1
|
Coste F, Mishra A, Chapuis C, Mance L, Pukało Z, Bigot N, Goffinont S, Gaudon V, Garnier N, Talhaoui I, Castaing B, Huet S, Suskiewicz MJ. RING dimerisation drives higher-order organisation of SINA/SIAH E3 ubiquitin ligases. FEBS J 2025. [PMID: 39910688 DOI: 10.1111/febs.70000] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2024] [Revised: 12/13/2024] [Accepted: 01/22/2025] [Indexed: 02/07/2025]
Abstract
RING-type E3 ubiquitin ligases promote ubiquitylation by stabilising an active complex between a ubiquitin-loaded E2-conjugating enzyme and a protein substrate. To fulfil this function, the E3 ubiquitin-protein ligase SIAH1 and other SINA/SIAH subfamily RING-type E3 ligases employ an N-terminal catalytic RING domain and a C-terminal substrate-binding domain (SBD), separated by two zinc fingers. Here, we present the first crystal structure of the RING domain of human SIAH1, together with an adjacent zinc finger, revealing a potential RING dimer, which was validated in solution using static light scattering. RING dimerisation contributes to the E3 ligase activity of SIAH1 both in vitro and in cells. Moreover, as the RING domain is the second element, after the SBD, to independently favour homodimerisation within SINA/SIAH E3 ligases, we propose that alternating RING:RING and SBD:SBD interactions organise multiple copies of a SINA/SIAH protein into a higher-order homomultimer. In line with this hypothesis, fluorescently tagged full-length human SIAH1, human SIAH2 and fruit fly SINA show cytoplasmic clusters in human cells, whereas their distribution becomes more diffuse when RING dimerisation is disabled. The wild-type (WT) form of SIAH1, but not its RING dimerisation mutant, colocalises with aggregated synphilin-1A under proteasomal inhibition, suggesting that SIAH1 multimerisation might contribute to its reported preference for aggregated or multimeric substrates.
Collapse
Affiliation(s)
- Franck Coste
- Centre de Biophysique Moléculaire (CBM), UPR 4301, CNRS, Orléans, France
| | - Aanchal Mishra
- Centre de Biophysique Moléculaire (CBM), UPR 4301, CNRS, Orléans, France
- École Doctorale "Santé, Science Biologique & Chimie du Vivant" (ED549), Université d'Orléans, France
| | - Catherine Chapuis
- Univ Rennes, CNRS, IGDR (Institut de génétique et développement de Rennes) - UMR 6290, BIOSIT (Biologie, Santé, Innovation Technologique) - UAR 3480, US_S 018, F35000, Rennes, France
| | - Lucija Mance
- Centre de Biophysique Moléculaire (CBM), UPR 4301, CNRS, Orléans, France
- École Doctorale "Santé, Science Biologique & Chimie du Vivant" (ED549), Université d'Orléans, France
| | - Zofia Pukało
- Centre de Biophysique Moléculaire (CBM), UPR 4301, CNRS, Orléans, France
| | - Nicolas Bigot
- Univ Rennes, CNRS, IGDR (Institut de génétique et développement de Rennes) - UMR 6290, BIOSIT (Biologie, Santé, Innovation Technologique) - UAR 3480, US_S 018, F35000, Rennes, France
| | - Stéphane Goffinont
- Centre de Biophysique Moléculaire (CBM), UPR 4301, CNRS, Orléans, France
| | - Virginie Gaudon
- Centre de Biophysique Moléculaire (CBM), UPR 4301, CNRS, Orléans, France
| | - Norbert Garnier
- Centre de Biophysique Moléculaire (CBM), UPR 4301, CNRS, Orléans, France
- Pôle Physique, Université d'Orléans, France
| | - Ibtissam Talhaoui
- Centre de Biophysique Moléculaire (CBM), UPR 4301, CNRS, Orléans, France
| | - Bertrand Castaing
- Centre de Biophysique Moléculaire (CBM), UPR 4301, CNRS, Orléans, France
- École Doctorale "Santé, Science Biologique & Chimie du Vivant" (ED549), Université d'Orléans, France
| | - Sebastien Huet
- Univ Rennes, CNRS, IGDR (Institut de génétique et développement de Rennes) - UMR 6290, BIOSIT (Biologie, Santé, Innovation Technologique) - UAR 3480, US_S 018, F35000, Rennes, France
| | - Marcin J Suskiewicz
- Centre de Biophysique Moléculaire (CBM), UPR 4301, CNRS, Orléans, France
- École Doctorale "Santé, Science Biologique & Chimie du Vivant" (ED549), Université d'Orléans, France
| |
Collapse
|
2
|
Wang Y, Chen Q, Wu C, Ding Y, Yuan L, Wang Z, Chen Y, Li J, Liu Z, Xiao K, Liu W. SASH1 is a novel binding partner to disassemble Caskin1 tandem SAM homopolymer through heterogeneous SAM-SAM interaction. FEBS J 2024. [PMID: 39688081 DOI: 10.1111/febs.17354] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2024] [Revised: 08/14/2024] [Accepted: 12/02/2024] [Indexed: 12/18/2024]
Abstract
Calcium/calmodulin-dependent serine protein kinase (CASK) interaction protein 1/2 (Caskin1/2) is essential neuronal synaptic scaffold protein in nervous system development. Knockouts of Caskin1/2 display severe deficits in novelty recognition and spatial memory. The tandem sterile alpha motif (SAM) domains of Caskin1/2, also conserved in their Drosophila homolog Ckn, are known to form homopolymers, yet their dynamic regulation mechanism remains unclear. In this study, SAM and SH3 domain-containing protein 1 (SASH1) was first identified as a novel binding partner of Caskin1/2 through yeast two-hybrid (Y2H) screening. The SAM-SAM interaction between SASH1 and Caskin1 was biochemically characterized by size-exclusion chromatography (SEC), isothermal titration calorimetry (ITC), and glutathione-S-transferase (GST) pull-down and co-immunoprecipitation (co-IP) assays. Structural insights from AlphaFold2-predicted models of the Caskin1-SAMs/SASH1-SAM1 complex, along with mutagenesis validations, revealed key residues at the end-helix (EH)/mid-loop (ML) interface for this interaction. More interestingly, the Caskin1-SAMs homopolymer can be disrupted by the SAM-SAM interaction, which was consistently verified by using sedimentation, transmission electron microscopy (TEM), and immunofluorescence (IF) staining in heterologous cell lines. In summary, our findings provide a solid biochemical basis for the Caskin1/SASH1 interaction and propose a potential mechanism for regulating Caskin1/2 homopolymerization via SAM-SAM interactions. More importantly, the principle governing SAM homopolymer depolymerization is generalized via suggesting two distinct types of heterogeneous SAM-SAM interactions, offering fresh insights into SAM domain-mediated homopolymerization and depolymerization.
