play crucial roles in the global ocean microbial food web and biogeochemistry. Recent metagenomic advances have uncovered >1800 new GV genomes from the world's oceans. While this rapid increase in genomic information is impressive, it is nowhere close to the extensive genomic information available for other marine entities-e.g., prokaryotes and their "virome". We present 230 new high-quality GV genomes (genomes with 4 or more marker genes) and 398 partial genomes from nine global ocean datasets. Notably, we identified numerous GV genomes from the Baltic Sea, offering insights into their phylogenomics, metabolic potential, and environmental drivers in one of the largest brackish water ecosystems. We discovered new GV functions and identified a significant functional divide between the Imitervirales and Algavirales orders. Additionally, we evaluated factors affecting GV abundance through a case study on the Baltic Sea dataset. Our study significantly expands the marine GV genomic and functional diversity, broadening our understanding of their roles in the food web and biogeochemistry.
Collapse
Affiliation(s)
- Benjamin Minch
- Department of Marine Biology and Ecology, Rosenstiel School of Marine, Atmospheric, and Earth Sciences, University of Miami, Miami, FL, USA
| | - Mohammad Moniruzzaman
- Department of Marine Biology and Ecology, Rosenstiel School of Marine, Atmospheric, and Earth Sciences, University of Miami, Miami, FL, USA.
| |
Collapse
|
4
|
Zabelskii D, Bukhdruker S, Bukhalovich S, Tsybrov F, Lamm GHU, Astashkin R, Doroginin D, Matveev G, Sudarev V, Kuzmin A, Zinovev E, Vlasova A, Ryzhykau Y, Ilyinsky N, Gushchin I, Bourenkov G, Alekseev A, Round A, Wachtveitl J, Bamberg E, Gordeliy V. Ion-conducting and gating molecular mechanisms of channelrhodopsin revealed by true-atomic-resolution structures of open and closed states. Nat Struct Mol Biol 2025:10.1038/s41594-025-01488-7. [PMID: 40205223 DOI: 10.1038/s41594-025-01488-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2024] [Accepted: 01/09/2025] [Indexed: 04/11/2025]
Abstract
Channelrhodopsins (ChRs) have emerged as major optogenetics tools, particularly in neuroscience. Despite their importance, the molecular mechanism of ChR opening remains elusive. Moreover, all reported structures of ChRs correspond to either a closed or an early intermediate state and lack the necessary level of detail owing to the limited resolution. Here we present the structures of the closed and open states of a cation-conducting ChR, OLPVR1, from Organic Lake phycodnavirus, belonging to the family of viral ChRs solved at 1.1- and 1.3-Å resolution at physiologically relevant pH conditions (pH 8.0). OLPVR1 was expressed in Escherichia coli and crystallized using an in meso approach, and the structures were solved by X-ray crystallography. We also present the structure of the OLPVR1 protonated state at acidic pH (pH 2.5) at 1.4-Å resolution. Together, these three structures elucidate the molecular mechanisms of the channel's opening and permeability in detail. Extensive functional studies support the proposed mechanisms. Channel opening is controlled by isomerization of the retinal cofactor, triggering protonation of proton acceptors and deprotonation of proton donors located in the three gates of the channel. The E51 residue in the core of the central gate (similar to E90 of ChR2 from Chlamydomonas reinhardtii) plays a key role in the opening of the channel. E51 flips out of the gate and towards the proton acceptor D200 (D253 in ChR2 in C. reinhardtii), establishing a hydrogen bond between them. Despite differences in subfamilies of ChRs, they share a common gate-cavity architecture, suggesting that they could have similar general gating mechanisms. These results enabled us to design viral rhodopsin with improved properties for optogenetic applications. The structural data and mechanisms might also be helpful for better understanding other ChRs and their engineering.
Collapse
Affiliation(s)
| | - Sergey Bukhdruker
- Research Center for Molecular Mechanisms of Aging and Age-related Diseases, Moscow Institute of Physics and Technology, Dolgoprudny, Russia
- Univ. Grenoble Alpes, CEA, CNRS, Institut de Biologie Structurale (IBS), Grenoble, France
| | - Siarhei Bukhalovich
- Research Center for Molecular Mechanisms of Aging and Age-related Diseases, Moscow Institute of Physics and Technology, Dolgoprudny, Russia
| | - Fedor Tsybrov
- Research Center for Molecular Mechanisms of Aging and Age-related Diseases, Moscow Institute of Physics and Technology, Dolgoprudny, Russia
| | - Gerrit H U Lamm
- Institute of Physical and Theoretical Chemistry, Goethe University Frankfurt, Frankfurt am Main, Germany
| | - Roman Astashkin
- Univ. Grenoble Alpes, CEA, CNRS, Institut de Biologie Structurale (IBS), Grenoble, France
| | - Demid Doroginin
- Research Center for Molecular Mechanisms of Aging and Age-related Diseases, Moscow Institute of Physics and Technology, Dolgoprudny, Russia
| | - Grigory Matveev
- Research Center for Molecular Mechanisms of Aging and Age-related Diseases, Moscow Institute of Physics and Technology, Dolgoprudny, Russia
- Nuclear Dynamics and Cancer Program, Fox Chase Cancer Center, Philadelphia, PA, USA
- Cancer Epigenetics Institute, Fox Chase Cancer Center, Philadelphia, PA, USA
| | - Vsevolod Sudarev
- Research Center for Molecular Mechanisms of Aging and Age-related Diseases, Moscow Institute of Physics and Technology, Dolgoprudny, Russia
| | - Alexander Kuzmin
- Research Center for Molecular Mechanisms of Aging and Age-related Diseases, Moscow Institute of Physics and Technology, Dolgoprudny, Russia
| | - Egor Zinovev
- Research Center for Molecular Mechanisms of Aging and Age-related Diseases, Moscow Institute of Physics and Technology, Dolgoprudny, Russia
| | - Anastasiia Vlasova
- Research Center for Molecular Mechanisms of Aging and Age-related Diseases, Moscow Institute of Physics and Technology, Dolgoprudny, Russia
| | - Yury Ryzhykau
- Research Center for Molecular Mechanisms of Aging and Age-related Diseases, Moscow Institute of Physics and Technology, Dolgoprudny, Russia
- Frank Laboratory of Neutron Physics, Joint Institute for Nuclear Research, Dubna, Russia
| | - Nikolay Ilyinsky
- Research Center for Molecular Mechanisms of Aging and Age-related Diseases, Moscow Institute of Physics and Technology, Dolgoprudny, Russia
| | - Ivan Gushchin
- Research Center for Molecular Mechanisms of Aging and Age-related Diseases, Moscow Institute of Physics and Technology, Dolgoprudny, Russia
| | - Gleb Bourenkov
- European Molecular Biology Laboratory, Hamburg unit c/o DESY, Hamburg, Germany
| | - Alexey Alekseev
- Research Center for Molecular Mechanisms of Aging and Age-related Diseases, Moscow Institute of Physics and Technology, Dolgoprudny, Russia
- Institute for Auditory Neuroscience and InnerEarLab, University Medical Center Göttingen, Göttingen, Germany
| | - Adam Round
- European X-ray Free Electron Laser GmbH, Schenefeld, Germany
| | - Josef Wachtveitl
- Institute of Physical and Theoretical Chemistry, Goethe University Frankfurt, Frankfurt am Main, Germany
| | - Ernst Bamberg
- Max Planck Institute of Biophysics, Frankfurt am Main, Germany.
| | - Valentin Gordeliy
- Univ. Grenoble Alpes, CEA, CNRS, Institut de Biologie Structurale (IBS), Grenoble, France.
| |
Collapse
|
5
|
Wang H, Meng L, Otaegi-Ugartemendia S, Condezo GN, Blanc-Mathieu R, Stokke R, Langvad MR, Brandt D, Kalinowski J, Dahle H, San Martín C, Ogata H, Sandaa RA. Haptophyte-infecting viruses change the genome condensing proteins of dinoflagellates. Commun Biol 2025; 8:510. [PMID: 40155463 PMCID: PMC11953307 DOI: 10.1038/s42003-025-07905-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2024] [Accepted: 03/10/2025] [Indexed: 04/01/2025] Open
Abstract
Giant viruses are extraordinary members of the virosphere due to their structural complexity and high diversity in gene content. Haptophytes are ecologically important primary producers in the ocean, and all known viruses that infect haptophytes are giant viruses. However, little is known about the specifics of their infection cycles and the responses they trigger in their host cells. Our in-depth electron microscopic, phylogenomic and virion proteomic analyses of two haptophyte-infecting giant viruses, Haptolina ericina virus RF02 (HeV RF02) and Prymnesium kappa virus RF02 (PkV RF02), unravel their large capacity for host manipulation and arsenals that function during the infection cycle from virus entry to release. The virus infection induces significant morphological changes in the host cell that is manipulated to build a virus proliferation factory. Both viruses' genomes encode a putative nucleoprotein (dinoflagellate/viral nucleoprotein; DVNP), which was also found in the virion proteome of PkV RF02. Phylogenetic analysis suggests that DVNPs are widespread in marine giant metaviromes. Furthermore, the analysis shows that the dinoflagellate homologues were possibly acquired from viruses of the order Imitervirales. These findings enhance our understanding of how viruses impact the biology of microalgae, providing insights into evolutionary biology, ecosystem dynamics, and nutrient cycling in the ocean.
Collapse
Affiliation(s)
- Haina Wang
- Department of Biological Sciences, University of Bergen, Bergen, Norway.
| | - Lingjie Meng
- Institute for Chemical Research, Kyoto University, Uji, Japan
| | | | | | | | - Runar Stokke
- Department of Biological Sciences, University of Bergen, Bergen, Norway
- Centre for Deep Sea Research, University of Bergen, Bergen, Norway
| | | | - David Brandt
- Bielefeld University, CeBiTec, Bielefeld, Germany
| | | | - Håkon Dahle
- Department of Biological Sciences, University of Bergen, Bergen, Norway
| | | | - Hiroyuki Ogata
- Institute for Chemical Research, Kyoto University, Uji, Japan
| | - Ruth-Anne Sandaa
- Department of Biological Sciences, University of Bergen, Bergen, Norway.
| |
Collapse
|
6
|
Almeida GMDF, Arriaga I, de Azevedo BL, Leppänen M, Abrahão JS, Andreani J, Zabeo D, Ravantti JJ, Abrescia NGA, Sundberg LR. Genomic and structural insights into Jyvaskylavirus, the first giant virus isolated from Finland. eLife 2025; 13:RP103492. [PMID: 40131223 PMCID: PMC11936420 DOI: 10.7554/elife.103492] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/26/2025] Open
Abstract
Giant viruses of protists are a diverse and likely ubiquitous group of organisms. Here, we describe Jyvaskylavirus, the first giant virus isolated from Finland. This clade B marseillevirus was found in Acanthamoeba castellanii from a composting soil sample in Jyväskylä, Central Finland. Its genome shares similarities with other marseilleviruses. Helium ion microscopy and electron microscopy of infected cells unraveled stages of the Jyvaskylavirus life cycle. We reconstructed the Jyvaskylavirus particle to 6.3 Å resolution using cryo-electron microscopy. The ~2500 Å diameter virion displays structural similarities to other Marseilleviridae giant viruses. The capsid comprises of 9240 copies of the major capsid protein, encoded by open reading frame (ORF) 184, which possesses a double jellyroll fold arranged in trimers forming pseudo-hexameric capsomers. Below the capsid shell, the internal membrane vesicle encloses the genome. Through cross-structural and -sequence comparisons with other Marseilleviridae using AI-based software in model building and prediction, we elucidated ORF142 as the penton protein, which plugs the 12 vertices of the capsid. Five additional ORFs were identified, with models predicted and fitted into densities that either cap the capsomers externally or stabilize them internally. The isolation of Jyvaskylavirus suggests that these viruses may be widespread in the boreal environment and provide structural insights extendable to other marseilleviruses.
Collapse
Affiliation(s)
- Gabriel Magno de Freitas Almeida
- The Norwegian College of Fishery Science, Faculty of Biosciences, Fisheries and Economics, UiT ‐ The Arctic University of NorwayTromsøNorway
| | - Iker Arriaga
- Structure and Cell Biology of Viruses Lab, CIC bioGUNE, Basque Research and Technology Alliance (BRTA)DerioSpain
| | - Bruna Luiza de Azevedo
- Universidade Federal de Minas Gerais, Institute of Biological Sciences, Department of MicrobiologyBelo HorizonteBrazil
| | - Miika Leppänen
- University of Jyväskylä, Department of Biological and Environmental Science and Nanoscience CenterJyväskyläFinland
| | - Jonatas S Abrahão
- Universidade Federal de Minas Gerais, Institute of Biological Sciences, Department of MicrobiologyBelo HorizonteBrazil
| | - Julien Andreani
- Aix Marseille Univ, MEPHIMarseilleFrance
- IHU-Méditerranée infectionMarseilleFrance
| | - Davide Zabeo
- Diamond Light Source, Harwell Science and Innovation CampusDidcotUnited Kingdom
| | - Janne J Ravantti
- University of Helsinki, Molecular and Integrative Biosciences Research ProgrammeHelsinkiFinland
| | - Nicola GA Abrescia
- Structure and Cell Biology of Viruses Lab, CIC bioGUNE, Basque Research and Technology Alliance (BRTA)DerioSpain
- Ikerbasque, Basque Foundation for ScienceBilbaoSpain
| | - Lotta-Riina Sundberg
- University of Jyväskylä, Department of Biological and Environmental Science and Nanoscience CenterJyväskyläFinland
| |
Collapse
|
7
|
Zheng K, Sun J, Liang Y, Kong L, Paez-Espino D, Mcminn A, Wang M. VITAP: a high precision tool for DNA and RNA viral classification based on meta-omic data. Nat Commun 2025; 16:2226. [PMID: 40044690 PMCID: PMC11883027 DOI: 10.1038/s41467-025-57500-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2024] [Accepted: 02/24/2025] [Indexed: 03/09/2025] Open
Abstract
The rapid growth in the number of newly identified DNA and RNA viral sequences underscores the need for an accurate and comprehensive classification system for all viral realms at different taxonomic levels. Here, we establish the Viral Taxonomic Assignment Pipeline (VITAP), which addresses classification challenges by integrating alignment-based techniques with graphs, offering high precision in classifying both DNA and RNA viral sequences and providing confidence level for each taxonomic unit. This tool automatically updates its database in sync with the latest references from the International Committee on Taxonomy of Viruses (ICTV), efficiently classifying viral sequences as short as 1,000 base pairs to genus level. VITAP possesses good generalization capabilities, maintaining accuracy comparable to other pipelines while achieving higher annotation rates across most DNA and RNA viral phyla. Its application in deep-sea viromes has led to significant taxonomic updates, providing comprehensive diversity information of viruses from deep-sea. VITAP is available at https://github.com/DrKaiyangZheng/VITAP .
Collapse
Affiliation(s)
- Kaiyang Zheng
- College of Marine Life Sciences, Ocean University of China, Qingdao, China
| | - Jianhua Sun
- College of Marine Life Sciences, Ocean University of China, Qingdao, China
- Haide College, Ocean University of China, Qingdao, China
| | - Yantao Liang
- College of Marine Life Sciences, Ocean University of China, Qingdao, China.
- Institute of Evolution and Marine Biodiversity, Ocean University of China, Qingdao, China.
- Frontiers Science Center for Deep Ocean Multispheres and Earth System, Ocean University of China, Qingdao, China.
- Center for Ocean Carbon Neutrality, Ocean University of China, Qingdao, China.
- MoE Key Laboratory of Evolution & Marine Biodiversity, Ocean University of China, Qingdao, China.
- UMT-OUC Joint Centre for Marine Studies, Qingdao, China.
| | - Liangliang Kong
- College of Marine Life Sciences, Ocean University of China, Qingdao, China
- Institute of Evolution and Marine Biodiversity, Ocean University of China, Qingdao, China
| | | | - Andrew Mcminn
- College of Marine Life Sciences, Ocean University of China, Qingdao, China.
- Institute of Evolution and Marine Biodiversity, Ocean University of China, Qingdao, China.
- UMT-OUC Joint Centre for Marine Studies, Qingdao, China.
- Institute for Marine and Antarctic Studies, University of Tasmania, Hobart, TAS, Australia.
| | - Min Wang
- College of Marine Life Sciences, Ocean University of China, Qingdao, China.
- Haide College, Ocean University of China, Qingdao, China.
- Institute of Evolution and Marine Biodiversity, Ocean University of China, Qingdao, China.
- Frontiers Science Center for Deep Ocean Multispheres and Earth System, Ocean University of China, Qingdao, China.
- Center for Ocean Carbon Neutrality, Ocean University of China, Qingdao, China.
- MoE Key Laboratory of Evolution & Marine Biodiversity, Ocean University of China, Qingdao, China.
- UMT-OUC Joint Centre for Marine Studies, Qingdao, China.
- The Affiliated Hospital of Qingdao University, Qingdao, China.
| |
Collapse
|
8
|
Wagatsuma R, Nishikawa Y, Hosokawa M, Takeyama H. vClean: assessing virus sequence contamination in viral genomes. NAR Genom Bioinform 2025; 7:lqae185. [PMID: 39781513 PMCID: PMC11704788 DOI: 10.1093/nargab/lqae185] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2024] [Revised: 12/05/2024] [Accepted: 12/18/2024] [Indexed: 01/12/2025] Open
Abstract
Recent advancements in viral metagenomics and single-virus genomics have improved our ability to obtain the draft genomes of environmental viruses. However, these methods can introduce virus sequence contaminations into viral genomes when short, fragmented partial sequences are present in the assembled contigs. These contaminations can lead to incorrect analyses; however, practical detection tools are lacking. In this study, we introduce vClean, a novel automated tool that detects contaminations in viral genomes. By applying machine learning to the nucleotide sequence features and gene patterns of the input viral genome, vClean could identify contaminations. Specifically, for tailed double-stranded DNA phages, we attempted accurate predictions by defining single-copy-like genes and counting their duplications. We evaluated the performance of vClean using simulated datasets derived from complete reference genomes, achieving a binary accuracy of 0.932. When vClean was applied to 4693 genomes of medium or higher quality derived from public ocean metagenomic data, 1604 genomes (34.2%) were identified as contaminated. We also demonstrated that vClean can detect contamination in single-virus genome data obtained from river water. vClean provides a new benchmark for quality control of environmental viral genomes and has the potential to become an essential tool for environmental viral genome analysis.
