1
|
Wang F, Guo S, Zheng S, Sun X. Quantifying the biogenic silica production of picoplankton in the oligotrophic ocean: A case study in the South China Sea. MARINE POLLUTION BULLETIN 2024; 206:116776. [PMID: 39079477 DOI: 10.1016/j.marpolbul.2024.116776] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/21/2024] [Revised: 07/17/2024] [Accepted: 07/23/2024] [Indexed: 08/21/2024]
Abstract
Silicon (Si) utilization is not limited to eukaryotes. Recent research has suggested that the pattern of a large contribution of picocyanobacteria to biogenic silica (bSi) stocks might be widespread in the oligotrophic open ocean. We are the first to measure the size-fractionated bSi standing stocks and production rates in the oligotrophic South China Sea (SCS), which has obvious characteristics of oligotrophic waters. The 150 m integrated bSi standing stocks in the pico-sized fractions averaged 23 % of the total; the contribution of picoplankton to the total bSi production rate was 44 %. Interestingly, our estimated contributions of Synechococcus alone to the <2 μm bSi standing stock and < 2 μm bSi production rates averaged 14 % and 66 %, respectively, indicating that the significant and persistent contribution of bSi was strongly associated with marine picocyanobacteria. Furthermore, the dynamic changes in nutrient concentrations, especially in DIN and DIP, also potentially affected the variability in picoplankton bSi stocks and production rates, while the effects of temperature and salinity were not obvious. In this study, we have provided new information on measurable bSi in the picoplankton size fraction and its production rate in the SCS. We have demonstrated that picoplankton contributes a measurable, and at times significant, proportion to both the total bSi standing stock and its production rate in the SCS. A high silicon content within picocyanobacteria has important implications for understanding both their ecology and their contribution to biogeochemistry.
Collapse
Affiliation(s)
- Feng Wang
- Jiaozhou Bay National Marine Ecosystem Research Station, Institute of Oceanology, Chinese Academy of Sciences, 7 Nanhai Road, Qingdao, China; University of Chinese Academy of Sciences, Beijing, China
| | - Shujin Guo
- Jiaozhou Bay National Marine Ecosystem Research Station, Institute of Oceanology, Chinese Academy of Sciences, 7 Nanhai Road, Qingdao, China; Laboratory for Marine Ecology and Environmental Science, Qingdao Marine Science and Technology Center, Qingdao, China; Center for Ocean Mega-Science, Chinese Academy of Sciences, Qingdao, China
| | - Shan Zheng
- Jiaozhou Bay National Marine Ecosystem Research Station, Institute of Oceanology, Chinese Academy of Sciences, 7 Nanhai Road, Qingdao, China; Laboratory for Marine Ecology and Environmental Science, Qingdao Marine Science and Technology Center, Qingdao, China; Center for Ocean Mega-Science, Chinese Academy of Sciences, Qingdao, China
| | - Xiaoxia Sun
- Jiaozhou Bay National Marine Ecosystem Research Station, Institute of Oceanology, Chinese Academy of Sciences, 7 Nanhai Road, Qingdao, China; University of Chinese Academy of Sciences, Beijing, China; Laboratory for Marine Ecology and Environmental Science, Qingdao Marine Science and Technology Center, Qingdao, China; Center for Ocean Mega-Science, Chinese Academy of Sciences, Qingdao, China.
| |
Collapse
|
2
|
Nunes M, Lemley DA, Machite A, Adams JB. Benthic diatom diversity in microtidal mangrove estuaries. MARINE POLLUTION BULLETIN 2024; 206:116706. [PMID: 39002218 DOI: 10.1016/j.marpolbul.2024.116706] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/12/2024] [Revised: 07/04/2024] [Accepted: 07/05/2024] [Indexed: 07/15/2024]
Abstract
Mangrove habitats support taxonomically diverse benthic communities, yet their effects on microphytobenthos remain understudied. This study investigated the benthic diatom community structure of 17 microtidal mangrove estuaries situated along the east coast of South Africa. High sediment organic content (≤ 18.1 %) and clay fraction (≤ 17.5 %) measured in the Avicennia marina and Rhizophora mucronata habitats favoured diverse communities (H' > 3) and the presence of unique benthic diatom species such as Gyrosigma balticum. The habitat complexity and stabilisation provided by the mangrove forests served as microrefugia for colonisation of benthic diatoms. Taxa displayed a broad range of nutrient tolerance, with some nutrient tolerant species (e.g., Halamphora acutiuscula, Navicula clausii, Navicula gregaria, and Navicula radiosa) dominating the communities in the Mbashe and Mnyameni estuaries. The presence of these nutrient tolerant taxa in relatively pristine systems serves as an early warning for possible anthropogenic nutrient enrichment.
Collapse
Affiliation(s)
- Monique Nunes
- Botany Department, Institute for Coastal and Marine Research, Nelson Mandela University, Gqeberha 6031, South Africa; DSI/NRF Research Chair in Shallow Water Ecosystems, Nelson Mandela University, Gqeberha 6031, South Africa.
| | - Daniel A Lemley
- Botany Department, Institute for Coastal and Marine Research, Nelson Mandela University, Gqeberha 6031, South Africa; DSI/NRF Research Chair in Shallow Water Ecosystems, Nelson Mandela University, Gqeberha 6031, South Africa
| | - Anesu Machite
- Botany Department, Institute for Coastal and Marine Research, Nelson Mandela University, Gqeberha 6031, South Africa; DSI/NRF Research Chair in Shallow Water Ecosystems, Nelson Mandela University, Gqeberha 6031, South Africa
| | - Janine B Adams
- Botany Department, Institute for Coastal and Marine Research, Nelson Mandela University, Gqeberha 6031, South Africa; DSI/NRF Research Chair in Shallow Water Ecosystems, Nelson Mandela University, Gqeberha 6031, South Africa
| |
Collapse
|
3
|
Laget M, Drago L, Panaïotis T, Kiko R, Stemmann L, Rogge A, Llopis-Monferrer N, Leynaert A, Irisson JO, Biard T. Global census of the significance of giant mesopelagic protists to the marine carbon and silicon cycles. Nat Commun 2024; 15:3341. [PMID: 38684684 PMCID: PMC11058905 DOI: 10.1038/s41467-024-47651-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2023] [Accepted: 04/09/2024] [Indexed: 05/02/2024] Open
Abstract
Thriving in both epipelagic and mesopelagic layers, Rhizaria are biomineralizing protists, mixotrophs or flux-feeders, often reaching gigantic sizes. In situ imaging showed their contribution to oceanic carbon stock, but left their contribution to element cycling unquantified. Here, we compile a global dataset of 167,551 Underwater Vision Profiler 5 Rhizaria images, and apply machine learning models to predict their organic carbon and biogenic silica biomasses in the uppermost 1000 m. We estimate that Rhizaria represent up to 1.7% of mesozooplankton carbon biomass in the top 500 m. Rhizaria biomass, dominated by Phaeodaria, is more than twice as high in the mesopelagic than in the epipelagic layer. Globally, the carbon demand of mesopelagic, flux-feeding Phaeodaria reaches 0.46 Pg C y-1, representing 3.8 to 9.2% of gravitational carbon export. Furthermore, we show that Rhizaria are a unique source of biogenic silica production in the mesopelagic layer, where no other silicifiers are present. Our global census further highlights the importance of Rhizaria for ocean biogeochemistry.