Collapse
Affiliation(s)
- Yanhui Wang
- Shenzhen Key Laboratory for Neuronal Structural Biology, Biomedical Research Institute, Shenzhen Peking University-The Hong Kong University of Science and Technology Medical Center, China
| | - Qiangou Chen
- Shenzhen Key Laboratory for Neuronal Structural Biology, Biomedical Research Institute, Shenzhen Peking University-The Hong Kong University of Science and Technology Medical Center, China
| | - Cang Wu
- School of Life Sciences, Southern University of Science and Technology, Shenzhen, China
| | - Yuzhen Ding
- Shenzhen Key Laboratory for Neuronal Structural Biology, Biomedical Research Institute, Shenzhen Peking University-The Hong Kong University of Science and Technology Medical Center, China
| | - Lin Yuan
- Guangdong Provincial Key Laboratory of Brain Science, Disease and Drug Development, HKUST Shenzhen Research Institute, China
| | - Ziyi Wang
- Innovative Institute of Basic Medical Sciences of Zhejiang University, Hangzhou, China
| | - Yu Chen
- Chinese Academy of Sciences Key Laboratory of Brain Connectome and Manipulation, Shenzhen Key Laboratory of Translational Research for Brain Diseases, The Brain Cognition and Brain Disease Institute, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen-Hong Kong Institute of Brain Science-Shenzhen Fundamental Research Institutions, Shenzhen, China
| | - Jianchao Li
- Innovation Centre of Ministry of Education for Development and Diseases, School of Medicine, South China University of Technology, Guangzhou, China
| | - Zhongmin Liu
- Shenzhen Key Laboratory of Biomolecular Assembling and Regulation, School of Life Sciences, Southern University of Science and Technology, Shenzhen, China
- Institute for Biological Electron Microscopy, Southern University of Science and Technology, Shenzhen, China
- Department of Immunology and Microbiology, School of Life Sciences, Southern University of Science and Technology, Shenzhen, China
| | - Kang Xiao
- Shenzhen Key Laboratory for Neuronal Structural Biology, Biomedical Research Institute, Shenzhen Peking University-The Hong Kong University of Science and Technology Medical Center, China
- HKUST Shenzhen-Hong Kong Collaborative Innovation Research Institute, Shenzhen, China
| | - Wei Liu
- Shenzhen Key Laboratory for Neuronal Structural Biology, Biomedical Research Institute, Shenzhen Peking University-The Hong Kong University of Science and Technology Medical Center, China
- Institute of Geriatric Medicine, Peking University Shenzhen Hospital, Shenzhen Peking University-The Hong Kong University of Science and Technology Medical Center, China
| |
Collapse
|
3
|
Kreutzberger MAB, Sonani RR, Egelman EH. Cryo-EM reconstruction of helical polymers: Beyond the simple cases. Q Rev Biophys 2024; 57:e16. [PMID: 39658802 PMCID: PMC11730170 DOI: 10.1017/s0033583524000155] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2024]
Abstract
Helices are one of the most frequently encountered symmetries in biological assemblies. Helical symmetry has been exploited in electron microscopic studies as a limited number of filament images, in principle, can provide all the information needed to do a three-dimensional reconstruction of a polymer. Over the past 25 years, three-dimensional reconstructions of helical polymers from cryo-EM images have shifted completely from Fourier-Bessel methods to single-particle approaches. The single-particle approaches have allowed people to surmount the problem that very few biological polymers are crystalline in order, and despite the flexibility and heterogeneity present in most of these polymers, reaching a resolution where accurate atomic models can be built has now become the standard. While determining the correct helical symmetry may be very simple for something like F-actin, for many other polymers, particularly those formed from small peptides, it can be much more challenging. This review discusses why symmetry determination can be problematic, and why trial-and-error methods are still the best approach. Studies of many macromolecular assemblies, such as icosahedral capsids, have usually found that not imposing symmetry leads to a great reduction in resolution while at the same time revealing possibly interesting asymmetric features. We show that for certain helical assemblies asymmetric reconstructions can sometimes lead to greatly improved resolution. Further, in the case of supercoiled flagellar filaments from bacteria and archaea, we show that the imposition of helical symmetry can not only be wrong, but is not necessary, and obscures the mechanisms whereby these filaments supercoil.
