1
|
Herridge RP, Dolata J, Migliori V, de Santis Alves C, Borges F, Schorn AJ, van Ex F, Lin A, Bajczyk M, Parent JS, Leonardi T, Hendrick A, Kouzarides T, Martienssen RA. Pseudouridine guides germline small RNA transport and epigenetic inheritance. Nat Struct Mol Biol 2025; 32:277-286. [PMID: 39242979 PMCID: PMC11832342 DOI: 10.1038/s41594-024-01392-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2023] [Accepted: 08/15/2024] [Indexed: 09/09/2024]
Abstract
Developmental epigenetic modifications in plants and animals are mostly reset during gamete formation but some are inherited from the germline. Small RNAs guide these epigenetic modifications but how inherited small RNAs are distinguished in plants and animals is unknown. Pseudouridine (Ψ) is the most abundant RNA modification but has not been explored in small RNAs. Here, we develop assays to detect Ψ in short RNA sequences, demonstrating its presence in mouse and Arabidopsis microRNAs. Germline small RNAs, namely epigenetically activated small interfering RNAs (easiRNAs) in Arabidopsis pollen and Piwi-interacting RNAs in mouse testes, are enriched for Ψ. In pollen, pseudouridylated easiRNAs are transported to sperm cells from the vegetative nucleus, and PAUSED/HEN5 (PSD), the plant homolog of Exportin-t, interacts genetically with Ψ and is required for this transport. We further show that Exportin-t is required for the triploid block: small RNA dosage-dependent seed lethality that is epigenetically inherited from pollen. Thus, Ψ has a conserved role in marking inherited small RNAs in the germline.
Collapse
Affiliation(s)
- Rowan P Herridge
- Howard Hughes Medical Institute, Cold Spring Harbor Laboratory, Cold Spring Harbor, NY, USA
- Department of Biochemistry, University of Otago, Dunedin, New Zealand
| | - Jakub Dolata
- Howard Hughes Medical Institute, Cold Spring Harbor Laboratory, Cold Spring Harbor, NY, USA
- Department of Gene Expression, Institute of Molecular Biology and Biotechnology, Adam Mickiewicz University, Poznan, Poland
| | - Valentina Migliori
- Gurdon Institute, University of Cambridge, Cambridge, UK
- Wellcome Sanger Institute, Wellcome Genome Campus, Hinxton, Cambridge, UK
| | | | - Filipe Borges
- Howard Hughes Medical Institute, Cold Spring Harbor Laboratory, Cold Spring Harbor, NY, USA
- CNRS, INRA Versailles, Versailles, France
| | - Andrea J Schorn
- Howard Hughes Medical Institute, Cold Spring Harbor Laboratory, Cold Spring Harbor, NY, USA
| | - Frédéric van Ex
- Howard Hughes Medical Institute, Cold Spring Harbor Laboratory, Cold Spring Harbor, NY, USA
- Inari LLC, Ghent, Belgium
| | - Ann Lin
- Howard Hughes Medical Institute, Cold Spring Harbor Laboratory, Cold Spring Harbor, NY, USA
- Stanford University, Stanford, CA, USA
| | - Mateusz Bajczyk
- Department of Gene Expression, Institute of Molecular Biology and Biotechnology, Adam Mickiewicz University, Poznan, Poland
| | - Jean-Sebastien Parent
- Howard Hughes Medical Institute, Cold Spring Harbor Laboratory, Cold Spring Harbor, NY, USA
- Agriculture Canada, Ottawa, Ontario, Canada
| | - Tommaso Leonardi
- Gurdon Institute, University of Cambridge, Cambridge, UK
- Center for Genomic Science of IIT@SEMM, Instituto Italiano di Tecnologia (IIT), Milan, Italy
| | - Alan Hendrick
- Storm Therapeutics, Ltd., Moneta Building (B280), Babraham Research Campus, Cambridge, UK
| | | | - Robert A Martienssen
- Howard Hughes Medical Institute, Cold Spring Harbor Laboratory, Cold Spring Harbor, NY, USA.
| |
Collapse
|
2
|
Chen S, Phillips CM. Nuclear Argonaute protein NRDE-3 switches small RNA partners during embryogenesis to mediate temporal-specific gene regulatory activity. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2025:2024.07.29.605686. [PMID: 39131395 PMCID: PMC11312606 DOI: 10.1101/2024.07.29.605686] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 08/13/2024]
Abstract
RNA interference (RNAi) is a conserved gene regulation mechanism that utilizes the Argonaute protein and their associated small RNAs to exert regulatory function on complementary transcripts. While the majority of germline-expressed RNAi pathway components reside in perinuclear germ granules, it is unknown whether and how RNAi pathways are spatially organized in other cell types. Here we find that the small RNA biogenesis machinery is spatially and temporally organized during embryogenesis. Specifically, the RNAi factor, SIMR-1, forms visible concentrates during mid-embryogenesis that contain an RNA-dependent RNA polymerase, a poly-UG polymerase, and the unloaded nuclear Argonaute protein, NRDE-3. We also observe that many other RNAi factors form foci in embryonic cells distinct from "SIMR granules", including the Argonaute protein CSR-1, underscoring a potential role for cytoplasmic concentrates of RNAi factors to promote gene regulation in embryos. Curiously, coincident with the appearance of the SIMR granules, the small RNAs bound to NRDE-3 switch from predominantly CSR-class 22G-RNAs to ERGO-dependent 22G-RNAs. Prior work has shown that NRDE-3 binds ERGO-dependent 22G-RNAs in the somatic cells of larvae and adults to silence ERGO-target genes; here we demonstrate that NRDE-3-bound, CSR-class 22G-RNAs repress transcription in oocytes. Thus, our study defines two separable roles for NRDE-3, targeting germline-expressed genes during oogenesis to promote global transcriptional repression, and switching during embryogenesis to repress recently duplicated genes and retrotransposons in somatic cells, highlighting the plasticity of Argonaute proteins and the need for more precise temporal characterization of Argonaute-small RNA interactions.
Collapse
Affiliation(s)
- Shihui Chen
- Department of Biological Sciences, University of Southern California, Los Angeles, CA 90089
| | - Carolyn M Phillips
- Department of Biological Sciences, University of Southern California, Los Angeles, CA 90089
| |
Collapse
|
3
|
Jin Q, Feng X, Hong M, Wang K, Chen X, Cheng J, Kuang Y, Si X, Xu M, Huang X, Guang S, Zhu C. Peri-centrosomal localization of small interfering RNAs in C. elegans. SCIENCE CHINA. LIFE SCIENCES 2025:10.1007/s11427-024-2818-7. [PMID: 39825209 DOI: 10.1007/s11427-024-2818-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/07/2024] [Accepted: 12/16/2024] [Indexed: 01/20/2025]
Abstract
The centrosome is the microtubule-organizing center and a crucial part of cell division. Centrosomal RNAs (cnRNAs) have been reported to enable precise spatiotemporal control of gene expression during cell division in many species. Whether and how cnRNAs exist in C. elegans are unclear. Here, using the nuclear RNAi Argonaute protein NRDE-3 as a reporter, we observed potential peri-centrosome localized small interfering (si)RNAs in C. elegans. NRDE-3 was previously shown to associate with pre-mRNAs and pre-rRNAs via a process involving the presence of complementary siRNAs. We generated a GFP-NRDE-3 knock-in transgene through CRISPR/Cas9 technology and observed that NRDE-3 formed peri-centrosomal foci neighboring the tubulin protein TBB-2, other centriole proteins and pericentriolar material (PCM) components in C. elegans embryos. The peri-centrosomal accumulation of NRDE-3 depends on RNA-dependent RNA polymerase (RdRP)-synthesized 22G siRNAs and the PAZ domain of NRDE-3, which is essential for siRNA binding. Mutation of eri-1, ergo-1, or drh-3 significantly increased the percentage of pericentrosome-enriched NRDE-3. At the metaphase of the cell cycle, NRDE-3 was enriched in both the peri-centrosomal region and the spindle. Moreover, the integrity of centriole proteins and pericentriolar material (PCM) components is also required for the peri-centrosomal accumulation of NRDE-3. Therefore, we concluded that siRNAs could accumulate in the pericentrosomal region in C. elegans and suggested that the peri-centrosomal region may also be a platform for RNAi-mediated gene regulation.
Collapse
Affiliation(s)
- Qile Jin
- Department of Obstetrics and Gynecology, The First Affiliated Hospital of USTC, The USTC RNA Institute, Ministry of Education Key Laboratory for Membraneless Organelles & Cellular Dynamics, Hefei National Research Center for Physical Sciences at the Microscale, Center for Advanced Interdisciplinary Science and Biomedicine of IHM, School of Life Sciences, Division of Life Sciences and Medicine, Biomedical Sciences and Health Laboratory of Anhui Province, University of Science and Technology of China, Hefei, 230027, China
| | - Xuezhu Feng
- School of Basic Medicine, Anhui Medical University, Hefei, 230032, China
| | - Minjie Hong
- Department of Obstetrics and Gynecology, The First Affiliated Hospital of USTC, The USTC RNA Institute, Ministry of Education Key Laboratory for Membraneless Organelles & Cellular Dynamics, Hefei National Research Center for Physical Sciences at the Microscale, Center for Advanced Interdisciplinary Science and Biomedicine of IHM, School of Life Sciences, Division of Life Sciences and Medicine, Biomedical Sciences and Health Laboratory of Anhui Province, University of Science and Technology of China, Hefei, 230027, China
| | - Ke Wang
- Department of Obstetrics and Gynecology, The First Affiliated Hospital of USTC, The USTC RNA Institute, Ministry of Education Key Laboratory for Membraneless Organelles & Cellular Dynamics, Hefei National Research Center for Physical Sciences at the Microscale, Center for Advanced Interdisciplinary Science and Biomedicine of IHM, School of Life Sciences, Division of Life Sciences and Medicine, Biomedical Sciences and Health Laboratory of Anhui Province, University of Science and Technology of China, Hefei, 230027, China
| | - Xiangyang Chen
- Department of Obstetrics and Gynecology, The First Affiliated Hospital of USTC, The USTC RNA Institute, Ministry of Education Key Laboratory for Membraneless Organelles & Cellular Dynamics, Hefei National Research Center for Physical Sciences at the Microscale, Center for Advanced Interdisciplinary Science and Biomedicine of IHM, School of Life Sciences, Division of Life Sciences and Medicine, Biomedical Sciences and Health Laboratory of Anhui Province, University of Science and Technology of China, Hefei, 230027, China
| | - Jiewei Cheng
- Department of Obstetrics and Gynecology, The First Affiliated Hospital of USTC, The USTC RNA Institute, Ministry of Education Key Laboratory for Membraneless Organelles & Cellular Dynamics, Hefei National Research Center for Physical Sciences at the Microscale, Center for Advanced Interdisciplinary Science and Biomedicine of IHM, School of Life Sciences, Division of Life Sciences and Medicine, Biomedical Sciences and Health Laboratory of Anhui Province, University of Science and Technology of China, Hefei, 230027, China
| | - Yan Kuang
- Department of Obstetrics and Gynecology, The First Affiliated Hospital of USTC, The USTC RNA Institute, Ministry of Education Key Laboratory for Membraneless Organelles & Cellular Dynamics, Hefei National Research Center for Physical Sciences at the Microscale, Center for Advanced Interdisciplinary Science and Biomedicine of IHM, School of Life Sciences, Division of Life Sciences and Medicine, Biomedical Sciences and Health Laboratory of Anhui Province, University of Science and Technology of China, Hefei, 230027, China
| | - Xiaoyue Si
- Department of Obstetrics and Gynecology, The First Affiliated Hospital of USTC, The USTC RNA Institute, Ministry of Education Key Laboratory for Membraneless Organelles & Cellular Dynamics, Hefei National Research Center for Physical Sciences at the Microscale, Center for Advanced Interdisciplinary Science and Biomedicine of IHM, School of Life Sciences, Division of Life Sciences and Medicine, Biomedical Sciences and Health Laboratory of Anhui Province, University of Science and Technology of China, Hefei, 230027, China
| | - Mingjing Xu
- Department of Obstetrics and Gynecology, The First Affiliated Hospital of USTC, The USTC RNA Institute, Ministry of Education Key Laboratory for Membraneless Organelles & Cellular Dynamics, Hefei National Research Center for Physical Sciences at the Microscale, Center for Advanced Interdisciplinary Science and Biomedicine of IHM, School of Life Sciences, Division of Life Sciences and Medicine, Biomedical Sciences and Health Laboratory of Anhui Province, University of Science and Technology of China, Hefei, 230027, China
| | - Xinya Huang
- Department of Obstetrics and Gynecology, The First Affiliated Hospital of USTC, The USTC RNA Institute, Ministry of Education Key Laboratory for Membraneless Organelles & Cellular Dynamics, Hefei National Research Center for Physical Sciences at the Microscale, Center for Advanced Interdisciplinary Science and Biomedicine of IHM, School of Life Sciences, Division of Life Sciences and Medicine, Biomedical Sciences and Health Laboratory of Anhui Province, University of Science and Technology of China, Hefei, 230027, China.
| | - Shouhong Guang
- Department of Obstetrics and Gynecology, The First Affiliated Hospital of USTC, The USTC RNA Institute, Ministry of Education Key Laboratory for Membraneless Organelles & Cellular Dynamics, Hefei National Research Center for Physical Sciences at the Microscale, Center for Advanced Interdisciplinary Science and Biomedicine of IHM, School of Life Sciences, Division of Life Sciences and Medicine, Biomedical Sciences and Health Laboratory of Anhui Province, University of Science and Technology of China, Hefei, 230027, China.
| | - Chengming Zhu
- Department of Obstetrics and Gynecology, The First Affiliated Hospital of USTC, The USTC RNA Institute, Ministry of Education Key Laboratory for Membraneless Organelles & Cellular Dynamics, Hefei National Research Center for Physical Sciences at the Microscale, Center for Advanced Interdisciplinary Science and Biomedicine of IHM, School of Life Sciences, Division of Life Sciences and Medicine, Biomedical Sciences and Health Laboratory of Anhui Province, University of Science and Technology of China, Hefei, 230027, China.
| |
Collapse
|
4
|
Lalit F, Jose A. Selecting genes for analysis using historically contingent progress: from RNA changes to protein-protein interactions. Nucleic Acids Res 2025; 53:gkae1246. [PMID: 39788543 PMCID: PMC11717427 DOI: 10.1093/nar/gkae1246] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2024] [Revised: 10/18/2024] [Accepted: 12/04/2024] [Indexed: 01/12/2025] Open
Abstract
Progress in biology has generated numerous lists of genes that share some property. But advancing from these lists of genes to understanding their roles is slow and unsystematic. Here we use RNA silencing in Caenorhabditis elegans to illustrate an approach for prioritizing genes for detailed study given limited resources. The partially subjective relationships between genes forged by both deduced functional relatedness and biased progress in the field were captured as mutual information and used to cluster genes that were frequently identified yet remain understudied. Some proteins encoded by these understudied genes are predicted to physically interact with known regulators of RNA silencing, suggesting feedback regulation. Predicted interactions with proteins that act in other processes and the clustering of studied genes among the most frequently perturbed suggest regulatory links connecting RNA silencing to other processes like the cell cycle and asymmetric cell division. Thus, among the gene products altered when a process is perturbed could be regulators of that process acting to restore homeostasis, which provides a way to use RNA sequencing to identify candidate protein-protein interactions. Together, the analysis of perturbed transcripts and potential interactions of the proteins they encode could help prioritize candidate regulators of any process.