Collapse
Affiliation(s)
- Manon Laget
- LOG, Laboratoire d'Océanologie et de Géosciences, Univ. Littoral Côte d'Opale, Univ. Lille, CNRS, IRD, UMR 8187, Wimereux, France.
| | - Laetitia Drago
- Sorbonne Université, CNRS, Laboratoire d'Océanographie de Villefranche (LOV), Villefranche-sur-Mer, France
| | - Thelma Panaïotis
- Sorbonne Université, CNRS, Laboratoire d'Océanographie de Villefranche (LOV), Villefranche-sur-Mer, France
| | - Rainer Kiko
- GEOMAR Helmholtz Center for Ocean Research Kiel, Kiel, Germany
| | - Lars Stemmann
- Sorbonne Université, CNRS, Laboratoire d'Océanographie de Villefranche (LOV), Villefranche-sur-Mer, France
| | - Andreas Rogge
- Section Benthic Ecology, Alfred Wegener Institute Helmholtz Center for Polar and Marine Research (AWI), Bremerhaven, Germany
| | - Natalia Llopis-Monferrer
- Monterey Bay Aquarium Research Institute, Moss Landing, CA, USA
- Sorbonne University, CNRS, UMR7144 Adaptation and Diversity in Marine Environment (AD2M) Laboratory, Ecology of Marine Plankton team, Station Biologique de Roscoff, Roscoff, France
| | - Aude Leynaert
- Université de Brest, CNRS, IRD, Ifremer, LEMAR, Plouzané, France
| | - Jean-Olivier Irisson
- Sorbonne Université, CNRS, Laboratoire d'Océanographie de Villefranche (LOV), Villefranche-sur-Mer, France
| | - Tristan Biard
- LOG, Laboratoire d'Océanologie et de Géosciences, Univ. Littoral Côte d'Opale, Univ. Lille, CNRS, IRD, UMR 8187, Wimereux, France
| |
Collapse
|
4
|
Feng C, Shen A, Zhu Y, Xu Y, Lu X. Changes in dinoflagellate and diatom blooms in the East China Sea over the last two decades, under different spatial and temporal scale scenarios. MARINE POLLUTION BULLETIN 2024; 200:116097. [PMID: 38310723 DOI: 10.1016/j.marpolbul.2024.116097] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/07/2023] [Revised: 01/28/2024] [Accepted: 01/28/2024] [Indexed: 02/06/2024]
Abstract
Frequent algal blooms in the nearshore area of the East China Sea (ECS) pose a serious threat to both the marine environment and human health. Climate and environmental changes play an important role in the occurrence of diatoms and dinoflagellates blooms. Using the MODIS-Aqua 1-km satellite observations, the outbreaks of dinoflagellate and diatom blooms in the ECS coast in summer during 2003-2022 were mapped. Our results found that although the bloom frequency of dinoflagellate was consistently higher than diatoms, its bloom intensity showed a slightly decline trend in recent decades. The driving factors analysis showed that river runoff and sediments discharge played different effect on the formation of diatom and dinoflagellate blooms. Besides, our results compared the effect of El Niño and La Niña on bloom occurrences. This study was supposed to provide detailed insights into algal blooms, with important implications for relevant meteorological and climate changes in coastal regions.
Collapse
Affiliation(s)
- Chi Feng
- School of Geography Science and Geomatics Engineering, Suzhou University of Science and Technology, Suzhou 215009, China.
| | - Anglu Shen
- College of Marine Ecology and Environment, Shanghai Ocean University, Shanghai 201306, China
| | - Yuanli Zhu
- Key Laboratory of Marine Ecosystem Dynamics, Second Institute of Oceanography, Ministry of Natural Re-sources, Hangzhou 310012, China
| | - Yongjiu Xu
- School of Fisheries, Zhejiang Ocean University, China
| | - Xia Lu
- School of Geography Science and Geomatics Engineering, Suzhou University of Science and Technology, Suzhou 215009, China
| |
Collapse
|
5
|
Li J, Wang Z, Yang H, Wang Z, Liu F, Chen X, Huang X. Phosphorus forms and zinc concentrations affect the physiological ecology and sinking rate of Thalassiosira weissflogii. MARINE POLLUTION BULLETIN 2024; 200:116124. [PMID: 38325204 DOI: 10.1016/j.marpolbul.2024.116124] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/04/2024] [Revised: 02/01/2024] [Accepted: 02/01/2024] [Indexed: 02/09/2024]
Abstract
The combined effects of phosphorus (P) forms and zinc (Zn) concentrations on diatom silicification remain unclear. In this study, we investigate the effects of different Zn concentrations on the growth, cellular silicon content and sinking rate of Thalassiosira weissflogii under different P forms. The results showed that under the dissolved inorganic phosphorus (DIP) treatments, the specific growth rate of T. weissflogii in Zn limitation culture was significantly lower than that in Zn-replete culture. However, T. weissflogii cellular silicon content and sinking rate increased. Moreover, the reduced specific growth rate (7 %, p < 0.05), enhanced ALP activity (63 %, p < 0.05), and sinking rate (20 %, p < 0.05) for Zn-deplete T. weissflogii implied that the bioavailability of dissolved organic phosphorus (DOP) was depressed under Zn deplete medium. This study demonstrates that the physiological ecology and sinking rate of the diatom T. weissflogii were affected by both individual and combined changes in P forms and Zn concentrations.
