1
|
Zhang H, Li Q, Scheer MG, Wang R, Tuo C, Zou N, Chen W, Li J, Cai X, Bao C, Li MR, Deng K, Watanabe K, Taniguchi T, Ye M, Tang P, Xu Y, Yu P, Avila J, Dudin P, Denlinger JD, Yao H, Lian B, Duan W, Zhou S. Correlated topological flat bands in rhombohedral graphite. Proc Natl Acad Sci U S A 2024; 121:e2410714121. [PMID: 39413136 PMCID: PMC11513947 DOI: 10.1073/pnas.2410714121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2024] [Accepted: 09/10/2024] [Indexed: 10/18/2024] Open
Abstract
Flat bands and nontrivial topological physics are two important topics of condensed matter physics. With a unique stacking configuration analogous to the Su-Schrieffer-Heeger model, rhombohedral graphite (RG) is a potential candidate for realizing both flat bands and nontrivial topological physics. Here, we report experimental evidence of topological flat bands (TFBs) on the surface of bulk RG, which are topologically protected by bulk helical Dirac nodal lines via the bulk-boundary correspondence. Moreover, upon in situ electron doping, the surface TFBs show a splitting with exotic doping evolution, with an order-of-magnitude increase in the bandwidth of the lower split band, and pinning of the upper band near the Fermi level. These experimental observations together with Hartree-Fock calculations suggest that correlation effects are important in this system. Our results demonstrate RG as a platform for investigating the rich interplay between nontrivial band topology, correlation effects, and interaction-driven symmetry-broken states.
Collapse
Affiliation(s)
- Hongyun Zhang
- State Key Laboratory of Low-Dimensional Quantum Physics and Department of Physics, Tsinghua University, Beijing100084, People’s Republic of China
| | - Qian Li
- State Key Laboratory of Low-Dimensional Quantum Physics and Department of Physics, Tsinghua University, Beijing100084, People’s Republic of China
| | | | - Renqi Wang
- State Key Laboratory of Low-Dimensional Quantum Physics and Department of Physics, Tsinghua University, Beijing100084, People’s Republic of China
| | - Chuyi Tuo
- Institute for Advanced Study, Tsinghua University, Beijing100084, People’s Republic of China
| | - Nianlong Zou
- State Key Laboratory of Low-Dimensional Quantum Physics and Department of Physics, Tsinghua University, Beijing100084, People’s Republic of China
| | - Wanying Chen
- State Key Laboratory of Low-Dimensional Quantum Physics and Department of Physics, Tsinghua University, Beijing100084, People’s Republic of China
| | - Jiaheng Li
- State Key Laboratory of Low-Dimensional Quantum Physics and Department of Physics, Tsinghua University, Beijing100084, People’s Republic of China
| | - Xuanxi Cai
- State Key Laboratory of Low-Dimensional Quantum Physics and Department of Physics, Tsinghua University, Beijing100084, People’s Republic of China
| | - Changhua Bao
- State Key Laboratory of Low-Dimensional Quantum Physics and Department of Physics, Tsinghua University, Beijing100084, People’s Republic of China
| | - Ming-Rui Li
- Institute for Advanced Study, Tsinghua University, Beijing100084, People’s Republic of China
| | - Ke Deng
- State Key Laboratory of Low-Dimensional Quantum Physics and Department of Physics, Tsinghua University, Beijing100084, People’s Republic of China
| | - Kenji Watanabe
- Research Center for Functional Materials, National Institute for Materials Science, Tsukuba305-0044, Japan
| | - Takashi Taniguchi
- International Center for Materials Nanoarchitectonics, National Institute for Materials Science, Tsukuba305-0044, Japan
| | - Mao Ye
- Shanghai Synchrotron Radiation Facility, Shanghai Advanced Research Institute, Chinese Academy of Sciences, Shanghai201210, People’s Republic of China
| | - Peizhe Tang
- School of Materials Science and Engineering, Beihang University, Beijing100191, People’s Republic of China
- Max Planck Institute for the Structure and Dynamics of Matter, Center for Free Electron Laser Science, Hamburg22761, Germany
| | - Yong Xu
- State Key Laboratory of Low-Dimensional Quantum Physics and Department of Physics, Tsinghua University, Beijing100084, People’s Republic of China
- Frontier Science Center for Quantum Information, Beijing100084, People’s Republic of China
| | - Pu Yu
- State Key Laboratory of Low-Dimensional Quantum Physics and Department of Physics, Tsinghua University, Beijing100084, People’s Republic of China
- Frontier Science Center for Quantum Information, Beijing100084, People’s Republic of China
| | - Jose Avila
- Synchrotron SOLEIL, L’Orme des Merisiers, Gif sur Yvette Cedex91192, France
| | - Pavel Dudin
- Synchrotron SOLEIL, L’Orme des Merisiers, Gif sur Yvette Cedex91192, France
| | | | - Hong Yao
- Institute for Advanced Study, Tsinghua University, Beijing100084, People’s Republic of China
| | - Biao Lian
- Department of Physics, Princeton University, Princeton, NJ08544
| | - Wenhui Duan
- State Key Laboratory of Low-Dimensional Quantum Physics and Department of Physics, Tsinghua University, Beijing100084, People’s Republic of China
- Institute for Advanced Study, Tsinghua University, Beijing100084, People’s Republic of China
- Frontier Science Center for Quantum Information, Beijing100084, People’s Republic of China
| | - Shuyun Zhou
- State Key Laboratory of Low-Dimensional Quantum Physics and Department of Physics, Tsinghua University, Beijing100084, People’s Republic of China
- Frontier Science Center for Quantum Information, Beijing100084, People’s Republic of China
| |
Collapse
|
2
|
Pantaleón PA, Sainz-Cruz H, Guinea F. Designing Moiré Patterns by Shearing. ACS NANO 2024; 18:28575-28584. [PMID: 39388637 DOI: 10.1021/acsnano.4c08302] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/12/2024]
Abstract
We analyze the elastic properties, structural effects, and low-energy physics of a sheared nanoribbon placed on top of graphene, which creates a gradually changing moiré pattern. By means of a classical elastic model we derive the strains in the ribbon and we obtain its electronic energy spectrum with a scaled tight-binding model. The size of the sheared region is determined by the balance between elastic and van der Waals energy, and different regimes are identified. Near the clamped edge, moderate strains and small twist angles lead to one-dimensional channels. Near the sheared edge, a long region behaves like magic angle twisted bilayer graphene (TBG), showing a sharp peak in the density of states, mostly isolated from the rest of the spectrum. We also calculate the band topology along the ribbon and we find that it is stable for large intervals of strains and twist angles. Together with the experimental observations, these results show that the sheared nanoribbon geometry is ideal for exploring superconductivity and correlated phases in TBG in the very sought-after regime of ultralow twist angle disorder.
Collapse
Affiliation(s)
| | | | - Francisco Guinea
- Imdea Nanoscience, Faraday 9, 28015 Madrid, Spain
- Donostia International Physics Center, Paseo Manuel de Lardizabal 4, 20018 San Sebastian, Spain
| |
Collapse
|
3
|
Ding J, Xiang H, Zhou W, Liu N, Chen Q, Fang X, Wang K, Wu L, Watanabe K, Taniguchi T, Xin N, Xu S. Engineering band structures of two-dimensional materials with remote moiré ferroelectricity. Nat Commun 2024; 15:9087. [PMID: 39433567 PMCID: PMC11494083 DOI: 10.1038/s41467-024-53440-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2024] [Accepted: 10/14/2024] [Indexed: 10/23/2024] Open
Abstract
The stacking order and twist angle provide abundant opportunities for engineering band structures of two-dimensional materials, including the formation of moiré bands, flat bands, and topologically nontrivial bands. The inversion symmetry breaking in rhombohedral-stacked transitional metal dichalcogenides endows them with an interfacial ferroelectricity associated with an out-of-plane electric polarization. By utilizing twist angle as a knob to construct rhombohedral-stacked transitional metal dichalcogenides, antiferroelectric domain networks with alternating out-of-plane polarization can be generated. Here, we demonstrate that such spatially periodic ferroelectric polarizations in parallel-stacked twisted WSe2 can imprint their moiré potential onto a remote bilayer graphene. This remote moiré potential gives rise to pronounced satellite resistance peaks besides the charge-neutrality point in graphene, which are tunable by the twist angle of WSe2. Our observations of ferroelectric hysteresis at finite displacement fields suggest the moiré is delivered by a long-range electrostatic potential. The constructed superlattices by moiré ferroelectricity represent a highly flexible approach, as they involve the separation of the moiré construction layer from the electronic transport layer. This remote moiré is identified as a weak potential and can coexist with conventional moiré. Our results offer a comprehensive strategy for engineering band structures and properties of two-dimensional materials by utilizing moiré ferroelectricity.
Collapse
Affiliation(s)
- Jing Ding
- Department of Physics, Fudan University, Shanghai, 200433, China
- Key Laboratory for Quantum Materials of Zhejiang Province, Department of Physics, School of Science, Westlake University, 18 Shilongshan Road, Hangzhou, 310024, Zhejiang Province, China
- Institute of Natural Sciences, Westlake Institute for Advanced Study, 18 Shilongshan Road, Hangzhou, 310024, Zhejiang Province, China
| | - Hanxiao Xiang
- Department of Physics, Fudan University, Shanghai, 200433, China
- Key Laboratory for Quantum Materials of Zhejiang Province, Department of Physics, School of Science, Westlake University, 18 Shilongshan Road, Hangzhou, 310024, Zhejiang Province, China
- Institute of Natural Sciences, Westlake Institute for Advanced Study, 18 Shilongshan Road, Hangzhou, 310024, Zhejiang Province, China
| | - Wenqiang Zhou
- Key Laboratory for Quantum Materials of Zhejiang Province, Department of Physics, School of Science, Westlake University, 18 Shilongshan Road, Hangzhou, 310024, Zhejiang Province, China
- Institute of Natural Sciences, Westlake Institute for Advanced Study, 18 Shilongshan Road, Hangzhou, 310024, Zhejiang Province, China
| | - Naitian Liu
- Department of Physics, Fudan University, Shanghai, 200433, China
- Key Laboratory for Quantum Materials of Zhejiang Province, Department of Physics, School of Science, Westlake University, 18 Shilongshan Road, Hangzhou, 310024, Zhejiang Province, China
- Institute of Natural Sciences, Westlake Institute for Advanced Study, 18 Shilongshan Road, Hangzhou, 310024, Zhejiang Province, China
| | - Qianmei Chen
- Department of Chemistry, Zhejiang University, Hangzhou, 310058, China
| | - Xinjie Fang
- Department of Physics, Fudan University, Shanghai, 200433, China
- Key Laboratory for Quantum Materials of Zhejiang Province, Department of Physics, School of Science, Westlake University, 18 Shilongshan Road, Hangzhou, 310024, Zhejiang Province, China
- Institute of Natural Sciences, Westlake Institute for Advanced Study, 18 Shilongshan Road, Hangzhou, 310024, Zhejiang Province, China
| | - Kangyu Wang
- Department of Physics, Fudan University, Shanghai, 200433, China
- Key Laboratory for Quantum Materials of Zhejiang Province, Department of Physics, School of Science, Westlake University, 18 Shilongshan Road, Hangzhou, 310024, Zhejiang Province, China
- Institute of Natural Sciences, Westlake Institute for Advanced Study, 18 Shilongshan Road, Hangzhou, 310024, Zhejiang Province, China
| | - Linfeng Wu
- Department of Physics, Fudan University, Shanghai, 200433, China
- Key Laboratory for Quantum Materials of Zhejiang Province, Department of Physics, School of Science, Westlake University, 18 Shilongshan Road, Hangzhou, 310024, Zhejiang Province, China
- Institute of Natural Sciences, Westlake Institute for Advanced Study, 18 Shilongshan Road, Hangzhou, 310024, Zhejiang Province, China
| | - Kenji Watanabe
- Research Center for Electronic and Optical Materials, National Institute for Materials Science, 1-1 Namiki, Tsukuba, 305-0044, Japan
| | - Takashi Taniguchi
- Research Center for Materials Nanoarchitectonics, National Institute for Materials Science, 1-1 Namiki, Tsukuba, 305-0044, Japan
| | - Na Xin
- Department of Chemistry, Zhejiang University, Hangzhou, 310058, China
| | - Shuigang Xu
- Key Laboratory for Quantum Materials of Zhejiang Province, Department of Physics, School of Science, Westlake University, 18 Shilongshan Road, Hangzhou, 310024, Zhejiang Province, China.
- Institute of Natural Sciences, Westlake Institute for Advanced Study, 18 Shilongshan Road, Hangzhou, 310024, Zhejiang Province, China.
| |
Collapse
|
4
|
Xiong Y, Rudner MS, Song JCW. Antiscreening and Nonequilibrium Layer Electric Phases in Graphene Multilayers. PHYSICAL REVIEW LETTERS 2024; 133:136901. [PMID: 39392963 DOI: 10.1103/physrevlett.133.136901] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/15/2024] [Revised: 07/16/2024] [Accepted: 08/20/2024] [Indexed: 10/13/2024]
Abstract
Screening is a ubiquitous phenomenon through which the polarization of bound or mobile charges tends to reduce the strengths of electric fields inside materials. Here, we show how photoexcitation can be used as a knob to transform conventional out-of-plane screening into antiscreening-the amplification of electric fields-in multilayer graphene. We find that, by varying the photoexcitation intensity, multiple nonequilibrium screening regimes can be accessed, including near-zero screening, antiscreening, and overscreening (reversing electric fields). Strikingly, at modest continuous wave photoexcitation intensities, the nonequilibrium polarization states become multistable, hosting light-induced ferroelectriclike steady states with nonvanishing out-of-plane polarization (and band gaps) even in the absence of an externally applied displacement field in nominally inversion symmetric stacks. This rich phenomenology reveals a novel paradigm of dynamical quantum matter that we expect will enable a variety of nonequilibrium broken symmetry phases.
Collapse
|
5
|
Di Battista G, Fong KC, Díez-Carlón A, Watanabe K, Taniguchi T, Efetov DK. Infrared single-photon detection with superconducting magic-angle twisted bilayer graphene. SCIENCE ADVANCES 2024; 10:eadp3725. [PMID: 39292783 PMCID: PMC11409955 DOI: 10.1126/sciadv.adp3725] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/21/2024] [Accepted: 08/13/2024] [Indexed: 09/20/2024]
Abstract
The moiré superconductor magic-angle twisted bilayer graphene (MATBG) shows exceptional properties, with an electron (hole) ensemble of only ~1011 carriers per square centimeter, which is five orders of magnitude lower than traditional superconductors (SCs). This results in an ultralow electronic heat capacity and a large kinetic inductance of this truly two-dimensional SC, providing record-breaking parameters for quantum sensing applications, specifically thermal sensing and single-photon detection. To fully exploit these unique superconducting properties for quantum sensing, here, we demonstrate a proof-of-principle experiment to detect single near-infrared photons by voltage biasing an MATBG device near its superconducting phase transition. We observe complete destruction of the SC state upon absorption of a single infrared photon even in a 16-square micrometer device, showcasing exceptional sensitivity. Our work offers insights into the MATBG-photon interaction and demonstrates pathways to use moiré superconductors as an exciting platform for revolutionary quantum devices and sensors.
