1
|
Locher BN, Löwe P, Christen F, Damm F. Detection and Characterization of Clonal Hematopoiesis. Methods Mol Biol 2025; 2865:449-474. [PMID: 39424737 DOI: 10.1007/978-1-0716-4188-0_20] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2024]
Abstract
Clonal hematopoiesis (CH) is the age-related expansion of hematopoietic stem cell clones resulting from the acquisition of somatic point mutations or mosaic chromosomal alterations (mCAs). It is linked to adverse systemic effects, including hematologic malignancies, cardiovascular diseases, metabolic disorders, as well as liver and kidney ailments, ultimately contributing to elevated overall mortality.Given its diverse biological and clinical implications, the identification of clonal hematopoiesis holds significance in various contexts. While traditionally centered on mutations associated with myeloid malignancies, stem/progenitor cell involvement has been documented for various lymphoid malignancies, including T-cell lymphoma, chronic lymphocytic leukemia (CLL), and follicular lymphoma (FL). Lymphoid CH (L-CH) involves a broader spectrum of genes and occurs at a lower prevalence, resulting in reduced mutation prevalences per gene. This characteristic poses challenges for efficient CH detection.The major strategies to identify CH are whole exome sequencing (WES), whole genome sequencing (WGS), or targeted sequencing. Targeted sequencing allows for much higher sequencing depth compared to WES and WGS because of the focus on genes known to be associated with CH and therefore allows detecting potential variants at low frequencies with high precision. Here, we describe an error-corrected targeted sequencing approach for detection of CH in bone marrow (BM) or peripheral blood (PB) samples, which we have successfully established and used in various cohorts. This protocol includes the process of DNA isolation from PB and BM samples, library preparation with molecular tags including quality control steps and computational analysis including variant filtering.
Collapse
Affiliation(s)
- Benjamin N Locher
- Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Department of Hematology, Oncology, and Cancer Immunology, Berlin, Germany
| | - Pelle Löwe
- Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Department of Hematology, Oncology, and Cancer Immunology, Berlin, Germany
| | - Friederike Christen
- Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Department of Hematology, Oncology, and Cancer Immunology, Berlin, Germany
| | - Frederik Damm
- Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Department of Hematology, Oncology, and Cancer Immunology, Berlin, Germany.
- German Cancer Consortium (DKTK) and German Cancer Research Center (DKFZ), Heidelberg, Germany.
| |
Collapse
|
2
|
Wang Z, Zhu H, Chen L, Gan C, Min W, Xiao J, Zou Z, He Y. Absence of Causal Relationship Between Levels of Unsaturated Fatty Acids and ADHD: Evidence From Mendelian Randomization Study. J Atten Disord 2024; 28:1716-1725. [PMID: 39082434 DOI: 10.1177/10870547241264660] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 10/29/2024]
Abstract
OBJECTIVE Previous research suggests a potential link between unsaturated fatty acids (UFAs) and ADHD, but the causal relationship remains uncertain. This study aims to investigate the causal association between ADHD and UFAs using Mendelian randomization (MR) analysis. METHODS Summary data from genome-wide association studies were used to estimate the concentration of circulating UFAs, including Monounsaturated Fatty Acids (MUFAs), Polyunsaturated Fatty Acids (PUFAs), Omega-3 PUFAs, Omega-6 PUFAs, Linoleic Acid (LA), and Docosahexaenoic Acid (DHA). Data from the Psychiatric Genomics Consortium, including both childhood and adult ADHD, were respectively used to examine the relationship between genetically predicted UFAs levels and ADHD. Various MR methods, including Inverse-variance weighted (IVW), MR Pleiotropy RESidual Sum and Outlier, MR-Egger, weighted median, and weighted mode, were employed to assess heterogeneity and pleiotropy. RESULTS The IVW revealed only nominal evidence suggesting a potential causal relationship between genetically predicted PUFAs (OR = 0.92, 95% CI [0.85, 0.99], p = .031), Omega-6 PUFAs (OR = 0.90, 95% CI [0.83, 0.98], p = .020), and LA levels (OR = 0.90, 95% CI [0.82, 0.98], p = .021) with childhood ADHD risk. However, after false discovery rate correction, the p-values for PUFAs, Omega-6 PUFAs, and LA levels all exceeded the threshold for significance. For adult ADHD, we did not find any significant associations between the six circulating UFA levels and adult ADHD. CONCLUSION Our findings do not support a causal relationship between UFAs levels and ADHD. This suggests that UFAs supplements may not be effective in improving ADHD symptoms and importantly, it appears that UFAs levels may not have a long-term effect on ADHD.
Collapse
Affiliation(s)
- Zuxing Wang
- Sichuan Academy of Medical Sciences & Sichuan Provincial People's Hospital, Chengdu, China
- Chinese Academy of Medical Sciences, Chengdu, Sichuan, China
| | - Hongru Zhu
- West China Hospital of Sichuan University, Chengdu, China
| | - Lili Chen
- Sichuan Academy of Medical Sciences & Sichuan Provincial People's Hospital, Chengdu, China
- Chinese Academy of Medical Sciences, Chengdu, Sichuan, China
| | - Chenyu Gan
- Jiaxiang Foreign Language Senior High School, Chengdu, China
| | - Wenjiao Min
- Sichuan Academy of Medical Sciences & Sichuan Provincial People's Hospital, Chengdu, China
- Chinese Academy of Medical Sciences, Chengdu, Sichuan, China
| | - Jun Xiao
- Sichuan Academy of Medical Sciences & Sichuan Provincial People's Hospital, Chengdu, China
- Chinese Academy of Medical Sciences, Chengdu, Sichuan, China
| | - Zhili Zou
- Sichuan Academy of Medical Sciences & Sichuan Provincial People's Hospital, Chengdu, China
- Chinese Academy of Medical Sciences, Chengdu, Sichuan, China
| | - Ying He
- Sichuan Academy of Medical Sciences & Sichuan Provincial People's Hospital, Chengdu, China
- Chinese Academy of Medical Sciences, Chengdu, Sichuan, China
| |
Collapse
|
3
|
Pontikoglou CG, Filippatos TD, Matheakakis A, Papadaki HA. Steatotic liver disease in the context of hematological malignancies and anti-neoplastic chemotherapy. Metabolism 2024; 160:156000. [PMID: 39142602 DOI: 10.1016/j.metabol.2024.156000] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/31/2024] [Revised: 07/26/2024] [Accepted: 08/10/2024] [Indexed: 08/16/2024]
Abstract
The rising prevalence of obesity-related illnesses, such as metabolic steatotic liver disease (MASLD), represents a significant global public health concern. This disease affects approximately 30 % of the adult population and is the result of metabolic abnormalities rather than alcohol consumption. Additionally, MASLD is associated with an increased risk of cardiovascular disease (CVD), chronic liver disease, and a variety of cancers, particularly gastrointestinal cancers. Clonal hematopoiesis (CH) is a biological state characterized by the expansion of a population of blood cells derived from a single mutated hematopoietic stem cell. The presence of CH in the absence of a diagnosed blood disorder or cytopenia is known as clonal hematopoiesis of indeterminate potential (CHIP), which itself increases the risk of hematological malignancies and CVD. Steatotic liver disease may also complicate the clinical course of cancer patients receiving antineoplastic agents, a condition referred to as chemotherapy induced steatohepatitis (CASH). This review will present an outline of the various aspects of MASLD, including complications. Furthermore, it will summarize the existing knowledge on the emerging association between CHIP and MASLD and present the available data on patient cases with concurrent MASLD and hematological neoplasms. Finally, it will provide a brief overview of the chemotherapeutic drugs associated with CASH, the underlying pathophysiologic mechanisms and their clinical implications.
Collapse
Affiliation(s)
- Charalampos G Pontikoglou
- Department of Hematology, University Hospital of Heraklion, & School of Medicine of the University of Crete, Crete, Greece
| | - Theodosios D Filippatos
- Department of Internal Medicine, University Hospital of Heraklion, & School of Medicine of the University of Crete, Crete, Greece
| | - Angelos Matheakakis
- Department of Hematology, University Hospital of Heraklion, & School of Medicine of the University of Crete, Crete, Greece
| | - Helen A Papadaki
- Department of Hematology, University Hospital of Heraklion, & School of Medicine of the University of Crete, Crete, Greece.
| |
Collapse
|
4
|
Lv H, Liu B, Dai Y, Li F, Bellone S, Zhou Y, Mamillapalli R, Zhao D, Venkatachalapathy M, Hu Y, Carmichael GG, Li D, Taylor HS, Huang Y. TET3-overexpressing macrophages promote endometriosis. J Clin Invest 2024; 134:e181839. [PMID: 39141428 DOI: 10.1172/jci181839] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2024] [Accepted: 07/31/2024] [Indexed: 08/16/2024] Open
Abstract
Endometriosis is a debilitating, chronic inflammatory disease affecting approximately 10% of reproductive-age women worldwide with no cure. While macrophages have been intrinsically linked to the pathophysiology of endometriosis, targeting them therapeutically has been extremely challenging due to their high heterogeneity and because these disease-associated macrophages (DAMs) can be either pathogenic or protective. Here, we report identification of pathogenic macrophages characterized by TET3 overexpression in human endometriosis lesions. We show that factors from the disease microenvironment upregulated TET3 expression, transforming macrophages into pathogenic DAMs. TET3 overexpression stimulated proinflammatory cytokine production via a feedback mechanism involving inhibition of let-7 miRNA expression. Remarkably, these cells relied on TET3 overexpression for survival and hence were vulnerable to TET3 knockdown. We demonstrated that Bobcat339, a synthetic cytosine derivative, triggered TET3 degradation in both human and mouse macrophages. This degradation was dependent on a von Hippel-Lindau (VHL) E3 ubiquitin ligase whose expression was also upregulated in TET3-overexpressing macrophages. Furthermore, depleting TET3-overexpressing macrophages either through myeloid-specific Tet3 ablation or using Bobcat339 strongly inhibited endometriosis progression in mice. Our results defined TET3-overexpressing macrophages as key pathogenic contributors to and attractive therapeutic targets for endometriosis. Our findings may also be applicable to other chronic inflammatory diseases where DAMs have important roles.
Collapse
Affiliation(s)
- Haining Lv
- Department of Obstetrics, Gynecology and Reproductive Sciences, Yale University School of Medicine, New Haven, Connecticut, USA
- Center for Reproductive Medicine and Obstetrics and Gynecology, Affiliated Hospital of Medical School, Nanjing University, Nanjing, China
| | - Beibei Liu
- Department of Obstetrics, Gynecology and Reproductive Sciences, Yale University School of Medicine, New Haven, Connecticut, USA
- Center of Reproductive Medicine, National Health Commission Key Laboratory of Advanced Reproductive Medicine and Fertility, Shengjing Hospital of China Medical University, Shenyang, China
| | - Yangyang Dai
- Department of Obstetrics, Gynecology and Reproductive Sciences, Yale University School of Medicine, New Haven, Connecticut, USA
- Assisted Reproduction Unit, Department of Obstetrics and Gynecology, Sir Run Run Shaw Hospital, School of Medicine, Zhejiang University, Hangzhou, China
| | - Feng Li
- Department of Obstetrics, Gynecology and Reproductive Sciences, Yale University School of Medicine, New Haven, Connecticut, USA
- Department of Anesthesiology, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China
| | - Stefania Bellone
- Department of Obstetrics, Gynecology and Reproductive Sciences, Yale University School of Medicine, New Haven, Connecticut, USA
| | - Yuping Zhou
- Department of Obstetrics, Gynecology and Reproductive Sciences, Yale University School of Medicine, New Haven, Connecticut, USA
| | - Ramanaiah Mamillapalli
- Department of Obstetrics, Gynecology and Reproductive Sciences, Yale University School of Medicine, New Haven, Connecticut, USA
| | - Dejian Zhao
- Yale Center for Genome Analysis, Yale University School of Medicine, New Haven, Connecticut, USA
| | | | - Yali Hu
- Center for Reproductive Medicine and Obstetrics and Gynecology, Affiliated Hospital of Medical School, Nanjing University, Nanjing, China
| | - Gordon G Carmichael
- Department of Genetics and Genome Sciences, University of Connecticut Health Center, Farmington, Connecticut, USA
| | - Da Li
- Department of Obstetrics, Gynecology and Reproductive Sciences, Yale University School of Medicine, New Haven, Connecticut, USA
- Center of Reproductive Medicine, National Health Commission Key Laboratory of Advanced Reproductive Medicine and Fertility, Shengjing Hospital of China Medical University, Shenyang, China
| | - Hugh S Taylor
- Department of Obstetrics, Gynecology and Reproductive Sciences, Yale University School of Medicine, New Haven, Connecticut, USA
| | - Yingqun Huang
- Department of Obstetrics, Gynecology and Reproductive Sciences, Yale University School of Medicine, New Haven, Connecticut, USA
- Yale Center for Molecular and Systems Metabolism, Yale University School of Medicine, New Haven, Connecticut, USA
| |
Collapse
|
5
|
Park MD, Berichel JL, Hamon P, Wilk CM, Belabed M, Yatim N, Saffon A, Boumelha J, Falcomatà C, Tepper A, Hegde S, Mattiuz R, Soong BY, LaMarche NM, Rentzeperis F, Troncoso L, Halasz L, Hennequin C, Chin T, Chen EP, Reid AM, Su M, Cahn AR, Koekkoek LL, Venturini N, Wood-isenberg S, D’souza D, Chen R, Dawson T, Nie K, Chen Z, Kim-Schulze S, Casanova-Acebes M, Swirski FK, Downward J, Vabret N, Brown BD, Marron TU, Merad M. Hematopoietic aging promotes cancer by fueling IL-1⍺-driven emergency myelopoiesis. Science 2024; 386:eadn0327. [PMID: 39236155 PMCID: PMC7616710 DOI: 10.1126/science.adn0327] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2023] [Revised: 06/18/2024] [Accepted: 08/22/2024] [Indexed: 09/07/2024]
Abstract
Age is a major risk factor for cancer, but how aging impacts tumor control remains unclear. In this study, we establish that aging of the immune system, regardless of the age of the stroma and tumor, drives lung cancer progression. Hematopoietic aging enhances emergency myelopoiesis, resulting in the local accumulation of myeloid progenitor-like cells in lung tumors. These cells are a major source of interleukin (IL)-1⍺, which drives the enhanced myeloid response. The age-associated decline of DNA methyltransferase 3A enhances IL-1⍺ production, and disrupting IL-1 receptor 1 signaling early during tumor development normalized myelopoiesis and slowed the growth of lung, colonic, and pancreatic tumors. In human tumors, we identified an enrichment for IL-1⍺-expressing monocyte-derived macrophages linked to age, poorer survival, and recurrence, unraveling how aging promotes cancer and offering actionable therapeutic strategies.
Collapse
Affiliation(s)
- Matthew D. Park
- Department of Immunology and Immunotherapy, Icahn School of Medicine at Mount Sinai; New York, NY10029, USA
- Marc and Jennifer Lipschultz Precision Immunology Institute, Icahn School of Medicine at Mount Sinai; New York, NY10029, USA
- The Tisch Cancer Institute, Icahn School of Medicine at Mount Sinai; New York, NY10029, USA
| | - Jessica Le Berichel
- Department of Immunology and Immunotherapy, Icahn School of Medicine at Mount Sinai; New York, NY10029, USA
- Marc and Jennifer Lipschultz Precision Immunology Institute, Icahn School of Medicine at Mount Sinai; New York, NY10029, USA
- The Tisch Cancer Institute, Icahn School of Medicine at Mount Sinai; New York, NY10029, USA
| | - Pauline Hamon
- Department of Immunology and Immunotherapy, Icahn School of Medicine at Mount Sinai; New York, NY10029, USA
- Marc and Jennifer Lipschultz Precision Immunology Institute, Icahn School of Medicine at Mount Sinai; New York, NY10029, USA
- The Tisch Cancer Institute, Icahn School of Medicine at Mount Sinai; New York, NY10029, USA
| | - C. Matthias Wilk
- Department of Immunology and Immunotherapy, Icahn School of Medicine at Mount Sinai; New York, NY10029, USA
- Marc and Jennifer Lipschultz Precision Immunology Institute, Icahn School of Medicine at Mount Sinai; New York, NY10029, USA
- The Tisch Cancer Institute, Icahn School of Medicine at Mount Sinai; New York, NY10029, USA
| | - Meriem Belabed
- Department of Immunology and Immunotherapy, Icahn School of Medicine at Mount Sinai; New York, NY10029, USA
- Marc and Jennifer Lipschultz Precision Immunology Institute, Icahn School of Medicine at Mount Sinai; New York, NY10029, USA
- The Tisch Cancer Institute, Icahn School of Medicine at Mount Sinai; New York, NY10029, USA
| | - Nader Yatim
- Department of Immunology and Immunotherapy, Icahn School of Medicine at Mount Sinai; New York, NY10029, USA
- Marc and Jennifer Lipschultz Precision Immunology Institute, Icahn School of Medicine at Mount Sinai; New York, NY10029, USA
- The Tisch Cancer Institute, Icahn School of Medicine at Mount Sinai; New York, NY10029, USA
| | - Alexis Saffon
- Department of Immunology and Immunotherapy, Icahn School of Medicine at Mount Sinai; New York, NY10029, USA
- Marc and Jennifer Lipschultz Precision Immunology Institute, Icahn School of Medicine at Mount Sinai; New York, NY10029, USA
- The Tisch Cancer Institute, Icahn School of Medicine at Mount Sinai; New York, NY10029, USA
- INSERM U932, Immunity and Cancer, Institut Curie, Paris-Cité University; Paris, France
| | - Jesse Boumelha
- Department of Immunology and Immunotherapy, Icahn School of Medicine at Mount Sinai; New York, NY10029, USA
- Marc and Jennifer Lipschultz Precision Immunology Institute, Icahn School of Medicine at Mount Sinai; New York, NY10029, USA
- The Tisch Cancer Institute, Icahn School of Medicine at Mount Sinai; New York, NY10029, USA
| | - Chiara Falcomatà
- Department of Immunology and Immunotherapy, Icahn School of Medicine at Mount Sinai; New York, NY10029, USA
- Marc and Jennifer Lipschultz Precision Immunology Institute, Icahn School of Medicine at Mount Sinai; New York, NY10029, USA
- The Tisch Cancer Institute, Icahn School of Medicine at Mount Sinai; New York, NY10029, USA
- Icahn Genomics Institute, Icahn School of Medicine at Mount Sinai; New York, NY10029, USA
| | - Alexander Tepper
- Department of Immunology and Immunotherapy, Icahn School of Medicine at Mount Sinai; New York, NY10029, USA
- Marc and Jennifer Lipschultz Precision Immunology Institute, Icahn School of Medicine at Mount Sinai; New York, NY10029, USA
- The Tisch Cancer Institute, Icahn School of Medicine at Mount Sinai; New York, NY10029, USA
- Icahn Genomics Institute, Icahn School of Medicine at Mount Sinai; New York, NY10029, USA
| | - Samarth Hegde
- Department of Immunology and Immunotherapy, Icahn School of Medicine at Mount Sinai; New York, NY10029, USA
- Marc and Jennifer Lipschultz Precision Immunology Institute, Icahn School of Medicine at Mount Sinai; New York, NY10029, USA
- The Tisch Cancer Institute, Icahn School of Medicine at Mount Sinai; New York, NY10029, USA
| | - Raphaël Mattiuz
- Department of Immunology and Immunotherapy, Icahn School of Medicine at Mount Sinai; New York, NY10029, USA
- Marc and Jennifer Lipschultz Precision Immunology Institute, Icahn School of Medicine at Mount Sinai; New York, NY10029, USA
- The Tisch Cancer Institute, Icahn School of Medicine at Mount Sinai; New York, NY10029, USA
| | - Brian Y. Soong
- Department of Immunology and Immunotherapy, Icahn School of Medicine at Mount Sinai; New York, NY10029, USA
- Marc and Jennifer Lipschultz Precision Immunology Institute, Icahn School of Medicine at Mount Sinai; New York, NY10029, USA
- The Tisch Cancer Institute, Icahn School of Medicine at Mount Sinai; New York, NY10029, USA
| | - Nelson M. LaMarche
- Department of Immunology and Immunotherapy, Icahn School of Medicine at Mount Sinai; New York, NY10029, USA
- Marc and Jennifer Lipschultz Precision Immunology Institute, Icahn School of Medicine at Mount Sinai; New York, NY10029, USA
- The Tisch Cancer Institute, Icahn School of Medicine at Mount Sinai; New York, NY10029, USA
| | - Frederika Rentzeperis
- Department of Immunology and Immunotherapy, Icahn School of Medicine at Mount Sinai; New York, NY10029, USA
- Marc and Jennifer Lipschultz Precision Immunology Institute, Icahn School of Medicine at Mount Sinai; New York, NY10029, USA
- The Tisch Cancer Institute, Icahn School of Medicine at Mount Sinai; New York, NY10029, USA
| | - Leanna Troncoso
- Department of Immunology and Immunotherapy, Icahn School of Medicine at Mount Sinai; New York, NY10029, USA
- Marc and Jennifer Lipschultz Precision Immunology Institute, Icahn School of Medicine at Mount Sinai; New York, NY10029, USA
- The Tisch Cancer Institute, Icahn School of Medicine at Mount Sinai; New York, NY10029, USA
| | - Laszlo Halasz
- Department of Immunology and Immunotherapy, Icahn School of Medicine at Mount Sinai; New York, NY10029, USA
- Marc and Jennifer Lipschultz Precision Immunology Institute, Icahn School of Medicine at Mount Sinai; New York, NY10029, USA
- The Tisch Cancer Institute, Icahn School of Medicine at Mount Sinai; New York, NY10029, USA
| | - Clotilde Hennequin
- Department of Immunology and Immunotherapy, Icahn School of Medicine at Mount Sinai; New York, NY10029, USA
- Marc and Jennifer Lipschultz Precision Immunology Institute, Icahn School of Medicine at Mount Sinai; New York, NY10029, USA
- The Tisch Cancer Institute, Icahn School of Medicine at Mount Sinai; New York, NY10029, USA
| | - Theodore Chin
- Department of Immunology and Immunotherapy, Icahn School of Medicine at Mount Sinai; New York, NY10029, USA
- Marc and Jennifer Lipschultz Precision Immunology Institute, Icahn School of Medicine at Mount Sinai; New York, NY10029, USA
- The Tisch Cancer Institute, Icahn School of Medicine at Mount Sinai; New York, NY10029, USA
| | - Earnest P. Chen
- Department of Immunology and Immunotherapy, Icahn School of Medicine at Mount Sinai; New York, NY10029, USA
- Marc and Jennifer Lipschultz Precision Immunology Institute, Icahn School of Medicine at Mount Sinai; New York, NY10029, USA
- The Tisch Cancer Institute, Icahn School of Medicine at Mount Sinai; New York, NY10029, USA
| | - Amanda M. Reid
- Department of Immunology and Immunotherapy, Icahn School of Medicine at Mount Sinai; New York, NY10029, USA
- Marc and Jennifer Lipschultz Precision Immunology Institute, Icahn School of Medicine at Mount Sinai; New York, NY10029, USA
- The Tisch Cancer Institute, Icahn School of Medicine at Mount Sinai; New York, NY10029, USA