Collapse
Affiliation(s)
- Ryota Wagatsuma
- Department of Life Science and Medical Bioscience, Graduate School of Advanced Science and Engineering, Waseda University, 2-2 Wakamatsu-cho, Shinjuku-ku, Tokyo 162-8480, Japan
- Computational Bio Big-Data Open Innovation Laboratory, AIST-Waseda University, 3-4-1 Okubo, Shinjuku-ku, Tokyo 169-0072, Japan
| | - Yohei Nishikawa
- Computational Bio Big-Data Open Innovation Laboratory, AIST-Waseda University, 3-4-1 Okubo, Shinjuku-ku, Tokyo 169-0072, Japan
- Research Organization for Nano & Life Innovation, Waseda University, 513 Waseda Tsurumaki-cho, Shinjuku-ku, Tokyo 162-0041, Japan
| | - Masahito Hosokawa
- Department of Life Science and Medical Bioscience, Graduate School of Advanced Science and Engineering, Waseda University, 2-2 Wakamatsu-cho, Shinjuku-ku, Tokyo 162-8480, Japan
- Computational Bio Big-Data Open Innovation Laboratory, AIST-Waseda University, 3-4-1 Okubo, Shinjuku-ku, Tokyo 169-0072, Japan
- Research Organization for Nano & Life Innovation, Waseda University, 513 Waseda Tsurumaki-cho, Shinjuku-ku, Tokyo 162-0041, Japan
- Institute for Advanced Research of Biosystem Dynamics, Waseda Research Institute for Science and Engineering, Graduate School of Advanced Science and Engineering, Waseda University, 3-4-1 Okubo, Shinjuku-ku, Tokyo 169-8555, Japan
| | - Haruko Takeyama
- Department of Life Science and Medical Bioscience, Graduate School of Advanced Science and Engineering, Waseda University, 2-2 Wakamatsu-cho, Shinjuku-ku, Tokyo 162-8480, Japan
- Computational Bio Big-Data Open Innovation Laboratory, AIST-Waseda University, 3-4-1 Okubo, Shinjuku-ku, Tokyo 169-0072, Japan
- Research Organization for Nano & Life Innovation, Waseda University, 513 Waseda Tsurumaki-cho, Shinjuku-ku, Tokyo 162-0041, Japan
- Institute for Advanced Research of Biosystem Dynamics, Waseda Research Institute for Science and Engineering, Graduate School of Advanced Science and Engineering, Waseda University, 3-4-1 Okubo, Shinjuku-ku, Tokyo 169-8555, Japan
| |
Collapse
|
9
|
Tee HS, Ku C. Host-Calibrated Time Tree Caps the Age of Giant Viruses. Mol Biol Evol 2025; 42:msaf033. [PMID: 39976376 PMCID: PMC11840718 DOI: 10.1093/molbev/msaf033] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2024] [Revised: 01/20/2025] [Accepted: 01/23/2025] [Indexed: 02/21/2025] Open
Abstract
Viruses are widespread parasites with important impacts on public health, economy, and ecosystems. However, little is known about their origins, ages, and early evolutionary relationships with hosts. Here, we infer the maximum divergence times for eukaryotic giant DNA viruses (phylum Nucleocytoviricota) with dating analyses calibrated by host taxon ages of virus lineages with specific host ranges. The last common ancestor of Nucleocytoviricota existed after 1,000 million years ago, suggesting a much later origin than that of the eukaryotes. The early evolution of Nucleocytoviricota either coincided with or postdated a substantial increase in the oxygen levels on the Earth's surface during the Neoproterozoic Era. The lineage diversification of giant viruses was frequently associated with host shifts, including two major transitions from amoebozoan hosts to animal hosts that eventually led to the emergence of iridoviruses and African swine fever viruses within the last 450 million years. These results outline the evolutionary timescale of a major virus group and are pivotal for further understanding the virus-host interactions and their potential ecological roles in the Earth's history.
Collapse
Affiliation(s)
- Hwee Sze Tee
- Institute of Plant and Microbial Biology, Academia Sinica, Taipei, Taiwan
| | - Chuan Ku
- Institute of Plant and Microbial Biology, Academia Sinica, Taipei, Taiwan
| |
Collapse
|
10
|
Xu T, Zhao X, Loch T, Zhu J, Wang W, Wang X, Wang C, Fan G, Hao B, Zhang J, Zhao W, Bondad-Reantaso MG, Alday-Sanz V, Zhang Q. RNA virus diversity highlights the potential biosecurity threat posed by Antarctic krill. MARINE LIFE SCIENCE & TECHNOLOGY 2025; 7:96-109. [PMID: 40027325 PMCID: PMC11871207 DOI: 10.1007/s42995-024-00270-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/23/2024] [Accepted: 10/16/2024] [Indexed: 03/05/2025]
Abstract
Antarctic krill Euphausia superba, one of the most abundant species on the planet, is a keystone species of the Southern Ocean ecosystem. In the present study, we analyzed the RNA virome of Antarctic krill via metatranscription methods. The results showed that only 0.39% (49/12, 558) of the resultant unigenes could be assigned to known viral taxa, which were most similar to 17 known viruses, including nine invertebrate viruses, two vertebrate viruses, three protozoan viruses and three mycoviruses. However, most of the detected viruses possessed low amino acid similarity with counterparts in the viral databases. Penaeus vannamei picornavirus (PvPV; Family Picornaviridae) and covert mortality nodavirus (CMNV; Family Nodaviridae) were the two most abundant viruses in the Antarctic krill RNA virome. Notably, PvPV and CMNV are known pathogens to multiple aquatic animals according to epidemiological survey and exposure experiments, whereby PvPV positive krill caused clinical symptoms and histopathological lesions to P. vannamei and similarly, CMNV infection altered the swimming and feeding behavior of parent marine medaka Oryzias melastigma and caused tissue damage and even spinal curvature of the offspring. Results herein reveal, for the first time, the high abundance and taxonomic diversity of viruses in Antarctic krill while simultaneously highlighting the risk of an important virus reservoir to global aquaculture, and the potential impact on animals in the Antarctic ecosystem. Supplementary Information The online version contains supplementary material available at 10.1007/s42995-024-00270-w.
Collapse
Affiliation(s)
- Tingting Xu
- State Key Laboratory of Mariculture Biobreeding and Sustainable Goods; Key Laboratory of Maricultural Organism Disease Control, Ministry of AgricultureQingdao Key Laboratory of Mariculture Epidemiology and BiosecurityYellow Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Qingdao, 266071 China
- Laboratory for Marine Fisheries Science and Food Production Processes, Laoshan Laboratory, Qingdao, 266237 China
| | - Xianyong Zhao
- State Key Laboratory of Mariculture Biobreeding and Sustainable Goods; Key Laboratory of Maricultural Organism Disease Control, Ministry of AgricultureQingdao Key Laboratory of Mariculture Epidemiology and BiosecurityYellow Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Qingdao, 266071 China
- Laboratory for Marine Fisheries Science and Food Production Processes, Laoshan Laboratory, Qingdao, 266237 China
| | - Thomas Loch
- Aquatic Animal Health Laboratory, Michigan State University, East Lansing, MI 48824 USA
| | - Jiancheng Zhu
- State Key Laboratory of Mariculture Biobreeding and Sustainable Goods; Key Laboratory of Maricultural Organism Disease Control, Ministry of AgricultureQingdao Key Laboratory of Mariculture Epidemiology and BiosecurityYellow Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Qingdao, 266071 China
- Laboratory for Marine Fisheries Science and Food Production Processes, Laoshan Laboratory, Qingdao, 266237 China
| | - Wei Wang
- State Key Laboratory of Mariculture Biobreeding and Sustainable Goods; Key Laboratory of Maricultural Organism Disease Control, Ministry of AgricultureQingdao Key Laboratory of Mariculture Epidemiology and BiosecurityYellow Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Qingdao, 266071 China
- Laboratory for Marine Fisheries Science and Food Production Processes, Laoshan Laboratory, Qingdao, 266237 China
| | - Xinliang Wang
- State Key Laboratory of Mariculture Biobreeding and Sustainable Goods; Key Laboratory of Maricultural Organism Disease Control, Ministry of AgricultureQingdao Key Laboratory of Mariculture Epidemiology and BiosecurityYellow Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Qingdao, 266071 China
- Laboratory for Marine Fisheries Science and Food Production Processes, Laoshan Laboratory, Qingdao, 266237 China
| | - Chong Wang
- State Key Laboratory of Mariculture Biobreeding and Sustainable Goods; Key Laboratory of Maricultural Organism Disease Control, Ministry of AgricultureQingdao Key Laboratory of Mariculture Epidemiology and BiosecurityYellow Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Qingdao, 266071 China
- Laboratory for Marine Fisheries Science and Food Production Processes, Laoshan Laboratory, Qingdao, 266237 China
| | - Gangzhou Fan
- State Key Laboratory of Mariculture Biobreeding and Sustainable Goods; Key Laboratory of Maricultural Organism Disease Control, Ministry of AgricultureQingdao Key Laboratory of Mariculture Epidemiology and BiosecurityYellow Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Qingdao, 266071 China
- Laboratory for Marine Fisheries Science and Food Production Processes, Laoshan Laboratory, Qingdao, 266237 China
| | - Bin Hao
- Fisheries and Aquaculture Division, Food and Agriculture Organization of the United Nations (FAO), 00153 Rome, Italy
| | - Jichang Zhang
- State Key Laboratory of Mariculture Biobreeding and Sustainable Goods; Key Laboratory of Maricultural Organism Disease Control, Ministry of AgricultureQingdao Key Laboratory of Mariculture Epidemiology and BiosecurityYellow Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Qingdao, 266071 China
- Laboratory for Marine Fisheries Science and Food Production Processes, Laoshan Laboratory, Qingdao, 266237 China
| | - Wenxiu Zhao
- State Key Laboratory of Mariculture Biobreeding and Sustainable Goods; Key Laboratory of Maricultural Organism Disease Control, Ministry of AgricultureQingdao Key Laboratory of Mariculture Epidemiology and BiosecurityYellow Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Qingdao, 266071 China
- Laboratory for Marine Fisheries Science and Food Production Processes, Laoshan Laboratory, Qingdao, 266237 China
| | - Melba G. Bondad-Reantaso
- Fisheries and Aquaculture Division, Food and Agriculture Organization of the United Nations (FAO), 00153 Rome, Italy
| | - Victoria Alday-Sanz
- Breeding Programs and Research and Development National Aquaculture Group (NAQUA), Jeddah, 21541 Kingdom of Saudi Arabia
| | - Qingli Zhang
- State Key Laboratory of Mariculture Biobreeding and Sustainable Goods; Key Laboratory of Maricultural Organism Disease Control, Ministry of AgricultureQingdao Key Laboratory of Mariculture Epidemiology and BiosecurityYellow Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Qingdao, 266071 China
- Laboratory for Marine Fisheries Science and Food Production Processes, Laoshan Laboratory, Qingdao, 266237 China
| |
Collapse
|
11
|
Kim MJ, Kim KE, Kim HJ, Kim YJ, Lee TK, Kim SM, Cha HG, Jung SW. Co-occurrence patterns between Chlorophyta and nucleocytoplasmic large DNA virus in coastal ecosystem, South Korea. MARINE ENVIRONMENTAL RESEARCH 2025; 204:106944. [PMID: 39756247 DOI: 10.1016/j.marenvres.2025.106944] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/24/2024] [Revised: 12/13/2024] [Accepted: 01/01/2025] [Indexed: 01/07/2025]
Abstract
Nucleocytoplasmic large DNA viruses (NCLDVs) are known to infect phytoplankton and play a significant role in regulating their population dynamics. In this study, we aimed to investigate the co-occurrence patterns between phytoplankton and NCLDVs in the southern coastal ecosystem of South Korea. We collected seawater every month from March 2018 to December 2020 and analyzed the samples using Cytochrome c Oxidase subunit I metabarcoding and metagenomic analyses. Chlorophyta (36.08%) was the most abundant eukaryotic taxon, with Bathycoccaceae (58.25%) and Mamiellaceae (41.51%) being the most dominant families within Chlorophyta. Bathycoccaceae was dominant in winter, whereas Mamiellaceae was dominant in summer. In the NCLDV community, Phycodnaviridae (75.12%) was found to be the major family. The co-occurrence pattern of Phycodnaviridae showed a high correlation with Bathycoccaceae and Mamiellaceae, which is explained by the "boom-and-bust" concept. In particular, we predicted co-occurrence patterns between Bathycoccus prasinos and Prasnovirus, with known infectious relationships, and confirmed co-occurrence patterns between B. prasinos and Coccolithovirus and Micromonas pusilla and Prymnesiovirus, with unknown infectious relationships. These co-occurrence patterns between Chlorophyta and Phycodnaviridae provide valuable insights into the control of pico-sized primary production and the microbial loop of the coastal ecosystem.
Collapse
Affiliation(s)
- Min-Jeong Kim
- Library of Marine Samples, Korea Institute of Ocean Science & Technology, Geoje, 53201, Republic of Korea
| | - Kang Eun Kim
- Library of Marine Samples, Korea Institute of Ocean Science & Technology, Geoje, 53201, Republic of Korea; Department of Ocean Science, University of Science & Technology, Daejeon, 34113, Republic of Korea
| | - Hyun-Jung Kim
- Library of Marine Samples, Korea Institute of Ocean Science & Technology, Geoje, 53201, Republic of Korea; Department of Oceanography and Marine Research Institute, Pusan National University, Busan, 46241, Republic of Korea
| | - Yu Jin Kim
- Library of Marine Samples, Korea Institute of Ocean Science & Technology, Geoje, 53201, Republic of Korea; Department of Ocean Science, University of Science & Technology, Daejeon, 34113, Republic of Korea
| | - Taek-Kyun Lee
- Ecological Risk Research Department, Korea Institute of Ocean Science & Technology, Geoje, 53201, Republic of Korea
| | - Seon Min Kim
- Library of Marine Samples, Korea Institute of Ocean Science & Technology, Geoje, 53201, Republic of Korea
| | - Hyung-Gon Cha
- Ballast Water Research Center, Korea Institute of Ocean Science and Technology, Geoje, 53201, Republic of Korea
| | - Seung Won Jung
- Library of Marine Samples, Korea Institute of Ocean Science & Technology, Geoje, 53201, Republic of Korea; Department of Ocean Science, University of Science & Technology, Daejeon, 34113, Republic of Korea.
| |
Collapse
|
12
|
Liu A, Qiao W, Ma R, Yan Q, Zhao S, Lang Y. The Detection of Mixed Infection with Canine Parvovirus, Canine Distemper Virus, and Rotavirus in Giant Pandas by Multiplex PCR. Vet Sci 2025; 12:81. [PMID: 40005841 PMCID: PMC11860260 DOI: 10.3390/vetsci12020081] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2024] [Revised: 01/14/2025] [Accepted: 01/16/2025] [Indexed: 02/27/2025] Open
Abstract
The well-being and subsistence of giant pandas, an endangered species with a limited distribution, are currently threatened by a number of viruses, including canine parvovirus (CPV-2), canine distemper virus (CDV), and giant panda rotavirus (GPRV). To allow for timely intervention upon viral infection, it is necessary to execute rapid and accurate diagnosis of potential mixed viral infections. In the present study, we developed and validated a multiplex PCR (mPCR) approach for the detection of CPV-2, CDV, and GPRV infections. The results indicate that the method could selectively amplify the three viruses with high sensitivity and specificity, which are necessary attributes in clinical settings. Utilizing the established method, (sub)clinical giant panda samples were examined, and CPV-2, CDV, and GPRV were found in 19.72% (43 out of 218), 7.34% (16 out of 218), and 6.42% (14 out of 218) of the samples, respectively. Noticeably, mixed infections of two or three viruses were common, and this was generally observed in CDV- or GPRV-positive samples. Meanwhile, mPCR results were further validated with sequencing and the phylogenetic analysis of full-length sequences of viral genes. Taken together, our study provides an approachable assay which enables the quick detection of the three viruses mentioned above, which will benefit clinical diagnosis and laboratory epidemiological-based investigations of the giant panda population.
Collapse
Affiliation(s)
- Ai Liu
- College of Veterinary Medicine, Sichuan Agricultural University, Chengdu 611130, China
- Chengdu National Agricultural Science and Technology Center, Chengdu 610213, China
| | - Wenyue Qiao
- College of Veterinary Medicine, Sichuan Agricultural University, Chengdu 611130, China
- Chengdu National Agricultural Science and Technology Center, Chengdu 610213, China
| | - Rui Ma
- Sichuan Key Laboratory of Conservation Biology for Endangered Wildlife, Chengdu Research Base of Giant Panda Breeding, 1375 Panda Road, Chenghua District, Chengdu 610081, China
| | - Qigui Yan
- College of Veterinary Medicine, Sichuan Agricultural University, Chengdu 611130, China
- Chengdu National Agricultural Science and Technology Center, Chengdu 610213, China
| | - Shan Zhao
- College of Veterinary Medicine, Sichuan Agricultural University, Chengdu 611130, China
- Chengdu National Agricultural Science and Technology Center, Chengdu 610213, China
| | - Yifei Lang
- College of Veterinary Medicine, Sichuan Agricultural University, Chengdu 611130, China
- Chengdu National Agricultural Science and Technology Center, Chengdu 610213, China
| |
Collapse
|
13
|
Fang Y, Meng L, Xia J, Gotoh Y, Hayashi T, Nagasaki K, Endo H, Okazaki Y, Ogata H. Genome-resolved year-round dynamics reveal a broad range of giant virus microdiversity. mSystems 2025; 10:e0116824. [PMID: 39714212 PMCID: PMC11748492 DOI: 10.1128/msystems.01168-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2024] [Accepted: 12/03/2024] [Indexed: 12/24/2024] Open
Abstract
Giant viruses are crucial for marine ecosystem dynamics because they regulate microeukaryotic community structure, accelerate carbon and nutrient cycles, and drive the evolution of their hosts through co-evolutionary processes. Previously reported long-term observations revealed that these viruses display seasonal fluctuations in abundance. However, the underlying genetic mechanisms driving such dynamics of these viruses remain largely unknown. In this study, we investigated the dynamics of giant viruses using time-series metagenomes from eutrophic coastal seawater samples collected over 20 months. A newly developed computational pipeline generated 1,065 high-quality genomes covering six major giant virus lineages. These genomic data revealed year-round recovery of the viral community structure at the study site and distinct dynamics of viral populations that were classified as persistent (n = 9), seasonal (n = 389), sporadic (n = 318), or others. By profiling the intra-species nucleotide-resolved microdiversity through read mapping, we also identified year-round recovery dynamics at subpopulation level for viruses classified as persistent or seasonal. Our results further indicated that giant viruses with broader niche breadth tended to exhibit higher levels of microdiversity. We argue that greater microdiversity of viruses likely enhances adaptability and thus survival under the virus-host arms race during prolonged interactions with their hosts.IMPORTANCERecent genome-resolved metagenomic surveys have uncovered the vast genomic diversity of giant viruses, which play significant roles in aquatic ecosystems by acting as bloom terminators and influencing biogeochemical cycles. However, the relationship between the ecological dynamics of giant viruses and underlying genetic structures of viral populations remains unresolved. In this study, we performed deep metagenomic sequencing of seawater samples collected across a time-series from a coastal area in Japan. The results revealed a significant positive correlation between microdiversity and temporal persistence of giant virus populations, suggesting that population structure is a crucial factor for adaptation and survival in the interactions with their hosts.
Collapse
Grants
- 21H05057 MEXT | Japan Society for the Promotion of Science (JSPS)
- Nos. 2018-31 Kyoto University | Institute for Chemical Research, Kyoto University (ICR)
- Nos. 2017-25 Kyoto University | Institute for Chemical Research, Kyoto University (ICR)
- 22H00384 MEXT | Japan Society for the Promotion of Science (JSPS)
- 22H00385 MEXT | Japan Society for the Promotion of Science (JSPS)
- 16H06279 MEXT | Japan Society for the Promotion of Science (JSPS)
- 16H06429 Ministry of Education, Culture, Sports, Science and Technology (MEXT)
- 16K21723 Ministry of Education, Culture, Sports, Science and Technology (MEXT)
- 16H06437 Ministry of Education, Culture, Sports, Science and Technology (MEXT)
- Nos. 2021-33 Kyoto University | Institute for Chemical Research, Kyoto University (ICR)
- Nos. 2019-33 Kyoto University | Institute for Chemical Research, Kyoto University (ICR)
Collapse
Affiliation(s)
- Yue Fang
- Institute for Chemical Research, Kyoto University, Uji, Japan
| | - Lingjie Meng
- Institute for Chemical Research, Kyoto University, Uji, Japan
| | - Jun Xia
- Institute for Chemical Research, Kyoto University, Uji, Japan
| | - Yasuhiro Gotoh
- Department of Bacteriology, Faculty of Medical Sciences, Kyushu University, Fukuoka, Japan
| | - Tetsuya Hayashi
- Department of Bacteriology, Faculty of Medical Sciences, Kyushu University, Fukuoka, Japan
| | - Keizo Nagasaki
- Faculty of Science and Technology, Kochi University, Kochi, Japan
| | - Hisashi Endo
- Institute for Chemical Research, Kyoto University, Uji, Japan
| | - Yusuke Okazaki
- Institute for Chemical Research, Kyoto University, Uji, Japan
| | - Hiroyuki Ogata
- Institute for Chemical Research, Kyoto University, Uji, Japan
| |
Collapse
|
14
|
Willemsen A, Manzano-Marín A, Horn M. Novel High-Quality Amoeba Genomes Reveal Widespread Codon Usage Mismatch Between Giant Viruses and Their Hosts. Genome Biol Evol 2025; 17:evae271. [PMID: 39760805 PMCID: PMC11702301 DOI: 10.1093/gbe/evae271] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 12/08/2024] [Indexed: 01/07/2025] Open
Abstract
The need for high-quality protist genomes has prevented in-depth computational and experimental studies of giant virus-host interactions. In addition, our current knowledge of host range is highly biased due to the few hosts used to isolate novel giant viruses. This study presents 6 high-quality amoeba genomes from known and potential giant virus hosts belonging to 2 distinct eukaryotic clades: Amoebozoa and Discoba. We employ their genomic data to investigate the predictability of giant virus host range. Using a combination of long- and short-read sequencing, we obtained highly contiguous and complete genomes of Acanthamoeba castellanii, Acanthamoeba griffini, Acanthamoeba terricola, Naegleria clarki, Vermamoeba vermiformis, and Willaertia magna, contributing to the collection of sequences for the eukaryotic tree of life. We found that the 6 amoebae have distinct codon usage patterns and that, contrary to other virus groups, giant viruses often have different and even opposite codon usage with their known hosts. Conversely, giant viruses with matching codon usage are frequently not known to infect or replicate in these hosts. Interestingly, analyses of integrated viral sequences in the amoeba host genomes reveal potential novel virus-host associations. Matching of codon usage preferences is often used to predict virus-host pairs. However, with the broad-scale analyses performed in this study, we demonstrate that codon usage alone appears to be a poor predictor of host range for giant viruses infecting amoeba. We discuss the potential strategies that giant viruses employ to ensure high viral fitness in nonmatching hosts. Moreover, this study emphasizes the need for more high-quality protist genomes. Finally, the amoeba genomes presented in this study set the stage for future experimental studies to better understand how giant viruses interact with different host species.
