1
|
Han X, Zou Y, Liu Q, Wang Z, Niu R, Qu Z, Li Z, Han C, Watanabe K, Taniguchi T, Dong B, Song Z, Mao J, Han Z, Cheng ZG, Gan Z, Lu J. Suppression of symmetry-breaking correlated insulators in a rhombohedral trilayer graphene superlattice. Nat Commun 2024; 15:9765. [PMID: 39528495 PMCID: PMC11555227 DOI: 10.1038/s41467-024-54200-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2023] [Accepted: 10/31/2024] [Indexed: 11/16/2024] Open
Abstract
Counterintuitive temperature dependence of isospin flavor polarization has recently been found in twisted bilayer graphene, where unpolarized electrons in a Fermi liquid become a spin-valley polarized insulator upon heating. So far, the effect has been limited to v = +/-1 (one electron/hole per superlattice cell), leaving open questions such as whether it is a general property of symmetry-breaking electronic phases. Here, by studying a rhombohedral trilayer graphene/boron nitride moiré superlattice, we report that at v = -3 a resistive peak emerges at elevated temperatures or in parallel magnetic fields. Concomitantly, the Hall carrier density tends to reset at the integer filling, signaling spin-valley flavor symmetry breaking. These phenomena can also be observed at v = -1 and -2 when the displacement field is large enough to suppress correlated insulators at low temperatures. Our results greatly expand the scope for observing the counterintuitive temperature dependence of flavor polarization, i.e., the regimes proximal to symmetry-breaking phases where the flavor polarization order strongly fluctuates, encouraging more experimental and theoretical exploration of isospin flavor polarization dynamics in flat-band moiré systems.
Collapse
Affiliation(s)
- Xiangyan Han
- State Key Laboratory for Mesoscopic Physics, School of Physics, Peking University, Beijing, 100871, China
| | - Yuting Zou
- Beijing National Laboratory for Condensed Matter Physics, Institute of Physics, Chinese Academy of Sciences, Beijing, 100190, China
- Institue of Microelectroincs, Chinese Academy of Sciences, Beijing, 100029, China
| | - Qianling Liu
- State Key Laboratory for Mesoscopic Physics, School of Physics, Peking University, Beijing, 100871, China
| | - Zhiyu Wang
- State Key Laboratory for Mesoscopic Physics, School of Physics, Peking University, Beijing, 100871, China
| | - Ruirui Niu
- State Key Laboratory for Mesoscopic Physics, School of Physics, Peking University, Beijing, 100871, China
| | - Zhuangzhuang Qu
- State Key Laboratory for Mesoscopic Physics, School of Physics, Peking University, Beijing, 100871, China
| | - Zhuoxian Li
- State Key Laboratory for Mesoscopic Physics, School of Physics, Peking University, Beijing, 100871, China
| | - Chunrui Han
- Institue of Microelectroincs, Chinese Academy of Sciences, Beijing, 100029, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Kenji Watanabe
- National Institute for Materials Science, 1-1 Namiki, Tsukuba, 305-0044, Japan
| | - Takashi Taniguchi
- National Institute for Materials Science, 1-1 Namiki, Tsukuba, 305-0044, Japan
| | - Baojuan Dong
- State Key Laboratory of Quantum Optics and Quantum Optics Devices, Institute of Opto-Electronics, Shanxi University, Taiyuan, 030006, China
- Collaborative Innovation Center of Extreme Optics, Shanxi University, Taiyuan, 030006, China
- Hefei National Laboratory, Hefei, 230088, PR China
| | - Zhida Song
- International Center for Quantum Materials, Peking University, Beijing, 100871, China
| | - Jinhai Mao
- School of Physical Sciences and CAS Center for Excellence in Topological Quantum Computation, University of Chinese Academy of Sciences, Beijing, China
| | - Zheng Han
- State Key Laboratory of Quantum Optics and Quantum Optics Devices, Institute of Opto-Electronics, Shanxi University, Taiyuan, 030006, China.
- Collaborative Innovation Center of Extreme Optics, Shanxi University, Taiyuan, 030006, China.
- Hefei National Laboratory, Hefei, 230088, PR China.
- Liaoning Academy of Materials, Shenyang, 110167, China.
| | - Zhi Gang Cheng
- Beijing National Laboratory for Condensed Matter Physics, Institute of Physics, Chinese Academy of Sciences, Beijing, 100190, China.
- Institue of Microelectroincs, Chinese Academy of Sciences, Beijing, 100029, China.
| | - Zizhao Gan
- State Key Laboratory for Mesoscopic Physics, School of Physics, Peking University, Beijing, 100871, China
| | - Jianming Lu
- State Key Laboratory for Mesoscopic Physics, School of Physics, Peking University, Beijing, 100871, China.
| |
Collapse
|
2
|
Zhao H, Yang S, Ge C, Zhang D, Huang L, Chen M, Pan A, Wang X. Tunable Out-of-Plane Reconstructions in Moiré Superlattices of Transition Metal Dichalcogenide Heterobilayers. ACS NANO 2024; 18:27479-27486. [PMID: 39316511 DOI: 10.1021/acsnano.4c08081] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/26/2024]
Abstract
The reconstructed moiré superlattices of the transition metal chalcogenide (TMD), formed by the combined effects of interlayer coupling and intralayer strain, provide a platform for exploring quantum physics. Here, using scanning tunneling microscopy/spectroscopy, we observe that the strained WSe2/WS2 moiré superlattices undergo various out-of-plane atomically buckled configurations, a phenomenon termed out-of-plane reconstruction. This evolution is attributed to the differentiated response of intralayer strain in high-symmetry stacking regions to external strain. Notably, in larger out-of-plane reconstructions, there is a significant alteration in the local density of states (LDOS) near the Γ point in the valence band, exceeding 300%, with the moiré potential in the valence band surpassing 200 meV. Further, we confirm that the variation in interlayer coupling within high-symmetry stacking regions is the main factor affecting the moiré electronic states rather than the intralayer strain. Our study unveils intrinsic regulating mechanisms of out-of-plane reconstructed moiré superlattices and contributes to the study of reconstructed moiré physics.
Collapse
Affiliation(s)
- Haipeng Zhao
- Key Laboratory for Micro-Nano Physics and Technology of Hunan Province, School of Physics and Electronics, College of Materials Science and Engineering, Hunan University, Changsha 410082, China
| | - Shengguo Yang
- Key Laboratory of Low-Dimensional Quantum Structures and Quantum Control of Ministry of Education, Synergetic Innovation Center for Quantum Effects and Applications (SICQEA), Hunan Normal University, Changsha 410081, China
| | - Cuihuan Ge
- Key Laboratory for Micro-Nano Physics and Technology of Hunan Province, School of Physics and Electronics, College of Materials Science and Engineering, Hunan University, Changsha 410082, China
| | - Danliang Zhang
- Key Laboratory for Micro-Nano Physics and Technology of Hunan Province, School of Physics and Electronics, College of Materials Science and Engineering, Hunan University, Changsha 410082, China
| | - Lanyu Huang
- Key Laboratory for Micro-Nano Physics and Technology of Hunan Province, School of Physics and Electronics, College of Materials Science and Engineering, Hunan University, Changsha 410082, China
| | - Mingxing Chen
- Key Laboratory of Low-Dimensional Quantum Structures and Quantum Control of Ministry of Education, Synergetic Innovation Center for Quantum Effects and Applications (SICQEA), Hunan Normal University, Changsha 410081, China
| | - Anlian Pan
- Key Laboratory for Micro-Nano Physics and Technology of Hunan Province, School of Physics and Electronics, College of Materials Science and Engineering, Hunan University, Changsha 410082, China
| | - Xiao Wang
- Key Laboratory for Micro-Nano Physics and Technology of Hunan Province, School of Physics and Electronics, College of Materials Science and Engineering, Hunan University, Changsha 410082, China
| |
Collapse
|
3
|
Xie M, Hafezi M, Das Sarma S. Long-Lived Topological Flatband Excitons in Semiconductor Moiré Heterostructures: A Bosonic Kane-Mele Model Platform. PHYSICAL REVIEW LETTERS 2024; 133:136403. [PMID: 39392947 DOI: 10.1103/physrevlett.133.136403] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/19/2024] [Revised: 07/31/2024] [Accepted: 08/24/2024] [Indexed: 10/13/2024]
Abstract
Moiré superlattices based on two-dimensional transition metal dichalcogenides (TMDs) have emerged as a highly versatile and fruitful platform for exploring correlated topological electronic phases. One of the most remarkable examples is the recently discovered fractional quantum anomalous Hall effect (FQAHE) under zero magnetic field. Here, we propose a minimal structure that hosts long-lived excitons-a ubiquitous bosonic excitation in TMD semiconductors-with narrow topological bosonic bands. The nontrivial exciton topology originates from hybridization of moiré interlayer excitons and is tunable by controlling twist angle and electric field. At small twist angle, the lowest exciton bands are isolated from higher energy bands and provide a solid-state realization of the bosonic Kane-Mele model with topological flatbands, which could potentially support the bosonic version of FQAHE.
Collapse
Affiliation(s)
| | | | - Sankar Das Sarma
- Condensed Matter Theory Center, Department of Physics, University of Maryland, College Park, Maryland 20742, USA
- Joint Quantum Institute, Department of Physics, University of Maryland, College Park, Maryland 20742, USA
| |
Collapse
|
4
|
Abouelkomsan A, Bergholtz EJ, Chatterjee S. Multiferroicity and Topology in Twisted Transition Metal Dichalcogenides. PHYSICAL REVIEW LETTERS 2024; 133:026801. [PMID: 39073975 DOI: 10.1103/physrevlett.133.026801] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/15/2022] [Revised: 04/02/2024] [Accepted: 06/12/2024] [Indexed: 07/31/2024]
Abstract
Van der Waals heterostructures have recently emerged as an exciting platform for investigating the effects of strong electronic correlations, including various forms of magnetic or electrical orders. Here, we perform an unbiased exact diagonalization study of the effects of interactions on topological flat bands of twisted transition metal dichalcogenides (TMDs) at odd integer fillings. For hole-filling ν_{h}=1, we find that the Chern insulator phase, expected from interaction-induced spin-valley polarization of the bare bands, is quite fragile, and gives way to spontaneous multiferroic order-coexisting ferroelectricity and ferromagnetism, in the presence of long-range Coulomb repulsion. We provide a simple real-space picture to understand the phase diagram as a function of interaction range and strength. Our findings establish twisted TMDs as a novel and highly tunable platform for multiferroicity, and we outline a potential route towards electrical control of magnetism in the multiferroic phase.
Collapse
|
5
|
Dai DD, Fu L. Strong-Coupling Phases of Trions and Excitons in Electron-Hole Bilayers at Commensurate Densities. PHYSICAL REVIEW LETTERS 2024; 132:196202. [PMID: 38804948 DOI: 10.1103/physrevlett.132.196202] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/26/2023] [Accepted: 03/28/2024] [Indexed: 05/29/2024]
Abstract
We introduce density imbalanced electron-hole bilayers at a commensurate 2:1 density ratio as a platform for realizing novel phases of electrons, excitons, and trions. Through the independently tunable carrier densities and interlayer spacing, competition between kinetic energy, intralayer repulsion, and interlayer attraction yields a rich phase diagram. By a combination of theoretical analysis and numerical calculation, we find a variety of strong-coupling phases in different parameter regions, including quantum crystals of electrons, excitons, and trions. We also propose an "electron-exciton supersolid" phase that features electron crystallization and exciton superfluidity simultaneously. The material realization and experimental signature of these phases are discussed in the context of semiconductor transition metal dichalcogenide bilayers.
Collapse
Affiliation(s)
- David D Dai
- Department of Physics, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, USA
| | - Liang Fu
- Department of Physics, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, USA
| |
Collapse
|
6
|
Ali N, Singh B, Srivastava PK, Ali F, Lee M, Park H, Shin H, Lee K, Choi H, Lee S, Ngo TD, Hassan Y, Watanabe K, Taniguchi T, Lee C, Yoo WJ. Link between T-Linear Resistivity and Quantum Criticality in Ambipolar Black Phosphorus. ACS NANO 2024; 18:11978-11987. [PMID: 38652759 DOI: 10.1021/acsnano.4c02432] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/25/2024]
Abstract
The interplay between strong Coulomb interactions and kinetic energy leads to intricate many-body competing ground states owing to quantum fluctuations in 2D electron and hole gases. However, the simultaneous observation of quantum critical phenomena in both electron and hole regimes remains elusive. Here, we utilize anisotropic black phosphorus (BP) to show density-driven metal-insulator transition with a critical conductance ∼e2/h which highlights the significant role of quantum fluctuations in both hole and electron regimes. We observe a T-linear resistivity from the deep metallic phase to the metal-insulator boundary at moderate temperatures, while it turns to Fermi liquid behavior in the deep metallic phase at low temperatures in both regimes. An analysis of the resistivity suggests that disorder-dominated transport leads to T-linear behavior in the hole regime, while in the electron regime, the T-linear resistivity results from strong Coulomb interactions, suggestive of strange-metal behavior. Successful scaling collapse of the resistivity in the T-linear region demonstrates the link between quantum criticality and the T-linear resistivity in both regimes. Our study provides compelling evidence that ambipolar BP could serve as an exciting testbed for investigating exotic states and quantum critical phenomena in hole and electron regimes of 2D semiconductors.
Collapse
Affiliation(s)
- Nasir Ali
- SKKU Advanced Institute of Nano-Technology (SAINT), Sungkyunkwan University, 2066 Seobu-ro, Jangan-gu, Suwon, Gyeonggi-do 16419, Korea
| | - Budhi Singh
- School of Mechanical Engineering, Sungkyunkwan University, 2066 Seobu-ro, Jangan-gu, Suwon, Gyeonggi-do 16419, Korea
| | - Pawan Kumar Srivastava
- School of Mechanical Engineering, Sungkyunkwan University, 2066 Seobu-ro, Jangan-gu, Suwon, Gyeonggi-do 16419, Korea
| | - Fida Ali
- Department of Electronic and Nanoengineering, Aalto University, P.O. Box 13500, Aalto FI-00076, Finland
| | - Myeongjin Lee
- SKKU Advanced Institute of Nano-Technology (SAINT), Sungkyunkwan University, 2066 Seobu-ro, Jangan-gu, Suwon, Gyeonggi-do 16419, Korea
| | - Hyokwang Park
- SKKU Advanced Institute of Nano-Technology (SAINT), Sungkyunkwan University, 2066 Seobu-ro, Jangan-gu, Suwon, Gyeonggi-do 16419, Korea
| | - Hoseong Shin
- SKKU Advanced Institute of Nano-Technology (SAINT), Sungkyunkwan University, 2066 Seobu-ro, Jangan-gu, Suwon, Gyeonggi-do 16419, Korea
| | - Kwangro Lee
- SKKU Advanced Institute of Nano-Technology (SAINT), Sungkyunkwan University, 2066 Seobu-ro, Jangan-gu, Suwon, Gyeonggi-do 16419, Korea
| | - Hyungyu Choi
- SKKU Advanced Institute of Nano-Technology (SAINT), Sungkyunkwan University, 2066 Seobu-ro, Jangan-gu, Suwon, Gyeonggi-do 16419, Korea
| | - Sungwon Lee
- SKKU Advanced Institute of Nano-Technology (SAINT), Sungkyunkwan University, 2066 Seobu-ro, Jangan-gu, Suwon, Gyeonggi-do 16419, Korea
| | - Tien Dat Ngo
- SKKU Advanced Institute of Nano-Technology (SAINT), Sungkyunkwan University, 2066 Seobu-ro, Jangan-gu, Suwon, Gyeonggi-do 16419, Korea
| | - Yasir Hassan
- SKKU Advanced Institute of Nano-Technology (SAINT), Sungkyunkwan University, 2066 Seobu-ro, Jangan-gu, Suwon, Gyeonggi-do 16419, Korea
| | - Kenji Watanabe
- National Institute for Materials Science, 1-1 Namiki, Tsukuba 305-0044, Japan
| | - Takashi Taniguchi
- National Institute for Materials Science, 1-1 Namiki, Tsukuba 305-0044, Japan
| | - Changgu Lee
- SKKU Advanced Institute of Nano-Technology (SAINT), Sungkyunkwan University, 2066 Seobu-ro, Jangan-gu, Suwon, Gyeonggi-do 16419, Korea
- School of Mechanical Engineering, Sungkyunkwan University, 2066 Seobu-ro, Jangan-gu, Suwon, Gyeonggi-do 16419, Korea
| | - Won Jong Yoo
- SKKU Advanced Institute of Nano-Technology (SAINT), Sungkyunkwan University, 2066 Seobu-ro, Jangan-gu, Suwon, Gyeonggi-do 16419, Korea
| |
Collapse
|
7
|
Catanzaro A, Genco A, Louca C, Ruiz-Tijerina DA, Gillard DJ, Sortino L, Kozikov A, Alexeev EM, Pisoni R, Hague L, Watanabe K, Taniguchi T, Ensslin K, Novoselov KS, Fal'ko V, Tartakovskii AI. Resonant Band Hybridization in Alloyed Transition Metal Dichalcogenide Heterobilayers. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2024; 36:e2309644. [PMID: 38279553 DOI: 10.1002/adma.202309644] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/18/2023] [Revised: 12/20/2023] [Indexed: 01/28/2024]
Abstract
Bandstructure engineering using alloying is widely utilized for achieving optimized performance in modern semiconductor devices. While alloying has been studied in monolayer transition metal dichalcogenides, its application in van der Waals heterostructures built from atomically thin layers is largely unexplored. Here, heterobilayers made from monolayers of WSe2 (or MoSe2) and MoxW1 - xSe2 alloy are fabricated and nontrivial tuning of the resultant bandstructure is observed as a function of concentration x. This evolution is monitored by measuring the energy of photoluminescence (PL) of the interlayer exciton (IX) composed of an electron and hole residing in different monolayers. In MoxW1 - xSe2/WSe2, a strong IX energy shift of ≈100 meV is observed for x varied from 1 to 0.6. However, for x < 0.6 this shift saturates and the IX PL energy asymptotically approaches that of the indirect bandgap in bilayer WSe2. This observation is theoretically interpreted as the strong variation of the conduction band K valley for x > 0.6, with IX PL arising from the K - K transition, while for x < 0.6, the bandstructure hybridization becomes prevalent leading to the dominating momentum-indirect K - Q transition. This bandstructure hybridization is accompanied with strong modification of IX PL dynamics and nonlinear exciton properties. This work provides foundation for bandstructure engineering in van der Waals heterostructures highlighting the importance of hybridization effects and opening a way to devices with accurately tailored electronic properties.