| | - Matthew Su
- Department of Immunology and Immunotherapy, Icahn School of Medicine at Mount Sinai; New York, NY10029, USA
- Marc and Jennifer Lipschultz Precision Immunology Institute, Icahn School of Medicine at Mount Sinai; New York, NY10029, USA
- The Tisch Cancer Institute, Icahn School of Medicine at Mount Sinai; New York, NY10029, USA
| | - Ashley Reid Cahn
- Department of Immunology and Immunotherapy, Icahn School of Medicine at Mount Sinai; New York, NY10029, USA
- Marc and Jennifer Lipschultz Precision Immunology Institute, Icahn School of Medicine at Mount Sinai; New York, NY10029, USA
- The Tisch Cancer Institute, Icahn School of Medicine at Mount Sinai; New York, NY10029, USA
| | - Laura L. Koekkoek
- Department of Immunology and Immunotherapy, Icahn School of Medicine at Mount Sinai; New York, NY10029, USA
- Marc and Jennifer Lipschultz Precision Immunology Institute, Icahn School of Medicine at Mount Sinai; New York, NY10029, USA
- Brain and Body Research Center, Icahn School of Medicine at Mount Sinai; New York, NY10029, USA
| | - Nicholas Venturini
- Department of Immunology and Immunotherapy, Icahn School of Medicine at Mount Sinai; New York, NY10029, USA
- Marc and Jennifer Lipschultz Precision Immunology Institute, Icahn School of Medicine at Mount Sinai; New York, NY10029, USA
- The Tisch Cancer Institute, Icahn School of Medicine at Mount Sinai; New York, NY10029, USA
| | - Shira Wood-isenberg
- Department of Immunology and Immunotherapy, Icahn School of Medicine at Mount Sinai; New York, NY10029, USA
- Marc and Jennifer Lipschultz Precision Immunology Institute, Icahn School of Medicine at Mount Sinai; New York, NY10029, USA
- The Tisch Cancer Institute, Icahn School of Medicine at Mount Sinai; New York, NY10029, USA
| | - Darwin D’souza
- Department of Immunology and Immunotherapy, Icahn School of Medicine at Mount Sinai; New York, NY10029, USA
- Marc and Jennifer Lipschultz Precision Immunology Institute, Icahn School of Medicine at Mount Sinai; New York, NY10029, USA
- Human Immune Monitoring Center, Icahn School of Medicine at Mount Sinai; New York, NY10029, USA
| | - Rachel Chen
- Department of Immunology and Immunotherapy, Icahn School of Medicine at Mount Sinai; New York, NY10029, USA
- Marc and Jennifer Lipschultz Precision Immunology Institute, Icahn School of Medicine at Mount Sinai; New York, NY10029, USA
- Human Immune Monitoring Center, Icahn School of Medicine at Mount Sinai; New York, NY10029, USA
| | - Travis Dawson
- Department of Immunology and Immunotherapy, Icahn School of Medicine at Mount Sinai; New York, NY10029, USA
- Marc and Jennifer Lipschultz Precision Immunology Institute, Icahn School of Medicine at Mount Sinai; New York, NY10029, USA
- Human Immune Monitoring Center, Icahn School of Medicine at Mount Sinai; New York, NY10029, USA
| | - Kai Nie
- Department of Immunology and Immunotherapy, Icahn School of Medicine at Mount Sinai; New York, NY10029, USA
- Marc and Jennifer Lipschultz Precision Immunology Institute, Icahn School of Medicine at Mount Sinai; New York, NY10029, USA
- Human Immune Monitoring Center, Icahn School of Medicine at Mount Sinai; New York, NY10029, USA
| | - Zhihong Chen
- Department of Immunology and Immunotherapy, Icahn School of Medicine at Mount Sinai; New York, NY10029, USA
- Marc and Jennifer Lipschultz Precision Immunology Institute, Icahn School of Medicine at Mount Sinai; New York, NY10029, USA
- Human Immune Monitoring Center, Icahn School of Medicine at Mount Sinai; New York, NY10029, USA
| | - Seunghee Kim-Schulze
- Department of Immunology and Immunotherapy, Icahn School of Medicine at Mount Sinai; New York, NY10029, USA
- Marc and Jennifer Lipschultz Precision Immunology Institute, Icahn School of Medicine at Mount Sinai; New York, NY10029, USA
- Human Immune Monitoring Center, Icahn School of Medicine at Mount Sinai; New York, NY10029, USA
| | - Maria Casanova-Acebes
- Department of Immunology and Immunotherapy, Icahn School of Medicine at Mount Sinai; New York, NY10029, USA
- Marc and Jennifer Lipschultz Precision Immunology Institute, Icahn School of Medicine at Mount Sinai; New York, NY10029, USA
- The Tisch Cancer Institute, Icahn School of Medicine at Mount Sinai; New York, NY10029, USA
| | - Filip K. Swirski
- Department of Immunology and Immunotherapy, Icahn School of Medicine at Mount Sinai; New York, NY10029, USA
- Marc and Jennifer Lipschultz Precision Immunology Institute, Icahn School of Medicine at Mount Sinai; New York, NY10029, USA
- Brain and Body Research Center, Icahn School of Medicine at Mount Sinai; New York, NY10029, USA
- Cardiovascular Research Institute, Icahn School of Medicine at Mount Sinai; New York, NY10029, USA
| | - Julian Downward
- Oncogene Biology Laboratory, Francis Crick Institute; London, UK
- Lung Cancer Group, Division of Molecular Pathology, Institute of Cancer Research; London, UK
| | - Nicolas Vabret
- Department of Immunology and Immunotherapy, Icahn School of Medicine at Mount Sinai; New York, NY10029, USA
- Marc and Jennifer Lipschultz Precision Immunology Institute, Icahn School of Medicine at Mount Sinai; New York, NY10029, USA
- The Tisch Cancer Institute, Icahn School of Medicine at Mount Sinai; New York, NY10029, USA
| | - Brian D. Brown
- Department of Immunology and Immunotherapy, Icahn School of Medicine at Mount Sinai; New York, NY10029, USA
- Marc and Jennifer Lipschultz Precision Immunology Institute, Icahn School of Medicine at Mount Sinai; New York, NY10029, USA
- The Tisch Cancer Institute, Icahn School of Medicine at Mount Sinai; New York, NY10029, USA
- Icahn Genomics Institute, Icahn School of Medicine at Mount Sinai; New York, NY10029, USA
| | - Thomas U. Marron
- Department of Immunology and Immunotherapy, Icahn School of Medicine at Mount Sinai; New York, NY10029, USA
- Marc and Jennifer Lipschultz Precision Immunology Institute, Icahn School of Medicine at Mount Sinai; New York, NY10029, USA
- The Tisch Cancer Institute, Icahn School of Medicine at Mount Sinai; New York, NY10029, USA
- Division of Hematology/Oncology, Icahn School of Medicine at Mount Sinai; New York, NY10029, USA
- Center for Thoracic Oncology, Icahn School of Medicine at Mount Sinai; New York, NY10029, USA
| | - Miriam Merad
- Department of Immunology and Immunotherapy, Icahn School of Medicine at Mount Sinai; New York, NY10029, USA
- Marc and Jennifer Lipschultz Precision Immunology Institute, Icahn School of Medicine at Mount Sinai; New York, NY10029, USA
- The Tisch Cancer Institute, Icahn School of Medicine at Mount Sinai; New York, NY10029, USA
- Human Immune Monitoring Center, Icahn School of Medicine at Mount Sinai; New York, NY10029, USA
| |
Collapse
|
6
|
Verdonschot JAJ, Fuster JJ, Walsh K, Heymans SRB. The emerging role of clonal haematopoiesis in the pathogenesis of dilated cardiomyopathy. Eur Heart J 2024:ehae682. [PMID: 39417710 DOI: 10.1093/eurheartj/ehae682] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/21/2024] [Revised: 07/30/2024] [Accepted: 09/24/2024] [Indexed: 10/19/2024] Open
Abstract
The increased sensitivity of novel DNA sequencing techniques has made it possible to identify somatic mutations in small circulating clones of haematopoietic stem cells. When the mutation affects a 'driver' gene, the mutant clone gains a competitive advantage and has the potential to expand over time, a phenomenon referred to as clonal haematopoiesis (CH), which is emerging as a new risk factor for various non-haematological conditions, most notably cardiovascular disease (e.g. heart failure). Dilated cardiomyopathy (DCM) is a form of non-ischaemic heart failure that is characterized by a heterogeneous aetiology. The first evidence is arising that CH plays an important role in the disease course in patients with DCM, and a strong association of CH with multiple aetiologies of DCM has been described (e.g. inflammation, chemotherapy, and atrial fibrillation). The myocardial inflammation induced by CH may be an important trigger for DCM development for an already susceptible heart, e.g. in the presence of genetic variants, environmental triggers, and comorbidities. Studies investigating the role of CH in the pathogenesis of DCM are expected to increase rapidly. To move the field forward, it will be important to report the methodology and results in a standardized manner, so results can be combined and compared. The accurate measurement of CH in patients with DCM can provide guidance of specific (anti-inflammatory) therapies, as mutations in the CH driver genes prime the inflammasome pathway.
Collapse
Affiliation(s)
- Job A J Verdonschot
- Department of Clinical Genetics, Maastricht University Medical Center+, Maastricht, the Netherlands
- Department of Cardiology, Maastricht University, Cardiovascular Research Institute Maastricht (CARIM), P.O. Box 616, 6200 MD Maastricht, the Netherlands
- European Reference Network for Rare, Low Prevalence and Complex Diseases of the Heart (ERN GUARD-Heart)
| | - Jose J Fuster
- Centro Nacional de Investigaciones Cardiovasculares (CNIC), C. de Melchor Fernández Almagro, 3, Fuencarral-El Pardo, 28029 Madrid, Spain
- CIBER en Enfermedades Cardiovasculares (CIBER-CV), Av. Monforte de Lemos, 3-5. Pabellón 11, Planta 0, 28029 Madrid, Spain
| | - Kenneth Walsh
- Division of Cardiovascular Medicine and Robert M. Berne Cardiovascular Research Center, Hematovascular Biology Center, University of Virginia School of Medicine, 415 Lane Rd, Suite 1010, PO Box 801394, Charlottesville, VA, USA
| | - Stephane R B Heymans
- Department of Cardiology, Maastricht University, Cardiovascular Research Institute Maastricht (CARIM), P.O. Box 616, 6200 MD Maastricht, the Netherlands
- European Reference Network for Rare, Low Prevalence and Complex Diseases of the Heart (ERN GUARD-Heart)
- Department of Cardiovascular Science, Katholieke Universiteit Leuven, Herestraat 49, 3000 Leuven, Belgium
| |
Collapse
|
7
|
Tiedje V, Vela PS, Yang JL, Untch BR, Boucai L, Stonestrom AJ, Costa AB, Expósito SF, Srivastava A, Kerpelev M, Greenberg J, Wereski M, Kulick A, Chen K, Qin T, Im SY, Krishnan A, Martinez Benitez AR, Pluvinet R, Sahin M, Menghrajani K, Krishnamoorthy GP, de Stanchina E, Zehir A, Satija R, Knauf J, Bowman RL, Esteller M, Devlin S, Berger MF, Koche RP, Fagin JA, Levine RL. Targetable treatment resistance in thyroid cancer with clonal hematopoiesis. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.10.10.617685. [PMID: 39415999 PMCID: PMC11483059 DOI: 10.1101/2024.10.10.617685] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/19/2024]
Abstract
Anaplastic thyroid cancer (ATC) is a clinically aggressive malignancy with a dismal prognosis. Combined BRAF/MEK inhibition offers significant therapeutic benefit in patients with BRAF V600E -mutant ATCs. However, relapses are common and overall survival remains poor. Compared with differentiated thyroid cancer, a hallmark of ATCs is significant infiltration with myeloid cells, particularly macrophages. ATCs are most common in the aging population, which also has an increased incidence of TET2 -mutant clonal hematopoiesis (CH). CH-mutant macrophages have been shown to accelerate CH-associated pathophysiology including atherosclerosis. However, the clinical and mechanistic contribution of CH-mutant clones to solid tumour biology, prognosis and therapeutic response has not been elucidated. Here we show that TET2 -mutant CH is enriched in the tumour microenvironment of patients with solid tumours and associated with adverse prognosis in ATC patients. We find that Tet2 -mutant macrophages selectively infiltrate mouse Braf V600E -mutant ATC and that their overexpression of Tgfβ-family ligands mediates resistance to BRAF/MEK inhibition. Importantly, inhibition of Tgfβ signaling restores sensitivity to MAPK pathway inhibition, opening a path for synergistic strategies to improve outcomes of patients with ATCs and concurrent CH.
Collapse
|
8
|
Nead KT, Kim T, Joo L, McDowell TL, Wong JW, Chan ICC, Brock E, Zhao J, Xu T, Tang C, Lee CL, Abe JI, Bolton KL, Liao Z, Scheet PA, Lin SH. Impact of cancer therapy on clonal hematopoiesis mutations and subsequent clinical outcomes. Blood Adv 2024; 8:5215-5224. [PMID: 38830141 DOI: 10.1182/bloodadvances.2024012929] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2024] [Revised: 05/13/2024] [Accepted: 05/16/2024] [Indexed: 06/05/2024] Open
Abstract
ABSTRACT Exposure to cancer therapies is associated with an increased risk of clonal hematopoiesis (CH). The objective of our study was to investigate the genesis and evolution of CH after cancer therapy. In this prospective study, we undertook error-corrected duplex DNA sequencing in blood samples collected before and at 2 time points after chemoradiation in patients with esophageal or lung cancer recruited from 2013 to 2018. We applied a customized workflow to identify the earliest changes in CH mutation count and clone size and determine their association with clinical outcomes. Our study included 29 patients (87 samples). Their median age was 67 years, and 76% (n = 22) were male; the median follow-up period was 3.9 years. The most mutated genes were DNMT3A, TET2, TP53, and ASXL1. We observed a twofold increase in the number of mutations from before to after treatment in TP53, which differed from all other genes examined (P < .001). Among mutations detected before and after treatment, we observed an increased clone size in 38% and a decreased clone size in 5% of TP53 mutations (odds ratio, 3.7; 95% confidence interval [CI], 1.75-7.84; P < .001). Changes in mutation count and clone size were not observed in other genes. Individuals with an increase in the number of TP53 mutations after chemoradiation experienced shorter overall survival (hazard ratio, 7.07; 95% CI, 1.50-33.46; P = .014). In summary, we found an increase in the number and size of TP53 CH clones after chemoradiation that were associated with adverse clinical outcomes.
Collapse
Affiliation(s)
- Kevin T Nead
- Department of Epidemiology, The University of Texas MD Anderson Cancer Center, Houston, TX
- Department of Breast Radiation Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX
| | - Taebeom Kim
- Department of Epidemiology, The University of Texas MD Anderson Cancer Center, Houston, TX
| | - LiJin Joo
- Department of Epidemiology, The University of Texas MD Anderson Cancer Center, Houston, TX
| | - Tina L McDowell
- Department of Epidemiology, The University of Texas MD Anderson Cancer Center, Houston, TX
| | - Justin W Wong
- Department of Epidemiology, The University of Texas MD Anderson Cancer Center, Houston, TX
| | - Irenaeus C C Chan
- Department of Medicine, Washington University School of Medicine, St. Louis, MO
| | - Elizabeth Brock
- Department of Epidemiology, The University of Texas MD Anderson Cancer Center, Houston, TX
| | - Jing Zhao
- Department of Epidemiology, The University of Texas MD Anderson Cancer Center, Houston, TX
| | - Ting Xu
- Department of Thoracic Radiation Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX
| | - Chad Tang
- Department of Genitourinary Radiation Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX
| | - Chang-Lung Lee
- Departments of Radiation Oncology and Pathology, Duke University School of Medicine, Durham, NC
| | - Jun-Ichi Abe
- Department of Cardiology, The University of Texas MD Anderson Cancer Center, Houston, TX
| | - Kelly L Bolton
- Department of Medicine, Washington University School of Medicine, St. Louis, MO
| | - Zhongxing Liao
- Department of Thoracic Radiation Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX
| | - Paul A Scheet
- Department of Epidemiology, The University of Texas MD Anderson Cancer Center, Houston, TX
| | - Steven H Lin
- Department of Thoracic Radiation Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX
| |
Collapse
|
9
|
Liu X, Xue H, Wirdefeldt K, Song H, Smedby K, Fang F, Liu Q. Clonal hematopoiesis of indeterminate potential and risk of neurodegenerative diseases. J Intern Med 2024; 296:327-335. [PMID: 39073225 DOI: 10.1111/joim.20001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 07/30/2024]
Abstract
BACKGROUND Little is known regarding the association between clonal hematopoiesis of indeterminate potential (CHIP) and risk of neurodegenerative diseases. OBJECTIVE To estimate the risk of neurodegenerative diseases among individuals with CHIP. METHODS We conducted a community-based cohort study based on UK Biobank and used Cox regression to estimate hazard ratios (HRs) and 95% confidence intervals (CIs) for the risk of any neurodegenerative disease, subtypes of neurodegenerative diseases (including primary neurodegenerative diseases, vascular neurodegenerative diseases, and other neurodegenerative diseases), and specific diagnoses of neurodegenerative diseases (i.e., amyotrophic lateral sclerosis [ALS], Alzheimer's disease [AD], and Parkinson's disease [PD]) associated with CHIP. RESULTS We identified 14,440 individuals with CHIP and 450,907 individuals without CHIP. Individuals with CHIP had an increased risk of any neurodegenerative disease (HR 1.10, 95% CI: 1.01-1.19). We also observed a statistically significantly increased risk for vascular neurodegenerative diseases (HR 1.31, 95% CI 1.05-1.63) and ALS (HR 1.50, 95% CI 1.05-2.15). An increased risk was also noted for other neurodegenerative diseases (HR 1.13, 95% CI 0.97-1.32), although not statistically significant. Null association was noted for primary neurodegenerative diseases (HR 1.06, 95% CI 0.96-1.17), AD (HR 1.04, 95% CI 0.88-1.23), and PD (HR 1.02, 95% CI 0.86-1.21). The risk increase in any neurodegenerative disease was mainly observed for DNMT3A-mutant CHIP, ASXL1-mutant CHIP, or SRSF2-mutant CHIP. CONCLUSION Individuals with CHIP were at an increased risk of neurodegenerative diseases, primarily vascular neurodegenerative diseases and ALS, but potentially also other neurodegenerative diseases. These findings suggest potential shared mechanisms between CHIP and neurodegenerative diseases.
Collapse
Affiliation(s)
- Xinyuan Liu
- Center for Intelligent Medicine Research, Greater Bay Area Institute of Precision Medicine (Guangzhou), State Key Laboratory of Genetic Engineering, Center for Evolutionary Biology, School of Life Sciences, Fudan University, Guangzhou, China
| | - Huiwen Xue
- Department of Hematology, Nanfang Hospital, Southern Medical University, Guangzhou, China
- Clinical Medical Research Center of Hematology Diseases of Guangdong Province, Guangzhou, China
| | - Karin Wirdefeldt
- Department of Medical Epidemiology and Biostatistics and Clinical Neuroscience, Karolinska Institutet, Stockholm, Sweden
| | - Huan Song
- West China Biomedical Big Data Center, West China Hospital, Sichuan University, Chengdu, China
| | - Karin Smedby
- Division of Clinical Epidemiology, Department of Medicine Solna, Karolinska Institutet, Department of Hematology, Karolinska University Hospital, Stockholm, Sweden
| | - Fang Fang
- Institute of Environmental Medicine, Karolinska Institutet, Stockholm, Sweden
| | - Qianwei Liu
- Department of Hematology, Nanfang Hospital, Southern Medical University, Guangzhou, China
- Clinical Medical Research Center of Hematology Diseases of Guangdong Province, Guangzhou, China
| |
Collapse
|
10
|
Lee YT, Tseng HR, Yang JD. Clonal hematopoiesis of indeterminate potential and risk of hepatocellular carcinoma: New kids on the block. Hepatology 2024; 80:763-765. [PMID: 38640021 DOI: 10.1097/hep.0000000000000898] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/12/2024] [Accepted: 03/12/2024] [Indexed: 04/21/2024]
Affiliation(s)
- Yi-Te Lee
- Karsh Division of Gastroenterology and Hepatology, Cedars-Sinai Medical Center, Los Angeles, CA, USA
| | - Hsian-Rong Tseng
- Department of Molecular and Medical Pharmacology, California NanoSystems Institute, Crump Institute for Molecular Imaging, University of California, Los Angeles, Los Angeles, California, USA
- Jonsson Comprehensive Cancer Center, University of California, Los Angeles, Los Angeles, California, USA
| | - Ju Dong Yang
- Karsh Division of Gastroenterology and Hepatology, Cedars-Sinai Medical Center, Los Angeles, CA, USA
- Comprehensive Transplant Center, Cedars-Sinai Medical Center, Los Angeles, California, USA
- Samuel Oschin Comprehensive Cancer Institute, Cedars-Sinai Medical Center, Los Angeles, California, USA
| |
Collapse
|
11
|
Marchetti A, Pelusi S, Marella A, Malvestiti F, Ricchiuti A, Ronzoni L, Lionetti M, Moretti V, Bugianesi E, Miele L, Vespasiani-Gentilucci U, Dongiovanni P, Federico A, Soardo G, D’Ambrosio R, McCain MV, Reeves HL, La Mura V, Prati D, Bolli N, Valenti L. Impact of clonal hematopoiesis of indeterminate potential on hepatocellular carcinoma in individuals with steatotic liver disease. Hepatology 2024; 80:816-827. [PMID: 38470216 PMCID: PMC11407776 DOI: 10.1097/hep.0000000000000839] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/19/2023] [Accepted: 02/07/2024] [Indexed: 03/13/2024]
Abstract
BACKGROUND AND AIMS Metabolic dysfunction-associated steatotic liver disease (MASLD) is a global epidemic and is the most rapidly rising cause of HCC. Clonal hematopoiesis of indeterminate potential (CHIP) contributes to neoplastic and cardiometabolic disorders and is considered a harbinger of tissue inflammation. CHIP was recently associated with increased risk of liver disease. The aim of this study was to examine whether CHIP is associated with HCC development in patients with SLD. APPROACH AND RESULTS We considered individuals with MASLD-HCC (n=208) and controls with (n =414) and without (n =259) advanced fibrosis who underwent whole exome sequencing. CHIP was diagnosed when ≥2 variant callers identified a known myeloid mutation with variant allele frequency ≥2%. CHIP was observed in 116 participants (13.1%), most frequently in DNMT3A, TET2, TP53 , and ASXL1 , and correlated with age ( p <0.0001) and advanced liver fibrosis (p=0.001). Higher aspartate aminotransferase levels predicted non- DNMT3A -CHIP, in particular with variant allele frequency ≥10% (OR: 1.14, 1.03 -1.28 and OR: 1.30, 1.12 -1.49, respectively, p <0.05). After adjustment for sex, diabetes, and a polygenic risk, a score of inherited MASLD predisposition CHIP was associated with cirrhosis (2.00, 1.30 -3.15, p =0.02), and with HCC even after further adjustment for cirrhosis (OR: 1.81, 1.11 -2.00, 1.30 -3.15, p =0.002). Despite the strong collinearity among aging and development of CHIP and HCC, non- DNTM3A -CHIP, and TET2 lesions remained associated with HCC after full correction for clinical/genetics covariates and age (OR: 2.45, 1.35 -4.53; OR: 4.8, 1.60 -17.0, p =0.02). CONCLUSIONS We observed an independent association between CHIP, particularly related to non- DNTM3A and TET2 genetic lesions and MASLD-HCC.