Collapse
Affiliation(s)
- Mark A B Kreutzberger
- Department of Biochemistry and Molecular Genetics, University of Virginia Medical School, Charlottesville, VA, USA
| | - Ravi R Sonani
- Department of Biochemistry and Molecular Genetics, University of Virginia Medical School, Charlottesville, VA, USA
| | - Edward H Egelman
- Department of Biochemistry and Molecular Genetics, University of Virginia Medical School, Charlottesville, VA, USA
| |
Collapse
|
4
|
Yang LY, Tang DR, Luo SQ, Li WW, Jiang YH, Lin LB, Zhang QL. Time-dependent changes in genome-wide gene expression and post-transcriptional regulation across the post-death process in silkworm. DNA Res 2024; 31:dsae031. [PMID: 39546332 PMCID: PMC11605879 DOI: 10.1093/dnares/dsae031] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2024] [Revised: 10/14/2024] [Accepted: 11/12/2024] [Indexed: 11/17/2024] Open
Abstract
Despite death marking the end of life, several gene expression and miRNA-mediated post-transcriptional regulation events may persist or be initiated. The silkworm (Bombyx mori) is a valuable model for exploring life processes, including death. In this study, we combined transcriptomics and miRNAomics analyses of young, old, and post-mortem silkworms across the entire process after death to unravel the dynamics of gene expression and miRNA-mediated post-transcriptional regulation. In total, 171 genes exhibited sustained differential expression in post-mortem silkworms compared to the pre-death state, which are primarily involved in nerve signalling, transport, and immune response. Post-mortem time-specific genes were associated with cell cycle regulation, thermogenesis, immunity, and zinc ion homeostasis. We found that the down-regulated expression of 36 genes related to transcription, epigenetic modification, and homeostasis resulted in a significant shift in global gene expression patterns at 2 h post-death. We also identified 5 mRNA-miRNA pairs (i.e. bmo-miR-2795-mhca, 2784-achi, 2762-oa1, 277-5p-creb, and 1000-tcb1) associated with stress hormone regulation, transcription activity, and signal transduction. The roles of these pairs were validated through in vivo experiments using miRNA mimics in silkworms. The findings provide valuable insights into the intricate mechanisms underlying the transcriptional and miRNA-mediated post-transcriptional regulation events in animals after death.
Collapse
Affiliation(s)
- Lin-Yu Yang
- Faculty of Life Science and Technology, Kunming University of Science and Technology, Kunming 650500, China
| | - Da-Rui Tang
- Faculty of Life Science and Technology, Kunming University of Science and Technology, Kunming 650500, China
| | - Shi-Qi Luo
- Faculty of Life Science and Technology, Kunming University of Science and Technology, Kunming 650500, China
| | - Wei-Wei Li
- Kunming Institute of Zoology, The Chinese Academy of Sciences, Kunming 650201, China
| | - Yu-Hang Jiang
- College of Food Science, Southwest University, Chongqing 400715, China
| | - Lian-Bing Lin
- Faculty of Life Science and Technology, Kunming University of Science and Technology, Kunming 650500, China
| | - Qi-Lin Zhang
- Faculty of Life Science and Technology, Kunming University of Science and Technology, Kunming 650500, China
| |
Collapse
|
5
|
Liu L, Silke J. AXIN2 is a non-redundant regulator of AXIN1 stability and β-catenin in colorectal cancer cells. FEBS J 2024. [PMID: 39587396 DOI: 10.1111/febs.17336] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2024] [Accepted: 11/18/2024] [Indexed: 11/27/2024]
Abstract
AXIN proteins are major components of the β-catenin destruction complex or degradasome, which limits β-catenin nuclear translocation and Wnt signalling activation at steady state. Schmidt et al. performed quantitative analysis of cellular AXIN protein levels in human colorectal cancer cells and revealed that AXIN2 plays a non-redundant role in regulating the total AXIN pool and Wnt/β-catenin signalling activity. Tankyrase (TNKS) inhibitors failed to inhibit Wnt/β-catenin signalling in AXIN2 knockout cells, suggesting that AXIN2 is essential for TNKS inhibitors to function. Mechanistically, the authors show that AXIN2 recruits TNKS to AXIN1 and promotes TNKS-mediated degradation of AXIN1. These findings may have important implications for anti-cancer therapy by TNKS small molecule inhibitors.
Collapse
Affiliation(s)
- Lin Liu
- The Walter and Eliza Hall Institute of Medical Research, Parkville, Australia
- Department of Medical Biology, University of Melbourne, Parkville, Australia
| | - John Silke
- The Walter and Eliza Hall Institute of Medical Research, Parkville, Australia
- Department of Medical Biology, University of Melbourne, Parkville, Australia
| |
Collapse
|
6
|
Jessop M, Broadway BJ, Miller K, Guettler S. Regulation of PARP1/2 and the tankyrases: emerging parallels. Biochem J 2024; 481:1097-1123. [PMID: 39178157 DOI: 10.1042/bcj20230230] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2024] [Revised: 07/31/2024] [Accepted: 08/06/2024] [Indexed: 08/25/2024]
Abstract
ADP-ribosylation is a prominent and versatile post-translational modification, which regulates a diverse set of cellular processes. Poly-ADP-ribose (PAR) is synthesised by the poly-ADP-ribosyltransferases PARP1, PARP2, tankyrase (TNKS), and tankyrase 2 (TNKS2), all of which are linked to human disease. PARP1/2 inhibitors have entered the clinic to target cancers with deficiencies in DNA damage repair. Conversely, tankyrase inhibitors have continued to face obstacles on their way to clinical use, largely owing to our limited knowledge of their molecular impacts on tankyrase and effector pathways, and linked concerns around their tolerability. Whilst detailed structure-function studies have revealed a comprehensive picture of PARP1/2 regulation, our mechanistic understanding of the tankyrases lags behind, and thereby our appreciation of the molecular consequences of tankyrase inhibition. Despite large differences in their architecture and cellular contexts, recent structure-function work has revealed striking parallels in the regulatory principles that govern these enzymes. This includes low basal activity, activation by intra- or inter-molecular assembly, negative feedback regulation by auto-PARylation, and allosteric communication. Here we compare these poly-ADP-ribosyltransferases and point towards emerging parallels and open questions, whose pursuit will inform future drug development efforts.