Collapse
Affiliation(s)
- Giorgio Di Battista
- Fakultät für Physik, Ludwig-Maximilians-Universität, Schellingstrasse 4, München 80799, Germany
| | - Kin Chung Fong
- Quantum Engineering and Computing Group, Raytheon BBN Technologies, Cambridge, MA 02138, USA
- Department of Physics, Harvard University, Cambridge, MA 02138, USA
| | - Andrés Díez-Carlón
- Fakultät für Physik, Ludwig-Maximilians-Universität, Schellingstrasse 4, München 80799, Germany
| | - Kenji Watanabe
- Research Center for Functional Materials, National Institute for Materials Science, 1-1 Namiki, Tsukuba 305-0044, Japan
| | - Takashi Taniguchi
- International Center for Materials Nanoarchitectonics, National Institute for Materials Science, 1-1 Namiki, Tsukuba 305-0044, Japan
| | - Dmitri K. Efetov
- Quantum Engineering and Computing Group, Raytheon BBN Technologies, Cambridge, MA 02138, USA
- Munich Center for Quantum Science and Technology (MCQST), München, Germany
| |
Collapse
|
6
|
Wang Z, Zhou S, Che C, Liu Q, Zhu Z, Qin S, Tong Q, Zhu M. Van Hove Singularity-Enhanced Raman Scattering and Photocurrent Generation in Twisted Monolayer-Bilayer Graphene. ACS NANO 2024; 18:25183-25192. [PMID: 39207384 PMCID: PMC11397138 DOI: 10.1021/acsnano.4c07302] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/04/2024]
Abstract
Twisted monolayer-bilayer graphene (TMBG) has recently emerged as an exciting platform for exploring correlated physics and topological states with rich tunability. Strong light-matter interaction was realized in twisted bilayer graphene, boosting the development of broadband graphene photodetectors from the visible to infrared spectrum with high responsivity. Extending this approach to the case of TMBG will help design advanced quantum nano-optoelectronic devices because of the reduced symmetry of the system. Here, we observe the formation of van Hove singularities (VHSs) in TMBG by monitoring the significant enhancement of the Raman intensity of the G peak and the intensity ratio of G and 2D peaks. The strong interlayer coupling also leads to the appearance of twist-angle-dependent Raman R and R' peaks in TMBG. Furthermore, the constructed graphene photodetectors from 13.5°-TMBG show significantly enhanced photoresponsivity (∼31 folds of monolayer graphene and ∼15 folds of trilayer graphene) when the energy of incident photons matches the interval energy between the two VHSs in the conduction and valence bands. Our findings establish TMBG as a tunable platform for investigating the light-matter interaction and designing high-performance graphene photodetectors with combined high responsivity and high selectivity.
Collapse
Affiliation(s)
- Zhenlai Wang
- College of Advanced Interdisciplinary Studies & Hunan Provincial Key Laboratory of Novel Nano-Optoelectronic Information Materials and Devices, National University of Defense Technology, Changsha, Hunan 410073, China
- Nanhu Laser Laboratory, National University of Defense Technology, Changsha, Hunan 410073, China
| | - Siyu Zhou
- College of Advanced Interdisciplinary Studies & Hunan Provincial Key Laboratory of Novel Nano-Optoelectronic Information Materials and Devices, National University of Defense Technology, Changsha, Hunan 410073, China
- Nanhu Laser Laboratory, National University of Defense Technology, Changsha, Hunan 410073, China
| | - Chenglong Che
- School of Physics and Electronics, Hunan University, Changsha, Hunan 410082, China
| | - Qiang Liu
- College of Advanced Interdisciplinary Studies & Hunan Provincial Key Laboratory of Novel Nano-Optoelectronic Information Materials and Devices, National University of Defense Technology, Changsha, Hunan 410073, China
- Nanhu Laser Laboratory, National University of Defense Technology, Changsha, Hunan 410073, China
| | - Zhihong Zhu
- College of Advanced Interdisciplinary Studies & Hunan Provincial Key Laboratory of Novel Nano-Optoelectronic Information Materials and Devices, National University of Defense Technology, Changsha, Hunan 410073, China
- Nanhu Laser Laboratory, National University of Defense Technology, Changsha, Hunan 410073, China
| | - Shiqiao Qin
- College of Advanced Interdisciplinary Studies & Hunan Provincial Key Laboratory of Novel Nano-Optoelectronic Information Materials and Devices, National University of Defense Technology, Changsha, Hunan 410073, China
- Nanhu Laser Laboratory, National University of Defense Technology, Changsha, Hunan 410073, China
| | - Qingjun Tong
- School of Physics and Electronics, Hunan University, Changsha, Hunan 410082, China
| | - Mengjian Zhu
- College of Advanced Interdisciplinary Studies & Hunan Provincial Key Laboratory of Novel Nano-Optoelectronic Information Materials and Devices, National University of Defense Technology, Changsha, Hunan 410073, China
- Nanhu Laser Laboratory, National University of Defense Technology, Changsha, Hunan 410073, China
| |
Collapse
|
7
|
Zhang X, Jiang R, Shen X, Huang X, Jiang QD, Ku W. Geometric Inhibition of Superflow in Single-Layer Graphene Suggests a Staggered-Flux Superconductivity in Bilayer and Trilayer Graphene. NANO LETTERS 2024; 24:10451-10457. [PMID: 39133810 DOI: 10.1021/acs.nanolett.4c01390] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/15/2024]
Abstract
In great contrast to the numerous discoveries of superconductivity in layer-stacked graphene systems, the absence of superconductivity in the simplest monolayer graphene remains quite puzzling. Here, through realistic computation of the electronic structure, we identify a systematic trend that superconductivity emerges only upon alteration of the low-energy electronic lattice from the underlying honeycomb atomic structure. We then demonstrate that this inhibition can result from geometric frustration of the bond lattice that disables the quantum phase coherence of the order parameter residing on it. In comparison, upon deviation from the honeycomb lattice, relief of geometric frustration allows robust superfluidity with nontrivial spatial structures. For the specific examples of bilayer and trilayer graphene under an external electric field, such a bond-centered order parameter would develop superfluidity with staggered flux that breaks the time-reversal symmetry. Our study also suggests the possible realization of the long-sought superconductivity in single-layer graphene via the application of unidirectional strain.
Collapse
Affiliation(s)
- Xinyao Zhang
- School of Physics and Astronomy, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Ruoshi Jiang
- School of Physics and Astronomy, Shanghai Jiao Tong University, Shanghai 200240, China
- Tsung-Dao Lee Institute, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Xingchen Shen
- School of Physics and Astronomy, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Xiaomo Huang
- Zhiyuan College, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Qing-Dong Jiang
- Tsung-Dao Lee Institute, Shanghai Jiao Tong University, Shanghai 200240, China
- Shanghai Branch, Hefei National Laboratory, Shanghai 201315, China
| | - Wei Ku
- School of Physics and Astronomy, Shanghai Jiao Tong University, Shanghai 200240, China
- Shanghai Branch, Hefei National Laboratory, Shanghai 201315, China
| |
Collapse
|
8
|
Seiler AM, Statz M, Weimer I, Jacobsen N, Watanabe K, Taniguchi T, Dong Z, Levitov LS, Weitz RT. Interaction-Driven Quasi-Insulating Ground States of Gapped Electron-Doped Bilayer Graphene. PHYSICAL REVIEW LETTERS 2024; 133:066301. [PMID: 39178453 DOI: 10.1103/physrevlett.133.066301] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/13/2023] [Revised: 03/11/2024] [Accepted: 06/26/2024] [Indexed: 08/25/2024]
Abstract
Bernal bilayer graphene has recently been discovered to exhibit a wide range of unique ordered phases resulting from interaction-driven effects and encompassing spin and valley magnetism, correlated insulators, correlated metals, and superconductivity. This Letter reports on a novel family of correlated phases characterized by spin and valley ordering, distinct from those reported previously. These phases emerge in electron-doped bilayer graphene where the energy bands are exceptionally flat, manifested through an intriguing nonlinear current-bias behavior that occurs at the onset of the phases and is accompanied by an insulating temperature dependence. These characteristics align with the presence of charge- or spin-density-wave states that open a gap on a portion of the Fermi surface or fully gapped Wigner crystals, resulting in an exceptionally intricate phase diagram.
Collapse
|
9
|
Bhowmik S, Ghosh A, Chandni U. Emergent phases in graphene flat bands. REPORTS ON PROGRESS IN PHYSICS. PHYSICAL SOCIETY (GREAT BRITAIN) 2024; 87:096401. [PMID: 39059412 DOI: 10.1088/1361-6633/ad67ed] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/01/2023] [Accepted: 07/26/2024] [Indexed: 07/28/2024]
Abstract
Electronic correlations in two-dimensional materials play a crucial role in stabilising emergent phases of matter. The realisation of correlation-driven phenomena in graphene has remained a longstanding goal, primarily due to the absence of strong electron-electron interactions within its low-energy bands. In this context, magic-angle twisted bilayer graphene has recently emerged as a novel platform featuring correlated phases favoured by the low-energy flat bands of the underlying moiré superlattice. Notably, the observation of correlated insulators and superconductivity, and the interplay between these phases have garnered significant attention. A wealth of correlated phases with unprecedented tunability was discovered subsequently, including orbital ferromagnetism, Chern insulators, strange metallicity, density waves, and nematicity. However, a comprehensive understanding of these closely competing phases remains elusive. The ability to controllably twist and stack multiple graphene layers has enabled the creation of a whole new family of moiré superlattices with myriad properties. Here, we review the progress and development achieved so far, encompassing the rich phase diagrams offered by these graphene-based moiré systems. Additionally, we discuss multiple phases recently observed in non-moiré multilayer graphene systems. Finally, we outline future opportunities and challenges for the exploration of hidden phases in this new generation of moiré materials.
Collapse
Affiliation(s)
- Saisab Bhowmik
- Department of Instrumentation and Applied Physics, Indian Institute of Science, Bangalore 560012, India
| | - Arindam Ghosh
- Department of Physics, Indian Institute of Science, Bangalore 560012, India
- Centre for Nano Science and Engineering, Indian Institute of Science, Bangalore 560012, India
| | - U Chandni
- Department of Instrumentation and Applied Physics, Indian Institute of Science, Bangalore 560012, India
| |
Collapse
|
10
|
Long M, Jimeno-Pozo A, Sainz-Cruz H, Pantaleón PA, Guinea F. Evolution of superconductivity in twisted graphene multilayers. Proc Natl Acad Sci U S A 2024; 121:e2405259121. [PMID: 39078673 PMCID: PMC11317599 DOI: 10.1073/pnas.2405259121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2024] [Accepted: 06/25/2024] [Indexed: 07/31/2024] Open
Abstract
The group of moiré graphene superconductors keeps growing, and by now it contains twisted graphene multilayers as well as untwisted stacks. We analyze here the contribution of long-range charge fluctuations in the superconductivity of twisted double bilayers and helical trilayers, and compare the results to twisted bilayer graphene. A diagrammatic approach which depends on a few, well-known parameters is used. We find that the critical temperature and the order parameter differ significantly between twisted double bilayers and helical trilayers on one hand, and twisted bilayer graphene on the other. This trend, consistent with experiments, can be associated with the role played by moiré Umklapp processes in the different systems.
Collapse
Affiliation(s)
- Min Long
- Instituto Madrileño de Estudios Avanzados en Nanociencia, Madrid28049, Spain
- Department of Physics, The University of Hong Kong - University of Chinese Academy of Science Joint Institute of Theoretical and Computational Physics, Hong Kong Administrative Region999077, China
| | | | - Héctor Sainz-Cruz
- Instituto Madrileño de Estudios Avanzados en Nanociencia, Madrid28049, Spain
| | - Pierre A. Pantaleón
- Instituto Madrileño de Estudios Avanzados en Nanociencia, Madrid28049, Spain
| | - Francisco Guinea
- Instituto Madrileño de Estudios Avanzados en Nanociencia, Madrid28049, Spain
- Donostia International Physics Center, San Sebastián20018, Spain
| |
Collapse
|
11
|
Marsal Q, Black-Schaffer AM. Enhanced Quantum Metric due to Vacancies in Graphene. PHYSICAL REVIEW LETTERS 2024; 133:026002. [PMID: 39073980 DOI: 10.1103/physrevlett.133.026002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/08/2023] [Revised: 05/16/2024] [Accepted: 06/05/2024] [Indexed: 07/31/2024]
Abstract
Random vacancies in a graphene monolayer induce defect states that are known to form a narrow impurity band centered around zero energy at half filling. We use a space-resolved formulation of the quantum metric and establish a strong enhancement of the electronic correlations in this impurity band. The enhancement is primarily due to strong correlations between pairs of vacancies situated on different sublattices at anomalously large spatial distances. We trace the strong enhancement to both the multifractal vacancy wave functions, which ties the system exactly at the Anderson insulator transition for all defect concentrations, and preserving the chiral symmetry.
Collapse
|
12
|
Zhou W, Hua J, Liu N, Ding J, Xiang H, Zhu W, Xu S. Inversion Symmetry-Broken Tetralayer Graphene Probed by Second-Harmonic Generation. NANO LETTERS 2024; 24:8378-8385. [PMID: 38885205 DOI: 10.1021/acs.nanolett.4c01880] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/20/2024]
Abstract
Stacking orders provide a unique way to tune the properties of two-dimensional materials. Recently, ABCB-stacked tetralayer graphene has been predicted to possess atypical elemental ferroelectricity arising from its symmetry breaking but has been experimentally explored very little. Here, we observe pronounced nonlinear optical second-harmonic generation (SHG) in ABCB-stacked tetralayer graphene while absent in both ABAB- and ABCA-stacked allotropes. Our results provide direct evidence of symmetry breaking in ABCB-stacked tetralayer graphene. The remarkable contrast in the SHG spectra of tetralayer graphene allows straightforward identification of ABCB domains from the other two kinds of stacking order and facilitates the characterization of their crystalline orientation. The employed SHG technique serves as a convenient tool for exploring the intriguing physics and novel nonlinear optics in ABCB-stacked graphene, where spontaneous polarization and intrinsically gapped flat bands coexist. Our results establish ABCB-stacked graphene as a unique platform for studying the rare ferroelectricity in noncentrosymmetric elemental structures.
Collapse
Affiliation(s)
- Wenqiang Zhou
- School of Physics, Zhejiang University, Hangzhou 310027, China
- Key Laboratory for Quantum Materials of Zhejiang Province, Department of Physics, School of Science, Westlake University, 18 Shilongshan Road, Hangzhou 310024, Zhejiang Province, China
- Institute of Natural Sciences, Westlake Institute for Advanced Study, 18 Shilongshan Road, Hangzhou 310024, Zhejiang Province, China
| | - Jiannan Hua
- Key Laboratory for Quantum Materials of Zhejiang Province, Department of Physics, School of Science, Westlake University, 18 Shilongshan Road, Hangzhou 310024, Zhejiang Province, China
- Institute of Natural Sciences, Westlake Institute for Advanced Study, 18 Shilongshan Road, Hangzhou 310024, Zhejiang Province, China
| | - Naitian Liu
- Key Laboratory for Quantum Materials of Zhejiang Province, Department of Physics, School of Science, Westlake University, 18 Shilongshan Road, Hangzhou 310024, Zhejiang Province, China
- Institute of Natural Sciences, Westlake Institute for Advanced Study, 18 Shilongshan Road, Hangzhou 310024, Zhejiang Province, China
| | - Jing Ding
- Key Laboratory for Quantum Materials of Zhejiang Province, Department of Physics, School of Science, Westlake University, 18 Shilongshan Road, Hangzhou 310024, Zhejiang Province, China
- Institute of Natural Sciences, Westlake Institute for Advanced Study, 18 Shilongshan Road, Hangzhou 310024, Zhejiang Province, China
| | - Hanxiao Xiang
- Key Laboratory for Quantum Materials of Zhejiang Province, Department of Physics, School of Science, Westlake University, 18 Shilongshan Road, Hangzhou 310024, Zhejiang Province, China
- Institute of Natural Sciences, Westlake Institute for Advanced Study, 18 Shilongshan Road, Hangzhou 310024, Zhejiang Province, China
| | - Wei Zhu
- Key Laboratory for Quantum Materials of Zhejiang Province, Department of Physics, School of Science, Westlake University, 18 Shilongshan Road, Hangzhou 310024, Zhejiang Province, China
- Institute of Natural Sciences, Westlake Institute for Advanced Study, 18 Shilongshan Road, Hangzhou 310024, Zhejiang Province, China
| | - Shuigang Xu
- Key Laboratory for Quantum Materials of Zhejiang Province, Department of Physics, School of Science, Westlake University, 18 Shilongshan Road, Hangzhou 310024, Zhejiang Province, China
- Institute of Natural Sciences, Westlake Institute for Advanced Study, 18 Shilongshan Road, Hangzhou 310024, Zhejiang Province, China
| |
Collapse
|
13
|
Li C, Xu F, Li B, Li J, Li G, Watanabe K, Taniguchi T, Tong B, Shen J, Lu L, Jia J, Wu F, Liu X, Li T. Tunable superconductivity in electron- and hole-doped Bernal bilayer graphene. Nature 2024; 631:300-306. [PMID: 38898282 DOI: 10.1038/s41586-024-07584-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2023] [Accepted: 05/17/2024] [Indexed: 06/21/2024]
Abstract
Graphene-based, high-quality, two-dimensional electronic systems have emerged as a highly tunable platform for studying superconductivity1-21. Specifically, superconductivity has been observed in both electron- and hole-doped twisted graphene moiré systems1-17, whereas in crystalline graphene systems, superconductivity has so far been observed only in hole-doped rhombohedral trilayer graphene (RTG)18 and hole-doped Bernal bilayer graphene (BBG)19-21. Recently, enhanced superconductivity has been demonstrated20,21 in BBG because of the proximity to a monolayer WSe2. Here we report the observation of superconductivity and a series of flavour-symmetry-breaking phases in electron- and hole-doped BBG/WSe2 devices by electrostatic doping. The strength of the observed superconductivity is tunable by applied vertical electric fields. The maximum Berezinskii-Kosterlitz-Thouless transition temperature for the electron- and hole-doped superconductivity is about 210 mK and 400 mK, respectively. Superconductivities emerge only when the applied electric fields drive the BBG electron or hole wavefunctions towards the WSe2 layer, underscoring the importance of the WSe2 layer in the observed superconductivity. The hole-doped superconductivity violates the Pauli paramagnetic limit, consistent with an Ising-like superconductor. By contrast, the electron-doped superconductivity obeys the Pauli limit, although the proximity-induced Ising spin-orbit coupling is also notable in the conduction band. Our findings highlight the rich physics associated with the conduction band in BBG, paving the way for further studies into the superconducting mechanisms of crystalline graphene and the development of superconductor devices based on BBG.