Collapse
Affiliation(s)
- Farhaan Lalit
- University of Maryland, 4066 Campus Drive, College Park, MD 20742, USA
| | - Antony M Jose
- University of Maryland, 4066 Campus Drive, College Park, MD 20742, USA
| |
Collapse
|
5
|
Huang X, Feng X, Yan YH, Xu D, Wang K, Zhu C, Dong MQ, Huang X, Guang S, Chen X. Compartmentalized localization of perinuclear proteins within germ granules in C. elegans. Dev Cell 2024:S1534-5807(24)00738-X. [PMID: 39742661 DOI: 10.1016/j.devcel.2024.12.016] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2024] [Revised: 08/26/2024] [Accepted: 12/06/2024] [Indexed: 01/04/2025]
Abstract
Germ granules, or nuage, are RNA-rich condensates that are often docked on the cytoplasmic surface of germline nuclei. C. elegans perinuclear germ granules are composed of multiple subcompartments, including P granules, Mutator foci, Z granules, SIMR foci, P -bodies, and E granules. Although many perinuclear proteins have been identified, their precise localization within the subcompartments of the germ granule is still unclear. Here, we systematically labeled perinuclear proteins with fluorescent tags via CRISPR-Cas9 technology. Using this nematode strain library, we identified a series of proteins localized in Z or E granules and extended the characterization of the D granule. Finally, we found that the LOTUS domain protein MIP-1/EGGD-1 regulated the multiphase organization of the germ granule. Overall, our work identified the germ-granule architecture and redefined the compartmental localization of perinuclear proteins. Additionally, the library of genetically modified nematode strains will facilitate research on C. elegans germ granules.
Collapse
Affiliation(s)
- Xiaona Huang
- Department of Obstetrics and Gynecology, The First Affiliated Hospital of USTC, The USTC RNA Institute, Ministry of Education Key Laboratory for Membraneless Organelles & Cellular Dynamics, Hefei National Research Center for Physical Sciences at the Microscale, Center for Advanced Interdisciplinary Science and Biomedicine of IHM, School of Life Sciences, Division of Life Sciences and Medicine, Biomedical Sciences and Health Laboratory of Anhui Province, University of Science and Technology of China, Hefei 230027, China
| | - Xuezhu Feng
- School of Basic Medical Sciences, Anhui Medical University, Hefei 230032, China
| | - Yong-Hong Yan
- National Institute of Biological Sciences, Beijing 102206, China
| | - Demin Xu
- Department of Obstetrics and Gynecology, The First Affiliated Hospital of USTC, The USTC RNA Institute, Ministry of Education Key Laboratory for Membraneless Organelles & Cellular Dynamics, Hefei National Research Center for Physical Sciences at the Microscale, Center for Advanced Interdisciplinary Science and Biomedicine of IHM, School of Life Sciences, Division of Life Sciences and Medicine, Biomedical Sciences and Health Laboratory of Anhui Province, University of Science and Technology of China, Hefei 230027, China
| | - Ke Wang
- Department of Obstetrics and Gynecology, The First Affiliated Hospital of USTC, The USTC RNA Institute, Ministry of Education Key Laboratory for Membraneless Organelles & Cellular Dynamics, Hefei National Research Center for Physical Sciences at the Microscale, Center for Advanced Interdisciplinary Science and Biomedicine of IHM, School of Life Sciences, Division of Life Sciences and Medicine, Biomedical Sciences and Health Laboratory of Anhui Province, University of Science and Technology of China, Hefei 230027, China
| | - Chengming Zhu
- Department of Obstetrics and Gynecology, The First Affiliated Hospital of USTC, The USTC RNA Institute, Ministry of Education Key Laboratory for Membraneless Organelles & Cellular Dynamics, Hefei National Research Center for Physical Sciences at the Microscale, Center for Advanced Interdisciplinary Science and Biomedicine of IHM, School of Life Sciences, Division of Life Sciences and Medicine, Biomedical Sciences and Health Laboratory of Anhui Province, University of Science and Technology of China, Hefei 230027, China
| | - Meng-Qiu Dong
- National Institute of Biological Sciences, Beijing 102206, China
| | - Xinya Huang
- Department of Obstetrics and Gynecology, The First Affiliated Hospital of USTC, The USTC RNA Institute, Ministry of Education Key Laboratory for Membraneless Organelles & Cellular Dynamics, Hefei National Research Center for Physical Sciences at the Microscale, Center for Advanced Interdisciplinary Science and Biomedicine of IHM, School of Life Sciences, Division of Life Sciences and Medicine, Biomedical Sciences and Health Laboratory of Anhui Province, University of Science and Technology of China, Hefei 230027, China.
| | - Shouhong Guang
- Department of Obstetrics and Gynecology, The First Affiliated Hospital of USTC, The USTC RNA Institute, Ministry of Education Key Laboratory for Membraneless Organelles & Cellular Dynamics, Hefei National Research Center for Physical Sciences at the Microscale, Center for Advanced Interdisciplinary Science and Biomedicine of IHM, School of Life Sciences, Division of Life Sciences and Medicine, Biomedical Sciences and Health Laboratory of Anhui Province, University of Science and Technology of China, Hefei 230027, China.
| | - Xiangyang Chen
- Department of Obstetrics and Gynecology, The First Affiliated Hospital of USTC, The USTC RNA Institute, Ministry of Education Key Laboratory for Membraneless Organelles & Cellular Dynamics, Hefei National Research Center for Physical Sciences at the Microscale, Center for Advanced Interdisciplinary Science and Biomedicine of IHM, School of Life Sciences, Division of Life Sciences and Medicine, Biomedical Sciences and Health Laboratory of Anhui Province, University of Science and Technology of China, Hefei 230027, China.
| |
Collapse
|
6
|
Li M, Yang X, Zhang D, Tian Y, Jia ZC, Liu WH, Hao RR, Chen YS, Chen MX, Liu YG. A story of two kingdoms: unravelling the intricacies of protein phase separation in plants and animals. Crit Rev Biotechnol 2024:1-21. [PMID: 39592156 DOI: 10.1080/07388551.2024.2425989] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2024] [Revised: 08/17/2024] [Accepted: 10/20/2024] [Indexed: 11/28/2024]
Abstract
The biomolecular condensates (BCs) formed by proteins through phase separation provide the necessary space and raw materials for the orderly progression of cellular activities, and on this basis, various membraneless organelles (MLOs) are formed. The occurrence of eukaryotic phase separation is driven by multivalent interactions from intrinsically disordered regions (IDRs) and/or specific protein/nucleic acid binding domains and is regulated by various environmental factors. In plant and animal cells, the MLOs involved in gene expression regulation, stress response, and mitotic control display similar functions and mechanisms. In contrast, the phase separation related to reproductive development and immune regulation differs significantly between the two kingdoms owing to their distinct cell structures and nutritional patterns. In addition, animals and plants each exhibit unique protein phase separation activities, such as neural regulation and light signal response. By comparing the similarities and differences in the formation mechanism and functional regulation of known protein phase separation, we elucidated its importance in the evolution, differentiation, and environmental adaptation of both animals and plants. The significance of studying protein phase separation for enhancing biological quality of life has been further emphasized.
Collapse
Affiliation(s)
- Min Li
- State Key Laboratory of Wheat Improvement, College of Life Science, Shandong Agricultural University, Taian, China
| | - Xue Yang
- State Key Laboratory of Wheat Improvement, College of Life Science, Shandong Agricultural University, Taian, China
| | - Di Zhang
- Department of Biology, Hong Kong Baptist University, and State Key Laboratory of Agrobiotechnology, The Chinese University of Hong Kong, Shatin, Hong Kong
| | - Yuan Tian
- State Key Laboratory of Wheat Improvement, College of Life Science, Shandong Agricultural University, Taian, China
- State Key Laboratory of Tree Genetics and Breeding, Co-Innovation Center for Sustainable Forestry in Southern China, Key Laboratory of State Forestry and Grassland Administration on Subtropical Forest Biodiversity Conservation, College of Life Sciences, Nanjing Forestry University, Nanjing, China
| | - Zi-Chang Jia
- State Key Laboratory of Wheat Improvement, College of Life Science, Shandong Agricultural University, Taian, China
| | - Wen-Hui Liu
- State Key Laboratory of Wheat Improvement, College of Life Science, Shandong Agricultural University, Taian, China
| | - Rui-Rui Hao
- State Key Laboratory of Tree Genetics and Breeding, Co-Innovation Center for Sustainable Forestry in Southern China, Key Laboratory of State Forestry and Grassland Administration on Subtropical Forest Biodiversity Conservation, College of Life Sciences, Nanjing Forestry University, Nanjing, China
| | - Yun-Sheng Chen
- Clinical Laboratory, Shenzhen Children's Hospital, Shenzhen, China
| | - Mo-Xian Chen
- State Key Laboratory of Tree Genetics and Breeding, Co-Innovation Center for Sustainable Forestry in Southern China, Key Laboratory of State Forestry and Grassland Administration on Subtropical Forest Biodiversity Conservation, College of Life Sciences, Nanjing Forestry University, Nanjing, China
| | - Ying-Gao Liu
- State Key Laboratory of Wheat Improvement, College of Life Science, Shandong Agricultural University, Taian, China
| |
Collapse
|
7
|
Feng X, Guang S. Functions and applications of RNA interference and small regulatory RNAs. Acta Biochim Biophys Sin (Shanghai) 2024; 57:119-130. [PMID: 39578714 PMCID: PMC11802346 DOI: 10.3724/abbs.2024196] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2024] [Accepted: 09/03/2024] [Indexed: 11/24/2024] Open
Abstract
Small regulatory RNAs play a variety of crucial roles in eukaryotes, influencing gene regulation, developmental timing, antiviral defense, and genome integrity via a process termed RNA interference (RNAi). This process involves Argonaute/small RNA (AGO/sRNA) complexes that target transcripts via sequence complementarity and modulate gene expression and epigenetic modifications. RNAi is a highly conserved gene regulatory phenomenon that recognizes self- and non-self nucleic acids, thereby defending against invasive sequences. Since its discovery, RNAi has been widely applied in functional genomic studies and a range of practical applications. In this review, we focus on the current understanding of the biological roles of the RNAi pathway in transposon silencing, fertility, developmental regulation, immunity, stress responses, and acquired transgenerational inheritance. Additionally, we provide an overview of the applications of RNAi technology in biomedical research, agriculture, and therapeutics.
Collapse
Affiliation(s)
- Xuezhu Feng
- School of Basic Medical SciencesAnhui Medical UniversityHefei230032China
| | - Shouhong Guang
- Department of Obstetrics and Gynecologythe First Affiliated Hospital of USTCThe USTC RNA InstituteMinistry of Education Key Laboratory for Membraneless Organelles & Cellular DynamicsHefei National Research Center for Physical Sciences at the MicroscaleCenter for Advanced Interdisciplinary Science and Biomedicine of IHMSchool of Life SciencesDivision of Life Sciences and MedicineBiomedical Sciences and Health Laboratory of Anhui ProvinceUniversity of Science and Technology of ChinaHefei230027China
| |
Collapse
|
8
|
Roschdi S, Montemayor E, Vivek R, Bingman C, Butcher S. Self-assembly and condensation of intermolecular poly(UG) RNA quadruplexes. Nucleic Acids Res 2024; 52:12582-12591. [PMID: 39373474 PMCID: PMC11551768 DOI: 10.1093/nar/gkae870] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2024] [Revised: 09/17/2024] [Accepted: 09/24/2024] [Indexed: 10/08/2024] Open
Abstract
Poly(UG) or 'pUG' dinucleotide repeats are highly abundant sequences in eukaryotic RNAs. In Caenorhabditis elegans, pUGs are added to RNA 3' ends to direct gene silencing within Mutator foci, a germ granule condensate. Here, we show that pUG RNAs efficiently self-assemble into gel condensates through quadruplex (G4) interactions. Short pUG sequences form right-handed intermolecular G4s (pUG G4s), while longer pUGs form left-handed intramolecular G4s (pUG folds). We determined a 1.05 Å crystal structure of an intermolecular pUG G4, which reveals an eight stranded G4 dimer involving 48 nucleotides, 7 different G and U quartet conformations, 7 coordinated potassium ions, 8 sodium ions and a buried water molecule. A comparison of the intermolecular pUG G4 and intramolecular pUG fold structures provides insights into the molecular basis for G4 handedness and illustrates how a simple dinucleotide repeat sequence can form complex structures with diverse topologies.
Collapse
Affiliation(s)
- Saeed Roschdi
- Department of Biochemistry, University of Wisconsin-Madison, Madison, WI 53706, USA
| | - Eric J Montemayor
- Department of Biochemistry, University of Wisconsin-Madison, Madison, WI 53706, USA
| | - Rahul Vivek
- Department of Biochemistry, University of Wisconsin-Madison, Madison, WI 53706, USA
| | - Craig A Bingman
- Department of Biochemistry, University of Wisconsin-Madison, Madison, WI 53706, USA
| | - Samuel E Butcher
- Department of Biochemistry, University of Wisconsin-Madison, Madison, WI 53706, USA
| |
Collapse
|
9
|
Zhao C, Cai S, Shi R, Li X, Deng B, Li R, Yang S, Huang J, Liang Y, Lu P, Yuan Z, Jia H, Jiang Z, Zhang X, Kennedy S, Wan G. HERD-1 mediates multiphase condensate immiscibility to regulate small RNA-driven transgenerational epigenetic inheritance. Nat Cell Biol 2024; 26:1958-1970. [PMID: 39354132 DOI: 10.1038/s41556-024-01514-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2023] [Accepted: 08/23/2024] [Indexed: 10/03/2024]
Abstract
Biomolecular condensates, such as the nucleolus, stress granules/processing bodies and germ granules, are multiphase assemblages whose formation mechanisms and significance remain poorly understood. Here we identify protein constituents of the spatiotemporally ordered P, Z and M multiphase condensates in Caenorhabditis elegans germ granules using optimized TurboID-mediated proximity biotin labelling. These include 462, 41 and 86 proteins localizing to P, Z and M condensates, respectively, of which 522 were previously unknown protein constituents. Each condensate's proteins are enriched for distinct classes of structured and intrinsically disordered domains, suggesting divergent functions and assembly mechanisms. Through a functional screen, we identify a germ granule protein, HERD-1, which prevents the mixing of P, Z and M condensates. Mixing in herd-1 mutants correlates with disorganization of germline small RNA pathways and prolonged epigenetic inheritance of RNA interference-induced gene silencing. Forced mixing of these condensate components using a nanobody with specific binding activity against green fluorescent protein also extends epigenetic inheritance. We propose that active maintenance of germ granule immiscibility helps to organize and regulate small RNA-driven transgenerational epigenetic inheritance in C. elegans.