Collapse
Affiliation(s)
- Matthew Jessop
- Division of Structural Biology, The Institute of Cancer Research (ICR), London, U.K
- Division of Cancer Biology, The Institute of Cancer Research (ICR), London, U.K
| | - Benjamin J Broadway
- Division of Structural Biology, The Institute of Cancer Research (ICR), London, U.K
- Division of Cancer Biology, The Institute of Cancer Research (ICR), London, U.K
| | - Katy Miller
- Division of Structural Biology, The Institute of Cancer Research (ICR), London, U.K
- Division of Cancer Biology, The Institute of Cancer Research (ICR), London, U.K
| | - Sebastian Guettler
- Division of Structural Biology, The Institute of Cancer Research (ICR), London, U.K
- Division of Cancer Biology, The Institute of Cancer Research (ICR), London, U.K
| |
Collapse
|
7
|
Mance L, Bigot N, Zhamungui Sánchez E, Coste F, Martín-González N, Zentout S, Biliškov M, Pukało Z, Mishra A, Chapuis C, Arteni AA, Lateur A, Goffinont S, Gaudon V, Talhaoui I, Casuso I, Beaufour M, Garnier N, Artzner F, Cadene M, Huet S, Castaing B, Suskiewicz MJ. Dynamic BTB-domain filaments promote clustering of ZBTB proteins. Mol Cell 2024; 84:2490-2510.e9. [PMID: 38996459 DOI: 10.1016/j.molcel.2024.05.029] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2023] [Revised: 04/11/2024] [Accepted: 05/31/2024] [Indexed: 07/14/2024]
Abstract
The formation of dynamic protein filaments contributes to various biological functions by clustering individual molecules together and enhancing their binding to ligands. We report such a propensity for the BTB domains of certain proteins from the ZBTB family, a large eukaryotic transcription factor family implicated in differentiation and cancer. Working with Xenopus laevis and human proteins, we solved the crystal structures of filaments formed by dimers of the BTB domains of ZBTB8A and ZBTB18 and demonstrated concentration-dependent higher-order assemblies of these dimers in solution. In cells, the BTB-domain filamentation supports clustering of full-length human ZBTB8A and ZBTB18 into dynamic nuclear foci and contributes to the ZBTB18-mediated repression of a reporter gene. The BTB domains of up to 21 human ZBTB family members and two related proteins, NACC1 and NACC2, are predicted to behave in a similar manner. Our results suggest that filamentation is a more common feature of transcription factors than is currently appreciated.
Collapse
Affiliation(s)
- Lucija Mance
- Centre de Biophysique Moléculaire (CBM), UPR 4301, CNRS, affiliated with Université d'Orléans, 45071 Orléans Cedex 2, France
| | - Nicolas Bigot
- Université Rennes, CNRS, IGDR (Institut de Génétique et Développement de Rennes) - UMR 6290, BIOSIT - UAR3480, 35000 Rennes, France
| | - Edison Zhamungui Sánchez
- Centre de Biophysique Moléculaire (CBM), UPR 4301, CNRS, affiliated with Université d'Orléans, 45071 Orléans Cedex 2, France
| | - Franck Coste
- Centre de Biophysique Moléculaire (CBM), UPR 4301, CNRS, affiliated with Université d'Orléans, 45071 Orléans Cedex 2, France.
| | - Natalia Martín-González
- Aix-Marseille Université, INSERM, DyNaMo, Turing Centre for Living Systems (CENTURI), 13288 Marseille Cedex 09, France; Aix-Marseille Université, CNRS, AFMB UMR 7257, 13288 Marseille Cedex 09, France
| | - Siham Zentout
- Université Rennes, CNRS, IGDR (Institut de Génétique et Développement de Rennes) - UMR 6290, BIOSIT - UAR3480, 35000 Rennes, France
| | - Marin Biliškov
- Centre de Biophysique Moléculaire (CBM), UPR 4301, CNRS, affiliated with Université d'Orléans, 45071 Orléans Cedex 2, France
| | - Zofia Pukało
- Centre de Biophysique Moléculaire (CBM), UPR 4301, CNRS, affiliated with Université d'Orléans, 45071 Orléans Cedex 2, France
| | - Aanchal Mishra
- Centre de Biophysique Moléculaire (CBM), UPR 4301, CNRS, affiliated with Université d'Orléans, 45071 Orléans Cedex 2, France
| | - Catherine Chapuis
- Université Rennes, CNRS, IGDR (Institut de Génétique et Développement de Rennes) - UMR 6290, BIOSIT - UAR3480, 35000 Rennes, France
| | - Ana-Andreea Arteni
- Université Paris-Saclay, CEA, CNRS, Institute for Integrative Biology of the Cell (I2BC), Cryo-Electron Microscopy Facility, CRYOEM-Gif, 91198 Gif-sur-Yvette, France
| | - Axelle Lateur
- Centre de Biophysique Moléculaire (CBM), UPR 4301, CNRS, affiliated with Université d'Orléans, 45071 Orléans Cedex 2, France
| | - Stéphane Goffinont
- Centre de Biophysique Moléculaire (CBM), UPR 4301, CNRS, affiliated with Université d'Orléans, 45071 Orléans Cedex 2, France
| | - Virginie Gaudon
- Centre de Biophysique Moléculaire (CBM), UPR 4301, CNRS, affiliated with Université d'Orléans, 45071 Orléans Cedex 2, France
| | - Ibtissam Talhaoui
- Centre de Biophysique Moléculaire (CBM), UPR 4301, CNRS, affiliated with Université d'Orléans, 45071 Orléans Cedex 2, France
| | - Ignacio Casuso
- Aix-Marseille Université, INSERM, DyNaMo, Turing Centre for Living Systems (CENTURI), 13288 Marseille Cedex 09, France
| | - Martine Beaufour
- Centre de Biophysique Moléculaire (CBM), UPR 4301, CNRS, affiliated with Université d'Orléans, 45071 Orléans Cedex 2, France
| | - Norbert Garnier
- Centre de Biophysique Moléculaire (CBM), UPR 4301, CNRS, affiliated with Université d'Orléans, 45071 Orléans Cedex 2, France
| | - Franck Artzner
- Université Rennes, CNRS, IPR (Institut de Physique de Rennes) - UMR 6251, 35000 Rennes, France
| | - Martine Cadene
- Centre de Biophysique Moléculaire (CBM), UPR 4301, CNRS, affiliated with Université d'Orléans, 45071 Orléans Cedex 2, France
| | - Sébastien Huet
- Université Rennes, CNRS, IGDR (Institut de Génétique et Développement de Rennes) - UMR 6290, BIOSIT - UAR3480, 35000 Rennes, France; Institut Universitaire de France, 75005 Paris, France
| | - Bertrand Castaing
- Centre de Biophysique Moléculaire (CBM), UPR 4301, CNRS, affiliated with Université d'Orléans, 45071 Orléans Cedex 2, France
| | - Marcin Józef Suskiewicz
- Centre de Biophysique Moléculaire (CBM), UPR 4301, CNRS, affiliated with Université d'Orléans, 45071 Orléans Cedex 2, France.