Collapse
Affiliation(s)
- Alessandro Catanzaro
- Department of Physics and Astronomy, The University of Sheffield, Sheffield, S3 7RH, UK
| | - Armando Genco
- Department of Physics and Astronomy, The University of Sheffield, Sheffield, S3 7RH, UK
- Dipartimento di Fisica, Politecnico di Milano, Piazza Leonardo da Vinci, 32, Milano, 20133, Italy
| | - Charalambos Louca
- Department of Physics and Astronomy, The University of Sheffield, Sheffield, S3 7RH, UK
- Dipartimento di Fisica, Politecnico di Milano, Piazza Leonardo da Vinci, 32, Milano, 20133, Italy
| | - David A Ruiz-Tijerina
- Departamento de Física Química, Instituto de Física, Universidad Nacional Autónoma de México, Ciudad de México, C.P., 04510, Mexico, México
| | - Daniel J Gillard
- Department of Physics and Astronomy, The University of Sheffield, Sheffield, S3 7RH, UK
| | - Luca Sortino
- Department of Physics and Astronomy, The University of Sheffield, Sheffield, S3 7RH, UK
- Chair in Hybrid Nanosystems, Nanoinstitute Munich, Faculty of Physics, Ludwig-Maximilians-Universität München, 80539, Munich, Germany
| | - Aleksey Kozikov
- Department of Physics and Astronomy, University of Manchester, Manchester, M13 9PL, UK
- School of Mathematics, Statistics and Physics, Newcastle University, Newcastle upon Tyne, NE1 7RU, UK
| | - Evgeny M Alexeev
- Department of Physics and Astronomy, The University of Sheffield, Sheffield, S3 7RH, UK
- Cambridge Graphene Centre, University of Cambridge, 9 J. J. Thomson Avenue, Cambridge, CB3 0FA, UK
| | - Riccardo Pisoni
- Solid State Physics Laboratory, ETH Zurich, Zurich, CH-8093, Switzerland
| | - Lee Hague
- National Graphene Institute, University of Manchester, Manchester, M13 9PL, UK
| | - Kenji Watanabe
- Research Center for Electronic and Optical Materials, National Institute for Materials Science, 1-1 Namiki, Tsukuba, 305-0044, Japan
| | - Takashi Taniguchi
- Research Center for Materials Nanoarchitectonics, National Institute for Materials Science, 1-1 Namiki, Tsukuba, 305-0044, Japan
| | - Klaus Ensslin
- Solid State Physics Laboratory, ETH Zurich, Zurich, CH-8093, Switzerland
| | - Kostya S Novoselov
- Institute for Functional Intelligent Materials, National University of Singapore, Singapore, 117546, Singapore
| | - Vladimir Fal'ko
- Department of Physics and Astronomy, University of Manchester, Manchester, M13 9PL, UK
- Henry Royce Institute for Advanced Materials, University of Manchester, Manchester, M13 9PL, United Kingdom
| | | |
Collapse
|
8
|
Ho WGD, Zhang P, Haule K, Jackson JM, Dobrosavljević V, Dobrosavljevic VV. Quantum critical phase of FeO spans conditions of Earth's lower mantle. Nat Commun 2024; 15:3461. [PMID: 38658590 PMCID: PMC11043421 DOI: 10.1038/s41467-024-47489-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2023] [Accepted: 03/28/2024] [Indexed: 04/26/2024] Open
Abstract
Seismic and mineralogical studies have suggested regions at Earth's core-mantle boundary may be highly enriched in FeO, reported to exhibit metallic behavior at extreme pressure-temperature (P-T) conditions. However, underlying electronic processes in FeO remain poorly understood. Here we explore the electronic structure of B1-FeO at extreme conditions with large-scale theoretical modeling using state-of-the-art embedded dynamical mean field theory (eDMFT). Fine sampling of the phase diagram reveals that, instead of sharp metallization, compression of FeO at high temperatures induces a gradual orbitally selective insulator-metal transition. Specifically, at P-T conditions of the lower mantle, FeO exists in an intermediate quantum critical state, characteristic of strongly correlated electronic matter. Transport in this regime, distinct from insulating or metallic behavior, is marked by incoherent diffusion of electrons in the conducting t2g orbital and a band gap in the eg orbital, resulting in moderate electrical conductivity (~105 S/m) with modest P-T dependence as observed in experiments. Enrichment of solid FeO can thus provide a unifying explanation for independent observations of low seismic velocities and elevated electrical conductivities in heterogeneities at Earth's mantle base.
Collapse
Affiliation(s)
- Wai-Ga D Ho
- Department of Physics and National High Magnetic Field Laboratory, Florida State University, Tallahassee, FL, USA
| | - Peng Zhang
- MOE Key Laboratory for Non-equilibrium Synthesis and Modulation of Condensed Matter, Shaanxi Province Key Laboratory of Advanced Functional Materials and Mesoscopic Physics, School of Physics, Xi'an Jiaotong University, 710049, Xi'an, Shaanxi, PR China.
| | - Kristjan Haule
- Center for Materials Theory, Department of Physics, Rutgers University, Piscataway, NJ, USA
| | - Jennifer M Jackson
- Seismological Laboratory, California Institute of Technology, Pasadena, CA, USA
| | - Vladimir Dobrosavljević
- Department of Physics and National High Magnetic Field Laboratory, Florida State University, Tallahassee, FL, USA
| | - Vasilije V Dobrosavljevic
- Seismological Laboratory, California Institute of Technology, Pasadena, CA, USA.
- Earth and Planets Laboratory, Carnegie Institution for Science, Washington, DC, USA.
| |
Collapse
|
9
|
Foutty BA, Kometter CR, Devakul T, Reddy AP, Watanabe K, Taniguchi T, Fu L, Feldman BE. Mapping twist-tuned multiband topology in bilayer WSe 2. Science 2024; 384:343-347. [PMID: 38669569 DOI: 10.1126/science.adi4728] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2023] [Accepted: 03/19/2024] [Indexed: 04/28/2024]
Abstract
Semiconductor moiré superlattices have been shown to host a wide array of interaction-driven ground states. However, twisted homobilayers have been difficult to study in the limit of large moiré wavelengths, where interactions are most dominant. In this study, we conducted local electronic compressibility measurements of twisted bilayer WSe2 (tWSe2) at small twist angles. We demonstrated multiple topological bands that host a series of Chern insulators at zero magnetic field near a "magic angle" around 1.23°. Using a locally applied electric field, we induced a topological quantum-phase transition at one hole per moiré unit cell. Our work establishes the topological phase diagram of a generalized Kane-Mele-Hubbard model in tWSe2, demonstrating a tunable platform for strongly correlated topological phases.
Collapse
Affiliation(s)
- Benjamin A Foutty
- Geballe Laboratory for Advanced Materials, Stanford, CA 94305, USA
- Department of Physics, Stanford University, Stanford, CA 94305, USA
| | - Carlos R Kometter
- Geballe Laboratory for Advanced Materials, Stanford, CA 94305, USA
- Department of Physics, Stanford University, Stanford, CA 94305, USA
| | - Trithep Devakul
- Department of Physics, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| | - Aidan P Reddy
- Department of Physics, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| | - Kenji Watanabe
- Research Center for Electronic and Optical Materials, National Institute for Materials Science, 1-1 Namiki, Tsukuba 305-0044, Japan
| | - Takashi Taniguchi
- Research Center for Materials Nanoarchitectonics, National Institute for Materials Science, 1-1 Namiki, Tsukuba 305-0044, Japan
| | - Liang Fu
- Department of Physics, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| | - Benjamin E Feldman
- Geballe Laboratory for Advanced Materials, Stanford, CA 94305, USA
- Department of Physics, Stanford University, Stanford, CA 94305, USA
- Stanford Institute for Materials and Energy Sciences, SLAC National Accelerator Laboratory, Menlo Park, CA 94025, USA
| |
Collapse
|
10
|
Meneghini G, Brem S, Malic E. Excitonic Thermalization Bottleneck in Twisted TMD Heterostructures. NANO LETTERS 2024; 24:4505-4511. [PMID: 38578047 DOI: 10.1021/acs.nanolett.4c00450] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/06/2024]
Abstract
Twisted van der Waals heterostructures show intriguing interface exciton physics, including hybridization effects and emergence of moiré potentials. Recent experiments have revealed that moiré-trapped excitons exhibit remarkable dynamics, where excited states show lifetimes that are several orders of magnitude longer than in monolayers. The origin of this behavior is still under debate. Based on a microscopic many-particle approach, we investigate the phonon-driven relaxation cascade of nonequilibrium moiré excitons in the exemplary MoSe2-WSe2 heterostructure. We track exciton relaxation pathways across different moiré mini-bands and identify the phonon-scattering channels assisting the spatial redistribution of excitons into low-energy pockets of the moiré potential. We unravel a phonon bottleneck in the flat band structure at low twist angles preventing excitons from fully thermalizing into the lowest state, explaining the measured enhanced emission intensity and lifetime of excited moiré excitons. Overall, our work provides important insights into exciton relaxation dynamics in flat-band exciton materials.
Collapse
Affiliation(s)
- Giuseppe Meneghini
- Department of Physics, Philipps University of Marburg, 35037 Marburg, Germany
| | - Samuel Brem
- Department of Physics, Philipps University of Marburg, 35037 Marburg, Germany
| | - Ermin Malic
- Department of Physics, Philipps University of Marburg, 35037 Marburg, Germany
| |
Collapse
|
11
|
Wei L, Xu Q, He Y, Li Q, Huang Y, Zhu W, Watanabe K, Taniguchi T, Claassen M, Rhodes DA, Kennes DM, Xian L, Rubio A, Wang L. Linear resistivity at van Hove singularities in twisted bilayer WSe 2. Proc Natl Acad Sci U S A 2024; 121:e2321665121. [PMID: 38593078 PMCID: PMC11032435 DOI: 10.1073/pnas.2321665121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2023] [Accepted: 03/08/2024] [Indexed: 04/11/2024] Open
Abstract
Different mechanisms driving a linear temperature dependence of the resistivity ρ ∼ T at van Hove singularities (VHSs) or metal-insulator transitions when doping a Mott insulator are being debated intensively with competing theoretical proposals. We experimentally investigate this using the exceptional tunability of twisted bilayer (TB) WSe2 by tracking the parameter regions where linear-in-T resistivity is found in dependency of displacement fields, filling, and magnetic fields. We find that even when the VHSs are tuned rather far away from the half-filling point and the Mott insulating transition is absent, the T-linear resistivity persists at the VHSs. When doping away from the VHSs, the T-linear behavior quickly transitions into a Fermi liquid behavior with a T2 relation. No apparent dependency of the linear-in-T resistivity, besides a rather strong change of prefactor, is found when applying displacement fields as long as the filling is tuned to the VHSs, including D ∼ 0.28 V/nm where a high-order VHS is expected. Intriguingly, such non-Fermi liquid linear-in-T resistivity persists even when magnetic fields break the spin-degeneracy of the VHSs at which point two linear in T regions emerge, for each of the split VHSs separately. This points to a mechanism of enhanced scattering at generic VHSs rather than only at high-order VHSs or by a quantum critical point during a Mott transition. Our findings provide insights into the many-body consequences arising out of VHSs, especially the non-Fermi liquid behavior found in moiré materials.
Collapse
Affiliation(s)
- LingNan Wei
- National Laboratory of Solid-State Microstructures, School of Physics, Nanjing University, Nanjing210093, China
| | - Qiaoling Xu
- Songshan Lake Materials Laboratory, Dongguan, Guangdong523808, China
- College of Physics and Electronic Engineering, Center for Computational Sciences, Sichuan Normal University, Chengdu610068, China
| | - Yangchen He
- Department of Materials Science and Engineering, University of Wisconsin, Madison, WI53706
| | - Qingxin Li
- National Laboratory of Solid-State Microstructures, School of Physics, Nanjing University, Nanjing210093, China
| | - Yan Huang
- National Laboratory of Solid-State Microstructures, School of Physics, Nanjing University, Nanjing210093, China
| | - Wang Zhu
- National Laboratory of Solid-State Microstructures, School of Physics, Nanjing University, Nanjing210093, China
| | - Kenji Watanabe
- Research Center for Electronic and Optical Materials, National Institute for Materials Science, Tsukuba305-0044, Japan
| | - Takashi Taniguchi
- Research Center for Materials Nanoarchitectonics, National Institute for Materials Science, Tsukuba305-0044, Japan
| | - Martin Claassen
- Department of Physics and Astronomy, University of Pennsylvania, Philadelphia, PA19104
| | - Daniel A. Rhodes
- Department of Materials Science and Engineering, University of Wisconsin, Madison, WI53706
| | - Dante M. Kennes
- Institut für Theorie der Statistischen Physik, Rheinisch-Westfälische Technische Hochschule Aachen University and Jülich Aachen Research Alliance-Fundamentals of Future Information Technology, Aachen52056, Germany
- Max Planck Institute for the Structure and Dynamics of Matter, Center for Free-Electron Laser Science, Hamburg22761, Germany
| | - Lede Xian
- Songshan Lake Materials Laboratory, Dongguan, Guangdong523808, China
- Max Planck Institute for the Structure and Dynamics of Matter, Center for Free-Electron Laser Science, Hamburg22761, Germany
| | - Angel Rubio
- Max Planck Institute for the Structure and Dynamics of Matter, Center for Free-Electron Laser Science, Hamburg22761, Germany
- Center for Computational Quantum Physics, Simons Foundation Flatiron Institute, New York, NY10010
| | - Lei Wang
- National Laboratory of Solid-State Microstructures, School of Physics, Nanjing University, Nanjing210093, China
- Collaborative Innovation Center of Advanced Microstructures, Nanjing University, Nanjing210093, China
| |
Collapse
|
12
|
Liu X, He Y, Wang C, Zhang XW, Cao T, Xiao D. Gate-Tunable Antiferromagnetic Chern Insulator in Twisted Bilayer Transition Metal Dichalcogenides. PHYSICAL REVIEW LETTERS 2024; 132:146401. [PMID: 38640385 DOI: 10.1103/physrevlett.132.146401] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/14/2023] [Revised: 01/19/2024] [Accepted: 03/10/2024] [Indexed: 04/21/2024]
Abstract
A series of recent experimental works on twisted MoTe_{2} homobilayers have unveiled an abundance of exotic states in this system. Valley-polarized quantum anomalous Hall states have been identified at hole doping of ν=-1, and the fractional quantum anomalous Hall effect is observed at ν=-2/3 and ν=-3/5. In this Letter, we investigate the electronic properties of AA-stacked twisted bilayer MoTe_{2} at ν=-2 by k-space Hartree-Fock calculations. We identify a series of phases, among which a noteworthy phase is the antiferromagnetic Chern insulator, stabilized by an external electric field. We attribute the existence of this Chern insulator to an antiferromagnetic instability at a topological phase transition between the quantum spin hall phase and a band insulator phase. Our research proposes the potential of realizing a Chern insulator beyond ν=-1, and contributes fresh perspectives on the interplay between band topology and electron-electron correlations in moiré superlattices.