Collapse
Affiliation(s)
- Alfredo Marchetti
- Department of Oncology and Hemato-Oncology, Università degli Studi di Milano, Milan, Italy
- Hematology Unit, Fondazione IRCCS Ca’ Granda Ospedale Maggiore Policlinico, Milan, Italy
| | - Serena Pelusi
- Transfusion Medicine Unit, Fondazione IRCCS Ca’ Granda Ospedale Maggiore Policlinico, Milan, Italy
| | - Alessio Marella
- Department of Oncology and Hemato-Oncology, Università degli Studi di Milano, Milan, Italy
| | - Francesco Malvestiti
- Department of Pathophysiology and Transplantation, Università degli Studi di Milano, Milan, Italy
| | - Antony Ricchiuti
- Department of Oncology and Hemato-Oncology, Università degli Studi di Milano, Milan, Italy
- Hematology Unit, Fondazione IRCCS Ca’ Granda Ospedale Maggiore Policlinico, Milan, Italy
| | - Luisa Ronzoni
- Transfusion Medicine Unit, Fondazione IRCCS Ca’ Granda Ospedale Maggiore Policlinico, Milan, Italy
| | - Marta Lionetti
- Hematology Unit, Fondazione IRCCS Ca’ Granda Ospedale Maggiore Policlinico, Milan, Italy
| | - Vittoria Moretti
- Transfusion Medicine Unit, Fondazione IRCCS Ca’ Granda Ospedale Maggiore Policlinico, Milan, Italy
| | - Elisabetta Bugianesi
- Department of Medical Sciences, Division of Gastroenterology, University of Turin, Turin, Italy
| | - Luca Miele
- Dipartimento Universitario Medicina e Chirurgia Traslazionale, Università Cattolica del Sacro Cuore, Rome, Italy
- Area Medicina Interna, Gastroenterologia e Oncologia Medica, Fondazione Policlinico A. Gemelli IRCCS, Rome, Italy
| | - Umberto Vespasiani-Gentilucci
- Clinical Medicine and Hepatology Unit, Department of Medicine and Surgery, Campus Bio-Medico University of Rome, Rome, Italy
| | - Paola Dongiovanni
- Medicine and Metabolic Diseases, Fondazione IRCCS Ca’ Granda Ospedale Maggiore Policlinico, Milan, Italy
| | - Alessandro Federico
- Department of Precision Medicine, University of Campania “Luigi Vanvitelli”, Naples, Italy
| | - Giorgio Soardo
- Department of Medicine, Clinica Medica, European Excellence Center for Arterial Hypertension, University of Udine, Udine, Italy
| | - Roberta D’Ambrosio
- Gastroenterology and Hepatology Unit, Fondazione IRCCS Ca’ Granda Ospedale Maggiore Policlinico, Milan, Italy
| | - Misti V. McCain
- Newcastle University Translational Research Institute, Newcastle University, Newcastle upon Tyne, United Kingdom
| | - Helen L. Reeves
- Newcastle University Translational Research Institute, Newcastle University, Newcastle upon Tyne, United Kingdom
| | - Vincenzo La Mura
- Department of Pathophysiology and Transplantation, Università degli Studi di Milano, Milan, Italy
- General Medicine, Haemostasis and Thrombosis, Fondazione IRCCS Ca’ Granda Ospedale Maggiore Policlinico, Milan, Italy
| | - Daniele Prati
- Transfusion Medicine Unit, Fondazione IRCCS Ca’ Granda Ospedale Maggiore Policlinico, Milan, Italy
| | - Niccolò Bolli
- Department of Oncology and Hemato-Oncology, Università degli Studi di Milano, Milan, Italy
- Hematology Unit, Fondazione IRCCS Ca’ Granda Ospedale Maggiore Policlinico, Milan, Italy
| | - Luca Valenti
- Transfusion Medicine Unit, Fondazione IRCCS Ca’ Granda Ospedale Maggiore Policlinico, Milan, Italy
- Department of Pathophysiology and Transplantation, Università degli Studi di Milano, Milan, Italy
- Biological Resource Center Unit, Fondazione IRCCS Ca’ Granda Ospedale Maggiore Policlinico, Milan, Italy
| |
Collapse
|
12
|
Díez-Díez M, Ramos-Neble BL, de la Barrera J, Silla-Castro JC, Quintas A, Vázquez E, Rey-Martín MA, Izzi B, Sánchez-García L, García-Lunar I, Mendieta G, Mass V, Gómez-López N, Espadas C, González G, Quesada AJ, García-Álvarez A, Fernández-Ortiz A, Lara-Pezzi E, Dopazo A, Sánchez-Cabo F, Ibáñez B, Andrés V, Fuster V, Fuster JJ. Unidirectional association of clonal hematopoiesis with atherosclerosis development. Nat Med 2024; 30:2857-2866. [PMID: 39215150 PMCID: PMC11485253 DOI: 10.1038/s41591-024-03213-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2023] [Accepted: 07/25/2024] [Indexed: 09/04/2024]
Abstract
Clonal hematopoiesis, a condition in which acquired somatic mutations in hematopoietic stem cells lead to the outgrowth of a mutant hematopoietic clone, is associated with a higher risk of hematological cancer and a growing list of nonhematological disorders, most notably atherosclerosis and associated cardiovascular disease. However, whether accelerated atherosclerosis is a cause or a consequence of clonal hematopoiesis remains a matter of debate. Some studies support a direct contribution of certain clonal hematopoiesis-related mutations to atherosclerosis via exacerbation of inflammatory responses, whereas others suggest that clonal hematopoiesis is a symptom rather than a cause of atherosclerosis, as atherosclerosis or related traits may accelerate the expansion of mutant hematopoietic clones. Here we combine high-sensitivity DNA sequencing in blood and noninvasive vascular imaging to investigate the interplay between clonal hematopoiesis and atherosclerosis in a longitudinal cohort of healthy middle-aged individuals. We found that the presence of a clonal hematopoiesis-related mutation confers an increased risk of developing de novo femoral atherosclerosis over a 6-year period, whereas neither the presence nor the extent of atherosclerosis affects mutant cell expansion during this timeframe. These findings indicate that clonal hematopoiesis unidirectionally promotes atherosclerosis, which should help translate the growing understanding of this condition into strategies for the prevention of atherosclerotic cardiovascular disease in individuals exhibiting clonal hematopoiesis.
Collapse
Affiliation(s)
- Miriam Díez-Díez
- Centro Nacional de Investigaciones Cardiovasculares, Madrid, Spain
| | | | | | - J C Silla-Castro
- Centro Nacional de Investigaciones Cardiovasculares, Madrid, Spain
| | - Ana Quintas
- Centro Nacional de Investigaciones Cardiovasculares, Madrid, Spain
| | - Enrique Vázquez
- Centro Nacional de Investigaciones Cardiovasculares, Madrid, Spain
| | | | - Benedetta Izzi
- Centro Nacional de Investigaciones Cardiovasculares, Madrid, Spain
| | | | - Inés García-Lunar
- Centro Nacional de Investigaciones Cardiovasculares, Madrid, Spain
- CIBER de Enfermedades Cardiovasculares, Madrid, Spain
- Cardiology Department, University Hospital La Moraleja, Madrid, Spain
| | - Guiomar Mendieta
- Centro Nacional de Investigaciones Cardiovasculares, Madrid, Spain
- Servicio de Cardiología, Institut Clínic Cardiovascular, Hospital Clínic de Barcelona, Barcelona, Spain
- Institut d'Investigacions Biomèdiques August Pi I Sunyer, Barcelona, Spain
| | - Virginia Mass
- Centro Nacional de Investigaciones Cardiovasculares, Madrid, Spain
| | | | - Cristina Espadas
- Centro Nacional de Investigaciones Cardiovasculares, Madrid, Spain
| | - Gema González
- Centro Nacional de Investigaciones Cardiovasculares, Madrid, Spain
| | | | - Ana García-Álvarez
- Centro Nacional de Investigaciones Cardiovasculares, Madrid, Spain
- CIBER de Enfermedades Cardiovasculares, Madrid, Spain
- Servicio de Cardiología, Institut Clínic Cardiovascular, Hospital Clínic de Barcelona, Barcelona, Spain
- Institut d'Investigacions Biomèdiques August Pi I Sunyer, Barcelona, Spain
- Universitat de Barcelona, Barcelona, Spain
| | - Antonio Fernández-Ortiz
- Centro Nacional de Investigaciones Cardiovasculares, Madrid, Spain
- CIBER de Enfermedades Cardiovasculares, Madrid, Spain
- Hospital Clínico San Carlos, Universidad Complutense, IdISSC, Madrid, Spain
| | - Enrique Lara-Pezzi
- Centro Nacional de Investigaciones Cardiovasculares, Madrid, Spain
- CIBER de Enfermedades Cardiovasculares, Madrid, Spain
| | - Ana Dopazo
- Centro Nacional de Investigaciones Cardiovasculares, Madrid, Spain
- CIBER de Enfermedades Cardiovasculares, Madrid, Spain
| | - Fátima Sánchez-Cabo
- Centro Nacional de Investigaciones Cardiovasculares, Madrid, Spain
- CIBER de Enfermedades Cardiovasculares, Madrid, Spain
| | - Borja Ibáñez
- Centro Nacional de Investigaciones Cardiovasculares, Madrid, Spain
- CIBER de Enfermedades Cardiovasculares, Madrid, Spain
- Cardiology Department, IIS-Fundación Jiménez Díaz University Hospital, Madrid, Spain
| | - Vicente Andrés
- Centro Nacional de Investigaciones Cardiovasculares, Madrid, Spain
- CIBER de Enfermedades Cardiovasculares, Madrid, Spain
| | - Valentín Fuster
- Centro Nacional de Investigaciones Cardiovasculares, Madrid, Spain.
- Icahn School of Medicine at Mount Sinai, New York, NY, USA.
| | - José J Fuster
- Centro Nacional de Investigaciones Cardiovasculares, Madrid, Spain.
- CIBER de Enfermedades Cardiovasculares, Madrid, Spain.
| |
Collapse
|
13
|
Li T, Zhao J, Cao H, Han X, Lu Y, Jiang F, Li X, Sun J, Zhou S, Sun Z, Wang W, Ding Y, Li X. Dietary patterns in the progression of metabolic dysfunction-associated fatty liver disease to advanced liver disease: a prospective cohort study. Am J Clin Nutr 2024; 120:518-527. [PMID: 39029661 PMCID: PMC11393393 DOI: 10.1016/j.ajcnut.2024.07.015] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2024] [Revised: 06/22/2024] [Accepted: 07/16/2024] [Indexed: 07/21/2024] Open
Abstract
BACKGROUND Metabolic dysfunction-associated fatty liver disease (MAFLD) is a significant health problem. Dietary intervention plays an important role in patients with MAFLD. OBJECTIVES We aimed to provide a reference for dietary patterns in patients with MAFLD. METHODS The presence of MAFLD was determined in the United Kingdom Biobank cohort. Nine dietary pattern scores were derived from the dietary records. Multivariable Cox regression models were used to estimate the hazard ratios (HRs) and 95% confidence intervals (CIs). The contrast test was employed to calculate the heterogeneity across MAFLD statuses. RESULTS We identified 175,300 patients with MAFLD at baseline. Compared with non-MAFLD, MAFLD was significantly associated with chronic liver disease (CLD) (HR: 3.48; 95% CI: 3.15, 3.84), severe liver disease (SLD) (HR: 2.87; 95% CI: 2.63, 3.14), liver cancer (HR: 1.93; 95% CI: 1.67, 2.23), and liver-related death (LRD) (HR: 1.93; 95% CI: 1.67, 2.23). In the overall cohort, the alternate Mediterranean diet (aMED) (HRCLD: 0.53; 95% CI: 0.37, 0.76; HRSLD: 0.52; 95% CI: 0.37, 0.72), planetary health diet (PHD) (HRCLD: 0.62; 95% CI: 0.47, 0.81; HRSLD: 0.65; 95% CI: 0.51, 0.83), plant-based low-carbohydrate diet (pLCD) (HRCLD: 0.65; 95% CI: 0.49, 0.86; HRSLD: 0.66; 95% CI: 0.51, 0.85), and healthful plant-based diet index (hPDI) (HRCLD: 0.63; 95% CI: 0.47, 0.84; HRSLD: 0.61; 95% CI: 0.47, 0.78) were associated with a lower risk of CLD and SLD. Additionally, unhealthful plant-based diet index (uPDI) was associated with increased risk of CLD (HR: 1.42; 95% CI: 1.09,1.85), SLD (HR: 1.50; 95% CI: 1.19, 1.90), and LRD (HR: 1.88; 95% CI: 1.28-2.78). The aforementioned associations remained consistently strong within the MAFLD subgroup while exhibiting less pronounced in the non-MAFLD group. However, no significant heterogeneity was observed across different MAFLD statuses. CONCLUSIONS These findings highlight the detrimental effects of MAFLD on the development of subsequent liver diseases and the importance of dietary patterns in managing MAFLD.
Collapse
Affiliation(s)
- Tengfei Li
- Department of Hepatobiliary and Pancreatic Surgery, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China; Department of Big Data in Health Science School of Public Health and The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China; Key Laboratory of Precision Diagnosis and Treatment for Hepatobiliary and Pancreatic Tumor of Zhejiang Province, Hangzhou, Zhejiang, China; Research Center of Diagnosis and Treatment Technology for Hepatocellular Carcinoma of Zhejiang Province, Hangzhou, Zhejiang, China; National Innovation Center for Fundamental Research on Cancer Medicine, Hangzhou, Zhejiang, China; Cancer Center, Zhejiang University, Hangzhou, Zhejiang, China; ZJU-Pujian Research & Development Center of Medical Artificial Intelligence for Hepatobiliary and Pancreatic Disease, Hangzhou, Zhejiang, China
| | - Jianhui Zhao
- Department of Big Data in Health Science School of Public Health and The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
| | - Haoze Cao
- Department of Hepatobiliary and Pancreatic Surgery, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China; Key Laboratory of Precision Diagnosis and Treatment for Hepatobiliary and Pancreatic Tumor of Zhejiang Province, Hangzhou, Zhejiang, China; Research Center of Diagnosis and Treatment Technology for Hepatocellular Carcinoma of Zhejiang Province, Hangzhou, Zhejiang, China; National Innovation Center for Fundamental Research on Cancer Medicine, Hangzhou, Zhejiang, China; Cancer Center, Zhejiang University, Hangzhou, Zhejiang, China; ZJU-Pujian Research & Development Center of Medical Artificial Intelligence for Hepatobiliary and Pancreatic Disease, Hangzhou, Zhejiang, China
| | - Xin Han
- Department of Hepatobiliary and Pancreatic Surgery, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China; Key Laboratory of Precision Diagnosis and Treatment for Hepatobiliary and Pancreatic Tumor of Zhejiang Province, Hangzhou, Zhejiang, China; Research Center of Diagnosis and Treatment Technology for Hepatocellular Carcinoma of Zhejiang Province, Hangzhou, Zhejiang, China; National Innovation Center for Fundamental Research on Cancer Medicine, Hangzhou, Zhejiang, China; Cancer Center, Zhejiang University, Hangzhou, Zhejiang, China; ZJU-Pujian Research & Development Center of Medical Artificial Intelligence for Hepatobiliary and Pancreatic Disease, Hangzhou, Zhejiang, China
| | - Ying Lu
- Department of Big Data in Health Science School of Public Health and The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
| | - Fangyuan Jiang
- Department of Big Data in Health Science School of Public Health and The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
| | - Xinxuan Li
- Department of Big Data in Health Science School of Public Health and The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
| | - Jing Sun
- Department of Big Data in Health Science School of Public Health and The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
| | - Siyun Zhou
- Department of Big Data in Health Science School of Public Health and The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
| | - Zhongquan Sun
- Department of Hepatobiliary and Pancreatic Surgery, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China; Key Laboratory of Precision Diagnosis and Treatment for Hepatobiliary and Pancreatic Tumor of Zhejiang Province, Hangzhou, Zhejiang, China; Research Center of Diagnosis and Treatment Technology for Hepatocellular Carcinoma of Zhejiang Province, Hangzhou, Zhejiang, China; National Innovation Center for Fundamental Research on Cancer Medicine, Hangzhou, Zhejiang, China; Cancer Center, Zhejiang University, Hangzhou, Zhejiang, China; ZJU-Pujian Research & Development Center of Medical Artificial Intelligence for Hepatobiliary and Pancreatic Disease, Hangzhou, Zhejiang, China
| | - Weilin Wang
- Department of Hepatobiliary and Pancreatic Surgery, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China; Key Laboratory of Precision Diagnosis and Treatment for Hepatobiliary and Pancreatic Tumor of Zhejiang Province, Hangzhou, Zhejiang, China; Research Center of Diagnosis and Treatment Technology for Hepatocellular Carcinoma of Zhejiang Province, Hangzhou, Zhejiang, China; National Innovation Center for Fundamental Research on Cancer Medicine, Hangzhou, Zhejiang, China; Cancer Center, Zhejiang University, Hangzhou, Zhejiang, China; ZJU-Pujian Research & Development Center of Medical Artificial Intelligence for Hepatobiliary and Pancreatic Disease, Hangzhou, Zhejiang, China.
| | - Yuan Ding
- Department of Hepatobiliary and Pancreatic Surgery, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China; Key Laboratory of Precision Diagnosis and Treatment for Hepatobiliary and Pancreatic Tumor of Zhejiang Province, Hangzhou, Zhejiang, China; Research Center of Diagnosis and Treatment Technology for Hepatocellular Carcinoma of Zhejiang Province, Hangzhou, Zhejiang, China; National Innovation Center for Fundamental Research on Cancer Medicine, Hangzhou, Zhejiang, China; Cancer Center, Zhejiang University, Hangzhou, Zhejiang, China; ZJU-Pujian Research & Development Center of Medical Artificial Intelligence for Hepatobiliary and Pancreatic Disease, Hangzhou, Zhejiang, China.
| | - Xue Li
- Department of Big Data in Health Science School of Public Health and The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China; Centre for Global Health, Usher Institute, University of Edinburgh, Edinburgh, United Kingdom
| |
Collapse
|
14
|
Qiu J, Lin C, Ren G, Xu F, Hu T, Le Y, Fan X, Yu Z, Liu Q, Wang X, Dou X. Geniposide dosage and administration time: Balancing therapeutic benefits and adverse reactions in liver disease treatment. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2024; 132:155799. [PMID: 38968789 DOI: 10.1016/j.phymed.2024.155799] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/22/2024] [Revised: 05/05/2024] [Accepted: 06/02/2024] [Indexed: 07/07/2024]
Abstract
Gardenia jasminoides Ellis, a staple in herbal medicine, has long been esteemed for its purported hepatoprotective properties. Its primary bioactive constituent, geniposide, has attracted considerable scientific interest owing to its multifaceted therapeutic benefits across various health conditions. However, recent investigations have unveiled potential adverse effects associated with its metabolite, genipin, particularly at higher doses and prolonged durations of administration, leading to hepatic injury. Determining the optimal dosage and duration of geniposide administration while elucidating its pharmacological and toxicological mechanisms is imperative for safe and effective clinical application. This study aimed to evaluate the safe dosage and administration duration of geniposide in mice and investigate its toxicological mechanisms within a comprehensive dosage-duration-efficacy/toxicity model. Four distinct mouse models were employed, including wild-type mice, cholestasis-induced mice, globally farnesoid X-activated receptor (FXR) knock out mice, and high-fat diet-induced (HFD) NAFLD mice. Various administration protocols, spanning one or four weeks and comprising two or three oral doses, were tailored to each model's requirements. Geniposide has positive effects on bile acid and lipid metabolism at doses below 220 mg/kg/day without causing liver injury in normal mice. However, in mice with NAFLD, this dosage is less effective in improving liver function, lipid profiles, and bile acid metabolism compared to lower doses. In cholestasis-induced mice, prolonged use of geniposide at 220 mg/kg/day worsened liver damage. Additionally, in NAFLD mice, this dosage of geniposide for four weeks led to intestinal pyroptosis and liver inflammation. These results highlight the lipid-lowering and bile acid regulatory effects of geniposide, but also warn of potential negative impacts on intestinal epithelial cells, particularly with higher doses and longer treatment durations. Therefore, achieving optimal therapeutic results requires a decrease in treatment duration as the dosage increases, in order to maintain a balanced approach to the use of geniposide in clinical settings.
Collapse
Affiliation(s)
- Jiannan Qiu
- School of Life Science, Zhejiang Chinese Medical University, Hangzhou, Zhejiang 310000, China; E-institute of Shanghai Municipal Education Committee, Institute of Interdisciplinary Integrative Medicine Research, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China
| | - Chen Lin
- School of Life Science, Zhejiang Chinese Medical University, Hangzhou, Zhejiang 310000, China
| | - Guilin Ren
- School of Life Science, Zhejiang Chinese Medical University, Hangzhou, Zhejiang 310000, China
| | - Fangying Xu
- School of Life Science, Zhejiang Chinese Medical University, Hangzhou, Zhejiang 310000, China
| | - Tianxiao Hu
- Department of Ultrasonography, Chinese PLA 903rd Hospital, Hangzhou 310013, China
| | - Yifei Le
- School of Life Science, Zhejiang Chinese Medical University, Hangzhou, Zhejiang 310000, China
| | - Xiaohui Fan
- Pharmaceutical Informatics Institute, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou 310058, China
| | - Zhiling Yu
- Consun Chinese Medicines Research Centre for Renal Diseases, School of Chinese Medicine, Hong Kong Baptist University, Hong Kong, China
| | - Qingsheng Liu
- Hangzhou Hospital of Traditional Chinese Medicine Affiliated to Zhejiang University of Traditional Chinese Medicine, Hangzhou, Zhejiang 310000, China
| | - Xiaoning Wang
- E-institute of Shanghai Municipal Education Committee, Institute of Interdisciplinary Integrative Medicine Research, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China.
| | - Xiaobing Dou
- School of Life Science, Zhejiang Chinese Medical University, Hangzhou, Zhejiang 310000, China.
| |
Collapse
|
15
|
Schaapman J, Shumbayawonda E, Castelo-Branco M, Caseiro Alves F, Costa T, Fitzpatrick E, Tupper K, Dhawan A, Deheragoda M, Sticova E, French M, Beyer C, Rymell S, Tonev D, Verspaget H, Neubauer S, Banerjee R, Lamb H, Coenraad M. MRI-serum-based score accurately identifies patients undergoing liver transplant without rejection avoiding the need for liver biopsy: A multisite European study. Liver Transpl 2024:01445473-990000000-00433. [PMID: 39171987 DOI: 10.1097/lvt.0000000000000450] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/01/2024] [Accepted: 07/09/2024] [Indexed: 08/23/2024]
Abstract
Serum liver tests (serum tests) and histological assessment for T-cell-mediated rejection are essential for post-liver transplant monitoring. Liver biopsy carries a risk of complications that are preferably avoided in low-risk patients. Multiparametric magnetic resonance imaging (mpMRI) is a reliable noninvasive diagnostic method that quantifies liver disease activity and has prognostic utility. Our aim was to determine whether using mpMRI in combination with serum tests could noninvasively identify low-risk patients who underwent liver transplants who are eligible to avoid invasive liver biopsies. In a multicenter prospective study (RADIcAL2), including 131 adult and pediatric (children and adolescent) patients with previous liver transplants from the Netherlands, Portugal, and the United Kingdom, concomitant mpMRI and liver biopsies were performed. Biopsies were centrally read by 2 expert pathologists. T-cell-mediated rejection was assessed using the BANFF global assessment. Diagnostic accuracy to discriminate no rejection versus indeterminate or T-cell-mediated liver transplant rejection was performed using the area under the receiver operating characteristic curve. In this study, 52% of patients received a routine (protocol) biopsy, while 48% had a biopsy for suspicion of pathology. Thirty-eight percent of patients had no rejection, while 62% had either indeterminate (21%) or T-cell-mediated rejection (41%). However, there was a high interobserver variability (0 < Cohen's Kappa < 0.85) across all histology scores. The combined score of mpMRI and serum tests had area under the receiver operating characteristic curve 0.7 (negative predictive value 0.8) to identify those without either indeterminate or T-cell-mediated rejection. Combining both imaging and serum biomarkers into a composite biomarker (imaging and serum biomarkers) has the potential to monitor the liver graft to effectively risk stratify patients and identify those most likely to benefit from a noninvasive diagnostic approach, reducing the need for liver biopsy.
Collapse
Affiliation(s)
- Jelte Schaapman
- Department of Gastroenterology and Hepatology, Leiden University Medical Center, Leiden, The Netherlands
| | | | - Miguel Castelo-Branco
- CIBIT (Coimbra Institute for Biomedical Imaging and Translational Research), Faculdade de Medicina, Instituto de Ciências Nucleares Aplicadas à Saúde, Universidade de Coimbra, Coimbra, Portugal
| | - Filipe Caseiro Alves
- CIBIT (Coimbra Institute for Biomedical Imaging and Translational Research), Faculdade de Medicina, Instituto de Ciências Nucleares Aplicadas à Saúde, Universidade de Coimbra, Coimbra, Portugal
| | - Tania Costa
- CIBIT (Coimbra Institute for Biomedical Imaging and Translational Research), Faculdade de Medicina, Instituto de Ciências Nucleares Aplicadas à Saúde, Universidade de Coimbra, Coimbra, Portugal
| | | | - Katie Tupper
- Institute of Liver Studies, Kings College London, London, UK
| | - Anil Dhawan
- Institute of Liver Studies, Kings College London, London, UK
| | | | - Eva Sticova
- Institute of Liver Studies, Kings College London, London, UK
| | | | - Cayden Beyer
- Translational Science, Perspectum Ltd., Oxford UK
| | | | | | - Hein Verspaget
- Department of Gastroenterology and Hepatology, Leiden University Medical Center, Leiden, The Netherlands
| | - Stefan Neubauer
- Radcliffe Department of Medicine, Oxford NIHR Biomedical Research Centre, Oxford, UK
| | | | - Hildo Lamb
- Department of Gastroenterology and Hepatology, Leiden University Medical Center, Leiden, The Netherlands
- Department of Radiology, Leiden University Medical Center, Leiden, The Netherlands
| | - Minneke Coenraad
- Department of Gastroenterology and Hepatology, Leiden University Medical Center, Leiden, The Netherlands
| |
Collapse
|
16
|
Petrone G, Turker I, Natarajan P, Bolton KL. Clinical and Therapeutic Implications of Clonal Hematopoiesis. Annu Rev Genomics Hum Genet 2024; 25:329-351. [PMID: 39190914 DOI: 10.1146/annurev-genom-120722-100409] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/29/2024]
Abstract
Clonal hematopoiesis (CH) is an age-related process whereby hematopoietic stem and progenitor cells (HSPCs) acquire mutations that lead to a proliferative advantage and clonal expansion. The most commonly mutated genes are epigenetic regulators, DNA damage response genes, and splicing factors, which are essential to maintain functional HSPCs and are frequently involved in the development of hematologic malignancies. Established risk factors for CH, including age, prior cytotoxic therapy, and smoking, increase the risk of acquiring CH and/or may increase CH fitness. CH has emerged as a novel risk factor in many age-related diseases, such as hematologic malignancies, cardiovascular disease, diabetes, and autoimmune disorders, among others. Future characterization of the mechanisms driving CH evolution will be critical to develop preventative and therapeutic approaches.