Collapse
Affiliation(s)
- Jiandi Li
- College of Chemistry, Chemical Engineering & Environmental Science, Minnan Normal University, Zhangzhou 363000, China
| | - Zhaofei Wang
- College of Chemistry, Chemical Engineering & Environmental Science, Minnan Normal University, Zhangzhou 363000, China
| | - Hang Yang
- College of Chemistry, Chemical Engineering & Environmental Science, Minnan Normal University, Zhangzhou 363000, China
| | - Zhenfeng Wang
- College of Chemistry, Chemical Engineering & Environmental Science, Minnan Normal University, Zhangzhou 363000, China
| | - Fengjiao Liu
- College of Chemistry, Chemical Engineering & Environmental Science, Minnan Normal University, Zhangzhou 363000, China; Fujian Province Key Laboratory of Modern Analytical Science and Separation Technology, Fujian Province University Key Laboratory of Pollution Monitoring and Control, Minnan Normal University, Zhangzhou 363000, China
| | - Xiaohuang Chen
- College of Chemistry, Chemical Engineering & Environmental Science, Minnan Normal University, Zhangzhou 363000, China; Fujian Province Key Laboratory of Modern Analytical Science and Separation Technology, Fujian Province University Key Laboratory of Pollution Monitoring and Control, Minnan Normal University, Zhangzhou 363000, China
| | - Xuguang Huang
- College of Chemistry, Chemical Engineering & Environmental Science, Minnan Normal University, Zhangzhou 363000, China; Fujian Province Key Laboratory of Modern Analytical Science and Separation Technology, Fujian Province University Key Laboratory of Pollution Monitoring and Control, Minnan Normal University, Zhangzhou 363000, China.
| |
Collapse
|
6
|
Goldenberg SU, Spisla C, Sánchez N, Taucher J, Spilling K, Sswat M, Fiesinger A, Fernández-Méndez M, Krock B, Hauss H, Haussmann J, Riebesell U. Diatom-mediated food web functioning under ocean artificial upwelling. Sci Rep 2024; 14:3955. [PMID: 38368496 PMCID: PMC10874431 DOI: 10.1038/s41598-024-54345-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2023] [Accepted: 02/12/2024] [Indexed: 02/19/2024] Open
Abstract
Enhancing ocean productivity by artificial upwelling is evaluated as a nature-based solution for food security and climate change mitigation. Fish production is intended through diatom-based plankton food webs as these are assumed to be short and efficient. However, our findings from mesocosm experiments on artificial upwelling in the oligotrophic ocean disagree with this classical food web model. Here, diatoms did not reduce trophic length and instead impaired the transfer of primary production to crustacean grazers and small pelagic fish. The diatom-driven decrease in trophic efficiency was likely mediated by changes in nutritional value for the copepod grazers. Whilst diatoms benefitted the availability of essential fatty acids, they also caused unfavorable elemental compositions via high carbon-to-nitrogen ratios (i.e. low protein content) to which the grazers were unable to adapt. This nutritional imbalance for grazers was most pronounced in systems optimized for CO2 uptake through carbon-to-nitrogen ratios well beyond Redfield. A simultaneous enhancement of fisheries production and carbon sequestration via artificial upwelling may thus be difficult to achieve given their opposing stoichiometric constraints. Our study suggest that food quality can be more critical than quantity to maximize food web productivity during shorter-term fertilization of the oligotrophic ocean.
Collapse
Affiliation(s)
- Silvan Urs Goldenberg
- Biological Oceanography, GEOMAR Helmholtz Centre for Ocean Research Kiel, Kiel, Germany.
| | - Carsten Spisla
- Biological Oceanography, GEOMAR Helmholtz Centre for Ocean Research Kiel, Kiel, Germany
| | - Nicolás Sánchez
- Biological Oceanography, GEOMAR Helmholtz Centre for Ocean Research Kiel, Kiel, Germany
| | - Jan Taucher
- Biological Oceanography, GEOMAR Helmholtz Centre for Ocean Research Kiel, Kiel, Germany
| | - Kristian Spilling
- Marine and Freshwater Solutions, Finnish Environment Institute, Helsinki, Finland
- Centre for Coastal Research, University of Agder, Kristiansand, Norway
| | - Michael Sswat
- Biological Oceanography, GEOMAR Helmholtz Centre for Ocean Research Kiel, Kiel, Germany
| | - Anna Fiesinger
- Biological Oceanography, GEOMAR Helmholtz Centre for Ocean Research Kiel, Kiel, Germany
- Department of Biology, University of Konstanz, Konstanz, Germany
| | - Mar Fernández-Méndez
- Biological Oceanography, GEOMAR Helmholtz Centre for Ocean Research Kiel, Kiel, Germany
- Alfred Wegener Institute Helmholtz Centre for Polar and Marine Research, Bremerhaven, Germany
| | - Bernd Krock
- Alfred Wegener Institute Helmholtz Centre for Polar and Marine Research, Bremerhaven, Germany
| | - Helena Hauss
- Biological Oceanography, GEOMAR Helmholtz Centre for Ocean Research Kiel, Kiel, Germany
- NORCE Norwegian Research Centre, Mekjarvik, Norway
| | - Jacqueline Haussmann
- Biological Oceanography, GEOMAR Helmholtz Centre for Ocean Research Kiel, Kiel, Germany
| | - Ulf Riebesell
- Biological Oceanography, GEOMAR Helmholtz Centre for Ocean Research Kiel, Kiel, Germany
| |
Collapse
|
7
|
Shetye S, Kurian S, Shenoy D, Gauns M, Pratihary A, Shirodkar G, Naik H, Fernandes M, Vidya P, Nandakumar K, Shaikh A. Contrasting patterns in pH variability in the Arabian Sea and Bay of Bengal. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2024; 31:15271-15288. [PMID: 38289549 DOI: 10.1007/s11356-024-31950-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/28/2023] [Accepted: 01/05/2024] [Indexed: 02/24/2024]
Abstract
Continuous understanding of the ongoing ocean acidification (OA) is essential for predicting the future impact of OA on marine ecosystems. Here we report the results of open ocean time-series measurements (19 cruises) of seawater pH in total hydrogen ion scale (pHT) and associated parameters in the Arabian Sea (AS) and the Bay of Bengal (BoB). During southwest monsoon (SWM), the pHT within the 30 to 100 m water column shows the maximum difference between the two basins with BoB pHT being lower (up to ~0.39 units) than AS which could be due to freshwater influx from rivers, mixed layer dynamics, and cold-core eddies. However, during Spring inter-monsoon (SIM), the pHT of BoB follows the trend of AS. A contrasting finding is that the lowest pHT occurs at 350 to 500 m in the BoB while it is ~1000 m in the AS. The pHT within the 150 to 1500 m layer of these two basins shows lower values by 0.03 (±0.02) in the BoB as compared to the AS. The possible reasons for the low pHT within the BoB oxygen minimum zone (OMZ) could be due to intrusion of western Pacific water in the BoB, freshwater influx from rivers, variations in OMZ of the two basins, higher temperature (~2°C) within the OMZ of the AS, and denitrification in the AS. The pHT in both the basins (500 to 1000 m) is lower than in the North Atlantic and higher than in the North Pacific waters; however, the pHT in the 200 to 500 m is lower in the BoB than in all these basins. This study highlights the under-saturation of calcium carbonate at very shallow depths (~ 100 m) in the BoB, indicating that the plankton in the BoB are facing a major risk from OA compared to the AS and need further investigation.