Collapse
Affiliation(s)
- Xiaoyu Liu
- Department of Materials Science and Engineering, University of Washington, Seattle, Washington 98195, USA
| | - Yuchi He
- Rudolf Peierls Centre for Theoretical Physics, Clarendon Laboratory, Parks Road, Oxford OX1 3PU, United Kingdom
| | - Chong Wang
- Department of Materials Science and Engineering, University of Washington, Seattle, Washington 98195, USA
| | - Xiao-Wei Zhang
- Department of Materials Science and Engineering, University of Washington, Seattle, Washington 98195, USA
| | - Ting Cao
- Department of Materials Science and Engineering, University of Washington, Seattle, Washington 98195, USA
| | - Di Xiao
- Department of Materials Science and Engineering, University of Washington, Seattle, Washington 98195, USA
- Department of Physics, University of Washington, Seattle, Washington 98195, USA
| |
Collapse
|
13
|
Gao B, Suárez-Forero DG, Sarkar S, Huang TS, Session D, Mehrabad MJ, Ni R, Xie M, Upadhyay P, Vannucci J, Mittal S, Watanabe K, Taniguchi T, Imamoglu A, Zhou Y, Hafezi M. Excitonic Mott insulator in a Bose-Fermi-Hubbard system of moiré WS 2/WSe 2 heterobilayer. Nat Commun 2024; 15:2305. [PMID: 38485728 PMCID: PMC11258127 DOI: 10.1038/s41467-024-46616-x] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2023] [Accepted: 03/04/2024] [Indexed: 07/20/2024] Open
Abstract
Understanding the Hubbard model is crucial for investigating various quantum many-body states and its fermionic and bosonic versions have been largely realized separately. Recently, transition metal dichalcogenides heterobilayers have emerged as a promising platform for simulating the rich physics of the Hubbard model. In this work, we explore the interplay between fermionic and bosonic populations, using a WS2/WSe2 heterobilayer device that hosts this hybrid particle density. We independently tune the fermionic and bosonic populations by electronic doping and optical injection of electron-hole pairs, respectively. This enables us to form strongly interacting excitons that are manifested in a large energy gap in the photoluminescence spectrum. The incompressibility of excitons is further corroborated by observing a suppression of exciton diffusion with increasing pump intensity, as opposed to the expected behavior of a weakly interacting gas of bosons, suggesting the formation of a bosonic Mott insulator. We explain our observations using a two-band model including phase space filling. Our system provides a controllable approach to the exploration of quantum many-body effects in the generalized Bose-Fermi-Hubbard model.
Collapse
Affiliation(s)
- Beini Gao
- Joint Quantum Institute (JQI), University of Maryland, College Park, MD, USA
| | | | - Supratik Sarkar
- Joint Quantum Institute (JQI), University of Maryland, College Park, MD, USA
| | - Tsung-Sheng Huang
- Joint Quantum Institute (JQI), University of Maryland, College Park, MD, USA
| | - Deric Session
- Joint Quantum Institute (JQI), University of Maryland, College Park, MD, USA
| | | | - Ruihao Ni
- Department of Materials Science and Engineering, University of Maryland, College Park, MD, USA
| | - Ming Xie
- Condensed Matter Theory Center, University of Maryland, College Park, MD, USA
| | - Pranshoo Upadhyay
- Joint Quantum Institute (JQI), University of Maryland, College Park, MD, USA
| | - Jonathan Vannucci
- Joint Quantum Institute (JQI), University of Maryland, College Park, MD, USA
| | - Sunil Mittal
- Joint Quantum Institute (JQI), University of Maryland, College Park, MD, USA
| | - Kenji Watanabe
- National Institute for Materials Science, Tsukuba, Japan
| | | | - Atac Imamoglu
- Institute for Quantum Electronics, ETH Zurich, Zurich, Switzerland
| | - You Zhou
- Department of Materials Science and Engineering, University of Maryland, College Park, MD, USA
- Maryland Quantum Materials Center, College Park, MD, USA
| | - Mohammad Hafezi
- Joint Quantum Institute (JQI), University of Maryland, College Park, MD, USA.
- Institute for Theoretical Physics, ETH Zurich, Zurich, Switzerland.
| |
Collapse
|
14
|
Xu C, Li J, Xu Y, Bi Z, Zhang Y. Maximally localized Wannier functions, interaction models, and fractional quantum anomalous Hall effect in twisted bilayer MoTe 2. Proc Natl Acad Sci U S A 2024; 121:e2316749121. [PMID: 38349878 PMCID: PMC10895274 DOI: 10.1073/pnas.2316749121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2023] [Accepted: 01/04/2024] [Indexed: 02/15/2024] Open
Abstract
We investigate the moiré band structures and the strong correlation effects in twisted bilayer MoTe[Formula: see text] for a wide range of twist angles, employing a combination of various techniques. Using large-scale first-principles calculations, we pinpoint realistic continuum modeling parameters, subsequently deriving the maximally localized Wannier functions for the top three moiré bands. Simplifying our model with reasonable assumptions, we obtain a minimal two-band model, encompassing Coulomb repulsion, correlated hopping, and spin exchange. Our minimal interaction models pave the way for further exploration of the rich many-body physics in twisted MoTe[Formula: see text]. Furthermore, we explore the phase diagrams of the system through Hartree-Fock approximation and exact diagonalization (ED). Our two-band ED analysis underscores significant band-mixing effects in this system, which enlarge the optimal twist angle for fractional quantum anomalous Hall states.
Collapse
Affiliation(s)
- Cheng Xu
- Department of Physics and Astronomy, University of Tennessee, Knoxville, TN37996
- Department of Physics, Tsinghua University, Beijing100084, China
| | - Jiangxu Li
- Department of Physics and Astronomy, University of Tennessee, Knoxville, TN37996
| | - Yong Xu
- Department of Physics, Tsinghua University, Beijing100084, China
| | - Zhen Bi
- Department of Physics, The Pennsylvania State University, University Park, PA16802
| | - Yang Zhang
- Department of Physics and Astronomy, University of Tennessee, Knoxville, TN37996
- Min H. Kao Department of Electrical Engineering and Computer Science, University of Tennessee, Knoxville, TN37996
| |
Collapse
|
15
|
Yang Y, Morales MA, Zhang S. Metal-Insulator Transition in a Semiconductor Heterobilayer Model. PHYSICAL REVIEW LETTERS 2024; 132:076503. [PMID: 38427879 DOI: 10.1103/physrevlett.132.076503] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/30/2023] [Accepted: 01/17/2024] [Indexed: 03/03/2024]
Abstract
Transition metal dichalcogenide superlattices provide an exciting new platform for exploring and understanding a variety of phases of matter. The moiré continuum Hamiltonian, of two-dimensional jellium in a modulating potential, provides a fundamental model for such systems. Accurate computations with this model are essential for interpreting experimental observations and making predictions for future explorations. In this work, we combine two complementary quantum Monte Carlo (QMC) methods, phaseless auxiliary field quantum Monte Carlo and fixed-phase diffusion Monte Carlo, to study the ground state of this Hamiltonian. We observe a metal-insulator transition between a paramagnet and a 120° Néel ordered state as the moiré potential depth and the interaction strength are varied. We find significant differences from existing results by Hartree-Fock and exact diagonalization studies. In addition, we benchmark density-functional theory, and suggest an optimal hybrid functional which best approximates our QMC results.
Collapse
Affiliation(s)
- Yubo Yang
- Center for Computational Quantum Physics, Flatiron Institute, New York, New York 10010, USA
| | - Miguel A Morales
- Center for Computational Quantum Physics, Flatiron Institute, New York, New York 10010, USA
| | - Shiwei Zhang
- Center for Computational Quantum Physics, Flatiron Institute, New York, New York 10010, USA
| |
Collapse
|
16
|
Polovnikov B, Scherzer J, Misra S, Huang X, Mohl C, Li Z, Göser J, Förste J, Bilgin I, Watanabe K, Taniguchi T, Högele A, Baimuratov AS. Field-Induced Hybridization of Moiré Excitons in MoSe_{2}/WS_{2} Heterobilayers. PHYSICAL REVIEW LETTERS 2024; 132:076902. [PMID: 38427888 DOI: 10.1103/physrevlett.132.076902] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/14/2023] [Accepted: 01/19/2024] [Indexed: 03/03/2024]
Abstract
We study experimentally and theoretically the hybridization among intralayer and interlayer moiré excitons in a MoSe_{2}/WS_{2} heterostructure with antiparallel alignment. Using a dual-gate device and cryogenic white light reflectance and narrow-band laser modulation spectroscopy, we subject the moiré excitons in the MoSe_{2}/WS_{2} heterostack to a perpendicular electric field, monitor the field-induced dispersion and hybridization of intralayer and interlayer moiré exciton states, and induce a crossover from type I to type II band alignment. Moreover, we employ perpendicular magnetic fields to map out the dependence of the corresponding exciton Landé g factors on the electric field. Finally, we develop an effective theoretical model combining resonant and nonresonant contributions to moiré potentials to explain the observed phenomenology, and highlight the relevance of interlayer coupling for structures with close energetic band alignment as in MoSe_{2}/WS_{2}.
Collapse
Affiliation(s)
- Borislav Polovnikov
- Fakultät für Physik, Munich Quantum Center, and Center for NanoScience (CeNS), Ludwig-Maximilians-Universität München, Geschwister-Scholl-Platz 1, 80539 München, Germany
- Max-Planck-Institut für Quantenoptik, Hans-Kopfermann-Straße 1, 85748 Garching bei München, Germany
| | - Johannes Scherzer
- Fakultät für Physik, Munich Quantum Center, and Center for NanoScience (CeNS), Ludwig-Maximilians-Universität München, Geschwister-Scholl-Platz 1, 80539 München, Germany
| | - Subhradeep Misra
- Fakultät für Physik, Munich Quantum Center, and Center for NanoScience (CeNS), Ludwig-Maximilians-Universität München, Geschwister-Scholl-Platz 1, 80539 München, Germany
| | - Xin Huang
- Fakultät für Physik, Munich Quantum Center, and Center for NanoScience (CeNS), Ludwig-Maximilians-Universität München, Geschwister-Scholl-Platz 1, 80539 München, Germany
- Beijing National Laboratory for Condensed Matter Physics, Institute of Physics, Chinese Academy of Sciences, Beijing 100190, People's Republic of China
- School of Physical Sciences, CAS Key Laboratory of Vacuum Physics, University of Chinese Academy of Sciences, Beijing 100190, People's Republic of China
| | - Christian Mohl
- Fakultät für Physik, Munich Quantum Center, and Center for NanoScience (CeNS), Ludwig-Maximilians-Universität München, Geschwister-Scholl-Platz 1, 80539 München, Germany
| | - Zhijie Li
- Fakultät für Physik, Munich Quantum Center, and Center for NanoScience (CeNS), Ludwig-Maximilians-Universität München, Geschwister-Scholl-Platz 1, 80539 München, Germany
| | - Jonas Göser
- Fakultät für Physik, Munich Quantum Center, and Center for NanoScience (CeNS), Ludwig-Maximilians-Universität München, Geschwister-Scholl-Platz 1, 80539 München, Germany
| | - Jonathan Förste
- Fakultät für Physik, Munich Quantum Center, and Center for NanoScience (CeNS), Ludwig-Maximilians-Universität München, Geschwister-Scholl-Platz 1, 80539 München, Germany
| | - Ismail Bilgin
- Fakultät für Physik, Munich Quantum Center, and Center for NanoScience (CeNS), Ludwig-Maximilians-Universität München, Geschwister-Scholl-Platz 1, 80539 München, Germany
| | - Kenji Watanabe
- Research Center for Electronic and Optical Materials, National Institute for Materials Science, 1-1 Namiki, Tsukuba 305-0044, Japan
| | - Takashi Taniguchi
- Research Center for Materials Nanoarchitectonics, National Institute for Materials Science, 1-1 Namiki, Tsukuba 305-0044, Japan
| | - Alexander Högele
- Fakultät für Physik, Munich Quantum Center, and Center for NanoScience (CeNS), Ludwig-Maximilians-Universität München, Geschwister-Scholl-Platz 1, 80539 München, Germany
- Munich Center for Quantum Science and Technology (MCQST), Schellingstraße 4, 80799 München, Germany
| | - Anvar S Baimuratov
- Fakultät für Physik, Munich Quantum Center, and Center for NanoScience (CeNS), Ludwig-Maximilians-Universität München, Geschwister-Scholl-Platz 1, 80539 München, Germany
| |
Collapse
|
17
|
Kuang X, Pantaleón Peralta PA, Angel Silva-Guillén J, Yuan S, Guinea F, Zhan Z. Optical properties and plasmons in moiré structures. JOURNAL OF PHYSICS. CONDENSED MATTER : AN INSTITUTE OF PHYSICS JOURNAL 2024; 36:173001. [PMID: 38232397 DOI: 10.1088/1361-648x/ad1f8c] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/12/2023] [Accepted: 01/17/2024] [Indexed: 01/19/2024]
Abstract
The discoveries of numerous exciting phenomena in twisted bilayer graphene (TBG) are stimulating significant investigations on moiré structures that possess a tunable moiré potential. Optical response can provide insights into the electronic structures and transport phenomena of non-twisted and twisted moiré structures. In this article, we review both experimental and theoretical studies of optical properties such as optical conductivity, dielectric function, non-linear optical response, and plasmons in moiré structures composed of graphene, hexagonal boron nitride (hBN), and/or transition metal dichalcogenides. Firstly, a comprehensive introduction to the widely employed methodology on optical properties is presented. After, moiré potential induced optical conductivity and plasmons in non-twisted structures are reviewed, such as single layer graphene-hBN, bilayer graphene-hBN and graphene-metal moiré heterostructures. Next, recent investigations of twist-angle dependent optical response and plasmons are addressed in twisted moiré structures. Additionally, we discuss how optical properties and plasmons could contribute to the understanding of the many-body effects and superconductivity observed in moiré structures.
Collapse
Affiliation(s)
- Xueheng Kuang
- Yangtze Delta Industrial Innovation Center of Quantum Science and Technology, Suzhou 215000, People's Republic of China
| | | | - Jose Angel Silva-Guillén
- Instituto Madrileño de Estudios Avanzados, IMDEA Nanociencia, Calle Faraday 9, 28049 Madrid, Spain
| | - Shengjun Yuan
- Key Laboratory of Artificial Micro- and Nano-structures of the Ministry of Education and School of Physics and Technology, Wuhan University, Wuhan 430072, People's Republic of China
- Wuhan Institute of Quantum Technology, Wuhan 430206, People's Republic of China
| | - Francisco Guinea
- Instituto Madrileño de Estudios Avanzados, IMDEA Nanociencia, Calle Faraday 9, 28049 Madrid, Spain
- Donostia International Physics Center, Paseo Manuel de Lardizábal 4, 20018 San Sebastián, Spain
| | - Zhen Zhan
- Instituto Madrileño de Estudios Avanzados, IMDEA Nanociencia, Calle Faraday 9, 28049 Madrid, Spain
| |
Collapse
|
18
|
Karmakar M. Magnetotransport and Fermi surface segmentation in Pauli limited superconductors. JOURNAL OF PHYSICS. CONDENSED MATTER : AN INSTITUTE OF PHYSICS JOURNAL 2024; 36:165601. [PMID: 38190740 DOI: 10.1088/1361-648x/ad1bf6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/26/2023] [Accepted: 01/08/2024] [Indexed: 01/10/2024]
Abstract
We report the first theoretical investigation of the spectroscopic, electrical and optical transport signatures ofd-wave Pauli limited superconductors, based on a non perturbative numerical approach. We demonstrate that the high magnetic field low temperature regime of these materials host a finite momentum paired superconducting phase. Multi-branched dispersion spectra with finite energy superconducting gaps, anisotropic segmentation of the Fermi surface and spatial modulations of the superconducting order characterizes this finite momentum paired phase and should be readily accessible through angle resolved photo emission spectroscopy, quasiparticle interference and differential conductance measurements. Based on the electrical and optical transport properties we capture the non Fermi liquid behavior of these systems at high temperatures, dominated by local superconducting correlations and characterized by resilient quasiparticles which survive the breakdown of the Fermi liquid description. We map out the generic thermal phase diagram of thed-wave Pauli limited superconductors and provide for the first time the accurate estimates of the thermal scales corresponding to the: (a) loss of (quasi) long range superconducting phase coherence (Tc), (b) loss of local pair correlations (Tpg), (c) breakdown of the Fermi liquid theory (Tmax) and cross-over from the non Fermi liquid to the bad metallic phase (TBR). Our thermal phase diagram mapped out on the basis of the spectroscopic and transport properties are found to be in qualitative agreement with the experimental observations on CeCoIn5andκ-BEDT, in terms of the thermodynamic phases and the phase transitions. The results presented in this paper are expected to initiate important transport and spectroscopic experiments on the Pauli limitedd-wave superconductors, providing sharp signatures of the finite momentum Cooper paired state in these materials.
Collapse
Affiliation(s)
- Madhuparna Karmakar
- Department of Physics and Nanotechnology, College of Engineering and Technology, SRM Institute of Science and Technology, Kattankulathur, Chennai, 603203, India
| |
Collapse
|
19
|
Tscheppe P, Zang J, Klett M, Karakuzu S, Celarier A, Cheng Z, Marianetti CA, Maier TA, Ferrero M, Millis AJ, Schäfer T. Magnetism and metallicity in moiré transition metal dichalcogenides. Proc Natl Acad Sci U S A 2024; 121:e2311486121. [PMID: 38207078 PMCID: PMC10801862 DOI: 10.1073/pnas.2311486121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2023] [Accepted: 12/03/2023] [Indexed: 01/13/2024] Open
Abstract
The ability to control the properties of twisted bilayer transition metal dichalcogenides in situ makes them an ideal platform for investigating the interplay of strong correlations and geometric frustration. Of particular interest are the low energy scales, which make it possible to experimentally access both temperature and magnetic fields that are of the order of the bandwidth or the correlation scale. In this manuscript, we analyze the moiré Hubbard model, believed to describe the low energy physics of an important subclass of the twisted bilayer compounds. We establish its magnetic and the metal-insulator phase diagram for the full range of magnetic fields up to the fully spin-polarized state. We find a rich phase diagram including fully and partially polarized insulating and metallic phases of which we determine the interplay of magnetic order, Zeeman-field, and metallicity, and make connection to recent experiments.