| |
Collapse
|
8
|
Hou S, Zhang J, Jiang X, Yang Y, Shan B, Zhang M, Liu C, Yuan J, Xu D. PARP5A and RNF146 phase separation restrains RIPK1-dependent necroptosis. Mol Cell 2024; 84:938-954.e8. [PMID: 38272024 DOI: 10.1016/j.molcel.2023.12.041] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2023] [Revised: 11/14/2023] [Accepted: 12/29/2023] [Indexed: 01/27/2024]
Abstract
Phase separation is a vital mechanism that mediates the formation of biomolecular condensates and their functions. Necroptosis is a lytic form of programmed cell death mediated by RIPK1, RIPK3, and MLKL downstream of TNFR1 and has been implicated in mediating many human diseases. However, whether necroptosis is regulated by phase separation is not yet known. Here, we show that upon the induction of necroptosis and recruitment by the adaptor protein TAX1BP1, PARP5A and its binding partner RNF146 form liquid-like condensates by multivalent interactions to perform poly ADP-ribosylation (PARylation) and PARylation-dependent ubiquitination (PARdU) of activated RIPK1 in mouse embryonic fibroblasts. We show that PARdU predominantly occurs on the K376 residue of mouse RIPK1, which promotes proteasomal degradation of kinase-activated RIPK1 to restrain necroptosis. Our data demonstrate that PARdU on K376 of mouse RIPK1 provides an alternative cell death checkpoint mediated by phase separation-dependent control of necroptosis by PARP5A and RNF146.
Collapse
Affiliation(s)
- Shouqiao Hou
- Interdisciplinary Research Center on Biology and Chemistry, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, Shanghai 201210, China; University of Chinese Academy of Sciences, Beijing 101408, China
| | - Jian Zhang
- Department of Neurosurgery, The First Affiliated Hospital of Soochow University, Suzhou, Jiangsu 215031, China
| | - Xiaoyan Jiang
- Interdisciplinary Research Center on Biology and Chemistry, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, Shanghai 201210, China
| | - Yuanxin Yang
- Interdisciplinary Research Center on Biology and Chemistry, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, Shanghai 201210, China; University of Chinese Academy of Sciences, Beijing 101408, China
| | - Bing Shan
- Interdisciplinary Research Center on Biology and Chemistry, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, Shanghai 201210, China
| | - Mengmeng Zhang
- Interdisciplinary Research Center on Biology and Chemistry, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, Shanghai 201210, China
| | - Cong Liu
- Interdisciplinary Research Center on Biology and Chemistry, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, Shanghai 201210, China; Shanghai Key Laboratory of Aging Studies, Shanghai 201210, China; State Key Laboratory of Chemical Biology, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, Shanghai 200032, China
| | - Junying Yuan
- Interdisciplinary Research Center on Biology and Chemistry, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, Shanghai 201210, China; Shanghai Key Laboratory of Aging Studies, Shanghai 201210, China
| | - Daichao Xu
- Interdisciplinary Research Center on Biology and Chemistry, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, Shanghai 201210, China; Shanghai Key Laboratory of Aging Studies, Shanghai 201210, China; State Key Laboratory of Chemical Biology, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, Shanghai 200032, China.
| |
Collapse
|
9
|
Brooks DM, Anand S, Cohen MS. Immunomodulatory roles of PARPs: Shaping the tumor microenvironment, one ADP-ribose at a time. Curr Opin Chem Biol 2023; 77:102402. [PMID: 37801755 DOI: 10.1016/j.cbpa.2023.102402] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2023] [Revised: 08/29/2023] [Accepted: 09/08/2023] [Indexed: 10/08/2023]
Abstract
PARPs encompass a small yet pervasive group of 17 enzymes that catalyze a post-translational modification known as ADP-ribosylation. PARP1, the founding member, has received considerable focus; however, in recent years, the spotlight has shifted to other members within the PARP family. In this opinion piece, we first discuss surprising findings that some FDA-approved PARP1 inhibitors activate innate immune signaling in cancer cells that harbor mutations in the DNA repair pathway. We then discuss hot-off-the-press genetic and pharmacological studies that reveal roles for PARP7, PARP11, and PARP14 in immune signaling in both tumor cells and tumor-associated immune cells. We conclude with thoughts on tuning PARP1-inhibitor-mediated innate immune activation and explore the unrealized potential for small molecule modulators of other PARP family members as next-generation immuno-oncology drugs.
