1
|
He Z, Qu L, Wu W, Liu J, Jin C, Wang C, You J, Liu W, Bai L, Gu Z, Cai W, Ren M, Xu J. Electro-optically Modulated Nonlinear Metasurfaces. NANO LETTERS 2024; 24:14215-14221. [PMID: 39470354 DOI: 10.1021/acs.nanolett.4c03369] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/30/2024]
Abstract
Electrically reconfigurable nonlinear metasurfaces provide dynamic control over nonlinear phenomena such as second-harmonic generation (SHG), unlocking novel applications in signal processing, light switching, and sensing. Previous methods, like electric-field-induced SHG in plasmonic metasurfaces and Stark-tuned nonlinearities in quantum well metasurfaces, face limitations due to weak SHG responses from metals and mid-infrared constraints of quantum wells, respectively. Addressing the need for efficient SHG control in the visible and near-infrared ranges, we present a novel approach using the electro-optic (EO) effect to modulate SHG. By leveraging the exceptional EO and SHG properties of lithium niobate (LN), we integrate the EO effect with SHG within a metasurface framework for the first time. Our LN metasurface achieves an 11.3% modulation depth in SHG amplitude under a ±50 V alternating voltage. These results open new avenues for reconfigurable photonic applications. including tunable nonlinear light sources, quantum optics, and nonlinear information processing.
Collapse
Affiliation(s)
- Zhengqing He
- The Key Laboratory of Weak-Light Nonlinear Photonics, Ministry of Education, School of Physics and TEDA Applied Physics Institute, Nankai University, Tianjin 300071, People's Republic of China
| | - Lun Qu
- The Key Laboratory of Weak-Light Nonlinear Photonics, Ministry of Education, School of Physics and TEDA Applied Physics Institute, Nankai University, Tianjin 300071, People's Republic of China
| | - Wei Wu
- The Key Laboratory of Weak-Light Nonlinear Photonics, Ministry of Education, School of Physics and TEDA Applied Physics Institute, Nankai University, Tianjin 300071, People's Republic of China
| | - Jikun Liu
- The Key Laboratory of Weak-Light Nonlinear Photonics, Ministry of Education, School of Physics and TEDA Applied Physics Institute, Nankai University, Tianjin 300071, People's Republic of China
| | - Chunyan Jin
- The Key Laboratory of Weak-Light Nonlinear Photonics, Ministry of Education, School of Physics and TEDA Applied Physics Institute, Nankai University, Tianjin 300071, People's Republic of China
| | - Chenxiong Wang
- The Key Laboratory of Weak-Light Nonlinear Photonics, Ministry of Education, School of Physics and TEDA Applied Physics Institute, Nankai University, Tianjin 300071, People's Republic of China
| | - Jingfei You
- The Key Laboratory of Weak-Light Nonlinear Photonics, Ministry of Education, School of Physics and TEDA Applied Physics Institute, Nankai University, Tianjin 300071, People's Republic of China
| | - Weiye Liu
- The Key Laboratory of Weak-Light Nonlinear Photonics, Ministry of Education, School of Physics and TEDA Applied Physics Institute, Nankai University, Tianjin 300071, People's Republic of China
| | - Lu Bai
- The Key Laboratory of Weak-Light Nonlinear Photonics, Ministry of Education, School of Physics and TEDA Applied Physics Institute, Nankai University, Tianjin 300071, People's Republic of China
| | - Zhidong Gu
- The Key Laboratory of Weak-Light Nonlinear Photonics, Ministry of Education, School of Physics and TEDA Applied Physics Institute, Nankai University, Tianjin 300071, People's Republic of China
| | - Wei Cai
- The Key Laboratory of Weak-Light Nonlinear Photonics, Ministry of Education, School of Physics and TEDA Applied Physics Institute, Nankai University, Tianjin 300071, People's Republic of China
| | - Mengxin Ren
- The Key Laboratory of Weak-Light Nonlinear Photonics, Ministry of Education, School of Physics and TEDA Applied Physics Institute, Nankai University, Tianjin 300071, People's Republic of China
- Collaborative Innovation Center of Extreme Optics, Shanxi University, Taiyuan, Shanxi 030006, People's Republic of China
| | - Jingjun Xu
- The Key Laboratory of Weak-Light Nonlinear Photonics, Ministry of Education, School of Physics and TEDA Applied Physics Institute, Nankai University, Tianjin 300071, People's Republic of China
| |
Collapse
|
2
|
Tian KS, Li HY, Wang Z, Zheng JX, Zhang X, Wang L, Liu XQ. Ultra-smooth processing of lithium niobate for outstanding mid-infrared transmittance. OPTICS LETTERS 2024; 49:5067-5070. [PMID: 39270229 DOI: 10.1364/ol.534414] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/01/2024] [Accepted: 08/16/2024] [Indexed: 09/15/2024]
Abstract
The fabrication of anti-reflection (AR) subwavelength structures (SWSs) of lithium niobate (LN) is a challenging but rewarding task in mid-infrared LN laser systems. However, there are still some issues with the high-quality processing and fabrication of bifacial AR SWSs. Herein, a novel, to the best of our knowledge, approach to the fabrication of SWSs was proposed, which includes femtosecond laser ablation followed by wet etching and thermal annealing. The fabricated structures exhibit high surface quality (Ra = 0.08 nm) and uniformity. According to the experimental and simulated results, the transmittance of the mid-infrared AR SWSs with a period of 1.8 µm could be improved from 78% to 87% in the 3.6-5 µm band. Furthermore, the double-sided construction enabled a transmittance of up to 90%. The results have great potential in the promotion of the development of mid-infrared laser systems and LN-based photonics.