Collapse
Affiliation(s)
- Patrick Tscheppe
- Independent Research Group, Max-Planck-Institut für Festkörperforschung, Stuttgart70569, Germany
- Institut für Theoretische Physik and Center for Quantum Science, Universität Tübingen, Tübingen72076, Germany
| | - Jiawei Zang
- Department of Physics, Columbia University, New York, NY10027
| | - Marcel Klett
- Independent Research Group, Max-Planck-Institut für Festkörperforschung, Stuttgart70569, Germany
| | - Seher Karakuzu
- Center for Computational Quantum Physics, Flatiron Institute, New York, NY10010
| | - Armelle Celarier
- CPHT, CNRS, École Polytechnique, Institut Polytechnique de Paris, Palaiseau91128, France
| | - Zhengqian Cheng
- Department of Applied Physics and Applied Mathematics, Columbia University, New York, NY10027
| | - Chris A. Marianetti
- Department of Applied Physics and Applied Mathematics, Columbia University, New York, NY10027
| | - Thomas A. Maier
- Computational Sciences and Engineering Division, Oak Ridge National Laboratory, Oak Ridge, TN37831-6164
| | - Michel Ferrero
- CPHT, CNRS, École Polytechnique, Institut Polytechnique de Paris, Palaiseau91128, France
- Collège de France, Paris75005, France
| | - Andrew J. Millis
- Department of Physics, Columbia University, New York, NY10027
- Center for Computational Quantum Physics, Flatiron Institute, New York, NY10010
| | - Thomas Schäfer
- Independent Research Group, Max-Planck-Institut für Festkörperforschung, Stuttgart70569, Germany
| |
Collapse
|
20
|
Wu F, Xu Q, Wang Q, Chu Y, Li L, Tang J, Liu J, Tian J, Ji Y, Liu L, Yuan Y, Huang Z, Zhao J, Zan X, Watanabe K, Taniguchi T, Shi D, Gu G, Xu Y, Xian L, Yang W, Du L, Zhang G. Giant Correlated Gap and Possible Room-Temperature Correlated States in Twisted Bilayer MoS_{2}. PHYSICAL REVIEW LETTERS 2023; 131:256201. [PMID: 38181343 DOI: 10.1103/physrevlett.131.256201] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/30/2023] [Revised: 08/21/2023] [Accepted: 11/21/2023] [Indexed: 01/07/2024]
Abstract
Moiré superlattices have emerged as an exciting condensed-matter quantum simulator for exploring the exotic physics of strong electronic correlations. Notable progress has been witnessed, but such correlated states are achievable usually at low temperatures. Here, we report evidence of possible room-temperature correlated electronic states and layer-hybridized SU(4) model simulator in AB-stacked MoS_{2} homobilayer moiré superlattices. Correlated insulating states at moiré band filling factors v=1, 2, 3 are unambiguously established in twisted bilayer MoS_{2}. Remarkably, the correlated electronic state at v=1 shows a giant correlated gap of ∼126 meV and may persist up to a record-high critical temperature over 285 K. The realization of a possible room-temperature correlated state with a large correlated gap in twisted bilayer MoS_{2} can be understood as the cooperation effects of the stacking-specific atomic reconstruction and the resonantly enhanced interlayer hybridization, which largely amplify the moiré superlattice effects on electronic correlations. Furthermore, extreme large nonlinear Hall responses up to room temperature are uncovered near correlated electronic states, demonstrating the quantum geometry of moiré flat conduction band.
Collapse
Affiliation(s)
- Fanfan Wu
- Beijing National Laboratory for Condensed Matter Physics, Institute of Physics, Chinese Academy of Sciences, Beijing 100190, China
- School of Physical Sciences, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Qiaoling Xu
- Songshan Lake Materials Laboratory, Dongguan, Guangdong 523808, China
- College of Physics and Electronic Engineering, Center for Computational Sciences, Sichuan Normal University, Chengdu 610068, China
| | - Qinqin Wang
- Beijing National Laboratory for Condensed Matter Physics, Institute of Physics, Chinese Academy of Sciences, Beijing 100190, China
- School of Physical Sciences, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Yanbang Chu
- Beijing National Laboratory for Condensed Matter Physics, Institute of Physics, Chinese Academy of Sciences, Beijing 100190, China
- School of Physical Sciences, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Lu Li
- Beijing National Laboratory for Condensed Matter Physics, Institute of Physics, Chinese Academy of Sciences, Beijing 100190, China
- School of Physical Sciences, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Jian Tang
- Beijing National Laboratory for Condensed Matter Physics, Institute of Physics, Chinese Academy of Sciences, Beijing 100190, China
- School of Physical Sciences, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Jieying Liu
- Beijing National Laboratory for Condensed Matter Physics, Institute of Physics, Chinese Academy of Sciences, Beijing 100190, China
- School of Physical Sciences, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Jinpeng Tian
- Beijing National Laboratory for Condensed Matter Physics, Institute of Physics, Chinese Academy of Sciences, Beijing 100190, China
- School of Physical Sciences, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Yiru Ji
- Beijing National Laboratory for Condensed Matter Physics, Institute of Physics, Chinese Academy of Sciences, Beijing 100190, China
- School of Physical Sciences, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Le Liu
- Beijing National Laboratory for Condensed Matter Physics, Institute of Physics, Chinese Academy of Sciences, Beijing 100190, China
- School of Physical Sciences, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Yalong Yuan
- Beijing National Laboratory for Condensed Matter Physics, Institute of Physics, Chinese Academy of Sciences, Beijing 100190, China
- School of Physical Sciences, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Zhiheng Huang
- Beijing National Laboratory for Condensed Matter Physics, Institute of Physics, Chinese Academy of Sciences, Beijing 100190, China
- School of Physical Sciences, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Jiaojiao Zhao
- Beijing National Laboratory for Condensed Matter Physics, Institute of Physics, Chinese Academy of Sciences, Beijing 100190, China
- School of Physical Sciences, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Xiaozhou Zan
- Beijing National Laboratory for Condensed Matter Physics, Institute of Physics, Chinese Academy of Sciences, Beijing 100190, China
- School of Physical Sciences, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Kenji Watanabe
- Research Center for Functional Materials, National Institute for Materials Science, 1-1 Namiki, Tsukuba 305-0044, Japan
| | - Takashi Taniguchi
- International Center for Materials Nanoarchitectonics, National Institute for Materials Science, 1-1 Namiki, Tsukuba 305-0044, Japan
| | - Dongxia Shi
- Beijing National Laboratory for Condensed Matter Physics, Institute of Physics, Chinese Academy of Sciences, Beijing 100190, China
- School of Physical Sciences, University of Chinese Academy of Sciences, Beijing 100049, China
- Songshan Lake Materials Laboratory, Dongguan, Guangdong 523808, China
| | - Gangxu Gu
- Beijing National Laboratory for Condensed Matter Physics, Institute of Physics, Chinese Academy of Sciences, Beijing 100190, China
- School of Physical Sciences, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Yang Xu
- Beijing National Laboratory for Condensed Matter Physics, Institute of Physics, Chinese Academy of Sciences, Beijing 100190, China
- School of Physical Sciences, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Lede Xian
- Songshan Lake Materials Laboratory, Dongguan, Guangdong 523808, China
| | - Wei Yang
- Beijing National Laboratory for Condensed Matter Physics, Institute of Physics, Chinese Academy of Sciences, Beijing 100190, China
- School of Physical Sciences, University of Chinese Academy of Sciences, Beijing 100049, China
- Songshan Lake Materials Laboratory, Dongguan, Guangdong 523808, China
| | - Luojun Du
- Beijing National Laboratory for Condensed Matter Physics, Institute of Physics, Chinese Academy of Sciences, Beijing 100190, China
- School of Physical Sciences, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Guangyu Zhang
- Beijing National Laboratory for Condensed Matter Physics, Institute of Physics, Chinese Academy of Sciences, Beijing 100190, China
- School of Physical Sciences, University of Chinese Academy of Sciences, Beijing 100049, China
- Songshan Lake Materials Laboratory, Dongguan, Guangdong 523808, China
| |
Collapse
|
21
|
Fratini S, Ciuchi S, Dobrosavljević V, Rademaker L. Universal Scaling near Band-Tuned Metal-Insulator Phase Transitions. PHYSICAL REVIEW LETTERS 2023; 131:196303. [PMID: 38000407 DOI: 10.1103/physrevlett.131.196303] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/02/2023] [Accepted: 10/21/2023] [Indexed: 11/26/2023]
Abstract
We present a theory for band-tuned metal-insulator transitions based on the Kubo formalism. Such a transition exhibits scaling of the resistivity curves in the regime where Tτ>1 or μτ>1, where τ is the scattering time and μ the chemical potential. At the critical value of the chemical potential, the resistivity diverges as a power law, R_{c}∼1/T. Consequently, on the metallic side there is a regime with negative dR/dT, which is often misinterpreted as insulating. We show that scaling and this "fake insulator" regime are observed in a wide range of experimental systems. In particular, we show that Mooij correlations in high-temperature metals with negative dR/dT can be quantitatively understood with our scaling theory in the presence of T-linear scattering.
Collapse
Affiliation(s)
- Simone Fratini
- Université Grenoble Alpes, CNRS, Grenoble INP, Institut Néel, 38000 Grenoble, France
| | - Sergio Ciuchi
- Dipartimento di Scienze Fisiche e Chimiche, Università dell'Aquila, 67100 Coppito (AQ), Italy
- Istituto dei Sistemi Complessi, CNR, P.le Aldo Moro I-00185 Roma, Italy
| | - Vladimir Dobrosavljević
- Department of Physics and National High Magnetic Field Laboratory, Florida State University, Tallahassee, Florida, USA
| | - Louk Rademaker
- Department of Quantum Matter Physics, University of Geneva, 1211 Geneva, Switzerland
| |
Collapse
|
22
|
Kim D, Pandey J, Jeong J, Cho W, Lee S, Cho S, Yang H. Phase Engineering of 2D Materials. Chem Rev 2023; 123:11230-11268. [PMID: 37589590 DOI: 10.1021/acs.chemrev.3c00132] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/18/2023]
Abstract
Polymorphic 2D materials allow structural and electronic phase engineering, which can be used to realize energy-efficient, cost-effective, and scalable device applications. The phase engineering covers not only conventional structural and metal-insulator transitions but also magnetic states, strongly correlated band structures, and topological phases in rich 2D materials. The methods used for the local phase engineering of 2D materials include various optical, geometrical, and chemical processes as well as traditional thermodynamic approaches. In this Review, we survey the precise manipulation of local phases and phase patterning of 2D materials, particularly with ideal and versatile phase interfaces for electronic and energy device applications. Polymorphic 2D materials and diverse quantum materials with their layered, vertical, and lateral geometries are discussed with an emphasis on the role and use of their phase interfaces. Various phase interfaces have demonstrated superior and unique performance in electronic and energy devices. The phase patterning leads to novel homo- and heterojunction structures of 2D materials with low-dimensional phase boundaries, which highlights their potential for technological breakthroughs in future electronic, quantum, and energy devices. Accordingly, we encourage researchers to investigate and exploit phase patterning in emerging 2D materials.
Collapse
Affiliation(s)
- Dohyun Kim
- Department of Physics, Korea Advanced Institute of Science and Technology (KAIST), Daejeon 34141, Korea
| | - Juhi Pandey
- Department of Physics, Korea Advanced Institute of Science and Technology (KAIST), Daejeon 34141, Korea
| | - Juyeong Jeong
- Department of Physics, Korea Advanced Institute of Science and Technology (KAIST), Daejeon 34141, Korea
| | - Woohyun Cho
- Department of Physics, Korea Advanced Institute of Science and Technology (KAIST), Daejeon 34141, Korea
| | - Seungyeon Lee
- Division of Chemical Engineering and Materials Science, Graduate Program in System Health Science and Engineering, Ewha Womans University, Seoul 03760, Korea
| | - Suyeon Cho
- Division of Chemical Engineering and Materials Science, Graduate Program in System Health Science and Engineering, Ewha Womans University, Seoul 03760, Korea
| | - Heejun Yang
- Department of Physics, Korea Advanced Institute of Science and Technology (KAIST), Daejeon 34141, Korea
| |
Collapse
|
23
|
Goldman H, Reddy AP, Paul N, Fu L. Zero-Field Composite Fermi Liquid in Twisted Semiconductor Bilayers. PHYSICAL REVIEW LETTERS 2023; 131:136501. [PMID: 37832018 DOI: 10.1103/physrevlett.131.136501] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/14/2023] [Accepted: 07/19/2023] [Indexed: 10/15/2023]
Abstract
Recent experiments have produced evidence for fractional quantum anomalous Hall (FQAH) states at zero magnetic field in the semiconductor moiré superlattice system tMoTe_{2}. Here, we argue that a composite fermion description, already a unifying framework for the phenomenology of 2D electron gases at high magnetic fields, provides a similarly powerful perspective in this new context. To this end, we present exact diagonalization evidence for composite Fermi liquid states at zero magnetic field in tMoTe_{2} at fillings n=1/2 and n=3/4. We dub these non-Fermi liquid metals anomalous composite Fermi liquids (ACFLs), and we argue that they play a central organizing role in the FQAH phase diagram. We proceed to develop a long wavelength theory for this ACFL state that offers concrete experimental predictions upon doping the composite Fermi sea, including a Jain sequence of FQAH states and a new type of commensurability oscillations originating from the superlattice potential intrinsic to the system.
Collapse
Affiliation(s)
- Hart Goldman
- Department of Physics, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, USA
| | - Aidan P Reddy
- Department of Physics, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, USA
| | - Nisarga Paul
- Department of Physics, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, USA
| | - Liang Fu
- Department of Physics, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, USA
| |
Collapse
|
24
|
Dong J, Wang J, Ledwith PJ, Vishwanath A, Parker DE. Composite Fermi Liquid at Zero Magnetic Field in Twisted MoTe_{2}. PHYSICAL REVIEW LETTERS 2023; 131:136502. [PMID: 37832017 DOI: 10.1103/physrevlett.131.136502] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/14/2023] [Accepted: 08/25/2023] [Indexed: 10/15/2023]
Abstract
The pursuit of exotic phases of matter outside of the extreme conditions of a quantizing magnetic field is a long-standing quest of solid state physics. Recent experiments have observed spontaneous valley polarization and fractional Chern insulators in zero magnetic field in twisted bilayers of MoTe_{2}, at partial filling of the topological valence band (ν=-2/3 and -3/5). We study the topological valence band at half filling, using exact diagonalization and density matrix renormalization group calculations. We discover a composite Fermi liquid (CFL) phase even at zero magnetic field that covers a large portion of the phase diagram near twist angle ∼3.6°. The CFL is a non-Fermi liquid phase with metallic behavior despite the absence of Landau quasiparticles. We discuss experimental implications including the competition between the CFL and a Fermi liquid, which can be tuned with a displacement field. The topological valence band has excellent quantum geometry over a wide range of twist angles and a small bandwidth that is, remarkably, reduced by interactions. These key properties stabilize the exotic zero field quantum Hall phases. Finally, we present an optical signature involving "extinguished" optical responses that detects Chern bands with ideal quantum geometry.
Collapse
Affiliation(s)
- Junkai Dong
- Department of Physics, Harvard University, Cambridge, Massachusetts 02138, USA
| | - Jie Wang
- Department of Physics, Harvard University, Cambridge, Massachusetts 02138, USA
- Center of Mathematical Sciences and Applications, Harvard University, Cambridge, Massachusetts 02138, USA
| | - Patrick J Ledwith
- Department of Physics, Harvard University, Cambridge, Massachusetts 02138, USA
| | - Ashvin Vishwanath
- Department of Physics, Harvard University, Cambridge, Massachusetts 02138, USA
| | - Daniel E Parker
- Department of Physics, Harvard University, Cambridge, Massachusetts 02138, USA
| |
Collapse
|
25
|
Li Z, Huang J, Zhou L, Xu Z, Qin F, Chen P, Sun X, Liu G, Sui C, Qiu C, Lu Y, Gou H, Xi X, Ideue T, Tang P, Iwasa Y, Yuan H. An anisotropic van der Waals dielectric for symmetry engineering in functionalized heterointerfaces. Nat Commun 2023; 14:5568. [PMID: 37689758 PMCID: PMC10492835 DOI: 10.1038/s41467-023-41295-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2023] [Accepted: 08/29/2023] [Indexed: 09/11/2023] Open
Abstract
Van der Waals dielectrics are fundamental materials for condensed matter physics and advanced electronic applications. Most dielectrics host isotropic structures in crystalline or amorphous forms, and only a few studies have considered the role of anisotropic crystal symmetry in dielectrics as a delicate way to tune electronic properties of channel materials. Here, we demonstrate a layered anisotropic dielectric, SiP2, with non-symmorphic twofold-rotational C2 symmetry as a gate medium which can break the original threefold-rotational C3 symmetry of MoS2 to achieve unexpected linearly-polarized photoluminescence and anisotropic second harmonic generation at SiP2/MoS2 interfaces. In contrast to the isotropic behavior of pristine MoS2, a large conductance anisotropy with an anisotropy index up to 1000 can be achieved and modulated in SiP2-gated MoS2 transistors. Theoretical calculations reveal that the anisotropic moiré potential at such interfaces is responsible for the giant anisotropic conductance and optical response. Our results provide a strategy for generating exotic functionalities at dielectric/semiconductor interfaces via symmetry engineering.