Collapse
Affiliation(s)
- Suhas Shetye
- CSIR-National Institute of Oceanography, Dona Paula, Goa, 403 004, India.
| | - Siby Kurian
- CSIR-National Institute of Oceanography, Dona Paula, Goa, 403 004, India
| | - Damodar Shenoy
- CSIR-National Institute of Oceanography, Dona Paula, Goa, 403 004, India
| | - Mangesh Gauns
- CSIR-National Institute of Oceanography, Dona Paula, Goa, 403 004, India
| | - Anil Pratihary
- CSIR-National Institute of Oceanography, Dona Paula, Goa, 403 004, India
| | - Gayatri Shirodkar
- CSIR-National Institute of Oceanography, Dona Paula, Goa, 403 004, India
| | - Hema Naik
- CSIR-National Institute of Oceanography, Dona Paula, Goa, 403 004, India
| | - Michelle Fernandes
- CSIR-National Institute of Oceanography, Dona Paula, Goa, 403 004, India
| | - Pottekkatt Vidya
- National Centre for Polar and Ocean Research (NCPOR), Ministry of Earth Sciences, Headland Sada, Goa, 403 804, India
| | - Kuniyil Nandakumar
- CSIR-National Institute of Oceanography, Dona Paula, Goa, 403 004, India
| | - Adnan Shaikh
- CSIR-National Institute of Oceanography, Dona Paula, Goa, 403 004, India
| |
Collapse
|
8
|
Jirsová D, Wideman JG. Integrated overview of stramenopile ecology, taxonomy, and heterotrophic origin. THE ISME JOURNAL 2024; 18:wrae150. [PMID: 39077993 PMCID: PMC11412368 DOI: 10.1093/ismejo/wrae150] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/29/2024] [Revised: 06/12/2024] [Accepted: 07/29/2024] [Indexed: 07/31/2024]
Abstract
Stramenopiles represent a significant proportion of aquatic and terrestrial biota. Most biologists can name a few, but these are limited to the phototrophic (e.g. diatoms and kelp) or parasitic species (e.g. oomycetes, Blastocystis), with free-living heterotrophs largely overlooked. Though our attention is slowly turning towards heterotrophs, we have only a limited understanding of their biology due to a lack of cultured models. Recent metagenomic and single-cell investigations have revealed the species richness and ecological importance of stramenopiles-especially heterotrophs. However, our lack of knowledge of the cell biology and behaviour of these organisms leads to our inability to match species to their particular ecological functions. Because photosynthetic stramenopiles are studied independently of their heterotrophic relatives, they are often treated separately in the literature. Here, we present stramenopiles as a unified group with shared synapomorphies and evolutionary history. We introduce the main lineages, describe their important biological and ecological traits, and provide a concise update on the origin of the ochrophyte plastid. We highlight the crucial role of heterotrophs and mixotrophs in our understanding of stramenopiles with the goal of inspiring future investigations in taxonomy and life history. To understand each of the many diversifications within stramenopiles-towards autotrophy, osmotrophy, or parasitism-we must understand the ancestral heterotrophic flagellate from which they each evolved. We hope the following will serve as a primer for new stramenopile researchers or as an integrative refresher to those already in the field.
Collapse
Affiliation(s)
- Dagmar Jirsová
- Center for Mechanisms of Evolution, Biodesign Institute, School of Life Sciences, Arizona State University, 1001 S McAllister Avenue, Tempe, Arizona, 85287-7701, United States
- Institute of Parasitology, Biology Centre, Czech Academy of Sciences, Branišovská 31, České Budějovice 37005, Czech Republic
| | - Jeremy G Wideman
- Center for Mechanisms of Evolution, Biodesign Institute, School of Life Sciences, Arizona State University, 1001 S McAllister Avenue, Tempe, Arizona, 85287-7701, United States
| |
Collapse
|
9
|
Chen F, Zhang Z, Li Y, Jiang H, Zhou Y, Liu H, Pan K, Ma J. Impact of facemask debris on marine diatoms: Physiology, surface properties, sinking rate, and copepod ingestion. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 905:167222. [PMID: 37734605 DOI: 10.1016/j.scitotenv.2023.167222] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/25/2023] [Revised: 09/03/2023] [Accepted: 09/18/2023] [Indexed: 09/23/2023]
Abstract
Discarded surgical masks have become a new source of plastic waste in seawater capable of releasing numerous micro and nano plastic fragments. However, little information is available about how this waste impacts the ecological state of marine phytoplankton. Here, we exposed two model marine diatoms (Phaeodactylum tricornutum and Thalassiosira weissflogii) to mask-released debris (MD) that is characterized by various differently-charged functional groups. Although MD could only bind loosely to diatoms, it still inhibited their growth and significantly altered cell surface physicochemical properties. At the nanoscale, MD-exposed cell walls showed enhanced roughness and modulus, besides declined electrical potential, adhesion, and proportion of oxygen-containing compounds. As a result, diatom ingestion by copepods was reduced, and the sinking rate of the carbon pool consisting of MD plus diatoms decreased as well. Our study indicated that MD effects on diatoms have the potential to slow down carbon export from surface seawater to the deep sea. Since oxidation and generation of functional groups are common during the aging process of microplastics (MPs) in nature, the interactions between the diatom cell surface and MD have important environmental significance.