Collapse
Affiliation(s)
- Giulia Petrone
- Division of Oncology, Department of Medicine, Washington University School of Medicine, St. Louis, Missouri, USA;
| | - Isik Turker
- Division of Cardiology, Department of Medicine, Washington University School of Medicine, St. Louis, Missouri, USA
| | - Pradeep Natarajan
- Cardiovascular Research Center and Center for Genomic Medicine, Department of Medicine, Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts, USA
- Cardiovascular Disease Initiative, Broad Institute of MIT and Harvard, Cambridge, Massachusetts, USA
| | - Kelly L Bolton
- Division of Oncology, Department of Medicine, Washington University School of Medicine, St. Louis, Missouri, USA;
| |
Collapse
|
17
|
Yu Z, Coorens THH, Uddin MM, Ardlie KG, Lennon N, Natarajan P. Genetic variation across and within individuals. Nat Rev Genet 2024; 25:548-562. [PMID: 38548833 PMCID: PMC11457401 DOI: 10.1038/s41576-024-00709-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 02/09/2024] [Indexed: 04/12/2024]
Abstract
Germline variation and somatic mutation are intricately connected and together shape human traits and disease risks. Germline variants are present from conception, but they vary between individuals and accumulate over generations. By contrast, somatic mutations accumulate throughout life in a mosaic manner within an individual due to intrinsic and extrinsic sources of mutations and selection pressures acting on cells. Recent advancements, such as improved detection methods and increased resources for association studies, have drastically expanded our ability to investigate germline and somatic genetic variation and compare underlying mutational processes. A better understanding of the similarities and differences in the types, rates and patterns of germline and somatic variants, as well as their interplay, will help elucidate the mechanisms underlying their distinct yet interlinked roles in human health and biology.
Collapse
Affiliation(s)
- Zhi Yu
- Broad Institute of MIT and Harvard, Cambridge, MA, USA
- Cardiovascular Research Center and Center for Genomic Medicine, Massachusetts General Hospital, Boston, MA, USA
| | | | - Md Mesbah Uddin
- Broad Institute of MIT and Harvard, Cambridge, MA, USA
- Cardiovascular Research Center and Center for Genomic Medicine, Massachusetts General Hospital, Boston, MA, USA
| | | | - Niall Lennon
- Broad Institute of MIT and Harvard, Cambridge, MA, USA
| | - Pradeep Natarajan
- Broad Institute of MIT and Harvard, Cambridge, MA, USA.
- Cardiovascular Research Center and Center for Genomic Medicine, Massachusetts General Hospital, Boston, MA, USA.
- Department of Medicine, Harvard Medical School, Boston, MA, USA.
| |
Collapse
|
18
|
Jakobsen NA, Turkalj S, Zeng AGX, Stoilova B, Metzner M, Rahmig S, Nagree MS, Shah S, Moore R, Usukhbayar B, Angulo Salazar M, Gafencu GA, Kennedy A, Newman S, Kendrick BJL, Taylor AH, Afinowi-Luitz R, Gundle R, Watkins B, Wheway K, Beazley D, Murison A, Aguilar-Navarro AG, Flores-Figueroa E, Dakin SG, Carr AJ, Nerlov C, Dick JE, Xie SZ, Vyas P. Selective advantage of mutant stem cells in human clonal hematopoiesis is associated with attenuated response to inflammation and aging. Cell Stem Cell 2024; 31:1127-1144.e17. [PMID: 38917807 PMCID: PMC11512683 DOI: 10.1016/j.stem.2024.05.010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2023] [Revised: 01/29/2024] [Accepted: 05/30/2024] [Indexed: 06/27/2024]
Abstract
Clonal hematopoiesis (CH) arises when hematopoietic stem cells (HSCs) acquire mutations, most frequently in the DNMT3A and TET2 genes, conferring a competitive advantage through mechanisms that remain unclear. To gain insight into how CH mutations enable gradual clonal expansion, we used single-cell multi-omics with high-fidelity genotyping on human CH bone marrow (BM) samples. Most of the selective advantage of mutant cells occurs within HSCs. DNMT3A- and TET2-mutant clones expand further in early progenitors, while TET2 mutations accelerate myeloid maturation in a dose-dependent manner. Unexpectedly, both mutant and non-mutant HSCs from CH samples are enriched for inflammatory and aging transcriptomic signatures, compared with HSCs from non-CH samples, revealing a non-cell-autonomous effect. However, DNMT3A- and TET2-mutant HSCs have an attenuated inflammatory response relative to wild-type HSCs within the same sample. Our data support a model whereby CH clones are gradually selected because they are resistant to the deleterious impact of inflammation and aging.
Collapse
Affiliation(s)
- Niels Asger Jakobsen
- MRC Molecular Haematology Unit, MRC Weatherall Institute of Molecular Medicine, University of Oxford, Oxford, UK; Oxford Centre for Haematology, NIHR Oxford Biomedical Research Centre, Oxford, UK
| | - Sven Turkalj
- MRC Molecular Haematology Unit, MRC Weatherall Institute of Molecular Medicine, University of Oxford, Oxford, UK; Oxford Centre for Haematology, NIHR Oxford Biomedical Research Centre, Oxford, UK
| | - Andy G X Zeng
- Princess Margaret Cancer Centre, University Health Network, Toronto, ON, Canada; Department of Molecular Genetics, University of Toronto, Toronto, ON, Canada
| | - Bilyana Stoilova
- MRC Molecular Haematology Unit, MRC Weatherall Institute of Molecular Medicine, University of Oxford, Oxford, UK
| | - Marlen Metzner
- MRC Molecular Haematology Unit, MRC Weatherall Institute of Molecular Medicine, University of Oxford, Oxford, UK
| | - Susann Rahmig
- MRC Molecular Haematology Unit, MRC Weatherall Institute of Molecular Medicine, University of Oxford, Oxford, UK
| | - Murtaza S Nagree
- Princess Margaret Cancer Centre, University Health Network, Toronto, ON, Canada
| | - Sayyam Shah
- Princess Margaret Cancer Centre, University Health Network, Toronto, ON, Canada
| | - Rachel Moore
- MRC Molecular Haematology Unit, MRC Weatherall Institute of Molecular Medicine, University of Oxford, Oxford, UK
| | - Batchimeg Usukhbayar
- MRC Molecular Haematology Unit, MRC Weatherall Institute of Molecular Medicine, University of Oxford, Oxford, UK
| | - Mirian Angulo Salazar
- MRC Molecular Haematology Unit, MRC Weatherall Institute of Molecular Medicine, University of Oxford, Oxford, UK
| | - Grigore-Aristide Gafencu
- MRC Molecular Haematology Unit, MRC Weatherall Institute of Molecular Medicine, University of Oxford, Oxford, UK
| | - Alison Kennedy
- MRC Molecular Haematology Unit, MRC Weatherall Institute of Molecular Medicine, University of Oxford, Oxford, UK; Wellcome - MRC Cambridge Stem Cell Institute, University of Cambridge, Cambridge, UK
| | - Simon Newman
- Nuffield Department of Orthopaedics, Rheumatology and Musculoskeletal Sciences, Botnar Research Centre, University of Oxford, Oxford, UK; Nuffield Orthopaedic Centre, Oxford University Hospitals NHS Foundation Trust, Oxford, UK
| | - Benjamin J L Kendrick
- Nuffield Department of Orthopaedics, Rheumatology and Musculoskeletal Sciences, Botnar Research Centre, University of Oxford, Oxford, UK; Nuffield Orthopaedic Centre, Oxford University Hospitals NHS Foundation Trust, Oxford, UK
| | - Adrian H Taylor
- Nuffield Department of Orthopaedics, Rheumatology and Musculoskeletal Sciences, Botnar Research Centre, University of Oxford, Oxford, UK; Nuffield Orthopaedic Centre, Oxford University Hospitals NHS Foundation Trust, Oxford, UK
| | - Rasheed Afinowi-Luitz
- Nuffield Department of Orthopaedics, Rheumatology and Musculoskeletal Sciences, Botnar Research Centre, University of Oxford, Oxford, UK; Nuffield Orthopaedic Centre, Oxford University Hospitals NHS Foundation Trust, Oxford, UK
| | - Roger Gundle
- Nuffield Department of Orthopaedics, Rheumatology and Musculoskeletal Sciences, Botnar Research Centre, University of Oxford, Oxford, UK; Nuffield Orthopaedic Centre, Oxford University Hospitals NHS Foundation Trust, Oxford, UK
| | - Bridget Watkins
- Nuffield Department of Orthopaedics, Rheumatology and Musculoskeletal Sciences, Botnar Research Centre, University of Oxford, Oxford, UK
| | - Kim Wheway
- Nuffield Department of Orthopaedics, Rheumatology and Musculoskeletal Sciences, Botnar Research Centre, University of Oxford, Oxford, UK
| | - Debra Beazley
- Nuffield Department of Orthopaedics, Rheumatology and Musculoskeletal Sciences, Botnar Research Centre, University of Oxford, Oxford, UK
| | - Alex Murison
- Princess Margaret Cancer Centre, University Health Network, Toronto, ON, Canada
| | - Alicia G Aguilar-Navarro
- Unidad de Investigación Médica en Enfermedades Oncológicas, Centro Médico Nacional Siglo XXI, Instituto Mexicano del Seguro Social, Mexico City, Mexico
| | - Eugenia Flores-Figueroa
- Unidad de Investigación Médica en Enfermedades Oncológicas, Centro Médico Nacional Siglo XXI, Instituto Mexicano del Seguro Social, Mexico City, Mexico
| | - Stephanie G Dakin
- Nuffield Department of Orthopaedics, Rheumatology and Musculoskeletal Sciences, Botnar Research Centre, University of Oxford, Oxford, UK
| | - Andrew J Carr
- Nuffield Department of Orthopaedics, Rheumatology and Musculoskeletal Sciences, Botnar Research Centre, University of Oxford, Oxford, UK; Nuffield Orthopaedic Centre, Oxford University Hospitals NHS Foundation Trust, Oxford, UK
| | - Claus Nerlov
- MRC Molecular Haematology Unit, MRC Weatherall Institute of Molecular Medicine, University of Oxford, Oxford, UK
| | - John E Dick
- Princess Margaret Cancer Centre, University Health Network, Toronto, ON, Canada; Department of Molecular Genetics, University of Toronto, Toronto, ON, Canada
| | - Stephanie Z Xie
- Princess Margaret Cancer Centre, University Health Network, Toronto, ON, Canada
| | - Paresh Vyas
- MRC Molecular Haematology Unit, MRC Weatherall Institute of Molecular Medicine, University of Oxford, Oxford, UK; Oxford Centre for Haematology, NIHR Oxford Biomedical Research Centre, Oxford, UK; Department of Haematology, Oxford University Hospitals NHS Foundation Trust, Oxford, UK.
| |
Collapse
|
19
|
Schleicher WE, Hoag B, De Dominici M, DeGregori J, Pietras EM. CHIP: a clonal odyssey of the bone marrow niche. J Clin Invest 2024; 134:e180068. [PMID: 39087468 PMCID: PMC11290965 DOI: 10.1172/jci180068] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/02/2024] Open
Abstract
Clonal hematopoiesis of indeterminate potential (CHIP) is characterized by the selective expansion of hematopoietic stem and progenitor cells (HSPCs) carrying somatic mutations. While CHIP is typically asymptomatic, it has garnered substantial attention due to its association with the pathogenesis of multiple disease conditions, including cardiovascular disease (CVD) and hematological malignancies. In this Review, we will discuss seminal and recent studies that have advanced our understanding of mechanisms that drive selection for mutant HSPCs in the BM niche. Next, we will address recent studies evaluating potential relationships between the clonal dynamics of CHIP and hematopoietic development across the lifespan. Next, we will examine the roles of systemic factors that can influence hematopoietic stem cell (HSC) fitness, including inflammation, and exposures to cytotoxic agents in driving selection for CHIP clones. Furthermore, we will consider how - through their impact on the BM niche - lifestyle factors, including diet, exercise, and psychosocial stressors, might contribute to the process of somatic evolution in the BM that culminates in CHIP. Finally, we will review the role of old age as a major driver of selection in CHIP.
Collapse
Affiliation(s)
| | - Bridget Hoag
- Department of Biochemistry and Molecular Genetics, University of Colorado Anschutz Medical Campus, Aurora, Colorado, USA
| | - Marco De Dominici
- Department of Biochemistry and Molecular Genetics, University of Colorado Anschutz Medical Campus, Aurora, Colorado, USA
| | - James DeGregori
- Division of Hematology, Department of Medicine, and
- Department of Biochemistry and Molecular Genetics, University of Colorado Anschutz Medical Campus, Aurora, Colorado, USA
| | | |
Collapse
|
20
|
Singh J, Li N, Ashrafi E, Thao LTP, Curtis DJ, Wood EM, McQuilten ZK. Clonal hematopoiesis of indeterminate potential as a prognostic factor: a systematic review and meta-analysis. Blood Adv 2024; 8:3771-3784. [PMID: 38838228 PMCID: PMC11298876 DOI: 10.1182/bloodadvances.2024013228] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2024] [Revised: 05/06/2024] [Accepted: 05/20/2024] [Indexed: 06/07/2024] Open
Abstract
ABSTRACT With advances in sequencing, individuals with clonal hematopoiesis of indeterminate potential (CHIP) are increasingly being identified, making it essential to understand its prognostic implications. We conducted a systematic review of studies comparing the risk of clinical outcomes in individuals with and without CHIP. We searched MEDLINE and EMBASE and included original research reporting an outcome risk measure in individuals with CHIP, adjusted for the effect of age. From the 3305 studies screened, we included 88 studies with 45 to 470 960 participants. Most studies had a low-to-moderate risk of bias in all domains of the Quality in Prognostic Factor Studies tool. Random-effects meta-analyses were performed for outcomes reported in at least 3 studies. CHIP conferred an increased risk of all-cause mortality (hazard ratio [HR], 1.34; 95% confidence interval, 1.19-1.50), cancer mortality (HR, 1.46; 1.13-1.88), composite cardiovascular events (HR, 1.40; 1.19-1.65), coronary heart disease (HR, 1.76; 1.27-2.44), stroke (HR, 1.16; 1.05-1.28), heart failure (HR, 1.27; 1.15-1.41), hematologic malignancy (HR, 4.28; 2.29-7.98), lung cancer (HR, 1.40; 1.27-1.54), renal impairment (HR, 1.25; 1.18-1.33) and severe COVID-19 (odds ratio [OR], 1.46; 1.18-1.80). CHIP was not associated with cardiovascular mortality (HR, 1.09; 0.97-1.22), except in the subgroup analysis restricted to larger clones (HR, 1.31; 1.12-1.54). Isolated DNMT3A mutations did not increase the risk of myeloid malignancy, all-cause mortality, or renal impairment. The reasons for heterogeneity between studies included differences in definitions and measurements of CHIP and the outcomes, and populations studied. In summary, CHIP is associated with diverse clinical outcomes, with clone size, specific gene, and inherent patient characteristics important mediators of risk.
Collapse
Affiliation(s)
- Jasmine Singh
- School of Public Health and Preventive Medicine, Monash University, Melbourne, Australia
- Department of Haematology, Fiona Stanley Hospital, Perth, Australia
- Australian Centre for Blood Diseases, Monash University, Melbourne, Australia
| | - Nancy Li
- Department of Haematology, Eastern Health, Melbourne, Australia
| | - Elham Ashrafi
- School of Public Health and Preventive Medicine, Monash University, Melbourne, Australia
| | - Le Thi Phuong Thao
- School of Public Health and Preventive Medicine, Monash University, Melbourne, Australia
| | - David J. Curtis
- Australian Centre for Blood Diseases, Monash University, Melbourne, Australia
- Department of Clinical Haematology, Alfred Health, Melbourne, Australia
| | - Erica M. Wood
- School of Public Health and Preventive Medicine, Monash University, Melbourne, Australia
- Department of Haematology, Monash Health, Melbourne, Australia
| | - Zoe K. McQuilten
- School of Public Health and Preventive Medicine, Monash University, Melbourne, Australia
- Department of Haematology, Monash Health, Melbourne, Australia
| |
Collapse
|
21
|
Wang H, Divaris K, Pan B, Li X, Lim JH, Saha G, Barovic M, Giannakou D, Korostoff JM, Bing Y, Sen S, Moss K, Wu D, Beck JD, Ballantyne CM, Natarajan P, North KE, Netea MG, Chavakis T, Hajishengallis G. Clonal hematopoiesis driven by mutated DNMT3A promotes inflammatory bone loss. Cell 2024; 187:3690-3711.e19. [PMID: 38838669 PMCID: PMC11246233 DOI: 10.1016/j.cell.2024.05.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2023] [Revised: 02/19/2024] [Accepted: 05/01/2024] [Indexed: 06/07/2024]
Abstract
Clonal hematopoiesis of indeterminate potential (CHIP) arises from aging-associated acquired mutations in hematopoietic progenitors, which display clonal expansion and produce phenotypically altered leukocytes. We associated CHIP-DNMT3A mutations with a higher prevalence of periodontitis and gingival inflammation among 4,946 community-dwelling adults. To model DNMT3A-driven CHIP, we used mice with the heterozygous loss-of-function mutation R878H, equivalent to the human hotspot mutation R882H. Partial transplantation with Dnmt3aR878H/+ bone marrow (BM) cells resulted in clonal expansion of mutant cells into both myeloid and lymphoid lineages and an elevated abundance of osteoclast precursors in the BM and osteoclastogenic macrophages in the periphery. DNMT3A-driven clonal hematopoiesis in recipient mice promoted naturally occurring periodontitis and aggravated experimentally induced periodontitis and arthritis, associated with enhanced osteoclastogenesis, IL-17-dependent inflammation and neutrophil responses, and impaired regulatory T cell immunosuppressive activity. DNMT3A-driven clonal hematopoiesis and, subsequently, periodontitis were suppressed by rapamycin treatment. DNMT3A-driven CHIP represents a treatable state of maladaptive hematopoiesis promoting inflammatory bone loss.
Collapse
Affiliation(s)
- Hui Wang
- Department of Basic and Translational Sciences, Laboratory of Innate Immunity and Inflammation, Penn Dental Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Kimon Divaris
- Division of Pediatric and Public Health, Adams School of Dentistry, University of North Carolina, Chapel Hill, Chapel Hill, NC 27599, USA; Department of Epidemiology, Gillings School of Global Public Health, University of North Carolina, Chapel Hill, Chapel Hill, NC 27599, USA
| | - Bohu Pan
- Division of Bioinformatics and Biostatistics, National Center for Toxicological Research, US Food and Drug Administration, Jefferson, AR 72079, USA
| | - Xiaofei Li
- Department of Basic and Translational Sciences, Laboratory of Innate Immunity and Inflammation, Penn Dental Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA; Shanghai Jiao Tong University, School of Life Sciences and Biotechnology, Sheng Yushou Center of Cell Biology and Immunology, Shanghai 200240, China
| | - Jong-Hyung Lim
- Department of Basic and Translational Sciences, Laboratory of Innate Immunity and Inflammation, Penn Dental Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Gundappa Saha
- Department of Basic and Translational Sciences, Laboratory of Innate Immunity and Inflammation, Penn Dental Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Marko Barovic
- Institute for Clinical Chemistry and Laboratory Medicine, University Hospital, Technische Universität Dresden, 01307 Dresden, Germany
| | - Danai Giannakou
- Institute for Clinical Chemistry and Laboratory Medicine, University Hospital, Technische Universität Dresden, 01307 Dresden, Germany
| | - Jonathan M Korostoff
- Department of Periodontics, Laboratory of Innate Immunity and Inflammation, Penn Dental Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Yu Bing
- Human Genetics Center, Department of Epidemiology, School of Public Health, The University of Texas Health Science Center at Houston, Houston, TX 77030, USA
| | - Souvik Sen
- Department of Neurology, University of South Carolina, Columbia, SC 29209, USA; Center for the Study of Aphasia Recovery, University of South Carolina, Columbia, SC 29209, USA
| | - Kevin Moss
- Department of Biostatistics and Health Data Sciences, School of Medicine, Indiana University, Indianapolis, IN 46202, USA; Division of Oral and Craniofacial Health Sciences, Adams School of Dentistry, University of North Carolina, Chapel Hill, Chapel Hill, NC 27599, USA
| | - Di Wu
- Division of Oral and Craniofacial Health Sciences, Adams School of Dentistry, University of North Carolina, Chapel Hill, Chapel Hill, NC 27599, USA; Department of Biostatistics, Gillings School of Global Public Health, University of North Carolina, Chapel Hill, Chapel Hill, NC 27599, USA
| | - James D Beck
- Division of Comprehensive Oral Health-Periodontology, Adams School of Dentistry, University of North Carolina, Chapel Hill, Chapel Hill, NC 27599, USA
| | | | - Pradeep Natarajan
- Cardiovascular Research Center and Center for Genomic Medicine, Massachusetts General Hospital, Boston, MA 02114, USA; Program in Medical and Population Genetics, Broad Institute of Harvard and MIT, Cambridge, MA 02141, USA; Department of Medicine, Harvard Medical School, Boston, MA 02115, USA
| | - Kari E North
- Department of Epidemiology, Gillings School of Global Public Health, University of North Carolina, Chapel Hill, Chapel Hill, NC 27599, USA
| | - Mihai G Netea
- Department of Internal Medicine and Radboud Center for Infectious Diseases, Radboud University Medical Center, 6525 XZ Nijmegen, the Netherlands; Department of Immunology and Metabolism, LIMES, University of Bonn, 53115 Bonn, Germany
| | - Triantafyllos Chavakis
- Institute for Clinical Chemistry and Laboratory Medicine, University Hospital, Technische Universität Dresden, 01307 Dresden, Germany
| | - George Hajishengallis
- Department of Basic and Translational Sciences, Laboratory of Innate Immunity and Inflammation, Penn Dental Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA.
| |
Collapse
|
22
|
Maeda H, Kakiuchi N. Clonal expansion in normal tissues. Cancer Sci 2024; 115:2117-2124. [PMID: 38623936 PMCID: PMC11247609 DOI: 10.1111/cas.16183] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2024] [Revised: 03/24/2024] [Accepted: 04/01/2024] [Indexed: 04/17/2024] Open
Abstract
Cancer originates from a single ancestral cell that acquires a driver mutation, which confers a growth or survival advantage, followed by the acquisition of additional driver mutations by descendant cells. Recently, it has become evident that somatic cell mutations accumulate in normal tissues with aging and exposure to environmental factors, such as alcohol, smoking, and UV rays, increases the mutation rate. Clones harboring driver mutations expand with age, leading to tissue remodeling. Lineage analysis of myeloproliferative neoplasms and der(1;16)-positive breast cancer revealed that driver mutations were acquired early in our lives and that the development of cancer takes decades, unveiling the previously unknown early process of cancer development. Evidence that clonal hematopoiesis affects various diseases, including nonneoplastic diseases, highlights the potential role of the identification and functional analysis of mutated clones in unraveling unknown pathologies. In this review, we summarize the recent updates on clonal expansion in normal tissues and the natural history of cancer revealed through lineage analysis of noncancerous and cancerous tissues.
Collapse
Affiliation(s)
- Hirona Maeda
- Department of Pathology and Tumor Biology, Graduate School of MedicineKyoto UniversityKyotoJapan
- Department of Diagnostic PathologyKyoto University HospitalKyotoJapan
| | - Nobuyuki Kakiuchi
- Department of Pathology and Tumor Biology, Graduate School of MedicineKyoto UniversityKyotoJapan
- The Hakubi Center for Advanced ResearchKyoto UniversityKyotoJapan
- Department of Gastroenterology and Hepatology, Graduate School of MedicineKyoto UniversityKyotoJapan
| |
Collapse
|
23
|
Mack T, Vlasschaert C, von Beck K, Silver AJ, Heimlich JB, Poisner H, Condon HR, Ulloa J, Sochacki AL, Spaulding TP, Kishtagari A, Bejan CA, Xu Y, Savona MR, Jones A, Bick AG. Cost-Effective and Scalable Clonal Hematopoiesis Assay Provides Insight into Clonal Dynamics. J Mol Diagn 2024; 26:563-573. [PMID: 38588769 DOI: 10.1016/j.jmoldx.2024.03.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2023] [Revised: 03/06/2024] [Accepted: 03/13/2024] [Indexed: 04/10/2024] Open
Abstract
Clonal hematopoiesis of indeterminate potential (CHIP) is a common age-related phenomenon in which hematopoietic stem cells acquire mutations in a select set of genes commonly mutated in myeloid neoplasia which then expand clonally. Current sequencing assays to detect CHIP mutations are not optimized for the detection of these variants and can be cost-prohibitive when applied to large cohorts or to serial sequencing. In this study, an affordable (approximately US $8 per sample), accurate, and scalable sequencing assay for CHIP is introduced and validated. The efficacy of the assay was demonstrated by identifying CHIP mutations in a cohort of 456 individuals with DNA collected at multiple time points in Vanderbilt University's biobank and quantifying clonal expansion rates over time. A total of 101 individuals with CHIP/clonal cytopenia of undetermined significance were identified, and individual-level clonal expansion rate was calculated using the variant allele fraction at both time points. Differences in clonal expansion rate by driver gene were observed, but there was also significant individual-level heterogeneity, emphasizing the multifactorial nature of clonal expansion. Additionally, mutation co-occurrence and clonal competition between multiple driver mutations were explored.