Collapse
Affiliation(s)
- Zeya Li
- National Laboratory of Solid State Microstructures, and Collaborative Innovation Center of Advanced Microstructures, Nanjing University, Nanjing, 210093, China
- College of Engineering and Applied Sciences, and Jiangsu Key Laboratory of Artificial Functional Materials, Nanjing University, Nanjing, 210023, China
| | - Junwei Huang
- National Laboratory of Solid State Microstructures, and Collaborative Innovation Center of Advanced Microstructures, Nanjing University, Nanjing, 210093, China
- College of Engineering and Applied Sciences, and Jiangsu Key Laboratory of Artificial Functional Materials, Nanjing University, Nanjing, 210023, China
| | - Ling Zhou
- National Laboratory of Solid State Microstructures, and Collaborative Innovation Center of Advanced Microstructures, Nanjing University, Nanjing, 210093, China
- College of Engineering and Applied Sciences, and Jiangsu Key Laboratory of Artificial Functional Materials, Nanjing University, Nanjing, 210023, China
| | - Zian Xu
- School of Materials Science and Engineering, Beihang University, Beijing, 100191, China
| | - Feng Qin
- National Laboratory of Solid State Microstructures, and Collaborative Innovation Center of Advanced Microstructures, Nanjing University, Nanjing, 210093, China
- College of Engineering and Applied Sciences, and Jiangsu Key Laboratory of Artificial Functional Materials, Nanjing University, Nanjing, 210023, China
| | - Peng Chen
- National Laboratory of Solid State Microstructures, and Collaborative Innovation Center of Advanced Microstructures, Nanjing University, Nanjing, 210093, China
- College of Engineering and Applied Sciences, and Jiangsu Key Laboratory of Artificial Functional Materials, Nanjing University, Nanjing, 210023, China
| | - Xiaojun Sun
- National Laboratory of Solid State Microstructures, and Collaborative Innovation Center of Advanced Microstructures, Nanjing University, Nanjing, 210093, China
- College of Engineering and Applied Sciences, and Jiangsu Key Laboratory of Artificial Functional Materials, Nanjing University, Nanjing, 210023, China
| | - Gan Liu
- National Laboratory of Solid State Microstructures, and Collaborative Innovation Center of Advanced Microstructures, Nanjing University, Nanjing, 210093, China
- School of Physics, Nanjing University, Nanjing, 210093, China
| | - Chengqi Sui
- National Laboratory of Solid State Microstructures, and Collaborative Innovation Center of Advanced Microstructures, Nanjing University, Nanjing, 210093, China
- College of Engineering and Applied Sciences, and Jiangsu Key Laboratory of Artificial Functional Materials, Nanjing University, Nanjing, 210023, China
| | - Caiyu Qiu
- National Laboratory of Solid State Microstructures, and Collaborative Innovation Center of Advanced Microstructures, Nanjing University, Nanjing, 210093, China
- College of Engineering and Applied Sciences, and Jiangsu Key Laboratory of Artificial Functional Materials, Nanjing University, Nanjing, 210023, China
| | - Yangfan Lu
- College of Materials Sciences and Engineering, National Engineering Research Center for Magnesium Alloys, Chongqing University, Chongqing, 400030, China
| | - Huiyang Gou
- Center for High Pressure Science and Technology Advanced Research, Beijing, 100094, China
| | - Xiaoxiang Xi
- National Laboratory of Solid State Microstructures, and Collaborative Innovation Center of Advanced Microstructures, Nanjing University, Nanjing, 210093, China
- School of Physics, Nanjing University, Nanjing, 210093, China
| | - Toshiya Ideue
- Quantum Phase Electronic Center and Department of Applied Physics, The University of Tokyo, Tokyo, 113-8656, Japan.
- Institute for Solid State Physics, The University of Tokyo, Chiba, 277-8581, Japan.
| | - Peizhe Tang
- School of Materials Science and Engineering, Beihang University, Beijing, 100191, China.
- Max Planck Institute for the Structure and Dynamics of Matter, Center for Free Electron Laser Science, Hamburg, 22761, Germany.
| | - Yoshihiro Iwasa
- Quantum Phase Electronic Center and Department of Applied Physics, The University of Tokyo, Tokyo, 113-8656, Japan
- RIKEN Center for Emergent Matter Science, Hirosawa 2-1, Wako, 351-0198, Japan
| | - Hongtao Yuan
- National Laboratory of Solid State Microstructures, and Collaborative Innovation Center of Advanced Microstructures, Nanjing University, Nanjing, 210093, China.
- College of Engineering and Applied Sciences, and Jiangsu Key Laboratory of Artificial Functional Materials, Nanjing University, Nanjing, 210023, China.
| |
Collapse
|
26
|
Li W, Gao Q, Wang Y, Cheng P, Zhang YQ, Feng B, Hu Z, Wu K, Chen L. Moiré-Pattern Modulated Electronic Structures of GaSe/HOPG Heterostructure. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2023; 19:e2302192. [PMID: 37127860 DOI: 10.1002/smll.202302192] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/14/2023] [Revised: 04/18/2023] [Indexed: 05/03/2023]
Abstract
Conventional two-dimensional electron gas (2DEG) typically occurs at the interface of semiconductor heterostructures and noble metal surfaces, but it is scarcely observed in individual 2D semiconductors. In this study, few-layer gallium selenide (GaSe) grown on highly ordered pyrolytic graphite (HOPG) is demonstrated using scanning tunneling microscopy and spectroscopy (STM/STS), revealing that the coexistence of quantum well states (QWS) and 2DEG. The QWS are located in the valence bands and exhibit a peak feature, with the number of quantum wells being equal to the number of atomic layers. Meanwhile, the 2DEG is located in the conduction bands and exhibits a standing-wave feature. Additionally, monolayer GaSe/HOPG heterostructures with different stacking angles (0°, 33°, 8°) form distinct moiré patterns that arise from lattice mismatch and angular rotation between adjacent atomic layers in 2D materials, which effectively modulate the electron effective mass, charge redistribution, and band gap of GaSe. Overall, this work reveals a paradigm of band engineering based on layer numbers and moiré patterns that can modulate the electronic properties of 2D materials.
Collapse
Affiliation(s)
- Wenhui Li
- Institute of Physics, Chinese Academy of Sciences, Beijing, 100190, China
- School of Physical Sciences, University of Chinese Academy of Sciences, Beijing, 100190, China
| | - Qian Gao
- School of Physics, Nankai University, Tianjin, 300071, China
| | - Yu Wang
- Institute of Physics, Chinese Academy of Sciences, Beijing, 100190, China
- School of Physical Sciences, University of Chinese Academy of Sciences, Beijing, 100190, China
| | - Peng Cheng
- Institute of Physics, Chinese Academy of Sciences, Beijing, 100190, China
- School of Physical Sciences, University of Chinese Academy of Sciences, Beijing, 100190, China
| | - Yi-Qi Zhang
- Institute of Physics, Chinese Academy of Sciences, Beijing, 100190, China
- School of Physical Sciences, University of Chinese Academy of Sciences, Beijing, 100190, China
| | - Baojie Feng
- Institute of Physics, Chinese Academy of Sciences, Beijing, 100190, China
- School of Physical Sciences, University of Chinese Academy of Sciences, Beijing, 100190, China
| | - Zhenpeng Hu
- School of Physics, Nankai University, Tianjin, 300071, China
| | - Kehui Wu
- Institute of Physics, Chinese Academy of Sciences, Beijing, 100190, China
- School of Physical Sciences, University of Chinese Academy of Sciences, Beijing, 100190, China
- Songshan Lake Materials Laboratory, Dongguan, Guangdong, 523808, China
| | - Lan Chen
- Institute of Physics, Chinese Academy of Sciences, Beijing, 100190, China
- School of Physical Sciences, University of Chinese Academy of Sciences, Beijing, 100190, China
- Songshan Lake Materials Laboratory, Dongguan, Guangdong, 523808, China
| |
Collapse
|
27
|
Ge C, Zhang D, Xiao F, Zhao H, He M, Huang L, Hou S, Tong Q, Pan A, Wang X. Observation and Modulation of High-Temperature Moiré-Locale Excitons in van der Waals Heterobilayers. ACS NANO 2023; 17:16115-16122. [PMID: 37560986 DOI: 10.1021/acsnano.3c04943] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/11/2023]
Abstract
Transition metal dichalcogenide heterobilayers feature strong moiré potentials with multiple local minima, which can spatially trap interlayer excitons at different locations within one moiré unit cell (dubbed moiré locales). However, current studies mainly focus on moiré excitons trapped at a single moiré locale. Exploring interlayer excitons trapped at different moiré locales is highly desirable for building polarized light-emitter arrays and studying multiorbital correlated and topological physics. Here, via enhancing the interlayer coupling and engineering the heterointerface, we report the observation and modulation of high-temperature interlayer excitons trapped at separate moiré locales in WS2/WSe2 heterobilayers. These moiré-locale excitons are identified by two emission peaks with an energy separation of ∼60 meV, exhibiting opposite circular polarizations due to their distinct local stacking registries. With the increase of temperature, two momentum-indirect moiré-locale excitons are observed, which show a distinct strain dependence with the momentum-direct one. The emission of these moiré-locale excitons can be controlled via engineering the heterointerface with different phonon scattering, while their emission energy can be further modulated via strain engineering. Our reported highly tunable interlayer excitons provide important information on understanding moiré excitonic physics, with possible applications in building high-temperature excitonic devices.
Collapse
Affiliation(s)
- Cuihuan Ge
- School of Physics and Electronics, Hunan University, Changsha, 410082, China
| | - Danliang Zhang
- School of Physics and Electronics, Hunan University, Changsha, 410082, China
| | - Feiping Xiao
- School of Physics and Electronics, Hunan University, Changsha, 410082, China
| | - Haipeng Zhao
- School of Physics and Electronics, Hunan University, Changsha, 410082, China
| | - Mai He
- School of Physics and Electronics, Hunan University, Changsha, 410082, China
| | - Lanyu Huang
- School of Physics and Electronics, Hunan University, Changsha, 410082, China
| | - Shijin Hou
- School of Physics and Electronics, Hunan University, Changsha, 410082, China
| | - Qingjun Tong
- School of Physics and Electronics, Hunan University, Changsha, 410082, China
| | - Anlian Pan
- Key Laboratory for Micro-Nano Physics and Technology of Hunan Province, College of Materials Science and Engineering, Hunan University, Changsha, 410082, China
| | - Xiao Wang
- School of Physics and Electronics, Hunan University, Changsha, 410082, China
- Key Laboratory for Micro-Nano Physics and Technology of Hunan Province, College of Materials Science and Engineering, Hunan University, Changsha, 410082, China
| |
Collapse
|
28
|
Machado F, Demler EA, Yao NY, Chatterjee S. Quantum Noise Spectroscopy of Dynamical Critical Phenomena. PHYSICAL REVIEW LETTERS 2023; 131:070801. [PMID: 37656851 DOI: 10.1103/physrevlett.131.070801] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/28/2022] [Accepted: 06/12/2023] [Indexed: 09/03/2023]
Abstract
The transition between distinct phases of matter is characterized by the nature of fluctuations near the critical point. We demonstrate that noise spectroscopy can not only diagnose the presence of a phase transition, but can also determine fundamental properties of its criticality. In particular, by analyzing a scaling collapse of the decoherence profile, one can directly extract the critical exponents of the transition and identify its universality class. Our approach naturally captures the presence of conservation laws and distinguishes between classical and quantum phase transitions. In the context of quantum magnetism, our proposal complements existing techniques and provides a novel toolset optimized for interrogating two-dimensional magnetic materials.
Collapse
Affiliation(s)
- Francisco Machado
- ITAMP, Harvard-Smithsonian Center for Astrophysics, Cambridge, Massachusetts 02138, USA
- Department of Physics, Harvard University, Cambridge, Massachusetts 02138, USA
- Department of Physics, University of California, Berkeley, California 94720, USA
| | - Eugene A Demler
- Institute for Theoretical Physics, ETH Zurich, 8093 Zurich, Switzerland
| | - Norman Y Yao
- Department of Physics, Harvard University, Cambridge, Massachusetts 02138, USA
- Department of Physics, University of California, Berkeley, California 94720, USA
| | - Shubhayu Chatterjee
- Department of Physics, University of California, Berkeley, California 94720, USA
- Department of Physics, Carnegie Mellon University, Pittsburgh, Pennsylvania 15213, USA
| |
Collapse
|
29
|
Tao Z, Shen B, Zhao W, Hu NC, Li T, Jiang S, Li L, Watanabe K, Taniguchi T, MacDonald AH, Shan J, Mak KF. Giant spin Hall effect in AB-stacked MoTe 2/WSe 2 bilayers. NATURE NANOTECHNOLOGY 2023:10.1038/s41565-023-01492-2. [PMID: 37591935 DOI: 10.1038/s41565-023-01492-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/20/2023] [Accepted: 07/21/2023] [Indexed: 08/19/2023]
Abstract
The spin Hall effect (SHE), in which an electrical current generates a transverse spin current, plays an important role in spintronics for the generation and manipulation of spin-polarized electrons. The phenomenon originates from spin-orbit coupling. In general, stronger spin-orbit coupling favours larger SHEs but shorter spin relaxation times and diffusion lengths. However, correlated magnetic materials often do not support large SHEs. Achieving large SHEs, long-range spin transport and magnetism simultaneously in a single material is attractive for spintronics applications but has remained a challenge. Here we demonstrate a giant intrinsic SHE coexisting with ferromagnetism in AB-stacked MoTe2/WSe2 moiré bilayers by direct magneto-optical imaging. Under moderate electrical currents with density <1 A m-1, we observe spin accumulation on transverse sample edges that nearly saturates the spin density. We also demonstrate long-range spin Hall transport and efficient non-local spin accumulation that is limited only by the device size (about 10 µm). The gate dependence shows that the giant SHE occurs only near the interaction-driven Chern insulating state. At low temperatures, it emerges after the quantum anomalous Hall breakdown. Our results demonstrate moiré engineering of Berry curvature and electronic correlation for potential spintronics applications.
Collapse
Affiliation(s)
- Zui Tao
- School of Applied and Engineering Physics, Cornell University, Ithaca, NY, USA
| | - Bowen Shen
- School of Applied and Engineering Physics, Cornell University, Ithaca, NY, USA
| | - Wenjin Zhao
- Kavli Institute at Cornell for Nanoscale Science, Ithaca, NY, USA
| | - Nai Chao Hu
- Department of Physics, University of Texas at Austin, Austin, TX, USA
| | - Tingxin Li
- School of Applied and Engineering Physics, Cornell University, Ithaca, NY, USA
| | - Shengwei Jiang
- School of Applied and Engineering Physics, Cornell University, Ithaca, NY, USA
| | - Lizhong Li
- School of Applied and Engineering Physics, Cornell University, Ithaca, NY, USA
| | - Kenji Watanabe
- National Institute for Materials Science, Tsukuba, Japan
| | | | - Allan H MacDonald
- Department of Physics, University of Texas at Austin, Austin, TX, USA
| | - Jie Shan
- School of Applied and Engineering Physics, Cornell University, Ithaca, NY, USA.
- Kavli Institute at Cornell for Nanoscale Science, Ithaca, NY, USA.
- Laboratory of Atomic and Solid-State Physics, Cornell University, Ithaca, NY, USA.
| | - Kin Fai Mak
- School of Applied and Engineering Physics, Cornell University, Ithaca, NY, USA.
- Kavli Institute at Cornell for Nanoscale Science, Ithaca, NY, USA.
- Laboratory of Atomic and Solid-State Physics, Cornell University, Ithaca, NY, USA.
| |
Collapse
|
30
|
Dale N, Utama MIB, Lee D, Leconte N, Zhao S, Lee K, Taniguchi T, Watanabe K, Jozwiak C, Bostwick A, Rotenberg E, Koch RJ, Jung J, Wang F, Lanzara A. Layer-Dependent Interaction Effects in the Electronic Structure of Twisted Bilayer Graphene Devices. NANO LETTERS 2023; 23:6799-6806. [PMID: 37486984 PMCID: PMC10424631 DOI: 10.1021/acs.nanolett.3c00253] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/20/2023] [Revised: 05/25/2023] [Indexed: 07/26/2023]
Abstract
Near the magic angle, strong correlations drive many intriguing phases in twisted bilayer graphene (tBG) including unconventional superconductivity and chern insulation. Whether correlations can tune symmetry breaking phases in tBG at intermediate (≳ 2°) twist angles remains an open fundamental question. Here, using ARPES, we study the effects of many-body interactions and displacement field on the band structure of tBG devices at an intermediate (3°) twist angle. We observe a layer- and doping-dependent renormalization of bands at the K points that is qualitatively consistent with moiré models of the Hartree-Fock interaction. We provide evidence of correlation-enhanced inversion symmetry-breaking, manifested by gaps at the Dirac points that are tunable with doping. These results suggest that electronic interactions play a significant role in the physics of tBG even at intermediate twist angles and present a new pathway toward engineering band structure and symmetry-breaking phases in moiré heterostructures.