Collapse
Affiliation(s)
- Fengyuan Chen
- SZU-HKUST Joint PhD Program in Marine Environmental Science, Shenzhen University, Shenzhen, China; Department of Ocean Science, The Hong Kong University of Science and Technology, Hong Kong Special Administrative Region
| | - Zhen Zhang
- SZU-HKUST Joint PhD Program in Marine Environmental Science, Shenzhen University, Shenzhen, China; Department of Ocean Science, The Hong Kong University of Science and Technology, Hong Kong Special Administrative Region
| | - Yanping Li
- Shenzhen Key Laboratory of Marine Microbiome Engineering, Institute for Advanced Study, Shenzhen University, Shenzhen 518060, Guangdong Province, China
| | - Hao Jiang
- Key Laboratory of Aquatic Botany and Watershed Ecology, Wuhan Botanical Garden, Chinese Academy of Sciences, Wuhan 430074, Hubei Province, China
| | - Yanfei Zhou
- Key Laboratory of Aquatic Botany and Watershed Ecology, Wuhan Botanical Garden, Chinese Academy of Sciences, Wuhan 430074, Hubei Province, China
| | - Hongbin Liu
- Department of Ocean Science, The Hong Kong University of Science and Technology, Hong Kong Special Administrative Region
| | - Ke Pan
- SZU-HKUST Joint PhD Program in Marine Environmental Science, Shenzhen University, Shenzhen, China; Shenzhen Key Laboratory of Marine Microbiome Engineering, Institute for Advanced Study, Shenzhen University, Shenzhen 518060, Guangdong Province, China.
| | - Jie Ma
- Shenzhen Key Laboratory of Marine Microbiome Engineering, Institute for Advanced Study, Shenzhen University, Shenzhen 518060, Guangdong Province, China.
| |
Collapse
|
10
|
Limoges A, Ribeiro S, Van Nieuwenhove N, Jackson R, Juggins S, Crosta X, Weckström K. Marine diatoms record Late Holocene regime shifts in the Pikialasorsuaq ecosystem. GLOBAL CHANGE BIOLOGY 2023; 29:6503-6516. [PMID: 37772765 DOI: 10.1111/gcb.16958] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/21/2023] [Revised: 08/10/2023] [Accepted: 09/12/2023] [Indexed: 09/30/2023]
Abstract
The Pikialasorsuaq (North Water polynya) is an area of local and global cultural and ecological significance. However, over the last decades, the region has been subject to rapid warming, and in some recent years, the seasonal ice arch that has historically defined the polynya's northern boundary has failed to form. Both factors are deemed to alter the polynya's ecosystem functioning. To understand how climate-induced changes to the Pikialasorsuaq impact the basis of the marine food web, we explored diatom community-level responses to changing conditions, from a sediment core spanning the last 3800 years. Four metrics were used: total diatom concentrations, taxonomic composition, mean size, and diversity. Generalized additive model statistics highlight significant changes at ca. 2400, 2050, 1550, 1200, and 130 cal years BP, all coeval with known transitions between colder and warmer intervals of the Late Holocene, and regime shifts in the Pikialasorsuaq. Notably, a weaker/contracted polynya during the Roman Warm Period and Medieval Climate Anomaly caused the diatom community to reorganize via shifts in species composition, with the presence of larger taxa but lower diversity, and significantly reduced export production. This study underlines the high sensitivity of primary producers to changes in the polynya dynamics and illustrates that the strong pulse of early spring cryopelagic diatoms that makes the Pikialasorsuaq exceptionally productive may be jeopardized by rapid warming and associated Nares Strait ice arch destabilization. Future alterations to the phenology of primary producers may disproportionately impact higher trophic levels and keystone species in this region, with implications for Indigenous Peoples and global diversity.
Collapse
Affiliation(s)
- Audrey Limoges
- Department of Earth Sciences, University of New Brunswick, Fredericton, New Brunswick, Canada
| | - Sofia Ribeiro
- Department of Glaciology and Climate, Geological Survey of Denmark and Greenland, Copenhagen, Denmark
| | - Nicolas Van Nieuwenhove
- Department of Earth Sciences, University of New Brunswick, Fredericton, New Brunswick, Canada
| | - Rebecca Jackson
- Department of Glaciology and Climate, Geological Survey of Denmark and Greenland, Copenhagen, Denmark
- Globe Institute, Copenhagen University, Copenhagen, Denmark
| | - Stephen Juggins
- School of Geography, Politics and Sociology, Newcastle University, Newcastle upon Tyne, UK
| | - Xavier Crosta
- CNRS, EPHE, UMR 5805 EPOC, Université de Bordeaux, Pessac Cedex, France
| | - Kaarina Weckström
- Ecosystems and Environment Research Programme (ECRU), University of Helsinki, Helsinki, Finland
| |
Collapse
|
11
|
Vona D, Flemma A, Piccapane F, Cotugno P, Cicco SR, Armenise V, Vicente-Garcia C, Giangregorio MM, Procino G, Ragni R. Drug Delivery through Epidermal Tissue Cells by Functionalized Biosilica from Diatom Microalgae. Mar Drugs 2023; 21:438. [PMID: 37623719 PMCID: PMC10456091 DOI: 10.3390/md21080438] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2023] [Revised: 07/28/2023] [Accepted: 08/01/2023] [Indexed: 08/26/2023] Open
Abstract
Diatom microalgae are a natural source of fossil biosilica shells, namely the diatomaceous earth (DE), abundantly available at low cost. High surface area, mesoporosity and biocompatibility, as well as the availability of a variety of approaches for surface chemical modification, make DE highly profitable as a nanostructured material for drug delivery applications. Despite this, the studies reported so far in the literature are generally limited to the development of biohybrid systems for drug delivery by oral or parenteral administration. Here we demonstrate the suitability of diatomaceous earth properly functionalized on the surface with n-octyl chains as an efficient system for local drug delivery to skin tissues. Naproxen was selected as a non-steroidal anti-inflammatory model drug for experiments performed both in vitro by immersion of the drug-loaded DE in an artificial sweat solution and, for the first time, by trans-epidermal drug permeation through a 3D-organotypic tissue that better mimics the in vivo permeation mechanism of drugs in human skin tissues. Octyl chains were demonstrated to both favour the DE adhesion onto porcine skin tissues and to control the gradual release and the trans-epidermal permeation of Naproxen within 24 h of the beginning of experiments. The evidence of the viability of human epithelial cells after permeation of the drug released from diatomaceous earth, also confirmed the biocompatibility with human skin of both Naproxen and mesoporous biosilica from diatom microalgae, disclosing promising applications of these drug-delivery systems for therapies of skin diseases.