Collapse
|
3
|
Kang Q, Yan H, Niu F, Liu K, Suga T, Wang C. InP/LiNbO 3 Covalent Heterointerface Construction via an Asymmetric Plasma Activation Strategy for Hybrid Integrated Quantum Systems. ACS APPLIED MATERIALS & INTERFACES 2024; 16:48502-48516. [PMID: 39193874 DOI: 10.1021/acsami.4c08823] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/29/2024]
Abstract
Lithium niobate (LiNbO3) is emerging as an appealing candidate for integrated optical applications with enhanced complexity, owing to its inherent abundant optoelectronic properties. To compensate for the inability of LiNbO3 to generate indistinguishable single photons, the evanescent coupling heterointerface constructed between III-V compound semiconductors (e.g., InP) and LiNbO3 through plasma activation provides a feasible solution for balancing the integration efficiency and interfacial stability while achieving sub-50 nm alignment accuracy between devices, thus offering ultracompact on-chip light sources for classical optoelectronics and quantum optics. However, a challenge remains in the formation of the InP/LiNbO3 platform due to the huge mismatch in the coefficient of thermal expansion. Here, we demonstrate the InP/LiNbO3 covalent heterointerface using an asymmetric plasma activation strategy. Different plasmas are used for the activation of InP and LiNbO3 specifically, balancing the enhancement of surface functional group density with the avoidance of defect generation effectively. More importantly, combined with surface comprehensive characterizations and interface performance, we determine that the introduction of ammonia solution enables the surface hydroxyl groups to be "effective" as LiNbO3 surface relaxation increases the chance of -OH groups' contact. Therefore, a robust covalent bond network is established across the InP/LiNbO3 interface at 80 °C with an enhanced bonding strength of 9.7 MPa. Moreover, a hybrid quantum photonic chip based on the InP/LiNbO3 platform is designed to compute the coupling efficiency and the impact of misalignment on it, demonstrating the potential of extending the platform to hybrid integrated quantum systems.
Collapse
Affiliation(s)
- Qiushi Kang
- State Key Laboratory of Precision Welding & Joining of Materials and Structures, Harbin Institute of Technology, Harbin 150001, China
| | - Han Yan
- State Key Laboratory of Precision Welding & Joining of Materials and Structures, Harbin Institute of Technology, Harbin 150001, China
| | - Fanfan Niu
- State Key Laboratory of Precision Welding & Joining of Materials and Structures, Harbin Institute of Technology, Harbin 150001, China
| | - Kaimeng Liu
- State Key Laboratory of Precision Welding & Joining of Materials and Structures, Harbin Institute of Technology, Harbin 150001, China
| | - Tadatomo Suga
- Collaborative Research Center, Meisei University, Tokyo 191-8506, Japan
| | - Chenxi Wang
- State Key Laboratory of Precision Welding & Joining of Materials and Structures, Harbin Institute of Technology, Harbin 150001, China
| |
Collapse
|
4
|
Song Y, Hu Y, Zhu X, Yang K, Lončar M. Octave-spanning Kerr soliton frequency combs in dispersion- and dissipation-engineered lithium niobate microresonators. LIGHT, SCIENCE & APPLICATIONS 2024; 13:225. [PMID: 39223111 PMCID: PMC11369083 DOI: 10.1038/s41377-024-01546-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/18/2024] [Revised: 07/18/2024] [Accepted: 07/21/2024] [Indexed: 09/04/2024]
Abstract
Dissipative Kerr solitons from optical microresonators, commonly referred to as soliton microcombs, have been developed for a broad range of applications, including precision measurement, optical frequency synthesis, and ultra-stable microwave and millimeter wave generation, all on a chip. An important goal for microcombs is self-referencing, which requires octave-spanning bandwidths to detect and stabilize the comb carrier envelope offset frequency. Further, detection and locking of the comb spacings are often achieved using frequency division by electro-optic modulation. The thin-film lithium niobate photonic platform, with its low loss, strong second- and third-order nonlinearities, as well as large Pockels effect, is ideally suited for these tasks. However, octave-spanning soliton microcombs are challenging to demonstrate on this platform, largely complicated by strong Raman effects hindering reliable fabrication of soliton devices. Here, we demonstrate entirely connected and octave-spanning soliton microcombs on thin-film lithium niobate. With appropriate control over microresonator free spectral range and dissipation spectrum, we show that soliton-inhibiting Raman effects are suppressed, and soliton devices are fabricated with near-unity yield. Our work offers an unambiguous method for soliton generation on strongly Raman-active materials. Further, it anticipates monolithically integrated, self-referenced frequency standards in conjunction with established technologies, such as periodically poled waveguides and electro-optic modulators, on thin-film lithium niobate.
Collapse
Affiliation(s)
- Yunxiang Song
- John A. Paulson School of Engineering and Applied Sciences, Harvard University, Cambridge, MA, USA.
- Quantum Science and Engineering, Harvard University, Cambridge, MA, USA.
| | - Yaowen Hu
- John A. Paulson School of Engineering and Applied Sciences, Harvard University, Cambridge, MA, USA
| | - Xinrui Zhu
- John A. Paulson School of Engineering and Applied Sciences, Harvard University, Cambridge, MA, USA
| | - Kiyoul Yang
- John A. Paulson School of Engineering and Applied Sciences, Harvard University, Cambridge, MA, USA.
| | - Marko Lončar
- John A. Paulson School of Engineering and Applied Sciences, Harvard University, Cambridge, MA, USA.
| |
Collapse
|
5
|
Joo HJ, Liu J, Chen M, Burt D, Chomet B, Kim Y, Shi X, Lu K, Zhang L, Ikonic Z, Sohn YI, Tan CS, Gacemi D, Vasanelli A, Sirtori C, Todorov Y, Nam D. Actively tunable laser action in GeSn nanomechanical oscillators. NATURE NANOTECHNOLOGY 2024; 19:1116-1121. [PMID: 38684806 DOI: 10.1038/s41565-024-01662-w] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/23/2023] [Accepted: 03/26/2024] [Indexed: 05/02/2024]
Abstract
Mechanical forces induced by high-speed oscillations provide an elegant way to dynamically alter the fundamental properties of materials such as refractive index, absorption coefficient and gain dynamics. Although the precise control of mechanical oscillation has been well developed in the past decades, the notion of dynamic mechanical forces has not been harnessed for developing tunable lasers. Here we demonstrate actively tunable mid-infrared laser action in group-IV nanomechanical oscillators with a compact form factor. A suspended GeSn cantilever nanobeam on a Si substrate is resonantly driven by radio-frequency waves. Electrically controlled mechanical oscillation induces elastic strain that periodically varies with time in the GeSn nanobeam, enabling actively tunable lasing emission at >2 μm wavelengths. By utilizing mechanical resonances in the radio frequency as a driving mechanism, this work presents wide-range mid-infrared tunable lasers with ultralow tuning power consumption.