Collapse
Affiliation(s)
- Anouk Willemsen
- Centre for Microbiology and Environmental Systems Science, Division of Microbial Ecology, University of Vienna, Vienna 1030, Austria
| | - Alejandro Manzano-Marín
- Centre for Microbiology and Environmental Systems Science, Division of Microbial Ecology, University of Vienna, Vienna 1030, Austria
| | - Matthias Horn
- Centre for Microbiology and Environmental Systems Science, Division of Microbial Ecology, University of Vienna, Vienna 1030, Austria
| |
Collapse
|
15
|
Santini S, Lartigue A, Alempic JM, Couté Y, Belmudes L, Brazelton WJ, Lang SQ, Claverie JM, Legendre M, Abergel C. Pacmanvirus isolated from the Lost City hydrothermal field extends the concept of transpoviron beyond the family Mimiviridae. THE ISME JOURNAL 2025; 19:wraf002. [PMID: 39789911 PMCID: PMC11788076 DOI: 10.1093/ismejo/wraf002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/12/2024] [Revised: 11/29/2024] [Accepted: 01/08/2025] [Indexed: 01/12/2025]
Abstract
The microbial sampling of submarine hydrothermal vents remains challenging, with even fewer studies focused on viruses. Here we report what is to our knowledge the first isolation of a eukaryotic virus from the Lost City hydrothermal field, by co-culture with the laboratory host Acanthamoeba castellanii. This virus, named pacmanvirus lostcity, is closely related to previously isolated pacmanviruses (strains A23 and S19), clustering in a divergent clade within the long-established family Asfarviridae. The icosahedral particles of this virus are 200 nm in diameter, with an electron-dense core surrounded by an inner membrane. The viral genome of 395 708 bp (33% G + C) has been predicted to encode 473 proteins. However, besides these standard properties, pacmanvirus lostcity was found to be associated with a new type of selfish genetic element, 7 kb in length, whose architecture and gene content are reminiscent of those of transpovirons, hitherto specific to the family Mimiviridae. As in previously described transpovirons, this selfishg genetic element propagates as an episome within its host virus particles and exhibits partial recombination with its genome. In addition, an unrelated episome with a length of 2 kb was also found to be associated with pacmanvirus lostcity. Together, the transpoviron and the 2-kb episome might participate in exchanges between pacmanviruses and other DNA virus families. It remains to be elucidated if the presence of these mobile genetic elements is restricted to pacmanviruses or was simply overlooked in other members of the Asfarviridae.
Collapse
Affiliation(s)
- Sébastien Santini
- Information Génomique & Structurale, Unité Mixte de Recherche 7256, Aix-Marseille University, Centre National de la Recherche Scientifique, IMM, IM2B, IOM, 13288, Marseille Cedex 9, France
| | - Audrey Lartigue
- Information Génomique & Structurale, Unité Mixte de Recherche 7256, Aix-Marseille University, Centre National de la Recherche Scientifique, IMM, IM2B, IOM, 13288, Marseille Cedex 9, France
| | - Jean-Marie Alempic
- Information Génomique & Structurale, Unité Mixte de Recherche 7256, Aix-Marseille University, Centre National de la Recherche Scientifique, IMM, IM2B, IOM, 13288, Marseille Cedex 9, France
| | - Yohann Couté
- Univ. Grenoble Alpes, INSERM, CEA, UA13 BGE, CNRS, CEA, FR2048, 38000 Grenoble, France
| | - Lucid Belmudes
- Univ. Grenoble Alpes, INSERM, CEA, UA13 BGE, CNRS, CEA, FR2048, 38000 Grenoble, France
| | - William J Brazelton
- School of Biological Sciences, University of Utah, Salt Lake City, United States
| | - Susan Q Lang
- Department of Geology and Geophysics, Woods Hole Oceanographic Institution, Woods Hole, MA United States
| | - Jean-Michel Claverie
- Information Génomique & Structurale, Unité Mixte de Recherche 7256, Aix-Marseille University, Centre National de la Recherche Scientifique, IMM, IM2B, IOM, 13288, Marseille Cedex 9, France
| | - Matthieu Legendre
- Information Génomique & Structurale, Unité Mixte de Recherche 7256, Aix-Marseille University, Centre National de la Recherche Scientifique, IMM, IM2B, IOM, 13288, Marseille Cedex 9, France
| | - Chantal Abergel
- Information Génomique & Structurale, Unité Mixte de Recherche 7256, Aix-Marseille University, Centre National de la Recherche Scientifique, IMM, IM2B, IOM, 13288, Marseille Cedex 9, France
| |
Collapse
|
16
|
Rodriguez-Valera F, Bellas C. How Viruses Shape Microbial Plankton Microdiversity. ANNUAL REVIEW OF MARINE SCIENCE 2025; 17:561-576. [PMID: 38950433 DOI: 10.1146/annurev-marine-040623-090847] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/03/2024]
Abstract
One major conundrum of modern microbiology is the large pangenome (gene pool) present in microbes, which is much larger than those found in complex organisms such as humans. Here, we argue that this diversity of gene pools carried by different strains is maintained largely due to the control exercised by viral predation. Viruses maintain a high strain diversity through time that we describe as constant-diversity equilibrium, preventing the hoarding of resources by specific clones. Thus, viruses facilitate the release and degradation of dissolved organic matter in the ocean, which may lead to better ecosystem functioning by linking top-down to bottom-up control. By maintaining this equilibrium, viruses act as a key element of the adaptation of marine microbes to their environment and likely behave as a single evolutionary unit.
Collapse
Affiliation(s)
- Francisco Rodriguez-Valera
- Evolutionary Genomics Group, Departamento de Producción Vegetal y Microbiología, Universidad Miguel Hernández, San Juan de Alicante, Spain;
| | | |
Collapse
|
17
|
Pitot TM, Girard C, Rapp JZ, Somerville V, Culley AI, Vincent WF, Moineau S, Roux S. Viral niche-partitioning: comparative genomics of giant viruses across environmental gradients in a high Arctic freshwater-saltwater lake. ISME COMMUNICATIONS 2025; 5:ycae155. [PMID: 39834781 PMCID: PMC11745019 DOI: 10.1093/ismeco/ycae155] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 05/10/2024] [Revised: 11/20/2024] [Accepted: 12/04/2024] [Indexed: 01/22/2025]
Abstract
Giant viruses (GVs; Nucleocytoviricota) impact the biology and ecology of a wide range of eukaryotic hosts, with implications for global biogeochemical cycles. Here, we investigated GV niche separation in highly stratified Lake A at the northern coast of Ellesmere Island, Nunavut, Canada. This lake is composed of a layer of ice-covered freshwater that overlies saltwater derived from the ancient Arctic Ocean, and it therefore provides a broad gradient of environmental conditions and ecological habitats, each with a distinct protist community and rich assemblages of associated GVs. The upper layer (mixolimnion) had measurable light and oxygen, and contained diverse GVs linked to photosynthetic protists, indicating adaptation to surface biotic and abiotic conditions. In contrast, the saline lower layer (monimolimnion), lacking oxygen and light, hosted GVs associated with predicted heterotrophic protists, some of which are known for a predatory lifestyle, and with several viral genes suggesting adaptation to deep-water anaerobic conditions. Our observations underscore the coupling between physical and chemical gradients, microeukaryotes and their associated GVs in Lake A, and provide insight into the potential for GVs to directly and indirectly impact host metabolism. There were similarities between the genetic composition of GVs and the metabolic processes of their potential hosts, implying co-evolution and niche-adaptation within the lake habitats. Notably, we found a greater presence of viral rhodopsins in deeper water layers, suggesting an evolutionary relationship with potential hosts capable of supplementing their energetic needs to thrive in low energy, anoxic conditions.
Collapse
Affiliation(s)
- Thomas M Pitot
- Département de Biochimie, de Microbiologie et de Bio-informatique, Université Laval, 2325 rue de l’Université, Québec, QC G1V0A6, Canada
- Takuvik International Research Laboratory, Université Laval, 2325 rue de l’Université, Québec, QC G1V0A6, Canada
- Centre d’études nordiques (CEN), Université Laval, 2325 rue de l’Université, Québec, QC G1V0A6, Canada
- Institut de Biologie Intégrative et des Systèmes, Université Laval, 2325 rue de l’Université, Québec, QC G1V0A6, Canada
- Department of Energy - Joint Genome Institute, Lawrence Berkeley National Laboratory, 1 Cyclotron Road, Berkeley, CA 94720, United States
| | - Catherine Girard
- Centre d’études nordiques (CEN), Université Laval, 2325 rue de l’Université, Québec, QC G1V0A6, Canada
- Département des Sciences Fondamentales, Université du Québec à Chicoutimi, 555 Boulevard de l'Université, Chicoutimi, QC G7H 2B1, Canada
| | - Josephine Z Rapp
- Centre d’études nordiques (CEN), Université Laval, 2325 rue de l’Université, Québec, QC G1V0A6, Canada
- Département de Biologie, Université Laval, 1045 Avenue de la Médecine, Québec, QC G1V0A6, Canada
- REV Ocean, Oksenøyveien 10, Lysaker 1327, Norway
| | - Vincent Somerville
- Département de Biochimie, de Microbiologie et de Bio-informatique, Université Laval, 2325 rue de l’Université, Québec, QC G1V0A6, Canada
- Institut de Biologie Intégrative et des Systèmes, Université Laval, 2325 rue de l’Université, Québec, QC G1V0A6, Canada
| | - Alexander I Culley
- Takuvik International Research Laboratory, Université Laval, 2325 rue de l’Université, Québec, QC G1V0A6, Canada
- Centre d’études nordiques (CEN), Université Laval, 2325 rue de l’Université, Québec, QC G1V0A6, Canada
- Pacific Biosciences Research Center, 1800 East-West Road Honolulu, HI 96822, United States
| | - Warwick F Vincent
- Takuvik International Research Laboratory, Université Laval, 2325 rue de l’Université, Québec, QC G1V0A6, Canada
- Centre d’études nordiques (CEN), Université Laval, 2325 rue de l’Université, Québec, QC G1V0A6, Canada
- Institut de Biologie Intégrative et des Systèmes, Université Laval, 2325 rue de l’Université, Québec, QC G1V0A6, Canada
- Département de Biologie, Université Laval, 1045 Avenue de la Médecine, Québec, QC G1V0A6, Canada
| | - Sylvain Moineau
- Département de Biochimie, de Microbiologie et de Bio-informatique, Université Laval, 2325 rue de l’Université, Québec, QC G1V0A6, Canada
- Institut de Biologie Intégrative et des Systèmes, Université Laval, 2325 rue de l’Université, Québec, QC G1V0A6, Canada
| | - Simon Roux
- Department of Energy - Joint Genome Institute, Lawrence Berkeley National Laboratory, 1 Cyclotron Road, Berkeley, CA 94720, United States
| |
Collapse
|
18
|
Pitot TM, Brůna T, Schulz F. Conservative taxonomy and quality assessment of giant virus genomes with GVClass. NPJ VIRUSES 2024; 2:60. [PMID: 40295812 PMCID: PMC11721457 DOI: 10.1038/s44298-024-00069-7] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/03/2024] [Accepted: 11/08/2024] [Indexed: 04/30/2025]
Abstract
Large double-stranded DNA viruses of the phylum Nucleocytoviricota (Giant Viruses; GVs) are the largest known viruses, infecting various eukaryotic hosts, particularly protists and algae. These viruses impact biogeochemical cycles and host genome evolution but are challenging to identify and classify due to their complex genomes. We present GVClass, a tool for identifying giant viruses in sequence data, providing taxonomic assignments, and estimating genome completeness and contamination. GVClass employs optimized gene calling and a conservative approach using consensus single-protein phylogenies for robust taxonomic classification, relying on highly conserved orthologous groups. Benchmarking demonstrates over 90% accuracy at the genus-level and >99% at higher taxonomic ranks. GVClass addresses classification challenges and is available as a standalone tool and integrated into the Integrated Microbial Genomes/Virus database (IMG/VR).
Collapse
Affiliation(s)
- Thomas M Pitot
- Department of Biochemistry, Microbiology and Bioinformatics, Université Laval, 2325 rue de l'Université, Québec, QC, G1V0A6, Canada
- DOE Joint Genome Institute, Lawrence Berkeley National Laboratory, 1 Cyclotron Road, Berkeley, CA, 94720, USA
| | - Tomáš Brůna
- DOE Joint Genome Institute, Lawrence Berkeley National Laboratory, 1 Cyclotron Road, Berkeley, CA, 94720, USA
| | - Frederik Schulz
- DOE Joint Genome Institute, Lawrence Berkeley National Laboratory, 1 Cyclotron Road, Berkeley, CA, 94720, USA.
| |
Collapse
|
19
|
Valentin-Alvarado LE, Shi LD, Appler KE, Crits-Christoph A, De Anda V, Adler BA, Cui ML, Ly L, Leão P, Roberts RJ, Sachdeva R, Baker BJ, Savage DF, Banfield JF. Complete genomes of Asgard archaea reveal diverse integrated and mobile genetic elements. Genome Res 2024; 34:1595-1609. [PMID: 39406503 PMCID: PMC11529989 DOI: 10.1101/gr.279480.124] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2024] [Accepted: 08/27/2024] [Indexed: 11/01/2024]
Abstract
Asgard archaea are of great interest as the progenitors of Eukaryotes, but little is known about the mobile genetic elements (MGEs) that may shape their ongoing evolution. Here, we describe MGEs that replicate in Atabeyarchaeia, a wetland Asgard archaea lineage represented by two complete genomes. We used soil depth-resolved population metagenomic data sets to track 18 MGEs for which genome structures were defined and precise chromosome integration sites could be identified for confident host linkage. Additionally, we identified a complete 20.67 kbp circular plasmid and two family-level groups of viruses linked to Atabeyarchaeia, via CRISPR spacer targeting. Closely related 40 kbp viruses possess a hypervariable genomic region encoding combinations of specific genes for small cysteine-rich proteins structurally similar to restriction-homing endonucleases. One 10.9 kbp integrative conjugative element (ICE) integrates genomically into the Atabeyarchaeum deiterrae-1 chromosome and has a 2.5 kbp circularizable element integrated within it. The 10.9 kbp ICE encodes an expressed Type IIG restriction-modification system with a sequence specificity matching an active methylation motif identified by Pacific Biosciences (PacBio) high-accuracy long-read (HiFi) metagenomic sequencing. Restriction-modification of Atabeyarchaeia differs from that of another coexisting Asgard archaea, Freyarchaeia, which has few identified MGEs but possesses diverse defense mechanisms, including DISARM and Hachiman, not found in Atabeyarchaeia. Overall, defense systems and methylation mechanisms of Asgard archaea likely modulate their interactions with MGEs, and integration/excision and copy number variation of MGEs in turn enable host genetic versatility.
Collapse
Affiliation(s)
- Luis E Valentin-Alvarado
- Innovative Genomics Institute, University of California, Berkeley, California 94720, USA
- Department of Plant and Microbial Biology, University of California, Berkeley, California 94720, USA
| | - Ling-Dong Shi
- Innovative Genomics Institute, University of California, Berkeley, California 94720, USA
| | - Kathryn E Appler
- Department of Marine Science, University of Texas at Austin, Marine Science Institute, Port Aransas, Texas 78373, USA
| | - Alexander Crits-Christoph
- Innovative Genomics Institute, University of California, Berkeley, California 94720, USA
- Department of Plant and Microbial Biology, University of California, Berkeley, California 94720, USA
| | - Valerie De Anda
- Department of Marine Science, University of Texas at Austin, Marine Science Institute, Port Aransas, Texas 78373, USA
- Department of Integrative Biology, University of Texas at Austin, Austin, Texas 78712, USA
| | - Benjamin A Adler
- Innovative Genomics Institute, University of California, Berkeley, California 94720, USA
| | - Michael L Cui
- Innovative Genomics Institute, University of California, Berkeley, California 94720, USA
| | - Lynn Ly
- Oxford Nanopore Technologies Incorporated, New York, New York 10013, USA
| | - Pedro Leão
- Department of Marine Science, University of Texas at Austin, Marine Science Institute, Port Aransas, Texas 78373, USA
| | | | - Rohan Sachdeva
- Innovative Genomics Institute, University of California, Berkeley, California 94720, USA
| | - Brett J Baker
- Department of Marine Science, University of Texas at Austin, Marine Science Institute, Port Aransas, Texas 78373, USA
- Department of Integrative Biology, University of Texas at Austin, Austin, Texas 78712, USA
| | - David F Savage
- Innovative Genomics Institute, University of California, Berkeley, California 94720, USA
- Howard Hughes Medical Institute, University of California, Berkeley, California 94720, USA
- Department of Molecular and Cell Biology, University of California, Berkeley, California 94720, USA
| | - Jillian F Banfield
- Innovative Genomics Institute, University of California, Berkeley, California 94720, USA;
- Department of Integrative Biology, University of Texas at Austin, Austin, Texas 78712, USA
- Earth and Planetary Science, University of California, Berkeley, California 94720, USA
- Department of Microbiology, Biomedicine Discovery Institute, Monash University, Victoria 3168, Australia
| |
Collapse
|
20
|
Piedade GJ, Schön ME, Lood C, Fofanov MV, Wesdorp EM, Biggs TEG, Wu L, Bolhuis H, Fischer MG, Yutin N, Dutilh BE, Brussaard CPD. Seasonal dynamics and diversity of Antarctic marine viruses reveal a novel viral seascape. Nat Commun 2024; 15:9192. [PMID: 39448562 PMCID: PMC11502894 DOI: 10.1038/s41467-024-53317-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2024] [Accepted: 10/04/2024] [Indexed: 10/26/2024] Open
Abstract
The Southern Ocean microbial ecosystem, with its pronounced seasonal shifts, is vulnerable to the impacts of climate change. Since viruses are key modulators of microbial abundance, diversity, and evolution, we need a better understanding of the effects of seasonality on the viruses in this region. Our comprehensive exploration of DNA viral diversity in the Southern Ocean reveals a unique and largely uncharted viral landscape, of which 75% was previously unidentified in other oceanic areas. We uncover novel viral taxa at high taxonomic ranks, expanding our understanding of crassphage, polinton-like virus, and virophage diversity. Nucleocytoviricota viruses represent an abundant and diverse group of Antarctic viruses, highlighting their potential as important regulators of phytoplankton population dynamics. Our temporal analysis reveals complex seasonal patterns in marine viral communities (bacteriophages, eukaryotic viruses) which underscores the apparent interactions with their microbial hosts, whilst deepening our understanding of their roles in the world's most sensitive and rapidly changing ecosystem.
Collapse
Affiliation(s)
- Gonçalo J Piedade
- Department of Marine Microbiology and Biogeochemistry, NIOZ Royal Netherlands Institute for Sea Research, P.O. Box 59, 1790 AB, Den Burg, Texel, The Netherlands.