Collapse
Affiliation(s)
- Deja M Brooks
- Department of Chemical Physiology and Biochemistry, Oregon Health & Science University, Portland, OR 97239, USA; Program in Molecular and Cellular Biology, Oregon Health & Science University, Portland, OR 97239, USA; Knight Cancer Institute, Oregon Health & Science University, Portland, OR 97239, USA
| | - Sudarshan Anand
- Knight Cancer Institute, Oregon Health & Science University, Portland, OR 97239, USA; Department of Cellular and Developmental Biology, Oregon Health & Science University, Portland, OR 97239, USA
| | - Michael S Cohen
- Department of Chemical Physiology and Biochemistry, Oregon Health & Science University, Portland, OR 97239, USA; Knight Cancer Institute, Oregon Health & Science University, Portland, OR 97239, USA.
| |
Collapse
|
10
|
Rouleau-Turcotte É, Pascal JM. ADP-ribose contributions to genome stability and PARP enzyme trapping on sites of DNA damage; paradigm shifts for a coming-of-age modification. J Biol Chem 2023; 299:105397. [PMID: 37898399 PMCID: PMC10722394 DOI: 10.1016/j.jbc.2023.105397] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2023] [Revised: 10/17/2023] [Accepted: 10/19/2023] [Indexed: 10/30/2023] Open
Abstract
ADP-ribose is a versatile modification that plays a critical role in diverse cellular processes. The addition of this modification is catalyzed by ADP-ribosyltransferases, among which notable poly(ADP-ribose) polymerase (PARP) enzymes are intimately involved in the maintenance of genome integrity. The role of ADP-ribose modifications during DNA damage repair is of significant interest for the proper development of PARP inhibitors targeted toward the treatment of diseases caused by genomic instability. More specifically, inhibitors promoting PARP persistence on DNA lesions, termed PARP "trapping," is considered a desirable characteristic. In this review, we discuss key classes of proteins involved in ADP-ribose signaling (writers, readers, and erasers) with a focus on those involved in the maintenance of genome integrity. An overview of factors that modulate PARP1 and PARP2 persistence at sites of DNA lesions is also discussed. Finally, we clarify aspects of the PARP trapping model in light of recent studies that characterize the kinetics of PARP1 and PARP2 recruitment at sites of lesions. These findings suggest that PARP trapping could be considered as the continuous recruitment of PARP molecules to sites of lesions, rather than the physical stalling of molecules. Recent studies and novel research tools have elevated the level of understanding of ADP-ribosylation, marking a coming-of-age for this interesting modification.
Collapse
Affiliation(s)
- Élise Rouleau-Turcotte
- Department of Biochemistry and Molecular Medicine, Université de Montréal, Montréal, Quebec, Canada
| | - John M Pascal
- Department of Biochemistry and Molecular Medicine, Université de Montréal, Montréal, Quebec, Canada.
| |
Collapse
|
11
|
Clements CM, Shellman SX, Shellman MH, Shellman YG. TBM Hunter: Identify and Score Canonical, Extended, and Unconventional Tankyrase-Binding Motifs in Any Protein. Int J Mol Sci 2023; 24:16964. [PMID: 38069287 PMCID: PMC10706912 DOI: 10.3390/ijms242316964] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2023] [Revised: 11/27/2023] [Accepted: 11/29/2023] [Indexed: 12/18/2023] Open
Abstract
Tankyrases, a versatile protein group within the poly(ADP-ribose) polymerase family, are essential for post-translational poly(ADP-ribosyl)ation, influencing various cellular functions and contributing to diseases, particularly cancer. Consequently, tankyrases have become important targets for anti-cancer drug development. Emerging approaches in drug discovery aim to disrupt interactions between tankyrases and their binding partners, which hinge on tankyrase-binding motifs (TBMs) within partner proteins and ankyrin repeat cluster domains within tankyrases. Our study addresses the challenge of identifying and ranking TBMs. We have conducted a comprehensive review of the existing literature, classifying TBMs into three distinct groups, each with its own scoring system. To facilitate this process, we introduce TBM Hunter-an accessible, web-based tool. This user-friendly platform provides a cost-free and efficient means to screen and assess potential TBMs within any given protein. TBM Hunter can handle individual proteins or lists of proteins simultaneously. Notably, our results demonstrate that TBM Hunter not only identifies known TBMs but also uncovers novel ones. In summary, our study offers an all-encompassing perspective on TBMs and presents an easy-to-use, precise, and free tool for identifying and evaluating potential TBMs in any protein, thereby enhancing research and drug development efforts focused on tankyrases.