Collapse
Affiliation(s)
- Chushan Li
- Key Laboratory of Artificial Structures and Quantum Control (Ministry of Education), School of Physics and Astronomy, Shanghai Jiao Tong University, Shanghai, China
- Tsung-Dao Lee Institute, Shanghai Jiao Tong University, Shanghai, China
| | - Fan Xu
- Key Laboratory of Artificial Structures and Quantum Control (Ministry of Education), School of Physics and Astronomy, Shanghai Jiao Tong University, Shanghai, China
| | - Bohao Li
- School of Physics and Technology, Wuhan University, Wuhan, China
| | - Jiayi Li
- Key Laboratory of Artificial Structures and Quantum Control (Ministry of Education), School of Physics and Astronomy, Shanghai Jiao Tong University, Shanghai, China
| | - Guoan Li
- Beijing National Laboratory for Condensed Matter Physics and Institute of Physics, Chinese Academy of Sciences, Beijing, China
| | - Kenji Watanabe
- Research Center for Electronic and Optical Materials, National Institute for Materials Science, Tsukuba, Japan
| | - Takashi Taniguchi
- Research Center for Materials Nanoarchitectonics, National Institute for Materials Science, Tsukuba, Japan
| | - Bingbing Tong
- Beijing National Laboratory for Condensed Matter Physics and Institute of Physics, Chinese Academy of Sciences, Beijing, China
| | - Jie Shen
- Beijing National Laboratory for Condensed Matter Physics and Institute of Physics, Chinese Academy of Sciences, Beijing, China
| | - Li Lu
- Beijing National Laboratory for Condensed Matter Physics and Institute of Physics, Chinese Academy of Sciences, Beijing, China
- Hefei National Laboratory, Hefei, China
| | - Jinfeng Jia
- Key Laboratory of Artificial Structures and Quantum Control (Ministry of Education), School of Physics and Astronomy, Shanghai Jiao Tong University, Shanghai, China
- Tsung-Dao Lee Institute, Shanghai Jiao Tong University, Shanghai, China
- Hefei National Laboratory, Hefei, China
- Shanghai Research Center for Quantum Sciences, Shanghai, China
| | - Fengcheng Wu
- School of Physics and Technology, Wuhan University, Wuhan, China.
- Wuhan Institute of Quantum Technology, Wuhan, China.
| | - Xiaoxue Liu
- Key Laboratory of Artificial Structures and Quantum Control (Ministry of Education), School of Physics and Astronomy, Shanghai Jiao Tong University, Shanghai, China.
- Tsung-Dao Lee Institute, Shanghai Jiao Tong University, Shanghai, China.
- Hefei National Laboratory, Hefei, China.
- Shanghai Research Center for Quantum Sciences, Shanghai, China.
| | - Tingxin Li
- Key Laboratory of Artificial Structures and Quantum Control (Ministry of Education), School of Physics and Astronomy, Shanghai Jiao Tong University, Shanghai, China.
- Tsung-Dao Lee Institute, Shanghai Jiao Tong University, Shanghai, China.
- Hefei National Laboratory, Hefei, China.
| |
Collapse
|
14
|
Valenti A, Calvera V, Kivelson SA, Berg E, Huber SD. Nematic Metal in a Multivalley Electron Gas: Variational Monte Carlo Analysis and Application to AlAs. PHYSICAL REVIEW LETTERS 2024; 132:266501. [PMID: 38996276 DOI: 10.1103/physrevlett.132.266501] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/04/2023] [Revised: 01/17/2024] [Accepted: 04/26/2024] [Indexed: 07/14/2024]
Abstract
The two-dimensional electron gas is of fundamental importance in quantum many-body physics. We study a minimal extension of this model with C_{4} (as opposed to full rotational) symmetry and an electronic dispersion with two valleys with anisotropic effective masses. Electrons in our model interact via Coulomb repulsion, screened by distant metallic gates. Using variational Monte Carlo simulations, we find a broad intermediate range of densities with a metallic valley-polarized, spin-unpolarized ground state. Our results are of direct relevance to the recently discovered "nematic" state in AlAs quantum wells. For the effective mass anisotropy relevant to this system, m_{x}/m_{y}≈5.2, we obtain a transition from an anisotropic metal to a valley-polarized metal at r_{s}≈12 (where r_{s} is the dimensionless Wigner-Seitz radius). At still lower densities, we find a (possibly metastable) valley and spin-polarized state with a reduced electronic anisotropy.
Collapse
|
15
|
Ichinokura S, Tokuda K, Toyoda M, Tanaka K, Saito S, Hirahara T. Van Hove Singularity and Enhanced Superconductivity in Ca-Intercalated Bilayer Graphene Induced by Confinement Epitaxy. ACS NANO 2024; 18:13738-13744. [PMID: 38741024 DOI: 10.1021/acsnano.4c01757] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/16/2024]
Abstract
We demonstrate the impact of high-density calcium introduction into Ca-intercalated bilayer graphene on a SiC substrate, wherein a metallic layer of Ca has been identified at the interface. We have discerned that the additional Ca layer engenders a free-electron-like band, which subsequently hybridizes with a Dirac band, leading to the emergence of a van Hove singularity. Coinciding with this, there is an increase in the critical temperature for superconductivity. These findings allude to the manifestation of Ca-driven confinement epitaxy, augmenting superconductivity through the enhancement of attractive interactions in a pair of electron and hole bands with flat dispersion around the Fermi level.
Collapse
Affiliation(s)
- Satoru Ichinokura
- Department of Physics, Tokyo Institute of Technology, Tokyo 152-8551, Japan
| | - Kei Tokuda
- Department of Physics, Tokyo Institute of Technology, Tokyo 152-8551, Japan
| | - Masayuki Toyoda
- Department of Physics, Tokyo Institute of Technology, Tokyo 152-8551, Japan
| | - Kiyohisa Tanaka
- UVSOR Facility, Institute for Molecular Science, Okazaki 444-8585, Japan
| | - Susumu Saito
- Department of Physics, Tokyo Institute of Technology, Tokyo 152-8551, Japan
| | - Toru Hirahara
- Department of Physics, Tokyo Institute of Technology, Tokyo 152-8551, Japan
| |
Collapse
|
16
|
Zhumagulov Y, Kochan D, Fabian J. Emergent Correlated Phases in Rhombohedral Trilayer Graphene Induced by Proximity Spin-Orbit and Exchange Coupling. PHYSICAL REVIEW LETTERS 2024; 132:186401. [PMID: 38759183 DOI: 10.1103/physrevlett.132.186401] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/25/2023] [Revised: 11/28/2023] [Accepted: 03/22/2024] [Indexed: 05/19/2024]
Abstract
The impact of proximity-induced spin-orbit and exchange coupling on the correlated phase diagram of rhombohedral trilayer graphene (RTG) is investigated theoretically. By employing ab initio-fitted effective models of RTG encapsulated by transition metal dichalcogenides (spin-orbit proximity effect) and ferromagnetic Cr_{2}Ge_{2}Te_{6} (exchange proximity effect), we incorporate the Coulomb interactions within the random-phase approximation to explore potential correlated phases at different displacement fields and doping. We find a rich spectrum of spin-valley resolved Stoner and intervalley coherence instabilities induced by the spin-orbit proximity effects, such as the emergence of a spin-valley-coherent phase due to the presence of valley-Zeeman coupling. Similarly, proximity exchange removes the phase degeneracies by biasing the spin direction, enabling a magnetocorrelation effect-strong sensitivity of the correlated phases to the relative magnetization orientations (parallel or antiparallel) of the encapsulating ferromagnetic layers.
Collapse
Affiliation(s)
- Yaroslav Zhumagulov
- Institute for Theoretical Physics, University of Regensburg, 93040 Regensburg, Germany
| | - Denis Kochan
- Institute for Theoretical Physics, University of Regensburg, 93040 Regensburg, Germany
- Institute of Physics, Slovak Academy of Sciences, 84511 Bratislava, Slovakia
- Center for Quantum Frontiers of Research and Technology (QFort), National Cheng Kung University, Tainan 70101, Taiwan
| | - Jaroslav Fabian
- Institute for Theoretical Physics, University of Regensburg, 93040 Regensburg, Germany
| |
Collapse
|
17
|
Seiler AM, Jacobsen N, Statz M, Fernandez N, Falorsi F, Watanabe K, Taniguchi T, Dong Z, Levitov LS, Weitz RT. Probing the tunable multi-cone band structure in Bernal bilayer graphene. Nat Commun 2024; 15:3133. [PMID: 38605052 PMCID: PMC11009389 DOI: 10.1038/s41467-024-47342-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2024] [Accepted: 03/27/2024] [Indexed: 04/13/2024] Open
Abstract
Bernal bilayer graphene (BLG) offers a highly flexible platform for tuning the band structure, featuring two distinct regimes. One is a tunable band gap induced by large displacement fields. Another is a gapless metallic band occurring at low fields, featuring rich fine structure consisting of four linearly dispersing Dirac cones and van Hove singularities. Even though BLG has been extensively studied experimentally, the evidence of this band structure is still elusive, likely due to insufficient energy resolution. Here, we use Landau levels as markers of the energy dispersion and analyze the Landau level spectrum in a regime where the cyclotron orbits of electrons or holes in momentum space are small enough to resolve the distinct mini Dirac cones. We identify the presence of four Dirac cones and map out topological transitions induced by displacement field. By clarifying the low-energy properties of BLG bands, these findings provide a valuable addition to the toolkit for graphene electronics.
Collapse
Affiliation(s)
- Anna M Seiler
- 1st Physical Institute, Faculty of Physics, University of Göttingen, Friedrich-Hund-Platz 1, Göttingen, Germany
| | - Nils Jacobsen
- 1st Physical Institute, Faculty of Physics, University of Göttingen, Friedrich-Hund-Platz 1, Göttingen, Germany
| | - Martin Statz
- 1st Physical Institute, Faculty of Physics, University of Göttingen, Friedrich-Hund-Platz 1, Göttingen, Germany
| | - Noelia Fernandez
- 1st Physical Institute, Faculty of Physics, University of Göttingen, Friedrich-Hund-Platz 1, Göttingen, Germany
| | - Francesca Falorsi
- 1st Physical Institute, Faculty of Physics, University of Göttingen, Friedrich-Hund-Platz 1, Göttingen, Germany
| | - Kenji Watanabe
- Research Center for Electronic and Optical Materials, National Institute for Materials Science, 1-1 Namiki, Tsukuba, Japan
| | - Takashi Taniguchi
- Research Center for Materials Nanoarchitectonics, National Institute for Materials Science, 1-1 Namiki, Tsukuba, Japan
| | - Zhiyu Dong
- Department of Physics, Massachusetts Institute of Technology, Cambridge, Massachusetts, USA
| | - Leonid S Levitov
- Department of Physics, Massachusetts Institute of Technology, Cambridge, Massachusetts, USA
| | - R Thomas Weitz
- 1st Physical Institute, Faculty of Physics, University of Göttingen, Friedrich-Hund-Platz 1, Göttingen, Germany.
- International Center for Advanced Studies of Energy Conversion (ICASEC), University of Göttingen, Göttingen, Germany.
| |
Collapse
|
18
|
Zhou W, Ding J, Hua J, Zhang L, Watanabe K, Taniguchi T, Zhu W, Xu S. Layer-polarized ferromagnetism in rhombohedral multilayer graphene. Nat Commun 2024; 15:2597. [PMID: 38519502 PMCID: PMC10960043 DOI: 10.1038/s41467-024-46913-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2023] [Accepted: 03/14/2024] [Indexed: 03/25/2024] Open
Abstract
Flat-band systems with strongly correlated electrons can exhibit a variety of phenomena, such as correlated insulating and topological states, unconventional superconductivity, and ferromagnetism. Rhombohedral multilayer graphene has recently emerged as a promising platform for investigating exotic quantum states due to its hosting of topologically protected surface flat bands at low energy, which have a layer-dependent energy dispersion. However, the complex relationship between the surface flat bands and the highly dispersive high-energy bands makes it difficult to study correlated surface states. In this study, we introduce moiré superlattices as a method to isolate the surface flat bands of rhombohedral multilayer graphene. The observed pronounced screening effects in the moiré potential-modulated rhombohedral multilayer graphene indicate that the two surface states are electronically decoupled. The flat bands that are isolated promote correlated surface states in areas that are distant from the charge neutrality points. Notably, we observe tunable layer-polarized ferromagnetism, which is evidenced by a hysteretic anomalous Hall effect. This is achieved by polarizing the surface states with finite displacement fields.
Collapse
Affiliation(s)
- Wenqiang Zhou
- Key Laboratory for Quantum Materials of Zhejiang Province, Department of Physics, School of Science, Westlake University, 18 Shilongshan Road, Hangzhou, 310024, Zhejiang Province, China
- Institute of Natural Sciences, Westlake Institute for Advanced Study, 18 Shilongshan Road, Hangzhou, 310024, Zhejiang Province, China
| | - Jing Ding
- Key Laboratory for Quantum Materials of Zhejiang Province, Department of Physics, School of Science, Westlake University, 18 Shilongshan Road, Hangzhou, 310024, Zhejiang Province, China
- Institute of Natural Sciences, Westlake Institute for Advanced Study, 18 Shilongshan Road, Hangzhou, 310024, Zhejiang Province, China
| | - Jiannan Hua
- Key Laboratory for Quantum Materials of Zhejiang Province, Department of Physics, School of Science, Westlake University, 18 Shilongshan Road, Hangzhou, 310024, Zhejiang Province, China
- Institute of Natural Sciences, Westlake Institute for Advanced Study, 18 Shilongshan Road, Hangzhou, 310024, Zhejiang Province, China
| | - Le Zhang
- Key Laboratory for Quantum Materials of Zhejiang Province, Department of Physics, School of Science, Westlake University, 18 Shilongshan Road, Hangzhou, 310024, Zhejiang Province, China
- Institute of Natural Sciences, Westlake Institute for Advanced Study, 18 Shilongshan Road, Hangzhou, 310024, Zhejiang Province, China
| | - Kenji Watanabe
- Research Center for Electronic and Optical Materials, National Institute for Materials Science, 1-1 Namiki, Tsukuba, 305-0044, Japan
| | - Takashi Taniguchi
- Research Center for Materials Nanoarchitectonics, National Institute for Materials Science, 1-1 Namiki, Tsukuba, 305-0044, Japan
| | - Wei Zhu
- Key Laboratory for Quantum Materials of Zhejiang Province, Department of Physics, School of Science, Westlake University, 18 Shilongshan Road, Hangzhou, 310024, Zhejiang Province, China.