- Department of Freshwater and Marine Ecology, Institute for Biodiversity and Ecosystem Dynamics (IBED), University of Amsterdam, PO Box 94240, 1090 GE, Amsterdam, The Netherlands.
| | - Max E Schön
- Max Planck Institute for Medical Research, Department of Biomolecular Mechanisms, 69120, Heidelberg, Germany
| | - Cédric Lood
- Institute of Biodiversity, Faculty of Biological Sciences, Cluster of Excellence Balance of the Microverse, Friedrich-Schiller-University Jena, 07743, Jena, Germany
- Department of Biology, University of Oxford, 11a Mansfield Road, Oxford, OX1 3SZ, UK
| | - Mikhail V Fofanov
- Institute of Biodiversity, Faculty of Biological Sciences, Cluster of Excellence Balance of the Microverse, Friedrich-Schiller-University Jena, 07743, Jena, Germany
- Theoretical Biology and Bioinformatics, Science4Life, Utrecht University, Padualaan 8, 3584 CH, Utrecht, the Netherlands
| | - Ella M Wesdorp
- Department of Marine Microbiology and Biogeochemistry, NIOZ Royal Netherlands Institute for Sea Research, P.O. Box 59, 1790 AB, Den Burg, Texel, The Netherlands
| | - Tristan E G Biggs
- Department of Marine Microbiology and Biogeochemistry, NIOZ Royal Netherlands Institute for Sea Research, P.O. Box 59, 1790 AB, Den Burg, Texel, The Netherlands
| | - Lingyi Wu
- Theoretical Biology and Bioinformatics, Science4Life, Utrecht University, Padualaan 8, 3584 CH, Utrecht, the Netherlands
| | - Henk Bolhuis
- Department of Marine Microbiology and Biogeochemistry, NIOZ Royal Netherlands Institute for Sea Research, P.O. Box 59, 1790 AB, Den Burg, Texel, The Netherlands
| | - Matthias G Fischer
- Max Planck Institute for Medical Research, Department of Biomolecular Mechanisms, 69120, Heidelberg, Germany
| | - Natalya Yutin
- National Center for Biotechnology Information, National Library of Medicine, National Institutes of Health, Bethesda, MD, 20894, USA
| | - Bas E Dutilh
- Institute of Biodiversity, Faculty of Biological Sciences, Cluster of Excellence Balance of the Microverse, Friedrich-Schiller-University Jena, 07743, Jena, Germany
- Theoretical Biology and Bioinformatics, Science4Life, Utrecht University, Padualaan 8, 3584 CH, Utrecht, the Netherlands
| | - Corina P D Brussaard
- Department of Marine Microbiology and Biogeochemistry, NIOZ Royal Netherlands Institute for Sea Research, P.O. Box 59, 1790 AB, Den Burg, Texel, The Netherlands.
- Department of Freshwater and Marine Ecology, Institute for Biodiversity and Ecosystem Dynamics (IBED), University of Amsterdam, PO Box 94240, 1090 GE, Amsterdam, The Netherlands.
| |
Collapse
|
21
|
Thomy J, Schvarcz CR, McBeain KA, Edwards KF, Steward GF. Eukaryotic viruses encode the ribosomal protein eL40. NPJ VIRUSES 2024; 2:51. [PMID: 39464202 PMCID: PMC11499249 DOI: 10.1038/s44298-024-00060-2] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/13/2024] [Accepted: 09/20/2024] [Indexed: 10/29/2024]
Abstract
Viruses in the phylum Nucleocytoviricota are large, complex and have an exceptionally diverse metabolic repertoire. Some encode hundreds of products involved in the translation of mRNA into protein, but none was known to encode any of the proteins in ribosomes, the central engines of translation. With the discovery of the eL40 gene in FloV-SA2, we report the first example of a eukaryotic virus encoding a ribosomal protein and show that this gene is also present and expressed in other uncultivated marine giant viruses. FloV-SA2 also encodes a "group II" viral rhodopsin, a viral light-activated protein of unknown function previously only reported in metagenomes. FloV-SA2 is thus a valuable model system for investigating new mechanisms by which viruses manipulate eukaryotic cell metabolism.
Collapse
Affiliation(s)
- Julie Thomy
- Daniel K. Inouye Center for Microbial Oceanography: Research and Education, School of Ocean and Earth Science and Technology (SOEST), University of Hawaiʻi at Mānoa, Honolulu, HI USA
- Department of Oceanography, School of Ocean and Earth Science and Technology (SOEST), University of Hawaiʻi at Mānoa, Honolulu, HI USA
| | - Christopher R. Schvarcz
- Daniel K. Inouye Center for Microbial Oceanography: Research and Education, School of Ocean and Earth Science and Technology (SOEST), University of Hawaiʻi at Mānoa, Honolulu, HI USA
- Department of Oceanography, School of Ocean and Earth Science and Technology (SOEST), University of Hawaiʻi at Mānoa, Honolulu, HI USA
| | - Kelsey A. McBeain
- Daniel K. Inouye Center for Microbial Oceanography: Research and Education, School of Ocean and Earth Science and Technology (SOEST), University of Hawaiʻi at Mānoa, Honolulu, HI USA
- Department of Oceanography, School of Ocean and Earth Science and Technology (SOEST), University of Hawaiʻi at Mānoa, Honolulu, HI USA
| | - Kyle F. Edwards
- Department of Oceanography, School of Ocean and Earth Science and Technology (SOEST), University of Hawaiʻi at Mānoa, Honolulu, HI USA
| | - Grieg F. Steward
- Daniel K. Inouye Center for Microbial Oceanography: Research and Education, School of Ocean and Earth Science and Technology (SOEST), University of Hawaiʻi at Mānoa, Honolulu, HI USA
- Department of Oceanography, School of Ocean and Earth Science and Technology (SOEST), University of Hawaiʻi at Mānoa, Honolulu, HI USA
| |
Collapse
|
22
|
Oppermann J, Rozenberg A, Fabrin T, González-Cabrera C, Parker R, Béjà O, Prigge M, Hegemann P. Robust optogenetic inhibition with red-light-sensitive anion-conducting channelrhodopsins. eLife 2024; 12:RP90100. [PMID: 39401075 PMCID: PMC11473104 DOI: 10.7554/elife.90100] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/15/2024] Open
Abstract
Channelrhodopsins (ChRs) are light-gated ion channels widely used to optically activate or silence selected electrogenic cells, such as individual brain neurons. Here, we describe identifying and characterizing a set of anion-conducting ChRs (ACRs) from diverse taxa and representing various branches of the ChR phylogenetic tree. The Mantoniella squamata ACR (MsACR1) showed high sensitivity to yellow-green light (λmax at 555 nm) and was further engineered for optogenetic applications. A single amino-acid substitution that mimicked red-light-sensitive rhodopsins like Chrimson shifted the photosensitivity 20 nm toward red light and accelerated photocurrent kinetics. Hence, it was named red and accelerated ACR, raACR. Both wild-type and mutant are capable optical silencers at low light intensities in mouse neurons in vitro and in vivo, while raACR offers a higher temporal resolution.
Collapse
Affiliation(s)
- Johannes Oppermann
- Institut für Biologie, Experimentelle Biophysik, Humboldt-Universität zu BerlinBerlinGermany
| | - Andrey Rozenberg
- Faculty of Biology, Technion – Israel Institute of TechnologyHaifaIsrael
| | - Thomaz Fabrin
- Research Group Neuromodulatory Networks, Leibniz Institute for NeurobiologyMagdeburgGermany
| | - Cristian González-Cabrera
- Research Group Neuromodulatory Networks, Leibniz Institute for NeurobiologyMagdeburgGermany
- Aligning Science Across Parkinson's (ASAP) Collaborative Research NetworkChevy ChaseUnited States
| | - Rafael Parker
- Research Group Neuromodulatory Networks, Leibniz Institute for NeurobiologyMagdeburgGermany
- Aligning Science Across Parkinson's (ASAP) Collaborative Research NetworkChevy ChaseUnited States
| | - Oded Béjà
- Faculty of Biology, Technion – Israel Institute of TechnologyHaifaIsrael
| | - Matthias Prigge
- Research Group Neuromodulatory Networks, Leibniz Institute for NeurobiologyMagdeburgGermany
- Aligning Science Across Parkinson's (ASAP) Collaborative Research NetworkChevy ChaseUnited States
- Center for Behavioral Brain Sciences, CBBSMagdeburgGermany
| | - Peter Hegemann
- Institut für Biologie, Experimentelle Biophysik, Humboldt-Universität zu BerlinBerlinGermany
| |
Collapse
|
23
|
Bessenay A, Bisio H, Belmudes L, Couté Y, Bertaux L, Claverie JM, Abergel C, Jeudy S, Legendre M. Complex transcriptional regulations of a hyperparasitic quadripartite system in giant viruses infecting protists. Nat Commun 2024; 15:8608. [PMID: 39384766 PMCID: PMC11464507 DOI: 10.1038/s41467-024-52906-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2024] [Accepted: 09/25/2024] [Indexed: 10/11/2024] Open
Abstract
Hyperparasitism is a common pattern in nature that is not limited to cellular organisms. Giant viruses infecting protists can be hyperparasitized by smaller ones named virophages. In addition, both may carry episomal DNA molecules known as transpovirons in their particles. They all share transcriptional regulatory elements that dictate the expression of their genes within viral factories built by giant viruses in the host cytoplasm. This suggests the existence of interactions between their respective transcriptional networks. Here we investigated Acanthamoeba castellanii cells infected by a giant virus (megavirus chilensis), and coinfected with a virophage (zamilon vitis) and/or a transpoviron (megavirus vitis transpoviron). Infectious cycles were monitored through time-course RNA sequencing to decipher the transcriptional program of each partner and its impact on the gene expression of the others. We found highly diverse transcriptional responses. While the giant virus drastically reshaped the host cell transcriptome, the transpoviron had no effect on the gene expression of any of the players. In contrast, the virophage strongly modified the giant virus gene expression, albeit transiently, without altering the protein composition of mature viral particles. The virophage also induced the overexpression of transpoviron genes, likely through the indirect upregulation of giant virus-encoded transcription factors. Together, these analyses document the intricated transcriptionally regulated networks taking place in the infected cell.
Collapse
Affiliation(s)
- Alexandra Bessenay
- Aix-Marseille University, Centre National de la Recherche Scientifique, Information Génomique & Structurale (IGS), Unité Mixte de Recherche 7256 (Institut de Microbiologie de la Méditerranée, FR3479), IM2B, IOM, Marseille, Cedex 9, France
| | - Hugo Bisio
- Aix-Marseille University, Centre National de la Recherche Scientifique, Information Génomique & Structurale (IGS), Unité Mixte de Recherche 7256 (Institut de Microbiologie de la Méditerranée, FR3479), IM2B, IOM, Marseille, Cedex 9, France
| | - Lucid Belmudes
- Univ. Grenoble Alpes, INSERM, CEA, UA13 BGE, CNRS, CEA, FR2048, Grenoble, France
| | - Yohann Couté
- Univ. Grenoble Alpes, INSERM, CEA, UA13 BGE, CNRS, CEA, FR2048, Grenoble, France
| | - Lionel Bertaux
- Aix-Marseille University, Centre National de la Recherche Scientifique, Information Génomique & Structurale (IGS), Unité Mixte de Recherche 7256 (Institut de Microbiologie de la Méditerranée, FR3479), IM2B, IOM, Marseille, Cedex 9, France
- Aix-Marseille University, Centre National de la Recherche Scientifique, Laboratoire de Chimie Bactérienne (LCB), Unité Mixte de Recherche 7283 (Institut de Microbiologie de la Méditerranée, FR3479), IM2B, Marseille, France
| | - Jean-Michel Claverie
- Aix-Marseille University, Centre National de la Recherche Scientifique, Information Génomique & Structurale (IGS), Unité Mixte de Recherche 7256 (Institut de Microbiologie de la Méditerranée, FR3479), IM2B, IOM, Marseille, Cedex 9, France
| | - Chantal Abergel
- Aix-Marseille University, Centre National de la Recherche Scientifique, Information Génomique & Structurale (IGS), Unité Mixte de Recherche 7256 (Institut de Microbiologie de la Méditerranée, FR3479), IM2B, IOM, Marseille, Cedex 9, France
| | - Sandra Jeudy
- Aix-Marseille University, Centre National de la Recherche Scientifique, Information Génomique & Structurale (IGS), Unité Mixte de Recherche 7256 (Institut de Microbiologie de la Méditerranée, FR3479), IM2B, IOM, Marseille, Cedex 9, France.
| | - Matthieu Legendre
- Aix-Marseille University, Centre National de la Recherche Scientifique, Information Génomique & Structurale (IGS), Unité Mixte de Recherche 7256 (Institut de Microbiologie de la Méditerranée, FR3479), IM2B, IOM, Marseille, Cedex 9, France.
| |
Collapse
|
24
|
Zhang Q, Ji XM, Wang X, Wang W, Xu X, Zhang Q, Xing D, Ren N, Lee DJ, Chen C. Differentiation of the Anammox core microbiome: Unraveling the evolutionary impetus of scalable gene flow. WATER RESEARCH 2024; 268:122580. [PMID: 39383807 DOI: 10.1016/j.watres.2024.122580] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/19/2024] [Revised: 09/27/2024] [Accepted: 10/04/2024] [Indexed: 10/11/2024]
Abstract
Anaerobic ammonium oxidation bacteria (AAOB), distinguished by their unique autotrophic nitrogen metabolism, hold pivotal positions in the global nitrogen cycle and environmental biotechnologies. However, the ecophysiology and evolution of AAOB remain poorly understood, attributed to the absence of monocultures. Hence, a comprehensive elucidation of the AAOB-dominated core microbiome, anammox core, is imperative to further completing the theory of engineered nitrogen removal and ecological roles of anammox. Performing taxonomic and phylogenetic analyses on collected genome repertoires, we show here that Candidatus Brocadia and Candidatus Kuenenia possesses a more compact core than Candidatus Jettenia, which partly explains why the latter has a less common ecological presence. Evidence of gene flow is particularly striking in functions related to biosynthesis and oxygen detoxification, underscoring the evolutionary forces driving lineage and core differentiation. Furthermore, CRISPR spacer traceback of the AAOB metagenome-assembled genomes (MAGs) reveals a series of genetic traces for the concealed phages. By reconceptualizing the functional divergence of AAOB with the historical role of phages, we ultimately propose a coevolutionary framework to understand the evolutionary trajectory of anammox microecology. The discoveries provided in this study offer new insights into understanding the evolution of AAOB and the ecology of anammox.
Collapse
Affiliation(s)
- Quan Zhang
- State Key Laboratory of Urban Water Resource and Environment, School of Environment, Harbin Institute of Technology, Harbin 150090, PR China
| | - Xiao-Ming Ji
- College of Resources and Environmental Sciences, Nanjing Agricultural University, Nanjing 210095, PR China
| | - Xueting Wang
- State Key Laboratory of Urban Water Resource and Environment, School of Environment, Harbin Institute of Technology, Harbin 150090, PR China
| | - Wei Wang
- State Key Laboratory of Urban Water Resource and Environment, School of Environment, Harbin Institute of Technology, Harbin 150090, PR China
| | - Xijun Xu
- State Key Laboratory of Urban Water Resource and Environment, School of Environment, Harbin Institute of Technology, Harbin 150090, PR China
| | - Qi Zhang
- College of Resources and Environmental Sciences, Nanjing Agricultural University, Nanjing 210095, PR China; College of Energy and Environment, Southeast University, Nanjing 210096, PR China
| | - Defeng Xing
- State Key Laboratory of Urban Water Resource and Environment, School of Environment, Harbin Institute of Technology, Harbin 150090, PR China
| | - Nanqi Ren
- State Key Laboratory of Urban Water Resource and Environment, School of Environment, Harbin Institute of Technology, Harbin 150090, PR China
| | - Duu-Jong Lee
- Department of Mechanical Engineering, City University of Hong Kong, Tat Chee Avenue, Kowloon, Hong Kong; Department of Chemical Engineering and Materials Science, Yuan Ze University, Chung-li 32003, Taiwan
| | - Chuan Chen
- State Key Laboratory of Urban Water Resource and Environment, School of Environment, Harbin Institute of Technology, Harbin 150090, PR China.
| |
Collapse
|
25
|
Liao H, Liu C, Zhou S, Liu C, Eldridge DJ, Ai C, Wilhelm SW, Singh BK, Liang X, Radosevich M, Yang QE, Tang X, Wei Z, Friman VP, Gillings M, Delgado-Baquerizo M, Zhu YG. Prophage-encoded antibiotic resistance genes are enriched in human-impacted environments. Nat Commun 2024; 15:8315. [PMID: 39333115 PMCID: PMC11437078 DOI: 10.1038/s41467-024-52450-y] [Citation(s) in RCA: 13] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2023] [Accepted: 09/07/2024] [Indexed: 09/29/2024] Open
Abstract
The spread of antibiotic resistance genes (ARGs) poses a substantial threat to human health. Phage-mediated transduction could exacerbate ARG transmission. While several case studies exist, it is yet unclear to what extent phages encode and mobilize ARGs at the global scale and whether human impacts play a role in this across different habitats. Here, we combine 38,605 bacterial genomes, 1432 metagenomes, and 1186 metatranscriptomes across 12 contrasting habitats to explore the distribution of prophages and their cargo ARGs in natural and human-impacted environments. Worldwide, we observe a significant increase in the abundance, diversity, and activity of prophage-encoded ARGs in human-impacted habitats linked with relatively higher risk of past antibiotic exposure. This effect was driven by phage-encoded cargo ARGs that could be mobilized to provide increased resistance in heterologous E. coli host for a subset of analyzed strains. Our findings suggest that human activities have altered bacteria-phage interactions, enriching ARGs in prophages and making ARGs more mobile across habitats globally.
Collapse
Affiliation(s)
- Hanpeng Liao
- Fujian Provincial Key Laboratory of Soil Environmental Health and Regulation, College of Resources and Environment, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Chen Liu
- Fujian Provincial Key Laboratory of Soil Environmental Health and Regulation, College of Resources and Environment, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Shungui Zhou
- Fujian Provincial Key Laboratory of Soil Environmental Health and Regulation, College of Resources and Environment, Fujian Agriculture and Forestry University, Fuzhou, China.
| | - Chunqin Liu
- Fujian Provincial Key Laboratory of Soil Environmental Health and Regulation, College of Resources and Environment, Fujian Agriculture and Forestry University, Fuzhou, China
| | - David J Eldridge
- Centre for Ecosystem Science, School of Biological, Earth and Environmental Sciences, University of New South Wales, Sydney, NSW, Australia
| | - Chaofan Ai
- Fujian Provincial Key Laboratory of Soil Environmental Health and Regulation, College of Resources and Environment, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Steven W Wilhelm
- Department of Microbiology, The University of Tennessee, Knoxville, TN, USA
| | - Brajesh K Singh
- Global Centre for Land-Based Innovation, Western Sydney University, Penrith, NSW, Australia
| | - Xiaolong Liang
- Key Laboratory of Pollution Ecology and Environmental Engineering, Institute of Applied Ecology, Chinese Academy of Sciences, Shenyang, Liaoning Province, China
| | - Mark Radosevich
- Department of Biosystems Engineering and Soil Science, The University of Tennessee, Knoxville, TN, USA
| | - Qiu-E Yang
- Fujian Provincial Key Laboratory of Soil Environmental Health and Regulation, College of Resources and Environment, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Xiang Tang
- Fujian Provincial Key Laboratory of Soil Environmental Health and Regulation, College of Resources and Environment, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Zhong Wei
- Jiangsu Provincial Key Lab of Solid Organic Waste Utilization, Nanjing Agricultural University, Nanjing, Jiangsu, China
| | | | - Michael Gillings
- ARC Centre of Excellence in Synthetic Biology, Macquarie University, Sydney, NSW, Australia
| | - Manuel Delgado-Baquerizo
- Laboratorio de Biodiversidad y Funcionamiento Ecosistémico, Instituto de Recursos Naturales y Agrobiología de Sevilla (IRNAS), Consejo Superior de Investigaciones Científicas, Seville, Spain.
| | - Yong-Guan Zhu
- State Key Laboratory of Urban and Regional Ecology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, China.
| |
Collapse
|
26
|
Eren AM, Banfield JF. Modern microbiology: Embracing complexity through integration across scales. Cell 2024; 187:5151-5170. [PMID: 39303684 PMCID: PMC11450119 DOI: 10.1016/j.cell.2024.08.028] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2024] [Revised: 08/14/2024] [Accepted: 08/14/2024] [Indexed: 09/22/2024]
Abstract
Microbes were the only form of life on Earth for most of its history, and they still account for the vast majority of life's diversity. They convert rocks to soil, produce much of the oxygen we breathe, remediate our sewage, and sustain agriculture. Microbes are vital to planetary health as they maintain biogeochemical cycles that produce and consume major greenhouse gases and support large food webs. Modern microbiologists analyze nucleic acids, proteins, and metabolites; leverage sophisticated genetic tools, software, and bioinformatic algorithms; and process and integrate complex and heterogeneous datasets so that microbial systems may be harnessed to address contemporary challenges in health, the environment, and basic science. Here, we consider an inevitably incomplete list of emergent themes in our discipline and highlight those that we recognize as the archetypes of its modern era that aim to address the most pressing problems of the 21st century.