Collapse
Affiliation(s)
- Hyo-Jun Joo
- School of Electrical and Electronic Engineering, Nanyang Technological University, Singapore, Singapore
| | - Jiawen Liu
- Laboratoire de Physique de l'Ecole Normale Supérieure, ENS, Université PSL, CNRS, Sorbonne Université, Université Paris Cité, Paris, France
- Laboratory of Hybrid Photonics, École Polytechnique Fédérale de Lausanne (EPFL), Lausanne, Switzerland
| | - Melvina Chen
- School of Electrical and Electronic Engineering, Nanyang Technological University, Singapore, Singapore
| | - Daniel Burt
- School of Electrical and Electronic Engineering, Nanyang Technological University, Singapore, Singapore
| | - Baptiste Chomet
- Laboratoire de Physique de l'Ecole Normale Supérieure, ENS, Université PSL, CNRS, Sorbonne Université, Université Paris Cité, Paris, France
| | - Youngmin Kim
- School of Electrical and Electronic Engineering, Nanyang Technological University, Singapore, Singapore
| | - Xuncheng Shi
- School of Electrical and Electronic Engineering, Nanyang Technological University, Singapore, Singapore
| | - Kunze Lu
- School of Electrical and Electronic Engineering, Nanyang Technological University, Singapore, Singapore
| | - Lin Zhang
- School of Electrical and Electronic Engineering, Nanyang Technological University, Singapore, Singapore
| | - Zoran Ikonic
- School of Electronic and Electrical Engineering, University of Leeds, Leeds, UK
| | - Young-Ik Sohn
- School of Electrical Engineering, Korea Advanced Institute of Science and Technology (KAIST), Daejeon, Republic of Korea
| | - Chuan Seng Tan
- School of Electrical and Electronic Engineering, Nanyang Technological University, Singapore, Singapore
| | - Djamal Gacemi
- Laboratoire de Physique de l'Ecole Normale Supérieure, ENS, Université PSL, CNRS, Sorbonne Université, Université Paris Cité, Paris, France
| | - Angela Vasanelli
- Laboratoire de Physique de l'Ecole Normale Supérieure, ENS, Université PSL, CNRS, Sorbonne Université, Université Paris Cité, Paris, France
| | - Carlo Sirtori
- School of Electrical and Electronic Engineering, Nanyang Technological University, Singapore, Singapore.
- Laboratoire de Physique de l'Ecole Normale Supérieure, ENS, Université PSL, CNRS, Sorbonne Université, Université Paris Cité, Paris, France.
| | - Yanko Todorov
- Laboratoire de Physique de l'Ecole Normale Supérieure, ENS, Université PSL, CNRS, Sorbonne Université, Université Paris Cité, Paris, France.
| | - Donguk Nam
- School of Electrical and Electronic Engineering, Nanyang Technological University, Singapore, Singapore.
| |
Collapse
|
6
|
Chen D, Chen Z, Yang Y, Wang Y, Han X, Lau KY, Wu Z, Zou C, Zhang Y, Xu B, Liu X, Ma Z, Dong G, Barillaro G, Zhong L, Qiu J. 3D Laser Writing of Low-Loss Cross-Section-Variable Type-I Optical Waveguide Passive/Active Integrated Devices in Single Crystals. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2024; 36:e2404493. [PMID: 38718355 DOI: 10.1002/adma.202404493] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/27/2024] [Revised: 05/01/2024] [Indexed: 06/14/2024]
Abstract
Optical waveguides fabricated in single crystals offer crucial passive/active optical components for photonic integrated circuits. Single crystals possess inherent advantages over their amorphous counterpart, such as lower optical losses in visible-to-mid-infrared band, larger peak emission cross-section, higher doping concentration. However, the writing of Type-I positive refractive index modified waveguides in single crystals using femtosecond laser technology presents significant challenges. Herein, this work introduces a novel femtosecond laser direct writing technique that combines slit-shaping with an immersion oil objective to fabricate low-loss Type-I waveguides in single crystals. This approach allows for precise control of waveguide shape, size, mode-field, and refractive index distribution, with a spatial resolution as high as 700 nm and a high positive refractive index variation on the order of 10-2, introducing new degrees of freedom to design and fabricate passive/active optical waveguide devices. As a proof-of-concept, this work successfully produces a 7 mm-long circular-shaped gain waveguide (≈10 µm in diameter) in an Er3+-doped YAG single crystal, exhibiting a propagation loss as low as 0.23 dB cm-1, a net gain of ≈3 dB and a polarization-insensitive character. The newly-developed technique is theoretically applicable to arbitrary single crystals, holding promising potential for various applications in integrated optics, optical communication, and photonic quantum circuits.
Collapse
Affiliation(s)
- Daoyuan Chen
- State Key Laboratory of Extreme Photonics and Instrumentation, College of Optical Science and Engineering, Zhejiang University, Hangzhou, 310027, China
| | - Zhi Chen
- Zhejiang Lab, Hangzhou, 311100, China
- College of Materials Science and Engineering, Key Laboratory of Advanced Materials of Yunnan Province, Kunming University of Science and Technology, Kunming, Yunnan, 650093, China
| | - Yi Yang
- State Key Laboratory of Extreme Photonics and Instrumentation, College of Optical Science and Engineering, Zhejiang University, Hangzhou, 310027, China
| | - Yuying Wang
- State Key Laboratory of Extreme Photonics and Instrumentation, College of Optical Science and Engineering, Zhejiang University, Hangzhou, 310027, China
| | - Xuhu Han
- State Key Laboratory of Extreme Photonics and Instrumentation, College of Optical Science and Engineering, Zhejiang University, Hangzhou, 310027, China
| | - Kuen Yao Lau
- Key Lab of Advanced Optical Manufacturing Technologies of Jiangsu Province & Key Lab of Modern Optical Technologies of Education Ministry of China, School of Optoelectronic Science and Engineering & Collaborative Innovation Center of Suzhou Nano Science and Technology, Soochow University, Suzhou, 215006, China
| | - Zhemin Wu
- School of Material Science and Engineering, Centre of Electron Microscopy and State Key Laboratory of Silicon Materials, Zhejiang University, Hangzhou, 310027, China
| | - Chen Zou
- School of Material Science and Engineering, Centre of Electron Microscopy and State Key Laboratory of Silicon Materials, Zhejiang University, Hangzhou, 310027, China
| | - Yu Zhang
- Zhejiang Lab, Hangzhou, 311100, China
| | - Beibei Xu
- State Key Laboratory of Extreme Photonics and Instrumentation, College of Optical Science and Engineering, Zhejiang University, Hangzhou, 310027, China
| | - Xiaofeng Liu
- School of Materials Science and Engineering, Zhejiang University, Hangzhou, 310027, China
| | - Zhijun Ma
- Zhejiang Lab, Hangzhou, 311100, China
| | - Guoping Dong
- State Key Laboratory of Luminescent Materials and Devices, and Guangdong Provincial Key Laboratory of Fiber Laser Materials and Applied Techniques, Guangdong Engineering Technology Research and Development Center of Special Optical Fiber Materials and Devices, School of Materials Science and Engineering, South China University of Technology, Guangzhou, 510641, China
| | - Giuseppe Barillaro
- Dipartimento di Ingegneria dell'Informazione, Università di Pisa, via G. Caruso 16, Pisa, 56126, Italy
| | - Lijing Zhong
- Institute of Light+X Science and Technology, College of Information Science and Engineering, Ningbo University, Ningbo, 315211, China
| | - Jianrong Qiu
- State Key Laboratory of Extreme Photonics and Instrumentation, College of Optical Science and Engineering, Zhejiang University, Hangzhou, 310027, China
- Institute of Light+X Science and Technology, College of Information Science and Engineering, Ningbo University, Ningbo, 315211, China
| |
Collapse
|
7
|
Cai M, Zhang X, Li T, Shi H, Li T, Li H, Zheng Y, Chen X, Chen J, Wu K. Monolithic tunable dual-wavelength laser utilizing erbium-doped lithium niobate on an insulator. OPTICS LETTERS 2024; 49:3018-3021. [PMID: 38824317 DOI: 10.1364/ol.522774] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/01/2024] [Accepted: 04/30/2024] [Indexed: 06/03/2024]
Abstract
We demonstrate a monolithic tunable dual-wavelength laser fabricated on erbium-doped lithium niobate on an insulator (Er:LNOI). The dual-wavelength laser enables independent tuning with a continuously linear electro-optic (EO)-modulated tuning range of 11.875 GHz at a tuning efficiency of 0.63 pm/V. Tunable microwave generation within 50 GHz with a maximum extinction ratio of 35 dB is experimentally demonstrated by further exploring the charge accumulation effect in LNOI. The monolithic design of this work paves the way for microscale integration of laser devices, presenting significant prospects in photonics research and applications.