Collapse
Affiliation(s)
- Danilo Vona
- Chemistry Department, University of Bari “Aldo Moro”, Via Orabona 4, I-70126 Bari, Italy; (D.V.); (A.F.); (P.C.); (V.A.); (C.V.-G.)
| | - Annarita Flemma
- Chemistry Department, University of Bari “Aldo Moro”, Via Orabona 4, I-70126 Bari, Italy; (D.V.); (A.F.); (P.C.); (V.A.); (C.V.-G.)
| | - Francesca Piccapane
- Bioscience, Biotechnology and Biopharmaceutics Department, University of Bari “Aldo Moro”, Via Orabona 4, I-70126 Bari, Italy;
| | - Pietro Cotugno
- Chemistry Department, University of Bari “Aldo Moro”, Via Orabona 4, I-70126 Bari, Italy; (D.V.); (A.F.); (P.C.); (V.A.); (C.V.-G.)
| | - Stefania Roberta Cicco
- Institute for the Chemistry of Organometallic Compounds (ICCOM), Consiglio Nazionale delle Ricerche (CNR), Chemistry Department, Via Orabona 4, I-70126 Bari, Italy;
| | - Vincenza Armenise
- Chemistry Department, University of Bari “Aldo Moro”, Via Orabona 4, I-70126 Bari, Italy; (D.V.); (A.F.); (P.C.); (V.A.); (C.V.-G.)
| | - Cesar Vicente-Garcia
- Chemistry Department, University of Bari “Aldo Moro”, Via Orabona 4, I-70126 Bari, Italy; (D.V.); (A.F.); (P.C.); (V.A.); (C.V.-G.)
| | - Maria Michela Giangregorio
- Institute of Nanotechnology (Nanotec), Consiglio Nazionale delle Ricerche (CNR), Chemistry Department, Via Orabona 4, I-70126 Bari, Italy;
| | - Giuseppe Procino
- Bioscience, Biotechnology and Biopharmaceutics Department, University of Bari “Aldo Moro”, Via Orabona 4, I-70126 Bari, Italy;
| | - Roberta Ragni
- Chemistry Department, University of Bari “Aldo Moro”, Via Orabona 4, I-70126 Bari, Italy; (D.V.); (A.F.); (P.C.); (V.A.); (C.V.-G.)
| |
Collapse
|
12
|
Shetye S, Pratihary A, Shenoy D, Kurian S, Gauns M, Uskaikar H, Naik B, Nandakumar K, Borker S. Rice husk as a potential source of silicate to oceanic phytoplankton. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 879:162941. [PMID: 36934917 DOI: 10.1016/j.scitotenv.2023.162941] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/07/2022] [Revised: 03/10/2023] [Accepted: 03/14/2023] [Indexed: 05/17/2023]
Abstract
Global oceans are witnessing changes in the phytoplankton community composition due to various environmental stressors such as rising temperature, stratification, nutrient limitation, and ocean acidification. The Arabian Sea is undergoing changes in its phytoplankton community composition, especially during winter, with the diatoms being replaced by harmful algal blooms (HABs) of dinoflagellates. Recent studies have already highlighted dissolved silicate (DSi) limitation and change in Silicon (Si)/Nitrogen (N) ratios as the factors responsible for the observed changes in the phytoplankton community in the Arabian Sea. Our investigation also revealed Si/N < 1 in the northern Arabian Sea, indicating DSi limitation, especially during winter. Here, we demonstrate that rice husk with its phytoliths is an important source of bioavailable DSi for oceanic phytoplankton. Our experiment showed that a rice husk can release ∼12 μM of DSi in 15 days and can release DSi for ∼20 days. The DSi availability increased diatom abundance up to ∼9 times. The major benefitted diatom species from DSi enrichment were Nitzshia spp., Striatella spp., Navicula spp., Dactiliosolen spp., and Leptocylindrus spp. The increase in diatom abundance was accompanied by an increase in fucoxanthin and dimethyl sulphide (DMS), an anti-greenhouse gas. Thus, the rice husk with its buoyancy and slow DSi release has the potential to reduce HABs, and increase diatoms and fishery resources in addition to carbon dioxide (CO2) sequestration in DSi-limited oceanic regions such as the Arabian Sea. Rice husk if released at the formation site of the Subantarctic mode water in the Southern Ocean could supply DSi to the thermocline in the global oceans thereby increasing diatom blooms and consequently the biotic carbon sequestration potential of the entire ocean.
Collapse
Affiliation(s)
- Suhas Shetye
- CSIR-National Institute of Oceanography, Dona Paula 403 004, Goa, India.
| | - Anil Pratihary
- CSIR-National Institute of Oceanography, Dona Paula 403 004, Goa, India
| | - Damodar Shenoy
- CSIR-National Institute of Oceanography, Dona Paula 403 004, Goa, India
| | - Siby Kurian
- CSIR-National Institute of Oceanography, Dona Paula 403 004, Goa, India
| | - Mangesh Gauns
- CSIR-National Institute of Oceanography, Dona Paula 403 004, Goa, India
| | - Hema Uskaikar
- CSIR-National Institute of Oceanography, Dona Paula 403 004, Goa, India
| | - Bhagyashri Naik
- CSIR-National Institute of Oceanography, Dona Paula 403 004, Goa, India
| | - K Nandakumar
- CSIR-National Institute of Oceanography, Dona Paula 403 004, Goa, India
| | - Sidhesh Borker
- CSIR-National Institute of Oceanography, Dona Paula 403 004, Goa, India
| |
Collapse
|
13
|
Wei Y, Qu K, Cui Z, Sun J. Picocyanobacteria-A non-negligible group for the export of biomineral silica to ocean depth. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2023; 342:118313. [PMID: 37301027 DOI: 10.1016/j.jenvman.2023.118313] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/23/2023] [Revised: 05/15/2023] [Accepted: 05/30/2023] [Indexed: 06/12/2023]
Abstract
Diatoms have long been thought to dominate the marine silicon (Si) cycle, as well as play an important role in the ocean's carbon (C) export, due to density-driven particle sedimentation. Research in the past decade has shed new light on the potential importance of picocyanobacteria to C export, although the sinking mechanism is still unclear. Interestingly, the recent discovery of Si accumulation by picocyanobacteria of the genus Synechococcus has strong implications for the marine Si cycle, which may also have profound influence on the oceanic C export. Understanding the mechanisms of Synechococcus Si accumulation and its ecological effects are therefore critical for addressing wider issues such as Si and C exports by small cells via biological pump. Here, we show that recent advances in process studies indicate that the presence of Si within picocyanobacteria may be a common and universal feature. Subsequently, we generalize four biochemical forms of Si potentially present in picocyanobacterial cells, which are all different from diatomaceous opal-A, and hypothesize that these various structures of Si phases may be several stage products of Si precipitation. At the same time, several aspects of Si dynamics in Synechococcus are also discussed emphatically. In addition, we provide a first estimate of picocyanobacteria Si stock and production for the global ocean, accounting for 12% of the global Si inventory and 45% of the global annual Si production in the surface ocean, respectively. The implication is that picocyanobacteria may exert a significant influence on the marine Si cycle, which is likely to alter our understanding of the long-term control of the oceanic Si cycling by diatoms. Finally, we summarize three possible mechanisms and pathways through which picocyanobacteria-derived Si can be transported to the deep ocean. Altogether, marine picocyanobacteria, despite very small in cell size, are a non-negligible group for the export of biomineral Si to deeper waters and ocean sediments.