Collapse
Affiliation(s)
- Christopher M. Clements
- Department of Dermatology, School of Medicine, University of Colorado Anschutz Medical Campus, Aurora, CO 80045, USA;
| | - Samantha X. Shellman
- Department of Computer Science, University of Colorado Boulder, Boulder, CO 80309, USA;
| | - Melody H. Shellman
- H. Milton Stewart School of Industrial and Systems Engineering, Georgia Institute of Technology, Atlanta, GA 30332, USA;
| | - Yiqun G. Shellman
- Department of Dermatology, School of Medicine, University of Colorado Anschutz Medical Campus, Aurora, CO 80045, USA;
- Charles C. Gates Regenerative Medicine and Stem Cell Biology Institute, School of Medicine, University of Colorado Anschutz Medical Campus, Aurora, CO 80045, USA
| |
Collapse
|
12
|
Suskiewicz MJ, Prokhorova E, Rack JGM, Ahel I. ADP-ribosylation from molecular mechanisms to therapeutic implications. Cell 2023; 186:4475-4495. [PMID: 37832523 PMCID: PMC10789625 DOI: 10.1016/j.cell.2023.08.030] [Citation(s) in RCA: 43] [Impact Index Per Article: 21.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2023] [Revised: 08/23/2023] [Accepted: 08/23/2023] [Indexed: 10/15/2023]
Abstract
ADP-ribosylation is a ubiquitous modification of biomolecules, including proteins and nucleic acids, that regulates various cellular functions in all kingdoms of life. The recent emergence of new technologies to study ADP-ribosylation has reshaped our understanding of the molecular mechanisms that govern the establishment, removal, and recognition of this modification, as well as its impact on cellular and organismal function. These advances have also revealed the intricate involvement of ADP-ribosylation in human physiology and pathology and the enormous potential that their manipulation holds for therapy. In this review, we present the state-of-the-art findings covering the work in structural biology, biochemistry, cell biology, and clinical aspects of ADP-ribosylation.
Collapse
Affiliation(s)
| | | | - Johannes G M Rack
- Sir William Dunn School of Pathology, University of Oxford, Oxford, UK; MRC Centre of Medical Mycology, University of Exeter, Exeter, UK
| | - Ivan Ahel
- Sir William Dunn School of Pathology, University of Oxford, Oxford, UK.
| |
Collapse
|
13
|
Suskiewicz MJ, Munnur D, Strømland Ø, Yang JC, Easton L, Chatrin C, Zhu K, Baretić D, Goffinont S, Schuller M, Wu WF, Elkins J, Ahel D, Sanyal S, Neuhaus D, Ahel I. Updated protein domain annotation of the PARP protein family sheds new light on biological function. Nucleic Acids Res 2023; 51:8217-8236. [PMID: 37326024 PMCID: PMC10450202 DOI: 10.1093/nar/gkad514] [Citation(s) in RCA: 24] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2023] [Revised: 05/09/2023] [Accepted: 06/03/2023] [Indexed: 06/17/2023] Open
Abstract
AlphaFold2 and related computational tools have greatly aided studies of structural biology through their ability to accurately predict protein structures. In the present work, we explored AF2 structural models of the 17 canonical members of the human PARP protein family and supplemented this analysis with new experiments and an overview of recent published data. PARP proteins are typically involved in the modification of proteins and nucleic acids through mono or poly(ADP-ribosyl)ation, but this function can be modulated by the presence of various auxiliary protein domains. Our analysis provides a comprehensive view of the structured domains and long intrinsically disordered regions within human PARPs, offering a revised basis for understanding the function of these proteins. Among other functional insights, the study provides a model of PARP1 domain dynamics in the DNA-free and DNA-bound states and enhances the connection between ADP-ribosylation and RNA biology and between ADP-ribosylation and ubiquitin-like modifications by predicting putative RNA-binding domains and E2-related RWD domains in certain PARPs. In line with the bioinformatic analysis, we demonstrate for the first time PARP14's RNA-binding capability and RNA ADP-ribosylation activity in vitro. While our insights align with existing experimental data and are probably accurate, they need further validation through experiments.
Collapse
Affiliation(s)
| | - Deeksha Munnur
- Sir William Dunn School of Pathology, University of Oxford, Oxford OX1 3RE, UK
| | - Øyvind Strømland
- Sir William Dunn School of Pathology, University of Oxford, Oxford OX1 3RE, UK
- Department of Biomedicine, University of Bergen, Bergen, Norway
| | - Ji-Chun Yang
- MRC Laboratory of Molecular Biology, Francis Crick Avenue, Cambridge CB2 0QH, UK
| | - Laura E Easton
- MRC Laboratory of Molecular Biology, Francis Crick Avenue, Cambridge CB2 0QH, UK
| | - Chatrin Chatrin
- Sir William Dunn School of Pathology, University of Oxford, Oxford OX1 3RE, UK
| | - Kang Zhu
- Sir William Dunn School of Pathology, University of Oxford, Oxford OX1 3RE, UK
| | - Domagoj Baretić
- Sir William Dunn School of Pathology, University of Oxford, Oxford OX1 3RE, UK
| | | | - Marion Schuller
- Sir William Dunn School of Pathology, University of Oxford, Oxford OX1 3RE, UK
| | - Wing-Fung Wu
- MRC Laboratory of Molecular Biology, Francis Crick Avenue, Cambridge CB2 0QH, UK
| | - Jonathan M Elkins
- Centre for Medicines Discovery, University of Oxford, Oxford OX3 7DQ, UK
| | - Dragana Ahel
- Sir William Dunn School of Pathology, University of Oxford, Oxford OX1 3RE, UK
| | - Sumana Sanyal
- Sir William Dunn School of Pathology, University of Oxford, Oxford OX1 3RE, UK
| | - David Neuhaus
- MRC Laboratory of Molecular Biology, Francis Crick Avenue, Cambridge CB2 0QH, UK
| | - Ivan Ahel
- Sir William Dunn School of Pathology, University of Oxford, Oxford OX1 3RE, UK
| |
Collapse
|
14
|
Ray S, Hewitt K. Sticky, Adaptable, and Many-sided: SAM protein versatility in normal and pathological hematopoietic states. Bioessays 2023; 45:e2300022. [PMID: 37318311 PMCID: PMC10527593 DOI: 10.1002/bies.202300022] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2023] [Revised: 05/10/2023] [Accepted: 05/15/2023] [Indexed: 06/16/2023]
Abstract
With decades of research seeking to generalize sterile alpha motif (SAM) biology, many outstanding questions remain regarding this multi-tool protein module. Recent data from structural and molecular/cell biology has begun to reveal new SAM modes of action in cell signaling cascades and biomolecular condensation. SAM-dependent mechanisms underlie blood-related (hematologic) diseases, including myelodysplastic syndromes and leukemias, prompting our focus on hematopoiesis for this review. With the increasing coverage of SAM-dependent interactomes, a hypothesis emerges that SAM interaction partners and binding affinities work to fine tune cell signaling cascades in developmental and disease contexts, including hematopoiesis and hematologic disease. This review discusses what is known and remains unknown about the standard mechanisms and neoplastic properties of SAM domains and what the future might hold for developing SAM-targeted therapies.