Collapse
Affiliation(s)
- A Murat Eren
- Helmholtz Institute for Functional Marine Biodiversity, 26129 Oldenburg, Germany; Alfred Wegener Institute, Helmholtz Centre for Polar and Marine Research, Bremerhaven, Germany; Institute for Chemistry and Biology of the Marine Environment, University of Oldenburg, Oldenburg, Germany; Marine Biological Laboratory, Woods Hole, MA, USA; Max Planck Institute for Marine Microbiology, Bremen, Germany.
| | - Jillian F Banfield
- Department of Earth and Planetary Sciences, University of California, Berkeley, Berkeley, CA, USA; Earth and Environmental Sciences, Lawrence Berkeley National Laboratory, Berkeley, CA, USA; Innovative Genomics Institute, University of California, Berkeley, Berkeley, CA, USA; Biomedicine Discovery Institute, Monash University, Clayton, VIC, Australia; Department of Environmental Science Policy, and Management, University of California, Berkeley, Berkeley, CA, USA.
| |
Collapse
|
27
|
Chase EE, Truchon AR, Creasey BA, Wilhelm SW. Time of day of infection shapes development of a eukaryotic algal-Nucleocytoviricota virocell. FEMS Microbiol Ecol 2024; 100:fiae123. [PMID: 39271456 PMCID: PMC11451476 DOI: 10.1093/femsec/fiae123] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2024] [Revised: 09/04/2024] [Accepted: 09/12/2024] [Indexed: 09/15/2024] Open
Abstract
Aureococcus anophagefferens forms a model host-virus system with the "giant virus" Kratosvirus quantuckense. Studies to define its ribocell (uninfected) and virocell (virus-infected) forms are needed as these states co-occur during algal blooms. Previously, a link between light-derived energy, virus particle production, and virocell formation was noted. We explored how the time of day (morning, midday, or late day) of virus-host contact shaped virocell ontogeny. In parallel, we explored the dependence on light-derived energy in this mixotrophic plankter by inhibiting photosystem II, testing the role of heterotrophic energy in infection dynamics. Using flow cytometry and photochemical assessments, we examined the physiology of infected cells and controls, and estimated virus particle production. We observed differences between ribocell and virocell response to treatments, including reductions in virus particle production during reduced light duration) and PSII inhibition (i.e. "forced heterotrophy"). This work demonstrates the importance of light in shaping the fate of infected cells and provides insight into factors that constrain in situ blooms. Most significantly, we show that time of the solar day when a virus and host come into contact influences viral particle production, and therefore bloom dynamics; a factor that needs to be considered in bloom modeling work.
Collapse
Affiliation(s)
- Emily E Chase
- Department of Microbiology, University of Tennessee, Knoxville, TN 37996, United States
| | - Alexander R Truchon
- Department of Microbiology, University of Tennessee, Knoxville, TN 37996, United States
| | - Brooke A Creasey
- Department of Microbiology, University of Tennessee, Knoxville, TN 37996, United States
| | - Steven W Wilhelm
- Department of Microbiology, University of Tennessee, Knoxville, TN 37996, United States
| |
Collapse
|
28
|
Yi X, Liang JL, Wen P, Jia P, Feng SW, Liu SY, Zhuang YY, Guo YQ, Lu JL, Zhong SJ, Liao B, Wang Z, Shu WS, Li JT. Giant viruses as reservoirs of antibiotic resistance genes. Nat Commun 2024; 15:7536. [PMID: 39214976 PMCID: PMC11364636 DOI: 10.1038/s41467-024-51936-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2024] [Accepted: 08/21/2024] [Indexed: 09/04/2024] Open
Abstract
Nucleocytoplasmic large DNA viruses (NCLDVs; also called giant viruses), constituting the phylum Nucleocytoviricota, can infect a wide range of eukaryotes and exchange genetic material with not only their hosts but also prokaryotes and phages. A few NCLDVs were reported to encode genes conferring resistance to beta‑lactam, trimethoprim, or pyrimethamine, suggesting that they are potential vehicles for the transmission of antibiotic resistance genes (ARGs) in the biome. However, the incidence of ARGs across the phylum Nucleocytoviricota, their evolutionary characteristics, their dissemination potential, and their association with virulence factors remain unexplored. Here, we systematically investigated ARGs of 1416 NCLDV genomes including those of almost all currently available cultured isolates and high-quality metagenome-assembled genomes from diverse habitats across the globe. We reveal that 39.5% of them carry ARGs, which is approximately 37 times higher than that for phage genomes. A total of 12 ARG types are encoded by NCLDVs. Phylogenies of the three most abundant NCLDV-encoded ARGs hint that NCLDVs acquire ARGs from not only eukaryotes but also prokaryotes and phages. Two NCLDV-encoded trimethoprim resistance genes are demonstrated to confer trimethoprim resistance in Escherichia coli. The presence of ARGs in NCLDV genomes is significantly correlated with mobile genetic elements and virulence factors.
Collapse
Affiliation(s)
- Xinzhu Yi
- Institute of Ecological Science, Guangzhou Key Laboratory of Subtropical Biodiversity and Biomonitoring, Guangdong Provincial Key Laboratory of Biotechnology for Plant Development, School of Life Sciences, South China Normal University, Guangzhou, PR China
| | - Jie-Liang Liang
- Institute of Ecological Science, Guangzhou Key Laboratory of Subtropical Biodiversity and Biomonitoring, Guangdong Provincial Key Laboratory of Biotechnology for Plant Development, School of Life Sciences, South China Normal University, Guangzhou, PR China
| | - Ping Wen
- Institute of Ecological Science, Guangzhou Key Laboratory of Subtropical Biodiversity and Biomonitoring, Guangdong Provincial Key Laboratory of Biotechnology for Plant Development, School of Life Sciences, South China Normal University, Guangzhou, PR China
| | - Pu Jia
- Institute of Ecological Science, Guangzhou Key Laboratory of Subtropical Biodiversity and Biomonitoring, Guangdong Provincial Key Laboratory of Biotechnology for Plant Development, School of Life Sciences, South China Normal University, Guangzhou, PR China
| | - Shi-Wei Feng
- Institute of Ecological Science, Guangzhou Key Laboratory of Subtropical Biodiversity and Biomonitoring, Guangdong Provincial Key Laboratory of Biotechnology for Plant Development, School of Life Sciences, South China Normal University, Guangzhou, PR China
| | - Shen-Yan Liu
- Institute of Ecological Science, Guangzhou Key Laboratory of Subtropical Biodiversity and Biomonitoring, Guangdong Provincial Key Laboratory of Biotechnology for Plant Development, School of Life Sciences, South China Normal University, Guangzhou, PR China
| | - Yuan-Yue Zhuang
- Institute of Ecological Science, Guangzhou Key Laboratory of Subtropical Biodiversity and Biomonitoring, Guangdong Provincial Key Laboratory of Biotechnology for Plant Development, School of Life Sciences, South China Normal University, Guangzhou, PR China
| | - Yu-Qian Guo
- Institute of Ecological Science, Guangzhou Key Laboratory of Subtropical Biodiversity and Biomonitoring, Guangdong Provincial Key Laboratory of Biotechnology for Plant Development, School of Life Sciences, South China Normal University, Guangzhou, PR China
| | - Jing-Li Lu
- Institute of Ecological Science, Guangzhou Key Laboratory of Subtropical Biodiversity and Biomonitoring, Guangdong Provincial Key Laboratory of Biotechnology for Plant Development, School of Life Sciences, South China Normal University, Guangzhou, PR China
| | - Sheng-Ji Zhong
- Institute of Ecological Science, Guangzhou Key Laboratory of Subtropical Biodiversity and Biomonitoring, Guangdong Provincial Key Laboratory of Biotechnology for Plant Development, School of Life Sciences, South China Normal University, Guangzhou, PR China
| | - Bin Liao
- School of Life Sciences, Sun Yat-sen University, Guangzhou, PR China
| | - Zhang Wang
- Institute of Ecological Science, Guangzhou Key Laboratory of Subtropical Biodiversity and Biomonitoring, Guangdong Provincial Key Laboratory of Biotechnology for Plant Development, School of Life Sciences, South China Normal University, Guangzhou, PR China
| | - Wen-Sheng Shu
- Institute of Ecological Science, Guangzhou Key Laboratory of Subtropical Biodiversity and Biomonitoring, Guangdong Provincial Key Laboratory of Biotechnology for Plant Development, School of Life Sciences, South China Normal University, Guangzhou, PR China
| | - Jin-Tian Li
- Institute of Ecological Science, Guangzhou Key Laboratory of Subtropical Biodiversity and Biomonitoring, Guangdong Provincial Key Laboratory of Biotechnology for Plant Development, School of Life Sciences, South China Normal University, Guangzhou, PR China.
| |
Collapse
|
29
|
Tian F, Wainaina JM, Howard-Varona C, Domínguez-Huerta G, Bolduc B, Gazitúa MC, Smith G, Gittrich MR, Zablocki O, Cronin DR, Eveillard D, Hallam SJ, Sullivan MB. Prokaryotic-virus-encoded auxiliary metabolic genes throughout the global oceans. MICROBIOME 2024; 12:159. [PMID: 39198891 PMCID: PMC11360552 DOI: 10.1186/s40168-024-01876-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/06/2024] [Accepted: 07/16/2024] [Indexed: 09/01/2024]
Abstract
BACKGROUND Prokaryotic microbes have impacted marine biogeochemical cycles for billions of years. Viruses also impact these cycles, through lysis, horizontal gene transfer, and encoding and expressing genes that contribute to metabolic reprogramming of prokaryotic cells. While this impact is difficult to quantify in nature, we hypothesized that it can be examined by surveying virus-encoded auxiliary metabolic genes (AMGs) and assessing their ecological context. RESULTS We systematically developed a global ocean AMG catalog by integrating previously described and newly identified AMGs and then placed this catalog into ecological and metabolic contexts relevant to ocean biogeochemistry. From 7.6 terabases of Tara Oceans paired prokaryote- and virus-enriched metagenomic sequence data, we increased known ocean virus populations to 579,904 (up 16%). From these virus populations, we then conservatively identified 86,913 AMGs that grouped into 22,779 sequence-based gene clusters, 7248 (~ 32%) of which were not previously reported. Using our catalog and modeled data from mock communities, we estimate that ~ 19% of ocean virus populations carry at least one AMG. To understand AMGs in their metabolic context, we identified 340 metabolic pathways encoded by ocean microbes and showed that AMGs map to 128 of them. Furthermore, we identified metabolic "hot spots" targeted by virus AMGs, including nine pathways where most steps (≥ 0.75) were AMG-targeted (involved in carbohydrate, amino acid, fatty acid, and nucleotide metabolism), as well as other pathways where virus-encoded AMGs outnumbered cellular homologs (involved in lipid A phosphates, phosphatidylethanolamine, creatine biosynthesis, phosphoribosylamine-glycine ligase, and carbamoyl-phosphate synthase pathways). CONCLUSIONS Together, this systematically curated, global ocean AMG catalog and analyses provide a valuable resource and foundational observations to understand the role of viruses in modulating global ocean metabolisms and their biogeochemical implications. Video Abstract.
Collapse
Affiliation(s)
- Funing Tian
- Department of Microbiology, Ohio State University, Columbus, OH, 43210, USA
- Center of Microbiome Science, Ohio State University, Columbus, OH, 43210, USA
- Department of Medicine, The University of Chicago, Chicago, IL, USA
| | - James M Wainaina
- Department of Microbiology, Ohio State University, Columbus, OH, 43210, USA
- Center of Microbiome Science, Ohio State University, Columbus, OH, 43210, USA
- Biology Department, Woods Hole Oceanographic Institution, Woods Hole, MA, USA
| | - Cristina Howard-Varona
- Department of Microbiology, Ohio State University, Columbus, OH, 43210, USA
- Center of Microbiome Science, Ohio State University, Columbus, OH, 43210, USA
| | - Guillermo Domínguez-Huerta
- Department of Microbiology, Ohio State University, Columbus, OH, 43210, USA
- Center of Microbiome Science, Ohio State University, Columbus, OH, 43210, USA
- EMERGE Biology Integration Institute, Ohio State University, Columbus, OH, 43210, USA
- Centro Oceanográfico de Málaga (IEO-CSIC), Puerto Pesquero S/N, 29640, Fuengirola (Málaga), Spain
| | - Benjamin Bolduc
- Department of Microbiology, Ohio State University, Columbus, OH, 43210, USA
- Center of Microbiome Science, Ohio State University, Columbus, OH, 43210, USA
- EMERGE Biology Integration Institute, Ohio State University, Columbus, OH, 43210, USA
| | | | - Garrett Smith
- Department of Microbiology, Ohio State University, Columbus, OH, 43210, USA
- Center of Microbiome Science, Ohio State University, Columbus, OH, 43210, USA
| | - Marissa R Gittrich
- Department of Microbiology, Ohio State University, Columbus, OH, 43210, USA
- Center of Microbiome Science, Ohio State University, Columbus, OH, 43210, USA
| | - Olivier Zablocki
- Department of Microbiology, Ohio State University, Columbus, OH, 43210, USA
- Center of Microbiome Science, Ohio State University, Columbus, OH, 43210, USA
| | - Dylan R Cronin
- Department of Microbiology, Ohio State University, Columbus, OH, 43210, USA
- Center of Microbiome Science, Ohio State University, Columbus, OH, 43210, USA
- EMERGE Biology Integration Institute, Ohio State University, Columbus, OH, 43210, USA
| | - Damien Eveillard
- Université de Nantes, CNRS, LS2N, Nantes, France
- Research Federation for the Study of Global Ocean Systems Ecology and Evolution, R2022/Tara GO-SEE, Paris, France
| | - Steven J Hallam
- Department of Microbiology & Immunology, University of British Columbia, Vancouver, BC, V6T 1Z1, Canada
- Graduate Program in Bioinformatics, University of British Columbia, Vancouver, BC, V6T 1Z4, Canada
- Genome Science and Technology Program, University of British Columbia, 2329 West Mall, Vancouver, BC, V6T 1Z4, Canada
- Life Sciences Institute, University of British Columbia, Vancouver, BC, V6T 1Z3, Canada
- ECOSCOPE Training Program, University of British Columbia, Vancouver, BC, V6T 1Z3, Canada
| | - Matthew B Sullivan
- Department of Microbiology, Ohio State University, Columbus, OH, 43210, USA.
- Center of Microbiome Science, Ohio State University, Columbus, OH, 43210, USA.
- EMERGE Biology Integration Institute, Ohio State University, Columbus, OH, 43210, USA.
- Department of Civil, Environmental, and Geodetic Engineering, Ohio State University, Columbus, OH, 43210, USA.
| |
Collapse
|
30
|
Laperriere SM, Minch B, Weissman JL, Hou S, Yeh YC, Ignacio-Espinoza JC, Ahlgren NA, Moniruzzaman M, Fuhrman JA. Phylogenetic proximity drives temporal succession of marine giant viruses in a five-year metagenomic time-series. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.08.12.607631. [PMID: 39185240 PMCID: PMC11343133 DOI: 10.1101/2024.08.12.607631] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 08/27/2024]
Abstract
Nucleocytoplasmic Large DNA Viruses (NCLDVs, also called giant viruses) are widespread in marine systems and infect a broad range of microbial eukaryotes (protists). Recent biogeographic work has provided global snapshots of NCLDV diversity and community composition across the world's oceans, yet little information exists about the guiding 'rules' underpinning their community dynamics over time. We leveraged a five-year monthly metagenomic time-series to quantify the community composition of NCLDVs off the coast of Southern California and characterize these populations' temporal dynamics. NCLDVs were dominated by Algavirales (Phycodnaviruses, 59%) and Imitervirales (Mimiviruses, 36%). We identified clusters of NCLDVs with distinct classes of seasonal and non-seasonal temporal dynamics. Overall, NCLDV population abundances were often highly dynamic with a strong seasonal signal. The Imitervirales group had highest relative abundance in the more oligotrophic late summer and fall, while Algavirales did so in winter. Generally, closely related strains had similar temporal dynamics, suggesting that evolutionary history is a key driver of the temporal niche of marine NCLDVs. However, a few closely-related strains had drastically different seasonal dynamics, suggesting that while phylogenetic proximity often indicates ecological similarity, occasionally phenology can shift rapidly, possibly due to host-switching. Finally, we identified distinct functional content and possible host interactions of two major NCLDV orders-including connections of Imitervirales with primary producers like the diatom Chaetoceros and widespread marine grazers like Paraphysomonas and Spirotrichea ciliates. Together, our results reveal key insights on season-specific effect of phylogenetically distinct giant virus communities on marine protist metabolism, biogeochemical fluxes and carbon cycling.
Collapse
Affiliation(s)
- Sarah M. Laperriere
- Department of Biological Sciences, University of Southern California, Los Angeles, California, USA
| | - Benjamin Minch
- Department of Marine Biology and Ecology, Rosenstiel School of Marine, Atmospheric, and Earth Sciences, University of Miami, Miami, FL, USA
| | - JL Weissman
- Department of Biological Sciences, University of Southern California, Los Angeles, California, USA
- Department of Ecology and Evolution, Stony Brook University, Stony Brook, NY, USA
- Institute for Advanced Computational Science, Stony Brook University, Stony Brook, NY, USA
| | - Shengwei Hou
- Department of Biological Sciences, University of Southern California, Los Angeles, California, USA
- Department of Ocean Science and Engineering, Southern University of Science and Technology, Shenzhen 518055, China
| | - Yi-Chun Yeh
- Department of Biological Sciences, University of Southern California, Los Angeles, California, USA
| | | | | | - Mohammad Moniruzzaman
- Department of Marine Biology and Ecology, Rosenstiel School of Marine, Atmospheric, and Earth Sciences, University of Miami, Miami, FL, USA
| | - Jed A. Fuhrman
- Department of Biological Sciences, University of Southern California, Los Angeles, California, USA
| |
Collapse
|
31
|
Wu Z, Liu T, Chen Q, Chen T, Hu J, Sun L, Wang B, Li W, Ni J. Unveiling the unknown viral world in groundwater. Nat Commun 2024; 15:6788. [PMID: 39117653 PMCID: PMC11310336 DOI: 10.1038/s41467-024-51230-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2023] [Accepted: 08/01/2024] [Indexed: 08/10/2024] Open
Abstract
Viruses as the prevailing biological entities are poorly understood in underground realms. Here, we establish the first metagenomic Groundwater Virome Catalogue (GWVC) comprising 280,420 viral species ( ≥ 5 kb) detected from 607 monitored wells in seven geo-environmental zones throughout China. In expanding ~10-fold the global portfolio of known groundwater viruses, we uncover over 99% novel viruses and about 95% novel viral clusters. By linking viruses to hosts from 119 prokaryotic phyla, we double the number of microbial phyla known to be virus-infected in groundwater. As keystone ultrasmall symbionts in aquifers, CPR bacteria and DPANN archaea are susceptible to virulent viruses. Certain complete CPR viruses even likely infect non-CPR bacteria, while partial CPR/DPANN viruses harbor cell-surface modification genes that assist symbiont cell adhesion to free-living microbes. This study reveals the unknown viral world and auxiliary metabolism associated with methane, nitrogen, sulfur, and phosphorus cycling in groundwater, and highlights the importance of subsurface virosphere in viral ecology.