Collapse
|
8
|
Liu Y, Wu W, Zhang X. Self-injection-locked thin-film regenerative laser amplifier. iScience 2024; 27:109426. [PMID: 38646176 PMCID: PMC11033150 DOI: 10.1016/j.isci.2024.109426] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2024] [Revised: 02/09/2024] [Accepted: 03/01/2024] [Indexed: 04/23/2024] Open
Abstract
Organic lasers based on distributed feedback (DFB) microcavities have been extensively investigated. However, the application of these lasers is limited by their low output power and large beam divergence. Therefore, laser amplifiers are needed to achieve practically applicable laser intensity and controllable lasing modes for far-field applications. In this work, we report self-injection-locked laser amplifiers using the combination of a DFB microcavity and a Bragg reflector, where a high-reflection mirror acts as the Bragg reflector and its feedback supplies the external-cavity injection. The coherent coupling between the DFB microcavity and the Bragg amplifier is crucial for achieving high conversion efficiency and high-contrast transverse modes. An amplification factor larger than 20 and a single output laser spot with high contrast that has been achieved. Such an integration design of the self-injected DFB microcavity amplifier can be directly utilized in the realization of high-performance thin-film laser sources for practical applications.
Collapse
Affiliation(s)
- Yue Liu
- Institute of Information Photonics Technology, Beijing University of Technology, Beijing 100124, P.R. China
| | - Wenwen Wu
- Institute of Information Photonics Technology, Beijing University of Technology, Beijing 100124, P.R. China
| | - Xinping Zhang
- Institute of Information Photonics Technology, Beijing University of Technology, Beijing 100124, P.R. China
| |
Collapse
|
9
|
Cheng Y, Feng L, He J, Song X, Han X, Ding Y, Wang C, Guo G, Zhang M, Dai D, Ren X. Cryogenic lithium-niobate-on-insulator optical filter. OPTICS LETTERS 2024; 49:1969-1972. [PMID: 38621053 DOI: 10.1364/ol.518418] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/12/2024] [Accepted: 03/24/2024] [Indexed: 04/17/2024]
Abstract
Photonic integrated circuits have garnered significant attention and experienced rapid development in recent years. To provide fundamental building blocks for scalable optical classical and quantum information processing, one important direction is to develop cryogenic compatible photonic integrated devices. Here, we prepare one optical filter on a lithium-niobate-on-insulator (LNOI) platform based on a multimode waveguide grating and verify its availability at temperature from 295 to 7 K. We find that the integrated optical filter still shows good quality under cryogenic conditions, and the shift of the working wavelength at different temperatures is well explained by the index variation of the material. These results advance LNOI integrated optical devices in applications under cryogenic conditions.
Collapse
|
10
|
Lukashchuk A, Yildirim HK, Bancora A, Lihachev G, Liu Y, Qiu Z, Ji X, Voloshin A, Bhave SA, Charbon E, Kippenberg TJ. Photonic-electronic integrated circuit-based coherent LiDAR engine. Nat Commun 2024; 15:3134. [PMID: 38605067 PMCID: PMC11009237 DOI: 10.1038/s41467-024-47478-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2023] [Accepted: 04/02/2024] [Indexed: 04/13/2024] Open
Abstract
Chip-scale integration is a key enabler for the deployment of photonic technologies. Coherent laser ranging or FMCW LiDAR, a perception technology that benefits from instantaneous velocity and distance detection, eye-safe operation, long-range, and immunity to interference. However, wafer-scale integration of these systems has been challenged by stringent requirements on laser coherence, frequency agility, and the necessity for optical amplifiers. Here, we demonstrate a photonic-electronic LiDAR source composed of a micro-electronic-based high-voltage arbitrary waveform generator, a hybrid photonic circuit-based tunable Vernier laser with piezoelectric actuators, and an erbium-doped waveguide amplifier. Importantly, all systems are realized in a wafer-scale manufacturing-compatible process comprising III-V semiconductors, silicon nitride photonic integrated circuits, and 130-nm SiGe bipolar complementary metal-oxide-semiconductor (CMOS) technology. We conducted ranging experiments at a 10-meter distance with a precision level of 10 cm and a 50 kHz acquisition rate. The laser source is turnkey and linearization-free, and it can be seamlessly integrated with existing focal plane and optical phased array LiDAR approaches.