Collapse
Affiliation(s)
- Changfeng Zhao
- Guangdong Province Key Laboratory of Pharmaceutical Functional Genes, MOE Key Laboratory of Gene Function and Regulation, State Key Laboratory of Biocontrol, School of Life Sciences, Sun Yat-sen University, Guangzhou, China
- Innovation Center for Evolutionary Synthetic Biology, School of Life Sciences, Sun Yat-sen University, Guangzhou, China
| | - Shiyu Cai
- Guangdong Province Key Laboratory of Pharmaceutical Functional Genes, MOE Key Laboratory of Gene Function and Regulation, State Key Laboratory of Biocontrol, School of Life Sciences, Sun Yat-sen University, Guangzhou, China
- Innovation Center for Evolutionary Synthetic Biology, School of Life Sciences, Sun Yat-sen University, Guangzhou, China
| | - Ruona Shi
- CAS Key Laboratory of Regenerative Biology, Guangdong Provincial Key Laboratory of Stem Cell and Regenerative Medicine, GIBH-HKU Guangdong-Hong Kong Stem Cell and Regenerative Medicine Research Centre, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, China
- Center for Cell Lineage and Atlas, Bioland Laboratory, Guangzhou Regenerative Medicine and Health Guangdong Laboratory, Guangzhou, China
| | - Xinru Li
- Guangdong Province Key Laboratory of Pharmaceutical Functional Genes, MOE Key Laboratory of Gene Function and Regulation, State Key Laboratory of Biocontrol, School of Life Sciences, Sun Yat-sen University, Guangzhou, China
- Innovation Center for Evolutionary Synthetic Biology, School of Life Sciences, Sun Yat-sen University, Guangzhou, China
| | - Boyuan Deng
- Guangdong Province Key Laboratory of Pharmaceutical Functional Genes, MOE Key Laboratory of Gene Function and Regulation, State Key Laboratory of Biocontrol, School of Life Sciences, Sun Yat-sen University, Guangzhou, China
- Innovation Center for Evolutionary Synthetic Biology, School of Life Sciences, Sun Yat-sen University, Guangzhou, China
| | - Ruofei Li
- Guangdong Province Key Laboratory of Pharmaceutical Functional Genes, MOE Key Laboratory of Gene Function and Regulation, State Key Laboratory of Biocontrol, School of Life Sciences, Sun Yat-sen University, Guangzhou, China
| | - Shuhan Yang
- Guangdong Province Key Laboratory of Pharmaceutical Functional Genes, MOE Key Laboratory of Gene Function and Regulation, State Key Laboratory of Biocontrol, School of Life Sciences, Sun Yat-sen University, Guangzhou, China
- Innovation Center for Evolutionary Synthetic Biology, School of Life Sciences, Sun Yat-sen University, Guangzhou, China
| | - Jing Huang
- Guangdong Province Key Laboratory of Pharmaceutical Functional Genes, MOE Key Laboratory of Gene Function and Regulation, State Key Laboratory of Biocontrol, School of Life Sciences, Sun Yat-sen University, Guangzhou, China
- Innovation Center for Evolutionary Synthetic Biology, School of Life Sciences, Sun Yat-sen University, Guangzhou, China
| | - Yonglin Liang
- Guangdong Province Key Laboratory of Pharmaceutical Functional Genes, MOE Key Laboratory of Gene Function and Regulation, State Key Laboratory of Biocontrol, School of Life Sciences, Sun Yat-sen University, Guangzhou, China
- Innovation Center for Evolutionary Synthetic Biology, School of Life Sciences, Sun Yat-sen University, Guangzhou, China
| | - Pu Lu
- Guangdong Province Key Laboratory of Pharmaceutical Functional Genes, MOE Key Laboratory of Gene Function and Regulation, State Key Laboratory of Biocontrol, School of Life Sciences, Sun Yat-sen University, Guangzhou, China
- Innovation Center for Evolutionary Synthetic Biology, School of Life Sciences, Sun Yat-sen University, Guangzhou, China
| | - Zhongping Yuan
- Guangdong Province Key Laboratory of Pharmaceutical Functional Genes, MOE Key Laboratory of Gene Function and Regulation, State Key Laboratory of Biocontrol, School of Life Sciences, Sun Yat-sen University, Guangzhou, China
- Innovation Center for Evolutionary Synthetic Biology, School of Life Sciences, Sun Yat-sen University, Guangzhou, China
| | - Haoxiang Jia
- Guangdong Province Key Laboratory of Pharmaceutical Functional Genes, MOE Key Laboratory of Gene Function and Regulation, State Key Laboratory of Biocontrol, School of Life Sciences, Sun Yat-sen University, Guangzhou, China
- Innovation Center for Evolutionary Synthetic Biology, School of Life Sciences, Sun Yat-sen University, Guangzhou, China
| | - Zongjin Jiang
- Guangdong Province Key Laboratory of Pharmaceutical Functional Genes, MOE Key Laboratory of Gene Function and Regulation, State Key Laboratory of Biocontrol, School of Life Sciences, Sun Yat-sen University, Guangzhou, China
| | - Xiaofei Zhang
- CAS Key Laboratory of Regenerative Biology, Guangdong Provincial Key Laboratory of Stem Cell and Regenerative Medicine, GIBH-HKU Guangdong-Hong Kong Stem Cell and Regenerative Medicine Research Centre, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, China
- Center for Cell Lineage and Atlas, Bioland Laboratory, Guangzhou Regenerative Medicine and Health Guangdong Laboratory, Guangzhou, China
| | - Scott Kennedy
- Department of Genetics, Blavatnik Institute at Harvard Medical School, Boston, MA, USA
| | - Gang Wan
- Guangdong Province Key Laboratory of Pharmaceutical Functional Genes, MOE Key Laboratory of Gene Function and Regulation, State Key Laboratory of Biocontrol, School of Life Sciences, Sun Yat-sen University, Guangzhou, China.
- Innovation Center for Evolutionary Synthetic Biology, School of Life Sciences, Sun Yat-sen University, Guangzhou, China.
| |
Collapse
|
10
|
Kelley LH, Caldas IV, Sullenberger MT, Yongblah KE, Niazi AM, Iyer A, Li Y, Tran PM, Valen E, Ahmed-Braimah YH, Maine EM. Poly(U) polymerase activity in Caenorhabditis elegans regulates abundance and tailing of sRNA and mRNA. Genetics 2024; 228:iyae120. [PMID: 39067069 PMCID: PMC11457939 DOI: 10.1093/genetics/iyae120] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2024] [Revised: 07/09/2024] [Accepted: 07/10/2024] [Indexed: 07/30/2024] Open
Abstract
Terminal nucleotidyltransferases add nucleotides to the 3' end of RNA to modify their stability and function. In Caenorhabditis elegans, the terminal uridyltransferases/poly(U) polymerases PUP-1 (aka CID-1, CDE-1), PUP-2, and PUP-3 affect germline identity, survival, and development. Here, we identify small RNA (sRNA) and mRNA targets of these PUPs and of a fourth predicted poly(U) polymerase, F43E2.1/PUP-4. Using genetic and RNA sequencing approaches, we identify RNA targets of each PUP and the U-tail frequency and length of those targets. At the whole organism level, PUP-1 is responsible for most sRNA U-tailing, and other PUPs contribute to modifying discrete subsets of sRNAs. Moreover, the expression of PUP-2, PUP-3, and especially PUP-4 limits uridylation on some sRNAs. The relationship between uridylation status and sRNA abundance suggests that U-tailing can have a negative or positive effect on abundance depending on context. sRNAs modified by PUP activity primarily target mRNAs that are ubiquitously expressed or most highly expressed in the germline. mRNA data obtained with a Nanopore-based method reveal that the addition of U-tails to nonadenylated mRNA is substantially reduced in the absence of PUP-3. Overall, this work identifies PUP RNA targets, defines the effect of uridylation loss on RNA abundance, and reveals the complexity of PUP regulation in C. elegans development.
Collapse
Affiliation(s)
- Leanne H Kelley
- Department of Biology, Syracuse University, 107 College Place, Syracuse, NY 13244, USA
| | - Ian V Caldas
- Department of Biology, Syracuse University, 107 College Place, Syracuse, NY 13244, USA
| | | | - Kevin E Yongblah
- Department of Biology, Syracuse University, 107 College Place, Syracuse, NY 13244, USA
| | - Adnan M Niazi
- Computational Biology Unit, Department of Informatics, University of Bergen, 5008 Bergen, Norway
| | - Anoop Iyer
- Department of Biology, Syracuse University, 107 College Place, Syracuse, NY 13244, USA
| | - Yini Li
- Department of Biology, Syracuse University, 107 College Place, Syracuse, NY 13244, USA
| | - Patrick Minty Tran
- Department of Biology, Syracuse University, 107 College Place, Syracuse, NY 13244, USA
| | - Eivind Valen
- Computational Biology Unit, Department of Informatics, University of Bergen, 5008 Bergen, Norway
| | - Yasir H Ahmed-Braimah
- Department of Biology, Syracuse University, 107 College Place, Syracuse, NY 13244, USA
| | - Eleanor M Maine
- Department of Biology, Syracuse University, 107 College Place, Syracuse, NY 13244, USA
| |
Collapse
|
11
|
Busetto V, Pshanichnaya L, Lichtenberger R, Hann S, Ketting R, Falk S. MUT-7 exoribonuclease activity and localization are mediated by an ancient domain. Nucleic Acids Res 2024; 52:9076-9091. [PMID: 39188014 PMCID: PMC11347159 DOI: 10.1093/nar/gkae610] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2024] [Revised: 06/18/2024] [Accepted: 06/28/2024] [Indexed: 08/28/2024] Open
Abstract
The MUT-7 family of 3'-5' exoribonucleases is evolutionarily conserved across the animal kingdom and plays essential roles in small RNA production in the germline. Most MUT-7 homologues carry a C-terminal domain of unknown function named MUT7-C appended to the exoribonuclease domain. Our analysis shows that the MUT7-C is evolutionary ancient, as a minimal version of the domain exists as an individual protein in prokaryotes. In animals, MUT7-C has acquired an insertion that diverged during evolution, expanding its functions. Caenorhabditis elegans MUT-7 contains a specific insertion within MUT7-C, which allows binding to MUT-8 and, consequently, MUT-7 recruitment to germ granules. In addition, in C. elegans and human MUT-7, the MUT7-C domain contributes to RNA binding and is thereby crucial for ribonuclease activity. This RNA-binding function most likely represents the ancestral function of the MUT7-C domain. Overall, this study sheds light on MUT7-C and assigns two functions to this previously uncharacterized domain.
Collapse
Affiliation(s)
- Virginia Busetto
- Max Perutz Labs, Vienna Biocenter Campus (VBC), Dr.-Bohr-Gasse 9, 1030 Vienna, Austria
- Department of Structural and Computational Biology, Max Perutz Labs, University of Vienna, Campus Vienna Biocenter 5, 1030 Vienna, Austria
| | - Lizaveta Pshanichnaya
- Biology of Non-coding RNA Group, Institute of Molecular Biology, Ackermannweg 4, 55128 Mainz, Germany
- International PhD Programme on Gene Regulation, Epigenetics & Genome Stability, Mainz, Germany
| | - Raffael Lichtenberger
- Max Perutz Labs, Vienna Biocenter Campus (VBC), Dr.-Bohr-Gasse 9, 1030 Vienna, Austria
- Department of Structural and Computational Biology, Max Perutz Labs, University of Vienna, Campus Vienna Biocenter 5, 1030 Vienna, Austria
| | - Stephan Hann
- Institute of Analytical Chemistry, Department of Chemistry, University of Natural Resources and Life Sciences, Vienna, Muthgasse 18, 1190 Vienna, Austria
| | - René F Ketting
- Biology of Non-coding RNA Group, Institute of Molecular Biology, Ackermannweg 4, 55128 Mainz, Germany
- Institute of Developmental Biology and Neurobiology, Johannes Gutenberg University, 55099Mainz, Germany
| | - Sebastian Falk
- Max Perutz Labs, Vienna Biocenter Campus (VBC), Dr.-Bohr-Gasse 9, 1030 Vienna, Austria
- Department of Structural and Computational Biology, Max Perutz Labs, University of Vienna, Campus Vienna Biocenter 5, 1030 Vienna, Austria
| |
Collapse
|
12
|
Knudsen-Palmer DR, Raman P, Ettefa F, De Ravin L, Jose AM. Target-specific requirements for RNA interference can arise through restricted RNA amplification despite the lack of specialized pathways. eLife 2024; 13:RP97487. [PMID: 39161220 PMCID: PMC11335349 DOI: 10.7554/elife.97487] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/21/2024] Open
Abstract
Since double-stranded RNA (dsRNA) is effective for silencing a wide variety of genes, all genes are typically considered equivalent targets for such RNA interference (RNAi). Yet, loss of some regulators of RNAi in the nematode Caenorhabditis elegans can selectively impair the silencing of some genes. Here, we show that such selective requirements can be explained by an intersecting network of regulators acting on genes with differences in their RNA metabolism. In this network, the Maelstrom domain-containing protein RDE-10, the intrinsically disordered protein MUT-16, and the Argonaute protein NRDE-3 work together so that any two are required for silencing one somatic gene, but each is singly required for silencing another somatic gene, where only the requirement for NRDE-3 can be overcome by enhanced dsRNA processing. Quantitative models and their exploratory simulations led us to find that (1) changing cis-regulatory elements of the target gene can reduce the dependence on NRDE-3, (2) animals can recover from silencing in non-dividing cells, and (3) cleavage and tailing of mRNAs with UG dinucleotides, which makes them templates for amplifying small RNAs, are enriched within 'pUG zones' matching the dsRNA. Similar crosstalk between pathways and restricted amplification could result in apparently selective silencing by endogenous RNAs.
Collapse
Affiliation(s)
- Daphne R Knudsen-Palmer
- Department of Cell Biology and Molecular Genetics, Biological Sciences Graduate Program, University of MarylandCollege ParkUnited States
| | - Pravrutha Raman
- Department of Cell Biology and Molecular Genetics, Biological Sciences Graduate Program, University of MarylandCollege ParkUnited States
| | - Farida Ettefa
- Department of Cell Biology and Molecular Genetics, Biological Sciences Graduate Program, University of MarylandCollege ParkUnited States
| | - Laura De Ravin
- Department of Cell Biology and Molecular Genetics, Biological Sciences Graduate Program, University of MarylandCollege ParkUnited States
| | - Antony M Jose
- Department of Cell Biology and Molecular Genetics, Biological Sciences Graduate Program, University of MarylandCollege ParkUnited States
| |
Collapse
|
13
|
Chen S, Phillips CM. Silencing of a NRDE-3 transgene in C. elegans germ cells and early embryos is mediated by the RNAi pathway. MICROPUBLICATION BIOLOGY 2024; 2024:10.17912/micropub.biology.001308. [PMID: 39220141 PMCID: PMC11364987 DOI: 10.17912/micropub.biology.001308] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Figures] [Subscribe] [Scholar Register] [Received: 07/30/2024] [Revised: 08/16/2024] [Accepted: 08/16/2024] [Indexed: 09/04/2024]
Abstract
Transgenes are highly susceptible to gene silencing in the C. elegans germline. Here, we examine the expression of the nuclear Argonaute protein NRDE-3 , comparing two GFP::NRDE-3 strains, one constructed by bombardment and one by CRISPR. We found that the GFP::NRDE-3 strain constructed by bombardment displays transgene silencing in germline and early embryos and that NRDE-3 expression can be restored in a rde-3 mutant, which disrupts the RNAi pathway. This finding reveals that NRDE-3 is not a soma-specific Argonaute protein and is, in fact, expressed in the proximal germline and early embryos.
Collapse
Affiliation(s)
- Shihui Chen
- Biological Sciences, University of Southern California, Los Angeles, CA, United States
| | - Carolyn M Phillips
- Biological Sciences, University of Southern California, Los Angeles, CA, United States
| |
Collapse
|
14
|
Kulikova DA, Bespalova AV, Zelentsova ES, Evgen'ev MB, Funikov SY. Epigenetic Phenomenon of Paramutation in Plants and Animals. BIOCHEMISTRY. BIOKHIMIIA 2024; 89:1429-1450. [PMID: 39245454 DOI: 10.1134/s0006297924080054] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/28/2024] [Revised: 06/17/2024] [Accepted: 06/27/2024] [Indexed: 09/10/2024]
Abstract
The phenomenon of paramutation describes the interaction between two alleles, in which one allele initiates inherited epigenetic conversion of another allele without affecting the DNA sequence. Epigenetic transformations due to paramutation are accompanied by the change in DNA and/or histone methylation patterns, affecting gene expression. Studies of paramutation in plants and animals have identified small non-coding RNAs as the main effector molecules required for the initiation of epigenetic changes in gene loci. Due to the fact that small non-coding RNAs can be transmitted across generations, the paramutation effect can be inherited and maintained in a population. In this review, we will systematically analyze examples of paramutation in different living systems described so far, highlighting common and different molecular and genetic aspects of paramutation between organisms, and considering the role of this phenomenon in evolution.