Collapse
Affiliation(s)
- Zongzhi Wu
- Eco-environment and Resource Efficiency Research Laboratory, School of Environment and Energy, Peking University Shenzhen Graduate School, Shenzhen, 518055, PR China
- Environmental Microbiome and Innovative Genomics Laboratory, College of Environmental Sciences and Engineering, Peking University, Beijing, 100871, PR China
| | - Tang Liu
- Eco-environment and Resource Efficiency Research Laboratory, School of Environment and Energy, Peking University Shenzhen Graduate School, Shenzhen, 518055, PR China
- College of Chemistry and Environmental Engineering, Shenzhen University, Shenzhen, 518060, PR China
| | - Qian Chen
- Eco-environment and Resource Efficiency Research Laboratory, School of Environment and Energy, Peking University Shenzhen Graduate School, Shenzhen, 518055, PR China
- Environmental Microbiome and Innovative Genomics Laboratory, College of Environmental Sciences and Engineering, Peking University, Beijing, 100871, PR China
| | - Tianyi Chen
- Eco-environment and Resource Efficiency Research Laboratory, School of Environment and Energy, Peking University Shenzhen Graduate School, Shenzhen, 518055, PR China
| | - Jinyun Hu
- Environmental Microbiome and Innovative Genomics Laboratory, College of Environmental Sciences and Engineering, Peking University, Beijing, 100871, PR China
| | - Liyu Sun
- Eco-environment and Resource Efficiency Research Laboratory, School of Environment and Energy, Peking University Shenzhen Graduate School, Shenzhen, 518055, PR China
| | - Bingxue Wang
- Eco-environment and Resource Efficiency Research Laboratory, School of Environment and Energy, Peking University Shenzhen Graduate School, Shenzhen, 518055, PR China
| | - Wenpeng Li
- Center for Groundwater Monitoring, China Institute of Geo-environmental Monitoring, Beijing, 100081, PR China
| | - Jinren Ni
- Eco-environment and Resource Efficiency Research Laboratory, School of Environment and Energy, Peking University Shenzhen Graduate School, Shenzhen, 518055, PR China.
- College of Environmental Sciences and Engineering, Key Laboratory of Water and Sediment Sciences, Ministry of Education, Peking University, Beijing, 100871, PR China.
| |
Collapse
|
32
|
Kijima S, Hikida H, Delmont TO, Gaïa M, Ogata H. Complex Genomes of Early Nucleocytoviruses Revealed by Ancient Origins of Viral Aminoacyl-tRNA Synthetases. Mol Biol Evol 2024; 41:msae149. [PMID: 39099254 PMCID: PMC11304981 DOI: 10.1093/molbev/msae149] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2024] [Revised: 06/27/2024] [Accepted: 07/15/2024] [Indexed: 08/06/2024] Open
Abstract
Aminoacyl-tRNA synthetases (aaRSs), also known as tRNA ligases, are essential enzymes in translation. Owing to their functional essentiality, these enzymes are conserved in all domains of life and used as informative markers to trace the evolutionary history of cellular organisms. Unlike cellular organisms, viruses generally lack aaRSs because of their obligate parasitic nature, but several large and giant DNA viruses in the phylum Nucleocytoviricota encode aaRSs in their genomes. The discovery of viral aaRSs led to the idea that the phylogenetic analysis of aaRSs can shed light on ancient viral evolution. However, conflicting results have been reported from previous phylogenetic studies: one posited that nucleocytoviruses recently acquired their aaRSs from their host eukaryotes, while another hypothesized that the viral aaRSs have ancient origins. Here, we investigated 4,168 nucleocytovirus genomes, including metagenome-assembled genomes (MAGs) derived from large-scale metagenomic studies. In total, we identified 780 viral aaRS sequences in 273 viral genomes. We generated and examined phylogenetic trees of these aaRSs with a large set of cellular sequences to trace evolutionary relationships between viral and cellular aaRSs. The analyses suggest that the origins of some viral aaRSs predate the last common eukaryotic ancestor. Inside viral aaRS clades, we identify intricate evolutionary trajectories of viral aaRSs with horizontal transfers, losses, and displacements. Overall, these results suggest that ancestral nucleocytoviruses already developed complex genomes with an expanded set of aaRSs in the proto-eukaryotic era.
Collapse
Affiliation(s)
- Soichiro Kijima
- Chemical Life Science, Institute for Chemical Research, Kyoto University, Uji, Kyoto 611-0011, Japan
- School of Life Science and Technology, Tokyo Institute of Technology, Meguro, Tokyo 152-8550, Japan
| | - Hiroyuki Hikida
- Chemical Life Science, Institute for Chemical Research, Kyoto University, Uji, Kyoto 611-0011, Japan
| | - Tom O Delmont
- Génomique Métabolique, Genoscope, Institut François Jacob, CEA, CNRS, Univ. Evry, Université Paris-Saclay, 91057 Evry, France
| | - Morgan Gaïa
- Génomique Métabolique, Genoscope, Institut François Jacob, CEA, CNRS, Univ. Evry, Université Paris-Saclay, 91057 Evry, France
| | - Hiroyuki Ogata
- Chemical Life Science, Institute for Chemical Research, Kyoto University, Uji, Kyoto 611-0011, Japan
| |
Collapse
|
33
|
Wu J, Meng L, Gaïa M, Hikida H, Okazaki Y, Endo H, Ogata H. Gene Transfer Among Viruses Substantially Contributes to Gene Gain of Giant Viruses. Mol Biol Evol 2024; 41:msae161. [PMID: 39093595 PMCID: PMC11334073 DOI: 10.1093/molbev/msae161] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2023] [Revised: 07/05/2024] [Accepted: 07/22/2024] [Indexed: 08/04/2024] Open
Abstract
The phylum Nucleocytoviricota comprises a diverse group of double-stranded DNA viruses that display a wide range of gene repertoires. Although these gene repertoires determine the characteristics of individual viruses, the evolutionary processes that have shaped the gene repertoires of extant viruses since their common ancestor are poorly characterized. In this study, we aimed to address this gap in knowledge by using amalgamated likelihood estimation, a probabilistic tree reconciliation method that infers evolutionary scenarios by distinguishing origination, gene duplications, virus-to-virus horizontal gene transfer (vHGT), and gene losses. We analyzed over 4,700 gene families from 195 genomes spanning all known viral orders. The evolutionary reconstruction suggests a history of extensive gene gains and losses during the evolution of these viruses, notably with vHGT contributing to gene gains at a comparable level to duplications and originations. The vHGT frequently occurred between phylogenetically closely related viruses, as well as between distantly related viruses with an overlapping host range. We observed a pattern of massive gene duplications that followed vHGTs for gene families that was potentially related to host range control and virus-host arms race. These results suggest that vHGT represents a previously overlooked, yet important, evolutionary force that integrates the evolutionary paths of multiple viruses and affects shaping of Nucleocytoviricota virus gene repertoires.
Collapse
Affiliation(s)
- Junyi Wu
- Bioinformatics Center, Institute for Chemical Research, Kyoto University, Gokasho, Uji 611-0011, Japan
| | - Lingjie Meng
- Bioinformatics Center, Institute for Chemical Research, Kyoto University, Gokasho, Uji 611-0011, Japan
| | - Morgan Gaïa
- Génomique Métabolique, Genoscope, Institut François Jacob, CEA, CNRS, Univ. Evry, Université Paris-Saclay, Evry F-91057, France
- Research Federation for the Study of Global Ocean Systems Ecology and Evolution, FR2022/Tara GOSEE, Paris F-75016, France
| | - Hiroyuki Hikida
- Bioinformatics Center, Institute for Chemical Research, Kyoto University, Gokasho, Uji 611-0011, Japan
| | - Yusuke Okazaki
- Bioinformatics Center, Institute for Chemical Research, Kyoto University, Gokasho, Uji 611-0011, Japan
| | - Hisashi Endo
- Bioinformatics Center, Institute for Chemical Research, Kyoto University, Gokasho, Uji 611-0011, Japan
| | - Hiroyuki Ogata
- Bioinformatics Center, Institute for Chemical Research, Kyoto University, Gokasho, Uji 611-0011, Japan
| |
Collapse
|
34
|
Camargo AP, Roux S, Schulz F, Babinski M, Xu Y, Hu B, Chain PSG, Nayfach S, Kyrpides NC. Identification of mobile genetic elements with geNomad. Nat Biotechnol 2024; 42:1303-1312. [PMID: 37735266 PMCID: PMC11324519 DOI: 10.1038/s41587-023-01953-y] [Citation(s) in RCA: 207] [Impact Index Per Article: 207.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2023] [Accepted: 08/17/2023] [Indexed: 09/23/2023]
Abstract
Identifying and characterizing mobile genetic elements in sequencing data is essential for understanding their diversity, ecology, biotechnological applications and impact on public health. Here we introduce geNomad, a classification and annotation framework that combines information from gene content and a deep neural network to identify sequences of plasmids and viruses. geNomad uses a dataset of more than 200,000 marker protein profiles to provide functional gene annotation and taxonomic assignment of viral genomes. Using a conditional random field model, geNomad also detects proviruses integrated into host genomes with high precision. In benchmarks, geNomad achieved high classification performance for diverse plasmids and viruses (Matthews correlation coefficient of 77.8% and 95.3%, respectively), substantially outperforming other tools. Leveraging geNomad's speed and scalability, we processed over 2.7 trillion base pairs of sequencing data, leading to the discovery of millions of viruses and plasmids that are available through the IMG/VR and IMG/PR databases. geNomad is available at https://portal.nersc.gov/genomad .
Collapse
Affiliation(s)
- Antonio Pedro Camargo
- DOE Joint Genome Institute, Lawrence Berkeley National Laboratory, Berkeley, CA, USA.
| | - Simon Roux
- DOE Joint Genome Institute, Lawrence Berkeley National Laboratory, Berkeley, CA, USA
| | - Frederik Schulz
- DOE Joint Genome Institute, Lawrence Berkeley National Laboratory, Berkeley, CA, USA
| | - Michal Babinski
- Bioscience Division, Los Alamos National Laboratory, Los Alamos, NM, USA
| | - Yan Xu
- Bioscience Division, Los Alamos National Laboratory, Los Alamos, NM, USA
| | - Bin Hu
- Bioscience Division, Los Alamos National Laboratory, Los Alamos, NM, USA
| | - Patrick S G Chain
- Bioscience Division, Los Alamos National Laboratory, Los Alamos, NM, USA
| | - Stephen Nayfach
- DOE Joint Genome Institute, Lawrence Berkeley National Laboratory, Berkeley, CA, USA
| | - Nikos C Kyrpides
- DOE Joint Genome Institute, Lawrence Berkeley National Laboratory, Berkeley, CA, USA.
| |
Collapse
|
35
|
Wyler E, Lauber C, Manukyan A, Deter A, Quedenau C, Teixeira Alves LG, Wylezich C, Borodina T, Seitz S, Altmüller J, Landthaler M. Pathogen dynamics and discovery of novel viruses and enzymes by deep nucleic acid sequencing of wastewater. ENVIRONMENT INTERNATIONAL 2024; 190:108875. [PMID: 39002331 DOI: 10.1016/j.envint.2024.108875] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/28/2024] [Revised: 07/03/2024] [Accepted: 07/03/2024] [Indexed: 07/15/2024]
Abstract
Wastewater contains an extensive reservoir of genetic information, yet largely unexplored. Here, we analyzed by high-throughput sequencing total nucleic acids extracted from wastewater samples collected during a 17 month-period in Berlin, Germany. By integrating global wastewater datasets and applying a novel computational approach to accurately identify viral strains within sewage RNA-sequencing data, we demonstrated the emergence and global dissemination of a specific astrovirus strain. Astrovirus abundance and sequence variation mirrored temporal and spatial patterns of infection, potentially serving as footprints of specific timeframes and geographical locations. Additionally, we revealed more than 100,000 sequence contigs likely originating from novel viral species, exhibiting distinct profiles in total RNA and DNA datasets and including undescribed bunyaviruses and parvoviruses. Finally, we identified thousands of new CRISPR-associated protein sequences, including Transposase B (TnpB), a class of compact, RNA-guided DNA editing enzymes. Collectively, our findings underscore the potential of high-throughput sequencing of total nucleic acids derived from wastewater for a broad range of applications.
Collapse
Affiliation(s)
- Emanuel Wyler
- Max-Delbrück-Center for Molecular Medicine in the Helmholtz Association (MDC), Berlin Institute for Medical Systems Biology (BIMSB), Berlin, Germany
| | - Chris Lauber
- Institute for Experimental Virology, TWINCORE Centre for Experimental and Clinical Infection Research, A Joint Venture between the Hannover Medical School (MHH) and the Helmholtz Centre for Infection Research (HZI), Hannover, Germany; Cluster of Excellence RESIST (EXC 2155), Hannover Medical School, Hannover, Germany
| | - Artür Manukyan
- Max-Delbrück-Center for Molecular Medicine in the Helmholtz Association (MDC), Berlin Institute for Medical Systems Biology (BIMSB), Berlin, Germany
| | - Aylina Deter
- Max-Delbrück-Center for Molecular Medicine in the Helmholtz Association (MDC), Berlin Institute for Medical Systems Biology (BIMSB), Berlin, Germany
| | - Claudia Quedenau
- Max-Delbrück-Center for Molecular Medicine in the Helmholtz Association (MDC), Berlin Institute for Medical Systems Biology (BIMSB), Berlin, Germany
| | - Luiz Gustavo Teixeira Alves
- Max-Delbrück-Center for Molecular Medicine in the Helmholtz Association (MDC), Berlin Institute for Medical Systems Biology (BIMSB), Berlin, Germany
| | - Claudia Wylezich
- Institute of Diagnostic Virology, Friedrich-Loeffler-Institut, Federal Research Institute for Animal Health, Greifswald-Insel Riems, Germany
| | - Tatiana Borodina
- Max-Delbrück-Center for Molecular Medicine in the Helmholtz Association (MDC), Berlin Institute for Medical Systems Biology (BIMSB), Berlin, Germany
| | - Stefan Seitz
- Division of Virus-Associated Carcinogenesis (F170), German Cancer Research Center (DKFZ), Heidelberg, Germany; Department of Infectious Diseases, Molecular Virology, University of Heidelberg, Heidelberg, Germany
| | - Janine Altmüller
- Max-Delbrück-Center for Molecular Medicine in the Helmholtz Association (MDC), Berlin Institute for Medical Systems Biology (BIMSB), Berlin, Germany; Berlin Institute of Health at Charité, Berlin, Germany
| | - Markus Landthaler
- Max-Delbrück-Center for Molecular Medicine in the Helmholtz Association (MDC), Berlin Institute for Medical Systems Biology (BIMSB), Berlin, Germany; Institut für Biologie, Humboldt-Universität zu Berlin, Berlin, Germany.
| |
Collapse
|
36
|
Romero MF, Krall JB, Nichols PJ, Vantreeck J, Henen MA, Dejardin E, Schulz F, Vicens Q, Vögeli B, Diallo MA. Novel Z-DNA binding domains in giant viruses. J Biol Chem 2024; 300:107504. [PMID: 38944123 PMCID: PMC11298590 DOI: 10.1016/j.jbc.2024.107504] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2023] [Revised: 06/15/2024] [Accepted: 06/18/2024] [Indexed: 07/01/2024] Open
Abstract
Z-nucleic acid structures play vital roles in cellular processes and have implications in innate immunity due to their recognition by Zα domains containing proteins (Z-DNA/Z-RNA binding proteins, ZBPs). Although Zα domains have been identified in six proteins, including viral E3L, ORF112, and I73R, as well as, cellular ADAR1, ZBP1, and PKZ, their prevalence across living organisms remains largely unexplored. In this study, we introduce a computational approach to predict Zα domains, leading to the revelation of previously unidentified Zα domain-containing proteins in eukaryotic organisms, including non-metazoan species. Our findings encompass the discovery of new ZBPs in previously unexplored giant viruses, members of the Nucleocytoviricota phylum. Through experimental validation, we confirm the Zα functionality of select proteins, establishing their capability to induce the B-to-Z conversion. Additionally, we identify Zα-like domains within bacterial proteins. While these domains share certain features with Zα domains, they lack the ability to bind to Z-nucleic acids or facilitate the B-to-Z DNA conversion. Our findings significantly expand the ZBP family across a wide spectrum of organisms and raise intriguing questions about the evolutionary origins of Zα-containing proteins. Moreover, our study offers fresh perspectives on the functional significance of Zα domains in virus sensing and innate immunity and opens avenues for exploring hitherto undiscovered functions of ZBPs.
Collapse
Affiliation(s)
- Miguel F Romero
- DOE Joint Genome Institute, Lawrence Berkeley National Laboratory, Berkeley, California, USA
| | - Jeffrey B Krall
- Department of Biochemistry and Molecular Genetics, University of Colorado at Denver, Aurora, Colorado, USA
| | - Parker J Nichols
- Department of Biochemistry and Molecular Genetics, University of Colorado at Denver, Aurora, Colorado, USA
| | - Jillian Vantreeck
- Department of Biochemistry and Molecular Genetics, University of Colorado at Denver, Aurora, Colorado, USA
| | - Morkos A Henen
- Department of Biochemistry and Molecular Genetics, University of Colorado at Denver, Aurora, Colorado, USA
| | - Emmanuel Dejardin
- GIGA I3 - Molecular Immunology and Signal Transduction, University of Liège, Liège, Belgium
| | - Frederik Schulz
- DOE Joint Genome Institute, Lawrence Berkeley National Laboratory, Berkeley, California, USA.
| | - Quentin Vicens
- Department of Biology and Biochemistry, Center for Nuclear Receptors and Cell Signaling, University of Houston, Houston, Texas, USA.
| | - Beat Vögeli
- Department of Biochemistry and Molecular Genetics, University of Colorado at Denver, Aurora, Colorado, USA.
| | - Mamadou Amadou Diallo
- GIGA I3 - Molecular Immunology and Signal Transduction, University of Liège, Liège, Belgium.
| |
Collapse
|
37
|
Liang JL, Feng SW, Jia P, Lu JL, Yi X, Gao SM, Wu ZH, Liao B, Shu WS, Li JT. Unraveling the habitat preferences, ecological drivers, potential hosts, and auxiliary metabolism of soil giant viruses across China. MICROBIOME 2024; 12:136. [PMID: 39039586 PMCID: PMC11265010 DOI: 10.1186/s40168-024-01851-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/20/2023] [Accepted: 05/30/2024] [Indexed: 07/24/2024]
Abstract
BACKGROUND Soil giant viruses are increasingly believed to have profound effects on ecological functioning by infecting diverse eukaryotes. However, their biogeography and ecology remain poorly understood. RESULTS In this study, we analyzed 333 soil metagenomes from 5 habitat types (farmland, forest, grassland, Gobi desert, and mine wasteland) across China and identified 533 distinct giant virus phylotypes affiliated with nine families, thereby greatly expanding the diversity of soil giant viruses. Among the nine families, Pithoviridae were the most diverse. The majority of phylotypes exhibited a heterogeneous distribution among habitat types, with a remarkably high proportion of unique phylotypes in mine wasteland. The abundances of phylotypes were negatively correlated with their environmental ranges. A total of 76 phylotypes recovered in this study were detectable in a published global topsoil metagenome dataset. Among climatic, geographical, edaphic, and biotic characteristics, soil eukaryotes were identified as the most important driver of beta-diversity of giant viral communities across habitat types. Moreover, co-occurrence network analysis revealed some pairings between giant viral phylotypes and eukaryotes (protozoa, fungi, and algae). Analysis of 44 medium- to high-quality giant virus genomes recovered from our metagenomes uncovered not only their highly shared functions but also their novel auxiliary metabolic genes related to carbon, sulfur, and phosphorus cycling. CONCLUSIONS These findings extend our knowledge of diversity, habitat preferences, ecological drivers, potential hosts, and auxiliary metabolism of soil giant viruses. Video Abstract.