Collapse
Affiliation(s)
- Suhita Ray
- Department of Genetics, Cell Biology and Anatomy, University of Nebraska Medical Center, Omaha, NE, 68198, United States
| | - Kyle Hewitt
- Department of Genetics, Cell Biology and Anatomy, University of Nebraska Medical Center, Omaha, NE, 68198, United States
| |
Collapse
|
15
|
Clements CM, Henen MA, Vögeli B, Shellman YG. The Structural Dynamics, Complexity of Interactions, and Functions in Cancer of Multi-SAM Containing Proteins. Cancers (Basel) 2023; 15:3019. [PMID: 37296980 PMCID: PMC10252437 DOI: 10.3390/cancers15113019] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2023] [Revised: 05/25/2023] [Accepted: 05/30/2023] [Indexed: 06/12/2023] Open
Abstract
SAM domains are crucial mediators of diverse interactions, including those important for tumorigenesis or metastasis of cancers, and thus SAM domains can be attractive targets for developing cancer therapies. This review aims to explore the literature, especially on the recent findings of the structural dynamics, regulation, and functions of SAM domains in proteins containing more than one SAM (multi-SAM containing proteins, MSCPs). The topics here include how intrinsic disorder of some SAMs and an additional SAM domain in MSCPs increase the complexity of their interactions and oligomerization arrangements. Many similarities exist among these MSCPs, including their effects on cancer cell adhesion, migration, and metastasis. In addition, they are all involved in some types of receptor-mediated signaling and neurology-related functions or diseases, although the specific receptors and functions vary. This review also provides a simple outline of methods for studying protein domains, which may help non-structural biologists to reach out and build new collaborations to study their favorite protein domains/regions. Overall, this review aims to provide representative examples of various scenarios that may provide clues to better understand the roles of SAM domains and MSCPs in cancer in general.
Collapse
Affiliation(s)
- Christopher M. Clements
- Department of Dermatology, School of Medicine, University of Colorado Anschutz Medical Campus, Aurora, CO 80045, USA;
| | - Morkos A. Henen
- Department of Biochemistry and Molecular Genetics, School of Medicine, University of Colorado Anschutz Medical Campus, Aurora, CO 80045, USA; (M.A.H.); (B.V.)
| | - Beat Vögeli
- Department of Biochemistry and Molecular Genetics, School of Medicine, University of Colorado Anschutz Medical Campus, Aurora, CO 80045, USA; (M.A.H.); (B.V.)
| | - Yiqun G. Shellman
- Department of Dermatology, School of Medicine, University of Colorado Anschutz Medical Campus, Aurora, CO 80045, USA;
- Charles C. Gates Regenerative Medicine and Stem Cell Biology Institute, University of Colorado Anschutz Medical Campus, Aurora, CO 80045, USA
| |
Collapse
|
16
|
Matsumoto Y, Rottapel R. PARsylation-mediated ubiquitylation: lessons from rare hereditary disease Cherubism. Trends Mol Med 2023; 29:390-405. [PMID: 36948987 DOI: 10.1016/j.molmed.2023.02.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2023] [Revised: 01/31/2023] [Accepted: 02/03/2023] [Indexed: 03/24/2023]
Abstract
Modification of proteins by ADP-ribose (PARsylation) is catalyzed by the poly(ADP-ribose) polymerase (PARP) family of enzymes exemplified by PARP1, which controls chromatin organization and DNA repair. Additionally, PARsylation induces ubiquitylation and proteasomal degradation of its substrates because PARsylation creates a recognition site for E3-ubiquitin ligase. The steady-state levels of the adaptor protein SH3-domain binding protein 2 (3BP2) is negatively regulated by tankyrase (PARP5), which coordinates ubiquitylation of 3BP2 by the E3-ligase ring finger protein 146 (RNF146). 3BP2 missense mutations uncouple 3BP2 from tankyrase-mediated negative regulation and cause Cherubism, an autosomal dominant autoinflammatory disorder associated with craniofacial dysmorphia. In this review, we summarize the diverse biological processes, including bone dynamics, metabolism, and Toll-like receptor (TLR) signaling controlled by tankyrase-mediated PARsylation of 3BP2, and highlight the therapeutic potential of this pathway.
Collapse
Affiliation(s)
- Yoshinori Matsumoto
- Princess Margaret Cancer Center, University Health Network, University of Toronto, Toronto, ON M5G 1L7, Canada; Department of Nephrology, Rheumatology, Endocrinology and Metabolism, Okayama University Faculty of Medicine, Dentistry and Pharmaceutical Sciences, Okayama, Okayama 700-8558, Japan.
| | - Robert Rottapel
- Princess Margaret Cancer Center, University Health Network, University of Toronto, Toronto, ON M5G 1L7, Canada; Department of Medicine, University of Toronto, Toronto, ON M5S 1A8, Canada; Department of Medical Biophysics, University of Toronto, Toronto, ON M5S 1A8, Canada; Department of Immunology, University of Toronto, Toronto, ON M5S 1A8, Canada; Division of Rheumatology, St. Michael's Hospital, Toronto, ON M5B 1W8, Canada.
| |
Collapse
|