Collapse
Affiliation(s)
- Dina A Kulikova
- Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, Moscow, 119991, Russia
- Koltzov Institute of Developmental Biology, Russian Academy of Sciences, Moscow, 119334, Russia
| | - Alina V Bespalova
- Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, Moscow, 119991, Russia
| | - Elena S Zelentsova
- Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, Moscow, 119991, Russia
| | - Mikhail B Evgen'ev
- Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, Moscow, 119991, Russia
| | - Sergei Yu Funikov
- Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, Moscow, 119991, Russia.
| |
Collapse
|
15
|
Chen X, Wang K, Mufti FUD, Xu D, Zhu C, Huang X, Zeng C, Jin Q, Huang X, Yan YH, Dong MQ, Feng X, Shi Y, Kennedy S, Guang S. Germ granule compartments coordinate specialized small RNA production. Nat Commun 2024; 15:5799. [PMID: 38987544 PMCID: PMC11236994 DOI: 10.1038/s41467-024-50027-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2023] [Accepted: 06/26/2024] [Indexed: 07/12/2024] Open
Abstract
Germ granules are biomolecular condensates present in most animal germ cells. One function of germ granules is to help maintain germ cell totipotency by organizing mRNA regulatory machinery, including small RNA-based gene regulatory pathways. The C. elegans germ granule is compartmentalized into multiple subcompartments whose biological functions are largely unknown. Here, we identify an uncharted subcompartment of the C. elegans germ granule, which we term the E granule. The E granule is nonrandomly positioned within the germ granule. We identify five proteins that localize to the E granule, including the RNA-dependent RNA polymerase (RdRP) EGO-1, the Dicer-related helicase DRH-3, the Tudor domain-containing protein EKL-1, and two intrinsically disordered proteins, EGC-1 and ELLI-1. Localization of EGO-1 to the E granule enables synthesis of a specialized class of 22G RNAs, which derive exclusively from 5' regions of a subset of germline-expressed mRNAs. Defects in E granule assembly elicit disordered production of endogenous siRNAs, which disturbs fertility and the RNAi response. Our results define a distinct subcompartment of the C. elegans germ granule and suggest that one function of germ granule compartmentalization is to facilitate the localized production of specialized classes of small regulatory RNAs.
Collapse
Affiliation(s)
- Xiangyang Chen
- Department of Obstetrics and Gynecology, The First Affiliated Hospital of USTC, The USTC RNA Institute, Ministry of Education Key Laboratory for Membraneless Organelles & Cellular Dynamics, Hefei National Research Center for Physical Sciences at the Microscale, Center for Advanced Interdisciplinary Science and Biomedicine of IHM, School of Life Sciences, Division of Life Sciences and Medicine, Biomedical Sciences and Health Laboratory of Anhui Province, University of Science and Technology of China, Hefei, Anhui, 230027, China
| | - Ke Wang
- Department of Obstetrics and Gynecology, The First Affiliated Hospital of USTC, The USTC RNA Institute, Ministry of Education Key Laboratory for Membraneless Organelles & Cellular Dynamics, Hefei National Research Center for Physical Sciences at the Microscale, Center for Advanced Interdisciplinary Science and Biomedicine of IHM, School of Life Sciences, Division of Life Sciences and Medicine, Biomedical Sciences and Health Laboratory of Anhui Province, University of Science and Technology of China, Hefei, Anhui, 230027, China
| | - Farees Ud Din Mufti
- Department of Obstetrics and Gynecology, The First Affiliated Hospital of USTC, The USTC RNA Institute, Ministry of Education Key Laboratory for Membraneless Organelles & Cellular Dynamics, Hefei National Research Center for Physical Sciences at the Microscale, Center for Advanced Interdisciplinary Science and Biomedicine of IHM, School of Life Sciences, Division of Life Sciences and Medicine, Biomedical Sciences and Health Laboratory of Anhui Province, University of Science and Technology of China, Hefei, Anhui, 230027, China
| | - Demin Xu
- Department of Obstetrics and Gynecology, The First Affiliated Hospital of USTC, The USTC RNA Institute, Ministry of Education Key Laboratory for Membraneless Organelles & Cellular Dynamics, Hefei National Research Center for Physical Sciences at the Microscale, Center for Advanced Interdisciplinary Science and Biomedicine of IHM, School of Life Sciences, Division of Life Sciences and Medicine, Biomedical Sciences and Health Laboratory of Anhui Province, University of Science and Technology of China, Hefei, Anhui, 230027, China
| | - Chengming Zhu
- Department of Obstetrics and Gynecology, The First Affiliated Hospital of USTC, The USTC RNA Institute, Ministry of Education Key Laboratory for Membraneless Organelles & Cellular Dynamics, Hefei National Research Center for Physical Sciences at the Microscale, Center for Advanced Interdisciplinary Science and Biomedicine of IHM, School of Life Sciences, Division of Life Sciences and Medicine, Biomedical Sciences and Health Laboratory of Anhui Province, University of Science and Technology of China, Hefei, Anhui, 230027, China
| | - Xinya Huang
- Department of Obstetrics and Gynecology, The First Affiliated Hospital of USTC, The USTC RNA Institute, Ministry of Education Key Laboratory for Membraneless Organelles & Cellular Dynamics, Hefei National Research Center for Physical Sciences at the Microscale, Center for Advanced Interdisciplinary Science and Biomedicine of IHM, School of Life Sciences, Division of Life Sciences and Medicine, Biomedical Sciences and Health Laboratory of Anhui Province, University of Science and Technology of China, Hefei, Anhui, 230027, China
| | - Chenming Zeng
- Department of Obstetrics and Gynecology, The First Affiliated Hospital of USTC, The USTC RNA Institute, Ministry of Education Key Laboratory for Membraneless Organelles & Cellular Dynamics, Hefei National Research Center for Physical Sciences at the Microscale, Center for Advanced Interdisciplinary Science and Biomedicine of IHM, School of Life Sciences, Division of Life Sciences and Medicine, Biomedical Sciences and Health Laboratory of Anhui Province, University of Science and Technology of China, Hefei, Anhui, 230027, China
| | - Qile Jin
- Department of Obstetrics and Gynecology, The First Affiliated Hospital of USTC, The USTC RNA Institute, Ministry of Education Key Laboratory for Membraneless Organelles & Cellular Dynamics, Hefei National Research Center for Physical Sciences at the Microscale, Center for Advanced Interdisciplinary Science and Biomedicine of IHM, School of Life Sciences, Division of Life Sciences and Medicine, Biomedical Sciences and Health Laboratory of Anhui Province, University of Science and Technology of China, Hefei, Anhui, 230027, China
| | - Xiaona Huang
- Department of Obstetrics and Gynecology, The First Affiliated Hospital of USTC, The USTC RNA Institute, Ministry of Education Key Laboratory for Membraneless Organelles & Cellular Dynamics, Hefei National Research Center for Physical Sciences at the Microscale, Center for Advanced Interdisciplinary Science and Biomedicine of IHM, School of Life Sciences, Division of Life Sciences and Medicine, Biomedical Sciences and Health Laboratory of Anhui Province, University of Science and Technology of China, Hefei, Anhui, 230027, China
| | - Yong-Hong Yan
- National Institute of Biological Sciences, Beijing, 102206, China
| | - Meng-Qiu Dong
- National Institute of Biological Sciences, Beijing, 102206, China
| | - Xuezhu Feng
- School of Basic Medicine, Anhui Medical University, Hefei, China.
| | - Yunyu Shi
- Department of Obstetrics and Gynecology, The First Affiliated Hospital of USTC, The USTC RNA Institute, Ministry of Education Key Laboratory for Membraneless Organelles & Cellular Dynamics, Hefei National Research Center for Physical Sciences at the Microscale, Center for Advanced Interdisciplinary Science and Biomedicine of IHM, School of Life Sciences, Division of Life Sciences and Medicine, Biomedical Sciences and Health Laboratory of Anhui Province, University of Science and Technology of China, Hefei, Anhui, 230027, China.
| | - Scott Kennedy
- Department of Genetics, Blavatnik Institute at Harvard Medical School, Boston, MA, 02115, USA.
| | - Shouhong Guang
- Department of Obstetrics and Gynecology, The First Affiliated Hospital of USTC, The USTC RNA Institute, Ministry of Education Key Laboratory for Membraneless Organelles & Cellular Dynamics, Hefei National Research Center for Physical Sciences at the Microscale, Center for Advanced Interdisciplinary Science and Biomedicine of IHM, School of Life Sciences, Division of Life Sciences and Medicine, Biomedical Sciences and Health Laboratory of Anhui Province, University of Science and Technology of China, Hefei, Anhui, 230027, China.
- CAS Center for Excellence in Molecular Cell Science, Chinese Academy of Sciences, Hefei, Anhui, 230027, China.
| |
Collapse
|
16
|
Knudsen-Palmer DR, Raman P, Ettefa F, De Ravin L, Jose AM. Target-specific requirements for RNA interference can arise through restricted RNA amplification despite the lack of specialized pathways. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2023.02.07.527351. [PMID: 36798330 PMCID: PMC9934570 DOI: 10.1101/2023.02.07.527351] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 02/11/2023]
Abstract
Since double-stranded RNA (dsRNA) is effective for silencing a wide variety of genes, all genes are typically considered equivalent targets for such RNA interference (RNAi). Yet, loss of some regulators of RNAi in the nematode C. elegans can selectively impair the silencing of some genes. Here we show that such selective requirements can be explained by an intersecting network of regulators acting on genes with differences in their RNA metabolism. In this network, the Maelstrom domain-containing protein RDE-10, the intrinsically disordered protein MUT-16, and the Argonaute protein NRDE-3 work together so that any two are required for silencing one somatic gene, but each is singly required for silencing another somatic gene, where only the requirement for NRDE-3 can be overcome by enhanced dsRNA processing. Quantitative models and their exploratory simulations led us to find that (1) changing cis-regulatory elements of the target gene can reduce the dependence on NRDE-3, (2) animals can recover from silencing in non-dividing cells and (3) cleavage and tailing of mRNAs with UG dinucleotides, which makes them templates for amplifying small RNAs, is enriched within 'pUG zones' matching the dsRNA. Similar crosstalk between pathways and restricted amplification could result in apparently selective silencing by endogenous RNAs.
Collapse
Affiliation(s)
- Daphne R. Knudsen-Palmer
- Department of Cell Biology and Molecular Genetics, University of Maryland, College Park, USA. Biological Sciences Graduate Program, University of Maryland, College Park, USA
| | - Pravrutha Raman
- Department of Cell Biology and Molecular Genetics, University of Maryland, College Park, USA. Biological Sciences Graduate Program, University of Maryland, College Park, USA
- Current address: Division of Basic Sciences, Fred Hutchinson Cancer Research Center, Seattle, WA, USA
| | - Farida Ettefa
- Department of Cell Biology and Molecular Genetics, University of Maryland, College Park, USA. Biological Sciences Graduate Program, University of Maryland, College Park, USA
- Current address: Institute for Systems Genetics, New York University School of Medicine, New York, NY, USA
| | - Laura De Ravin
- Department of Cell Biology and Molecular Genetics, University of Maryland, College Park, USA. Biological Sciences Graduate Program, University of Maryland, College Park, USA
| | - Antony M. Jose
- Department of Cell Biology and Molecular Genetics, University of Maryland, College Park, USA. Biological Sciences Graduate Program, University of Maryland, College Park, USA
| |
Collapse
|
17
|
Jose AM. Heritable epigenetic changes are constrained by the dynamics of regulatory architectures. eLife 2024; 12:RP92093. [PMID: 38717010 PMCID: PMC11078544 DOI: 10.7554/elife.92093] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/12/2024] Open
Abstract
Interacting molecules create regulatory architectures that can persist despite turnover of molecules. Although epigenetic changes occur within the context of such architectures, there is limited understanding of how they can influence the heritability of changes. Here, I develop criteria for the heritability of regulatory architectures and use quantitative simulations of interacting regulators parsed as entities, their sensors, and the sensed properties to analyze how architectures influence heritable epigenetic changes. Information contained in regulatory architectures grows rapidly with the number of interacting molecules and its transmission requires positive feedback loops. While these architectures can recover after many epigenetic perturbations, some resulting changes can become permanently heritable. Architectures that are otherwise unstable can become heritable through periodic interactions with external regulators, which suggests that mortal somatic lineages with cells that reproducibly interact with the immortal germ lineage could make a wider variety of architectures heritable. Differential inhibition of the positive feedback loops that transmit regulatory architectures across generations can explain the gene-specific differences in heritable RNA silencing observed in the nematode Caenorhabditis elegans. More broadly, these results provide a foundation for analyzing the inheritance of epigenetic changes within the context of the regulatory architectures implemented using diverse molecules in different living systems.
Collapse
|
18
|
Butcher SE. A left-handed RNA quadruplex directs gene silencing. Trends Biochem Sci 2024; 49:387-390. [PMID: 38368181 PMCID: PMC11069436 DOI: 10.1016/j.tibs.2024.01.009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2023] [Revised: 01/05/2024] [Accepted: 01/26/2024] [Indexed: 02/19/2024]
Abstract
Poly(UG) or 'pUG' dinucleotide repeats direct gene silencing in Caenorhabditis elegans by adopting an unusual quadruplex structure. Humans have thousands of pUG sequences and proteins that interact with them. The pUG fold reveals new aspects of gene regulation and RNA folding, highlighting how a simple sequence can encode a complex structure.
Collapse
Affiliation(s)
- Samuel E Butcher
- Department of Biochemistry, University of Wisconsin-Madison, Madison, WI, USA.
| |
Collapse
|
19
|
Chey MS, Raman P, Ettefa F, Jose AM. Evidence for multiple forms of heritable RNA silencing. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.04.28.591487. [PMID: 38746304 PMCID: PMC11092508 DOI: 10.1101/2024.04.28.591487] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/16/2024]
Abstract
Heritable gene silencing has been proposed to rely on DNA methylation, histone modifications, and/or non-coding RNAs in different organisms. Here we demonstrate that multiple RNA-mediated mechanisms with distinct and easily detectable molecular signatures can underlie heritable silencing of the same open-reading frame in the nematode C. elegans. Using two-gene operons, we reveal three cases of gene-selective silencing that provide support for the transmission of heritable epigenetic changes through different mechanisms of RNA silencing independent of changes in chromatin that would affect all genes of an operon equally. Different heritable epigenetic states of a gene were associated with distinct populations of stabilized mRNA fragments with untemplated poly-UG (pUG) tails, which are known intermediates of RNA silencing. These 'pUG signatures' provide a way to distinguish the multiple mechanisms that can drive heritable RNA silencing of a single gene.