- Institute of Natural Sciences, Westlake Institute for Advanced Study, 18 Shilongshan Road, Hangzhou, 310024, Zhejiang Province, China.
| | - Shuigang Xu
- Key Laboratory for Quantum Materials of Zhejiang Province, Department of Physics, School of Science, Westlake University, 18 Shilongshan Road, Hangzhou, 310024, Zhejiang Province, China.
- Institute of Natural Sciences, Westlake Institute for Advanced Study, 18 Shilongshan Road, Hangzhou, 310024, Zhejiang Province, China.
| |
Collapse
|
19
|
Wang T, Vila M, Zaletel MP, Chatterjee S. Electrical Control of Spin and Valley in Spin-Orbit Coupled Graphene Multilayers. PHYSICAL REVIEW LETTERS 2024; 132:116504. [PMID: 38563932 DOI: 10.1103/physrevlett.132.116504] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/11/2023] [Revised: 01/30/2024] [Accepted: 02/20/2024] [Indexed: 04/04/2024]
Abstract
Electrical control of magnetism has been a major technological pursuit of the spintronics community, owing to its far-reaching implications for data storage and transmission. Here, we propose and analyze a new mechanism for electrical switching of isospin, using chiral-stacked graphene multilayers, such as Bernal bilayer graphene or rhombohedral trilayer graphene, encapsulated by transition metal dichalcogenide (TMD) substrates. Leveraging the proximity-induced spin-orbit coupling from the TMD, we demonstrate electrical switching of correlation-induced spin and/or valley polarization, by reversing a perpendicular displacement field or the chemical potential. We substantiate our proposal with both analytical arguments and self-consistent Hartree-Fock numerics. Finally, we illustrate how the relative alignment of the TMDs, together with the top and bottom gate voltages, can be used to selectively switch distinct isospin flavors, putting forward correlated Van der Waals heterostructures as a promising platform for spintronics and valleytronics.
Collapse
Affiliation(s)
- Taige Wang
- Department of Physics, University of California, Berkeley, California 94720, USA
- Materials Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, California 94720, USA
| | - Marc Vila
- Department of Physics, University of California, Berkeley, California 94720, USA
- Materials Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, California 94720, USA
| | - Michael P Zaletel
- Department of Physics, University of California, Berkeley, California 94720, USA
- Materials Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, California 94720, USA
| | - Shubhayu Chatterjee
- Department of Physics, University of California, Berkeley, California 94720, USA
- Department of Physics, Carnegie Mellon University, Pittsburgh, Pennsylvania 15213, USA
| |
Collapse
|
20
|
Craig IM, Van Winkle M, Groschner C, Zhang K, Dowlatshahi N, Zhu Z, Taniguchi T, Watanabe K, Griffin SM, Bediako DK. Local atomic stacking and symmetry in twisted graphene trilayers. NATURE MATERIALS 2024; 23:323-330. [PMID: 38191631 DOI: 10.1038/s41563-023-01783-y] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/24/2023] [Accepted: 12/08/2023] [Indexed: 01/10/2024]
Abstract
Moiré superlattices formed by twisting trilayers of graphene are a useful model for studying correlated electron behaviour and offer several advantages over their formative bilayer analogues, including a more diverse collection of correlated phases and more robust superconductivity. Spontaneous structural relaxation alters the behaviour of moiré superlattices considerably and has been suggested to play an important role in the relative stability of superconductivity in trilayers. Here we use an interferometric four-dimensional scanning transmission electron microscopy approach to directly probe the local graphene layer alignment over a wide range of trilayer graphene structures. Our results inform a thorough understanding of how reconstruction modulates the local lattice symmetries crucial for establishing correlated phases in twisted graphene trilayers, evincing a relaxed structure that is markedly different from that proposed previously.
Collapse
Affiliation(s)
- Isaac M Craig
- Department of Chemistry, University of California, Berkeley, CA, USA
| | | | | | - Kaidi Zhang
- Department of Chemistry, University of California, Berkeley, CA, USA
| | | | - Ziyan Zhu
- SLAC National Accelerator Laboratory, Stanford, CA, USA
| | - Takashi Taniguchi
- International Center for Materials Nanoarchitectonics, National Institute for Materials Science, Tsukuba, Japan
| | - Kenji Watanabe
- Research for Functional Materials, National Institute for Materials Science, Tsukuba, Japan
| | - Sinéad M Griffin
- Molecular Foundry, Lawrence Berkeley National Laboratory, Berkeley, CA, USA
- Materials Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, CA, USA
| | - D Kwabena Bediako
- Department of Chemistry, University of California, Berkeley, CA, USA.
- Chemical Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, CA, USA.
| |
Collapse
|
21
|
Srivastav SK, Udupa A, Watanabe K, Taniguchi T, Sen D, Das A. Electric-Field-Tunable Edge Transport in Bernal-Stacked Trilayer Graphene. PHYSICAL REVIEW LETTERS 2024; 132:096301. [PMID: 38489611 DOI: 10.1103/physrevlett.132.096301] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/05/2023] [Revised: 08/29/2023] [Accepted: 01/29/2024] [Indexed: 03/17/2024]
Abstract
This Letter presents a nonlocal study on the electric-field-tunable edge transport in h-BN-encapsulated dual-gated Bernal-stacked (ABA) trilayer graphene across various displacement fields (D) and temperatures (T). Our measurements revealed that the nonlocal resistance (R_{NL}) surpassed the expected classical Ohmic contribution by a factor of at least 2 orders of magnitude. Through scaling analysis, we found that the nonlocal resistance scales linearly with the local resistance (R_{L}) only when the D exceeds a critical value of ∼0.2 V/nm. Additionally, we observed that the scaling exponent remains constant at unity for temperatures below the bulk-band gap energy threshold (T<25 K). Further, the value of R_{NL} decreases in a linear fashion as the channel length (L) increases. These experimental findings provide evidence for edge-mediated charge transport in ABA trilayer graphene under the influence of a finite displacement field. Furthermore, our theoretical calculations support these results by demonstrating the emergence of dispersive edge modes within the bulk-band gap energy range when a sufficient displacement field is applied.
Collapse
Affiliation(s)
| | - Adithi Udupa
- Centre for High Energy Physics, Indian Institute of Science, Bangalore 560012, India
| | - K Watanabe
- National Institute of Material Science, 1-1 Namiki, Tsukuba 305-0044, Japan
| | - T Taniguchi
- National Institute of Material Science, 1-1 Namiki, Tsukuba 305-0044, Japan
| | - Diptiman Sen
- Centre for High Energy Physics, Indian Institute of Science, Bangalore 560012, India
| | - Anindya Das
- Department of Physics, Indian Institute of Science, Bangalore 560012, India
| |
Collapse
|
22
|
Zan X, Guo X, Deng A, Huang Z, Liu L, Wu F, Yuan Y, Zhao J, Peng Y, Li L, Zhang Y, Li X, Zhu J, Dong J, Shi D, Yang W, Yang X, Shi Z, Du L, Dai Q, Zhang G. Electron/infrared-phonon coupling in ABC trilayer graphene. Nat Commun 2024; 15:1888. [PMID: 38424092 PMCID: PMC10904774 DOI: 10.1038/s41467-024-46129-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2023] [Accepted: 02/12/2024] [Indexed: 03/02/2024] Open
Abstract
Stacking order plays a crucial role in determining the crystal symmetry and has significant impacts on electronic, optical, magnetic, and topological properties. Electron-phonon coupling, which is central to a wide range of intriguing quantum phenomena, is expected to be intricately connected with stacking order. Understanding the stacking order-dependent electron-phonon coupling is essential for understanding peculiar physical phenomena associated with electron-phonon coupling, such as superconductivity and charge density waves. In this study, we investigate the effect of stacking order on electron-infrared phonon coupling in graphene trilayers. By using gate-tunable Raman spectroscopy and excitation frequency-dependent near-field infrared nanoscopy, we show that rhombohedral ABC-stacked trilayer graphene has a significant electron-infrared phonon coupling strength. Our findings provide novel insights into the superconductivity and other fundamental physical properties of rhombohedral ABC-stacked trilayer graphene, and can enable nondestructive and high-throughput imaging of trilayer graphene stacking order using Raman scattering.
Collapse
Affiliation(s)
- Xiaozhou Zan
- Beijing National Laboratory for Condensed Matter Physics and Institute of Physics, Chinese Academy of Sciences, 100190, Beijing, China
- School of Physical Sciences, University of Chinese Academy of Sciences, 100190, Beijing, China
| | - Xiangdong Guo
- CAS Key Laboratory of Nanophotonic Materials and Devices, CAS Key Laboratory of Standardization and Measurement for Nanotechnology, CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology, 100190, Beijing, China
- Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences, 100049, Beijing, China
| | - Aolin Deng
- Key Laboratory of Artificial Structures and Quantum Control (Ministry of Education), Shenyang National Laboratory for Materials Science, School of Physics and Astronomy, Shanghai Jiao Tong University, 200240, Shanghai, China
| | - Zhiheng Huang
- Beijing National Laboratory for Condensed Matter Physics and Institute of Physics, Chinese Academy of Sciences, 100190, Beijing, China
- School of Physical Sciences, University of Chinese Academy of Sciences, 100190, Beijing, China
| | - Le Liu
- Beijing National Laboratory for Condensed Matter Physics and Institute of Physics, Chinese Academy of Sciences, 100190, Beijing, China
- School of Physical Sciences, University of Chinese Academy of Sciences, 100190, Beijing, China
| | - Fanfan Wu
- Beijing National Laboratory for Condensed Matter Physics and Institute of Physics, Chinese Academy of Sciences, 100190, Beijing, China
- School of Physical Sciences, University of Chinese Academy of Sciences, 100190, Beijing, China
| | - Yalong Yuan
- Beijing National Laboratory for Condensed Matter Physics and Institute of Physics, Chinese Academy of Sciences, 100190, Beijing, China
- School of Physical Sciences, University of Chinese Academy of Sciences, 100190, Beijing, China
| | - Jiaojiao Zhao
- Beijing National Laboratory for Condensed Matter Physics and Institute of Physics, Chinese Academy of Sciences, 100190, Beijing, China
- School of Physical Sciences, University of Chinese Academy of Sciences, 100190, Beijing, China
| | - Yalin Peng
- Beijing National Laboratory for Condensed Matter Physics and Institute of Physics, Chinese Academy of Sciences, 100190, Beijing, China
- School of Physical Sciences, University of Chinese Academy of Sciences, 100190, Beijing, China
| | - Lu Li
- Beijing National Laboratory for Condensed Matter Physics and Institute of Physics, Chinese Academy of Sciences, 100190, Beijing, China
- School of Physical Sciences, University of Chinese Academy of Sciences, 100190, Beijing, China
| | - Yangkun Zhang
- Beijing National Laboratory for Condensed Matter Physics and Institute of Physics, Chinese Academy of Sciences, 100190, Beijing, China
- School of Physical Sciences, University of Chinese Academy of Sciences, 100190, Beijing, China
| | - Xiuzhen Li
- Beijing National Laboratory for Condensed Matter Physics and Institute of Physics, Chinese Academy of Sciences, 100190, Beijing, China
- School of Physical Sciences, University of Chinese Academy of Sciences, 100190, Beijing, China
| | - Jundong Zhu
- Beijing National Laboratory for Condensed Matter Physics and Institute of Physics, Chinese Academy of Sciences, 100190, Beijing, China
- School of Physical Sciences, University of Chinese Academy of Sciences, 100190, Beijing, China
| | - Jingwei Dong
- Beijing National Laboratory for Condensed Matter Physics and Institute of Physics, Chinese Academy of Sciences, 100190, Beijing, China
- School of Physical Sciences, University of Chinese Academy of Sciences, 100190, Beijing, China
| | - Dongxia Shi
- Beijing National Laboratory for Condensed Matter Physics and Institute of Physics, Chinese Academy of Sciences, 100190, Beijing, China
- School of Physical Sciences, University of Chinese Academy of Sciences, 100190, Beijing, China
- Songshan Lake Materials Laboratory, Dongguan, 523808, Guangdong, China
| | - Wei Yang
- Beijing National Laboratory for Condensed Matter Physics and Institute of Physics, Chinese Academy of Sciences, 100190, Beijing, China
- School of Physical Sciences, University of Chinese Academy of Sciences, 100190, Beijing, China
- Songshan Lake Materials Laboratory, Dongguan, 523808, Guangdong, China
| | - Xiaoxia Yang
- CAS Key Laboratory of Nanophotonic Materials and Devices, CAS Key Laboratory of Standardization and Measurement for Nanotechnology, CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology, 100190, Beijing, China
- Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences, 100049, Beijing, China
| | - Zhiwen Shi
- Key Laboratory of Artificial Structures and Quantum Control (Ministry of Education), Shenyang National Laboratory for Materials Science, School of Physics and Astronomy, Shanghai Jiao Tong University, 200240, Shanghai, China
| | - Luojun Du
- Beijing National Laboratory for Condensed Matter Physics and Institute of Physics, Chinese Academy of Sciences, 100190, Beijing, China.
- School of Physical Sciences, University of Chinese Academy of Sciences, 100190, Beijing, China.
| | - Qing Dai
- CAS Key Laboratory of Nanophotonic Materials and Devices, CAS Key Laboratory of Standardization and Measurement for Nanotechnology, CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology, 100190, Beijing, China.
- Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences, 100049, Beijing, China.
| | - Guangyu Zhang
- Beijing National Laboratory for Condensed Matter Physics and Institute of Physics, Chinese Academy of Sciences, 100190, Beijing, China.
- School of Physical Sciences, University of Chinese Academy of Sciences, 100190, Beijing, China.
- Songshan Lake Materials Laboratory, Dongguan, 523808, Guangdong, China.
| |
Collapse
|
23
|
Antebi O, Stern A, Berg E. Stoner Ferromagnetism in a Momentum-Confined Interacting 2D Electron Gas. PHYSICAL REVIEW LETTERS 2024; 132:086501. [PMID: 38457700 DOI: 10.1103/physrevlett.132.086501] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/18/2023] [Revised: 11/11/2023] [Accepted: 01/19/2024] [Indexed: 03/10/2024]
Abstract
In this work we investigate the ground state of a momentum-confined interacting 2D electron gas, a momentum-space analog of an infinite quantum well. The study is performed by combining analytical results with a numerical exact diagonalization procedure. We find a ferromagnetic ground state near a particular electron density and for a range of effective electron (or hole) masses. We argue that this observation may be relevant to the generalized Stoner ferromagnetism recently observed in multilayer graphene systems. The collective magnon excitations exhibit a linear dispersion, which originates from a diverging spin stiffness.
Collapse
Affiliation(s)
- Ohad Antebi
- Department of Condensed Matter Physics, Weizmann Institute of Science, Rehovot 76100, Israel
| | - Ady Stern
- Department of Condensed Matter Physics, Weizmann Institute of Science, Rehovot 76100, Israel
| | - Erez Berg
- Department of Condensed Matter Physics, Weizmann Institute of Science, Rehovot 76100, Israel
| |
Collapse
|
24
|
Han T, Lu Z, Scuri G, Sung J, Wang J, Han T, Watanabe K, Taniguchi T, Park H, Ju L. Correlated insulator and Chern insulators in pentalayer rhombohedral-stacked graphene. NATURE NANOTECHNOLOGY 2024; 19:181-187. [PMID: 37798567 DOI: 10.1038/s41565-023-01520-1] [Citation(s) in RCA: 13] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/20/2023] [Accepted: 09/04/2023] [Indexed: 10/07/2023]
Abstract
Rhombohedral-stacked multilayer graphene hosts a pair of flat bands touching at zero energy, which should give rise to correlated electron phenomena that can be tuned further by an electric field. Moreover, when electron correlation breaks the isospin symmetry, the valley-dependent Berry phase at zero energy may give rise to topologically non-trivial states. Here we measure electron transport through hexagonal boron nitride-encapsulated pentalayer graphene down to 100 mK. We observed a correlated insulating state with resistance at the megaohm level or greater at charge density n = 0 and displacement field D = 0. Tight-binding calculations predict a metallic ground state under these conditions. By increasing D, we observed a Chern insulator state with C = -5 and two other states with C = -3 at a magnetic field of around 1 T. At high D and n, we observed isospin-polarized quarter- and half-metals. Hence, rhombohedral pentalayer graphene exhibits two different types of Fermi-surface instability, one driven by a pair of flat bands touching at zero energy, and one induced by the Stoner mechanism in a single flat band. Our results establish rhombohedral multilayer graphene as a suitable system for exploring intertwined electron correlation and topology phenomena in natural graphitic materials without the need for moiré superlattice engineering.