Collapse
Affiliation(s)
- Yuqiu Wei
- Key Laboratory of Sustainable Development of Marine Fisheries, Ministry of Agriculture and Rural Affairs, Yellow Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Qingdao, 266071, China; Laboratory for Marine Fisheries Science and Food Production Processes, Pilot National Laboratory for Marine Science and Technology (Qingdao), Qingdao, 266071, China
| | - Keming Qu
- Key Laboratory of Sustainable Development of Marine Fisheries, Ministry of Agriculture and Rural Affairs, Yellow Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Qingdao, 266071, China; Laboratory for Marine Fisheries Science and Food Production Processes, Pilot National Laboratory for Marine Science and Technology (Qingdao), Qingdao, 266071, China
| | - Zhengguo Cui
- Key Laboratory of Sustainable Development of Marine Fisheries, Ministry of Agriculture and Rural Affairs, Yellow Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Qingdao, 266071, China; Laboratory for Marine Fisheries Science and Food Production Processes, Pilot National Laboratory for Marine Science and Technology (Qingdao), Qingdao, 266071, China.
| | - Jun Sun
- Institute for Advanced Marine Research, China University of Geosciences, Guangzhou, 511462, China.
| |
Collapse
|
14
|
Asante F, Bento M, Broszeit S, Bandeira S, Chitará-Nhandimo S, Amoné-Mabuto M, Correia AM. Marine macroinvertebrate ecosystem services under changing conditions of seagrasses and mangroves. MARINE ENVIRONMENTAL RESEARCH 2023; 189:106026. [PMID: 37295308 DOI: 10.1016/j.marenvres.2023.106026] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/03/2023] [Revised: 05/01/2023] [Accepted: 05/18/2023] [Indexed: 06/12/2023]
Abstract
This study aimed to investigate the impact of changing environmental conditions on MMI ES in seagrasses and mangroves. We used data from satellite and biodiversity platforms combined with field data to explore the links between ecosystem pressures (habitat conversion, overexploitation, climate change), conditions (environmental quality, ecosystem attributes), and MMI ES (provisioning, regulation, cultural). Both seagrass and mangrove extents increased significantly since 2016. While sea surface temperature showed no significant annual variation, sea surface partial pressure CO2, height above sea level and pH presented significant changes. Among the environmental quality variables only silicate, PO4 and phytoplankton showed significant annual varying trends. The MMI food provisioning increased significantly, indicating overexploitation that needs urgent attention. MMI regulation and cultural ES did not show significant trends overtime. Our results show that MMI ES are affected by multiple factors and their interactions can be complex and non-linear. We identified key research gaps and suggested future directions for research. We also provided relevant data that can support future ES assessments.
Collapse
Affiliation(s)
- Frederick Asante
- Departamento de Biologia Animal, Faculdade de Ciências, Universidade de Lisboa, Campo Grande, 1749-016, Lisboa, Portugal; MARE - Marine and Environmental Sciences Centre/ARNET - Aquatic Research Network, Faculdade de Ciências, Universidade de Lisboa, Campo Grande, 1749-016, Lisboa, Portugal; Université Libre de Bruxelles, Department of Biology of Organisms (DBO), Av. Franklin Roosevelt 50, 1050, Bruxelles, Belgium.
| | - Marta Bento
- Departamento de Biologia Animal, Faculdade de Ciências, Universidade de Lisboa, Campo Grande, 1749-016, Lisboa, Portugal; MARE - Marine and Environmental Sciences Centre/ARNET - Aquatic Research Network, Faculdade de Ciências, Universidade de Lisboa, Campo Grande, 1749-016, Lisboa, Portugal
| | - Stefanie Broszeit
- Plymouth Marine Laboratory (PML), Prospect Place, The Hoe, Plymouth, PL1 3DH, United Kingdom
| | - Salomão Bandeira
- Departamento de Ciências Biológicas, Faculdade de Ciências, Universidade Eduardo Mondlane, CP 257, Maputo, Mozambique
| | - Sadia Chitará-Nhandimo
- Departamento de Ciências Biológicas, Faculdade de Ciências, Universidade Eduardo Mondlane, CP 257, Maputo, Mozambique
| | - Manuela Amoné-Mabuto
- Departamento de Ciências Biológicas, Faculdade de Ciências, Universidade Eduardo Mondlane, CP 257, Maputo, Mozambique
| | - Alexandra Marçal Correia
- Departamento de Biologia Animal, Faculdade de Ciências, Universidade de Lisboa, Campo Grande, 1749-016, Lisboa, Portugal; MARE - Marine and Environmental Sciences Centre/ARNET - Aquatic Research Network, Faculdade de Ciências, Universidade de Lisboa, Campo Grande, 1749-016, Lisboa, Portugal.
| |
Collapse
|
15
|
Abstract
Living systems are built from a small subset of the atomic elements, including the bulk macronutrients (C,H,N,O,P,S) and ions (Mg,K,Na,Ca) together with a small but variable set of trace elements (micronutrients). Here, we provide a global survey of how chemical elements contribute to life. We define five classes of elements: those that are (i) essential for all life, (ii) essential for many organisms in all three domains of life, (iii) essential or beneficial for many organisms in at least one domain, (iv) beneficial to at least some species, and (v) of no known beneficial use. The ability of cells to sustain life when individual elements are absent or limiting relies on complex physiological and evolutionary mechanisms (elemental economy). This survey of elemental use across the tree of life is encapsulated in a web-based, interactive periodic table that summarizes the roles chemical elements in biology and highlights corresponding mechanisms of elemental economy.
Collapse
Affiliation(s)
- Kaleigh A Remick
- Department of Microbiology, Cornell University, New York, NY, United States
| | - John D Helmann
- Department of Microbiology, Cornell University, New York, NY, United States.
| |
Collapse
|
16
|
Wang ZF, Jia LP, Fang LC, Wang ZH, Liu FJ, Li SX, Huang XG. Thalassiosira weissflogii grown in various Zn levels shows different ecophysiological responses to seawater acidification. MARINE POLLUTION BULLETIN 2022; 185:114327. [PMID: 36356339 DOI: 10.1016/j.marpolbul.2022.114327] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/06/2022] [Revised: 10/25/2022] [Accepted: 10/28/2022] [Indexed: 06/16/2023]
Abstract
The presence of zinc (Zn), a vital element for algal physiological functions, coupled with the silicification of diatoms implies that it plays an integral role in the carbon and silicon cycles of the sea. In this study, we examined the effects of different pCO2 and Zn levels on growth rate, elemental compositions and silicification by Thalassiosira weissflogii. The results showed that under normal pCO2 (400 μatm), cultures of T. weissflogii were depressed for growth rate and silica incorporation rate, but encouraged for cellular silicon content, Si/C, Si/N, and sinking rate when Zn deficient (0.3 pmol L-1). However, cellular silicon and sinking rate of Zn-deficient and Zn-replete (25 pmol L-1) T. weissflogii were decreased and increased at higher pCO2 (800 μatm), respectively. Thus, acidification may affect diatoms significantly differently depending on the Zn levels of the ocean and then alter the biochemical cycling of carbon and silica.