Collapse
Affiliation(s)
- Anton Lukashchuk
- Institute of Physics, Swiss Federal Institute of Technology Lausanne (EPFL), CH-1015, Lausanne, Switzerland
| | - Halil Kerim Yildirim
- Advanced Quantum Architecture Laboratory (AQUA), Swiss Federal Institute of Technology Lausanne (EPFL), CH-2002, Neuchâtel, Switzerland
| | - Andrea Bancora
- Institute of Physics, Swiss Federal Institute of Technology Lausanne (EPFL), CH-1015, Lausanne, Switzerland
| | - Grigory Lihachev
- Institute of Physics, Swiss Federal Institute of Technology Lausanne (EPFL), CH-1015, Lausanne, Switzerland
| | - Yang Liu
- Institute of Physics, Swiss Federal Institute of Technology Lausanne (EPFL), CH-1015, Lausanne, Switzerland
| | - Zheru Qiu
- Institute of Physics, Swiss Federal Institute of Technology Lausanne (EPFL), CH-1015, Lausanne, Switzerland
| | - Xinru Ji
- Institute of Physics, Swiss Federal Institute of Technology Lausanne (EPFL), CH-1015, Lausanne, Switzerland
| | - Andrey Voloshin
- Institute of Physics, Swiss Federal Institute of Technology Lausanne (EPFL), CH-1015, Lausanne, Switzerland
| | - Sunil A Bhave
- OxideMEMS Lab, Purdue University, 47907, West Lafayette, IN, USA
| | - Edoardo Charbon
- Advanced Quantum Architecture Laboratory (AQUA), Swiss Federal Institute of Technology Lausanne (EPFL), CH-2002, Neuchâtel, Switzerland.
| | - Tobias J Kippenberg
- Institute of Physics, Swiss Federal Institute of Technology Lausanne (EPFL), CH-1015, Lausanne, Switzerland.
| |
Collapse
|
11
|
Chen M, Wang C, Tian XH, Tang J, Gu X, Qian G, Jia K, Liu HY, Yan Z, Ye Z, Yin Z, Zhu SN, Xie Z. Wafer-Scale Periodic Poling of Thin-Film Lithium Niobate. MATERIALS (BASEL, SWITZERLAND) 2024; 17:1720. [PMID: 38673078 PMCID: PMC11051387 DOI: 10.3390/ma17081720] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/01/2024] [Revised: 04/01/2024] [Accepted: 04/04/2024] [Indexed: 04/28/2024]
Abstract
Periodically poled lithium niobate on insulator (PPLNOI) offers an admirably promising platform for the advancement of nonlinear photonic integrated circuits (PICs). In this context, domain inversion engineering emerges as a key process to achieve efficient nonlinear conversion. However, periodic poling processing of thin-film lithium niobate has only been realized on the chip level, which significantly limits its applications in large-scale nonlinear photonic systems that necessitate the integration of multiple nonlinear components on a single chip with uniform performances. Here, we demonstrate a wafer-scale periodic poling technique on a 4-inch LNOI wafer with high fidelity. The reversal lengths span from 0.5 to 10.17 mm, encompassing an area of ~1 cm2 with periods ranging from 4.38 to 5.51 μm. Efficient poling was achieved with a single manipulation, benefiting from the targeted grouped electrode pads and adaptable comb line widths in our experiment. As a result, domain inversion is ultimately implemented across the entire wafer with a 100% success rate and 98% high-quality rate on average, showcasing high throughput and stability, which is fundamentally scalable and highly cost-effective in contrast to traditional size-restricted chiplet-level poling. Our study holds significant promise to dramatically promote ultra-high performance to a broad spectrum of applications, including optical communications, photonic neural networks, and quantum photonics.
Collapse
Affiliation(s)
- Mengwen Chen
- National Laboratory of Solid State Microstructures, School of Electronic Science and Engineering, School of Physics, College of Engineering and Applied Sciences, Collaborative Innovation Center of Advanced Microstructures, Nanjing University, Nanjing 210093, China; (M.C.); (C.W.); (K.J.); (H.-Y.L.); (S.-N.Z.)
| | - Chenyu Wang
- National Laboratory of Solid State Microstructures, School of Electronic Science and Engineering, School of Physics, College of Engineering and Applied Sciences, Collaborative Innovation Center of Advanced Microstructures, Nanjing University, Nanjing 210093, China; (M.C.); (C.W.); (K.J.); (H.-Y.L.); (S.-N.Z.)
| | - Xiao-Hui Tian
- National Laboratory of Solid State Microstructures, School of Electronic Science and Engineering, School of Physics, College of Engineering and Applied Sciences, Collaborative Innovation Center of Advanced Microstructures, Nanjing University, Nanjing 210093, China; (M.C.); (C.W.); (K.J.); (H.-Y.L.); (S.-N.Z.)
| | - Jie Tang
- National Key Laboratory of Solid-State Microwave Devices and Circuits, Nanjing Electronic Devices Institute, Nanjing 210016, China; (J.T.); (X.G.); (G.Q.)
| | - Xiaowen Gu
- National Key Laboratory of Solid-State Microwave Devices and Circuits, Nanjing Electronic Devices Institute, Nanjing 210016, China; (J.T.); (X.G.); (G.Q.)
| | - Guang Qian
- National Key Laboratory of Solid-State Microwave Devices and Circuits, Nanjing Electronic Devices Institute, Nanjing 210016, China; (J.T.); (X.G.); (G.Q.)
| | - Kunpeng Jia
- National Laboratory of Solid State Microstructures, School of Electronic Science and Engineering, School of Physics, College of Engineering and Applied Sciences, Collaborative Innovation Center of Advanced Microstructures, Nanjing University, Nanjing 210093, China; (M.C.); (C.W.); (K.J.); (H.-Y.L.); (S.-N.Z.)
| | - Hua-Ying Liu
- National Laboratory of Solid State Microstructures, School of Electronic Science and Engineering, School of Physics, College of Engineering and Applied Sciences, Collaborative Innovation Center of Advanced Microstructures, Nanjing University, Nanjing 210093, China; (M.C.); (C.W.); (K.J.); (H.-Y.L.); (S.-N.Z.)
| | - Zhong Yan
- School of Integrated Circuits, Nanjing University of Information Science and Technology, Nanjing 210044, China;
- NanZhi Institute of Advanced Optoelectronic Integration Technology Co., Ltd., Nanjing 210018, China; (Z.Y.)
| | - Zhilin Ye
- NanZhi Institute of Advanced Optoelectronic Integration Technology Co., Ltd., Nanjing 210018, China; (Z.Y.)
| | - Zhijun Yin
- NanZhi Institute of Advanced Optoelectronic Integration Technology Co., Ltd., Nanjing 210018, China; (Z.Y.)