Collapse
Affiliation(s)
- Jie-Liang Liang
- Institute of Ecological Science, Guangzhou Key Laboratory of Subtropical Biodiversity and Biomonitoring, Guangdong Provincial Key Laboratory of Biotechnology for Plant Development, School of Life Sciences, South China Normal University, Guangzhou, 510631, People's Republic of China
| | - Shi-Wei Feng
- Institute of Ecological Science, Guangzhou Key Laboratory of Subtropical Biodiversity and Biomonitoring, Guangdong Provincial Key Laboratory of Biotechnology for Plant Development, School of Life Sciences, South China Normal University, Guangzhou, 510631, People's Republic of China
| | - Pu Jia
- Institute of Ecological Science, Guangzhou Key Laboratory of Subtropical Biodiversity and Biomonitoring, Guangdong Provincial Key Laboratory of Biotechnology for Plant Development, School of Life Sciences, South China Normal University, Guangzhou, 510631, People's Republic of China
| | - Jing-Li Lu
- Institute of Ecological Science, Guangzhou Key Laboratory of Subtropical Biodiversity and Biomonitoring, Guangdong Provincial Key Laboratory of Biotechnology for Plant Development, School of Life Sciences, South China Normal University, Guangzhou, 510631, People's Republic of China
| | - Xinzhu Yi
- Institute of Ecological Science, Guangzhou Key Laboratory of Subtropical Biodiversity and Biomonitoring, Guangdong Provincial Key Laboratory of Biotechnology for Plant Development, School of Life Sciences, South China Normal University, Guangzhou, 510631, People's Republic of China
| | - Shao-Ming Gao
- School of Life Sciences, Sun Yat-Sen University, Guangzhou, 510275, People's Republic of China
| | - Zhuo-Hui Wu
- Institute of Ecological Science, Guangzhou Key Laboratory of Subtropical Biodiversity and Biomonitoring, Guangdong Provincial Key Laboratory of Biotechnology for Plant Development, School of Life Sciences, South China Normal University, Guangzhou, 510631, People's Republic of China
| | - Bin Liao
- School of Life Sciences, Sun Yat-Sen University, Guangzhou, 510275, People's Republic of China
| | - Wen-Sheng Shu
- Institute of Ecological Science, Guangzhou Key Laboratory of Subtropical Biodiversity and Biomonitoring, Guangdong Provincial Key Laboratory of Biotechnology for Plant Development, School of Life Sciences, South China Normal University, Guangzhou, 510631, People's Republic of China
| | - Jin-Tian Li
- Institute of Ecological Science, Guangzhou Key Laboratory of Subtropical Biodiversity and Biomonitoring, Guangdong Provincial Key Laboratory of Biotechnology for Plant Development, School of Life Sciences, South China Normal University, Guangzhou, 510631, People's Republic of China.
| |
Collapse
|
38
|
Sarre LA, Kim IV, Ovchinnikov V, Olivetta M, Suga H, Dudin O, Sebé-Pedrós A, de Mendoza A. DNA methylation enables recurrent endogenization of giant viruses in an animal relative. SCIENCE ADVANCES 2024; 10:eado6406. [PMID: 38996012 PMCID: PMC11244446 DOI: 10.1126/sciadv.ado6406] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/13/2024] [Accepted: 06/07/2024] [Indexed: 07/14/2024]
Abstract
5-Methylcytosine (5mC) is a widespread silencing mechanism that controls genomic parasites. In eukaryotes, 5mC has gained complex roles in gene regulation beyond parasite control, yet 5mC has also been lost in many lineages. The causes for 5mC retention and its genomic consequences are still poorly understood. Here, we show that the protist closely related to animals Amoebidium appalachense features both transposon and gene body methylation, a pattern reminiscent of invertebrates and plants. Unexpectedly, hypermethylated genomic regions in Amoebidium derive from viral insertions, including hundreds of endogenized giant viruses, contributing 14% of the proteome. Using a combination of inhibitors and genomic assays, we demonstrate that 5mC silences these giant virus insertions. Moreover, alternative Amoebidium isolates show polymorphic giant virus insertions, highlighting a dynamic process of infection, endogenization, and purging. Our results indicate that 5mC is critical for the controlled coexistence of newly acquired viral DNA into eukaryotic genomes, making Amoebidium a unique model to understand the hybrid origins of eukaryotic DNA.
Collapse
Affiliation(s)
- Luke A. Sarre
- School of Biological and Behavioural Sciences, Queen Mary University of London, London, UK
| | - Iana V. Kim
- CRG, Centre for Genomic Regulation (CRG), Barcelona Institute of Science and Technology (BIST), Barcelona, Spain
| | - Vladimir Ovchinnikov
- School of Biological and Behavioural Sciences, Queen Mary University of London, London, UK
| | - Marine Olivetta
- Swiss Institute for Experimental Cancer Research, School of Life Sciences, Swiss Federal Institute of Technology (EPFL), Lausanne, Switzerland
| | - Hiroshi Suga
- Faculty of Life and Environmental Sciences, Prefectural University of Hiroshima, Shobara, Japan
| | - Omaya Dudin
- Swiss Institute for Experimental Cancer Research, School of Life Sciences, Swiss Federal Institute of Technology (EPFL), Lausanne, Switzerland
| | - Arnau Sebé-Pedrós
- CRG, Centre for Genomic Regulation (CRG), Barcelona Institute of Science and Technology (BIST), Barcelona, Spain
- ICREA, Barcelona, Spain
- Universitat Pompeu Fabra (UPF), Barcelona, Spain
| | - Alex de Mendoza
- School of Biological and Behavioural Sciences, Queen Mary University of London, London, UK
| |
Collapse
|
39
|
Ramos EDSF, Tozetto-Mendoza TR, Bortoletto P, Ferreira NE, Honorato L, Barbosa EMG, Luchs A, Linhares IM, Spandorfer SD, Leal E, da Costa AC, Witkin SS, Mendes-Correa MC. Characterization of CRESS-DNA viruses in human vaginal secretions: An exploratory metagenomic investigation. J Med Virol 2024; 96:e29750. [PMID: 38953413 DOI: 10.1002/jmv.29750] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2024] [Revised: 05/16/2024] [Accepted: 06/09/2024] [Indexed: 07/04/2024]
Abstract
The Phylum Cressdnaviricota consists of a large number of circular Rep-encoding single-stranded (CRESS)-DNA viruses. Recently, metagenomic analyzes revealed their ubiquitous distribution in a diverse range of eukaryotes. Data relating to CRESS-DNA viruses in humans remains scarce. Our study investigated the presence and genetic diversity of CRESS-DNA viruses in human vaginal secretions. Vaginal swabs were collected from 28 women between 29 and 43 years old attending a fertility clinic in New York City. An exploratory metagenomic analysis was performed and detection of CRESS-DNA viruses was confirmed through analysis of near full-length sequences of the viral isolates. A phylogenetic tree was based on the REP open reading frame sequences of the CRESS-DNA virus genome. Eleven nearly complete CRESS-DNA viral genomes were identified in 16 (57.1%) women. There were no associations between the presence of these viruses and any demographic or clinical parameters. Phylogenetic analysis indicated that one of the sequences belonged to the genus Gemycircularvirus within the Genomoviridae family, while ten sequences represented previously unclassified species of CRESS-DNA viruses. Novel species of CRESS-DNA viruses are present in the vaginal tract of adult women. Although they be transient commensal agents, the potential clinical implications for their presence at this site cannot be dismissed.
Collapse
Affiliation(s)
- Endrya do Socorro Foro Ramos
- Laboratório de diversidade Viral, Instituto de Ciências Biológicas, Departamento de Virologia, Universidade Federal do Pará, Belém, Pará, Brazil
| | - Tania Regina Tozetto-Mendoza
- Laboratório de Investigação Médica em Virologia (LIM52), Department of Infectology and Tropical Medicine, Instituto de Medicina Tropical de São Paulo, Faculdade de Medicina da Universidade de São Paulo, São Paulo, Brazil
| | - Pietro Bortoletto
- Fertility department, Boston IVF-The Eugin Group, Waltham, Massachusetts, USA
- Medicine department, Harvard Medical School, Boston, Massachusetts, USA
- Department of Obstetrics and Gynecology, Beth Israel Deaconess Medical Center, Boston, Massachusetts, USA
| | - Noely Evangelista Ferreira
- Laboratório de Investigação Médica em Virologia (LIM52), Department of Infectology and Tropical Medicine, Instituto de Medicina Tropical de São Paulo, Faculdade de Medicina da Universidade de São Paulo, São Paulo, Brazil
| | - Layla Honorato
- Laboratório de Investigação Médica em Virologia (LIM52), Department of Infectology and Tropical Medicine, Instituto de Medicina Tropical de São Paulo, Faculdade de Medicina da Universidade de São Paulo, São Paulo, Brazil
| | - Erick Matheus Garcia Barbosa
- Laboratório de Investigação Médica em Virologia (LIM52), Department of Infectology and Tropical Medicine, Instituto de Medicina Tropical de São Paulo, Faculdade de Medicina da Universidade de São Paulo, São Paulo, Brazil
| | - Adriana Luchs
- Virology department, Enteric Diseases Laboratory, Virology Center, Adolfo Lutz Institute, São Paulo, Sao Paulo, Brazil
| | - Iara M Linhares
- Department of Gynecology and Obstetrics, Faculdade de Medicina da Universidade de São Paulo, São Paulo, Brazil
| | - Steven D Spandorfer
- Department of Gynecology and Obstetrics, Center for Reproductive Medicine and Infertility, Weill Cornell Medicine, New York City, New York, USA
| | - Elcio Leal
- Laboratório de diversidade Viral, Instituto de Ciências Biológicas, Departamento de Virologia, Universidade Federal do Pará, Belém, Pará, Brazil
| | - Antonio Charlys da Costa
- Laboratório de Investigação Médica em Virologia (LIM52), Department of Infectology and Tropical Medicine, Instituto de Medicina Tropical de São Paulo, Faculdade de Medicina da Universidade de São Paulo, São Paulo, Brazil
| | - Steven S Witkin
- Laboratório de Investigação Médica em Virologia (LIM52), Department of Infectology and Tropical Medicine, Instituto de Medicina Tropical de São Paulo, Faculdade de Medicina da Universidade de São Paulo, São Paulo, Brazil
- Department of Obstetrics and Gynecology, Weill Cornell Medicine, New York City, New York, USA
| | - Maria Cassia Mendes-Correa
- Laboratório de Investigação Médica em Virologia (LIM52), Department of Infectology and Tropical Medicine, Instituto de Medicina Tropical de São Paulo, Faculdade de Medicina da Universidade de São Paulo, São Paulo, Brazil
| |
Collapse
|
40
|
Irwin NAT, Richards TA. Self-assembling viral histones are evolutionary intermediates between archaeal and eukaryotic nucleosomes. Nat Microbiol 2024; 9:1713-1724. [PMID: 38806669 PMCID: PMC11222145 DOI: 10.1038/s41564-024-01707-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2023] [Accepted: 04/19/2024] [Indexed: 05/30/2024]
Abstract
Nucleosomes are DNA-protein complexes composed of histone proteins that form the basis of eukaryotic chromatin. The nucleosome was a key innovation during eukaryotic evolution, but its origin from histone homologues in Archaea remains unclear. Viral histone repeats, consisting of multiple histone paralogues within a single protein, may reflect an intermediate state. Here we examine the diversity of histones encoded by Nucleocytoviricota viruses. We identified 258 histones from 168 viral metagenomes with variable domain configurations including histone singlets, doublets, triplets and quadruplets, the latter comprising the four core histones arranged in series. Viral histone repeats branch phylogenetically between Archaea and eukaryotes and display intermediate functions in Escherichia coli, self-assembling into eukaryotic-like nucleosomes that stack into archaeal-like oligomers capable of impacting genomic activity and condensing DNA. Histone linkage also facilitates nucleosome formation, promoting eukaryotic histone assembly in E. coli. These data support the hypothesis that viral histone repeats originated in stem-eukaryotes and that nucleosome evolution proceeded through histone repeat intermediates.
Collapse
Affiliation(s)
- Nicholas A T Irwin
- Merton College, University of Oxford, Oxford, UK.
- Department of Biology, University of Oxford, Oxford, UK.
- Gregor Mendel Institute (GMI), Austrian Academy of Sciences, Vienna BioCenter (VBC), Vienna, Austria.
| | | |
Collapse
|
41
|
Fromm A, Hevroni G, Vincent F, Schatz D, Martinez-Gutierrez CA, Aylward FO, Vardi A. Single-cell RNA-seq of the rare virosphere reveals the native hosts of giant viruses in the marine environment. Nat Microbiol 2024; 9:1619-1629. [PMID: 38605173 PMCID: PMC11265207 DOI: 10.1038/s41564-024-01669-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2023] [Accepted: 03/07/2024] [Indexed: 04/13/2024]
Abstract
Giant viruses (phylum Nucleocytoviricota) are globally distributed in aquatic ecosystems. They play fundamental roles as evolutionary drivers of eukaryotic plankton and regulators of global biogeochemical cycles. However, we lack knowledge about their native hosts, hindering our understanding of their life cycle and ecological importance. In the present study, we applied a single-cell RNA sequencing (scRNA-seq) approach to samples collected during an induced algal bloom, which enabled pairing active giant viruses with their native protist hosts. We detected hundreds of single cells from multiple host lineages infected by diverse giant viruses. These host cells included members of the algal groups Chrysophycae and Prymnesiophycae, as well as heterotrophic flagellates in the class Katablepharidaceae. Katablepharids were infected with a rare Imitervirales-07 giant virus lineage expressing a large repertoire of cell-fate regulation genes. Analysis of the temporal dynamics of these host-virus interactions revealed an important role for the Imitervirales-07 in controlling the population size of the host Katablepharid population. Our results demonstrate that scRNA-seq can be used to identify previously undescribed host-virus interactions and study their ecological importance and impact.
Collapse
Affiliation(s)
- Amir Fromm
- Department of Plant and Environmental Sciences, Weizmann Institute of Science, Rehovot, Israel
| | - Gur Hevroni
- Department of Plant and Environmental Sciences, Weizmann Institute of Science, Rehovot, Israel
- Google Geo, Tel Aviv, Israel
| | - Flora Vincent
- Department of Plant and Environmental Sciences, Weizmann Institute of Science, Rehovot, Israel
- Developmental Biology Unit, European Molecular Biological Laboratory, Heidelberg, Germany
| | - Daniella Schatz
- Department of Plant and Environmental Sciences, Weizmann Institute of Science, Rehovot, Israel
| | | | - Frank O Aylward
- Department of Biological Sciences, Virginia Tech, Blacksburg, VA, USA.
- Center for Emerging, Zoonotic, and Arthropod-Borne Pathogens, Virginia Tech, Blacksburg, VA, USA.
| | - Assaf Vardi
- Department of Plant and Environmental Sciences, Weizmann Institute of Science, Rehovot, Israel.
| |
Collapse
|
42
|
Perini L, Sipes K, Zervas A, Bellas C, Lutz S, Moniruzzaman M, Mourot R, Benning LG, Tranter M, Anesio AM. Giant viral signatures on the Greenland ice sheet. MICROBIOME 2024; 12:91. [PMID: 38760842 PMCID: PMC11100222 DOI: 10.1186/s40168-024-01796-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/30/2023] [Accepted: 03/18/2024] [Indexed: 05/19/2024]
Abstract
BACKGROUND Dark pigmented snow and glacier ice algae on glaciers and ice sheets contribute to accelerating melt. The biological controls on these algae, particularly the role of viruses, remain poorly understood. Giant viruses, classified under the nucleocytoplasmic large DNA viruses (NCLDV) supergroup (phylum Nucleocytoviricota), are diverse and globally distributed. NCLDVs are known to infect eukaryotic cells in marine and freshwater environments, providing a biological control on the algal population in these ecosystems. However, there is very limited information on the diversity and ecosystem function of NCLDVs in terrestrial icy habitats. RESULTS In this study, we investigate for the first time giant viruses and their host connections on ice and snow habitats, such as cryoconite, dark ice, ice core, red and green snow, and genomic assemblies of five cultivated Chlorophyta snow algae. Giant virus marker genes were present in almost all samples; the highest abundances were recovered from red snow and the snow algae genomic assemblies, followed by green snow and dark ice. The variety of active algae and protists in these GrIS habitats containing NCLDV marker genes suggests that infection can occur on a range of eukaryotic hosts. Metagenomic data from red and green snow contained evidence of giant virus metagenome-assembled genomes from the orders Imitervirales, Asfuvirales, and Algavirales. CONCLUSION Our study highlights NCLDV family signatures in snow and ice samples from the Greenland ice sheet. Giant virus metagenome-assembled genomes (GVMAGs) were found in red snow samples, and related NCLDV marker genes were identified for the first time in snow algal culture genomic assemblies; implying a relationship between the NCLDVs and snow algae. Metatranscriptomic viral genes also aligned with metagenomic sequences, suggesting that NCLDVs are an active component of the microbial community and are potential "top-down" controls of the eukaryotic algal and protistan members. This study reveals the unprecedented presence of a diverse community of NCLDVs in a variety of glacial habitats dominated by algae.
Collapse
Affiliation(s)
- Laura Perini
- Department of Environmental Science, Aarhus University, Roskilde, 4000, Denmark.
| | - Katie Sipes
- Department of Environmental Science, Aarhus University, Roskilde, 4000, Denmark
| | - Athanasios Zervas
- Department of Environmental Science, Aarhus University, Roskilde, 4000, Denmark
| | | | - Stefanie Lutz
- Department of Agroecology and Environment, Plant-Soil Interactions, Agroscope, Zurich, Switzerland
- German Research Centre for Geosciences, Helmholtz Centre Potsdam, Telegrafenberg, Potsdam, 14473, Germany
| | - Mohammad Moniruzzaman
- Department of Biological Sciences, Rosenstiel School of Marine, Atmospheric and Earth Science, University of Miami, Coral Gables, FL, USA
| | - Rey Mourot
- German Research Centre for Geosciences, Helmholtz Centre Potsdam, Telegrafenberg, Potsdam, 14473, Germany
- Department of Earth Sciences, Freie Universität Berlin, Berlin, 12249, Germany
| | - Liane G Benning
- German Research Centre for Geosciences, Helmholtz Centre Potsdam, Telegrafenberg, Potsdam, 14473, Germany
- Department of Earth Sciences, Freie Universität Berlin, Berlin, 12249, Germany
| | - Martyn Tranter
- Department of Environmental Science, Aarhus University, Roskilde, 4000, Denmark
| | - Alexandre M Anesio
- Department of Environmental Science, Aarhus University, Roskilde, 4000, Denmark
| |
Collapse
|
43
|
Akashi M, Takemura M, Suzuki S. Continuous year-round isolation of giant viruses from brackish shoreline soils. Front Microbiol 2024; 15:1402690. [PMID: 38756730 PMCID: PMC11096492 DOI: 10.3389/fmicb.2024.1402690] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2024] [Accepted: 04/17/2024] [Indexed: 05/18/2024] Open
Abstract
Giant viruses, categorized under Nucleocytoviricota, are believed to exist ubiquitously in natural environments. However, comprehensive reports on isolated giant viruses remain scarce, with limited information available on unrecoverable strains, viral proliferation sites, and natural hosts. Previously, the author highlighted Pandoravirus hades, Pandoravirus persephone, and Mimivirus sp. styx, isolated from brackish water soil, as potential hotspots for giant virus multiplication. This study presents findings from nearly a year of monthly sampling within the same brackish water region after isolating the three aforementioned strains. This report details the recurrent isolation of a wide range of giant viruses. Each month, four soil samples were randomly collected from an approximately 5 × 10 m plot, comprising three soil samples and one water sample containing sediment from the riverbed. Acanthamoeba castellanii was used as a host for virus isolation. These efforts consistently yielded at least one viral species per month, culminating in a total of 55 giant virus isolates. The most frequently isolated species was Mimiviridae (24 isolates), followed by Marseilleviridae (23 isolates), Pandoravirus (6 isolates), and singular isolates of Pithovirus and Cedratvirus. Notably, viruses were not consistently isolated from any of the four samples every month, with certain sites yielding no viruses. Cluster analysis based on isolate numbers revealed that soil samples from May and water and sediment samples from January produced the highest number of viral strains. These findings underscore brackish coastal soil as a significant site for isolating numerous giant viruses, highlighting the non-uniform distribution along coastlines.