Collapse
Affiliation(s)
- Nicholas Dale
- Department
of Physics, University of California, Berkeley, California 94720, United States
- Materials
Sciences Division, Lawrence Berkeley National
Laboratory, Berkeley, California 94720, United States
| | - M. Iqbal Bakti Utama
- Materials
Sciences Division, Lawrence Berkeley National
Laboratory, Berkeley, California 94720, United States
- Department
of Materials Science and Engineering, University
of California at Berkeley, Berkeley, California 94720, United States
| | - Dongkyu Lee
- Department
of Physics, University of Seoul, Seoul, 02504, Korea
- Department
of Smart Cities, University of Seoul, Seoul, 02504, Korea
| | - Nicolas Leconte
- Department
of Physics, University of Seoul, Seoul, 02504, Korea
| | - Sihan Zhao
- Interdisciplinary
Center for Quantum Information, Zhejiang Province Key Laboratory of
Quantum Technology and Device, State Key Laboratory of Silicon Materials,
and School of Physics, Zhejiang University, Hangzhou 310027, China
| | - Kyunghoon Lee
- Department
of Physics, University of California, Berkeley, California 94720, United States
- Materials
Sciences Division, Lawrence Berkeley National
Laboratory, Berkeley, California 94720, United States
| | - Takashi Taniguchi
- International
Center for Materials Nanoarchitectonics, National Institute for Materials Science, 1-1 Namiki, Tsukuba 305-0044, Japan
| | - Kenji Watanabe
- Research
Center for Functional Materials, National
Institute for Materials Science, 1-1 Namiki, Tsukuba 305-0044, Japan
| | - Chris Jozwiak
- Advanced
Light Source, Lawrence Berkeley National
Laboratory, Berkeley, California 94720, United States
| | - Aaron Bostwick
- Advanced
Light Source, Lawrence Berkeley National
Laboratory, Berkeley, California 94720, United States
| | - Eli Rotenberg
- Advanced
Light Source, Lawrence Berkeley National
Laboratory, Berkeley, California 94720, United States
| | - Roland J. Koch
- Advanced
Light Source, Lawrence Berkeley National
Laboratory, Berkeley, California 94720, United States
| | - Jeil Jung
- Department
of Physics, University of Seoul, Seoul, 02504, Korea
- Department
of Smart Cities, University of Seoul, Seoul, 02504, Korea
| | - Feng Wang
- Department
of Physics, University of California, Berkeley, California 94720, United States
- Materials
Sciences Division, Lawrence Berkeley National
Laboratory, Berkeley, California 94720, United States
- Kavli Energy NanoScience
Institute at University of California Berkeley
and Lawrence Berkeley National Laboratory, Berkeley, California 94720, United States
| | - Alessandra Lanzara
- Department
of Physics, University of California, Berkeley, California 94720, United States
- Materials
Sciences Division, Lawrence Berkeley National
Laboratory, Berkeley, California 94720, United States
- Kavli Energy NanoScience
Institute at University of California Berkeley
and Lawrence Berkeley National Laboratory, Berkeley, California 94720, United States
| |
Collapse
|
31
|
Xie M, Pan H, Wu F, Das Sarma S. Nematic Excitonic Insulator in Transition Metal Dichalcogenide Moiré Heterobilayers. PHYSICAL REVIEW LETTERS 2023; 131:046402. [PMID: 37566872 DOI: 10.1103/physrevlett.131.046402] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/29/2022] [Revised: 04/26/2023] [Accepted: 06/29/2023] [Indexed: 08/13/2023]
Abstract
We study the effect of interelectron Coulomb interactions on the displacement field induced topological phase transition in transition metal dichalcogenide moiré heterobilayers. We find a nematic excitonic insulator phase that breaks the moiré superlattice's threefold rotational symmetry and preempts the topological phase transition in both AA and AB stacked heterobilayers when the interlayer tunneling is weak, or when the Coulomb interaction is not strongly screened. The nematicity originates from the frustration between the nontrivial spatial structure of the interlayer tunneling, which is crucial to the existence of the topological Chern band, and the interlayer coherence induced by the Coulomb interaction that favors uniformity in layer pseudospin orientations. We construct a unified effective two-band model that captures the physics near the band inversion and applies to both AA and AB stacked heterobilayers. Within the two-band model the competition between the nematic excitonic insulator phase and the Chern insulator phase can be understood as the switching of the energetic order between the s-wave and the p-wave excitons upon increasing the interlayer tunneling.
Collapse
Affiliation(s)
- Ming Xie
- Condensed Matter Theory Center and Joint Quantum Institute, Department of Physics, University of Maryland, College Park, Maryland 20742, USA
| | - Haining Pan
- Condensed Matter Theory Center and Joint Quantum Institute, Department of Physics, University of Maryland, College Park, Maryland 20742, USA
| | - Fengcheng Wu
- School of Physics and Technology, Wuhan University, Wuhan 430072, China
- Wuhan Institute of Quantum Technology, Wuhan 430206, China
| | - Sankar Das Sarma
- Condensed Matter Theory Center and Joint Quantum Institute, Department of Physics, University of Maryland, College Park, Maryland 20742, USA
| |
Collapse
|
32
|
Gatti G, Issing J, Rademaker L, Margot F, de Jong TA, van der Molen SJ, Teyssier J, Kim TK, Watson MD, Cacho C, Dudin P, Avila J, Edwards KC, Paruch P, Ubrig N, Gutiérrez-Lezama I, Morpurgo AF, Tamai A, Baumberger F. Flat Γ Moiré Bands in Twisted Bilayer WSe_{2}. PHYSICAL REVIEW LETTERS 2023; 131:046401. [PMID: 37566843 DOI: 10.1103/physrevlett.131.046401] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/25/2022] [Accepted: 06/26/2023] [Indexed: 08/13/2023]
Abstract
The recent observation of correlated phases in transition metal dichalcogenide moiré systems at integer and fractional filling promises new insight into metal-insulator transitions and the unusual states of matter that can emerge near such transitions. Here, we combine real- and momentum-space mapping techniques to study moiré superlattice effects in 57.4° twisted WSe_{2} (tWSe_{2}). Our data reveal a split-off flat band that derives from the monolayer Γ states. Using advanced data analysis, we directly quantify the moiré potential from our data. We further demonstrate that the global valence band maximum in tWSe_{2} is close in energy to this flat band but derives from the monolayer K states which show weaker superlattice effects. These results constrain theoretical models and open the perspective that Γ-valley flat bands might be involved in the correlated physics of twisted WSe_{2}.
Collapse
Affiliation(s)
- G Gatti
- Department of Quantum Matter Physics, University of Geneva, 24 Quai Ernest-Ansermet, 1211 Geneva, Switzerland
| | - J Issing
- Department of Quantum Matter Physics, University of Geneva, 24 Quai Ernest-Ansermet, 1211 Geneva, Switzerland
| | - L Rademaker
- Department of Quantum Matter Physics, University of Geneva, 24 Quai Ernest-Ansermet, 1211 Geneva, Switzerland
- Department of Theoretical Physics, University of Geneva, 24 Quai Ernest-Ansermet, 1211 Geneva, Switzerland
| | - F Margot
- Department of Quantum Matter Physics, University of Geneva, 24 Quai Ernest-Ansermet, 1211 Geneva, Switzerland
| | - T A de Jong
- Huygens-Kamerlingh Onnes Laboratory, Leiden Institute of Physics, Leiden University, Leiden, The Netherlands
| | - S J van der Molen
- Huygens-Kamerlingh Onnes Laboratory, Leiden Institute of Physics, Leiden University, Leiden, The Netherlands
| | - J Teyssier
- Department of Quantum Matter Physics, University of Geneva, 24 Quai Ernest-Ansermet, 1211 Geneva, Switzerland
| | - T K Kim
- Diamond Light Source, Harwell Campus, Didcot, OX11 0DE, United Kingdom
| | - M D Watson
- Diamond Light Source, Harwell Campus, Didcot, OX11 0DE, United Kingdom
| | - C Cacho
- Diamond Light Source, Harwell Campus, Didcot, OX11 0DE, United Kingdom
| | - P Dudin
- Synchrotron SOLEIL, L'Orme des Merisiers, Saint Aubin-BP 48, 91192 Gif sur Yvette Cedex, France
| | - J Avila
- Synchrotron SOLEIL, L'Orme des Merisiers, Saint Aubin-BP 48, 91192 Gif sur Yvette Cedex, France
| | - K Cordero Edwards
- Department of Quantum Matter Physics, University of Geneva, 24 Quai Ernest-Ansermet, 1211 Geneva, Switzerland
| | - P Paruch
- Department of Quantum Matter Physics, University of Geneva, 24 Quai Ernest-Ansermet, 1211 Geneva, Switzerland
| | - N Ubrig
- Department of Quantum Matter Physics, University of Geneva, 24 Quai Ernest-Ansermet, 1211 Geneva, Switzerland
- Department of Applied Physics, University of Geneva, 24 Quai Ernest Ansermet, CH-1211 Geneva, Switzerland
| | - I Gutiérrez-Lezama
- Department of Quantum Matter Physics, University of Geneva, 24 Quai Ernest-Ansermet, 1211 Geneva, Switzerland
- Department of Applied Physics, University of Geneva, 24 Quai Ernest Ansermet, CH-1211 Geneva, Switzerland
| | - A F Morpurgo
- Department of Quantum Matter Physics, University of Geneva, 24 Quai Ernest-Ansermet, 1211 Geneva, Switzerland
- Department of Applied Physics, University of Geneva, 24 Quai Ernest Ansermet, CH-1211 Geneva, Switzerland
| | - A Tamai
- Department of Quantum Matter Physics, University of Geneva, 24 Quai Ernest-Ansermet, 1211 Geneva, Switzerland
| | - F Baumberger
- Department of Quantum Matter Physics, University of Geneva, 24 Quai Ernest-Ansermet, 1211 Geneva, Switzerland
- Swiss Light Source, Paul Scherrer Institut, CH-5232 Villigen PSI, Switzerland
| |
Collapse
|
33
|
Zhao S, Li Z, Huang X, Rupp A, Göser J, Vovk IA, Kruchinin SY, Watanabe K, Taniguchi T, Bilgin I, Baimuratov AS, Högele A. Excitons in mesoscopically reconstructed moiré heterostructures. NATURE NANOTECHNOLOGY 2023; 18:572-579. [PMID: 36973398 DOI: 10.1038/s41565-023-01356-9] [Citation(s) in RCA: 26] [Impact Index Per Article: 26.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/10/2022] [Accepted: 02/21/2023] [Indexed: 06/18/2023]
Abstract
Moiré effects in vertical stacks of two-dimensional crystals give rise to new quantum materials with rich transport and optical phenomena that originate from modulations of atomic registries within moiré supercells. Due to finite elasticity, however, the superlattices can transform from moiré-type to periodically reconstructed patterns. Here we expand the notion of such nanoscale lattice reconstruction to the mesoscopic scale of laterally extended samples and demonstrate rich consequences in optical studies of excitons in MoSe2-WSe2 heterostructures with parallel and antiparallel alignments. Our results provide a unified perspective on moiré excitons in near-commensurate semiconductor heterostructures with small twist angles by identifying domains with exciton properties of distinct effective dimensionality, and establish mesoscopic reconstruction as a compelling feature of real samples and devices with inherent finite size effects and disorder. Generalized to stacks of other two-dimensional materials, this notion of mesoscale domain formation with emergent topological defects and percolation networks will instructively expand the understanding of fundamental electronic, optical and magnetic properties of van der Waals heterostructures.
Collapse
Affiliation(s)
- Shen Zhao
- Fakultät für Physik, Munich Quantum Center, and Center for NanoScience (CeNS), Ludwig-Maximilians-Universität München, Munich, Germany.
| | - Zhijie Li
- Fakultät für Physik, Munich Quantum Center, and Center for NanoScience (CeNS), Ludwig-Maximilians-Universität München, Munich, Germany
| | - Xin Huang
- Fakultät für Physik, Munich Quantum Center, and Center for NanoScience (CeNS), Ludwig-Maximilians-Universität München, Munich, Germany
- Beijing National Laboratory for Condensed Matter Physics, Institute of Physics, Chinese Academy of Sciences, Beijing, P. R. China
- School of Physical Sciences, CAS Key Laboratory of Vacuum Physics, University of Chinese Academy of Sciences, Beijing, P. R. China
| | - Anna Rupp
- Fakultät für Physik, Munich Quantum Center, and Center for NanoScience (CeNS), Ludwig-Maximilians-Universität München, Munich, Germany
| | - Jonas Göser
- Fakultät für Physik, Munich Quantum Center, and Center for NanoScience (CeNS), Ludwig-Maximilians-Universität München, Munich, Germany
| | - Ilia A Vovk
- PhysNano Department, ITMO University, Saint Petersburg, Russia
| | - Stanislav Yu Kruchinin
- Center for Computational Materials Sciences, Faculty of Physics, University of Vienna, Vienna, Austria
- Nuance Communications Austria GmbH, Vienna, Austria
| | - Kenji Watanabe
- Research Center for Functional Materials, National Institute for Materials Science, Tsukuba, Japan
| | - Takashi Taniguchi
- International Center for Materials Nanoarchitectonics, National Institute for Materials Science, Tsukuba, Japan
| | - Ismail Bilgin
- Fakultät für Physik, Munich Quantum Center, and Center for NanoScience (CeNS), Ludwig-Maximilians-Universität München, Munich, Germany
| | - Anvar S Baimuratov
- Fakultät für Physik, Munich Quantum Center, and Center for NanoScience (CeNS), Ludwig-Maximilians-Universität München, Munich, Germany.
| | - Alexander Högele
- Fakultät für Physik, Munich Quantum Center, and Center for NanoScience (CeNS), Ludwig-Maximilians-Universität München, Munich, Germany.
- Munich Center for Quantum Science and Technology (MCQST), München, Germany.
| |
Collapse
|
34
|
Foutty BA, Yu J, Devakul T, Kometter CR, Zhang Y, Watanabe K, Taniguchi T, Fu L, Feldman BE. Tunable spin and valley excitations of correlated insulators in Γ-valley moiré bands. NATURE MATERIALS 2023; 22:731-736. [PMID: 37069292 DOI: 10.1038/s41563-023-01534-z] [Citation(s) in RCA: 11] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/21/2022] [Accepted: 03/16/2023] [Indexed: 06/03/2023]
Abstract
Moiré superlattices formed from transition metal dichalcogenides support a variety of quantum electronic phases that are highly tunable using applied electromagnetic fields. While the valley degree of freedom affects optoelectronic properties in the constituent transition metal dichalcogenides, it has yet to be fully explored in moiré systems. Here we establish twisted double-bilayer WSe2 as an experimental platform to study electronic correlations within Γ-valley moiré bands. Through local and global electronic compressibility measurements, we identify charge-ordered phases at multiple integer and fractional moiré fillings. By measuring the magnetic field dependence of their energy gaps and the chemical potential upon doping, we reveal spin-polarized ground states with spin-polaron quasiparticle excitations. In addition, an applied displacement field induces a metal-insulator transition driven by tuning between Γ- and K-valley moiré bands. Our results demonstrate control over the spin and valley character of the correlated ground and excited states in this system.
Collapse
Affiliation(s)
- Benjamin A Foutty
- Geballe Laboratory for Advanced Materials, Stanford, CA, USA
- Department of Physics, Stanford University, Stanford, CA, USA
| | - Jiachen Yu
- Geballe Laboratory for Advanced Materials, Stanford, CA, USA
- Department of Applied Physics, Stanford University, Stanford, CA, USA
| | - Trithep Devakul
- Department of Physics, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Carlos R Kometter
- Geballe Laboratory for Advanced Materials, Stanford, CA, USA
- Department of Physics, Stanford University, Stanford, CA, USA
| | - Yang Zhang
- Department of Physics, Massachusetts Institute of Technology, Cambridge, MA, USA
- Department of Physics and Astronomy, University of Tennessee, Knoxville, TN, USA
- Min H. Kao Department of Electrical Engineering and Computer Science, University of Tennessee, Knoxville, TN, USA
| | - Kenji Watanabe
- Research Center for Functional Materials, National Institute for Material Science, Tsukuba, Japan
| | - Takashi Taniguchi
- International Center for Materials Nanoarchitectonics, National Institute for Material Science, Tsukuba, Japan
| | - Liang Fu
- Department of Physics, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Benjamin E Feldman
- Geballe Laboratory for Advanced Materials, Stanford, CA, USA.
- Department of Physics, Stanford University, Stanford, CA, USA.