Collapse
Affiliation(s)
- Mary S. Chey
- Department of Cell Biology and Molecular Genetics, University of Maryland, College Park, MD 20742
| | - Pravrutha Raman
- Department of Cell Biology and Molecular Genetics, University of Maryland, College Park, MD 20742
| | - Farida Ettefa
- Department of Cell Biology and Molecular Genetics, University of Maryland, College Park, MD 20742
| | - Antony M. Jose
- Department of Cell Biology and Molecular Genetics, University of Maryland, College Park, MD 20742
| |
Collapse
|
20
|
Pastore B, Hertz HL, Tang W. Pre-piRNA trimming safeguards piRNAs against erroneous targeting by RNA-dependent RNA polymerase. Cell Rep 2024; 43:113692. [PMID: 38244197 PMCID: PMC10949418 DOI: 10.1016/j.celrep.2024.113692] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2023] [Revised: 12/13/2023] [Accepted: 01/04/2024] [Indexed: 01/22/2024] Open
Abstract
The Piwi/Piwi-interacting RNA (piRNA) pathway protects genome integrity in animal germ lines. Maturation of piRNAs involves nucleolytic processing at both 5' and 3' ends. The ribonuclease PARN-1 and its orthologs mediate piRNA 3' trimming in worms, insects, and mammals. However, the significance of this evolutionarily conserved processing step is not fully understood. Employing C. elegans as a model, we recently discovered that 3' trimming protects piRNAs against non-templated nucleotide additions and degradation. Here, we find that worms lacking PARN-1 accumulate an uncharacterized RNA species termed anti-piRNAs, which are antisense to piRNAs. Anti-piRNAs associate with Piwi proteins, are 17-19 nucleotides long, and begin with 5' guanine or adenine. Untrimmed pre-piRNAs are misdirected by the terminal nucleotidyltransferase RDE-3 and RNA-dependent RNA polymerase EGO-1, leading to the formation of anti-piRNAs. This work identifies a class of small RNAs in parn-1 mutants and provides insight into the activities of RDE-3, EGO-1, and Piwi proteins.
Collapse
Affiliation(s)
- Benjamin Pastore
- Department of Biological Chemistry and Pharmacology, The Ohio State University, Columbus, OH 43210, USA; Center for RNA Biology, The Ohio State University, Columbus, OH 43210, USA; Ohio State Biochemistry Program, The Ohio State University, Columbus, OH 43210, USA
| | - Hannah L Hertz
- Department of Biological Chemistry and Pharmacology, The Ohio State University, Columbus, OH 43210, USA; Center for RNA Biology, The Ohio State University, Columbus, OH 43210, USA
| | - Wen Tang
- Department of Biological Chemistry and Pharmacology, The Ohio State University, Columbus, OH 43210, USA; Center for RNA Biology, The Ohio State University, Columbus, OH 43210, USA; Ohio State Biochemistry Program, The Ohio State University, Columbus, OH 43210, USA.
| |
Collapse
|
21
|
Chen S, Phillips CM. HRDE-2 drives small RNA specificity for the nuclear Argonaute protein HRDE-1. Nat Commun 2024; 15:957. [PMID: 38302462 PMCID: PMC10834429 DOI: 10.1038/s41467-024-45245-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2023] [Accepted: 01/18/2024] [Indexed: 02/03/2024] Open
Abstract
RNA interference (RNAi) is a conserved gene silencing process that exists in diverse organisms to protect genome integrity and regulate gene expression. In C. elegans, the majority of RNAi pathway proteins localize to perinuclear, phase-separated germ granules, which are comprised of sub-domains referred to as P granules, Mutator foci, Z granules, and SIMR foci. However, the protein components and function of the newly discovered SIMR foci are unknown. Here we demonstrate that HRDE-2 localizes to SIMR foci and interacts with the germline nuclear Argonaute HRDE-1 in its small RNA unbound state. In the absence of HRDE-2, HRDE-1 exclusively loads CSR-class 22G-RNAs rather than WAGO-class 22G-RNAs, resulting in inappropriate H3K9me3 deposition on CSR-target genes. Thus, our study demonstrates that the recruitment of unloaded HRDE-1 to germ granules, mediated by HRDE-2, is critical to ensure that the correct small RNAs are used to guide nuclear RNA silencing in the C. elegans germline.
Collapse
Affiliation(s)
- Shihui Chen
- Department of Biological Sciences, University of Southern California, Los Angeles, CA, 90089, USA
| | - Carolyn M Phillips
- Department of Biological Sciences, University of Southern California, Los Angeles, CA, 90089, USA.
| |
Collapse
|
22
|
Ow MC, Hall SE. Inheritance of Stress Responses via Small Non-Coding RNAs in Invertebrates and Mammals. EPIGENOMES 2023; 8:1. [PMID: 38534792 DOI: 10.3390/epigenomes8010001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2023] [Revised: 12/06/2023] [Accepted: 12/12/2023] [Indexed: 03/28/2024] Open
Abstract
While reports on the generational inheritance of a parental response to stress have been widely reported in animals, the molecular mechanisms behind this phenomenon have only recently emerged. The booming interest in epigenetic inheritance has been facilitated in part by the discovery that small non-coding RNAs are one of its principal conduits. Discovered 30 years ago in the Caenorhabditis elegans nematode, these small molecules have since cemented their critical roles in regulating virtually all aspects of eukaryotic development. Here, we provide an overview on the current understanding of epigenetic inheritance in animals, including mice and C. elegans, as it pertains to stresses such as temperature, nutritional, and pathogenic encounters. We focus on C. elegans to address the mechanistic complexity of how small RNAs target their cohort mRNAs to effect gene expression and how they govern the propagation or termination of generational perdurance in epigenetic inheritance. Presently, while a great amount has been learned regarding the heritability of gene expression states, many more questions remain unanswered and warrant further investigation.
Collapse
Affiliation(s)
- Maria C Ow
- Department of Biology, Syracuse University, Syracuse, NY 13210, USA
| | - Sarah E Hall
- Department of Biology and Program in Neuroscience, Syracuse University, Syracuse, NY 13210, USA
| |
Collapse
|
23
|
Uebel CJ, Rajeev S, Phillips CM. Caenorhabditis elegans germ granules are present in distinct configurations and assemble in a hierarchical manner. Development 2023; 150:dev202284. [PMID: 38009921 PMCID: PMC10753583 DOI: 10.1242/dev.202284] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2023] [Accepted: 11/17/2023] [Indexed: 11/29/2023]
Abstract
RNA silencing pathways are complex, highly conserved, and perform crucial regulatory roles. In Caenorhabditis elegans germlines, RNA surveillance occurs through a series of perinuclear germ granule compartments - P granules, Z granules, SIMR foci, and Mutator foci - multiple of which form via phase separation. Although the functions of individual germ granule proteins have been extensively studied, the relationships between germ granule compartments (collectively, 'nuage') are less understood. We find that key germ granule proteins assemble into separate but adjacent condensates, and that boundaries between germ granule compartments re-establish after perturbation. We discover a toroidal P granule morphology, which encircles the other germ granule compartments in a consistent exterior-to-interior spatial organization, providing broad implications for the trajectory of an RNA as it exits the nucleus. Moreover, we quantify the stoichiometric relationships between germ granule compartments and RNA to reveal discrete populations of nuage that assemble in a hierarchical manner and differentially associate with RNAi-targeted transcripts, possibly suggesting functional differences between nuage configurations. Our work creates a more accurate model of C. elegans nuage and informs the conceptualization of RNA silencing through the germ granule compartments.
Collapse
Affiliation(s)
- Celja J. Uebel
- Department of Biological Sciences, University of Southern California, Los Angeles, CA 90089, USA
| | - Sanjana Rajeev
- Department of Biological Sciences, University of Southern California, Los Angeles, CA 90089, USA
| | - Carolyn M. Phillips
- Department of Biological Sciences, University of Southern California, Los Angeles, CA 90089, USA
| |
Collapse
|
24
|
Escobar CA, Petersen RJ, Tonelli M, Fan L, Henzler-Wildman KA, Butcher SE. Solution Structure of Poly(UG) RNA. J Mol Biol 2023; 435:168340. [PMID: 37924862 PMCID: PMC10841838 DOI: 10.1016/j.jmb.2023.168340] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2023] [Revised: 10/27/2023] [Accepted: 10/29/2023] [Indexed: 11/06/2023]
Abstract
Poly(UG) or "pUG" RNAs are UG or GU dinucleotide repeat sequences which are highly abundant in eukaryotes. Post-transcriptional addition of pUGs to RNA 3' ends marks mRNAs as vectors for gene silencing in C. elegans. We previously determined the crystal structure of pUG RNA bound to the ligand N-methyl mesoporphyrin IX (NMM), but the structure of free pUG RNA is unknown. Here we report the solution structure of the free pUG RNA (GU)12, as determined by nuclear magnetic resonance spectroscopy and small and wide-angle x-ray scattering (NMR-SAXS-WAXS). The low complexity sequence and 4-fold symmetry of the structure result in overlapped NMR signals that complicate chemical shift assignment. We therefore utilized single site-specific deoxyribose modifications which did not perturb the structure and introduced well-resolved methylene signals that are easily identified in NMR spectra. The solution structure ensemble has a root mean squared deviation (RMSD) of 0.62 Å and is a compact, left-handed quadruplex with a Z-form backbone, or "pUG fold." Overall, the structure agrees with the crystal structure of (GU)12 bound to NMM, indicating the pUG fold is unaltered by docking of the NMM ligand. The solution structure reveals conformational details that could not be resolved by x-ray crystallography, which explain how the pUG fold can form within longer RNAs.
Collapse
Affiliation(s)
- Cristian A Escobar
- Department of Biochemistry, University of Wisconsin-Madison, Madison, WI, USA
| | - Riley J Petersen
- Department of Biochemistry, University of Wisconsin-Madison, Madison, WI, USA
| | - Marco Tonelli
- Department of Biochemistry, University of Wisconsin-Madison, Madison, WI, USA; National Magnetic Resonance Facility at Madison, University of Wisconsin-Madison, Madison, WI, USA
| | - Lixin Fan
- Basic Science Program, Frederick National Laboratory for Cancer Research, SAXS Core Facility of National Cancer Institute, Frederick, MD, USA
| | - Katherine A Henzler-Wildman
- Department of Biochemistry, University of Wisconsin-Madison, Madison, WI, USA; National Magnetic Resonance Facility at Madison, University of Wisconsin-Madison, Madison, WI, USA
| | - Samuel E Butcher
- Department of Biochemistry, University of Wisconsin-Madison, Madison, WI, USA; National Magnetic Resonance Facility at Madison, University of Wisconsin-Madison, Madison, WI, USA.
| |
Collapse
|
25
|
Jose AM. Heritable epigenetic changes are constrained by the dynamics of regulatory architectures. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.06.07.544138. [PMID: 37333369 PMCID: PMC10274868 DOI: 10.1101/2023.06.07.544138] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/20/2023]
Abstract
Interacting molecules create regulatory architectures that can persist despite turnover of molecules. Although epigenetic changes occur within the context of such architectures, there is limited understanding of how they can influence the heritability of changes. Here I develop criteria for the heritability of regulatory architectures and use quantitative simulations of interacting regulators parsed as entities, their sensors and the sensed properties to analyze how architectures influence heritable epigenetic changes. Information contained in regulatory architectures grows rapidly with the number of interacting molecules and its transmission requires positive feedback loops. While these architectures can recover after many epigenetic perturbations, some resulting changes can become permanently heritable. Such stable changes can (1) alter steady-state levels while preserving the architecture, (2) induce different architectures that persist for many generations, or (3) collapse the entire architecture. Architectures that are otherwise unstable can become heritable through periodic interactions with external regulators, which suggests that the evolution of mortal somatic lineages with cells that reproducibly interact with the immortal germ lineage could make a wider variety of regulatory architectures heritable. Differential inhibition of the positive feedback loops that transmit regulatory architectures across generations can explain the gene-specific differences in heritable RNA silencing observed in the nematode C. elegans, which range from permanent silencing to recovery from silencing within a few generations and subsequent resistance to silencing. More broadly, these results provide a foundation for analyzing the inheritance of epigenetic changes within the context of the regulatory architectures implemented using diverse molecules in different living systems.
Collapse
|
26
|
Herridge RP, Dolata J, Migliori V, de Santis Alves C, Borges F, Schorn AJ, Van Ex F, Parent JS, Lin A, Bajczyk M, Leonardi T, Hendrick A, Kouzarides T, Martienssen RA. Pseudouridine guides germline small RNA transport and epigenetic inheritance. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.05.27.542553. [PMID: 37398006 PMCID: PMC10312437 DOI: 10.1101/2023.05.27.542553] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/04/2023]
Abstract
Epigenetic modifications that arise during plant and animal development, such as DNA and histone modification, are mostly reset during gamete formation, but some are inherited from the germline including those marking imprinted genes1. Small RNAs guide these epigenetic modifications, and some are also inherited by the next generation2,3. In C. elegans, these inherited small RNAs have poly (UG) tails4, but how inherited small RNAs are distinguished in other animals and plants is unknown. Pseudouridine (Ψ) is the most abundant RNA modification but has not been explored in small RNAs. Here, we develop novel assays to detect Ψ in short RNA sequences, demonstrating its presence in mouse and Arabidopsis microRNAs and their precursors. We also detect substantial enrichment in germline small RNAs, namely epigenetically activated siRNAs (easiRNAs) in Arabidopsis pollen, and piwi-interacting piRNAs in mouse testis. In pollen, pseudouridylated easiRNAs are localized to sperm cells, and we found that PAUSED/HEN5 (PSD), the plant homolog of Exportin-t, interacts genetically with Ψ and is required for transport of easiRNAs into sperm cells from the vegetative nucleus. We further show that Exportin-t is required for the triploid block: chromosome dosage-dependent seed lethality that is epigenetically inherited from pollen. Thus, Ψ has a conserved role in marking inherited small RNAs in the germline.
Collapse
Affiliation(s)
- Rowan P Herridge
- Howard Hughes Medical Institute, Cold Spring Harbor Laboratory, Cold Spring Harbor, NY, 11724, USA
| | - Jakub Dolata
- Howard Hughes Medical Institute, Cold Spring Harbor Laboratory, Cold Spring Harbor, NY, 11724, USA
- Department of Gene Expression, Institute of Molecular Biology and Biotechnology, Adam Mickiewicz University, Poznan, Poland
| | - Valentina Migliori
- The Gurdon Institute, University of Cambridge, Tennis Court Road, Cambridge CB2 1QN, UK
- Wellcome Sanger Institute, Wellcome Genome Campus, Hinxton, Cambridge, UK
| | | | - Filipe Borges
- Howard Hughes Medical Institute, Cold Spring Harbor Laboratory, Cold Spring Harbor, NY, 11724, USA
| | - Andrea J Schorn
- Howard Hughes Medical Institute, Cold Spring Harbor Laboratory, Cold Spring Harbor, NY, 11724, USA
| | - Frédéric Van Ex
- Howard Hughes Medical Institute, Cold Spring Harbor Laboratory, Cold Spring Harbor, NY, 11724, USA
| | - Jean-Sebastien Parent
- Howard Hughes Medical Institute, Cold Spring Harbor Laboratory, Cold Spring Harbor, NY, 11724, USA
| | - Ann Lin
- Howard Hughes Medical Institute, Cold Spring Harbor Laboratory, Cold Spring Harbor, NY, 11724, USA
| | - Mateusz Bajczyk
- Department of Gene Expression, Institute of Molecular Biology and Biotechnology, Adam Mickiewicz University, Poznan, Poland
| | - Tommaso Leonardi
- The Gurdon Institute, University of Cambridge, Tennis Court Road, Cambridge CB2 1QN, UK
- Center for Genomic Science of IIT@SEMM, Instituto Italiano di Tecnologia (IIT), 20139 Milan, Italy
| | - Alan Hendrick
- Storm Therapeutics, Ltd., Moneta Building (B280), Babraham Research Campus, Cambridge CB22 3AT, UK
| | - Tony Kouzarides
- The Gurdon Institute, University of Cambridge, Tennis Court Road, Cambridge CB2 1QN, UK
| | - Robert A Martienssen
- Howard Hughes Medical Institute, Cold Spring Harbor Laboratory, Cold Spring Harbor, NY, 11724, USA
| |
Collapse
|
27
|
Rieger I, Weintraub G, Lev I, Goldstein K, Bar-Zvi D, Anava S, Gingold H, Shaham S, Rechavi O. Nucleus-independent transgenerational small RNA inheritance in Caenorhabditis elegans. SCIENCE ADVANCES 2023; 9:eadj8618. [PMID: 37878696 PMCID: PMC10599617 DOI: 10.1126/sciadv.adj8618] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/20/2023] [Accepted: 09/20/2023] [Indexed: 10/27/2023]
Abstract
In Caenorhabditis elegans worms, epigenetic information transmits transgenerationally. Still, it is unknown whether the effects transfer to the next generation inside or outside of the nucleus. Here, we use the tractability of gene-specific double-stranded RNA-induced silencing to demonstrate that RNA interference can be inherited independently of any nuclear factors via mothers that are genetically engineered to transmit only their ooplasm but not the oocytes' nuclei to the next generation. We characterize the mechanisms and, using RNA sequencing, chimeric worms, and sequence polymorphism between different isolates, identify endogenous small RNAs which, similarly to exogenous siRNAs, are inherited in a nucleus-independent manner. From a historical perspective, these results might be regarded as partial vindication of discredited cytoplasmic inheritance theories from the 19th century, such as Darwin's "pangenesis" theory.