Collapse
Affiliation(s)
- Tonghang Han
- Department of Physics, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Zhengguang Lu
- Department of Physics, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Giovanni Scuri
- Department of Chemistry and Chemical Biology, Harvard University, Cambridge, MA, USA
- Department of Physics, Harvard University, Cambridge, MA, USA
| | - Jiho Sung
- Department of Chemistry and Chemical Biology, Harvard University, Cambridge, MA, USA
- Department of Physics, Harvard University, Cambridge, MA, USA
| | - Jue Wang
- Department of Chemistry and Chemical Biology, Harvard University, Cambridge, MA, USA
- Department of Physics, Harvard University, Cambridge, MA, USA
| | - Tianyi Han
- Department of Physics, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Kenji Watanabe
- Research Center for Electronic and Optical Materials, National Institute for Materials Science, Tsukuba, Japan
| | - Takashi Taniguchi
- Research Center for Materials Nanoarchitectonics, National Institute for Materials Science, Tsukuba, Japan
| | - Hongkun Park
- Department of Chemistry and Chemical Biology, Harvard University, Cambridge, MA, USA
- Department of Physics, Harvard University, Cambridge, MA, USA
| | - Long Ju
- Department of Physics, Massachusetts Institute of Technology, Cambridge, MA, USA.
| |
Collapse
|
25
|
Lu Z, Han T, Yao Y, Reddy AP, Yang J, Seo J, Watanabe K, Taniguchi T, Fu L, Ju L. Fractional quantum anomalous Hall effect in multilayer graphene. Nature 2024; 626:759-764. [PMID: 38383622 DOI: 10.1038/s41586-023-07010-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2023] [Accepted: 12/21/2023] [Indexed: 02/23/2024]
Abstract
The fractional quantum anomalous Hall effect (FQAHE), the analogue of the fractional quantum Hall effect1 at zero magnetic field, is predicted to exist in topological flat bands under spontaneous time-reversal-symmetry breaking2-6. The demonstration of FQAHE could lead to non-Abelian anyons that form the basis of topological quantum computation7-9. So far, FQAHE has been observed only in twisted MoTe2 at a moiré filling factor v > 1/2 (refs. 10-13). Graphene-based moiré superlattices are believed to host FQAHE with the potential advantage of superior material quality and higher electron mobility. Here we report the observation of integer and fractional QAH effects in a rhombohedral pentalayer graphene-hBN moiré superlattice. At zero magnetic field, we observed plateaus of quantized Hall resistance [Formula: see text] at v = 1, 2/3, 3/5, 4/7, 4/9, 3/7 and 2/5 of the moiré superlattice, respectively, accompanied by clear dips in the longitudinal resistance Rxx. Rxy equals [Formula: see text] at v = 1/2 and varies linearly with v, similar to the composite Fermi liquid in the half-filled lowest Landau level at high magnetic fields14-16. By tuning the gate-displacement field D and v, we observed phase transitions from composite Fermi liquid and FQAH states to other correlated electron states. Our system provides an ideal platform for exploring charge fractionalization and (non-Abelian) anyonic braiding at zero magnetic field7-9,17-19, especially considering a lateral junction between FQAHE and superconducting regions in the same device20-22.
Collapse
Affiliation(s)
- Zhengguang Lu
- Department of Physics, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Tonghang Han
- Department of Physics, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Yuxuan Yao
- Department of Physics, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Aidan P Reddy
- Department of Physics, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Jixiang Yang
- Department of Physics, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Junseok Seo
- Department of Physics, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Kenji Watanabe
- Research Center for Electronic and Optical Materials, National Institute for Materials Science, Tsukuba, Japan
| | - Takashi Taniguchi
- Research Center for Materials Nanoarchitectonics, National Institute for Materials Science, Tsukuba, Japan
| | - Liang Fu
- Department of Physics, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Long Ju
- Department of Physics, Massachusetts Institute of Technology, Cambridge, MA, USA.
| |
Collapse
|
26
|
Liu K, Zheng J, Sha Y, Lyu B, Li F, Park Y, Ren Y, Watanabe K, Taniguchi T, Jia J, Luo W, Shi Z, Jung J, Chen G. Spontaneous broken-symmetry insulator and metals in tetralayer rhombohedral graphene. NATURE NANOTECHNOLOGY 2024; 19:188-195. [PMID: 37996516 DOI: 10.1038/s41565-023-01558-1] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/21/2023] [Accepted: 10/30/2023] [Indexed: 11/25/2023]
Abstract
Interactions among charge carriers in graphene can lead to the spontaneous breaking of multiple degeneracies. When increasing the number of graphene layers following rhombohedral stacking, the dominant role of Coulomb interactions becomes pronounced due to the significant reduction in kinetic energy. In this study, we employ phonon-polariton-assisted near-field infrared imaging to determine the stacking orders of tetralayer graphene devices. Through quantum transport measurements, we observe a range of spontaneous broken-symmetry states and their transitions, which can be finely tuned by carrier density n and electric displacement field D. Specifically, we observe a layer-antiferromagnetic insulator at n = D = 0 with a gap of approximately 15 meV. Increasing D allows for a continuous phase transition from a layer-antiferromagnetic insulator to a layer-polarized insulator. By simultaneously tuning n and D, we observe isospin-polarized metals, including spin-valley-polarized and spin-polarized metals. These transitions are associated with changes in the Fermi surface topology and are consistent with the Stoner criteria. Our findings highlight the efficient fabrication of specially stacked multilayer graphene devices and demonstrate that crystalline multilayer graphene is an ideal platform for investigating a wide range of broken symmetries driven by Coulomb interactions.
Collapse
Affiliation(s)
- Kai Liu
- Key Laboratory of Artificial Structures and Quantum Control (Ministry of Education), Shenyang National Laboratory for Materials Science, School of Physics and Astronomy, Shanghai Jiao Tong University, Shanghai, China
| | - Jian Zheng
- Key Laboratory of Artificial Structures and Quantum Control (Ministry of Education), Shenyang National Laboratory for Materials Science, School of Physics and Astronomy, Shanghai Jiao Tong University, Shanghai, China
| | - Yating Sha
- Key Laboratory of Artificial Structures and Quantum Control (Ministry of Education), Shenyang National Laboratory for Materials Science, School of Physics and Astronomy, Shanghai Jiao Tong University, Shanghai, China
| | - Bosai Lyu
- Key Laboratory of Artificial Structures and Quantum Control (Ministry of Education), Shenyang National Laboratory for Materials Science, School of Physics and Astronomy, Shanghai Jiao Tong University, Shanghai, China
| | - Fengping Li
- Department of Physics, University of Seoul, Seoul, Korea
| | - Youngju Park
- Department of Physics, University of Seoul, Seoul, Korea
| | - Yulu Ren
- Key Laboratory of Artificial Structures and Quantum Control (Ministry of Education), Shenyang National Laboratory for Materials Science, School of Physics and Astronomy, Shanghai Jiao Tong University, Shanghai, China
| | - Kenji Watanabe
- Research Center for Electronic and Optical Materials, National Institute for Materials Science, Tsukuba, Japan
| | - Takashi Taniguchi
- Research Center for Materials Nanoarchitectonics, National Institute for Materials Science, Tsukuba, Japan
| | - Jinfeng Jia
- Key Laboratory of Artificial Structures and Quantum Control (Ministry of Education), Shenyang National Laboratory for Materials Science, School of Physics and Astronomy, Shanghai Jiao Tong University, Shanghai, China
| | - Weidong Luo
- Key Laboratory of Artificial Structures and Quantum Control (Ministry of Education), Shenyang National Laboratory for Materials Science, School of Physics and Astronomy, Shanghai Jiao Tong University, Shanghai, China
| | - Zhiwen Shi
- Key Laboratory of Artificial Structures and Quantum Control (Ministry of Education), Shenyang National Laboratory for Materials Science, School of Physics and Astronomy, Shanghai Jiao Tong University, Shanghai, China
| | - Jeil Jung
- Department of Physics, University of Seoul, Seoul, Korea.
- Department of Smart Cities, University of Seoul, Seoul, Korea.
| | - Guorui Chen
- Key Laboratory of Artificial Structures and Quantum Control (Ministry of Education), Shenyang National Laboratory for Materials Science, School of Physics and Astronomy, Shanghai Jiao Tong University, Shanghai, China.
| |
Collapse
|
27
|
Beitner D, Amitay S, Salleh Atri S, McEllistrim A, Coen T, Fal’ko VI, Richter S, Ben Shalom M, Suchowski H. Mid-Infrared Mapping of Four-Layer Graphene Polytypes Using Near-Field Microscopy. NANO LETTERS 2023; 23:10758-10764. [PMID: 38007708 PMCID: PMC10722527 DOI: 10.1021/acs.nanolett.3c02819] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/27/2023] [Revised: 10/22/2023] [Accepted: 10/23/2023] [Indexed: 11/28/2023]
Abstract
The mid-infrared (MIR) spectral region attracts attention for accurate chemical analysis using photonic devices. Few-layer graphene (FLG) polytypes are promising platforms, due to their broad absorption in this range and gate-tunable optical properties. Among these polytypes, the noncentrosymmetric ABCB/ACAB structure is particularly interesting, due to its intrinsic bandgap (8.8 meV) and internal polarization. In this study, we utilize scattering-scanning near-field microscopy to measure the optical response of all three tetralayer graphene polytypes in the 8.5-11.5 μm range. We employ a finite dipole model to compare these results to the calculated optical conductivity for each polytype obtained from a tight-binding model. Our findings reveal a significant discrepancy in the MIR optical conductivity response of graphene between the different polytypes than what the tight-binding model suggests. This observation implies an increased potential for utilizing the distinct tetralayer polytypes in photonic devices operating within the MIR range for chemical sensing and infrared imaging.
Collapse
Affiliation(s)
- Daniel Beitner
- Department
of Materials Science and Engineering Faculty of Engineering, Tel Aviv University Ramat Aviv, Tel Aviv 69998, Israel
- University
Centre for Nanoscience and Nanotechnology, Tel Aviv University Ramat Aviv, Tel Aviv 69998, Israel
- School
of Physics and Astronomy, Faculty of Exact Sciences, Tel Aviv University, Tel Aviv 69978, Israel
| | - Shaked Amitay
- School
of Physics and Astronomy, Faculty of Exact Sciences, Tel Aviv University, Tel Aviv 69978, Israel
| | - Simon Salleh Atri
- School
of Physics and Astronomy, Faculty of Exact Sciences, Tel Aviv University, Tel Aviv 69978, Israel
| | - Andrew McEllistrim
- National
Graphene Institute, University of Manchester, Booth Street East, Manchester M13 9PL, United Kingdom
- Department
of Physics and Astronomy, University of
Manchester, Oxford Road, Manchester, M13 9PL, United
Kingdom
| | - Tom Coen
- School
of Physics and Astronomy, Faculty of Exact Sciences, Tel Aviv University, Tel Aviv 69978, Israel
| | - Vladimir I. Fal’ko
- National
Graphene Institute, University of Manchester, Booth Street East, Manchester M13 9PL, United Kingdom
- Department
of Physics and Astronomy, University of
Manchester, Oxford Road, Manchester, M13 9PL, United
Kingdom
| | - Shachar Richter
- Department
of Materials Science and Engineering Faculty of Engineering, Tel Aviv University Ramat Aviv, Tel Aviv 69998, Israel
- University
Centre for Nanoscience and Nanotechnology, Tel Aviv University Ramat Aviv, Tel Aviv 69998, Israel
| | - Moshe Ben Shalom
- University
Centre for Nanoscience and Nanotechnology, Tel Aviv University Ramat Aviv, Tel Aviv 69998, Israel
- School
of Physics and Astronomy, Faculty of Exact Sciences, Tel Aviv University, Tel Aviv 69978, Israel
| | - Haim Suchowski
- University
Centre for Nanoscience and Nanotechnology, Tel Aviv University Ramat Aviv, Tel Aviv 69998, Israel
- School
of Physics and Astronomy, Faculty of Exact Sciences, Tel Aviv University, Tel Aviv 69978, Israel
| |
Collapse
|
28
|
Naumis GG, Herrera SA, Poudel SP, Nakamura H, Barraza-Lopez S. Mechanical, electronic, optical, piezoelectric and ferroic properties of strained graphene and other strained monolayers and multilayers: an update. REPORTS ON PROGRESS IN PHYSICS. PHYSICAL SOCIETY (GREAT BRITAIN) 2023; 87:016502. [PMID: 37879327 DOI: 10.1088/1361-6633/ad06db] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/02/2023] [Accepted: 10/25/2023] [Indexed: 10/27/2023]
Abstract
This is an update of a previous review (Naumiset al2017Rep. Prog. Phys.80096501). Experimental and theoretical advances for straining graphene and other metallic, insulating, ferroelectric, ferroelastic, ferromagnetic and multiferroic 2D materials were considered. We surveyed (i) methods to induce valley and sublattice polarisation (P) in graphene, (ii) time-dependent strain and its impact on graphene's electronic properties, (iii) the role of local and global strain on superconductivity and other highly correlated and/or topological phases of graphene, (iv) inducing polarisationPon hexagonal boron nitride monolayers via strain, (v) modifying the optoelectronic properties of transition metal dichalcogenide monolayers through strain, (vi) ferroic 2D materials with intrinsic elastic (σ), electric (P) and magnetic (M) polarisation under strain, as well as incipient 2D multiferroics and (vii) moiré bilayers exhibiting flat electronic bands and exotic quantum phase diagrams, and other bilayer or few-layer systems exhibiting ferroic orders tunable by rotations and shear strain. The update features the experimental realisations of a tunable two-dimensional Quantum Spin Hall effect in germanene, of elemental 2D ferroelectric bismuth, and 2D multiferroic NiI2. The document was structured for a discussion of effects taking place in monolayers first, followed by discussions concerning bilayers and few-layers, and it represents an up-to-date overview of exciting and newest developments on the fast-paced field of 2D materials.
Collapse
Affiliation(s)
- Gerardo G Naumis
- Departamento de Sistemas Complejos, Instituto de Física, Universidad Nacional Autónoma de México (UNAM), Apdo. Postal 20-364, CDMX, 01000, Mexico
| | - Saúl A Herrera
- Departamento de Sistemas Complejos, Instituto de Física, Universidad Nacional Autónoma de México (UNAM), Apdo. Postal 20-364, CDMX, 01000, Mexico
| | - Shiva P Poudel
- Department of Physics, University of Arkansas, Fayetteville, AR 72701, United States of America
- MonArk NSF Quantum Foundry, University of Arkansas, Fayetteville, AR 72701, United States of America
| | - Hiro Nakamura
- Department of Physics, University of Arkansas, Fayetteville, AR 72701, United States of America
- MonArk NSF Quantum Foundry, University of Arkansas, Fayetteville, AR 72701, United States of America
| | - Salvador Barraza-Lopez
- Department of Physics, University of Arkansas, Fayetteville, AR 72701, United States of America
- MonArk NSF Quantum Foundry, University of Arkansas, Fayetteville, AR 72701, United States of America
| |
Collapse
|
29
|
Cohen LA, Samuelson NL, Wang T, Taniguchi T, Watanabe K, Zaletel MP, Young AF. Universal chiral Luttinger liquid behavior in a graphene fractional quantum Hall point contact. Science 2023; 382:542-547. [PMID: 37917688 DOI: 10.1126/science.adf9728] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2022] [Accepted: 09/29/2023] [Indexed: 11/04/2023]
Abstract
One-dimensional conductors are described by Luttinger liquid theory, which predicts a power-law suppression of the single-electron tunneling density of states at low voltages. The scaling exponent is predicted to be quantized when tunneling into a single isolated chiral edge state of the fractional quantum Hall effect. We report conductance measurements across a point contact linking integer and fractional quantum Hall edge states (at fillings 1 and [Formula: see text], respectively). At weak coupling, we observe the predicted universal quadratic scaling with temperature and voltage. At strong coupling, we demonstrate perfect Andreev reflection of fractionalized quasiparticles at the point contact. We use the strong coupling physics to realize a nearly dissipationless direct current voltage step-up transformer, whose gain arises directly from topological fractionalization of electrical charge.