| | - Shi-Ning Zhu
- National Laboratory of Solid State Microstructures, School of Electronic Science and Engineering, School of Physics, College of Engineering and Applied Sciences, Collaborative Innovation Center of Advanced Microstructures, Nanjing University, Nanjing 210093, China; (M.C.); (C.W.); (K.J.); (H.-Y.L.); (S.-N.Z.)
| | - Zhenda Xie
- National Laboratory of Solid State Microstructures, School of Electronic Science and Engineering, School of Physics, College of Engineering and Applied Sciences, Collaborative Innovation Center of Advanced Microstructures, Nanjing University, Nanjing 210093, China; (M.C.); (C.W.); (K.J.); (H.-Y.L.); (S.-N.Z.)
| |
Collapse
|
12
|
Li H, Wang Z, Lu Q, Wang L, Tan Y, Chen F. Heterogeneous integration of an on-chip Nd:YAG whispering gallery mode laser with a lithium-niobate-on-insulator platform. OPTICS LETTERS 2024; 49:1397-1400. [PMID: 38489409 DOI: 10.1364/ol.515441] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/07/2023] [Accepted: 02/10/2024] [Indexed: 03/17/2024]
Abstract
The integration of heterogeneous optical components onto an optical platform is crucial for the advancement of photonic chips. To achieve this, efficient coupling of optical signals between components and the platform is essential. Here, we have successfully integrated a Nd:YAG microdisk laser with a lithium-niobate-on-insulator (LNOI) photonic platform by modulating the propagation modes of LNOI. Ridge waveguides are fabricated on the LNOI by carefully adjusting the cross-sectional dimensions to enable the propagation of higher-order propagation modes. This ridge waveguide ensures that the effective refractive index of the higher-order mode closely matches that of the fundamental mode of the Nd:YAG microdisk, ensuring efficient waveguide-microdisk coupling. This on-chip laser, consisting of an Nd:YAG microdisk and LNOI integration, achieves a maximum output power of 23 µW, and a mode suppression ratio of 53.6 dB. This research presents an efficient approach for constructing highly functional heterogeneous integrated optical chips.
Collapse
|
13
|
Morin TJ, Peters J, Li M, Guo J, Wan Y, Xiang C, Bowers JE. Coprocessed heterogeneous near-infrared lasers on thin-film lithium niobate. OPTICS LETTERS 2024; 49:1197-1200. [PMID: 38426972 DOI: 10.1364/ol.516486] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/21/2023] [Accepted: 02/06/2024] [Indexed: 03/02/2024]
Abstract
Thin-film lithium niobate (TFLN) is an attractive platform for photonic applications on account of its wide bandgap, its large electro-optic coefficient, and its large nonlinearity. Since these characteristics are used in systems that require a coherent light source, size, weight, power, and cost can be reduced and reliability enhanced by combining TFLN processing and heterogeneous laser fabrication. Here, we report the fabrication of laser devices on a TFLN wafer and also the coprocessing of five different GaAs-based III-V epitaxial structures, including InGaAs quantum wells and InAs quantum dots. Lasing is observed at wavelengths near 930, 1030, and 1180 nm, which, if frequency-doubled using TFLN, would produce blue, green, and orange visible light. A single-sided power over 25 mW is measured with an integrating sphere.
Collapse
|
14
|
Mrokon A, Oehler J, Breunig I. Continuous adiabatic frequency conversion for FMCW-LiDAR. Sci Rep 2024; 14:4990. [PMID: 38424205 PMCID: PMC10904768 DOI: 10.1038/s41598-024-55687-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2023] [Accepted: 02/26/2024] [Indexed: 03/02/2024] Open
Abstract
Continuous tuning of the frequency of laser light serves as the fundamental basis for a myriad of applications spanning basic scientific research to industrial settings. These applications encompass endeavors such as the detection of gravitational waves, the development of precise optical clocks, environmental monitoring for health and ecological purposes, as well as distance measurement techniques. However, achieving a broad tuning range exceeding 100 GHz along with sub-microsecond tuning times, inherent linearity in tuning, and coherence lengths beyond 10 m presents significant challenges. Here, we demonstrate that electro-optically driven adiabatic frequency converters utilizing high-Q microresonators fabricated from lithium niobate possess the capability to convert arbitrary voltage signals into frequency chirps with temporal resolutions below 1 µs. The temporal evolution of the frequency correlates accurately with the applied voltage signal. We have achieved to generate 200-ns-long frequency chirps with deviations of less than 1 % from perfect linearity without requiring supplementary measures. The coefficient of determination isR 2 > 0.999 . Moreover, the coherence length of the emitted light exceeds 20 m. To validate these findings, we employ the linear frequency sweeps for Frequency-Modulated Continuous Wave (FMCW) LiDAR covering distances ranging from 0.5 to 10 m. Leveraging the demonstrated nanosecond-level tuning capabilities, coupled with the potential to tune the eigenfrequency of lithium-niobate-based resonators by several hundred GHz, our results show that electro-optically driven adiabatic frequency converters can be used in applications that require ultrafast and flexible continuous frequency tuning characterized by inherent linearity and substantial coherence length.
Collapse
Affiliation(s)
- Alexander Mrokon
- Laboratory for Optical Systems, Department of Microsystems Engineering - IMTEK, University of Freiburg, Georges-Köhler-Allee 102, Freiburg, 79110, Germany.
| | - Johanna Oehler
- Laboratory for Optical Systems, Department of Microsystems Engineering - IMTEK, University of Freiburg, Georges-Köhler-Allee 102, Freiburg, 79110, Germany
| | - Ingo Breunig
- Laboratory for Optical Systems, Department of Microsystems Engineering - IMTEK, University of Freiburg, Georges-Köhler-Allee 102, Freiburg, 79110, Germany
- Fraunhofer Institute for Physical Measurement Techniques IPM, Georges-Köhler-Allee 301, Freiburg, 79110, Germany
| |
Collapse
|
15
|
Zheng JX, Li HY, Tian KS, Yu YH, Liu XQ, Chen QD. Arbitrary fabrication of complex lithium niobate three-dimensional microstructures for second harmonic generation enhancement. OPTICS LETTERS 2024; 49:850-853. [PMID: 38359198 DOI: 10.1364/ol.515576] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/08/2023] [Accepted: 01/12/2024] [Indexed: 02/17/2024]
Abstract
Lithium niobate (LN) crystal plays important roles in future integrated photonics, but it is still a great challenge to efficiently fabricate three-dimensional micro-/nanostructures on it. Here, a femtosecond laser direct writing-assisted liquid back-etching technology (FsLDW-LBE) is proposed to achieve the three-dimensional (3D) microfabrication of lithium niobate (LN) with high surface quality (Ra = 0.422 nm). Various 3D structures, such as snowflakes, graphic arrays, criss-cross arrays, and helix arrays, have been successfully fabricated on the surface of LN crystals. As an example, a microcone array was fabricated on LN crystals, which showed a strong second harmonic signal enhancement with up to 12 times bigger than the flat lithium niobate. The results indicate that the method provides a new approach for the microfabrication of lithium niobate crystals for nonlinear optics.