Collapse
Affiliation(s)
- Taralynn Mack
- Vanderbilt Genetics Institute, Vanderbilt University School of Medicine, Nashville, Tennessee
| | | | - Kelly von Beck
- Department of Medicine, Vanderbilt University Medical Center, Nashville, Tennessee
| | - Alexander J Silver
- Department of Medicine, Vanderbilt University Medical Center, Nashville, Tennessee; Program in Cancer Biology, Vanderbilt University School of Medicine, Nashville, Tennessee
| | - J Brett Heimlich
- Department of Medicine, Vanderbilt University Medical Center, Nashville, Tennessee
| | - Hannah Poisner
- Vanderbilt Genetics Institute, Vanderbilt University School of Medicine, Nashville, Tennessee
| | - Henry R Condon
- Vanderbilt Genetics Institute, Vanderbilt University School of Medicine, Nashville, Tennessee
| | - Jessica Ulloa
- Vanderbilt Genetics Institute, Vanderbilt University School of Medicine, Nashville, Tennessee
| | - Andrew L Sochacki
- Department of Medicine, Vanderbilt University Medical Center, Nashville, Tennessee
| | - Travis P Spaulding
- Department of Medicine, Vanderbilt University Medical Center, Nashville, Tennessee
| | - Ashwin Kishtagari
- Department of Medicine, Vanderbilt University Medical Center, Nashville, Tennessee
| | - Cosmin A Bejan
- Department of Biomedical Informatics, Vanderbilt University Medical Center, Nashville, Tennessee
| | - Yaomin Xu
- Department of Biomedical Informatics, Vanderbilt University Medical Center, Nashville, Tennessee; Department of Biostatistics, Vanderbilt University Medical Center, Nashville, Tennessee
| | - Michael R Savona
- Department of Medicine, Vanderbilt University Medical Center, Nashville, Tennessee; Program in Cancer Biology, Vanderbilt University School of Medicine, Nashville, Tennessee; Vanderbilt Ingram Cancer Center, Vanderbilt University Medical Center, Nashville, Tennessee; Center for Immunobiology, Vanderbilt University Medical Center, Nashville, Tennessee
| | - Angela Jones
- Vanderbilt Genetics Institute, Vanderbilt University School of Medicine, Nashville, Tennessee
| | - Alexander G Bick
- Vanderbilt Genetics Institute, Vanderbilt University School of Medicine, Nashville, Tennessee; Division of Genetic Medicine, Vanderbilt University Medical Center, Nashville, Tennessee.
| |
Collapse
|
24
|
Vlasschaert C, Pan Y, Chen J, Akwo E, Rao V, Hixson JE, Chong M, Uddin MM, Yu Z, Jiang M, Peng F, Cao S, Wang Y, Kim DK, Hung AM, He J, Tamura MK, Cohen DL, He J, Li C, Bhat Z, Rao P, Xie D, Bick AG, Kestenbaum B, Paré G, Rauh MJ, Levin A, Natarajan P, Lash JP, Zhang MZ, Harris RC, Robinson-Cohen C, Lanktree MB, Kelly TN. Clonal hematopoiesis of indeterminate potential contributes to accelerated chronic kidney disease progression. MEDRXIV : THE PREPRINT SERVER FOR HEALTH SCIENCES 2024:2024.06.19.24309181. [PMID: 38946975 PMCID: PMC11213124 DOI: 10.1101/2024.06.19.24309181] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/02/2024]
Abstract
Background Clonal hematopoiesis of indeterminate potential (CHIP) is a common inflammatory condition of aging that causes myriad end-organ damage. We have recently shown associations for CHIP with acute kidney injury and with kidney function decline in the general population, with stronger associations for CHIP driven by mutations in genes other than DNMT3A (non- DNMT3A CHIP). Longitudinal kidney function endpoints in individuals with pre-existing chronic kidney disease (CKD) and CHIP have been examined in two previous studies, which reported conflicting findings and were limited by small sample sizes. Methods In this study, we examined the prospective associations between CHIP and CKD progression events in four cohorts of CKD patients (total N = 5,772). The primary outcome was a composite of 50% kidney function decline or kidney failure. The slope of eGFR decline was examined as a secondary outcome. Mendelian randomization techniques were then used to investigate potential causal effects of CHIP on eGFR decline. Finally, kidney function was assessed in adenine-fed CKD model mice having received a bone marrow transplant recapitulating Tet2 -CHIP compared to controls transplanted wild-type bone marrow. Results Across all cohorts, the average age was 66.4 years, the average baseline eGFR was 42.6 ml/min/1.73m 2 , and 24% had CHIP. Upon meta-analysis, non- DNMT3A CHIP was associated with a 59% higher relative risk of incident CKD progression (HR 1.59, 95% CI: 1.02-2.47). This association was more pronounced among individuals with diabetes (HR 1.29, 95% CI: 1.03-1.62) and with baseline eGFR ≥ 30 ml/min/1.73m (HR 1.80, 95% CI: 1.11-2.90). Additionally, the annualized slope of eGFR decline was steeper among non- DNMT3A CHIP carriers, relative to non-carriers (β -0.61 ± 0.31 ml/min/1.73m 2 , p = 0.04). Mendelian randomization analyses suggested a causal role for CHIP in eGFR decline among individuals with diabetes. In a dietary adenine mouse model of CKD, Tet2 -CHIP was associated with lower GFR as well as greater kidney inflammation, tubular injury, and tubulointerstitial fibrosis. Conclusion Non- DNMT3A CHIP is a potentially targetable novel risk factor for CKD progression.
Collapse
|
25
|
Silver AJ, Vlasschaert C, Mack T, Sharber B, Xu Y, Bick AG, Pinson CW, Savona MR. Solid Organ Transplant Recipients Exhibit More TET2-Mutant Clonal Hematopoiesis of Indeterminate Potential Not Driven by Increased Transplantation Risk. Clin Cancer Res 2024; 30:2475-2485. [PMID: 38551504 DOI: 10.1158/1078-0432.ccr-23-3840] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2023] [Revised: 02/14/2024] [Accepted: 03/26/2024] [Indexed: 06/04/2024]
Abstract
PURPOSE Solid organ transplant recipients comprise a unique population of immunosuppressed patients with increased risk of malignancy, including hematologic neoplasms. Clonal hematopoiesis of indeterminate potential (CHIP) represents a known risk factor for hematologic malignancy and this study describes the prevalence and patterns of CHIP mutations across several types of solid organ transplants. EXPERIMENTAL DESIGN We use two national biobank cohorts comprised of >650,000 participants with linked genomic and longitudinal phenotypic data to describe the features of CHIP across 2,610 individuals who received kidney, liver, heart, or lung allografts. RESULTS We find individuals with an allograft before their biobank enrollment had an increased prevalence of TET2 mutations (OR, 1.90; P = 4.0e-4), but individuals who received transplants post-enrollment had a CHIP mutation spectrum similar to that of the general population, without enrichment of TET2. In addition, we do not observe an association between CHIP and risk of incident transplantation among the overall population (HR, 1.02; P = 0.91). And in an exploratory analysis, we do not find evidence for a strong association between CHIP and rates of transplant complications such as rejection or graft failure. CONCLUSIONS These results demonstrate that recipients of solid organ transplants display a unique pattern of clonal hematopoiesis with enrichment of TET2 driver mutations, the causes of which remain unclear and are deserving of further study.
Collapse
Affiliation(s)
- Alexander J Silver
- Program in Cancer Biology, Vanderbilt University School of Medicine, Nashville, Tennessee
- Department of Medicine, Vanderbilt University Medical Center, Nashville, Tennessee
| | | | - Taralynn Mack
- Department of Medicine, Vanderbilt University Medical Center, Nashville, Tennessee
| | - Brian Sharber
- Department of Medicine, Vanderbilt University Medical Center, Nashville, Tennessee
| | - Yaomin Xu
- Department of Biomedical Informatics, Vanderbilt University Medical Center, Nashville, Tennessee
- Department of Biostatistics, Vanderbilt University Medical Center, Nashville, Tennessee
- Center for Quantitative Sciences, Vanderbilt University Medical Center, Nashville, Tennessee
| | - Alexander G Bick
- Program in Cancer Biology, Vanderbilt University School of Medicine, Nashville, Tennessee
- Department of Medicine, Vanderbilt University Medical Center, Nashville, Tennessee
| | - C Wright Pinson
- Transplant Center, Vanderbilt University Medical Center, Nashville, Tennessee
- Department of Surgery, Vanderbilt University Medical Center, Nashville, Tennessee
| | - Michael R Savona
- Program in Cancer Biology, Vanderbilt University School of Medicine, Nashville, Tennessee
- Department of Medicine, Vanderbilt University Medical Center, Nashville, Tennessee
- Center for Immunobiology, Vanderbilt University Medical Center, Nashville, Tennessee
- Vanderbilt-Ingram Cancer Center, Vanderbilt University Medical Center, Nashville, Tennessee
| |
Collapse
|
26
|
Cao R, Thatavarty A, King KY. Forged in the fire: Lasting impacts of inflammation on hematopoietic progenitors. Exp Hematol 2024; 134:104215. [PMID: 38580008 DOI: 10.1016/j.exphem.2024.104215] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2024] [Revised: 03/26/2024] [Accepted: 04/01/2024] [Indexed: 04/07/2024]
Abstract
Quiescence and differentiation of hematopoietic stem and progenitor cells (HSPC) can be modified by systemic inflammatory cues. Such cues can not only yield short-term changes in HSPCs such as in supporting emergency granulopoiesis but can also promote lasting influences on the HSPC compartment. First, inflammation can be a driver for clonal expansion, promoting clonal hematopoiesis for certain mutant clones, reducing overall clonal diversity, and reshaping the composition of the HSPC pool with significant health consequences. Second, inflammation can generate lasting cell-autonomous changes in HSPCs themselves, leading to changes in the epigenetic state, metabolism, and function of downstream innate immune cells. This concept, termed "trained immunity," suggests that inflammatory stimuli can alter subsequent immune responses leading to improved innate immunity or, conversely, autoimmunity. Both of these concepts have major implications in human health. Here we reviewed current literature about the lasting effects of inflammation on the HSPC compartment and opportunities for future advancement in this fast-developing field.
Collapse
Affiliation(s)
- Ruoqiong Cao
- Department of Pediatrics - Division of Infectious Disease, Texas Children's Hospital, Baylor College of Medicine, Houston, TX; Graduate Program in Immunology and Microbiology, Baylor College of Medicine, Houston, TX; Stem Cells and Regenerative Medicine Center, Baylor College of Medicine, Houston, TX
| | - Apoorva Thatavarty
- Department of Pediatrics - Division of Infectious Disease, Texas Children's Hospital, Baylor College of Medicine, Houston, TX; Graduate Program in Genetics and Genomics, Baylor College of Medicine, Houston, Texas; Medical Scientist Training Program, Baylor College of Medicine, Houston, TX; Stem Cells and Regenerative Medicine Center, Baylor College of Medicine, Houston, TX
| | - Katherine Y King
- Department of Pediatrics - Division of Infectious Disease, Texas Children's Hospital, Baylor College of Medicine, Houston, TX; Graduate Program in Immunology and Microbiology, Baylor College of Medicine, Houston, TX; Medical Scientist Training Program, Baylor College of Medicine, Houston, TX; Stem Cells and Regenerative Medicine Center, Baylor College of Medicine, Houston, TX.
| |
Collapse
|
27
|
Arends CM, Kopp K, Hablesreiter R, Estrada N, Christen F, Moll UM, Zeillinger R, Schmitt WD, Sehouli J, Kulbe H, Fleischmann M, Ray-Coquard I, Zeimet A, Raspagliesi F, Zamagni C, Vergote I, Lorusso D, Concin N, Bullinger L, Braicu EI, Damm F. Dynamics of clonal hematopoiesis under DNA-damaging treatment in patients with ovarian cancer. Leukemia 2024; 38:1378-1389. [PMID: 38637689 PMCID: PMC11147769 DOI: 10.1038/s41375-024-02253-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2024] [Revised: 04/09/2024] [Accepted: 04/10/2024] [Indexed: 04/20/2024]
Abstract
Clonal hematopoiesis (CH) driven by mutations in the DNA damage response (DDR) pathway is frequent in patients with cancer and is associated with a higher risk of therapy-related myeloid neoplasms (t-MNs). Here, we analyzed 423 serial whole blood and plasma samples from 103 patients with relapsed high-grade ovarian cancer receiving carboplatin, poly(ADP-ribose) polymerase inhibitor (PARPi) and heat shock protein 90 inhibitor (HSP90i) treatment within the phase II EUDARIO trial using error-corrected sequencing of 72 genes. DDR-driven CH was detected in 35% of patients and was associated with longer duration of prior PARPi treatment. TP53- and PPM1D-mutated clones exhibited substantially higher clonal expansion rates than DNMT3A- or TET2-mutated clones during treatment. Expansion of DDR clones correlated with HSP90i exposure across the three study arms and was partially abrogated by the presence of germline mutations related to homologous recombination deficiency. Single-cell DNA sequencing of selected samples revealed clonal exclusivity of DDR mutations, and identified DDR-mutated clones as the origin of t-MN in two investigated cases. Together, these results provide unique insights into the architecture and the preferential selection of DDR-mutated hematopoietic clones under intense DNA-damaging treatment. Specifically, PARPi and HSP90i therapies pose an independent risk for the expansion of DDR-CH in a dose-dependent manner.
Collapse
Affiliation(s)
- Christopher Maximilian Arends
- Department of Hematology, Oncology, and Cancer Immunology, Charité-Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Berlin, Germany
| | - Klara Kopp
- Department of Hematology, Oncology, and Cancer Immunology, Charité-Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Berlin, Germany
| | - Raphael Hablesreiter
- Department of Hematology, Oncology, and Cancer Immunology, Charité-Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Berlin, Germany
| | - Natalia Estrada
- Department of Hematology, Oncology, and Cancer Immunology, Charité-Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Berlin, Germany
| | - Friederike Christen
- Department of Hematology, Oncology, and Cancer Immunology, Charité-Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Berlin, Germany
| | - Ute Martha Moll
- Department of Pathology, Stony Brook University Cancer Center, Stony Brook, NY, 11794, USA
| | - Robert Zeillinger
- Department of Obstetrics and Gynaecology, Molecular Oncology Group, Comprehensive Cancer Center-Gynaecologic Cancer Unit, Medical University of Vienna, Vienna, Austria
| | - Wolfgang Daniel Schmitt
- Department of Pathology, Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt Universität zu Berlin, Berlin, Germany
| | - Jalid Sehouli
- Department of Gynaecology, European Competence Center for Ovarian Cancer, Charité-Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Campus Virchow Klinikum, Berlin, Germany
- North Eastern German Society for Gynecological Cancer. Tumor Bank Ovarian Cancer Network, Berlin, Germany
| | - Hagen Kulbe
- Department of Gynaecology, European Competence Center for Ovarian Cancer, Charité-Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Campus Virchow Klinikum, Berlin, Germany
- North Eastern German Society for Gynecological Cancer. Tumor Bank Ovarian Cancer Network, Berlin, Germany
| | - Maximilian Fleischmann
- Klinik für Innere Medizin II, Abteilung Hämatologie und Onkologie, Universitätsklinikum Jena, Jena, Germany
| | - Isabelle Ray-Coquard
- Centre Anticancereux Léon Bérard, University Claude Bernard Lyon, GINECO Group, Lyon, France
| | - Alain Zeimet
- Department of Obstetrics and Gynecology, Medical University of Innsbruck, Austrian AGO, Innsbruck, Austria
| | | | - Claudio Zamagni
- Division of Oncology, IRCCS Azienda Ospedaliero-Universitaria di Bologna, Bologna, Italy
| | - Ignace Vergote
- Division of Gynecological Oncology, Department of Gynecology and Obstetrics, Leuven Cancer Institute, Katholieke Universiteit Leuven, Leuven, Belgium
- Belgium and Luxembourg Gynaecological Oncology Group (BGOG), Leuven, Belgium
| | | | - Nicole Concin
- Department of Obstetrics and Gynecology, Medical University of Innsbruck, Austrian AGO, Innsbruck, Austria
| | - Lars Bullinger
- Department of Hematology, Oncology, and Cancer Immunology, Charité-Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Berlin, Germany
- German Cancer Consortium (DKTK) and German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Elena Ioana Braicu
- Department of Gynaecology, European Competence Center for Ovarian Cancer, Charité-Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Campus Virchow Klinikum, Berlin, Germany
- North Eastern German Society for Gynecological Cancer. Tumor Bank Ovarian Cancer Network, Berlin, Germany
| | - Frederik Damm
- Department of Hematology, Oncology, and Cancer Immunology, Charité-Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Berlin, Germany.
- German Cancer Consortium (DKTK) and German Cancer Research Center (DKFZ), Heidelberg, Germany.
| |
Collapse
|
28
|
Bellamy COC, O'Leary JG, Adeyi O, Baddour N, Batal I, Bucuvalas J, Del Bello A, El Hag M, El-Monayeri M, Farris AB, Feng S, Fiel MI, Fischer SE, Fung J, Grzyb K, Guimei M, Haga H, Hart J, Jackson AM, Jaeckel E, Khurram NA, Knechtle SJ, Lesniak D, Levitsky J, McCaughan G, McKenzie C, Mescoli C, Miquel R, Minervini MI, Nasser IA, Neil D, O'Neil MF, Pappo O, Randhawa P, Ruiz P, Fueyo AS, Schady D, Schiano T, Sebagh M, Smith M, Stevenson HL, Taner T, Taubert R, Thung S, Trunecka P, Wang HL, Wood-Trageser M, Yilmaz F, Zen Y, Zeevi A, Demetris AJ. Banff 2022 Liver Group Meeting report: Monitoring long-term allograft health. Am J Transplant 2024; 24:905-917. [PMID: 38461883 DOI: 10.1016/j.ajt.2024.03.008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2023] [Revised: 02/27/2024] [Accepted: 03/06/2024] [Indexed: 03/12/2024]
Abstract
The Banff Working Group on Liver Allograft Pathology met in September 2022. Participants included hepatologists, surgeons, pathologists, immunologists, and histocompatibility specialists. Presentations and discussions focused on the evaluation of long-term allograft health, including noninvasive and tissue monitoring, immunosuppression optimization, and long-term structural changes. Potential revision of the rejection classification scheme to better accommodate and communicate late T cell-mediated rejection patterns and related structural changes, such as nodular regenerative hyperplasia, were discussed. Improved stratification of long-term maintenance immunosuppression to match the heterogeneity of patient settings will be central to improving long-term patient survival. Such personalized therapeutics are in turn contingent on a better understanding and monitoring of allograft status within a rational decision-making approach, likely to be facilitated in implementation with emerging decision-support tools. Proposed revisions to rejection classification emerging from the meeting include the incorporation of interface hepatitis and fibrosis staging. These will be opened to online testing, modified accordingly, and subject to consensus discussion leading up to the next Banff conference.
Collapse
Affiliation(s)
- Christopher O C Bellamy
- Centre for Inflammation Research, University of Edinburgh, Edinburgh, Scotland and Department of Pathology, Edinburgh Royal Infirmary, Edinburgh, Scotland.
| | - Jacqueline G O'Leary
- Dallas VA Medical Center & University of Texas, Southwestern, Department of Medicine, Dallas Texas, USA
| | - Oyedele Adeyi
- University of Minnesota Medical School, Department of Pathology, Minneapolis, Minnesota, USA
| | - Nahed Baddour
- Faculty of Medicine, University of Alexandria, Egypt
| | - Ibrahim Batal
- Pathology, Columbia University Irving Medical Center, New York, New York, USA
| | | | | | | | | | - Alton B Farris
- Pathology, Emory University Hospital, Atlanta, Georgia, USA
| | - Sandy Feng
- UCSF Health, Department of Surgery, San Francisco, California, USA
| | - Maria Isabel Fiel
- Pathology, Icahn School of Medicine, Mount Sinai, New York, New York, USA
| | | | - John Fung
- Uchicago Medicine, Department of Surgery, Chicago, Illinois, USA
| | | | - Maha Guimei
- Armed Forces College of Medicine, Cairo, Egypt
| | | | - John Hart
- Uchicago Medicine, Department of Pathology, Chicago, Illinois, USA
| | | | | | - Nigar A Khurram
- University of Pittsburgh Medical Center, Department of Pathology, Pittsburgh, Pennsylvania, USA
| | | | - Drew Lesniak
- University of Pittsburgh Medical Center, Department of Pathology, Pittsburgh, Pennsylvania, USA
| | | | | | | | | | - Rosa Miquel
- Institute of Liver Studies, King's College Hospital, London, United Kingdom
| | - Marta I Minervini
- University of Pittsburgh Medical Center, Department of Pathology, Pittsburgh, Pennsylvania, USA
| | - Imad Ahmad Nasser
- Beth Israel Deaconess Medical Center, Harvard, Boston, Massachusetts, USA
| | - Desley Neil
- University Hospitals Birmingham NHS Foundation Trust, United Kingdom
| | - Maura F O'Neil
- University of Kansas Medical Center, Kansas City, Kansas, USA
| | - Orit Pappo
- Hadassah Hebrew University Medical Center, Jerusalem, Israel
| | - Parmjeet Randhawa
- University of Pittsburgh Medical Center, Department of Pathology, Pittsburgh, Pennsylvania, USA
| | - Phillip Ruiz
- University of Miami Hospital, Miami, Florida, USA
| | | | | | - Thomas Schiano
- Recanati/Miller Transplantation Institute, Mount Sinai Medical Center, New York, New York, USA
| | | | - Maxwell Smith
- Pathology, Mayo Clinic Arizona, Scottsdale, Arizona, USA
| | | | - Timucin Taner
- Division of Transplantation Surgery, Mayo Clinic, Rochester, Minnesota, USA
| | - Richard Taubert
- Dept. of Gastroenterology, Hepatology, Infectious Diseases and Endocrinology, Hannover Medical School, Hannover, Germany
| | - Swan Thung
- Pathology, Icahn School of Medicine, Mount Sinai, New York, New York, USA
| | - Pavel Trunecka
- Institute for Clinical and Experimental Medicine (IKEM), Prague, Czechia
| | - Hanlin L Wang
- Pathology, UCLA Health, Los Angeles, California, USA
| | - Michelle Wood-Trageser
- University of Pittsburgh Medical Center, Department of Pathology, Pittsburgh, Pennsylvania, USA
| | - Funda Yilmaz
- Pathology, University of Ege, Imir, Bornova, Turkey
| | - Yoh Zen
- Institute of Liver Studies, King's College Hospital, London, United Kingdom
| | - Adriana Zeevi
- University of Pittsburgh Medical Center, Pittsburgh, Pennsylvania, USA
| | | |
Collapse
|
29
|
Sadigh S, Kim AS. Molecular Pathology of Myeloid Neoplasms: Molecular Pattern Recognition. Clin Lab Med 2024; 44:339-353. [PMID: 38821648 DOI: 10.1016/j.cll.2023.08.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/02/2024]
Abstract
Despite the apparent complexity of the molecular genetic underpinnings of myeloid neoplasms, most myeloid mutational profiles can be understood within a simple framework. Somatic mutations accumulate in hematopoietic stem cells with aging and toxic insults, termed clonal hematopoiesis. These "old stem cells" mutations, predominantly in the epigenetic and RNA spliceosome pathways, act as "founding" driver mutations leading to a clonal myeloid neoplasm when sufficient in number and clone size. Subsequent mutations can create the genetic flavor of the myeloid neoplasm ("backseat" drivers) due to their enrichment in certain entities or act as progression events ("aggressive" drivers) during clonal evolution.