Collapse
Affiliation(s)
- Liam A Cohen
- Department of Physics, University of California at Santa Barbara, Santa Barbara, CA 93106, USA
| | - Noah L Samuelson
- Department of Physics, University of California at Santa Barbara, Santa Barbara, CA 93106, USA
| | - Taige Wang
- Department of Physics, University of California, Berkeley, CA 94720, USA
- Material Science Division, Lawrence Berkeley National Laboratory, Berkeley, CA 94720, USA
| | - Takashi Taniguchi
- International Center for Materials Nanoarchitectonics, National Institute for Materials Science, 1-1 Namiki, Tsukuba 305-0044, Japan
| | - Kenji Watanabe
- Research Center for Functional Materials, National Institute for Materials Science, 1-1 Namiki, Tsukuba 305-0044, Japan
| | - Michael P Zaletel
- Department of Physics, University of California, Berkeley, CA 94720, USA
- Material Science Division, Lawrence Berkeley National Laboratory, Berkeley, CA 94720, USA
| | - Andrea F Young
- Department of Physics, University of California at Santa Barbara, Santa Barbara, CA 93106, USA
| |
Collapse
|
30
|
Weitzel A, Pfaffinger L, Maccari I, Kronfeldner K, Huber T, Fuchs L, Mallord J, Linzen S, Il'ichev E, Paradiso N, Strunk C. Sharpness of the Berezinskii-Kosterlitz-Thouless Transition in Disordered NbN Films. PHYSICAL REVIEW LETTERS 2023; 131:186002. [PMID: 37977616 DOI: 10.1103/physrevlett.131.186002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/12/2023] [Accepted: 09/21/2023] [Indexed: 11/19/2023]
Abstract
We present a comprehensive investigation of the Berezinskii-Kosterlitz-Thouless transition in ultrathin strongly disordered NbN films. Measurements of resistance, current-voltage characteristics, and kinetic inductance on the very same device reveal a consistent picture of a sharp unbinding transition of vortex-antivortex pairs that fit standard renormalization group theory without extra assumptions in terms of inhomogeneity. Our experiments demonstrate that the previously observed broadening of the transition is not an intrinsic feature of strongly disordered superconductors and provide a clean starting point for the study of dynamical effects at the Berezinskii-Kosterlitz-Thouless transition.
Collapse
Affiliation(s)
- Alexander Weitzel
- Institute for Experimental and Applied Physics, University of Regensburg, D-93040 Regensburg, Germany
| | - Lea Pfaffinger
- Institute for Experimental and Applied Physics, University of Regensburg, D-93040 Regensburg, Germany
| | - Ilaria Maccari
- Department of Physics, Stockholm University, SE-10691 Stockholm, Sweden
| | - Klaus Kronfeldner
- Institute for Experimental and Applied Physics, University of Regensburg, D-93040 Regensburg, Germany
| | - Thomas Huber
- Institute for Experimental and Applied Physics, University of Regensburg, D-93040 Regensburg, Germany
| | - Lorenz Fuchs
- Institute for Experimental and Applied Physics, University of Regensburg, D-93040 Regensburg, Germany
| | - James Mallord
- Institute for Experimental and Applied Physics, University of Regensburg, D-93040 Regensburg, Germany
| | - Sven Linzen
- Leibniz Institute of Photonic Technology, D-07745 Jena, Germany
| | - Evgeni Il'ichev
- Leibniz Institute of Photonic Technology, D-07745 Jena, Germany
| | - Nicola Paradiso
- Institute for Experimental and Applied Physics, University of Regensburg, D-93040 Regensburg, Germany
| | - Christoph Strunk
- Institute for Experimental and Applied Physics, University of Regensburg, D-93040 Regensburg, Germany
| |
Collapse
|
31
|
Su R, Kuiri M, Watanabe K, Taniguchi T, Folk J. Superconductivity in twisted double bilayer graphene stabilized by WSe 2. NATURE MATERIALS 2023; 22:1332-1337. [PMID: 37640863 DOI: 10.1038/s41563-023-01653-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/21/2022] [Accepted: 07/25/2023] [Indexed: 08/31/2023]
Abstract
Identifying the essential components of superconductivity in graphene-based systems remains a critical problem in two-dimensional materials research. This field is connected to the mysteries that underpin investigations of unconventional superconductivity in condensed-matter physics. Superconductivity has been observed in magic-angle twisted stacks of monolayer graphene but conspicuously not in twisted stacks of bilayer graphene, although both systems host topological flat bands and symmetry-broken states. Here we report the discovery of superconductivity in twisted double bilayer graphene (TDBG) in proximity to WSe2. Samples with twist angles 1.24° and 1.37° superconduct in small pockets of the gate-tuned phase diagram within the valence and conduction band, respectively. Superconductivity emerges from unpolarized phases near van Hove singularities and next to regions with broken isospin symmetry. Our results show the correlation between a high density of states and the emergence of superconductivity in TDBG while revealing a possible role for isospin fluctuations in the pairing.
Collapse
Affiliation(s)
- Ruiheng Su
- Stewart Blusson Quantum Matter Institute, University of British Columbia, Vancouver, British Columbia, Canada
- Department of Physics and Astronomy, University of British Columbia, Vancouver, British Columbia, Canada
| | - Manabendra Kuiri
- Stewart Blusson Quantum Matter Institute, University of British Columbia, Vancouver, British Columbia, Canada
- Department of Physics and Astronomy, University of British Columbia, Vancouver, British Columbia, Canada
| | - Kenji Watanabe
- Research Center for Functional Materials, National Institute for Materials Science, Tsukuba, Japan
| | - Takashi Taniguchi
- International Center for Materials Nanoarchitectonics, National Institute for Materials Science, Tsukuba, Japan
| | - Joshua Folk
- Stewart Blusson Quantum Matter Institute, University of British Columbia, Vancouver, British Columbia, Canada.
- Department of Physics and Astronomy, University of British Columbia, Vancouver, British Columbia, Canada.
| |
Collapse
|
32
|
Liu J, Yang X, Fang H, Yan W, Ouyang W, Liu Z. In Situ Twistronics: A New Platform Based on Superlubricity. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2023:e2305072. [PMID: 37867201 DOI: 10.1002/adma.202305072] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/29/2023] [Revised: 07/19/2023] [Indexed: 10/24/2023]
Abstract
Twistronics, an emerging field focused on exploring the unique electrical properties induced by twist interface in graphene multilayers, has garnered significant attention in recent years. The general manipulation of twist angle depends on the assembly of van der Waals (vdW) layered materials, which has led to the discovery of unconventional superconductivity, ferroelectricity, and nonlinear optics, thereby expanding the realm of twistronics. Recently, in situ tuning of interlayer conductivity in vdW layered materials has been achieved based on scanning probe microscope. In this Perspective, the advancements in in situ twistronics are focused on by reviewing the state-of-the-art in situ manipulating technology, discussing the underlying mechanism based on the concept of structural superlubricity, and exploiting the real-time twistronic tests under scanning electron microscope (SEM). It is shown that the real-time manipulation under SEM allows for visualizing and monitoring the interface status during in situ twistronic testing. By harnessing the unique tribological properties of vdW layered materials, this novel platform not only enhances the fabrication of twistronic devices but also facilitates the fundamental understanding of interface phenomena in vdW layered materials. Moreover, this platform holds great promise for the application of twistronic-mechanical systems, providing avenues for the integration of twistronics into various mechanical frameworks.
Collapse
Affiliation(s)
- Jianxin Liu
- Department of Engineering Mechanics, School of Civil Engineering, Wuhan University, Wuhan, Hubei, 430072, China
| | - Xiaoqi Yang
- Department of Engineering Mechanics, School of Civil Engineering, Wuhan University, Wuhan, Hubei, 430072, China
| | - Hui Fang
- Department of Engineering Mechanics, School of Civil Engineering, Wuhan University, Wuhan, Hubei, 430072, China
| | - Weidong Yan
- Department of Engineering Mechanics, School of Civil Engineering, Wuhan University, Wuhan, Hubei, 430072, China
| | - Wengen Ouyang
- Department of Engineering Mechanics, School of Civil Engineering, Wuhan University, Wuhan, Hubei, 430072, China
- State Key Laboratory of Water Resources Engineering and Management, Wuhan University, Wuhan, Hubei, 430072, P. R. China
| | - Ze Liu
- Department of Engineering Mechanics, School of Civil Engineering, Wuhan University, Wuhan, Hubei, 430072, China
- State Key Laboratory of Water Resources Engineering and Management, Wuhan University, Wuhan, Hubei, 430072, P. R. China
| |
Collapse
|
33
|
Xie YM, Lantagne-Hurtubise É, Young AF, Nadj-Perge S, Alicea J. Gate-Defined Topological Josephson Junctions in Bernal Bilayer Graphene. PHYSICAL REVIEW LETTERS 2023; 131:146601. [PMID: 37862641 DOI: 10.1103/physrevlett.131.146601] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/28/2023] [Accepted: 09/07/2023] [Indexed: 10/22/2023]
Abstract
Recent experiments on Bernal bilayer graphene (BLG) deposited on monolayer WSe_{2} revealed robust, ultraclean superconductivity coexisting with sizable induced spin-orbit coupling. Here, we propose BLG/WSe_{2} as a platform to engineer gate-defined planar topological Josephson junctions, where the normal and superconducting regions descend from a common material. More precisely, we show that if superconductivity in BLG/WSe_{2} is gapped and emerges from a parent state with intervalley coherence, then Majorana zero-energy modes can form in the barrier region upon applying weak in-plane magnetic fields. Our results spotlight a potential pathway for "internally engineered" topological superconductivity that minimizes detrimental disorder and orbital-magnetic-field effects.
Collapse
Affiliation(s)
- Ying-Ming Xie
- Department of Physics, Hong Kong University of Science and Technology, Clear Water Bay, Hong Kong, China
- Department of Physics, California Institute of Technology, Pasadena, California 91125, USA
- Institute for Quantum Information and Matter, California Institute of Technology, Pasadena, California 91125, USA
| | - Étienne Lantagne-Hurtubise
- Department of Physics, California Institute of Technology, Pasadena, California 91125, USA
- Institute for Quantum Information and Matter, California Institute of Technology, Pasadena, California 91125, USA
| | - Andrea F Young
- Department of Physics, University of California at Santa Barbara, Santa Barbara, California 93106, USA
| | - Stevan Nadj-Perge
- Institute for Quantum Information and Matter, California Institute of Technology, Pasadena, California 91125, USA
- T. J. Watson Laboratory of Applied Physics, California Institute of Technology, 1200 East California Boulevard, Pasadena, California 91125, USA
| | - Jason Alicea
- Department of Physics, California Institute of Technology, Pasadena, California 91125, USA
- Institute for Quantum Information and Matter, California Institute of Technology, Pasadena, California 91125, USA
| |
Collapse
|
34
|
Slot MR, Maximenko Y, Haney PM, Kim S, Walkup DT, Strelcov E, Le ST, Shih EM, Yildiz D, Blankenship SR, Watanabe K, Taniguchi T, Barlas Y, Zhitenev NB, Ghahari F, Stroscio JA. A quantum ruler for orbital magnetism in moiré quantum matter. Science 2023; 382:81-87. [PMID: 37797004 DOI: 10.1126/science.adf2040] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2022] [Accepted: 08/30/2023] [Indexed: 10/07/2023]
Abstract
For almost a century, magnetic oscillations have been a powerful "quantum ruler" for measuring Fermi surface topology. In this study, we used Landau-level spectroscopy to unravel the energy-resolved valley-contrasting orbital magnetism and large orbital magnetic susceptibility that contribute to the energies of Landau levels of twisted double-bilayer graphene. These orbital magnetism effects led to substantial deviations from the standard Onsager relation, which manifested as a breakdown in scaling of Landau-level orbits. These substantial magnetic responses emerged from the nontrivial quantum geometry of the electronic structure and the large length scale of the moiré lattice potential. Going beyond traditional measurements, Landau-level spectroscopy performed with a scanning tunneling microscope offers a complete quantum ruler that resolves the full energy dependence of orbital magnetic properties in moiré quantum matter.
Collapse
Affiliation(s)
- M R Slot
- Physical Measurement Laboratory, National Institute of Standards and Technology, Gaithersburg, MD 20899, USA
- Department of Physics, Georgetown University, Washington, DC 20007, USA
| | - Y Maximenko
- Physical Measurement Laboratory, National Institute of Standards and Technology, Gaithersburg, MD 20899, USA
- Department of Chemistry and Biochemistry, University of Maryland, College Park, MD 20742, USA
| | - P M Haney
- Physical Measurement Laboratory, National Institute of Standards and Technology, Gaithersburg, MD 20899, USA
| | - S Kim
- Physical Measurement Laboratory, National Institute of Standards and Technology, Gaithersburg, MD 20899, USA
- Joint Quantum Institute, Department of Physics, University of Maryland, College Park, MD 20742, USA
| | - D T Walkup
- Physical Measurement Laboratory, National Institute of Standards and Technology, Gaithersburg, MD 20899, USA
| | - E Strelcov
- Physical Measurement Laboratory, National Institute of Standards and Technology, Gaithersburg, MD 20899, USA
- Department of Chemistry and Biochemistry, University of Maryland, College Park, MD 20742, USA
| | - Son T Le
- Physical Measurement Laboratory, National Institute of Standards and Technology, Gaithersburg, MD 20899, USA
| | - E M Shih
- Physical Measurement Laboratory, National Institute of Standards and Technology, Gaithersburg, MD 20899, USA
- Department of Chemistry and Biochemistry, University of Maryland, College Park, MD 20742, USA
| | - D Yildiz
- Physical Measurement Laboratory, National Institute of Standards and Technology, Gaithersburg, MD 20899, USA
- Joint Quantum Institute, Department of Physics, University of Maryland, College Park, MD 20742, USA
| | - S R Blankenship
- Physical Measurement Laboratory, National Institute of Standards and Technology, Gaithersburg, MD 20899, USA
| | - K Watanabe
- Research Center for Functional Materials, National Institute for Materials Science, 1-1 Namiki, Tsukuba, Ibaraki 305-0044, Japan
| | - T Taniguchi
- International Center for Materials Nanoarchitectonics, National Institute for Materials Science, 1-1 Namiki, Tsukuba, Ibaraki 305-0044, Japan
| | - Y Barlas
- Department of Physics, University of Nevada, Reno, NV 89557, USA
| | - N B Zhitenev
- Physical Measurement Laboratory, National Institute of Standards and Technology, Gaithersburg, MD 20899, USA
| | - F Ghahari
- Department of Physics and Astronomy, George Mason University, Fairfax, VA 22030, USA
| | - J A Stroscio
- Physical Measurement Laboratory, National Institute of Standards and Technology, Gaithersburg, MD 20899, USA
| |
Collapse
|
35
|
Dong Z, Lee PA, Levitov LS. Signatures of Cooper pair dynamics and quantum-critical superconductivity in tunable carrier bands. Proc Natl Acad Sci U S A 2023; 120:e2305943120. [PMID: 37738298 PMCID: PMC10523641 DOI: 10.1073/pnas.2305943120] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2023] [Accepted: 06/21/2023] [Indexed: 09/24/2023] Open
Abstract
Different superconducting pairing mechanisms are markedly distinct in the underlying Cooper pair kinematics. Quantum-critical soft modes drive pairing interactions in which the pair scattering processes are highly collinear and can be classified into two categories: forward scattering and backscattering. Conversely, in conventional phonon mechanisms, Cooper pair scattering is of a generic noncollinear character. In this study, we present a method to discern the kinematic type by observing the evolution of superconductivity while adjusting the Fermi surface geometry. To demonstrate our approach, we utilize the recently reported phase diagrams of untwisted graphene multilayers. Our analysis connects the emergence of superconductivity at "ghost crossings" of Fermi surfaces in distinct valleys to the pair kinematics of a backscattering type. Together with the observed nonmonotonic behavior of superconductivity near its onset (sharp rise followed by a drop), it lends strong support to a particular quantum-critical superconductivity scenario in which pairing is driven by intervalley coherence fluctuations. These findings offer direct insights into the genesis of pairing in these systems, providing compelling evidence for the electron-electron interactions driving superconductivity. More broadly, our work highlights the potential of tuning bands via ghost crossings as a promising means of boosting superconductivity.