Collapse
|
16
|
Han M, Li J, Yu H, Li D, Li R, Liu J. Integrated self-injection-locked narrow linewidth laser based on thin-film lithium niobate. OPTICS EXPRESS 2024; 32:5632-5640. [PMID: 38439284 DOI: 10.1364/oe.509900] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/24/2023] [Accepted: 01/10/2024] [Indexed: 03/06/2024]
Abstract
Narrow linewidth lasers have a wide range of applications in the fields of coherent optical communications, atomic clocks, and measurement. Lithium niobate material possesses excellent electro-optic and thermo-optic properties, making it an ideal photonic integration platform for a new generation. The light source is a crucial element in large-scale photonic integration. Therefore, it is essential to develop integrated narrow linewidth lasers based on low-loss LNOI. This study is based on the multimode race-track type add-drop microring resonator with multimode interferometric coupler (MMRA-MRR) of the DFB laser self-injection-locked, to achieve the narrowing of linewidth to the laser. The microring external cavity was used to narrow the linewidth of the laser to 2.5 kHz. The output power of the laser is 3.18 mW, and the side-mode suppression ratio is 60 dB. This paper presents an integrated low-noise, narrow-linewidth laser based on thin-film lithium niobate material for the communication band. This is significant for achieving all-optical device on-chip integration of lithium niobate material in the future. It has great potential for use in high-speed coherent optical communication.
Collapse
|
17
|
Xu Y, Wang F, Xu J, Lv X, Zhao G, Sun Z, Xie Z, Zhu S. Two-photon absorption flexible photodetector responsive to femtosecond laser. OPTICS EXPRESS 2024; 32:4334-4345. [PMID: 38297637 DOI: 10.1364/oe.509180] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/13/2023] [Accepted: 01/14/2024] [Indexed: 02/02/2024]
Abstract
Integrated on-chip femtosecond (fs) laser optoelectronic system, with photodetector as a critical component for light-electrical signal conversion, is a long-sought-after goal for a wide range of frontier applications. However, the high laser peak intensity and complicated nanophotonic waveguide structure of on-chip fs laser are beyond the detectability and integrability of conventional photodetectors. Therefore, flexible photodetector with the response on intense fs laser is in urgent needs. Herein, we demonstrate the first (to our knowledge) two-photon absorption (TPA) flexible photodetector based on the strong TPA nonlinearity of layered hybrid perovskite (IA)2(MA)2Pb3Br10, exhibiting efficient sub-bandgap response on the infrared fs laser at 700-1000 nm. High saturation intensity up to ∼3.8 MW/cm2 is achieved. The device also shows superior current stability even after bending for 1000 cycles. This work may pave the new way for the application of flexible optoelectronics specialized in integrated fs-laser detection.
Collapse
|
18
|
Huang J, Chen N, Chen K, Chu T. Low-loss grating coupler with a subwavelength structure on a thin-film lithium niobate substrate. OPTICS LETTERS 2024; 49:222-225. [PMID: 38194533 DOI: 10.1364/ol.509999] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/20/2023] [Accepted: 12/03/2023] [Indexed: 01/11/2024]
Abstract
We demonstrated a low-loss O-band grating coupler on an x-cut thin-film lithium niobate substrate by implementing subwavelength and apodized structures. The subwavelength gratings were used to mitigate the refractive index discontinuity between the input taper and grating region, which was the first application of such a structure for grating coupler optimization on a thin-film lithium niobate substrate. The coupling efficiency was measured to be -1.99 dB/coupler at a wavelength of 1312.8 nm, which was the lowest loss among the reported lithium niobate grating couplers that do not use metal mirrors. The proposed design does not require metal mirrors or any additional material layers and can be easily fabricated with a single-step lithography and etching processes.
Collapse
|
19
|
Dong M, Boyle JM, Palm KJ, Zimmermann M, Witte A, Leenheer AJ, Dominguez D, Gilbert G, Eichenfield M, Englund D. Synchronous micromechanically resonant programmable photonic circuits. Nat Commun 2023; 14:7716. [PMID: 38001076 PMCID: PMC10673894 DOI: 10.1038/s41467-023-42866-3] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2023] [Accepted: 10/22/2023] [Indexed: 11/26/2023] Open
Abstract
Programmable photonic integrated circuits (PICs) are emerging as powerful tools for control of light, with applications in quantum information processing, optical range finding, and artificial intelligence. Low-power implementations of these PICs involve micromechanical structures driven capacitively or piezoelectrically but are often limited in modulation bandwidth by mechanical resonances and high operating voltages. Here we introduce a synchronous, micromechanically resonant design architecture for programmable PICs and a proof-of-principle 1×8 photonic switch using piezoelectric optical phase shifters. Our design purposefully exploits high-frequency mechanical resonances and optically broadband components for larger modulation responses on the order of the mechanical quality factor Qm while maintaining fast switching speeds. We experimentally show switching cycles of all 8 channels spaced by approximately 11 ns and operating at 4.6 dB average modulation enhancement. Future advances in micromechanical devices with high Qm, which can exceed 10000, should enable an improved series of low-voltage and high-speed programmable PICs.
Collapse
Affiliation(s)
- Mark Dong
- The MITRE Corporation, 202 Burlington Road, Bedford, MA, 01730, USA.