Collapse
Affiliation(s)
- Zhao-Fei Wang
- Fujian Province University Key Laboratory of Pollution Monitoring and Control, Minnan Normal University, Zhangzhou 36300, China
| | - Li-Ping Jia
- Fujian Province University Key Laboratory of Pollution Monitoring and Control, Minnan Normal University, Zhangzhou 36300, China; Fujian Province Key of Modern Analytical Science and Separation Technology, Minnan Normal University, Zhangzhou 363000, China
| | - Ling-Chuan Fang
- Status Key Laboratory of Soil Erosion and Dryland Farming on the Loess Plateau, Institute of Soil and Water Conservation, Northwest A&F University, Yangling 712100, China
| | - Zhen-Hong Wang
- Fujian Province University Key Laboratory of Pollution Monitoring and Control, Minnan Normal University, Zhangzhou 36300, China; Fujian Province Key of Modern Analytical Science and Separation Technology, Minnan Normal University, Zhangzhou 363000, China
| | - Feng-Jiao Liu
- Fujian Province University Key Laboratory of Pollution Monitoring and Control, Minnan Normal University, Zhangzhou 36300, China; Fujian Province Key of Modern Analytical Science and Separation Technology, Minnan Normal University, Zhangzhou 363000, China
| | - Shun-Xing Li
- Fujian Province University Key Laboratory of Pollution Monitoring and Control, Minnan Normal University, Zhangzhou 36300, China; Fujian Province Key of Modern Analytical Science and Separation Technology, Minnan Normal University, Zhangzhou 363000, China
| | - Xu-Guang Huang
- Fujian Province University Key Laboratory of Pollution Monitoring and Control, Minnan Normal University, Zhangzhou 36300, China; Fujian Province Key of Modern Analytical Science and Separation Technology, Minnan Normal University, Zhangzhou 363000, China.
| |
Collapse
|
17
|
Locke H, Bidle KD, Thamatrakoln K, Johns CT, Bonachela JA, Ferrell BD, Wommack KE. Marine viruses and climate change: Virioplankton, the carbon cycle, and our future ocean. Adv Virus Res 2022; 114:67-146. [PMID: 39492214 DOI: 10.1016/bs.aivir.2022.09.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
Interactions between marine viruses and microbes are a critical part of the oceanic carbon cycle. The impacts of virus-host interactions range from short-term disruptions in the mobility of microbial biomass carbon to higher trophic levels through cell lysis (i.e., the viral shunt) to long-term reallocation of microbial biomass carbon to the deep sea through accelerating the biological pump (i.e., the viral shuttle). The biogeochemical backdrop of the ocean-the physical, chemical, and biological landscape-influences the likelihood of both virus-host interactions and particle formation, and the fate and flow of carbon. As climate change reshapes the oceanic landscape through large-scale shifts in temperature, circulation, stratification, and acidification, virus-mediated carbon flux is likely to shift in response. Dynamics in the directionality and magnitude of changes in how, where, and when viruses mediate the recycling or storage of microbial biomass carbon is largely unknown. Integrating viral infection dynamics data obtained from experimental models and field systems, with particle motion microphysics and global observations of oceanic biogeochemistry, into improved ecosystem models will enable viral oceanographers to better predict the role of viruses in marine carbon cycling in the future ocean.
Collapse
Affiliation(s)
- Hannah Locke
- Univ. of Delaware, Delaware Biotechnology Inst., Newark, DE, United States
| | - Kay D Bidle
- Rutgers Univ., Dept. of Marine & Coastal Sciences, New Brunswick, NJ, United States
| | | | - Christopher T Johns
- Rutgers Univ., Dept. of Marine & Coastal Sciences, New Brunswick, NJ, United States
| | - Juan A Bonachela
- Rutgers Univ., Dept. of Ecology, Evolution & Natural Resources, New Brunswick, NJ, United States
| | - Barbra D Ferrell
- Univ. of Delaware, Delaware Biotechnology Inst., Newark, DE, United States
| | - K Eric Wommack
- Univ. of Delaware, Delaware Biotechnology Inst., Newark, DE, United States.
| |
Collapse
|
18
|
Feng Y, Hou S, Roleda MY, Fu FX. Editorial: Responses of marine microbes to multiple environmental drivers of global change: The interplay of abiotic and biotic factors. Front Microbiol 2022; 13:975841. [PMID: 36147843 PMCID: PMC9488806 DOI: 10.3389/fmicb.2022.975841] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2022] [Accepted: 08/23/2022] [Indexed: 12/01/2022] Open
Affiliation(s)
- Yuanyuan Feng
- School of Oceanography, Shanghai Jiao Tong University, Shanghai, China
- Shanghai Frontiers Science Center of Polar Science (SCOPS), Shanghai, China
- *Correspondence: Yuanyuan Feng
| | - Shengwei Hou
- Department of Ocean Science and Engineering, Southern University of Science and Technology, Shenzhen, China
- State Key Laboratory for Marine Environmental Science, Institute of Marine Microbes and Ecospheres, Xiamen University, Xiamen, China
- Shengwei Hou
| | - Michael Y. Roleda
- Division of Biotechnology and Plant Health, Norwegian Institute of Bioeconomy Research (NIBIO), Ås, Norway
- Biomarine Resource Valorisation, Division of Food Production and Society, Norwegian Institute of Bioeconomy Research (NIBIO), Bodø, Norway
- The Marine Science Institute, College of Science, University of the Philippines, Quezon City, Philippines
| | - Fei-Xue Fu
- Department of Biological Sciences – Marine and Environmental Biology, University of Southern California, Los Angeles, CA, United States
| |
Collapse
|
19
|
Sinking diatoms trap silicon in deep seawater of acidified oceans. Nature 2022; 605:622-623. [PMID: 35614239 DOI: 10.1038/d41586-022-01365-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
|