Collapse
Affiliation(s)
- Sam Sadigh
- Department of Pathology, Brigham and Women's Hospital, 75 Francis Street, Boston, MA 02115, USA
| | - Annette S Kim
- Division of Diagnostic Genetics and Genomics, Department of Pathology, University of Michigan/Michigan Medicine, 2800 Plymouth Road, NCRC 36-1221-79, Ann Arbor, MI 48109, USA.
| |
Collapse
|
30
|
Montégut L, López-Otín C, Kroemer G. Aging and cancer. Mol Cancer 2024; 23:106. [PMID: 38760832 PMCID: PMC11102267 DOI: 10.1186/s12943-024-02020-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2024] [Accepted: 05/09/2024] [Indexed: 05/19/2024] Open
Abstract
Aging and cancer exhibit apparent links that we will examine in this review. The null hypothesis that aging and cancer coincide because both are driven by time, irrespective of the precise causes, can be confronted with the idea that aging and cancer share common mechanistic grounds that are referred to as 'hallmarks'. Indeed, several hallmarks of aging also contribute to carcinogenesis and tumor progression, but some of the molecular and cellular characteristics of aging may also reduce the probability of developing lethal cancer, perhaps explaining why very old age (> 90 years) is accompanied by a reduced incidence of neoplastic diseases. We will also discuss the possibility that the aging process itself causes cancer, meaning that the time-dependent degradation of cellular and supracellular functions that accompanies aging produces cancer as a byproduct or 'age-associated disease'. Conversely, cancer and its treatment may erode health and drive the aging process, as this has dramatically been documented for cancer survivors diagnosed during childhood, adolescence, and young adulthood. We conclude that aging and cancer are connected by common superior causes including endogenous and lifestyle factors, as well as by a bidirectional crosstalk, that together render old age not only a risk factor of cancer but also an important parameter that must be considered for therapeutic decisions.
Collapse
Affiliation(s)
- Léa Montégut
- Centre de Recherche des Cordeliers, Equipe labellisée par la Ligue contre le cancer, Inserm U1138, Université Paris Cité, Sorbonne Université, Paris, France
- Metabolomics and Cell Biology Platforms, Gustave Roussy Institut, Villejuif, France
| | - Carlos López-Otín
- Centre de Recherche des Cordeliers, Equipe labellisée par la Ligue contre le cancer, Inserm U1138, Université Paris Cité, Sorbonne Université, Paris, France
- Facultad de Ciencias de la Vida y la Naturaleza, Universidad Nebrija, Madrid, Spain
| | - Guido Kroemer
- Centre de Recherche des Cordeliers, Equipe labellisée par la Ligue contre le cancer, Inserm U1138, Université Paris Cité, Sorbonne Université, Paris, France.
- Metabolomics and Cell Biology Platforms, Gustave Roussy Institut, Villejuif, France.
- Institut du Cancer Paris CARPEM, Department of Biology, Hôpital Européen Georges Pompidou, AP-HP, Paris, France.
| |
Collapse
|
31
|
Pershad Y, Mack T, Poisner H, Jakubek YA, Stilp AM, Mitchell BD, Lewis JP, Boerwinkle E, Loos RJF, Chami N, Wang Z, Barnes K, Pankratz N, Fornage M, Redline S, Psaty BM, Bis JC, Shojaie A, Silverman EK, Cho MH, Yun JH, DeMeo D, Levy D, Johnson AD, Mathias RA, Taub MA, Arnett D, North KE, Raffield LM, Carson AP, Doyle MF, Rich SS, Rotter JI, Guo X, Cox NJ, Roden DM, Franceschini N, Desai P, Reiner AP, Auer PL, Scheet PA, Jaiswal S, Weinstock JS, Bick AG. Determinants of mosaic chromosomal alteration fitness. Nat Commun 2024; 15:3800. [PMID: 38714703 PMCID: PMC11076528 DOI: 10.1038/s41467-024-48190-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2023] [Accepted: 04/23/2024] [Indexed: 05/10/2024] Open
Abstract
Clonal hematopoiesis (CH) is characterized by the acquisition of a somatic mutation in a hematopoietic stem cell that results in a clonal expansion. These driver mutations can be single nucleotide variants in cancer driver genes or larger structural rearrangements called mosaic chromosomal alterations (mCAs). The factors that influence the variations in mCA fitness and ultimately result in different clonal expansion rates are not well understood. We used the Passenger-Approximated Clonal Expansion Rate (PACER) method to estimate clonal expansion rate as PACER scores for 6,381 individuals in the NHLBI TOPMed cohort with gain, loss, and copy-neutral loss of heterozygosity mCAs. Our mCA fitness estimates, derived by aggregating per-individual PACER scores, were correlated (R2 = 0.49) with an alternative approach that estimated fitness of mCAs in the UK Biobank using population-level distributions of clonal fraction. Among individuals with JAK2 V617F clonal hematopoiesis of indeterminate potential or mCAs affecting the JAK2 gene on chromosome 9, PACER score was strongly correlated with erythrocyte count. In a cross-sectional analysis, genome-wide association study of estimates of mCA expansion rate identified a TCL1A locus variant associated with mCA clonal expansion rate, with suggestive variants in NRIP1 and TERT.
Collapse
Affiliation(s)
- Yash Pershad
- Vanderbilt Genetics Institute, Vanderbilt University, Nashville, TN, USA
| | - Taralynn Mack
- Vanderbilt Genetics Institute, Vanderbilt University, Nashville, TN, USA
| | - Hannah Poisner
- Vanderbilt Genetics Institute, Vanderbilt University, Nashville, TN, USA
| | - Yasminka A Jakubek
- Internal Medicine, Biomedical Informatics, University of Kentucky, Lexington, KY, USA
| | - Adrienne M Stilp
- Biostatistics, School of Public Health, University of Washington, Seattle, WA, USA
| | - Braxton D Mitchell
- Dept of Medicine, Endocrinology, Diabetes, and Nutrition, University of Maryland, Baltimore, Baltimore, MD, USA
| | - Joshua P Lewis
- Dept of Medicine, Endocrinology, Diabetes, and Nutrition, University of Maryland, Baltimore, Baltimore, MD, USA
| | - Eric Boerwinkle
- Human Genetics Center, Department of Epidemiology, Human Genetics, and Environmental Sciences, School of Public Health, The University of Texas Health Science Center at Houston, Houston, TX, USA
| | - Ruth J F Loos
- The Charles Bronfman Institute for Personalized Medicine, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Nathalie Chami
- The Charles Bronfman Institute for Personalized Medicine, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Zhe Wang
- The Charles Bronfman Institute for Personalized Medicine, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Kathleen Barnes
- Division of Biomedical Informatics & Personalized Medicine, University of Colorado Anschutz, Aurora, CO, USA
| | - Nathan Pankratz
- Department of Laboratory Medicine and Pathology, University of Minnesota Medical School, Minneapolis, MN, USA
| | - Myriam Fornage
- Human Genetics Center, Department of Epidemiology, Human Genetics, and Environmental Sciences, School of Public Health, The University of Texas Health Science Center at Houston, Houston, TX, USA
- Brown Foundation Institute of Molecular Medicine, McGovern Medical School, University of Texas Health Science Center at Houston, Houston, TX, USA
| | - Susan Redline
- Division of Sleep Medicine, Harvard Medical School, Boston, MA, USA
| | - Bruce M Psaty
- Cardiovascular Health Research Unit, Departments of Medicine, Epidemiology, and Health Systems and Population Health, University of Washington, Seattle, WA, USA
| | - Joshua C Bis
- Cardiovascular Health Research Unit, Department of Medicine, University of Washington, Seattle, WA, USA
| | - Ali Shojaie
- Biostatistics, University of Washington, Seattle, WA, USA
| | - Edwin K Silverman
- Channing Division of Network Medicine, Brigham and Women's Hospital, Boston, MA, USA
| | - Michael H Cho
- Channing Division of Network Medicine, Brigham and Women's Hospital, Boston, MA, USA
| | - Jeong H Yun
- Channing Division of Network Medicine, Brigham and Women's Hospital, Boston, MA, USA
| | - Dawn DeMeo
- Channing Division of Network Medicine, Brigham and Women's Hospital, Boston, MA, USA
| | - Daniel Levy
- National Heart, Lung and Blood Institute, Population Sciences Branch, Framingham, MA, USA
| | - Andrew D Johnson
- National Heart, Lung and Blood Institute, Population Sciences Branch, Framingham, MA, USA
| | - Rasika A Mathias
- Division of Allergy and Clinical Immunology, Department of Medicine, Johns Hopkins University School of Medicine, Baltimore, MA, USA
| | - Margaret A Taub
- Department of Biostatistics, Bloomberg School of Public Health, Johns Hopkins University, Baltimore, MA, USA
| | - Donna Arnett
- Department of Epidemiology, University of Texas M.D. Anderson Cancer Center, Houston, TX, USA
| | - Kari E North
- Department of Epidemiology, University of North Carolina Chapel-Hill, Chapel Hill, NC, USA
| | - Laura M Raffield
- Department of Genetics, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - April P Carson
- Department of Medicine, University of Mississippi Medical Center, Jackson, MS, USA
| | - Margaret F Doyle
- Department of Pathology & Laboratory Medicine, The University of Vermont Larner College of Medicine, Colchester, VT, USA
| | - Stephen S Rich
- Center for Public Health Genomics, University of Virginia School of Medicine, Charlottesville, VA, USA
| | - Jerome I Rotter
- Pediatrics, Genomic Outcomes, The Institute for Translational Genomics and Population Sciences, The Lundquist Institute for Biomedical Innovation at Harbor-UCLA Medical Center, Torrance, CA, USA
| | - Xiuqing Guo
- Pediatrics, Genomic Outcomes, The Institute for Translational Genomics and Population Sciences, The Lundquist Institute for Biomedical Innovation at Harbor-UCLA Medical Center, Torrance, CA, USA
| | - Nancy J Cox
- Division of Genetic Medicine, Department of Medicine, Vanderbilt University and Vanderbilt University Medical Center, Nashville, TN, USA
| | - Dan M Roden
- Departments of Medicine, Pharmacology, and Biomedical Informatics, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Nora Franceschini
- Department of Epidemiology, University of North Carolina Chapel-Hill, Chapel Hill, NC, USA
| | - Pinkal Desai
- Weill Cornell Medical College, New York, NY, USA
| | - Alex P Reiner
- Public Health Sciences Division, Fred Hutchinson Cancer Center, Seattle, WA, USA
| | - Paul L Auer
- Division of Biostatistics, Insitute for Health & Equity and Cancer Center, Medical College of Wisconsin, Milwaukee, WI, USA
| | - Paul A Scheet
- Dept of Epidemiology, University of Texas M. D. Anderson Cancer Center, Houston, TX, USA
| | | | - Joshua S Weinstock
- Center for Statistical Genetics, Department of Biostatistics, University of Michigan School of Public Health, Ann Arbor, MI, USA
| | - Alexander G Bick
- Division of Genetic Medicine, Department of Medicine, Vanderbilt University and Vanderbilt University Medical Center, Nashville, TN, USA.
| |
Collapse
|
32
|
Winter S, Götze KS, Hecker JS, Metzeler KH, Guezguez B, Woods K, Medyouf H, Schäffer A, Schmitz M, Wehner R, Glauche I, Roeder I, Rauner M, Hofbauer LC, Platzbecker U. Clonal hematopoiesis and its impact on the aging osteo-hematopoietic niche. Leukemia 2024; 38:936-946. [PMID: 38514772 PMCID: PMC11073997 DOI: 10.1038/s41375-024-02226-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2023] [Revised: 03/06/2024] [Accepted: 03/08/2024] [Indexed: 03/23/2024]
Abstract
Clonal hematopoiesis (CH) defines a premalignant state predominantly found in older persons that increases the risk of developing hematologic malignancies and age-related inflammatory diseases. However, the risk for malignant transformation or non-malignant disorders is variable and difficult to predict, and defining the clinical relevance of specific candidate driver mutations in individual carriers has proved to be challenging. In addition to the cell-intrinsic mechanisms, mutant cells rely on and alter cell-extrinsic factors from the bone marrow (BM) niche, which complicates the prediction of a mutant cell's fate in a shifting pre-malignant microenvironment. Therefore, identifying the insidious and potentially broad impact of driver mutations on supportive niches and immune function in CH aims to understand the subtle differences that enable driver mutations to yield different clinical outcomes. Here, we review the changes in the aging BM niche and the emerging evidence supporting the concept that CH can progressively alter components of the local BM microenvironment. These alterations may have profound implications for the functionality of the osteo-hematopoietic niche and overall bone health, consequently fostering a conducive environment for the continued development and progression of CH. We also provide an overview of the latest technology developments to study the spatiotemporal dependencies in the CH BM niche, ideally in the context of longitudinal studies following CH over time. Finally, we discuss aspects of CH carrier management in clinical practice, based on work from our group and others.
Collapse
Affiliation(s)
- Susann Winter
- Department of Internal Medicine I, University Hospital Carl Gustav Carus, Faculty of Medicine Carl Gustav Carus, TU Dresden, Dresden, Germany
| | - Katharina S Götze
- German Cancer Consortium (DKTK), CHOICE Consortium, Partner Sites Dresden/Munich/Frankfurt/Mainz, and German Cancer Research Center (DKFZ), Heidelberg, Germany
- Department of Medicine III, Technical University of Munich (TUM), School of Medicine and Health, Munich, Germany
- German MDS Study Group (D-MDS), Leipzig, Germany
| | - Judith S Hecker
- German Cancer Consortium (DKTK), CHOICE Consortium, Partner Sites Dresden/Munich/Frankfurt/Mainz, and German Cancer Research Center (DKFZ), Heidelberg, Germany
- Department of Medicine III, Technical University of Munich (TUM), School of Medicine and Health, Munich, Germany
- TranslaTUM, Center for Translational Cancer Research, Technical University of Munich (TUM), Munich, Germany
| | - Klaus H Metzeler
- German Cancer Consortium (DKTK), CHOICE Consortium, Partner Sites Dresden/Munich/Frankfurt/Mainz, and German Cancer Research Center (DKFZ), Heidelberg, Germany
- Department of Hematology, Cellular Therapy, Hemostaseology and Infectious Disease, University of Leipzig Medical Center, Leipzig, Germany
| | - Borhane Guezguez
- German Cancer Consortium (DKTK), CHOICE Consortium, Partner Sites Dresden/Munich/Frankfurt/Mainz, and German Cancer Research Center (DKFZ), Heidelberg, Germany
- Department of Hematology and Oncology, University Medical Center Mainz, Mainz, Germany
| | - Kevin Woods
- German Cancer Consortium (DKTK), CHOICE Consortium, Partner Sites Dresden/Munich/Frankfurt/Mainz, and German Cancer Research Center (DKFZ), Heidelberg, Germany
- Department of Hematology and Oncology, University Medical Center Mainz, Mainz, Germany
| | - Hind Medyouf
- German Cancer Consortium (DKTK), CHOICE Consortium, Partner Sites Dresden/Munich/Frankfurt/Mainz, and German Cancer Research Center (DKFZ), Heidelberg, Germany
- Institute for Tumor Biology and Experimental Therapy, Georg-Speyer-Haus, Frankfurt am Main, Germany
- Frankfurt Cancer Institute, Frankfurt am Main, Germany
| | - Alexander Schäffer
- Institute for Tumor Biology and Experimental Therapy, Georg-Speyer-Haus, Frankfurt am Main, Germany
| | - Marc Schmitz
- German Cancer Consortium (DKTK), CHOICE Consortium, Partner Sites Dresden/Munich/Frankfurt/Mainz, and German Cancer Research Center (DKFZ), Heidelberg, Germany
- Institute of Immunology, Faculty of Medicine Carl Gustav Carus, TU Dresden, Dresden, Germany
- National Center for Tumor Diseases (NCT), Dresden, Germany: German Cancer Research Center (DKFZ), Heidelberg, Germany; Faculty of Medicine and University Hospital Carl Gustav Carus, TU Dresden, Dresden, Germany; Helmholtz-Zentrum Dresden-Rossendorf (HZDR), Dresden, Germany
| | - Rebekka Wehner
- German Cancer Consortium (DKTK), CHOICE Consortium, Partner Sites Dresden/Munich/Frankfurt/Mainz, and German Cancer Research Center (DKFZ), Heidelberg, Germany
- Institute of Immunology, Faculty of Medicine Carl Gustav Carus, TU Dresden, Dresden, Germany
- National Center for Tumor Diseases (NCT), Dresden, Germany: German Cancer Research Center (DKFZ), Heidelberg, Germany; Faculty of Medicine and University Hospital Carl Gustav Carus, TU Dresden, Dresden, Germany; Helmholtz-Zentrum Dresden-Rossendorf (HZDR), Dresden, Germany
| | - Ingmar Glauche
- Institute for Medical Informatics and Biometry, Faculty of Medicine Carl Gustav Carus, TU Dresden, Dresden, Germany
| | - Ingo Roeder
- German Cancer Consortium (DKTK), CHOICE Consortium, Partner Sites Dresden/Munich/Frankfurt/Mainz, and German Cancer Research Center (DKFZ), Heidelberg, Germany
- National Center for Tumor Diseases (NCT), Dresden, Germany: German Cancer Research Center (DKFZ), Heidelberg, Germany; Faculty of Medicine and University Hospital Carl Gustav Carus, TU Dresden, Dresden, Germany; Helmholtz-Zentrum Dresden-Rossendorf (HZDR), Dresden, Germany
- Institute for Medical Informatics and Biometry, Faculty of Medicine Carl Gustav Carus, TU Dresden, Dresden, Germany
| | - Martina Rauner
- Division of Endocrinology, Diabetes and Bone Diseases, Department of Medicine III, and Center for Healthy Aging, University Medical Center, TU Dresden, Dresden, Germany
| | - Lorenz C Hofbauer
- German Cancer Consortium (DKTK), CHOICE Consortium, Partner Sites Dresden/Munich/Frankfurt/Mainz, and German Cancer Research Center (DKFZ), Heidelberg, Germany.
- Division of Endocrinology, Diabetes and Bone Diseases, Department of Medicine III, and Center for Healthy Aging, University Medical Center, TU Dresden, Dresden, Germany.
| | - Uwe Platzbecker
- German Cancer Consortium (DKTK), CHOICE Consortium, Partner Sites Dresden/Munich/Frankfurt/Mainz, and German Cancer Research Center (DKFZ), Heidelberg, Germany.
- German MDS Study Group (D-MDS), Leipzig, Germany.
- Department of Hematology, Cellular Therapy, Hemostaseology and Infectious Disease, University of Leipzig Medical Center, Leipzig, Germany.
| |
Collapse
|
33
|
Patel SA, Gerber WK, Zheng R, Khanna S, Hutchinson L, Abel GA, Cerny J, DaSilva BA, Zhang TY, Ramanathan M, Khedr S, Selove W, Woda B, Miron PM, Higgins AW, Gerber JM. Natural history of clonal haematopoiesis seen in real-world haematology settings. Br J Haematol 2024; 204:1844-1855. [PMID: 38522849 PMCID: PMC11232927 DOI: 10.1111/bjh.19423] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2023] [Revised: 03/08/2024] [Accepted: 03/13/2024] [Indexed: 03/26/2024]
Abstract
Recursive partitioning of healthy consortia led to the development of the Clonal Hematopoiesis Risk Score (CHRS) for clonal haematopoiesis (CH); however, in the practical setting, most cases of CH are diagnosed after patients present with cytopenias or related symptoms. To address this real-world population, we characterize the clinical trajectories of 94 patients with CH and distinguish CH harbouring canonical DNMT3A/TET2/ASXL1 mutations alone ('sole DTA') versus all other groups ('non-sole DTA'). TET2, rather than DNMT3A, was the most prevalent mutation in the real-world setting. Sole DTA patients did not progress to myeloid neoplasm (MN) in the absence of acquisition of other mutations. Contrastingly, 14 (20.1%) of 67 non-sole DTA patients progressed to MN. CHRS assessment showed a higher frequency of high-risk CH in non-sole DTA (vs. sole DTA) patients and in progressors (vs. non-progressors). RUNX1 mutation conferred the strongest risk for progression to MN (odds ratio [OR] 10.27, 95% CI 2.00-52.69, p = 0.0053). The mean variant allele frequency across all genes was higher in progressors than in non-progressors (36.9% ± 4.62% vs. 24.1% ± 1.67%, p = 0.0064). This analysis in the post-CHRS era underscores the natural history of CH, providing insight into patterns of progression to MN.
Collapse
Affiliation(s)
- Shyam A Patel
- Division of Hematology/Oncology, Department of Medicine, UMass Memorial Medical Center, UMass Chan Medical School, Worcester, Massachusetts, USA
- Center for Clinical and Translational Science, UMass Chan Medical School, Worcester, Massachusetts, USA
| | - William K Gerber
- Division of Hematology/Oncology, Department of Medicine, UMass Memorial Medical Center, UMass Chan Medical School, Worcester, Massachusetts, USA
| | - Rena Zheng
- Division of Hematology/Oncology, Department of Medicine, UMass Memorial Medical Center, UMass Chan Medical School, Worcester, Massachusetts, USA
| | - Shrinkhala Khanna
- Division of Hematology/Oncology, Department of Medicine, UMass Memorial Medical Center, UMass Chan Medical School, Worcester, Massachusetts, USA
| | - Lloyd Hutchinson
- Department of Pathology, UMass Memorial Medical Center, UMass Chan Medical School, Worcester, Massachusetts, USA
| | - Gregory A Abel
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, Massachusetts, USA
| | - Jan Cerny
- Division of Hematology/Oncology, Department of Medicine, UMass Memorial Medical Center, UMass Chan Medical School, Worcester, Massachusetts, USA
- Center for Clinical and Translational Science, UMass Chan Medical School, Worcester, Massachusetts, USA
| | - Brandon A DaSilva
- Division of Hematology, Department of Medicine, Stanford University School of Medicine, Stanford, California, USA
| | - Tian Y Zhang
- Division of Hematology, Department of Medicine, Stanford University School of Medicine, Stanford, California, USA
- Institute for Stem Cell Biology and Regenerative Medicine, Stanford University, Stanford, California, USA
| | - Muthalagu Ramanathan
- Division of Hematology/Oncology, Department of Medicine, UMass Memorial Medical Center, UMass Chan Medical School, Worcester, Massachusetts, USA
- Center for Clinical and Translational Science, UMass Chan Medical School, Worcester, Massachusetts, USA
| | - Salwa Khedr
- Department of Pathology, UMass Memorial Medical Center, UMass Chan Medical School, Worcester, Massachusetts, USA
| | - William Selove
- Department of Pathology, UMass Memorial Medical Center, UMass Chan Medical School, Worcester, Massachusetts, USA
| | - Bruce Woda
- Department of Pathology, UMass Memorial Medical Center, UMass Chan Medical School, Worcester, Massachusetts, USA
| | - Patricia M Miron
- Department of Pathology, UMass Memorial Medical Center, UMass Chan Medical School, Worcester, Massachusetts, USA
| | - Anne W Higgins
- Department of Pathology, UMass Memorial Medical Center, UMass Chan Medical School, Worcester, Massachusetts, USA
| | - Jonathan M Gerber
- Division of Hematology/Oncology, Department of Medicine, UMass Memorial Medical Center, UMass Chan Medical School, Worcester, Massachusetts, USA
- Center for Clinical and Translational Science, UMass Chan Medical School, Worcester, Massachusetts, USA
| |
Collapse
|
34
|
Lin AE, Bapat AC, Xiao L, Niroula A, Ye J, Wong WJ, Agrawal M, Farady CJ, Boettcher A, Hergott CB, McConkey M, Flores-Bringas P, Shkolnik V, Bick AG, Milan D, Natarajan P, Libby P, Ellinor PT, Ebert BL. Clonal Hematopoiesis of Indeterminate Potential With Loss of Tet2 Enhances Risk for Atrial Fibrillation Through Nlrp3 Inflammasome Activation. Circulation 2024; 149:1419-1434. [PMID: 38357791 PMCID: PMC11058018 DOI: 10.1161/circulationaha.123.065597] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/16/2023] [Accepted: 01/10/2024] [Indexed: 02/16/2024]
Abstract
BACKGROUND Clonal hematopoiesis of indeterminate potential (CHIP), a common age-associated phenomenon, associates with increased risk of both hematological malignancy and cardiovascular disease. Although CHIP is known to increase the risk of myocardial infarction and heart failure, the influence of CHIP in cardiac arrhythmias, such as atrial fibrillation (AF), is less explored. METHODS CHIP prevalence was determined in the UK Biobank, and incident AF analysis was stratified by CHIP status and clone size using Cox proportional hazard models. Lethally irradiated mice were transplanted with hematopoietic-specific loss of Tet2, hematopoietic-specific loss of Tet2 and Nlrp3, or wild-type control and fed a Western diet, compounded with or without NLRP3 (NLR [NACHT, LRR {leucine rich repeat}] family pyrin domain containing protein 3) inhibitor, NP3-361, for 6 to 9 weeks. Mice underwent in vivo invasive electrophysiology studies and ex vivo optical mapping. Cardiomyocytes from Ldlr-/- mice with hematopoietic-specific loss of Tet2 or wild-type control and fed a Western diet were isolated to evaluate calcium signaling dynamics and analysis. Cocultures of pluripotent stem cell-derived atrial cardiomyocytes were incubated with Tet2-deficient bone marrow-derived macrophages, wild-type control, or cytokines IL-1β (interleukin 1β) or IL-6 (interleukin 6). RESULTS Analysis of the UK Biobank showed individuals with CHIP, in particular TET2 CHIP, have increased incident AF. Hematopoietic-specific inactivation of Tet2 increases AF propensity in atherogenic and nonatherogenic mouse models and is associated with increased Nlrp3 expression and CaMKII (Ca2+/calmodulin-dependent protein kinase II) activation, with AF susceptibility prevented by inactivation of Nlrp3. Cardiomyocytes isolated from Ldlr-/- mice with hematopoietic inactivation of Tet2 and fed a Western diet have impaired calcium release from the sarcoplasmic reticulum into the cytosol, contributing to atrial arrhythmogenesis. Abnormal sarcoplasmic reticulum calcium release was recapitulated in cocultures of cardiomyocytes with the addition of Tet2-deficient macrophages or cytokines IL-1β or IL-6. CONCLUSIONS We identified a modest association between CHIP, particularly TET2 CHIP, and incident AF in the UK Biobank population. In a mouse model of AF resulting from hematopoietic-specific inactivation of Tet2, we propose altered calcium handling as an arrhythmogenic mechanism, dependent on Nlrp3 inflammasome activation. Our data are in keeping with previous studies of CHIP in cardiovascular disease, and further studies into the therapeutic potential of NLRP3 inhibition for individuals with TET2 CHIP may be warranted.