- Research Laboratory of Electronics, Massachusetts Institute of Technology, Cambridge, MA, 02139, USA.
| | - Julia M Boyle
- The MITRE Corporation, 202 Burlington Road, Bedford, MA, 01730, USA
| | - Kevin J Palm
- The MITRE Corporation, 202 Burlington Road, Bedford, MA, 01730, USA
| | | | - Alex Witte
- The MITRE Corporation, 202 Burlington Road, Bedford, MA, 01730, USA
| | - Andrew J Leenheer
- Sandia National Laboratories, P.O. Box 5800, Albuquerque, NM, 87185, USA
| | - Daniel Dominguez
- Sandia National Laboratories, P.O. Box 5800, Albuquerque, NM, 87185, USA
| | - Gerald Gilbert
- The MITRE Corporation, 200 Forrestal Road, Princeton, NJ, 08540, USA
| | - Matt Eichenfield
- Sandia National Laboratories, P.O. Box 5800, Albuquerque, NM, 87185, USA
- College of Optical Sciences, University of Arizona, Tucson, AZ, 85719, USA
| | - Dirk Englund
- Research Laboratory of Electronics, Massachusetts Institute of Technology, Cambridge, MA, 02139, USA
- Brookhaven National Laboratory, 98 Rochester Street, Upton, NY, 11973, USA
| |
Collapse
|
20
|
Liu P, Wen H, Ren L, Shi L, Zhang X. χ (2) nonlinear photonics in integrated microresonators. FRONTIERS OF OPTOELECTRONICS 2023; 16:18. [PMID: 37460874 DOI: 10.1007/s12200-023-00073-4] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/04/2023] [Accepted: 05/22/2023] [Indexed: 07/20/2023]
Abstract
Second-order (χ(2)) optical nonlinearity is one of the most common mechanisms for modulating and generating coherent light in photonic devices. Due to strong photon confinement and long photon lifetime, integrated microresonators have emerged as an ideal platform for investigation of nonlinear optical effects. However, existing silicon-based materials lack a χ(2) response due to their centrosymmetric structures. A variety of novel material platforms possessing χ(2) nonlinearity have been developed over the past two decades. This review comprehensively summarizes the progress of second-order nonlinear optical effects in integrated microresonators. First, the basic principles of χ(2) nonlinear effects are introduced. Afterward, we highlight the commonly used χ(2) nonlinear optical materials, including their material properties and respective functional devices. We also discuss the prospects and challenges of utilizing χ(2) nonlinearity in the field of integrated microcavity photonics.
Collapse
Affiliation(s)
- Pengfei Liu
- Wuhan National Laboratory for Optoelectronics, Huazhong University of Science and Technology, Wuhan, 430074, China
| | - Hao Wen
- Wuhan National Laboratory for Optoelectronics, Huazhong University of Science and Technology, Wuhan, 430074, China
| | - Linhao Ren
- Wuhan National Laboratory for Optoelectronics, Huazhong University of Science and Technology, Wuhan, 430074, China
| | - Lei Shi
- Wuhan National Laboratory for Optoelectronics, Huazhong University of Science and Technology, Wuhan, 430074, China.
- Optics Valley Laboratory, Wuhan, 430074, China.
| | - Xinliang Zhang
- Wuhan National Laboratory for Optoelectronics, Huazhong University of Science and Technology, Wuhan, 430074, China
- Optics Valley Laboratory, Wuhan, 430074, China
| |
Collapse
|
21
|
Zhang X, Zhang B, Wei S, Li H, Liao J, Li C, Deng G, Wang Y, Song H, You L, Jing B, Chen F, Guo G, Zhou Q. Telecom-band-integrated multimode photonic quantum memory. SCIENCE ADVANCES 2023; 9:eadf4587. [PMID: 37450592 PMCID: PMC10348679 DOI: 10.1126/sciadv.adf4587] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/23/2022] [Accepted: 06/14/2023] [Indexed: 07/18/2023]
Abstract
Telecom-band-integrated quantum memory is an elementary building block for developing quantum networks compatible with fiber communication infrastructures. Toward such a network with large capacity, an integrated multimode photonic quantum memory at telecom band has yet been demonstrated. Here, we report a fiber-integrated multimode quantum storage of single photon at telecom band on a laser-written chip. The storage device is a fiber-pigtailed Er3+:LiNbO3 waveguide and allows a storage of up to 330 temporal modes of heralded single photon with 4-GHz-wide bandwidth at 1532 nm and a 167-fold increasing of coincidence detection rate with respect to single mode. Our memory system with all-fiber addressing is performed using telecom-band fiber-integrated and on-chip components. The results represent an important step for the future quantum networks using integrated photonics devices.
Collapse
Affiliation(s)
- Xueying Zhang
- Institute of Fundamental and Frontier Sciences, University of Electronic Science and Technology of China, Chengdu 610054, China
| | - Bin Zhang
- School of Physics, State Key Laboratory of Crystal Materials, Shandong University, Jinan 250100, China
| | - Shihai Wei
- Institute of Fundamental and Frontier Sciences, University of Electronic Science and Technology of China, Chengdu 610054, China
| | - Hao Li
- Shanghai Institute of Microsystem and Information Technology, Chinese Academy of Sciences, Shanghai 200050, China
| | - Jinyu Liao
- Institute of Fundamental and Frontier Sciences, University of Electronic Science and Technology of China, Chengdu 610054, China
| | - Cheng Li
- Institute of Fundamental and Frontier Sciences, University of Electronic Science and Technology of China, Chengdu 610054, China
| | - Guangwei Deng
- Institute of Fundamental and Frontier Sciences, University of Electronic Science and Technology of China, Chengdu 610054, China
- CAS Key Laboratory of Quantum Information, University of Science and Technology of China, Hefei 230026, China
| | - You Wang
- Institute of Fundamental and Frontier Sciences, University of Electronic Science and Technology of China, Chengdu 610054, China
- Southwest Institute of Technical Physics, Chengdu 610041, China
| | - Haizhi Song
- Institute of Fundamental and Frontier Sciences, University of Electronic Science and Technology of China, Chengdu 610054, China
- Southwest Institute of Technical Physics, Chengdu 610041, China
| | - Lixing You
- Shanghai Institute of Microsystem and Information Technology, Chinese Academy of Sciences, Shanghai 200050, China
| | - Bo Jing
- Institute of Fundamental and Frontier Sciences, University of Electronic Science and Technology of China, Chengdu 610054, China
| | - Feng Chen
- School of Physics, State Key Laboratory of Crystal Materials, Shandong University, Jinan 250100, China
| | - Guangcan Guo
- Institute of Fundamental and Frontier Sciences, University of Electronic Science and Technology of China, Chengdu 610054, China
- CAS Key Laboratory of Quantum Information, University of Science and Technology of China, Hefei 230026, China
| | - Qiang Zhou
- Institute of Fundamental and Frontier Sciences, University of Electronic Science and Technology of China, Chengdu 610054, China
- CAS Key Laboratory of Quantum Information, University of Science and Technology of China, Hefei 230026, China
- School of Optoelectronic Science and Engineering, University of Electronic Science and Technology of China, Chengdu 610054, China
| |
Collapse
|