Collapse
Affiliation(s)
- Zhiyu Dong
- Department of Physics, Massachusetts Institute of Technology, Cambridge, MA02139
| | - Patrick A. Lee
- Department of Physics, Massachusetts Institute of Technology, Cambridge, MA02139
| | - Leonid S. Levitov
- Department of Physics, Massachusetts Institute of Technology, Cambridge, MA02139
| |
Collapse
|
36
|
Xue X, Liu M, Zhou X, Liu S, Wang L, Yu G. Controllable Synthesis and Growth Mechanism of Interlayer-Coupled Multilayer Graphene. NANOMATERIALS (BASEL, SWITZERLAND) 2023; 13:2634. [PMID: 37836275 PMCID: PMC10574119 DOI: 10.3390/nano13192634] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/28/2023] [Revised: 09/14/2023] [Accepted: 09/20/2023] [Indexed: 10/15/2023]
Abstract
The potential applications of multilayer graphene in many fields, such as superconductivity and thermal conductivity, continue to emerge. However, there are still many problems in the growth mechanism of multilayer graphene. In this paper, a simple control strategy for the preparation of interlayer-coupled multilayer graphene on a liquid Cu substrate was developed. By adjusting the flow rate of a carrier gas in the CVD system, the effect for finely controlling the carbon source supply was achieved. Therefore, the carbon could diffuse from the edge of the single-layer graphene to underneath the layer of graphene and then interlayer-coupled multilayer graphene with different shapes were prepared. Through a variety of characterization methods, it was determined that the stacked mode of interlayer-coupled multilayer graphene conformed to AB-stacking structure. The small multilayer graphene domains stacked under single-layer graphene was first found, and the growth process and growth mechanism of interlayer-coupled multilayer graphene with winged and umbrella shapes were studied, respectively. This study reveals the growth mechanism of multilayer graphene grown by using a carbon source through edge diffusion, paving the way for the controllable preparation of multilayer graphene on a liquid Cu surface.
Collapse
Affiliation(s)
- Xudong Xue
- Beijing National Laboratory for Molecular Sciences, CAS Research/Education Center for Excellence in Molecular Sciences, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, China; (X.X.); (M.L.); (X.Z.); (S.L.)
- School of Materials Science and Engineering, University of Science and Technology Beijing, Beijing 100083, China;
| | - Mengya Liu
- Beijing National Laboratory for Molecular Sciences, CAS Research/Education Center for Excellence in Molecular Sciences, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, China; (X.X.); (M.L.); (X.Z.); (S.L.)
- School of Materials Science and Engineering, University of Science and Technology Beijing, Beijing 100083, China;
| | - Xiahong Zhou
- Beijing National Laboratory for Molecular Sciences, CAS Research/Education Center for Excellence in Molecular Sciences, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, China; (X.X.); (M.L.); (X.Z.); (S.L.)
- School of Chemical Sciences, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Shan Liu
- Beijing National Laboratory for Molecular Sciences, CAS Research/Education Center for Excellence in Molecular Sciences, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, China; (X.X.); (M.L.); (X.Z.); (S.L.)
- School of Chemical Sciences, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Liping Wang
- School of Materials Science and Engineering, University of Science and Technology Beijing, Beijing 100083, China;
| | - Gui Yu
- Beijing National Laboratory for Molecular Sciences, CAS Research/Education Center for Excellence in Molecular Sciences, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, China; (X.X.); (M.L.); (X.Z.); (S.L.)
- School of Chemical Sciences, University of Chinese Academy of Sciences, Beijing 100049, China
| |
Collapse
|
37
|
Liang J, Yang D, Xiao Y, Chen S, Dadap JI, Rottler J, Ye Z. Shear Strain-Induced Two-Dimensional Slip Avalanches in Rhombohedral MoS 2. NANO LETTERS 2023; 23:7228-7235. [PMID: 37358360 DOI: 10.1021/acs.nanolett.3c01487] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/27/2023]
Abstract
Slip avalanches are ubiquitous phenomena occurring in three-dimensional materials under shear strain, and their study contributes immensely to our understanding of plastic deformation, fragmentation, and earthquakes. So far, little is known about the role of shear strain in two-dimensional (2D) materials. Here we show some evidence of 2D slip avalanches in exfoliated rhombohedral MoS2, triggered by shear strain near the threshold level. Utilizing interfacial polarization in 3R-MoS2, we directly probe the stacking order in multilayer flakes and discover a wide variety of polarization domains with sizes following a power-law distribution. These findings suggest that slip avalanches can occur during the exfoliation of 2D materials, and the stacking orders can be changed via shear strain. Our observation has far-reaching implications for the development of new materials and technologies, where precise control over the atomic structure of these materials is essential for optimizing their properties as well as for our understanding of fundamental physical phenomena.
Collapse
Affiliation(s)
- Jing Liang
- Department of Physics and Astronomy, The University of British Columbia, Vancouver, BC V6T 1Z1, Canada
- Quantum Matter Institute, The University of British Columbia, Vancouver, BC V6T 1Z4, Canada
| | - Dongyang Yang
- Department of Physics and Astronomy, The University of British Columbia, Vancouver, BC V6T 1Z1, Canada
- Quantum Matter Institute, The University of British Columbia, Vancouver, BC V6T 1Z4, Canada
| | - Yunhuan Xiao
- Department of Physics and Astronomy, The University of British Columbia, Vancouver, BC V6T 1Z1, Canada
- Quantum Matter Institute, The University of British Columbia, Vancouver, BC V6T 1Z4, Canada
| | - Sean Chen
- Department of Physics and Astronomy, The University of British Columbia, Vancouver, BC V6T 1Z1, Canada
- Quantum Matter Institute, The University of British Columbia, Vancouver, BC V6T 1Z4, Canada
| | - Jerry I Dadap
- Department of Physics and Astronomy, The University of British Columbia, Vancouver, BC V6T 1Z1, Canada
- Quantum Matter Institute, The University of British Columbia, Vancouver, BC V6T 1Z4, Canada
| | - Joerg Rottler
- Department of Physics and Astronomy, The University of British Columbia, Vancouver, BC V6T 1Z1, Canada
- Quantum Matter Institute, The University of British Columbia, Vancouver, BC V6T 1Z4, Canada
| | - Ziliang Ye
- Department of Physics and Astronomy, The University of British Columbia, Vancouver, BC V6T 1Z1, Canada
- Quantum Matter Institute, The University of British Columbia, Vancouver, BC V6T 1Z4, Canada
| |
Collapse
|
38
|
Han X, Liu Q, Wang Y, Niu R, Qu Z, Wang Z, Li Z, Han C, Watanabe K, Taniguchi T, Song Z, Mao J, Han ZV, Gan Z, Lu J. Chemical Potential Characterization of Symmetry-Breaking Phases in a Rhombohedral Trilayer Graphene. NANO LETTERS 2023; 23:6875-6882. [PMID: 37466217 DOI: 10.1021/acs.nanolett.3c01262] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/20/2023]
Abstract
Rhombohedral trilayer graphene has recently emerged as a natural flat-band platform for studying interaction-driven symmetry-breaking phases. The displacement field (D) can further flatten the band to enhance the density of states, thereby controlling the electronic correlation that tips the energy balance between spin and valley degrees of freedom. To characterize the energy competition, chemical potential measurement─a direct thermodynamic probe of Fermi surfaces─is highly demanding to be conducted under a constant D. In this work, we characterize D-dependent isospin flavor polarization, where electronic states with isospin degeneracies of one and two can be identified. We also developed a method to measure the chemical potential at a fixed D, allowing for the extraction of energy variation during phase transitions. Furthermore, symmetry breaking could also be invoked in Landau levels, manifesting as quantum Hall ferromagnetism. Our work opens more opportunities for the thermodynamic characterization of displacement-field tuned van der Waals heterostructures.
Collapse
Affiliation(s)
- Xiangyan Han
- State Key Laboratory for Mesoscopic Physics, School of Physics, Peking University, Beijing 100871, China
| | - Qianling Liu
- State Key Laboratory for Mesoscopic Physics, School of Physics, Peking University, Beijing 100871, China
| | - Yijie Wang
- International Center for Quantum Materials, Peking University, Beijing 100871, China
| | - Ruirui Niu
- State Key Laboratory for Mesoscopic Physics, School of Physics, Peking University, Beijing 100871, China
| | - Zhuangzhuang Qu
- State Key Laboratory for Mesoscopic Physics, School of Physics, Peking University, Beijing 100871, China
| | - Zhiyu Wang
- State Key Laboratory for Mesoscopic Physics, School of Physics, Peking University, Beijing 100871, China
| | - Zhuoxian Li
- State Key Laboratory for Mesoscopic Physics, School of Physics, Peking University, Beijing 100871, China
| | - Chunrui Han
- Institute of Microelectronics, Chinese Academy of Sciences, Beijing, 100029, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Kenji Watanabe
- National Institute for Materials Science, 1-1 Namiki, Tsukuba, 305-0044, Japan
| | - Takashi Taniguchi
- National Institute for Materials Science, 1-1 Namiki, Tsukuba, 305-0044, Japan
| | - Zhida Song
- International Center for Quantum Materials, Peking University, Beijing 100871, China
| | - Jinhai Mao
- School of Physical Sciences and CAS Center for Excellence in Topological Quantum Computation, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Zheng Vitto Han
- State Key Laboratory of Quantum Optics and Quantum Optics Devices, Institute of Optoelectronics, Shanxi University, Taiyuan 030006, China
- Collaborative Innovation Center of Extreme Optics, Shanxi University, Taiyuan 030006, China
| | - Zizhao Gan
- State Key Laboratory for Mesoscopic Physics, School of Physics, Peking University, Beijing 100871, China
| | - Jianming Lu
- State Key Laboratory for Mesoscopic Physics, School of Physics, Peking University, Beijing 100871, China
| |
Collapse
|
39
|
Waters D, Thompson E, Arreguin-Martinez E, Fujimoto M, Ren Y, Watanabe K, Taniguchi T, Cao T, Xiao D, Yankowitz M. Mixed-dimensional moiré systems of twisted graphitic thin films. Nature 2023; 620:750-755. [PMID: 37468635 DOI: 10.1038/s41586-023-06290-3] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2022] [Accepted: 06/06/2023] [Indexed: 07/21/2023]
Abstract
Moiré patterns formed by stacking atomically thin van der Waals crystals with a relative twist angle can give rise to notable new physical properties1,2. The study of moiré materials has so far been limited to structures comprising no more than a few van der Waals sheets, because a moiré pattern localized to a single two-dimensional interface is generally assumed to be incapable of appreciably modifying the properties of a bulk three-dimensional crystal. Here, we perform transport measurements of dual-gated devices constructed by slightly rotating a monolayer graphene sheet atop a thin bulk graphite crystal. We find that the moiré potential transforms the electronic properties of the entire bulk graphitic thin film. At zero and in small magnetic fields, transport is mediated by a combination of gate-tuneable moiré and graphite surface states, as well as coexisting semimetallic bulk states that do not respond to gating. At high field, the moiré potential hybridizes with the graphitic bulk states due to the unique properties of the two lowest Landau bands of graphite. These Landau bands facilitate the formation of a single quasi-two-dimensional hybrid structure in which the moiré and bulk graphite states are inextricably mixed. Our results establish twisted graphene-graphite as the first in a new class of mixed-dimensional moiré materials.
Collapse
Affiliation(s)
- Dacen Waters
- Department of Physics, University of Washington, Seattle, WA, USA
- Intelligence Community Postdoctoral Research Fellowship Program, University of Washington, Seattle, WA, USA
| | - Ellis Thompson
- Department of Physics, University of Washington, Seattle, WA, USA
| | | | - Manato Fujimoto
- Department of Materials Science and Engineering, University of Washington, Seattle, WA, USA
- Department of Physics, Osaka University, Osaka, Japan
| | - Yafei Ren
- Department of Materials Science and Engineering, University of Washington, Seattle, WA, USA
| | - Kenji Watanabe
- Research Center for Functional Materials, National Institute for Materials Science, Tsukuba, Japan
| | - Takashi Taniguchi
- International Center for Materials Nanoarchitectonics, National Institute for Materials Science, Tsukuba, Japan
| | - Ting Cao
- Department of Materials Science and Engineering, University of Washington, Seattle, WA, USA
| | - Di Xiao
- Department of Physics, University of Washington, Seattle, WA, USA
- Department of Materials Science and Engineering, University of Washington, Seattle, WA, USA
| | - Matthew Yankowitz
- Department of Physics, University of Washington, Seattle, WA, USA.
- Department of Materials Science and Engineering, University of Washington, Seattle, WA, USA.
| |
Collapse
|
40
|
Craig IM, Van Winkle M, Groschner C, Zhang K, Dowlatshahi N, Taniguchi T, Watanabe K, Griffin S, Bediako DK. Interferometric Imaging of Twisted Trilayer Graphene Moiré Superlattices. MICROSCOPY AND MICROANALYSIS : THE OFFICIAL JOURNAL OF MICROSCOPY SOCIETY OF AMERICA, MICROBEAM ANALYSIS SOCIETY, MICROSCOPICAL SOCIETY OF CANADA 2023; 29:1641. [PMID: 37613927 DOI: 10.1093/micmic/ozad067.844] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/25/2023]
Affiliation(s)
- Isaac M Craig
- Department of Chemistry, University of California, Berkeley, CA, USA
| | | | | | - Kaidi Zhang
- Department of Chemistry, University of California, Berkeley, CA, USA
| | | | - Takashi Taniguchi
- Research Center for Functional Materials, National Institute for Materials Science, Tsukuba, Japan
| | - Kenji Watanabe
- International Center for Materials Nanoarchitectonics, National Institute for Materials Science, Tsukuba, Japan
| | - Sinéad Griffin
- The Molecular Foundry, Lawrence Berkeley National Laboratory, Berkeley, CA, USA
| | - D Kwabena Bediako
- Department of Chemistry, University of California, Berkeley, CA, USA
- Chemical Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, CA, USA
| |
Collapse
|
41
|
Sainz-Cruz H, Pantaleón PA, Phong VT, Jimeno-Pozo A, Guinea F. Junctions and Superconducting Symmetry in Twisted Bilayer Graphene. PHYSICAL REVIEW LETTERS 2023; 131:016003. [PMID: 37478460 DOI: 10.1103/physrevlett.131.016003] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/22/2022] [Accepted: 05/31/2023] [Indexed: 07/23/2023]
Abstract
Junctions provide a wealth of information on the symmetry of the order parameter of superconductors. We analyze junctions between a scanning tunneling microscope (STM) tip and superconducting twisted bilayer graphene (TBG) and TBG Josephson junctions (JJs). We compare superconducting phases that are even or odd under valley exchange (s- or f-wave). The critical current in mixed (s and f) JJs strongly depends on the angle between the junction and the lattice. In STM-TBG junctions, due to Andreev reflection, the f-wave leads to a prominent peak in subgap conductance, as seen in experiments.
Collapse
Affiliation(s)
| | | | - Võ Tiến Phong
- Department of Physics and Astronomy, University of Pennsylvania, Philadelphia, Pennsylvania 19104, USA
| | | | - Francisco Guinea
- Imdea Nanoscience, Faraday 9, 28015 Madrid, Spain
- Donostia International Physics Center, Paseo Manuel de Lardizabal 4, 20018 San Sebastian, Spain
| |
Collapse
|
42
|
Hu JX, Sun ZT, Xie YM, Law KT. Josephson Diode Effect Induced by Valley Polarization in Twisted Bilayer Graphene. PHYSICAL REVIEW LETTERS 2023; 130:266003. [PMID: 37450809 DOI: 10.1103/physrevlett.130.266003] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/05/2022] [Accepted: 05/26/2023] [Indexed: 07/18/2023]
Abstract
Recently, the Josephson diode effect (JDE), in which the superconducting critical current magnitudes differ when the currents flow in opposite directions, has attracted great interest. In particular, it was demonstrated that gate-defined Josephson junctions based on magic-angle twisted bilayer graphene showed a strong nonreciprocal effect when the weak-link region is gated to a correlated insulating state at half filling (two holes per moiré cell). However, the mechanism behind such a phenomenon is not yet understood. In this Letter, we show that the interaction-driven valley polarization, together with the trigonal warping of the Fermi surface, induce the JDE. The valley polarization, which lifts the degeneracy of the states in the two valleys, induces a relative phase difference between the first and the second harmonics of the supercurrent and results in the JDE. We further show that the nontrivial current phase relation, which is responsible for the JDE, also generates the asymmetric Shapiro steps.