Collapse
Affiliation(s)
- Itai Rieger
- Department of Neurobiology, Wise Faculty of Life Sciences and Sagol School of Neuroscience, Tel Aviv University, Tel Aviv, Israel
| | - Guy Weintraub
- Department of Neurobiology, Wise Faculty of Life Sciences and Sagol School of Neuroscience, Tel Aviv University, Tel Aviv, Israel
| | - Itamar Lev
- Department of Neurobiology, Wise Faculty of Life Sciences and Sagol School of Neuroscience, Tel Aviv University, Tel Aviv, Israel
| | - Kesem Goldstein
- Department of Neurobiology, Wise Faculty of Life Sciences and Sagol School of Neuroscience, Tel Aviv University, Tel Aviv, Israel
| | - Dana Bar-Zvi
- Department of Neurobiology, Wise Faculty of Life Sciences and Sagol School of Neuroscience, Tel Aviv University, Tel Aviv, Israel
| | - Sarit Anava
- Department of Neurobiology, Wise Faculty of Life Sciences and Sagol School of Neuroscience, Tel Aviv University, Tel Aviv, Israel
| | - Hila Gingold
- Department of Neurobiology, Wise Faculty of Life Sciences and Sagol School of Neuroscience, Tel Aviv University, Tel Aviv, Israel
| | - Shai Shaham
- Laboratory of Developmental Genetics, The Rockefeller University, New York, NY, USA
| | - Oded Rechavi
- Department of Neurobiology, Wise Faculty of Life Sciences and Sagol School of Neuroscience, Tel Aviv University, Tel Aviv, Israel
| |
Collapse
|
28
|
Pastore B, Hertz HL, Tang W. Pre-piRNA trimming safeguards piRNAs against erroneous targeting by RNA-dependent RNA Polymerase. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.09.26.559619. [PMID: 37808652 PMCID: PMC10557677 DOI: 10.1101/2023.09.26.559619] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/10/2023]
Abstract
In animal germ lines, The Piwi/piRNA pathway plays a crucial role in safeguarding genome integrity and promoting fertility. Following transcription from discrete genomic loci, piRNA precursors undergo nucleolytic processing at both 5' and 3' ends. The ribonuclease PARN-1 and its orthologs mediate piRNA 3' trimming in worms, insects and mammals. Yet, the significance of this evolutionarily conserved processing step is not well understood. Employing C. elegans as a model organism, our recent work has demonstrated that 3' trimming protects piRNAs against non-templated nucleotide additions and degradation. In this study, we present an unexpected finding that C. elegans deficient for PARN-1 accumulate a heretofore uncharacterized RNA species termed anti-piRNAs, which are antisense to piRNAs. These anti-piRNAs associate with Piwi proteins and display the propensity for a length of 17-19 nucleotides and 5' guanine and adenine residues. We show that untrimmed pre-piRNAs in parn-1 mutants are modified by the terminal nucleotidyltransferase RDE-3 and erroneously targeted by the RNA-dependent RNA polymerase EGO-1, thereby giving rise to anti-piRNAs. Taken together, our work identifies a previously unknown class of small RNAs upon loss of parn-1 and provides mechanistic insight to activities of RDE-3, EGO-1 and Piwi proteins.
Collapse
|
29
|
Price IF, Wagner JA, Pastore B, Hertz HL, Tang W. C. elegans germ granules sculpt both germline and somatic RNAome. Nat Commun 2023; 14:5965. [PMID: 37749091 PMCID: PMC10520050 DOI: 10.1038/s41467-023-41556-4] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2023] [Accepted: 09/08/2023] [Indexed: 09/27/2023] Open
Abstract
Germ granules are membrane-less organelles essential for small RNA biogenesis and germline development. Among the conserved properties of germ granules is their association with the nuclear membrane. Recent studies demonstrated that LOTUS domain proteins, EGGD-1 and EGGD-2 (also known as MIP-1 and MIP-2 respectively), promote the formation of perinuclear germ granules in C. elegans. This finding presents a unique opportunity to evaluate the significance of perinuclear localization of germ granules. Here we show that loss of eggd-1 causes the coalescence of germ granules and formation of abnormal cytoplasmic aggregates. Impairment of perinuclear granules affects certain germline classes of small RNAs including Piwi-interacting RNAs. Transcriptome profiling reveals overexpression of spermatogenic and cuticle-related genes in eggd-1 hermaphrodites. We further demonstrate that disruption of germ granules activates HLH-30-mediated transcriptional program in somatic tissues. Collectively, our findings underscore the essential role of EGGD-1 in germ granule organization and reveal an unexpected germ granule-to-soma communication.
Collapse
Affiliation(s)
- Ian F Price
- Department of Biological Chemistry and Pharmacology, The Ohio State University, Columbus, OH, 43210, USA
- Center for RNA Biology, The Ohio State University, Columbus, OH, 43210, USA
- Ohio State Biochemistry Program, The Ohio State University, Columbus, OH, 43210, USA
| | - Jillian A Wagner
- Department of Biological Chemistry and Pharmacology, The Ohio State University, Columbus, OH, 43210, USA
- Center for RNA Biology, The Ohio State University, Columbus, OH, 43210, USA
| | - Benjamin Pastore
- Department of Biological Chemistry and Pharmacology, The Ohio State University, Columbus, OH, 43210, USA
- Center for RNA Biology, The Ohio State University, Columbus, OH, 43210, USA
- Ohio State Biochemistry Program, The Ohio State University, Columbus, OH, 43210, USA
| | - Hannah L Hertz
- Department of Biological Chemistry and Pharmacology, The Ohio State University, Columbus, OH, 43210, USA
- Center for RNA Biology, The Ohio State University, Columbus, OH, 43210, USA
| | - Wen Tang
- Department of Biological Chemistry and Pharmacology, The Ohio State University, Columbus, OH, 43210, USA.
- Center for RNA Biology, The Ohio State University, Columbus, OH, 43210, USA.
| |
Collapse
|
30
|
Wen X, Irshad A, Jin H. The Battle for Survival: The Role of RNA Non-Canonical Tails in the Virus-Host Interaction. Metabolites 2023; 13:1009. [PMID: 37755289 PMCID: PMC10537345 DOI: 10.3390/metabo13091009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2023] [Revised: 09/09/2023] [Accepted: 09/12/2023] [Indexed: 09/28/2023] Open
Abstract
Terminal nucleotidyltransferases (TENTs) could generate a 'mixed tail' or 'U-rich tail' consisting of different nucleotides at the 3' end of RNA by non-templated nucleotide addition to protect or degrade cellular messenger RNA. Recently, there has been increasing evidence that the decoration of virus RNA terminus with a mixed tail or U-rich tail is a critical way to affect viral RNA stability in virus-infected cells. This paper first briefly introduces the cellular function of the TENT family and non-canonical tails, then comprehensively reviews their roles in virus invasion and antiviral immunity, as well as the significance of the TENT family in antiviral therapy. This review will contribute to understanding the role and mechanism of non-canonical RNA tailing in survival competition between the virus and host.
Collapse
Affiliation(s)
| | | | - Hua Jin
- Key Laboratory of Molecular Medicine and Biotherapy, School of Life Science, Beijing Institute of Technology, No. 5 South Zhongguancun Street, Beijing 100081, China; (X.W.); (A.I.)
| |
Collapse
|
31
|
Rouhana L, Edgar A, Hugosson F, Dountcheva V, Martindale MQ, Ryan JF. Cytoplasmic Polyadenylation Is an Ancestral Hallmark of Early Development in Animals. Mol Biol Evol 2023; 40:msad137. [PMID: 37288606 PMCID: PMC10284499 DOI: 10.1093/molbev/msad137] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2022] [Revised: 04/18/2023] [Accepted: 06/05/2023] [Indexed: 06/09/2023] Open
Abstract
Differential regulation of gene expression has produced the astonishing diversity of life on Earth. Understanding the origin and evolution of mechanistic innovations for control of gene expression is therefore integral to evolutionary and developmental biology. Cytoplasmic polyadenylation is the biochemical extension of polyadenosine at the 3'-end of cytoplasmic mRNAs. This process regulates the translation of specific maternal transcripts and is mediated by the Cytoplasmic Polyadenylation Element-Binding Protein family (CPEBs). Genes that code for CPEBs are amongst a very few that are present in animals but missing in nonanimal lineages. Whether cytoplasmic polyadenylation is present in non-bilaterian animals (i.e., sponges, ctenophores, placozoans, and cnidarians) remains unknown. We have conducted phylogenetic analyses of CPEBs, and our results show that CPEB1 and CPEB2 subfamilies originated in the animal stem lineage. Our assessment of expression in the sea anemone, Nematostella vectensis (Cnidaria), and the comb jelly, Mnemiopsis leidyi (Ctenophora), demonstrates that maternal expression of CPEB1 and the catalytic subunit of the cytoplasmic polyadenylation machinery (GLD2) is an ancient feature that is conserved across animals. Furthermore, our measurements of poly(A)-tail elongation reveal that key targets of cytoplasmic polyadenylation are shared between vertebrates, cnidarians, and ctenophores, indicating that this mechanism orchestrates a regulatory network that is conserved throughout animal evolution. We postulate that cytoplasmic polyadenylation through CPEBs was a fundamental innovation that contributed to animal evolution from unicellular life.
Collapse
Affiliation(s)
- Labib Rouhana
- Department of Biology, University of Massachusetts Boston, Boston, MA, USA
| | - Allison Edgar
- Whitney Laboratory for Marine Bioscience, University of Florida, St. Augustine, FL, USA
| | - Fredrik Hugosson
- Whitney Laboratory for Marine Bioscience, University of Florida, St. Augustine, FL, USA
| | - Valeria Dountcheva
- Department of Biology, University of Massachusetts Boston, Boston, MA, USA
| | - Mark Q Martindale
- Whitney Laboratory for Marine Bioscience, University of Florida, St. Augustine, FL, USA
- Department of Biology, University of Florida, Gainesville, FL, USA
| | - Joseph F Ryan
- Whitney Laboratory for Marine Bioscience, University of Florida, St. Augustine, FL, USA
- Department of Biology, University of Florida, Gainesville, FL, USA
| |
Collapse
|
32
|
Ding YH, Ochoa HJ, Ishidate T, Shirayama M, Mello CC. The nuclear Argonaute HRDE-1 directs target gene re-localization and shuttles to nuage to promote small RNA-mediated inherited silencing. Cell Rep 2023; 42:112408. [PMID: 37083324 PMCID: PMC10443184 DOI: 10.1016/j.celrep.2023.112408] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2022] [Revised: 03/13/2023] [Accepted: 04/03/2023] [Indexed: 04/22/2023] Open
Abstract
Argonaute/small RNA pathways and heterochromatin work together to propagate transgenerational gene silencing, but the mechanisms behind their interaction are not well understood. Here, we show that induction of heterochromatin silencing in C. elegans by RNAi or by artificially tethering pathway components to target RNA causes co-localization of target alleles in pachytene nuclei. Tethering the nuclear Argonaute WAGO-9/HRDE-1 induces heterochromatin formation and independently induces small RNA amplification. Consistent with this finding, HRDE-1, while predominantly nuclear, also localizes to peri-nuclear nuage domains, where amplification is thought to occur. Tethering a heterochromatin-silencing factor, NRDE-2, induces heterochromatin formation, which subsequently causes de novo synthesis of HRDE-1 guide RNAs. HRDE-1 then acts to further amplify small RNAs that load on downstream Argonautes. These findings suggest that HRDE-1 plays a dual role, acting upstream to initiate heterochromatin silencing and downstream to stimulate a new cycle of small RNA amplification, thus establishing a self-enforcing mechanism that propagates gene silencing to future generations.
Collapse
Affiliation(s)
- Yue-He Ding
- RNA Therapeutics Institute, University of Massachusetts Medical School, Worcester, MA 01605, USA
| | - Humberto J Ochoa
- RNA Therapeutics Institute, University of Massachusetts Medical School, Worcester, MA 01605, USA
| | - Takao Ishidate
- RNA Therapeutics Institute, University of Massachusetts Medical School, Worcester, MA 01605, USA
| | - Masaki Shirayama
- RNA Therapeutics Institute, University of Massachusetts Medical School, Worcester, MA 01605, USA
| | - Craig C Mello
- RNA Therapeutics Institute, University of Massachusetts Medical School, Worcester, MA 01605, USA; Howard Hughes Medical Institute, Worcester, MA 01605, USA.
| |
Collapse
|
33
|
Uebel CJ, Rajeev S, Phillips CM. Caenorhabditis elegans germ granules are present in distinct configurations that differentially associate with RNAi-targeted RNAs. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.05.25.542330. [PMID: 37292702 PMCID: PMC10246010 DOI: 10.1101/2023.05.25.542330] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
RNA silencing pathways are complex, highly conserved, and perform widespread, critical regulatory roles. In C. elegans germlines, RNA surveillance occurs through a series of perinuclear germ granule compartments-P granules, Z granules, SIMR foci, and Mutator foci-multiple of which form via phase separation and exhibit liquid-like properties. The functions of individual proteins within germ granules are well-studied, but the spatial organization, physical interaction, and coordination of biomolecule exchange between compartments within germ granule "nuage" is less understood. Here we find that key proteins are sufficient for compartment separation, and that the boundary between compartments can be reestablished after perturbation. Using super-resolution microscopy, we discover a toroidal P granule morphology which encircles the other germ granule compartments in a consistent exterior-to-interior spatial organization. Combined with findings that nuclear pores primarily interact with P granules, this nuage compartment organization has broad implications for the trajectory of an RNA as it exits the nucleus and enters small RNA pathway compartments. Furthermore, we quantify the stoichiometric relationships between germ granule compartments and RNA to reveal discrete populations of nuage that differentially associate with RNAi-targeted transcripts, possibly suggesting functional differences between nuage configurations. Together, our work creates a more spatially and compositionally accurate model of C. elegans nuage which informs the conceptualization of RNA silencing through different germ granule compartments.
Collapse
Affiliation(s)
- Celja J. Uebel
- Department of Biological Sciences, University of Southern California, Los Angeles, CA 90089
- Present address: Departments of Developmental Biology and Genetics, Stanford University School of Medicine, Stanford CA, 94305
| | - Sanjana Rajeev
- Department of Biological Sciences, University of Southern California, Los Angeles, CA 90089
| | - Carolyn M. Phillips
- Department of Biological Sciences, University of Southern California, Los Angeles, CA 90089
| |
Collapse
|
34
|
Abstract
RNA granules are mesoscale assemblies that form in the absence of limiting membranes. RNA granules contain factors for RNA biogenesis and turnover and are often assumed to represent specialized compartments for RNA biochemistry. Recent evidence suggests that RNA granules assemble by phase separation of subsoluble ribonucleoprotein (RNP) complexes that partially demix from the cytoplasm or nucleoplasm. We explore the possibility that some RNA granules are nonessential condensation by-products that arise when RNP complexes exceed their solubility limit as a consequence of cellular activity, stress, or aging. We describe the use of evolutionary and mutational analyses and single-molecule techniques to distinguish functional RNA granules from "incidental condensates."