- Stanford Institute for Materials and Energy Sciences, SLAC National Accelerator Laboratory, Menlo Park, CA, USA.
| |
Collapse
|
35
|
Abstract
In superlattices of twisted semiconductor monolayers, tunable moiré potentials emerge, trapping excitons into periodic arrays. In particular, spatially separated interlayer excitons are subject to a deep potential landscape and they exhibit a permanent dipole providing a unique opportunity to study interacting bosonic lattices. Recent experiments have demonstrated density-dependent transport properties of moiré excitons, which could play a key role for technological applications. However, the intriguing interplay between exciton-exciton interactions and moiré trapping has not been well understood yet. In this work, we develop a microscopic theory of interacting excitons in external potentials allowing us to tackle this highly challenging problem. We find that interactions between moiré excitons lead to a delocalization at intermediate densities, and we show how this transition can be tuned via twist angle and temperature. The delocalization is accompanied by a modification of optical moiré resonances, which gradually merge into a single free exciton peak.
Collapse
Affiliation(s)
- Samuel Brem
- Department of Physics, Philipps University, 35037 Marburg, Germany
| | - Ermin Malic
- Department of Physics, Philipps University, 35037 Marburg, Germany
| |
Collapse
|
36
|
Xiong R, Nie JH, Brantly SL, Hays P, Sailus R, Watanabe K, Taniguchi T, Tongay S, Jin C. Correlated insulator of excitons in WSe 2/WS 2 moiré superlattices. Science 2023; 380:860-864. [PMID: 37167352 DOI: 10.1126/science.add5574] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/13/2023]
Abstract
A panoply of unconventional electronic states has been observed in moiré superlattices. Engineering similar bosonic phases remains, however, largely unexplored. We report the observation of a bosonic correlated insulator in WSe2/WS2 moiré superlattices composed of excitons, i.e., tightly bound electron-hole pairs. We develop a pump probe spectroscopy method that we use to observe an exciton incompressible state at exciton filling νex = 1 and charge neutrality, indicating a correlated insulator of excitons. With varying charge density, the bosonic correlated insulator continuously transitions into an electron correlated insulator at charge filling νe = 1, suggesting a mixed correlated insulating state between the two limits. Our studies establish semiconducting moiré superlattices as an intriguing platform for engineering bosonic phases.
Collapse
Affiliation(s)
- Richen Xiong
- Department of Physics, University of California at Santa Barbara, Santa Barbara, CA 93106, USA
| | - Jacob H Nie
- Department of Physics, University of California at Santa Barbara, Santa Barbara, CA 93106, USA
| | - Samuel L Brantly
- Department of Physics, University of California at Santa Barbara, Santa Barbara, CA 93106, USA
| | - Patrick Hays
- School for Engineering of Matter, Transport, and Energy, Arizona State University, Tempe, AZ 85287, USA
| | - Renee Sailus
- School for Engineering of Matter, Transport, and Energy, Arizona State University, Tempe, AZ 85287, USA
| | - Kenji Watanabe
- Research Center for Functional Materials, National Institute for Materials Science, 1-1 Namiki, Tsukuba 305-0044, Japan
| | - Takashi Taniguchi
- International Center for Materials Nanoarchitectonics, National Institute for Materials Science, 1-1 Namiki, Tsukuba 305-0044, Japan
| | - Sefaattin Tongay
- School for Engineering of Matter, Transport, and Energy, Arizona State University, Tempe, AZ 85287, USA
| | - Chenhao Jin
- Department of Physics, University of California at Santa Barbara, Santa Barbara, CA 93106, USA
| |
Collapse
|
37
|
Tan Q, Rasmita A, Zhang Z, Cai H, Cai X, Dai X, Watanabe K, Taniguchi T, MacDonald AH, Gao W. Layer-dependent correlated phases in WSe 2/MoS 2 moiré superlattice. NATURE MATERIALS 2023; 22:605-611. [PMID: 37069294 DOI: 10.1038/s41563-023-01521-4] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/12/2022] [Accepted: 02/28/2023] [Indexed: 05/05/2023]
Abstract
Electron correlation plays an essential role in the macroscopic quantum phenomena in the moiré heterostructure, such as antiferromagnetism and correlated insulating phases. Unlike the phenomena where the interaction involves only electrons in one layer, the interaction of distinct phases in two or more layers represents a new horizon forward, such as the one in the Kondo lattice model. Here, using interlayer excitons as a probe, we show that the interlayer interactions in heterobilayers of tungsten diselenide and molybdenum disulfide (WSe2/MoS2) can be electrically switched on and off, resulting in a layer-dependent correlated phase diagram, including single-layer, layer-selective, excitonic-insulator and layer-hybridized regions. We demonstrate that these correlated phases affect the interlayer exciton non-radiative decay pathways. These results reveal the role of strong correlation on interlayer exciton dynamics and pave the way for studying the layer-resolved strong correlation behaviour in moiré heterostructures.
Collapse
Affiliation(s)
- Qinghai Tan
- Division of Physics and Applied Physics, School of Physical and Mathematical Sciences, Nanyang Technological University, Singapore, Singapore
- The Photonics Institute and Centre for Disruptive Photonic Technologies, Nanyang Technological University, Singapore, Singapore
| | - Abdullah Rasmita
- Division of Physics and Applied Physics, School of Physical and Mathematical Sciences, Nanyang Technological University, Singapore, Singapore
| | - Zhaowei Zhang
- Division of Physics and Applied Physics, School of Physical and Mathematical Sciences, Nanyang Technological University, Singapore, Singapore
| | - Hongbing Cai
- Division of Physics and Applied Physics, School of Physical and Mathematical Sciences, Nanyang Technological University, Singapore, Singapore
- The Photonics Institute and Centre for Disruptive Photonic Technologies, Nanyang Technological University, Singapore, Singapore
| | - Xiangbin Cai
- Division of Physics and Applied Physics, School of Physical and Mathematical Sciences, Nanyang Technological University, Singapore, Singapore
| | - Xuran Dai
- Division of Physics and Applied Physics, School of Physical and Mathematical Sciences, Nanyang Technological University, Singapore, Singapore
| | - Kenji Watanabe
- Research Center for Functional Materials, National Institute for Materials Science, Tsukuba, Japan
| | - Takashi Taniguchi
- International Center for Materials Nanoarchitectonics, National Institute for Materials Science, Tsukuba, Japan
| | - Allan H MacDonald
- Department of Physics, The University of Texas at Austin, Austin, TX, USA.
| | - Weibo Gao
- Division of Physics and Applied Physics, School of Physical and Mathematical Sciences, Nanyang Technological University, Singapore, Singapore.
- The Photonics Institute and Centre for Disruptive Photonic Technologies, Nanyang Technological University, Singapore, Singapore.
- Centre for Quantum Technologies, National University of Singapore, Singapore, Singapore.
| |
Collapse
|
38
|
Papaj M, Lewandowski C. Probing correlated states with plasmons. SCIENCE ADVANCES 2023; 9:eadg3262. [PMID: 37126543 DOI: 10.1126/sciadv.adg3262] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/03/2023]
Abstract
Understanding the nature of strongly correlated states in flat-band materials (such as moiré heterostructures) is at the forefront of both experimental and theoretical pursuits. While magnetotransport, scanning probe, and optical techniques are often very successful in investigating the properties of the underlying order, the exact nature of the ground state often remains unknown. Here, we propose to leverage strong light-matter coupling present in the flat-band systems to gain insight through dynamical dielectric response into the structure of the many-body ground state. We argue that because of the enlargement of the effective lattice of the system arising from correlations, conventional long-range plasmon becomes "folded" to yield a multiband plasmon spectrum. We detail several mechanisms through which the structure of the plasmon spectrum and that of the dynamical dielectric response is susceptible to the underlying order, revealing valued insights such as the interaction-driven band gaps, spin-structure, and the order periodicity.
Collapse
Affiliation(s)
- Michał Papaj
- Department of Physics, University of California, Berkeley, CA 94720, USA
| | - Cyprian Lewandowski
- National High Magnetic Field Laboratory, Tallahassee, FL, 32310, USA
- Department of Physics, Florida State University, Tallahassee, FL 32306, USA
| |
Collapse
|
39
|
Le TH, Noh S, Lee H, Lee J, Kim M, Kim C, Yoon H. Rapid and Direct Liquid-Phase Synthesis of Luminescent Metal Halide Superlattices. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2023; 35:e2210749. [PMID: 36739656 DOI: 10.1002/adma.202210749] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/19/2022] [Revised: 01/31/2023] [Indexed: 05/17/2023]
Abstract
The crystallization of nanocrystal building blocks into artificial superlattices has emerged as an efficient approach for tailoring the nanoscale properties and functionalities of novel devices. To date, ordered arrays of colloidal metal halide nanocrystals have mainly been achieved by using post-synthetic strategies. Here, a rapid and direct liquid-phase synthesis is presented to achieve a highly robust crystallization of luminescent metal halide nanocrystals into perfect face-centered-cubic (FCC) superlattices on the micrometer scale. The continuous growth of individual nanocrystals is observed within the superlattice, followed by the disassembly of the superlattices into individually dispersed nanocrystals owing to the highly repulsive interparticle interactions induced by large nanocrystals. Transmission electron microscopy characterization reveals that owing to an increase in solvent entropy, the structure of the superlattices transforms from FCC to hexagonal close-packed (HCP) and the nanocrystals disassemble. The FCC superlattice exhibits a single and slightly redshifted emission, due to the reabsorption-free property of the building block units. Compared to individual nanocrystals, the superlattices have three times higher quantum yield with improved environmental stability, making them ideal for use as ultrabright blue-light emitters. This study is expected to facilitate the creation of metamaterials with ordered nanocrystal structures and their practical applications.
Collapse
Affiliation(s)
- Thanh-Hai Le
- Alan G. MacDiarmid Energy Research Institute, Chonnam National University, 77 Yongbong-ro, Buk-gu, Gwangju, 61186, South Korea
| | - Seonmyeong Noh
- Department of Polymer Engineering, Graduate School, Chonnam National University, 77 Yongbong-ro, Buk-gu, Gwangju, 61186, South Korea
| | - Haney Lee
- Department of Polymer Engineering, Graduate School, Chonnam National University, 77 Yongbong-ro, Buk-gu, Gwangju, 61186, South Korea
| | - Jisun Lee
- Department of Polymer Engineering, Graduate School, Chonnam National University, 77 Yongbong-ro, Buk-gu, Gwangju, 61186, South Korea
| | - Minjin Kim
- Department of Polymer Engineering, Graduate School, Chonnam National University, 77 Yongbong-ro, Buk-gu, Gwangju, 61186, South Korea
| | - Changjun Kim
- Department of Polymer Engineering, Graduate School, Chonnam National University, 77 Yongbong-ro, Buk-gu, Gwangju, 61186, South Korea
| | - Hyeonseok Yoon
- Alan G. MacDiarmid Energy Research Institute, Chonnam National University, 77 Yongbong-ro, Buk-gu, Gwangju, 61186, South Korea
- Department of Polymer Engineering, Graduate School, Chonnam National University, 77 Yongbong-ro, Buk-gu, Gwangju, 61186, South Korea
- School of Polymer Science and Engineering, Chonnam National University, 77 Yongbong-ro, Buk-gu, Gwangju, 61186, South Korea
| |
Collapse
|
40
|
Zhao W, Shen B, Tao Z, Han Z, Kang K, Watanabe K, Taniguchi T, Mak KF, Shan J. Gate-tunable heavy fermions in a moiré Kondo lattice. Nature 2023; 616:61-65. [PMID: 36922592 DOI: 10.1038/s41586-023-05800-7] [Citation(s) in RCA: 23] [Impact Index Per Article: 23.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2022] [Accepted: 02/06/2023] [Indexed: 03/17/2023]
Abstract
The Kondo lattice-a matrix of local magnetic moments coupled through spin-exchange interactions to itinerant conduction electrons-is a prototype of strongly correlated quantum matter1-4. Usually, Kondo lattices are realized in intermetallic compounds containing lanthanide or actinide1,2. The complex electronic structure and limited tunability of both the electron density and exchange interactions in these bulk materials pose considerable challenges to studying Kondo lattice physics. Here we report the realization of a synthetic Kondo lattice in AB-stacked MoTe2/WSe2 moiré bilayers, in which the MoTe2 layer is tuned to a Mott insulating state, supporting a triangular moiré lattice of local moments, and the WSe2 layer is doped with itinerant conduction carriers. We observe heavy fermions with a large Fermi surface below the Kondo temperature. We also observe the destruction of the heavy fermions by an external magnetic field with an abrupt decrease in the Fermi surface size and quasi-particle mass. We further demonstrate widely and continuously gate-tunable Kondo temperatures through either the itinerant carrier density or the Kondo interaction. Our study opens the possibility of in situ access to the phase diagram of the Kondo lattice with exotic quantum criticalities in a single device based on semiconductor moiré materials2-9.
Collapse
Affiliation(s)
- Wenjin Zhao
- Kavli Institute at Cornell for Nanoscale Science, Cornell University, Ithaca, NY, USA
| | - Bowen Shen
- School of Applied and Engineering Physics, Cornell University, Ithaca, NY, USA
| | - Zui Tao
- School of Applied and Engineering Physics, Cornell University, Ithaca, NY, USA
| | - Zhongdong Han
- Laboratory of Atomic and Solid State Physics, Cornell University, Ithaca, NY, USA
| | - Kaifei Kang
- School of Applied and Engineering Physics, Cornell University, Ithaca, NY, USA
| | - Kenji Watanabe
- National Institute for Materials Science, Tsukuba, Japan
| | | | - Kin Fai Mak
- Kavli Institute at Cornell for Nanoscale Science, Cornell University, Ithaca, NY, USA.
- School of Applied and Engineering Physics, Cornell University, Ithaca, NY, USA.
- Laboratory of Atomic and Solid State Physics, Cornell University, Ithaca, NY, USA.
| | - Jie Shan
- Kavli Institute at Cornell for Nanoscale Science, Cornell University, Ithaca, NY, USA.
- School of Applied and Engineering Physics, Cornell University, Ithaca, NY, USA.
- Laboratory of Atomic and Solid State Physics, Cornell University, Ithaca, NY, USA.
| |
Collapse
|
41
|
Wu YM, Wu Z, Yao H. Pair-Density-Wave and Chiral Superconductivity in Twisted Bilayer Transition Metal Dichalcogenides. PHYSICAL REVIEW LETTERS 2023; 130:126001. [PMID: 37027848 DOI: 10.1103/physrevlett.130.126001] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/18/2022] [Accepted: 02/24/2023] [Indexed: 06/19/2023]
Abstract
We theoretically explore possible orders induced by weak repulsive interactions in twisted bilayer transition metal dichalcogenides (e.g., WSe_{2}) in the presence of an out-of-plane electric field. Using renormalization group analysis, we show that superconductivity survives even with the conventional van Hove singularities. We find that topological chiral superconducting states with Chern number N=1, 2, 4 (namely, p+ip, d+id, and g+ig) appear over a large parameter region with a moiré filling factor around n=1. At some special values of applied electric field and in the presence of a weak out-of-plane Zeeman field, spin-polarized pair-density-wave (PDW) superconductivity can emerge. This spin-polarized PDW state can be probed by experiments such as spin-polarized STM measuring spin-resolved pairing gap and quasiparticle interference. Moreover, the spin-polarized PDW could lead to a spin-polarized superconducting diode effect.
Collapse
Affiliation(s)
- Yi-Ming Wu
- Institute for Advanced Study, Tsinghua University, Beijing 100084, China
- Stanford Institute for Theoretical Physics, Stanford University, Stanford, California 94305, USA
| | - Zhengzhi Wu
- Institute for Advanced Study, Tsinghua University, Beijing 100084, China
| | - Hong Yao
- Institute for Advanced Study, Tsinghua University, Beijing 100084, China
- State Key Laboratory of Low Dimensional Quantum Physics, Tsinghua University, Beijing 100084, China
| |
Collapse
|
42
|
Guerci D, Wang J, Zang J, Cano J, Pixley JH, Millis A. Chiral Kondo lattice in doped MoTe 2/WSe 2 bilayers. SCIENCE ADVANCES 2023; 9:eade7701. [PMID: 36930704 PMCID: PMC10022889 DOI: 10.1126/sciadv.ade7701] [Citation(s) in RCA: 11] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/07/2022] [Accepted: 02/10/2023] [Indexed: 06/18/2023]
Abstract
We theoretically study the interplay between magnetism and a heavy Fermi liquid in the AB-stacked transition metal dichalcogenide bilayer system, MoTe2/WSe2, in the regime in which the Mo layer supports localized magnetic moments coupled by interlayer electron tunneling to a weakly correlated band of itinerant electrons in the W layer. We show that the interlayer electron transfer leads to a chiral Kondo exchange, with consequences including a strong dependence of the Kondo temperature on carrier concentration and anomalous Hall effect due to a topological hybridization gap. The theoretical model exhibits two phases, a small Fermi surface magnet and a large Fermi surface heavy Fermi liquid; at the mean-field level, the transition between them is first order. Our results provide concrete experimental predictions for ongoing experiments on MoTe2/WSe2 bilayer heterostructures and introduces a controlled route to observe a topological selective Mott transition.