Collapse
Affiliation(s)
- Jin-Xin Hu
- Department of Physics, Hong Kong University of Science and Technology, Clear Water Bay, Hong Kong, China
| | - Zi-Ting Sun
- Department of Physics, Hong Kong University of Science and Technology, Clear Water Bay, Hong Kong, China
| | - Ying-Ming Xie
- Department of Physics, Hong Kong University of Science and Technology, Clear Water Bay, Hong Kong, China
| | - K T Law
- Department of Physics, Hong Kong University of Science and Technology, Clear Water Bay, Hong Kong, China
| |
Collapse
|
43
|
Zhang K, Yu Y, Carr S, Babar M, Zhu Z, Kim BJ, Groschner C, Khaloo N, Taniguchi T, Watanabe K, Viswanathan V, Bediako DK. Anomalous Interfacial Electron-Transfer Kinetics in Twisted Trilayer Graphene Caused by Layer-Specific Localization. ACS CENTRAL SCIENCE 2023; 9:1119-1128. [PMID: 37396866 PMCID: PMC10311658 DOI: 10.1021/acscentsci.3c00326] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 03/17/2023] [Indexed: 07/04/2023]
Abstract
Interfacial electron-transfer (ET) reactions underpin the interconversion of electrical and chemical energy. It is known that the electronic state of electrodes strongly influences ET rates because of differences in the electronic density of states (DOS) across metals, semimetals, and semiconductors. Here, by controlling interlayer twists in well-defined trilayer graphene moirés, we show that ET rates are strikingly dependent on electronic localization in each atomic layer and not the overall DOS. The large degree of tunability inherent to moiré electrodes leads to local ET kinetics that range over 3 orders of magnitude across different constructions of only three atomic layers, even exceeding rates at bulk metals. Our results demonstrate that beyond the ensemble DOS, electronic localization is critical in facilitating interfacial ET, with implications for understanding the origin of high interfacial reactivity typically exhibited by defects at electrode-electrolyte interfaces.
Collapse
Affiliation(s)
- Kaidi Zhang
- Department
of Chemistry, University of California, Berkeley, California 94720, United States
| | - Yun Yu
- Department
of Chemistry, University of California, Berkeley, California 94720, United States
| | - Stephen Carr
- Brown
Theoretical Physics Center, Brown University, Providence, Rhode Island 02912, United States
| | - Mohammad Babar
- Department
of Mechanical Engineering, Carnegie Mellon
University, Pittsburgh, Pennsylvania 15213, United States
| | - Ziyan Zhu
- SLAC
National Accelerator Laboratory, Menlo Park, California 94025, United States
| | - Bryan Junsuh Kim
- Department
of Chemistry, University of California, Berkeley, California 94720, United States
| | - Catherine Groschner
- Department
of Chemistry, University of California, Berkeley, California 94720, United States
| | - Nikta Khaloo
- Department
of Chemistry, University of California, Berkeley, California 94720, United States
| | - Takashi Taniguchi
- International
Center for Materials Nanoarchitectonics, National Institute for Materials Science, 305-0044 Tsukuba, Japan
| | - Kenji Watanabe
- Research
Center for Functional Materials, National
Institute for Materials Science, 305-0044 Tsukuba, Japan
| | | | - D. Kwabena Bediako
- Department
of Chemistry, University of California, Berkeley, California 94720, United States
- Chemical
Sciences Division, Lawrence Berkeley National
Laboratory, Berkeley, California 94720, United States
| |
Collapse
|
44
|
Dong Z, Ogunnaike O, Levitov L. Collective Excitations in Chiral Stoner Magnets. PHYSICAL REVIEW LETTERS 2023; 130:206701. [PMID: 37267555 DOI: 10.1103/physrevlett.130.206701] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/05/2023] [Revised: 02/21/2023] [Accepted: 04/07/2023] [Indexed: 06/04/2023]
Abstract
We argue that spin- and valley-polarized metallic phases recently observed in graphene bilayers and trilayers support chiral edge modes that allow spin waves to propagate ballistically along system boundaries without backscattering. The chiral edge behavior originates from the interplay between the momentum-space Berry curvature in Dirac bands and the geometric phase of a spin texture in position space. The edge modes are weakly confined to the edge, featuring dispersion that is robust and insensitive to the detailed profile of magnetization at the edge. This unique character of edge modes reduces their overlap with edge disorder and enhances the mode lifetime. The mode propagation direction reverses upon reversing valley polarization, an effect that provides a clear testable signature of geometric interactions in isospin-polarized Dirac bands.
Collapse
Affiliation(s)
- Zhiyu Dong
- Department of Physics, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, USA
| | - Olumakinde Ogunnaike
- Department of Physics, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, USA
| | - Leonid Levitov
- Department of Physics, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, USA
| |
Collapse
|
45
|
González J, Stauber T. Ising superconductivity induced from spin-selective valley symmetry breaking in twisted trilayer graphene. Nat Commun 2023; 14:2746. [PMID: 37173312 PMCID: PMC10182018 DOI: 10.1038/s41467-023-38250-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2022] [Accepted: 04/17/2023] [Indexed: 05/15/2023] Open
Abstract
We show that the e-e interaction induces a strong breakdown of valley symmetry for each spin channel in twisted trilayer graphene, leading to a ground state where the two spin projections have opposite sign of the valley symmetry breaking order parameter. This leads to a spin-valley locking in which the electrons of a Cooper pair are forced to live on different Fermi lines attached to opposite valleys. Furthermore, we find an effective intrinsic spin-orbit coupling explaining the protection of the superconductivity against in-plane magnetic fields. The effect of spin-selective valley symmetry breaking is validated as it reproduces the experimental observation of the reset of the Hall density at 2-hole doping. It also implies a breakdown of the symmetry of the bands from C6 to C3, with an enhancement of the anisotropy of the Fermi lines which is at the origin of a Kohn-Luttinger (pairing) instability. The isotropy of the bands is gradually recovered, however, when the Fermi level approaches the bottom of the second valence band, explaining why the superconductivity fades away in the doping range beyond 3 holes per moiré unit cell in twisted trilayer graphene.
Collapse
Affiliation(s)
- J González
- Instituto de Estructura de la Materia, CSIC, E-28006, Madrid, Spain.
| | - T Stauber
- Instituto de Ciencia de Materiales de Madrid, CSIC, E-28049, Madrid, Spain.
| |
Collapse
|
46
|
Curtis JB, Poniatowski NR, Xie Y, Yacoby A, Demler E, Narang P. Stabilizing Fluctuating Spin-Triplet Superconductivity in Graphene via Induced Spin-Orbit Coupling. PHYSICAL REVIEW LETTERS 2023; 130:196001. [PMID: 37243633 DOI: 10.1103/physrevlett.130.196001] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/26/2022] [Accepted: 04/11/2023] [Indexed: 05/29/2023]
Abstract
A recent experiment showed that a proximity-induced Ising spin-orbit coupling enhances the spin-triplet superconductivity in Bernal bilayer graphene. Here, we show that, due to the nearly perfect spin rotation symmetry of graphene, the fluctuations of the spin orientation of the triplet order parameter suppress the superconducting transition to nearly zero temperature. Our analysis shows that both an Ising spin-orbit coupling and an in-plane magnetic field can eliminate these low-lying fluctuations and can greatly enhance the transition temperature, consistent with the recent experiment. Our model also suggests the possible existence of a phase at small anisotropy and magnetic field which exhibits quasilong-range ordered spin-singlet charge 4e superconductivity, even while the triplet 2e superconducting order only exhibits short-ranged correlations. Finally, we discuss relevant experimental signatures.
Collapse
Affiliation(s)
- Jonathan B Curtis
- College of Letters and Science, University of California, Los Angeles, California 90095, USA
- Department of Physics, Harvard University, Cambridge, Massachusetts 02138, USA
| | | | - Yonglong Xie
- Department of Physics, Harvard University, Cambridge, Massachusetts 02138, USA
| | - Amir Yacoby
- Department of Physics, Harvard University, Cambridge, Massachusetts 02138, USA
| | - Eugene Demler
- Institute for Theoretical Physics, ETH Zürich, 8093 Zürich, Switzerland
| | - Prineha Narang
- College of Letters and Science, University of California, Los Angeles, California 90095, USA
| |
Collapse
|
47
|
Kim HL, Wang F. Reflective Phase-Contrast for High-Contrast Imaging of van der Waals Heterostructure. NANO LETTERS 2023; 23:2898-2904. [PMID: 36921228 DOI: 10.1021/acs.nanolett.3c00252] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/18/2023]
Abstract
Optical microscopy plays a critical role in the fabrication of two-dimensional (2D) van der Waals heterostructures. An outstanding challenge in conventional microscopy is to visualize transparent 2D layers as well as embedded monolayers in a stacked heterostructure with high optical contrast. Phase-contrast microscopy, first developed by Frits Zernike in the 1930s, leverages the interference effect between specimen scattered light and background light to increase the contrast of transparent specimens. Such phase-contrast microscopy, always in a transmission configuration, revolutionized the study of transparent cellular structures in biology. Here, we develop a versatile reflective phase-contrast microscopy for imaging 2D heterostructures. We employ two spatial light modulators to flexibly control the intensity and phase of the illumination and the reflected light. This reflective phase-contrast microscopy achieves unprecedented high contrast for imaging a transparent 2D monolayer. It also enables direct observation of 2D monolayers embedded inside a thick heterostructure that are "invisible" in conventional microscopy.
Collapse
Affiliation(s)
- Ha-Leem Kim
- Department of Physics, University of California, Berkeley, California 94720, United States
- Materials Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, California 94720, United States
| | - Feng Wang
- Department of Physics, University of California, Berkeley, California 94720, United States
- Materials Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, California 94720, United States
| |
Collapse
|
48
|
Qin W, Huang C, Wolf T, Wei N, Blinov I, MacDonald AH. Functional Renormalization Group Study of Superconductivity in Rhombohedral Trilayer Graphene. PHYSICAL REVIEW LETTERS 2023; 130:146001. [PMID: 37084431 DOI: 10.1103/physrevlett.130.146001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/05/2022] [Revised: 10/01/2022] [Accepted: 03/16/2023] [Indexed: 05/03/2023]
Abstract
We employ a functional renormalization group approach to ascertain the pairing mechanism and symmetry of the superconducting phase observed in rhombohedral trilayer graphene. Superconductivity in this system occurs in a regime of carrier density and displacement field with a weakly distorted annular Fermi sea. We find that repulsive Coulomb interactions can induce electron pairing on the Fermi surface by taking advantage of momentum-space structure associated with the finite width of the Fermi sea annulus. The degeneracy between spin-singlet and spin-triplet pairing is lifted by valley-exchange interactions that strengthen under the RG flow and develop nontrivial momentum-space structure. We find that the leading pairing instability is d-wave-like and spin singlet, and that the theoretical phase diagram versus carrier density and displacement field agrees qualitatively with experiment.
Collapse
Affiliation(s)
- Wei Qin
- Department of Physics, University of Texas at Austin, Austin, Texas 78712, USA
| | - Chunli Huang
- Department of Physics, University of Texas at Austin, Austin, Texas 78712, USA
- Theoretical Division, T-4, Los Alamos National Laboratory, Los Alamos, New Mexico 87545, USA
| | - Tobias Wolf
- Department of Physics, University of Texas at Austin, Austin, Texas 78712, USA
| | - Nemin Wei
- Department of Physics, University of Texas at Austin, Austin, Texas 78712, USA
| | - Igor Blinov
- Department of Physics, University of Texas at Austin, Austin, Texas 78712, USA
| | - Allan H MacDonald
- Department of Physics, University of Texas at Austin, Austin, Texas 78712, USA
| |
Collapse
|
49
|
Li X, Shi X, Marian D, Soriano D, Cusati T, Iannaccone G, Fiori G, Guo Q, Zhao W, Wu Y. Rhombohedral-stacked bilayer transition metal dichalcogenides for high-performance atomically thin CMOS devices. SCIENCE ADVANCES 2023; 9:eade5706. [PMID: 36791201 PMCID: PMC9931205 DOI: 10.1126/sciadv.ade5706] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/24/2022] [Accepted: 01/17/2023] [Indexed: 06/18/2023]
Abstract
Van der Waals coupling with different stacking configurations is emerging as a powerful method to tune the optical and electronic properties of atomically thin two-dimensional materials. Here, we investigate 3R-stacked transition-metal dichalcogenides as a possible option for high-performance atomically thin field-effect transistors (FETs). We report that the effective mobility of 3R bilayer WS2 (WSe2) is 65% (50%) higher than that of 2H WS2 (WSe2). The 3R bilayer WS2 n-type FET exhibits a high on-state current of 480 μA/μm at Vds = 1 V and an ultralow on-state resistance of 1 kilohm·μm. Our observations, together with multiscale simulations, reveal that these improvements originate from the strong interlayer coupling in the 3R stacking, which is reflected in a higher conductance compared to the 2H stacking. Our method provides a general and scalable route toward advanced channel materials in future electronic devices for ultimate scaling, especially for complementary metal oxide semiconductor applications.
Collapse
Affiliation(s)
- Xuefei Li
- Wuhan National High Magnetic Field Center and School of Optical and Electronic Information, Huazhong University of Science and Technology, Wuhan 430074, China
| | - Xinhang Shi
- Wuhan National High Magnetic Field Center and School of Optical and Electronic Information, Huazhong University of Science and Technology, Wuhan 430074, China
| | - Damiano Marian
- Dipartimento di Ingegneria dell’Informazione, Università di Pisa, Via Girolamo Caruso 16, Pisa 56122, Italia
| | - David Soriano
- Dipartimento di Ingegneria dell’Informazione, Università di Pisa, Via Girolamo Caruso 16, Pisa 56122, Italia
- Departamento de Física Aplicada, Universidad de Alicante, San Vicente del Raspeig 03690, Spain
| | - Teresa Cusati
- Dipartimento di Ingegneria dell’Informazione, Università di Pisa, Via Girolamo Caruso 16, Pisa 56122, Italia
| | - Giuseppe Iannaccone
- Dipartimento di Ingegneria dell’Informazione, Università di Pisa, Via Girolamo Caruso 16, Pisa 56122, Italia
| | - Gianluca Fiori
- Dipartimento di Ingegneria dell’Informazione, Università di Pisa, Via Girolamo Caruso 16, Pisa 56122, Italia
| | - Qi Guo
- Wuhan National High Magnetic Field Center and School of Optical and Electronic Information, Huazhong University of Science and Technology, Wuhan 430074, China
| | - Wenjie Zhao
- Wuhan National High Magnetic Field Center and School of Optical and Electronic Information, Huazhong University of Science and Technology, Wuhan 430074, China
| | - Yanqing Wu
- School of Integrated Circuits and Key Laboratory of Microelectronic Devices and Circuits (MOE), Peking University, Beijing 100871, China
| |
Collapse
|
50
|
Abstract
The invention of scanning probe microscopy revolutionized the way electronic phenomena are visualized1. Whereas present-day probes can access a variety of electronic properties at a single location in space2, a scanning microscope that can directly probe the quantum mechanical existence of an electron at several locations would provide direct access to key quantum properties of electronic systems, so far unreachable. Here, we demonstrate a conceptually new type of scanning probe microscope-the quantum twisting microscope (QTM)-capable of performing local interference experiments at its tip. The QTM is based on a unique van der Waals tip, allowing the creation of pristine two-dimensional junctions, which provide a multitude of coherently interfering paths for an electron to tunnel into a sample. With the addition of a continuously scanned twist angle between the tip and sample, this microscope probes electrons along a line in momentum space similar to how a scanning tunnelling microscope probes electrons along a line in real space. Through a series of experiments, we demonstrate room-temperature quantum coherence at the tip, study the twist angle evolution of twisted bilayer graphene, directly image the energy bands of monolayer and twisted bilayer graphene and, finally, apply large local pressures while visualizing the gradual flattening of the low-energy band of twisted bilayer graphene. The QTM opens the way for new classes of experiments on quantum materials.
Collapse
|