Collapse
Affiliation(s)
- Andrea Putnam
- Howard Hughes Medical Institute, Department of Molecular Biology and Genetics, Johns Hopkins University, Baltimore, Maryland 21205, USA
| | - Laura Thomas
- Howard Hughes Medical Institute, Department of Molecular Biology and Genetics, Johns Hopkins University, Baltimore, Maryland 21205, USA
| | - Geraldine Seydoux
- Howard Hughes Medical Institute, Department of Molecular Biology and Genetics, Johns Hopkins University, Baltimore, Maryland 21205, USA
| |
Collapse
|
35
|
Stacpoole PW, McCall CE. The pyruvate dehydrogenase complex: Life's essential, vulnerable and druggable energy homeostat. Mitochondrion 2023; 70:59-102. [PMID: 36863425 DOI: 10.1016/j.mito.2023.02.007] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2022] [Revised: 01/30/2023] [Accepted: 02/13/2023] [Indexed: 03/04/2023]
Abstract
Found in all organisms, pyruvate dehydrogenase complexes (PDC) are the keystones of prokaryotic and eukaryotic energy metabolism. In eukaryotic organisms these multi-component megacomplexes provide a crucial mechanistic link between cytoplasmic glycolysis and the mitochondrial tricarboxylic acid (TCA) cycle. As a consequence, PDCs also influence the metabolism of branched chain amino acids, lipids and, ultimately, oxidative phosphorylation (OXPHOS). PDC activity is an essential determinant of the metabolic and bioenergetic flexibility of metazoan organisms in adapting to changes in development, nutrient availability and various stresses that challenge maintenance of homeostasis. This canonical role of the PDC has been extensively probed over the past decades by multidisciplinary investigations into its causal association with diverse physiological and pathological conditions, the latter making the PDC an increasingly viable therapeutic target. Here we review the biology of the remarkable PDC and its emerging importance in the pathobiology and treatment of diverse congenital and acquired disorders of metabolic integration.
Collapse
Affiliation(s)
- Peter W Stacpoole
- Department of Medicine (Division of Endocrinology, Metabolism and Diabetes), and Department of Biochemistry and Molecular Biology, University of Florida, College of Medicine, Gainesville, FL, United States.
| | - Charles E McCall
- Department of Internal Medicine and Translational Sciences, and Department of Microbiology and Immunology, Wake Forest University School of Medicine, Winston-Salem, NC, United States
| |
Collapse
|
36
|
Monchaud D. Why does the pUG tail curl? Mol Cell 2023; 83:330-331. [PMID: 36736307 DOI: 10.1016/j.molcel.2022.12.010] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2022] [Revised: 12/11/2022] [Accepted: 12/11/2022] [Indexed: 02/05/2023]
Abstract
Roschdi et al.1 report on a new, higher-order RNA structure folding from an alternating uridine (U)/guanosine (G) repeated sequence-the pUG tail-into a peculiar G-quadruplex structure-the pUG fold-found to orchestrate the gene-silencing activity of pUGylated RNAs.
Collapse
Affiliation(s)
- David Monchaud
- Institut de Chimie Moléculaire, ICMUB CNRS UMR 6302, UBFC, Dijon, France.
| |
Collapse
|
37
|
Karin O, Miska EA, Simons BD. Epigenetic inheritance of gene silencing is maintained by a self-tuning mechanism based on resource competition. Cell Syst 2023; 14:24-40.e11. [PMID: 36657390 PMCID: PMC7614883 DOI: 10.1016/j.cels.2022.12.003] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2022] [Revised: 09/05/2022] [Accepted: 12/12/2022] [Indexed: 01/19/2023]
Abstract
Biological systems can maintain memories over long timescales, with examples including memories in the brain and immune system. It is unknown how functional properties of memory systems, such as memory persistence, can be established by biological circuits. To address this question, we focus on transgenerational epigenetic inheritance in Caenorhabditis elegans. In response to a trigger, worms silence a target gene for multiple generations, resisting strong dilution due to growth and reproduction. Silencing may also be maintained indefinitely upon selection according to silencing levels. We show that these properties imply the fine-tuning of biochemical rates in which the silencing system is positioned near the transition to bistability. We demonstrate that this behavior is consistent with a generic mechanism based on competition for synthesis resources, which leads to self-organization around a critical state with broad silencing timescales. The theory makes distinct predictions and offers insights into the design principles of long-term memory systems.
Collapse
Affiliation(s)
- Omer Karin
- Department of Applied Mathematics and Theoretical Physics, Centre for Mathematical Sciences, University of Cambridge, Cambridge, CB3 0WA, UK; Wellcome Trust, Cancer Research UK Gurdon Institute, University of Cambridge, Cambridge, CB2 1QN, UK; Department of Mathematics, Imperial College London, London, SW7 2AZ, UK.
| | - Eric A Miska
- Wellcome Trust, Cancer Research UK Gurdon Institute, University of Cambridge, Cambridge, CB2 1QN, UK; Department of Genetics, University of Cambridge, Cambridge CB2 3EH, UK; Wellcome Sanger Institute, Wellcome Genome Campus, Cambridge CB10 1SA, UK
| | - Benjamin D Simons
- Department of Applied Mathematics and Theoretical Physics, Centre for Mathematical Sciences, University of Cambridge, Cambridge, CB3 0WA, UK; Wellcome Trust, Cancer Research UK Gurdon Institute, University of Cambridge, Cambridge, CB2 1QN, UK; Wellcome Trust-Medical Research Council Cambridge Stem Cell Institute, Jeffrey Cheah Biomedical Centre, University of Cambridge, Cambridge, CB2 0AW, UK.
| |
Collapse
|
38
|
An atypical RNA quadruplex marks RNAs as vectors for gene silencing. Nat Struct Mol Biol 2022; 29:1113-1121. [PMID: 36352138 PMCID: PMC10092862 DOI: 10.1038/s41594-022-00854-z] [Citation(s) in RCA: 28] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2022] [Accepted: 09/28/2022] [Indexed: 11/11/2022]
Abstract
The addition of poly(UG) ('pUG') repeats to 3' termini of mRNAs drives gene silencing and transgenerational epigenetic inheritance in the metazoan Caenorhabditis elegans. pUG tails promote silencing by recruiting an RNA-dependent RNA polymerase (RdRP) that synthesizes small interfering RNAs. Here we show that active pUG tails require a minimum of 11.5 repeats and adopt a quadruplex (G4) structure we term the pUG fold. The pUG fold differs from known G4s in that it has a left-handed backbone similar to Z-RNA, no consecutive guanosines in its sequence, and three G quartets and one U quartet stacked non-sequentially. The compact pUG fold binds six potassium ions and brings the RNA ends into close proximity. The biological importance of the pUG fold is emphasized by our observations that porphyrin molecules bind to the pUG fold and inhibit both gene silencing and binding of RdRP. Moreover, specific 7-deaza substitutions that disrupt the pUG fold neither bind RdRP nor induce RNA silencing. These data define the pUG fold as a previously unrecognized RNA structural motif that drives gene silencing. The pUG fold can also form internally within larger RNA molecules. Approximately 20,000 pUG-fold sequences are found in noncoding regions of human RNAs, suggesting that the fold probably has biological roles beyond gene silencing.
Collapse
|
39
|
Priyadarshini M, AlHarbi S, Frøkjær-Jensen C. Acute and inherited piRNA-mediated silencing in a rde-3 ribonucleotidyltransferase mutant. MICROPUBLICATION BIOLOGY 2022; 2022:10.17912/micropub.biology.000638. [PMID: 36188099 PMCID: PMC9520340 DOI: 10.17912/micropub.biology.000638] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/11/2022] [Revised: 09/04/2022] [Accepted: 09/13/2022] [Indexed: 11/16/2022]
Abstract
We recently developed a piRNA-based silencing assay (piRNAi) to study small-RNA mediated epigenetic silencing: acute gene silencing is induced by synthetic piRNAs expressed from extra-chromosomal array and transgenerational inheritance can be quantified after array loss. The assay allows inheritance assays by injecting piRNAs directly into mutant animals and targeting endogenous genes ( e.g. , him-5 and him-8 ) with obvious phenotypes (increased male frequency). Here we demonstrate the piRNAi assay by quantifying acute and inherited silencing in the ribonucleotidyltransferase rde-3 (ne3370) mutant. In the absence of rde-3, acute silencing was reduced but still detectable, whereas inherited silencing was abolished.
Collapse
Affiliation(s)
- Monika Priyadarshini
- King Abdullah University of Science and Technology (KAUST), Biological and Environmental Science and Engineering Division (BESE), KAUST Environmental Epigenetics Program (KEEP), Thuwal, 23955-6900, Saudi Arabia
,
Current address: Department of Genetics, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Sarah AlHarbi
- King Abdullah University of Science and Technology (KAUST), Biological and Environmental Science and Engineering Division (BESE), KAUST Environmental Epigenetics Program (KEEP), Thuwal, 23955-6900, Saudi Arabia
| | - Christian Frøkjær-Jensen
- King Abdullah University of Science and Technology (KAUST), Biological and Environmental Science and Engineering Division (BESE), KAUST Environmental Epigenetics Program (KEEP), Thuwal, 23955-6900, Saudi Arabia
,
Correspondence to: Christian Frøkjær-Jensen (
)
| |
Collapse
|
40
|
Rieger I, Rechavi O. ZNFX-1 keeps RNAi in the loop. Dev Cell 2022; 57:1920-1921. [PMID: 35998582 DOI: 10.1016/j.devcel.2022.07.010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
In a recent issue of Nature Cell Biology, Ouyang et al. examined the dynamics of double-stranded-RNA-induced gene-silencing across the Caenorhabditis elegans germline and in different subcellular locations. They distinguished among several small RNA amplification loops which complement each other and only together achieve full gene expression inhibition.
Collapse
Affiliation(s)
- Itai Rieger
- Department of Neurobiology, Wise Faculty of Life Sciences and Sagol School of Neuroscience, Tel Aviv University, Tel Aviv, Israel.
| | - Oded Rechavi
- Department of Neurobiology, Wise Faculty of Life Sciences and Sagol School of Neuroscience, Tel Aviv University, Tel Aviv, Israel.
| |
Collapse
|
41
|
Gajic Z, Kaur D, Ni J, Zhu Z, Zhebrun A, Gajic M, Kim M, Hong J, Priyadarshini M, Frøkjær-Jensen C, Gu S. Target-dependent suppression of siRNA production modulates the levels of endogenous siRNAs in the Caenorhabditis elegans germline. Development 2022; 149:dev200692. [PMID: 35876680 PMCID: PMC9481970 DOI: 10.1242/dev.200692] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2022] [Accepted: 07/14/2022] [Indexed: 08/24/2023]
Abstract
Despite the prominent role of endo-siRNAs in transposon silencing, their expression is not limited to these 'nonself' DNA elements. Transcripts of protein-coding genes ('self' DNA) in some cases also produce endo-siRNAs in yeast, plants and animals. How cells distinguish these two populations of siRNAs to prevent unwanted silencing of active genes in animals is not well understood. To address this question, we inserted various self-gene or gfp fragments into an LTR retrotransposon that produces abundant siRNAs and examined the propensity of these gene fragments to produce ectopic siRNAs in the Caenorhabditis elegans germline. We found that fragments of germline genes are generally protected from production of ectopic siRNAs. This phenomenon, which we termed 'target-directed suppression of siRNA production' (or siRNA suppression), is dependent on the germline expression of target mRNA and requires germline P-granule components. We found that siRNA suppression can also occur in naturally produced endo-siRNAs. We suggest that siRNA suppression plays an important role in regulating siRNA expression and preventing self-genes from aberrant epigenetic silencing. This article has an associated 'The people behind the papers' interview.
Collapse
Affiliation(s)
- Zoran Gajic
- Department of Molecular Biology and Biochemistry, Rutgers, The State University of New Jersey, Piscataway, NJ 08854, USA
| | - Diljeet Kaur
- Department of Molecular Biology and Biochemistry, Rutgers, The State University of New Jersey, Piscataway, NJ 08854, USA
| | - Julie Ni
- Department of Molecular Biology and Biochemistry, Rutgers, The State University of New Jersey, Piscataway, NJ 08854, USA
| | - Zhaorong Zhu
- Department of Molecular Biology and Biochemistry, Rutgers, The State University of New Jersey, Piscataway, NJ 08854, USA
| | - Anna Zhebrun
- Department of Molecular Biology and Biochemistry, Rutgers, The State University of New Jersey, Piscataway, NJ 08854, USA
| | - Maria Gajic
- Department of Molecular Biology and Biochemistry, Rutgers, The State University of New Jersey, Piscataway, NJ 08854, USA
| | - Matthew Kim
- Department of Molecular Biology and Biochemistry, Rutgers, The State University of New Jersey, Piscataway, NJ 08854, USA
| | - Julia Hong
- Department of Molecular Biology and Biochemistry, Rutgers, The State University of New Jersey, Piscataway, NJ 08854, USA
| | - Monika Priyadarshini
- Biological and Environmental Sciences and Engineering Division (BESE), King Abdullah University of Science and Technology (KAUST), Thuwal 23955–6900, Kingdom of Saudi Arabia
| | - Christian Frøkjær-Jensen
- Biological and Environmental Sciences and Engineering Division (BESE), King Abdullah University of Science and Technology (KAUST), Thuwal 23955–6900, Kingdom of Saudi Arabia
| | - Sam Gu
- Department of Molecular Biology and Biochemistry, Rutgers, The State University of New Jersey, Piscataway, NJ 08854, USA
| |
Collapse
|
42
|
Tsai HY, Cheng HT, Tsai YT. Biogenesis of C. elegans spermatogenesis small RNAs is initiated by a zc3h12a-like ribonuclease. SCIENCE ADVANCES 2022; 8:eabm0699. [PMID: 35947655 PMCID: PMC9365287 DOI: 10.1126/sciadv.abm0699] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/29/2021] [Accepted: 06/27/2022] [Indexed: 06/15/2023]
Abstract
Small RNAs regulate spermatogenesis across species ranging from Caenorhabditis elegans to humans. In C. elegans, two Argonaute proteins, ALG-3 and ALG-4, and their associated alg-3/4 26G-small RNAs are essential for spermiogenesis at 25°C. The alg-3/4 26G-small RNAs are antisense to their target mRNAs and produced by the RNA-dependent RNA polymerase, RRF-3. However, it remains unclear how the RNA templates for RRF-3 are generated and which cellular processes are affected by alg-3/4 26G-small RNAs. Here, we demonstrate a previously unidentified zc3h12a-like ribonuclease protein, NYN-3, in alg-3/4 26G-small RNAs biogenesis. NYN-3 is not only required for proper abundance of alg-3/4 26G-small RNAs but also crosslinked to their targeted mRNAs before RRF-3 from ePAR-CLIP-seq. Bioinformatics analysis was then used to parse the 26G-small RNA-targeted genes into functional subclasses. Collectively, these findings implicate NYN-3 as an initiator of alg-3/4 26G-small RNA generation.