Collapse
Affiliation(s)
- Daniele Guerci
- Center for Computational Quantum Physics, Flatiron Institute, New York, NY 10010, USA
| | - Jie Wang
- Center for Computational Quantum Physics, Flatiron Institute, New York, NY 10010, USA
| | - Jiawei Zang
- Department of Physics, Columbia University, 538 West 120th Street, New York, NY 10027, USA
| | - Jennifer Cano
- Center for Computational Quantum Physics, Flatiron Institute, New York, NY 10010, USA
- Department of Physics and Astronomy, Stony Brook University, Stony Brook, NY 11794, USA
| | - J. H. Pixley
- Center for Computational Quantum Physics, Flatiron Institute, New York, NY 10010, USA
- Department of Physics and Astronomy, Center for Materials Theory, Rutgers University, Piscataway, NJ 08854, USA
| | - Andrew Millis
- Center for Computational Quantum Physics, Flatiron Institute, New York, NY 10010, USA
- Department of Physics, Columbia University, 538 West 120th Street, New York, NY 10027, USA
| |
Collapse
|
43
|
Xiao C, Wang Y, Yao W. Dynamic Generation of Spin Spirals of Moiré Trapped Carriers via Exciton Mediated Spin Interactions. NANO LETTERS 2023; 23:1872-1877. [PMID: 36799955 DOI: 10.1021/acs.nanolett.2c04816] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/18/2023]
Abstract
Stacking transition metal dichalcogenides (TMDs) to form moiré superlattices has provided exciting opportunities to explore many-body correlation phenomena of the moiré trapped carriers. TMD bilayers, on the other hand, host long-lived interlayer exciton (IX), an elementary excitation of long spin-valley lifetime that can be optically or electrically injected. Here we find that, through the Coulomb exchange between mobile IXs and carriers, the IX bath can mediate both Heisenberg and Dzyaloshinskii-Moriya type spin interactions between moiré trapped carriers, controllable by exciton density and exciton spin current, respectively. We show the strong Heisenberg interaction and the extraordinarily long-ranged Dzyaloshinskii-Moriya interaction here can jointly establish robust spin spiral magnetic orders in Mott-Wigner crystal states at various filling factors, with the spiral direction controlled by the exciton current.
Collapse
Affiliation(s)
- Chengxin Xiao
- Department of Physics, The University of Hong Kong, Hong Kong, China
- HKU-UCAS Joint Institute of Theoretical and Computational Physics at Hong Kong, Hong Kong, China
| | - Yong Wang
- School of Physics, Nankai University, Tianjin 300071, China
- Department of Physics, The University of Hong Kong, Hong Kong, Hong Kong, China
| | - Wang Yao
- Department of Physics, The University of Hong Kong, Hong Kong, China
- HKU-UCAS Joint Institute of Theoretical and Computational Physics at Hong Kong, Hong Kong, China
| |
Collapse
|
44
|
Tang Y, Su K, Li L, Xu Y, Liu S, Watanabe K, Taniguchi T, Hone J, Jian CM, Xu C, Mak KF, Shan J. Evidence of frustrated magnetic interactions in a Wigner-Mott insulator. NATURE NANOTECHNOLOGY 2023; 18:233-237. [PMID: 36646827 DOI: 10.1038/s41565-022-01309-8] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/01/2022] [Accepted: 11/28/2022] [Indexed: 06/17/2023]
Abstract
Electrons in two-dimensional semiconductor moiré materials are more delocalized around the lattice sites than those in conventional solids1,2. The non-local contributions to the magnetic interactions can therefore be as important as the Anderson superexchange3, which makes the materials a unique platform to study the effects of competing magnetic interactions3,4. Here we report evidence of strongly frustrated magnetic interactions in a Wigner-Mott insulator at a two-thirds (2/3) filling of the moiré lattice in angle-aligned WSe2/WS2 bilayers. Magneto-optical measurements show that the net exchange interaction is antiferromagnetic for filling factors below 1 with a strong suppression at a 2/3 filling. The suppression is lifted on screening of the long-range Coulomb interactions and melting of the Wigner-Mott insulators by a nearby metallic gate. The results can be qualitatively captured by a honeycomb-lattice spin model with an antiferromagnetic nearest-neighbour coupling and a ferromagnetic second-neighbour coupling. Our study establishes semiconductor moiré materials as a model system for lattice-spin physics and frustrated magnetism5.
Collapse
Affiliation(s)
- Yanhao Tang
- School of Applied and Engineering Physics, Cornell University, Ithaca, NY, USA
- Interdisciplinary Center for Quantum Information, Zhejiang Province Key Laboratory of Quantum Technology, and Department of Physics, Zhejiang University, Hangzhou, China
| | - Kaixiang Su
- Department of Physics, University of California, Santa Barbara, CA, USA
| | - Lizhong Li
- School of Applied and Engineering Physics, Cornell University, Ithaca, NY, USA
| | - Yang Xu
- School of Applied and Engineering Physics, Cornell University, Ithaca, NY, USA
| | - Song Liu
- Department of Mechanical Engineering, Columbia University, New York, NY, USA
| | - Kenji Watanabe
- National Institute for Materials Science, Tsukuba, Japan
| | | | - James Hone
- Department of Mechanical Engineering, Columbia University, New York, NY, USA
| | - Chao-Ming Jian
- Laboratory of Atomic and Solid State Physics, Cornell University, Ithaca, NY, USA
| | - Cenke Xu
- Department of Physics, University of California, Santa Barbara, CA, USA
| | - Kin Fai Mak
- School of Applied and Engineering Physics, Cornell University, Ithaca, NY, USA.
- Laboratory of Atomic and Solid State Physics, Cornell University, Ithaca, NY, USA.
- Kavli Institute at Cornell for Nanoscale Science, Ithaca, NY, USA.
| | - Jie Shan
- School of Applied and Engineering Physics, Cornell University, Ithaca, NY, USA.
- Laboratory of Atomic and Solid State Physics, Cornell University, Ithaca, NY, USA.
- Kavli Institute at Cornell for Nanoscale Science, Ithaca, NY, USA.
| |
Collapse
|
45
|
Aditya A, Mishra A, Baradwaj N, Nomura KI, Nakano A, Vashishta P, Kalia RK. Wrinkles, Ridges, Miura-Ori, and Moiré Patterns in MoSe 2 Using Neural Networks. J Phys Chem Lett 2023; 14:1732-1739. [PMID: 36757778 PMCID: PMC9940294 DOI: 10.1021/acs.jpclett.2c03539] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2022] [Accepted: 01/19/2023] [Indexed: 06/18/2023]
Abstract
Effects of lateral compression on out-of-plane deformation of two-dimensional MoSe2 layers are investigated. A MoSe2 monolayer develops periodic wrinkles under uniaxial compression and Miura-Ori patterns under biaxial compression. When a flat MoSe2 monolayer is placed on top of a wrinkled MoSe2 layer, the van der Waals (vdW) interaction transforms wrinkles into ridges and generates mixed 2H and 1T phases and chain-like defects. Under a biaxial strain, the vdW interaction induces regions of Miura-Ori patterns in bilayers. Strained systems analyzed using a convolutional neural network show that the compressed system consists of semiconducting 2H and metallic 1T phases. The energetics, mechanical response, defect structure, and dynamics are analyzed as bilayers undergo wrinkle-ridge transformations under uniaxial compression and moiré transformations under biaxial compression. Our results indicate that in-plane compression can induce self-assembly of out-of-plane metasurfaces with controllable semiconducting and metallic phases and moiré patterns with unique optoelectronic properties.
Collapse
|
46
|
Kim S, Senthil T, Chowdhury D. Continuous Mott Transition in Moiré Semiconductors: Role of Long-Wavelength Inhomogeneities. PHYSICAL REVIEW LETTERS 2023; 130:066301. [PMID: 36827551 DOI: 10.1103/physrevlett.130.066301] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/17/2022] [Accepted: 01/18/2023] [Indexed: 06/18/2023]
Abstract
Recent experiments in moiré transition metal dichalcogenide materials have reported the observation of a continuous bandwidth-tuned transition from a metal to a paramagnetic Mott insulator at a fixed filling of one electron per moiré unit cell. The electrical transport measurements reveal a number of puzzling features that are seemingly at odds with the theoretical expectations of an interaction-induced, but disorder-free, bandwidth-tuned metal-insulator transition. In this Letter, we include the effects of long-wavelength inhomogeneities, building on the results for a continuous metal-insulator transition at fixed filling in the clean limit. We examine the effects of mesoscale inhomogeneities near the critical point on transport using the framework of random resistor networks, highlighting the salient differences from a simple percolation-based picture. We place our results in the context of recent and ongoing experiments.
Collapse
Affiliation(s)
- Sunghoon Kim
- Department of Physics, Cornell University, Ithaca, New York 14853, USA
| | - T Senthil
- Department of Physics, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, USA
| | | |
Collapse
|
47
|
Pradhan NR, Garcia C, Chakrabarti B, Rosenmann D, Divan R, Sumant AV, Miller S, Hilton D, Karaiskaj D, McGill SA. Insulator-to-metal phase transition in a few-layered MoSe 2 field effect transistor. NANOSCALE 2023; 15:2667-2673. [PMID: 36652441 DOI: 10.1039/d2nr05019f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/17/2023]
Abstract
The metal-to-insulator phase transition (MIT) in low-dimensional materials and particularly two-dimensional layered semiconductors is exciting to explore due to the fact that it challenges the prediction that a two-dimensional system must be insulating at low temperatures. Thus, the exploration of MITs in 2D layered semiconductors expands the understanding of the underlying physics. Here we report the MIT of a few-layered MoSe2 field effect transistor under a gate bias (electric field) applied perpendicular to the MoSe2 layers. With low applied gate voltage, the conductivity as a function of temperature from 150 K to 4 K shows typical semiconducting to insulating character. Above a critical applied gate voltage, Vc, the conductivity becomes metallic (i.e., the conductivity increases continuously as a function of decreasing temperature). Evidence of a metallic state was observed using an applied gate voltage or, equivalently, increasing the density of charge carriers within the 2D channel. We analyzed the nature of the phase transition using percolation theory, where conductivity scales with the density of charge carriers as σ ∝ (n - nc)δ. The critical exponent for a percolative phase transition, δ(T), has values ranging from 1.34 (at T = 150 K) to 2 (T = 20 K), which is close to the theoretical value of 1.33 for percolation to occur. Thus we conclude that the MIT in few-layered MoSe2 is driven by charge carrier percolation. Furthermore, the conductivity does not scale with temperature, which is a hallmark of a quantum critical phase transition.
Collapse
Affiliation(s)
- Nihar R Pradhan
- Layered Materials and Device Physics Laboratory, Department of Chemistry, Physics and Atmospheric Science, Jackson State University, Jackson, MS 39217, USA.
- National High Magnetic Field Laboratory, 1800 E. Paul Dirac Dr., Tallahassee, FL 32310, USA.
| | - Carlos Garcia
- National High Magnetic Field Laboratory, 1800 E. Paul Dirac Dr., Tallahassee, FL 32310, USA.
- Department of Physics, Florida State University, 77 Chieftan Way, Tallahassee, FL 32306, USA
| | - Bhaswar Chakrabarti
- Center for Nanoscale Materials, Argonne National Laboratory, 9700 S-Cass Avenue, Lemont, IL-60439, USA
- Department of Electrical Engineering, Indian Institute of Technology Madras, Chennai, Tamil Nadu-600036, India
| | - Daniel Rosenmann
- Center for Nanoscale Materials, Argonne National Laboratory, 9700 S-Cass Avenue, Lemont, IL-60439, USA
| | - Ralu Divan
- Center for Nanoscale Materials, Argonne National Laboratory, 9700 S-Cass Avenue, Lemont, IL-60439, USA
| | - Anirudha V Sumant
- Center for Nanoscale Materials, Argonne National Laboratory, 9700 S-Cass Avenue, Lemont, IL-60439, USA
| | - Suzanne Miller
- Center for Nanoscale Materials, Argonne National Laboratory, 9700 S-Cass Avenue, Lemont, IL-60439, USA
| | - David Hilton
- Department of Physics, Baylor University, One Bear Place 97316, Waco, TX 76798-7316, USA
| | - Denis Karaiskaj
- Department of Physics, University of South Florida, Tampa, FL 33620, USA
| | - Stephen A McGill
- National High Magnetic Field Laboratory, 1800 E. Paul Dirac Dr., Tallahassee, FL 32310, USA.
| |
Collapse
|
48
|
Zheng B, Wang J, Wang Q, Su X, Huang T, Li S, Wang F, Shi Y, Wang X. Quantum criticality of excitonic Mott metal-insulator transitions in black phosphorus. Nat Commun 2022; 13:7797. [PMID: 36528720 PMCID: PMC9759515 DOI: 10.1038/s41467-022-35567-w] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2022] [Accepted: 12/09/2022] [Indexed: 12/23/2022] Open
Abstract
Quantum phase transition refers to the abrupt change of ground states of many-body systems driven by quantum fluctuations. It hosts various intriguing exotic states around its quantum critical points approaching zero temperature. Here we report the spectroscopic and transport evidences of quantum critical phenomena of an exciton Mott metal-insulator-transition in black phosphorus. Continuously tuning the interplay of electron-hole pairs by photo-excitation and using Fourier-transform photo-current spectroscopy as a probe, we measure a comprehensive phase diagram of electron-hole states in temperature and electron-hole pair density parameter space. We characterize an evolution from optical insulator with sharp excitonic transition to metallic electron-hole plasma phases featured by broad absorption and population inversion. We also observe strange metal behavior that resistivity is linear in temperature near the Mott transition boundaries. Our results exemplify an ideal platform to investigating strongly-correlated physics in semiconductors, such as crossover between superconductivity and superfluity of exciton condensation.
Collapse
Affiliation(s)
- Binjie Zheng
- grid.41156.370000 0001 2314 964XSchool of Electronic Science and Engineering, Nanjing University, 210093 Nanjing, China
| | - Junzhuan Wang
- grid.41156.370000 0001 2314 964XSchool of Electronic Science and Engineering, Nanjing University, 210093 Nanjing, China
| | - Qianghua Wang
- grid.41156.370000 0001 2314 964XSchool of Physics, Nanjing University, 210093 Nanjing, China
| | - Xin Su
- grid.41156.370000 0001 2314 964XSchool of Electronic Science and Engineering, Nanjing University, 210093 Nanjing, China
| | - Tianye Huang
- grid.41156.370000 0001 2314 964XSchool of Electronic Science and Engineering, Nanjing University, 210093 Nanjing, China
| | - Songlin Li
- grid.41156.370000 0001 2314 964XSchool of Electronic Science and Engineering, Nanjing University, 210093 Nanjing, China
| | - Fengqiu Wang
- grid.41156.370000 0001 2314 964XSchool of Electronic Science and Engineering, Nanjing University, 210093 Nanjing, China
| | - Yi Shi
- grid.41156.370000 0001 2314 964XSchool of Electronic Science and Engineering, Nanjing University, 210093 Nanjing, China
| | - Xiaomu Wang
- grid.41156.370000 0001 2314 964XSchool of Electronic Science and Engineering, Nanjing University, 210093 Nanjing, China
| |
Collapse
|
49
|
Disorder-dominated quantum criticality in moiré bilayers. Nat Commun 2022; 13:7469. [DOI: 10.1038/s41467-022-35103-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2022] [Accepted: 11/16/2022] [Indexed: 12/04/2022] Open
Abstract
AbstractMoiré bilayer materials have recently attracted much attention following the discovery of various correlated insulating states at specific band fillings. Here we discuss the metal-insulator transitions (MITs) that have been observed in the same devices, but at fillings far from the strongly correlated regime dominated by Mott-like physics, displaying many similarities to other examples of disorder-dominated MITs. We propose a minimal theoretical model describing the interplay of interactions and disorder, which is able to capture all the universal aspects of quantum criticality, as observed in experiments performed on several devices.
Collapse
|
50
|
Melting of generalized Wigner crystals in transition metal dichalcogenide heterobilayer Moiré systems. Nat Commun 2022; 13:7098. [PMID: 36402757 PMCID: PMC9675862 DOI: 10.1038/s41467-022-34683-x] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2022] [Accepted: 10/18/2022] [Indexed: 11/21/2022] Open
Abstract
Moiré superlattice systems such as transition metal dichalcogenide heterobilayers have garnered significant recent interest due to their promising utility as tunable solid state simulators. Recent experiments on a WSe2/WS2 heterobilayer detected incompressible charge ordered states that one can view as generalized Wigner crystals. The tunability of the transition metal dichalcogenide heterobilayer Moiré system presents an opportunity to study the rich set of possible phases upon melting these charge-ordered states. Here we use Monte Carlo simulations to study these intermediate phases in between incompressible charge-ordered states in the strong coupling limit. We find two distinct stripe solid states to be each preceded by distinct types of nematic states. In particular, we discover microscopic mechanisms that stabilize each of the nematic states, whose order parameter transforms as the two-dimensional E representation of the Moiré lattice point group. Our results provide a testable experimental prediction of where both types of nematic occur, and elucidate the microscopic mechanism driving their formation.
Collapse
|