Collapse
Affiliation(s)
- Motohiro Akashi
- Department of Science and Technology, Faculty of Science and Technology, Seikei University, Tokyo, Japan
| | - Masaharu Takemura
- Institute of Arts and Sciences, Tokyo University of Science, Tokyo, Japan
| | - Seiichi Suzuki
- Department of Science and Technology, Faculty of Science and Technology, Seikei University, Tokyo, Japan
| |
Collapse
|
44
|
Arthofer P, Panhölzl F, Delafont V, Hay A, Reipert S, Cyran N, Wienkoop S, Willemsen A, Sifaoui I, Arberas-Jiménez I, Schulz F, Lorenzo-Morales J, Horn M. A giant virus infecting the amoeboflagellate Naegleria. Nat Commun 2024; 15:3307. [PMID: 38658525 PMCID: PMC11043551 DOI: 10.1038/s41467-024-47308-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2023] [Accepted: 03/26/2024] [Indexed: 04/26/2024] Open
Abstract
Giant viruses (Nucleocytoviricota) are significant lethality agents of various eukaryotic hosts. Although metagenomics indicates their ubiquitous distribution, available giant virus isolates are restricted to a very small number of protist and algal hosts. Here we report on the first viral isolate that replicates in the amoeboflagellate Naegleria. This genus comprises the notorious human pathogen Naegleria fowleri, the causative agent of the rare but fatal primary amoebic meningoencephalitis. We have elucidated the structure and infection cycle of this giant virus, Catovirus naegleriensis (a.k.a. Naegleriavirus, NiV), and show its unique adaptations to its Naegleria host using fluorescence in situ hybridization, electron microscopy, genomics, and proteomics. Naegleriavirus is only the fourth isolate of the highly diverse subfamily Klosneuvirinae, and like its relatives the NiV genome contains a large number of translation genes, but lacks transfer RNAs (tRNAs). NiV has acquired genes from its Naegleria host, which code for heat shock proteins and apoptosis inhibiting factors, presumably for host interactions. Notably, NiV infection was lethal to all Naegleria species tested, including the human pathogen N. fowleri. This study expands our experimental framework for investigating giant viruses and may help to better understand the basic biology of the human pathogen N. fowleri.
Collapse
Affiliation(s)
- Patrick Arthofer
- University of Vienna, Centre for Microbiology and Environmental Systems Science, Division of Microbial Ecology, Vienna, Austria
- University of Vienna, Doctoral School in Microbiology and Environmental Science, Vienna, Austria
| | - Florian Panhölzl
- University of Vienna, Centre for Microbiology and Environmental Systems Science, Division of Microbial Ecology, Vienna, Austria
| | - Vincent Delafont
- Ecologie et Biologie des Interactions Laboratory (EBI), Microorganisms, hosts & environments team, Université de Poitiers, UMR CNRS, Poitiers, France
| | - Alban Hay
- Ecologie et Biologie des Interactions Laboratory (EBI), Microorganisms, hosts & environments team, Université de Poitiers, UMR CNRS, Poitiers, France
| | - Siegfried Reipert
- University of Vienna, Research Support Facilities UBB, Vienna, Austria
| | - Norbert Cyran
- University of Vienna, Research Support Facilities UBB, Vienna, Austria
| | - Stefanie Wienkoop
- University of Vienna, Department of Functional and Evolutionary Ecology, Division of Molecular Systems Biology, Vienna, Austria
| | - Anouk Willemsen
- University of Vienna, Centre for Microbiology and Environmental Systems Science, Division of Microbial Ecology, Vienna, Austria
| | - Ines Sifaoui
- Instituto Universitario de Enfermedades Tropicales y Salud Pública de Canarias, and Departamento de Obstetricia y Ginecología, Pediatría, Medicina Preventiva y Salud Pública, Toxicología, Medicina Legal y Forense y Parasitología, Universidad de La Laguna, Tenerife, Islas Canarias, Spain
- Centro de Investigación Biomédica en Red de Enfermedades Infecciosas (CIBERINFEC), Instituto de Salud Carlos III, Madrid, Spain
| | - Iñigo Arberas-Jiménez
- Instituto Universitario de Enfermedades Tropicales y Salud Pública de Canarias, and Departamento de Obstetricia y Ginecología, Pediatría, Medicina Preventiva y Salud Pública, Toxicología, Medicina Legal y Forense y Parasitología, Universidad de La Laguna, Tenerife, Islas Canarias, Spain
| | - Frederik Schulz
- DOE Joint Genome Institute, Lawrence Berkeley National Laboratory, Berkeley, USA
| | - Jacob Lorenzo-Morales
- Instituto Universitario de Enfermedades Tropicales y Salud Pública de Canarias, and Departamento de Obstetricia y Ginecología, Pediatría, Medicina Preventiva y Salud Pública, Toxicología, Medicina Legal y Forense y Parasitología, Universidad de La Laguna, Tenerife, Islas Canarias, Spain
- Centro de Investigación Biomédica en Red de Enfermedades Infecciosas (CIBERINFEC), Instituto de Salud Carlos III, Madrid, Spain
| | - Matthias Horn
- University of Vienna, Centre for Microbiology and Environmental Systems Science, Division of Microbial Ecology, Vienna, Austria.
| |
Collapse
|
45
|
Morimoto D, Tateishi N, Takahashi M, Nagasaki K. Isolation of viruses, including mollivirus, with the potential to infect Acanthamoeba from a Japanese warm temperate zone. PLoS One 2024; 19:e0301185. [PMID: 38547190 PMCID: PMC10977731 DOI: 10.1371/journal.pone.0301185] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2023] [Accepted: 03/12/2024] [Indexed: 04/02/2024] Open
Abstract
Acanthamoeba castellanii is infected with diverse nucleocytoplasmic large DNA viruses. Here, we report the co-isolation of 12 viral strains from marine sediments in Uranouchi Inlet, Kochi, Japan. Based on the morphological features revealed by electron microscopy, these isolates were classified into four viral groups including Megamimiviridae, Molliviridae, Pandoraviridae, and Pithoviridae. Genomic analyses indicated that these isolates showed high similarities to the known viral genomes with which they are taxonomically clustered, and their phylogenetic relationships were also supported by core gene similarities. It is noteworthy that Molliviridae was isolated from the marine sediments in the Japanese warm temperate zone because other strains have only been found in the subarctic region. Furthermore, this strain has 19 and 4 strain-specific genes found in Mollivirus sibericum and Mollivirus kamchatka, respectively. This study extends our knowledge about the habitat and genomic diversity of Molliviridae.
Collapse
Affiliation(s)
- Daichi Morimoto
- Faculty of Science and Technology, Kochi University, Nankoku, Kochi, Japan
| | - Naohisa Tateishi
- Faculty of Agriculture and Marine Science, Kochi University, Nankoku, Kochi, Japan
| | | | - Keizo Nagasaki
- Faculty of Science and Technology, Kochi University, Nankoku, Kochi, Japan
- Faculty of Agriculture and Marine Science, Kochi University, Nankoku, Kochi, Japan
| |
Collapse
|
46
|
Ha AD, Aylward FO. Automated classification of giant virus genomes using a random forest model built on trademark protein families. NPJ VIRUSES 2024; 2:9. [PMID: 40295679 PMCID: PMC11721082 DOI: 10.1038/s44298-024-00021-9] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/10/2023] [Accepted: 01/24/2024] [Indexed: 04/30/2025]
Abstract
Viruses of the phylum Nucleocytoviricota, often referred to as "giant viruses," are prevalent in various environments around the globe and play significant roles in shaping eukaryotic diversity and activities in global ecosystems. Given the extensive phylogenetic diversity within this viral group and the highly complex composition of their genomes, taxonomic classification of giant viruses, particularly incomplete metagenome-assembled genomes (MAGs) can present a considerable challenge. Here we developed TIGTOG (Taxonomic Information of Giant viruses using Trademark Orthologous Groups), a machine learning-based approach to predict the taxonomic classification of novel giant virus MAGs based on profiles of protein family content. We applied a random forest algorithm to a training set of 1531 quality-checked, phylogenetically diverse Nucleocytoviricota genomes using pre-selected sets of giant virus orthologous groups (GVOGs). The classification models were predictive of viral taxonomic assignments with a cross-validation accuracy of 99.6% at the order level and 97.3% at the family level. We found that no individual GVOGs or genome features significantly influenced the algorithm's performance or the models' predictions, indicating that classification predictions were based on a comprehensive genomic signature, which reduced the necessity of a fixed set of marker genes for taxonomic assigning purposes. Our classification models were validated with an independent test set of 823 giant virus genomes with varied genomic completeness and taxonomy and demonstrated an accuracy of 98.6% and 95.9% at the order and family level, respectively. Our results indicate that protein family profiles can be used to accurately classify large DNA viruses at different taxonomic levels and provide a fast and accurate method for the classification of giant viruses. This approach could easily be adapted to other viral groups.
Collapse
Affiliation(s)
- Anh D Ha
- Department of Biological Sciences, Virginia Tech, Blacksburg, VA, 24061, USA.
| | - Frank O Aylward
- Department of Biological Sciences, Virginia Tech, Blacksburg, VA, 24061, USA.
- Center for Emerging, Zoonotic, and Arthropod-Borne Infectious Disease, Virginia Tech, Blacksburg, VA, 24061, USA.
| |
Collapse
|
47
|
Guinet B, Leobold M, Herniou EA, Bloin P, Burlet N, Bredlau J, Navratil V, Ravallec M, Uzbekov R, Kester K, Gundersen Rindal D, Drezen JM, Varaldi J, Bézier A. A novel and diverse family of filamentous DNA viruses associated with parasitic wasps. Virus Evol 2024; 10:veae022. [PMID: 38617843 PMCID: PMC11013392 DOI: 10.1093/ve/veae022] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2023] [Revised: 12/20/2023] [Accepted: 02/23/2024] [Indexed: 04/16/2024] Open
Abstract
Large dsDNA viruses from the Naldaviricetes class are currently composed of four viral families infecting insects and/or crustaceans. Since the 1970s, particles described as filamentous viruses (FVs) have been observed by electronic microscopy in several species of Hymenoptera parasitoids but until recently, no genomic data was available. This study provides the first comparative morphological and genomic analysis of these FVs. We analyzed the genomes of seven FVs, six of which were newly obtained, to gain a better understanding of their evolutionary history. We show that these FVs share all genomic features of the Naldaviricetes while encoding five specific core genes that distinguish them from their closest relatives, the Hytrosaviruses. By mining public databases, we show that FVs preferentially infect Hymenoptera with parasitoid lifestyle and that these viruses have been repeatedly integrated into the genome of many insects, particularly Hymenoptera parasitoids, overall suggesting a long-standing specialization of these viruses to parasitic wasps. Finally, we propose a taxonomical revision of the class Naldaviricetes in which FVs related to the Leptopilina boulardi FV constitute a fifth family. We propose to name this new family, Filamentoviridae.
Collapse
Affiliation(s)
- Benjamin Guinet
- LBBE, UMR CNRS 5558, Universite Claude Bernard Lyon 1, 43 bd du 11 novembre 1918, Villeurbanne CEDEX F-69622, France
| | - Matthieu Leobold
- Institut de Recherche sur la Biologie de l'Insecte, UMR 7261 CNRS-Université de Tours, 20 Avenue Monge, Parc de Grandmont, Tours 37200, France
| | - Elisabeth A Herniou
- Institut de Recherche sur la Biologie de l'Insecte, UMR 7261 CNRS-Université de Tours, 20 Avenue Monge, Parc de Grandmont, Tours 37200, France
| | - Pierrick Bloin
- Institut de Recherche sur la Biologie de l'Insecte, UMR 7261 CNRS-Université de Tours, 20 Avenue Monge, Parc de Grandmont, Tours 37200, France
| | - Nelly Burlet
- LBBE, UMR CNRS 5558, Universite Claude Bernard Lyon 1, 43 bd du 11 novembre 1918, Villeurbanne CEDEX F-69622, France
| | - Justin Bredlau
- Department of Biology, Virginia Commonwealth University, 1000 W. Cary Street, Room 126, Richmond, VA 23284-9067, USA
| | - Vincent Navratil
- PRABI, Rhône-Alpes Bioinformatics Center, Université Lyon 1, 43 bd du 11 novembre 1918, Villeurbanne CEDEX 69622, France
- UMS 3601, Institut Français de Bioinformatique, IFB-Core, 2 rue Gaston Crémieu, Évry CEDEX 91057, France
- European Virus Bioinformatics Center, Leutragraben 1, Jena 07743, Germany
| | - Marc Ravallec
- Diversité, génomes et interactions microorganismes insectes (DGIMI), UMR 1333 INRA, Université de Montpellier 2, 2 Place Eugène Bataillon cc101, Montpellier CEDEX 5 34095, France
| | - Rustem Uzbekov
- Laboratory of Cell Biology and Electron Microscopy, Faculty of Medicine, Université de Tours, 10 bd Tonnelle, BP 3223, Tours CEDEX 37032, France
- Faculty of Bioengineering and Bioinformatics, Moscow State University, Leninskye Gory 73, Moscow 119992, Russia
| | - Karen Kester
- Department of Biology, Virginia Commonwealth University, 1000 W. Cary Street, Room 126, Richmond, VA 23284-9067, USA
| | - Dawn Gundersen Rindal
- USDA-ARS Invasive Insect Biocontrol and Behavior Laboratory, Beltsville, MD 20705, USA
| | - Jean-Michel Drezen
- Institut de Recherche sur la Biologie de l'Insecte, UMR 7261 CNRS-Université de Tours, 20 Avenue Monge, Parc de Grandmont, Tours 37200, France
| | - Julien Varaldi
- LBBE, UMR CNRS 5558, Universite Claude Bernard Lyon 1, 43 bd du 11 novembre 1918, Villeurbanne CEDEX F-69622, France
| | - Annie Bézier
- Institut de Recherche sur la Biologie de l'Insecte, UMR 7261 CNRS-Université de Tours, 20 Avenue Monge, Parc de Grandmont, Tours 37200, France
| |
Collapse
|
48
|
Chen L, Banfield JF. COBRA improves the completeness and contiguity of viral genomes assembled from metagenomes. Nat Microbiol 2024; 9:737-750. [PMID: 38321183 PMCID: PMC10914622 DOI: 10.1038/s41564-023-01598-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2023] [Accepted: 12/19/2023] [Indexed: 02/08/2024]
Abstract
Viruses are often studied using metagenome-assembled sequences, but genome incompleteness hampers comprehensive and accurate analyses. Contig Overlap Based Re-Assembly (COBRA) resolves assembly breakpoints based on the de Bruijn graph and joins contigs. Here we benchmarked COBRA using ocean and soil viral datasets. COBRA accurately joined the assembled sequences and achieved notably higher genome accuracy than binning tools. From 231 published freshwater metagenomes, we obtained 7,334 bacteriophage clusters, ~83% of which represent new phage species. Notably, ~70% of these were circular, compared with 34% before COBRA analyses. We expanded sampling of huge phages (≥200 kbp), the largest of which was curated to completion (717 kbp). Improved phage genomes from Rotsee Lake provided context for metatranscriptomic data and indicated the in situ activity of huge phages, whiB-encoding phages and cysC- and cysH-encoding phages. COBRA improves viral genome assembly contiguity and completeness, thus the accuracy and reliability of analyses of gene content, diversity and evolution.
Collapse
Affiliation(s)
- LinXing Chen
- Department of Earth and Planetary Sciences, University of California, Berkeley, Berkeley, CA, USA.
- Innovative Genomics Institute, University of California, Berkeley, Berkeley, CA, USA.
| | - Jillian F Banfield
- Department of Earth and Planetary Sciences, University of California, Berkeley, Berkeley, CA, USA.
- Innovative Genomics Institute, University of California, Berkeley, Berkeley, CA, USA.
- Department of Plant and Microbial Biology, University of California, Berkeley, Berkeley, CA, USA.
- Department of Environmental Science Policy, and Management, University of California, Berkeley, Berkeley, CA, USA.
- Earth and Environmental Sciences, Lawrence Berkeley National Laboratory, Berkeley, CA, USA.
| |
Collapse
|
49
|
Li Y, Miyani B, Faust RA, David RE, Xagoraraki I. A broad wastewater screening and clinical data surveillance for virus-related diseases in the metropolitan Detroit area in Michigan. Hum Genomics 2024; 18:14. [PMID: 38321488 PMCID: PMC10845806 DOI: 10.1186/s40246-024-00581-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2023] [Accepted: 01/24/2024] [Indexed: 02/08/2024] Open
Abstract
BACKGROUND Periodic bioinformatics-based screening of wastewater for assessing the diversity of potential human viral pathogens circulating in a given community may help to identify novel or potentially emerging infectious diseases. Any identified contigs related to novel or emerging viruses should be confirmed with targeted wastewater and clinical testing. RESULTS During the COVID-19 pandemic, untreated wastewater samples were collected for a 1-year period from the Great Lakes Water Authority Wastewater Treatment Facility in Detroit, MI, USA, and viral population diversity from both centralized interceptor sites and localized neighborhood sewersheds was investigated. Clinical cases of the diseases caused by human viruses were tabulated and compared with data from viral wastewater monitoring. In addition to Betacoronavirus, comparison using assembled contigs against a custom Swiss-Prot human virus database indicated the potential prevalence of other pathogenic virus genera, including: Orthopoxvirus, Rhadinovirus, Parapoxvirus, Varicellovirus, Hepatovirus, Simplexvirus, Bocaparvovirus, Molluscipoxvirus, Parechovirus, Roseolovirus, Lymphocryptovirus, Alphavirus, Spumavirus, Lentivirus, Deltaretrovirus, Enterovirus, Kobuvirus, Gammaretrovirus, Cardiovirus, Erythroparvovirus, Salivirus, Rubivirus, Orthohepevirus, Cytomegalovirus, Norovirus, and Mamastrovirus. Four nearly complete genomes were recovered from the Astrovirus, Enterovirus, Norovirus and Betapolyomavirus genera and viral species were identified. CONCLUSIONS The presented findings in wastewater samples are primarily at the genus level and can serve as a preliminary "screening" tool that may serve as indication to initiate further testing for the confirmation of the presence of species that may be associated with human disease. Integrating innovative environmental microbiology technologies like metagenomic sequencing with viral epidemiology offers a significant opportunity to improve the monitoring of, and predictive intelligence for, pathogenic viruses, using wastewater.
Collapse
Affiliation(s)
- Yabing Li
- Department of Civil and Environmental Engineering, Michigan State University, 1449 Engineering Research Ct, East Lansing, MI, 48823, USA
| | - Brijen Miyani
- Department of Civil and Environmental Engineering, Michigan State University, 1449 Engineering Research Ct, East Lansing, MI, 48823, USA
| | - Russell A Faust
- Oakland County Health Division, 1200 Telegraph Rd, Pontiac, MI, 48341, USA
| | - Randy E David
- School of Medicine, Wayne State University, Detroit, MI, 48282, USA
| | - Irene Xagoraraki
- Department of Civil and Environmental Engineering, Michigan State University, 1449 Engineering Research Ct, East Lansing, MI, 48823, USA.
| |
Collapse
|
50
|
Nino Barreat JG, Katzourakis A. Ecological and evolutionary dynamics of cell-virus-virophage systems. PLoS Comput Biol 2024; 20:e1010925. [PMID: 38377113 PMCID: PMC10906902 DOI: 10.1371/journal.pcbi.1010925] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2023] [Revised: 03/01/2024] [Accepted: 01/26/2024] [Indexed: 02/22/2024] Open
Abstract
Microbial eukaryotes, giant viruses and virophages form a unique hyperparasitic system. Virophages are parasites of the virus transcription machinery and can interfere with virus replication, resulting in a benefit to the eukaryotic host population. Surprisingly, virophages can integrate into the genomes of their cell or virus hosts, and have been shown to reactivate during coinfection. This raises questions about the role of integration in the dynamics of cell-virus-virophage systems. We use mathematical models and computational simulations to understand the effect of virophage integration on populations of cells and viruses. We also investigate multicellularity and programmed cell-death (PCD) as potential antiviral defence strategies used by cells. We found that virophages which enter the cell independently of the host virus, such as Mavirus, are expected to integrate commonly into the genomes of their cell hosts. Our models suggest that integrations from virophages without an independent mode of entry like Sputnik, are less likely to become fixed in the cell host population. Alternatively, we found that Sputnik virophages can stably persist integrated in the virus population, as long as they do not completely inhibit virus replication. We also show that increasing virophage inhibition can stabilise oscillatory dynamics, which may explain the long-term persistence of viruses and virophages in the environment. Our results demonstrate that inhibition by virophages and multicellularity are effective antiviral strategies that may act in synergy against viral infection in microbial species.
Collapse
Affiliation(s)
| | - Aris Katzourakis
- Department of Biology, University of Oxford, Oxford, United Kingdom
| |
Collapse
|