Collapse
Affiliation(s)
- Amy Erica Lin
- Division of Cardiovascular Medicine, Department of Medicine (A.E.L., P.L.), Brigham and Women’s Hospital, Boston, MA
- Department of Medical Oncology, Dana Farber Cancer Institute, Harvard Medical School, Boston, MA (A.E.L., A.N., M.A., C.B.H., M.M.C., V.S., B.L.E.)
| | - Aneesh C. Bapat
- Cardiovascular Research Center (A.C.B., L.X., J.Y., D.M., P.N., P.T.E.), Massachusetts General Hospital, Boston
- Demoulas Cardiac Arrhythmia Service, Division of Cardiovascular Medicine, Department of Medicine (A.C.B., P.T.E.), Massachusetts General Hospital, Boston
| | - Ling Xiao
- Cardiovascular Research Center (A.C.B., L.X., J.Y., D.M., P.N., P.T.E.), Massachusetts General Hospital, Boston
- Broad Institute of Massachusetts Institute of Technology and Harvard, Cambridge (L.X., A.N., J.Y., P.F.-B., P.N., P.T.E., B.L.E.)
| | - Abhishek Niroula
- Department of Medical Oncology, Dana Farber Cancer Institute, Harvard Medical School, Boston, MA (A.E.L., A.N., M.A., C.B.H., M.M.C., V.S., B.L.E.)
- Broad Institute of Massachusetts Institute of Technology and Harvard, Cambridge (L.X., A.N., J.Y., P.F.-B., P.N., P.T.E., B.L.E.)
- Department of Laboratory Medicine, Lund University, Sweden (A.N.)
- Institute of Biomedicine, SciLifeLab, University of Gothenburg, Sweden (A.N.)
| | - Jiangchuan Ye
- Cardiovascular Research Center (A.C.B., L.X., J.Y., D.M., P.N., P.T.E.), Massachusetts General Hospital, Boston
- Broad Institute of Massachusetts Institute of Technology and Harvard, Cambridge (L.X., A.N., J.Y., P.F.-B., P.N., P.T.E., B.L.E.)
| | - Waihay J. Wong
- Department of Pathology (W.J.W., C.B.H.), Brigham and Women’s Hospital, Boston, MA
| | - Mridul Agrawal
- Department of Medical Oncology, Dana Farber Cancer Institute, Harvard Medical School, Boston, MA (A.E.L., A.N., M.A., C.B.H., M.M.C., V.S., B.L.E.)
| | - Christopher J. Farady
- Novartis Institutes for BioMedical Research Forum 1, Basel, Switzerland (C.J.F., A.B.)
| | - Andreas Boettcher
- Novartis Institutes for BioMedical Research Forum 1, Basel, Switzerland (C.J.F., A.B.)
| | - Christopher B. Hergott
- Department of Pathology (W.J.W., C.B.H.), Brigham and Women’s Hospital, Boston, MA
- Department of Medical Oncology, Dana Farber Cancer Institute, Harvard Medical School, Boston, MA (A.E.L., A.N., M.A., C.B.H., M.M.C., V.S., B.L.E.)
| | - Marie McConkey
- Department of Medical Oncology, Dana Farber Cancer Institute, Harvard Medical School, Boston, MA (A.E.L., A.N., M.A., C.B.H., M.M.C., V.S., B.L.E.)
| | - Patricio Flores-Bringas
- Broad Institute of Massachusetts Institute of Technology and Harvard, Cambridge (L.X., A.N., J.Y., P.F.-B., P.N., P.T.E., B.L.E.)
| | - Veronica Shkolnik
- Department of Medical Oncology, Dana Farber Cancer Institute, Harvard Medical School, Boston, MA (A.E.L., A.N., M.A., C.B.H., M.M.C., V.S., B.L.E.)
| | - Alexander G. Bick
- Division of Genetic Medicine, Department of Medicine, Vanderbilt University School of Medicine, Nashville, TN (A.G.B.)
| | - David Milan
- Cardiovascular Research Center (A.C.B., L.X., J.Y., D.M., P.N., P.T.E.), Massachusetts General Hospital, Boston
- Leducq Foundation, Boston, MA (D.M.)
| | - Pradeep Natarajan
- Cardiovascular Research Center (A.C.B., L.X., J.Y., D.M., P.N., P.T.E.), Massachusetts General Hospital, Boston
- Broad Institute of Massachusetts Institute of Technology and Harvard, Cambridge (L.X., A.N., J.Y., P.F.-B., P.N., P.T.E., B.L.E.)
| | - Peter Libby
- Division of Cardiovascular Medicine, Department of Medicine (A.E.L., P.L.), Brigham and Women’s Hospital, Boston, MA
| | - Patrick T. Ellinor
- Cardiovascular Research Center (A.C.B., L.X., J.Y., D.M., P.N., P.T.E.), Massachusetts General Hospital, Boston
- Demoulas Cardiac Arrhythmia Service, Division of Cardiovascular Medicine, Department of Medicine (A.C.B., P.T.E.), Massachusetts General Hospital, Boston
- Broad Institute of Massachusetts Institute of Technology and Harvard, Cambridge (L.X., A.N., J.Y., P.F.-B., P.N., P.T.E., B.L.E.)
| | - Benjamin L. Ebert
- Department of Medical Oncology, Dana Farber Cancer Institute, Harvard Medical School, Boston, MA (A.E.L., A.N., M.A., C.B.H., M.M.C., V.S., B.L.E.)
- Broad Institute of Massachusetts Institute of Technology and Harvard, Cambridge (L.X., A.N., J.Y., P.F.-B., P.N., P.T.E., B.L.E.)
- Howard Hughes Medical Institute, Boston, MA (B.L.E.)
| |
Collapse
|
35
|
Chan ICC, Panchot A, Schmidt E, McNulty S, Wiley BJ, Liu J, Turner K, Moukarzel L, Wong WSW, Tran D, Beeler JS, Batchi-Bouyou AL, Machiela MJ, Karyadi DM, Krajacich BJ, Zhao J, Kruglyak S, Lajoie B, Levy S, Patel M, Kantoff PW, Mason CE, Link DC, Druley TE, Stopsack KH, Bolton KL. ArCH: improving the performance of clonal hematopoiesis variant calling and interpretation. Bioinformatics 2024; 40:btae121. [PMID: 38485690 PMCID: PMC11014783 DOI: 10.1093/bioinformatics/btae121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2023] [Revised: 01/17/2024] [Accepted: 03/13/2024] [Indexed: 04/14/2024] Open
Abstract
MOTIVATION The acquisition of somatic mutations in hematopoietic stem and progenitor stem cells with resultant clonal expansion, termed clonal hematopoiesis (CH), is associated with increased risk of hematologic malignancies and other adverse outcomes. CH is generally present at low allelic fractions, but clonal expansion and acquisition of additional mutations leads to hematologic cancers in a small proportion of individuals. With high depth and high sensitivity sequencing, CH can be detected in most adults and its clonal trajectory mapped over time. However, accurate CH variant calling is challenging due to the difficulty in distinguishing low frequency CH mutations from sequencing artifacts. The lack of well-validated bioinformatic pipelines for CH calling may contribute to lack of reproducibility in studies of CH. RESULTS Here, we developed ArCH, an Artifact filtering Clonal Hematopoiesis variant calling pipeline for detecting single nucleotide variants and short insertions/deletions by combining the output of four variant calling tools and filtering based on variant characteristics and sequencing error rate estimation. ArCH is an end-to-end cloud-based pipeline optimized to accept a variety of inputs with customizable parameters adaptable to multiple sequencing technologies, research questions, and datasets. Using deep targeted sequencing data generated from six acute myeloid leukemia patient tumor: normal dilutions, 31 blood samples with orthogonal validation, and 26 blood samples with technical replicates, we show that ArCH improves the sensitivity and positive predictive value of CH variant detection at low allele frequencies compared to standard application of commonly used variant calling approaches. AVAILABILITY AND IMPLEMENTATION The code for this workflow is available at: https://github.com/kbolton-lab/ArCH.
Collapse
Affiliation(s)
- Irenaeus C C Chan
- Department of Medicine, Washington University School of Medicine, St. Louis, MO 63110, United States
| | - Alex Panchot
- Department of Medicine, Washington University School of Medicine, St. Louis, MO 63110, United States
| | - Evelyn Schmidt
- Department of Medicine, Washington University School of Medicine, St. Louis, MO 63110, United States
| | | | - Brian J Wiley
- Department of Medicine, Washington University School of Medicine, St. Louis, MO 63110, United States
| | - Jie Liu
- Department of Medicine, Washington University School of Medicine, St. Louis, MO 63110, United States
| | - Kimberly Turner
- Department of Medicine, Washington University School of Medicine, St. Louis, MO 63110, United States
| | - Lea Moukarzel
- Department of Medicine, Memorial Sloan Kettering Cancer Center, New York City, NY 10065, United States
| | - Wendy S W Wong
- Division of Cancer Epidemiology and Genetics, National Cancer Institute, Bethesda, MD 20814, United States
| | - Duc Tran
- Department of Medicine, Washington University School of Medicine, St. Louis, MO 63110, United States
| | - J Scott Beeler
- Department of Medicine, Washington University School of Medicine, St. Louis, MO 63110, United States
| | | | - Mitchell J Machiela
- Division of Cancer Epidemiology and Genetics, National Cancer Institute, Bethesda, MD 20814, United States
| | - Danielle M Karyadi
- Division of Cancer Epidemiology and Genetics, National Cancer Institute, Bethesda, MD 20814, United States
| | - Benjamin J Krajacich
- Department of Genomic Applications, Element BioSciences, San Diego, CA 92121, United States
| | - Junhua Zhao
- Department of Genomic Applications, Element BioSciences, San Diego, CA 92121, United States
| | - Semyon Kruglyak
- Department of Genomic Applications, Element BioSciences, San Diego, CA 92121, United States
| | - Bryan Lajoie
- Department of Genomic Applications, Element BioSciences, San Diego, CA 92121, United States
| | - Shawn Levy
- Department of Genomic Applications, Element BioSciences, San Diego, CA 92121, United States
| | - Minal Patel
- Department of Medicine, Memorial Sloan Kettering Cancer Center, New York City, NY 10065, United States
| | - Philip W Kantoff
- Department of Medicine, Memorial Sloan Kettering Cancer Center, New York City, NY 10065, United States
| | - Christopher E Mason
- Department of Physiology and Biophysics, Weill Cornell Medical College, New York City, NY 10065, United States
| | - Daniel C Link
- Department of Medicine, Washington University School of Medicine, St. Louis, MO 63110, United States
| | | | - Konrad H Stopsack
- Department of Epidemiology, Harvard T. H. Chan School of Public Health, Boston, MA 02115, United States
- Clinical and Translational Epidemiology Unit, Massachusetts General Hospital and Harvard Medical School, Boston, MA 02130, United States
| | - Kelly L Bolton
- Department of Medicine, Washington University School of Medicine, St. Louis, MO 63110, United States
| |
Collapse
|
36
|
Schuermans A, Vlasschaert C, Nauffal V, Cho SMJ, Uddin MM, Nakao T, Niroula A, Klarqvist MDR, Weeks LD, Lin AE, Saadatagah S, Lannery K, Wong M, Hornsby W, Lubitz SA, Ballantyne C, Jaiswal S, Libby P, Ebert BL, Bick AG, Ellinor PT, Natarajan P, Honigberg MC. Clonal haematopoiesis of indeterminate potential predicts incident cardiac arrhythmias. Eur Heart J 2024; 45:791-805. [PMID: 37952204 PMCID: PMC10919923 DOI: 10.1093/eurheartj/ehad670] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/24/2023] [Revised: 09/07/2023] [Accepted: 09/26/2023] [Indexed: 11/14/2023] Open
Abstract
BACKGROUND AND AIMS Clonal haematopoiesis of indeterminate potential (CHIP), the age-related expansion of blood cells with preleukemic mutations, is associated with atherosclerotic cardiovascular disease and heart failure. This study aimed to test the association of CHIP with new-onset arrhythmias. METHODS UK Biobank participants without prevalent arrhythmias were included. Co-primary study outcomes were supraventricular arrhythmias, bradyarrhythmias, and ventricular arrhythmias. Secondary outcomes were cardiac arrest, atrial fibrillation, and any arrhythmia. Associations of any CHIP [variant allele fraction (VAF) ≥ 2%], large CHIP (VAF ≥10%), and gene-specific CHIP subtypes with incident arrhythmias were evaluated using multivariable-adjusted Cox regression. Associations of CHIP with myocardial interstitial fibrosis [T1 measured using cardiac magnetic resonance (CMR)] were also tested. RESULTS This study included 410 702 participants [CHIP: n = 13 892 (3.4%); large CHIP: n = 9191 (2.2%)]. Any and large CHIP were associated with multi-variable-adjusted hazard ratios of 1.11 [95% confidence interval (CI) 1.04-1.18; P = .001] and 1.13 (95% CI 1.05-1.22; P = .001) for supraventricular arrhythmias, 1.09 (95% CI 1.01-1.19; P = .031) and 1.13 (95% CI 1.03-1.25; P = .011) for bradyarrhythmias, and 1.16 (95% CI, 1.00-1.34; P = .049) and 1.22 (95% CI 1.03-1.45; P = .021) for ventricular arrhythmias, respectively. Associations were independent of coronary artery disease and heart failure. Associations were also heterogeneous across arrhythmia subtypes and strongest for cardiac arrest. Gene-specific analyses revealed an increased risk of arrhythmias across driver genes other than DNMT3A. Large CHIP was associated with 1.31-fold odds (95% CI 1.07-1.59; P = .009) of being in the top quintile of myocardial fibrosis by CMR. CONCLUSIONS CHIP may represent a novel risk factor for incident arrhythmias, indicating a potential target for modulation towards arrhythmia prevention and treatment.
Collapse
Affiliation(s)
- Art Schuermans
- Program in Medical and Population Genetics and Cardiovascular Disease Initiative, Broad Institute of Harvard and MIT, 75 Ames St., Cambridge, MA 02142, USA
- Cardiovascular Research Center and Center for Genomic Medicine, Massachusetts General Hospital, 185 Cambridge St., Boston, MA 02114, USA
- Department of Cardiovascular Sciences, KU Leuven, Leuven, Belgium
| | | | - Victor Nauffal
- Program in Medical and Population Genetics and Cardiovascular Disease Initiative, Broad Institute of Harvard and MIT, 75 Ames St., Cambridge, MA 02142, USA
- Division of Cardiovascular Medicine, Department of Medicine, Brigham and Women’s Hospital, Boston, MA, USA
| | - So Mi Jemma Cho
- Program in Medical and Population Genetics and Cardiovascular Disease Initiative, Broad Institute of Harvard and MIT, 75 Ames St., Cambridge, MA 02142, USA
- Cardiovascular Research Center and Center for Genomic Medicine, Massachusetts General Hospital, 185 Cambridge St., Boston, MA 02114, USA
- Integrative Research Center for Cerebrovascular and Cardiovascular Diseases, Yonsei University College of Medicine, Seoul, Republic of Korea
| | - Md Mesbah Uddin
- Program in Medical and Population Genetics and Cardiovascular Disease Initiative, Broad Institute of Harvard and MIT, 75 Ames St., Cambridge, MA 02142, USA
- Cardiovascular Research Center and Center for Genomic Medicine, Massachusetts General Hospital, 185 Cambridge St., Boston, MA 02114, USA
| | - Tetsushi Nakao
- Program in Medical and Population Genetics and Cardiovascular Disease Initiative, Broad Institute of Harvard and MIT, 75 Ames St., Cambridge, MA 02142, USA
- Cardiovascular Research Center and Center for Genomic Medicine, Massachusetts General Hospital, 185 Cambridge St., Boston, MA 02114, USA
- Division of Cardiovascular Medicine, Department of Medicine, Brigham and Women’s Hospital, Boston, MA, USA
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA, USA
| | - Abhishek Niroula
- Program in Medical and Population Genetics and Cardiovascular Disease Initiative, Broad Institute of Harvard and MIT, 75 Ames St., Cambridge, MA 02142, USA
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA, USA
- Department of Laboratory Medicine, Lund University, Lund, Sweden
| | | | - Lachelle D Weeks
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA, USA
| | - Amy E Lin
- Division of Cardiovascular Medicine, Department of Medicine, Brigham and Women’s Hospital, Boston, MA, USA
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA, USA
| | | | - Kim Lannery
- Program in Medical and Population Genetics and Cardiovascular Disease Initiative, Broad Institute of Harvard and MIT, 75 Ames St., Cambridge, MA 02142, USA
- Cardiovascular Research Center and Center for Genomic Medicine, Massachusetts General Hospital, 185 Cambridge St., Boston, MA 02114, USA
| | - Megan Wong
- Program in Medical and Population Genetics and Cardiovascular Disease Initiative, Broad Institute of Harvard and MIT, 75 Ames St., Cambridge, MA 02142, USA
- Cardiovascular Research Center and Center for Genomic Medicine, Massachusetts General Hospital, 185 Cambridge St., Boston, MA 02114, USA
| | - Whitney Hornsby
- Program in Medical and Population Genetics and Cardiovascular Disease Initiative, Broad Institute of Harvard and MIT, 75 Ames St., Cambridge, MA 02142, USA
- Cardiovascular Research Center and Center for Genomic Medicine, Massachusetts General Hospital, 185 Cambridge St., Boston, MA 02114, USA
| | - Steven A Lubitz
- Program in Medical and Population Genetics and Cardiovascular Disease Initiative, Broad Institute of Harvard and MIT, 75 Ames St., Cambridge, MA 02142, USA
- Cardiovascular Research Center and Center for Genomic Medicine, Massachusetts General Hospital, 185 Cambridge St., Boston, MA 02114, USA
- Department of Medicine, Harvard Medical School, 25 Shattuck St., Boston, MA 02115, USA
| | | | - Siddhartha Jaiswal
- Department of Pathology, Stanford University School of Medicine, Stanford, CA, USA
| | - Peter Libby
- Division of Cardiovascular Medicine, Department of Medicine, Brigham and Women’s Hospital, Boston, MA, USA
| | - Benjamin L Ebert
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA, USA
- Department of Medicine, Harvard Medical School, 25 Shattuck St., Boston, MA 02115, USA
- Howard Hughes Medical Institute, Boston, MA, USA
| | - Alexander G Bick
- Division of Genetic Medicine, Department of Medicine, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Patrick T Ellinor
- Program in Medical and Population Genetics and Cardiovascular Disease Initiative, Broad Institute of Harvard and MIT, 75 Ames St., Cambridge, MA 02142, USA
- Cardiovascular Research Center and Center for Genomic Medicine, Massachusetts General Hospital, 185 Cambridge St., Boston, MA 02114, USA
- Department of Medicine, Harvard Medical School, 25 Shattuck St., Boston, MA 02115, USA
| | - Pradeep Natarajan
- Program in Medical and Population Genetics and Cardiovascular Disease Initiative, Broad Institute of Harvard and MIT, 75 Ames St., Cambridge, MA 02142, USA
- Cardiovascular Research Center and Center for Genomic Medicine, Massachusetts General Hospital, 185 Cambridge St., Boston, MA 02114, USA
- Department of Medicine, Harvard Medical School, 25 Shattuck St., Boston, MA 02115, USA
| | - Michael C Honigberg
- Program in Medical and Population Genetics and Cardiovascular Disease Initiative, Broad Institute of Harvard and MIT, 75 Ames St., Cambridge, MA 02142, USA
- Cardiovascular Research Center and Center for Genomic Medicine, Massachusetts General Hospital, 185 Cambridge St., Boston, MA 02114, USA
- Department of Medicine, Harvard Medical School, 25 Shattuck St., Boston, MA 02115, USA
| |
Collapse
|
37
|
Kapadia CD, Goodell MA. Tissue mosaicism following stem cell aging: blood as an exemplar. NATURE AGING 2024; 4:295-308. [PMID: 38438628 DOI: 10.1038/s43587-024-00589-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/23/2023] [Accepted: 02/07/2024] [Indexed: 03/06/2024]
Abstract
Loss of stem cell regenerative potential underlies aging of all tissues. Somatic mosaicism, the emergence of cellular patchworks within tissues, increases with age and has been observed in every organ yet examined. In the hematopoietic system, as in most tissues, stem cell aging through a variety of mechanisms occurs in lockstep with the emergence of somatic mosaicism. Here, we draw on insights from aging hematopoiesis to illustrate fundamental principles of stem cell aging and somatic mosaicism. We describe the generalizable changes intrinsic to aged stem cells and their milieu that provide the backdrop for somatic mosaicism to emerge. We discuss genetic and nongenetic mechanisms that can result in tissue somatic mosaicism and existing methodologies to detect such clonal outgrowths. Finally, we propose potential avenues to modify mosaicism during aging, with the ultimate aim of increasing tissue resiliency.
Collapse
Affiliation(s)
- Chiraag D Kapadia
- Department of Molecular and Cellular Biology, Baylor College of Medicine, Houston, TX, USA
- Center for Cell and Gene Therapy, Baylor College of Medicine, Houston, TX, USA
| | - Margaret A Goodell
- Department of Molecular and Cellular Biology, Baylor College of Medicine, Houston, TX, USA.
- Center for Cell and Gene Therapy, Baylor College of Medicine, Houston, TX, USA.
| |
Collapse
|
38
|
Vlasschaert C, Robinson-Cohen C, Chen J, Akwo E, Parker AC, Silver SA, Bhatraju PK, Poisner H, Cao S, Jiang M, Wang Y, Niu A, Siew E, Van Amburg JC, Kramer HJ, Kottgen A, Franceschini N, Psaty BM, Tracy RP, Alonso A, Arking DE, Coresh J, Ballantyne CM, Boerwinkle E, Grams M, Zhang MZ, Kestenbaum B, Lanktree MB, Rauh MJ, Harris RC, Bick AG. Clonal hematopoiesis of indeterminate potential is associated with acute kidney injury. Nat Med 2024; 30:810-817. [PMID: 38454125 PMCID: PMC10957477 DOI: 10.1038/s41591-024-02854-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2023] [Accepted: 02/01/2024] [Indexed: 03/09/2024]
Abstract
Age is a predominant risk factor for acute kidney injury (AKI), yet the biological mechanisms underlying this risk are largely unknown. Clonal hematopoiesis of indeterminate potential (CHIP) confers increased risk for several chronic diseases associated with aging. Here we sought to test whether CHIP increases the risk of AKI. In three population-based epidemiology cohorts, we found that CHIP was associated with a greater risk of incident AKI, which was more pronounced in patients with AKI requiring dialysis and in individuals with somatic mutations in genes other than DNMT3A, including mutations in TET2 and JAK2. Mendelian randomization analyses supported a causal role for CHIP in promoting AKI. Non-DNMT3A-CHIP was also associated with a nonresolving pattern of injury in patients with AKI. To gain mechanistic insight, we evaluated the role of Tet2-CHIP and Jak2V617F-CHIP in two mouse models of AKI. In both models, CHIP was associated with more severe AKI, greater renal proinflammatory macrophage infiltration and greater post-AKI kidney fibrosis. In summary, this work establishes CHIP as a genetic mechanism conferring impaired kidney function recovery after AKI via an aberrant inflammatory response mediated by renal macrophages.