Collapse
Affiliation(s)
- Hsin-Yue Tsai
- Institute of Molecular Medicine, College of Medicine, National Taiwan University, No. 7 Chung-Shan South Road, Taipei 10002, Taiwan
- Center of Precision Medicine, College of Medicine, National Taiwan University, No. 7 Chung-Shan South Road, Taipei 10002, Taiwan
| | - Hsian-Tang Cheng
- Institute of Molecular Medicine, College of Medicine, National Taiwan University, No. 7 Chung-Shan South Road, Taipei 10002, Taiwan
| | - Yi-Ting Tsai
- Institute of Molecular Medicine, College of Medicine, National Taiwan University, No. 7 Chung-Shan South Road, Taipei 10002, Taiwan
| |
Collapse
|
43
|
Ouyang JPT, Zhang WL, Seydoux G. The conserved helicase ZNFX-1 memorializes silenced RNAs in perinuclear condensates. Nat Cell Biol 2022; 24:1129-1140. [PMID: 35739318 PMCID: PMC9276528 DOI: 10.1038/s41556-022-00940-w] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2021] [Accepted: 05/11/2022] [Indexed: 01/23/2023]
Abstract
RNA-mediated interference (RNAi) is a conserved mechanism that uses small RNAs (sRNAs) to silence gene expression. In the Caenorhabditis elegans germline, transcripts targeted by sRNAs are used as templates for sRNA amplification to propagate silencing into the next generation. Here we show that RNAi leads to heritable changes in the distribution of nascent and mature transcripts that correlate with two parallel sRNA amplification loops. The first loop, dependent on the nuclear Argonaute HRDE-1, targets nascent transcripts and reduces but does not eliminate productive transcription at the locus. The second loop, dependent on the conserved helicase ZNFX-1, targets mature transcripts and concentrates them in perinuclear condensates. ZNFX-1 interacts with sRNA-targeted transcripts that have acquired poly(UG) tails and is required to sustain pUGylation and robust sRNA amplification in the inheriting generation. By maintaining a pool of transcripts for amplification, ZNFX-1 prevents premature extinction of the RNAi response and extends silencing into the next generation.
Collapse
Affiliation(s)
- John Paul Tsu Ouyang
- HHMI and Department of Molecular Biology and Genetics, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Wenyan Lucy Zhang
- HHMI and Department of Molecular Biology and Genetics, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Geraldine Seydoux
- HHMI and Department of Molecular Biology and Genetics, Johns Hopkins University School of Medicine, Baltimore, MD, USA.
| |
Collapse
|
44
|
Bush NM, Hunter CP. Don't put all your epigenetic eggs in one basket. Nat Cell Biol 2022; 24:1016-1018. [PMID: 35773433 DOI: 10.1038/s41556-022-00948-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Affiliation(s)
- Nicole M Bush
- The Biological Laboratories, Department of Molecular and Cellular Biology, Harvard University, Cambridge, MA, USA
| | - Craig P Hunter
- The Biological Laboratories, Department of Molecular and Cellular Biology, Harvard University, Cambridge, MA, USA.
| |
Collapse
|
45
|
Quarato P, Singh M, Bourdon L, Cecere G. Inheritance and maintenance of small RNA-mediated epigenetic effects. Bioessays 2022; 44:e2100284. [PMID: 35338497 DOI: 10.1002/bies.202100284] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2021] [Revised: 02/04/2022] [Accepted: 03/15/2022] [Indexed: 11/08/2022]
Abstract
Heritable traits are predominantly encoded within genomic DNA, but it is now appreciated that epigenetic information is also inherited through DNA methylation, histone modifications, and small RNAs. Several examples of transgenerational epigenetic inheritance of traits have been documented in plants and animals. These include even the inheritance of traits acquired through the soma during the life of an organism, implicating the transfer of epigenetic information via the germline to the next generation. Small RNAs appear to play a significant role in carrying epigenetic information across generations. This review focuses on how epigenetic information in the form of small RNAs is transmitted from the germline to the embryos through the gametes. We also consider how inherited epigenetic information is maintained across generations in a small RNA-dependent and independent manner. Finally, we discuss how epigenetic traits acquired from the soma can be inherited through small RNAs.
Collapse
Affiliation(s)
- Piergiuseppe Quarato
- Department of Developmental and Stem Cell Biology, Institut Pasteur, Université de Paris, CNRS UMR3738, Mechanisms of Epigenetic Inheritance, Paris, France
| | - Meetali Singh
- Department of Developmental and Stem Cell Biology, Institut Pasteur, Université de Paris, CNRS UMR3738, Mechanisms of Epigenetic Inheritance, Paris, France
| | - Loan Bourdon
- Department of Developmental and Stem Cell Biology, Institut Pasteur, Université de Paris, CNRS UMR3738, Mechanisms of Epigenetic Inheritance, Paris, France
| | - Germano Cecere
- Department of Developmental and Stem Cell Biology, Institut Pasteur, Université de Paris, CNRS UMR3738, Mechanisms of Epigenetic Inheritance, Paris, France
| |
Collapse
|
46
|
Phillips CM, Updike DL. Germ granules and gene regulation in the Caenorhabditis elegans germline. Genetics 2022; 220:6541922. [PMID: 35239965 PMCID: PMC8893257 DOI: 10.1093/genetics/iyab195] [Citation(s) in RCA: 28] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2021] [Accepted: 10/10/2021] [Indexed: 01/27/2023] Open
Abstract
The transparency of Caenorhabditis elegans provides a unique window to observe and study the function of germ granules. Germ granules are specialized ribonucleoprotein (RNP) assemblies specific to the germline cytoplasm, and they are largely conserved across Metazoa. Within the germline cytoplasm, they are positioned to regulate mRNA abundance, translation, small RNA production, and cytoplasmic inheritance to help specify and maintain germline identity across generations. Here we provide an overview of germ granules and focus on the significance of more recent observations that describe how they further demix into sub-granules, each with unique compositions and functions.
Collapse
Affiliation(s)
- Carolyn M Phillips
- Department of Biological Sciences, University of Southern California, Los Angeles, CA 90089, USA,Corresponding author: (C.M.P.); (D.L.U.)
| | - Dustin L Updike
- The Mount Desert Island Biological Laboratory, Bar Harbor, ME 04672, USA,Corresponding author: (C.M.P.); (D.L.U.)
| |
Collapse
|
47
|
Chen X, Rechavi O. Plant and animal small RNA communications between cells and organisms. Nat Rev Mol Cell Biol 2022; 23:185-203. [PMID: 34707241 PMCID: PMC9208737 DOI: 10.1038/s41580-021-00425-y] [Citation(s) in RCA: 90] [Impact Index Per Article: 30.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/24/2021] [Indexed: 01/09/2023]
Abstract
Since the discovery of eukaryotic small RNAs as the main effectors of RNA interference in the late 1990s, diverse types of endogenous small RNAs have been characterized, most notably microRNAs, small interfering RNAs (siRNAs) and PIWI-interacting RNAs (piRNAs). These small RNAs associate with Argonaute proteins and, through sequence-specific gene regulation, affect almost every major biological process. Intriguing features of small RNAs, such as their mechanisms of amplification, rapid evolution and non-cell-autonomous function, bestow upon them the capacity to function as agents of intercellular communications in development, reproduction and immunity, and even in transgenerational inheritance. Although there are many types of extracellular small RNAs, and despite decades of research, the capacity of these molecules to transmit signals between cells and between organisms is still highly controversial. In this Review, we discuss evidence from different plants and animals that small RNAs can act in a non-cell-autonomous manner and even exchange information between species. We also discuss mechanistic insights into small RNA communications, such as the nature of the mobile agents, small RNA signal amplification during transit, signal perception and small RNA activity at the destination.
Collapse
Affiliation(s)
- Xuemei Chen
- Department of Botany and Plant Sciences, Institute for Integrative Genome Biology, University of California, Riverside, CA, USA.
| | - Oded Rechavi
- Department of Neurobiology, The George S. Wise Faculty of Life Sciences, Tel Aviv University, Tel Aviv, Israel. .,Sagol School of Neuroscience, Tel Aviv University, Tel Aviv, Israel.
| |
Collapse
|
48
|
Toker IA, Lev I, Mor Y, Gurevich Y, Fisher D, Houri-Zeevi L, Antonova O, Doron H, Anava S, Gingold H, Hadany L, Shaham S, Rechavi O. Transgenerational inheritance of sexual attractiveness via small RNAs enhances evolvability in C. elegans. Dev Cell 2022; 57:298-309.e9. [PMID: 35134343 PMCID: PMC8826646 DOI: 10.1016/j.devcel.2022.01.005] [Citation(s) in RCA: 25] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2021] [Revised: 09/12/2021] [Accepted: 01/05/2022] [Indexed: 11/16/2022]
Abstract
It is unknown whether transient transgenerational epigenetic responses to environmental challenges affect the process of evolution, which typically unfolds over many generations. Here, we show that in C. elegans, inherited small RNAs control genetic variation by regulating the crucial decision of whether to self-fertilize or outcross. We found that under stressful temperatures, younger hermaphrodites secrete a male-attracting pheromone. Attractiveness transmits transgenerationally to unstressed progeny via heritable small RNAs and the Argonaute Heritable RNAi Deficient-1 (HRDE-1). We identified an endogenous small interfering RNA pathway, enriched in endo-siRNAs that target sperm genes, that transgenerationally regulates sexual attraction, male prevalence, and outcrossing rates. Multigenerational mating competition experiments and mathematical simulations revealed that over generations, animals that inherit attractiveness mate more and their alleles spread in the population. We propose that the sperm serves as a "stress-sensor" that, via small RNA inheritance, promotes outcrossing in challenging environments when increasing genetic variation is advantageous.
Collapse
Affiliation(s)
- Itai Antoine Toker
- Department of Neurobiology, Faculty of Life Sciences & Sagol School of Neuroscience, Tel Aviv University, Tel Aviv, Israel.
| | - Itamar Lev
- Department of Neurobiology, Faculty of Life Sciences & Sagol School of Neuroscience, Tel Aviv University, Tel Aviv, Israel.
| | - Yael Mor
- Department of Neurobiology, Faculty of Life Sciences & Sagol School of Neuroscience, Tel Aviv University, Tel Aviv, Israel.
| | - Yael Gurevich
- School of Plant Sciences and Food Security, Faculty of Life Sciences, Tel Aviv University, Tel Aviv, Israel
| | - Doron Fisher
- Department of Neurobiology, Faculty of Life Sciences & Sagol School of Neuroscience, Tel Aviv University, Tel Aviv, Israel
| | - Leah Houri-Zeevi
- Department of Neurobiology, Faculty of Life Sciences & Sagol School of Neuroscience, Tel Aviv University, Tel Aviv, Israel
| | - Olga Antonova
- Department of Neurobiology, Faculty of Life Sciences & Sagol School of Neuroscience, Tel Aviv University, Tel Aviv, Israel
| | - Hila Doron
- Department of Neurobiology, Faculty of Life Sciences & Sagol School of Neuroscience, Tel Aviv University, Tel Aviv, Israel
| | - Sarit Anava
- Department of Neurobiology, Faculty of Life Sciences & Sagol School of Neuroscience, Tel Aviv University, Tel Aviv, Israel
| | - Hila Gingold
- Department of Neurobiology, Faculty of Life Sciences & Sagol School of Neuroscience, Tel Aviv University, Tel Aviv, Israel
| | - Lilach Hadany
- School of Plant Sciences and Food Security, Faculty of Life Sciences, Tel Aviv University, Tel Aviv, Israel
| | - Shai Shaham
- Laboratory of Developmental Genetics, The Rockefeller University, New York, NY, USA
| | - Oded Rechavi
- Department of Neurobiology, Faculty of Life Sciences & Sagol School of Neuroscience, Tel Aviv University, Tel Aviv, Israel.
| |
Collapse
|
49
|
Chey M, Jose AM. Heritable epigenetic changes at single genes: challenges and opportunities in Caenorhabditis elegans. Trends Genet 2022; 38:116-119. [PMID: 34493403 PMCID: PMC9436772 DOI: 10.1016/j.tig.2021.08.011] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2021] [Revised: 08/12/2021] [Accepted: 08/17/2021] [Indexed: 02/03/2023]
Abstract
Organisms rely on stereotyped patterns of gene expression for similar form and function in every generation. The analysis of epigenetic changes in the expression of different genes across generations can provide the rationale for measured actions in one generation that consider impact on future generations.
Collapse
Affiliation(s)
- Mary Chey
- Department of Cell Biology and Molecular Genetics, University of Maryland, College Park, MD 20742, USA
| | - Antony M Jose
- Department of Cell Biology and Molecular Genetics, University of Maryland, College Park, MD 20742, USA.
| |
Collapse
|
50
|
Cornes E, Bourdon L, Singh M, Mueller F, Quarato P, Wernersson E, Bienko M, Li B, Cecere G. piRNAs initiate transcriptional silencing of spermatogenic genes during C. elegans germline development. Dev Cell 2022; 57:180-196.e7. [PMID: 34921763 PMCID: PMC8796119 DOI: 10.1016/j.devcel.2021.11.025] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2021] [Revised: 11/02/2021] [Accepted: 11/26/2021] [Indexed: 12/22/2022]
Abstract
Eukaryotic genomes harbor invading transposable elements that are silenced by PIWI-interacting RNAs (piRNAs) to maintain genome integrity in animal germ cells. However, whether piRNAs also regulate endogenous gene expression programs remains unclear. Here, we show that C. elegans piRNAs trigger the transcriptional silencing of hundreds of spermatogenic genes during spermatogenesis, promoting sperm differentiation and function. This silencing signal requires piRNA-dependent small RNA biogenesis and loading into downstream nuclear effectors, which correlates with the dynamic reorganization of two distinct perinuclear biomolecular condensates present in germ cells. In addition, the silencing capacity of piRNAs is temporally counteracted by the Argonaute CSR-1, which targets and licenses spermatogenic gene transcription. The spatial and temporal overlap between these opposing small RNA pathways contributes to setting up the timing of the spermatogenic differentiation program. Thus, our work identifies a prominent role for piRNAs as direct regulators of endogenous transcriptional programs during germline development and gamete differentiation.
Collapse
Affiliation(s)
- Eric Cornes
- Mechanisms of Epigenetic Inheritance, Department of Developmental and Stem Cell Biology, Institut Pasteur, UMR 3738, CNRS, Paris 75015, France
| | - Loan Bourdon
- Mechanisms of Epigenetic Inheritance, Department of Developmental and Stem Cell Biology, Institut Pasteur, UMR 3738, CNRS, Paris 75015, France
| | - Meetali Singh
- Mechanisms of Epigenetic Inheritance, Department of Developmental and Stem Cell Biology, Institut Pasteur, UMR 3738, CNRS, Paris 75015, France
| | - Florian Mueller
- Imaging and Modeling Unit, Institut Pasteur, UMR 3691 CNRS, C3BI USR 3756 IP CNRS, Paris, France
| | - Piergiuseppe Quarato
- Mechanisms of Epigenetic Inheritance, Department of Developmental and Stem Cell Biology, Institut Pasteur, UMR 3738, CNRS, Paris 75015, France
| | - Erik Wernersson
- Division of Genome Biology, Department of Medical Biochemistry and Biophysics, Karolinska Institutet, Stockholm 17165, Sweden; Science for Life Laboratory, Tomtebodavägen 23A, Stockholm 17165, Sweden
| | - Magda Bienko
- Division of Genome Biology, Department of Medical Biochemistry and Biophysics, Karolinska Institutet, Stockholm 17165, Sweden; Science for Life Laboratory, Tomtebodavägen 23A, Stockholm 17165, Sweden
| | - Blaise Li
- Mechanisms of Epigenetic Inheritance, Department of Developmental and Stem Cell Biology, Institut Pasteur, UMR 3738, CNRS, Paris 75015, France; Bioinformatics and Biostatistics Hub, Department of Computational Biology, Institut Pasteur, USR 3756, CNRS, Paris 75015, France
| | - Germano Cecere
- Mechanisms of Epigenetic Inheritance, Department of Developmental and Stem Cell Biology, Institut Pasteur, UMR 3738, CNRS, Paris 75015, France.
| |
Collapse
|