Collapse
Affiliation(s)
| | - Cassianne Robinson-Cohen
- Division of Nephrology and Hypertension, Department of Medicine, Vanderbilt O'Brien Center for Kidney Disease, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Jianchun Chen
- Division of Nephrology and Hypertension, Department of Medicine, Vanderbilt O'Brien Center for Kidney Disease, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Elvis Akwo
- Division of Nephrology and Hypertension, Department of Medicine, Vanderbilt O'Brien Center for Kidney Disease, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Alyssa C Parker
- Division of Genetic Medicine, Department of Medicine, School of Medicine, Vanderbilt University, Nashville, TN, USA
| | - Samuel A Silver
- Department of Medicine, Queen's University, Kingston, Ontario, Canada
| | - Pavan K Bhatraju
- Division of Pulmonary, Critical Care and Sleep Medicine, Department of Medicine, University of Washington, Seattle, WA, USA
| | - Hannah Poisner
- Division of Genetic Medicine, Department of Medicine, School of Medicine, Vanderbilt University, Nashville, TN, USA
| | - Shirong Cao
- Division of Nephrology and Hypertension, Department of Medicine, Vanderbilt O'Brien Center for Kidney Disease, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Ming Jiang
- Division of Nephrology and Hypertension, Department of Medicine, Vanderbilt O'Brien Center for Kidney Disease, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Yinqiu Wang
- Division of Nephrology and Hypertension, Department of Medicine, Vanderbilt O'Brien Center for Kidney Disease, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Aolei Niu
- Division of Nephrology and Hypertension, Department of Medicine, Vanderbilt O'Brien Center for Kidney Disease, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Edward Siew
- Division of Nephrology and Hypertension, Department of Medicine, Vanderbilt O'Brien Center for Kidney Disease, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Joseph C Van Amburg
- Division of Nephrology and Hypertension, Department of Medicine, Vanderbilt O'Brien Center for Kidney Disease, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Holly J Kramer
- Departments of Public Health Sciences and Medicine, Loyola University Chicago, Maywood IL, USA
| | - Anna Kottgen
- Institute of Genetic Epidemiology, Faculty of Medicine and Medical Center, University of Freiburg, Freiburg, Germany
- Department of Epidemiology, Bloomberg School of Public Health, Johns Hopkins University, Baltimore, MD, USA
| | - Nora Franceschini
- Department of Epidemiology, Gillings School of Global Public Health, University of North Carolina, Chapel Hill, NC, USA
| | - Bruce M Psaty
- Cardiovascular Health Research Unit, Departments of Medicine, Epidemiology and Health Systems and Population Health, University of Washington, Seattle, WA, USA
- Kaiser Permanente Washington Health Research Institute, Seattle, WA, USA
| | - Russell P Tracy
- Pathology and Biochemistry, University of Vermont, Burlington, VT, USA
| | - Alvaro Alonso
- Department of Epidemiology, Rollins School of Public Health, Emory University, Atlanta, GA, USA
| | - Dan E Arking
- McKusick-Nathans Institute, Department of Genetic Medicine, John Hopkins University School of Medicine, Baltimore, MD, USA
| | - Josef Coresh
- Department of Epidemiology, Bloomberg School of Public Health, Johns Hopkins University, Baltimore, MD, USA
- Welch Center for Prevention, Epidemiology, and Clinical Research, Johns Hopkins University, Baltimore, MD, USA
| | | | - Eric Boerwinkle
- Human Genetics Center, The University of Texas Health Science Center at Houston, Houston, TX, USA
| | - Morgan Grams
- Department of Epidemiology, Bloomberg School of Public Health, Johns Hopkins University, Baltimore, MD, USA
- Welch Center for Prevention, Epidemiology, and Clinical Research, Johns Hopkins University, Baltimore, MD, USA
- Division of Nephrology, Department of Internal Medicine, Johns Hopkins University, Baltimore, MD, USA
| | - Ming-Zhi Zhang
- Division of Nephrology and Hypertension, Department of Medicine, Vanderbilt O'Brien Center for Kidney Disease, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Bryan Kestenbaum
- Kidney Research Institute, Division of Nephrology, Department of Medicine, University of Washington, Seattle, WA, USA
| | - Matthew B Lanktree
- Department of Medicine and Department of Health Research Methods, Evidence and Impact, McMaster University, Hamilton, Ontario, Canada
- St. Joseph's Healthcare Hamilton, Hamilton, Ontario, Canada
- Population Health Research Institute, Hamilton, Ontario, Canada
| | - Michael J Rauh
- Department of Pathology and Molecular Medicine, Queen's University, Kingston, Ontario, Canada
| | - Raymond C Harris
- Division of Nephrology and Hypertension, Department of Medicine, Vanderbilt O'Brien Center for Kidney Disease, Vanderbilt University Medical Center, Nashville, TN, USA.
- U.S Department of Veterans Affairs, Nashville, TN, USA.
| | - Alexander G Bick
- Division of Genetic Medicine, Department of Medicine, School of Medicine, Vanderbilt University, Nashville, TN, USA.
| |
Collapse
|
39
|
Vlasschaert C, Lanktree MB, Rauh MJ, Kelly TN, Natarajan P. Clonal haematopoiesis, ageing and kidney disease. Nat Rev Nephrol 2024; 20:161-174. [PMID: 37884787 PMCID: PMC10922936 DOI: 10.1038/s41581-023-00778-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/29/2023] [Indexed: 10/28/2023]
Abstract
Clonal haematopoiesis of indeterminate potential (CHIP) is a preclinical condition wherein a sizeable proportion of an individual's circulating blood cells are derived from a single mutated haematopoietic stem cell. CHIP occurs frequently with ageing - more than 10% of individuals over 65 years of age are affected - and is associated with an increased risk of disease across several organ systems and premature death. Emerging evidence suggests that CHIP has a role in kidney health, including associations with predisposition to acute kidney injury, impaired recovery from acute kidney injury and kidney function decline, both in the general population and among those with chronic kidney disease. Beyond its direct effect on the kidney, CHIP elevates the susceptibility of individuals to various conditions that can detrimentally affect the kidneys, including cardiovascular disease, obesity and insulin resistance, liver disease, gout, osteoporosis and certain autoimmune diseases. Aberrant pro-inflammatory signalling, telomere attrition and epigenetic ageing are potential causal pathophysiological pathways and mediators that underlie CHIP-related disease risk. Experimental animal models have shown that inhibition of inflammatory cytokine signalling can ameliorate many of the pathological effects of CHIP, and assessment of the efficacy and safety of this class of medications for human CHIP-associated pathology is ongoing.
Collapse
Affiliation(s)
| | - Matthew B Lanktree
- Department of Medicine and Department of Health Research Methods, Evidence and Impact, McMaster University, Hamilton, Ontario, Canada
- St. Joseph's Healthcare Hamilton, Hamilton, Ontario, Canada
- Population Health Research Institute, Hamilton, Ontario, Canada
| | - Michael J Rauh
- Department of Pathology and Molecular Medicine, Kingston, Ontario, Canada
| | - Tanika N Kelly
- Division of Nephrology, Department of Medicine, College of Medicine, University of Illinois at Chicago, Chicago, IL, USA
| | - Pradeep Natarajan
- Cardiovascular Research Center and Center for Genomic Medicine, Massachusetts General Hospital, Boston, MA, USA.
- Program in Medical and Population Genetics and Cardiovascular Disease Initiative, Broad Institute of Harvard and MIT, Cambridge, MA, USA.
- Department of Medicine, Harvard Medical School, Boston, MA, USA.
| |
Collapse
|
40
|
Lu Z, Li X, Qi Y, Li B, Chen L. Genetic evidence of the causal relationship between chronic liver diseases and musculoskeletal disorders. J Transl Med 2024; 22:138. [PMID: 38321551 PMCID: PMC10845502 DOI: 10.1186/s12967-024-04941-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2023] [Accepted: 01/30/2024] [Indexed: 02/08/2024] Open
Abstract
BACKGROUND Chronic liver diseases constitute a major global public health burden, posing a substantial threat to patients' daily lives and even survival due to the potential development of musculoskeletal disorders. Although the relationship between chronic liver diseases and musculoskeletal disorders has received extensive attention, their causal relationship has not been comprehensively and systematically investigated. METHODS This study aimed to assess the causal relationships between viral hepatitis, primary biliary cholangitis, primary sclerosing cholangitis (PSC), liver cirrhosis, and hepatocellular carcinoma (HCC) with osteoporosis, osteoarthritis, and sarcopenia through bidirectional Mendelian randomization (MR) research. The traits related to osteoporosis and osteoarthritis included both overall and site-specific phenotypes, and the traits linked to sarcopenia involved indicators of muscle mass and function. Random-effect inverse-variance weighted (IVW), weighted median, MR-Egger, and Causal Analysis Using the Summary Effect Estimates were used to evaluate causal effects, with IVW being the main analysis method. To enhance robustness, sensitivity analyses were performed using Cochran's Q test, MR-Egger intercept, MR-PRESSO global test, funnel plots, leave-one-out analyses, and latent causal variable model. RESULTS The forward MR analysis indicated that PSC can reduce forearm bone mineral density (beta = - 0.0454, 95% CI - 0.0798 to - 0.0110; P = 0.0098) and increase the risk of overall osteoarthritis (OR = 1.012, 95% CI 1.002-1.022; P = 0.0247), while HCC can decrease grip strength (beta = - 0.0053, 95% CI - 0.008 to - 0.0025; P = 0.0002). The reverse MR analysis did not find significant causal effects of musculoskeletal disorders on chronic liver diseases. Additionally, no heterogeneity or pleiotropy was detected. CONCLUSIONS These findings corroborate the causal effects of PSC on osteoporosis and osteoarthritis, as well as the causal impact of HCC on sarcopenia. Thus, the implementation of comprehensive preventive measures is imperative for PSC and HCC patients to mitigate the risk of musculoskeletal disorders, ultimately improving their quality of life.
Collapse
Affiliation(s)
- Zhengjie Lu
- Division of Joint Surgery and Sports Medicine, Department of Orthopedic Surgery, Zhongnan Hospital of Wuhan University, Wuhan, 430000, China
| | - Xuefei Li
- Department of Pathology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
| | - Yongjian Qi
- Department of Spine Surgery and Musculoskeletal Tumor, Department of Orthopedic Surgery, Zhongnan Hospital of Wuhan University, Wuhan, 430071, China
| | - Bin Li
- Division of Joint Surgery and Sports Medicine, Department of Orthopedic Surgery, Zhongnan Hospital of Wuhan University, Wuhan, 430000, China.
| | - Liaobin Chen
- Division of Joint Surgery and Sports Medicine, Department of Orthopedic Surgery, Zhongnan Hospital of Wuhan University, Wuhan, 430000, China.
| |
Collapse
|
41
|
Chen Y, Meng L, Xu N, Chen H, Wei X, Lu D, Wang S, Xu X. Ten-eleven translocation-2-mediated macrophage activation promotes liver regeneration. Cell Commun Signal 2024; 22:95. [PMID: 38308318 PMCID: PMC10835877 DOI: 10.1186/s12964-023-01407-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2023] [Accepted: 11/23/2023] [Indexed: 02/04/2024] Open
Abstract
BACKGROUND The remarkable regenerative capacity of the liver enables recovery after radical Hepatocellular carcinoma (HCC) resection. After resection, macrophages secrete interleukin 6 and hepatocyte growth factors to promote liver regeneration. Ten-eleven translocation-2 (Tet2) DNA dioxygenase regulates pro-inflammatory factor secretion in macrophages. In this study, we explored the role of Tet2 in macrophages and its function independent of its enzymatic activity in liver regeneration. METHODS The model of liver regeneration after 70% partial hepatectomy (PHx) is a classic universal model for studying reparative processes in the liver. Mice were euthanized at 0, 24, and 48 h after PHx. Enzyme-linked immunosorbent assays, quantitative reverse transcription-polymerase chain reaction, western blotting, immunofluorescence analysis, and flow cytometry were performed to explore immune cell infiltration and liver regenerative capability. Molecular dynamics simulations were performed to study the interaction between Tet2 and signal transducer and activator of transcription 1 (Stat1). RESULTS Tet2 in macrophages negatively regulated liver regeneration in the partial hepatectomy mice model. Tet2 interacted with Stat1, inhibiting the expression of proinflammatory factors and suppressing liver regeneration. The Tet2 inhibitor attenuated the interaction between Stat1 and Tet2, enhanced Stat1 phosphorylation, and promoted hepatocyte proliferation. The proliferative function of the Tet2 inhibitor relied on macrophages and did not affect hepatocytes directly. CONCLUSION Our findings underscore that Tet2 in macrophages negatively regulates liver regeneration by interacting with Stat1. Targeting Tet2 in macrophages promotes liver regeneration and function after a hepatectomy, presenting a novel target to promote liver regeneration and function.
Collapse
Affiliation(s)
- Yiyuan Chen
- The Fourth School of Clinical Medicine, Zhejiang Chinese Medical University, Hangzhou, 310053, China
| | - Lijun Meng
- Zhejiang University School of Medicine, Hangzhou, 310058, China
- Key Laboratory of Integrated Oncology and Intelligent Medicine of Zhejiang Province, Hangzhou, 310006, China
| | - Nan Xu
- Zhejiang University School of Medicine, Hangzhou, 310058, China
- Key Laboratory of Integrated Oncology and Intelligent Medicine of Zhejiang Province, Hangzhou, 310006, China
| | - Huan Chen
- The Fourth School of Clinical Medicine, Zhejiang Chinese Medical University, Hangzhou, 310053, China
| | - Xuyong Wei
- Zhejiang University School of Medicine, Hangzhou, 310058, China
- Key Laboratory of Integrated Oncology and Intelligent Medicine of Zhejiang Province, Hangzhou, 310006, China
| | - Di Lu
- Zhejiang University School of Medicine, Hangzhou, 310058, China
- Key Laboratory of Integrated Oncology and Intelligent Medicine of Zhejiang Province, Hangzhou, 310006, China
| | - Shuai Wang
- The Fourth School of Clinical Medicine, Zhejiang Chinese Medical University, Hangzhou, 310053, China.
- Zhejiang University School of Medicine, Hangzhou, 310058, China.
- Key Laboratory of Integrated Oncology and Intelligent Medicine of Zhejiang Province, Hangzhou, 310006, China.
| | - Xiao Xu
- Zhejiang University School of Medicine, Hangzhou, 310058, China.
- Key Laboratory of Integrated Oncology and Intelligent Medicine of Zhejiang Province, Hangzhou, 310006, China.
- Institute of Organ Transplantation, Zhejiang University, Hangzhou, 310003, China.
| |
Collapse
|
42
|
Guarnera L, Jha BK. TET2 mutation as prototypic clonal hematopoiesis lesion. Semin Hematol 2024; 61:51-60. [PMID: 38431463 PMCID: PMC10978279 DOI: 10.1053/j.seminhematol.2024.01.013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2023] [Revised: 01/12/2024] [Accepted: 01/28/2024] [Indexed: 03/05/2024]
Abstract
Loss of function TET2 mutation (TET2MT) is one of the most frequently observed lesions in clonal hematopoiesis (CH). TET2 a member TET-dioxygenase family of enzymes that along with TET1 and TET3, progressively oxidize 5-methyl cytosine (mC) resulting in regulated demethylation of promoter, enhancer and silencer elements of the genome. This process is critical for efficient transcription that determine cell lineage fate, proliferation and survival and the maintenance of the genomic fidelity with aging of the organism. Partial or complete loss-of-function TET2 mutations create regional and contextual DNA hypermethylation leading to gene silencing or activation that result in skewed myeloid differentiation and clonal expansion. In addition to myeloid skewing, loss of TET2 creates differentiation block and provides proliferative advantage to hematopoietic stem and progenitor cells (HSPCs). TET2MT is a prototypical lesion in CH, since the mutant clones dominate during stress hematopoiesis and often associates with evolution of myeloid malignancies. TET2MT clones has unique privilege to create and persist in pro-inflammatory milieu. Despite extensive knowledge regarding biochemical mechanisms underlying distorted myeloid differentiation, and enhanced self-replication of TET2MT HSPC, the mechanistic link of various pathogenesis associated with TET2 loss in CHIP is less understood. Here we review the recent development in TET2 biology and its probable mechanistic link in CH with aging and inflammation. We also explored the therapeutic strategies of targeting TET2MT associated CHIP and the utility of targeting TET2 in normal hematopoiesis and somatic cell reprograming. We explore the biochemical mechanisms and candidate therapies that emerged in last decade of research.
Collapse
Affiliation(s)
- Luca Guarnera
- Department of Biomedicine and Prevention, Molecular Medicine and Applied Biotechnology, University of Rome Tor Vergata, Rome, Italy; Department of Translational Haematology and Oncology Research, Taussig Cancer Institute, Cleveland Clinic, Cleveland, OH
| | - Babal K Jha
- Department of Translational Haematology and Oncology Research, Taussig Cancer Institute, Cleveland Clinic, Cleveland, OH; Center for Immunotherapy and Precision Immuno-Oncology (CITI), Lerner Research Institute (LRI) Cleveland Clinic, Cleveland, OH.
| |
Collapse
|
43
|
Liu C, Zhou YP, Lian TY, Li RN, Ma JS, Yang YJ, Zhang SJ, Li XM, Qiu LH, Qiu BC, Ren LY, Wang J, Han ZY, Li JH, Wang L, Xu XQ, Sun K, Chen LF, Cheng CY, Zhang ZJ, Jing ZC. Clonal Hematopoiesis of Indeterminate Potential in Chronic Thromboembolic Pulmonary Hypertension: A Multicenter Study. Hypertension 2024; 81:372-382. [PMID: 38116660 DOI: 10.1161/hypertensionaha.123.22274] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2023] [Accepted: 12/05/2023] [Indexed: 12/21/2023]
Abstract
BACKGROUND The pathogenesis of chronic thromboembolic pulmonary hypertension (CTEPH) is multifactorial and growing evidence has indicated that hematological disorders are involved. Clonal hematopoiesis of indeterminate potential (CHIP) has recently been associated with an increased risk of both hematological malignancies and cardiovascular diseases. However, the prevalence and clinical relevance of CHIP in patients with CTEPH remains unclear. METHODS Using stepwise calling on next-generation sequencing data from 499 patients with CTEPH referred to 3 centers between October 2006 and December 2021, CHIP mutations were identified. We associated CHIP with all-cause mortality in patients with CTEPH. To provide insights into potential mechanisms, the associations between CHIP and inflammatory markers were also determined. RESULTS In total, 47 (9.4%) patients with CTEPH carried at least 1 CHIP mutation at a variant allele frequency of ≥2%. The most common mutations were in DNMT3A, TET2, RUNX1, and ASXL1. During follow-up (mean, 55 months), deaths occurred in 22 (46.8%) and 104 (23.0%) patients in the CHIP and non-CHIP groups, respectively (P<0.001, log-rank test). The association of CHIP with mortality remained robust in the fully adjusted model (hazard ratio, 2.190 [95% CI, 1.257-3.816]; P=0.006). Moreover, patients with CHIP mutations showed higher circulating interleukin-1β and interleukin-6 and lower interleukin-4 and IgG galactosylation levels. CONCLUSIONS This is the first study to show that CHIP mutations occurred in 9.4% of patients with CTEPH are associated with a severe inflammatory state and confer a poorer prognosis in long-term follow-up.
Collapse
Affiliation(s)
- Chao Liu
- Department of Cardiology, State Key Laboratory of Complex Severe and Rare Diseases, Peking Union Medical College Hospital (C.L., Y.-P.Z., X.-M.L., L.-H.Q., B.-C.Q., L.-Y.R., X.-Q.X., L.-F.C.), Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Yu-Ping Zhou
- Department of Cardiology, State Key Laboratory of Complex Severe and Rare Diseases, Peking Union Medical College Hospital (C.L., Y.-P.Z., X.-M.L., L.-H.Q., B.-C.Q., L.-Y.R., X.-Q.X., L.-F.C.), Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Tian-Yu Lian
- Department of Cardiology, Guangdong Cardiovascular Institute, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, Southern Medical University, Guangzhou, China (T.-Y.L., S.-J.Z., C.-Y.C., Z.-C.J)
| | - Ruo-Nan Li
- School of Pharmacy, Henan University, Zhengzhou, China (R.-N.L., J.-S.M.)
| | - Jing-Si Ma
- School of Pharmacy, Henan University, Zhengzhou, China (R.-N.L., J.-S.M.)
| | - Yin-Jian Yang
- State Key Laboratory of Complex Severe and Rare Diseases, Peking Union Medical College Hospital (Y.-J.Y., K.S., Z.-J.Z.), Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Si-Jin Zhang
- Department of Cardiology, Guangdong Cardiovascular Institute, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, Southern Medical University, Guangzhou, China (T.-Y.L., S.-J.Z., C.-Y.C., Z.-C.J)
| | - Xian-Mei Li
- Department of Cardiology, State Key Laboratory of Complex Severe and Rare Diseases, Peking Union Medical College Hospital (C.L., Y.-P.Z., X.-M.L., L.-H.Q., B.-C.Q., L.-Y.R., X.-Q.X., L.-F.C.), Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Lu-Hong Qiu
- Department of Cardiology, State Key Laboratory of Complex Severe and Rare Diseases, Peking Union Medical College Hospital (C.L., Y.-P.Z., X.-M.L., L.-H.Q., B.-C.Q., L.-Y.R., X.-Q.X., L.-F.C.), Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Bao-Chen Qiu
- Department of Cardiology, State Key Laboratory of Complex Severe and Rare Diseases, Peking Union Medical College Hospital (C.L., Y.-P.Z., X.-M.L., L.-H.Q., B.-C.Q., L.-Y.R., X.-Q.X., L.-F.C.), Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Li-Yan Ren
- Department of Cardiology, State Key Laboratory of Complex Severe and Rare Diseases, Peking Union Medical College Hospital (C.L., Y.-P.Z., X.-M.L., L.-H.Q., B.-C.Q., L.-Y.R., X.-Q.X., L.-F.C.), Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Jia Wang
- Department of Medical Laboratory, Weifang Medical University, China (J.W.)
| | - Zhi-Yan Han
- State Key Laboratory of Cardiovascular Disease, FuWai Hospital (Z.-Y.H., J.-H.L.), Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Jing-Hui Li
- State Key Laboratory of Cardiovascular Disease, FuWai Hospital (Z.-Y.H., J.-H.L.), Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Lan Wang
- Department of Cardio-Pulmonary Circulation, Shanghai Pulmonary Hospital, Tongji University, China (L.W.)
| | - Xi-Qi Xu
- Department of Cardiology, State Key Laboratory of Complex Severe and Rare Diseases, Peking Union Medical College Hospital (C.L., Y.-P.Z., X.-M.L., L.-H.Q., B.-C.Q., L.-Y.R., X.-Q.X., L.-F.C.), Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Kai Sun
- State Key Laboratory of Complex Severe and Rare Diseases, Peking Union Medical College Hospital (Y.-J.Y., K.S., Z.-J.Z.), Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Lian-Feng Chen
- Department of Cardiology, State Key Laboratory of Complex Severe and Rare Diseases, Peking Union Medical College Hospital (C.L., Y.-P.Z., X.-M.L., L.-H.Q., B.-C.Q., L.-Y.R., X.-Q.X., L.-F.C.), Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Chun-Yan Cheng
- Department of Cardiology, Guangdong Cardiovascular Institute, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, Southern Medical University, Guangzhou, China (T.-Y.L., S.-J.Z., C.-Y.C., Z.-C.J)
| | - Ze-Jian Zhang
- State Key Laboratory of Complex Severe and Rare Diseases, Peking Union Medical College Hospital (Y.-J.Y., K.S., Z.-J.Z.), Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Zhi-Cheng Jing
- Department of Cardiology, Guangdong Cardiovascular Institute, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, Southern Medical University, Guangzhou, China (T.-Y.L., S.-J.Z., C.-Y.C., Z.-C.J)
| |
Collapse
|
44
|
Chu FX, Wang X, Li B, Xu LL, Di B. The NLRP3 inflammasome: a vital player in inflammation and mediating the anti-inflammatory effect of CBD. Inflamm Res 2024; 73:227-242. [PMID: 38191853 DOI: 10.1007/s00011-023-01831-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2023] [Revised: 11/20/2023] [Accepted: 11/30/2023] [Indexed: 01/10/2024] Open
Abstract
BACKGROUND The NLRP3 inflammasome is a vital player in the emergence of inflammation. The priming and activation of the NLRP3 inflammasome is a major trigger for inflammation which is a defense response against adverse stimuli. However, the excessive activation of the NLRP3 inflammasome can lead to the development of various inflammatory diseases. Cannabidiol, as the second-most abundant component in cannabis, has a variety of pharmacological properties, particularly anti-inflammation. Unlike tetrahydrocannabinol, cannabidiol has a lower affinity for cannabinoid receptors, which may be the reason why it is not psychoactive. Notably, the mechanism by which cannabidiol exerts its anti-inflammatory effect is still unclear. METHODS We have performed a literature review based on published original and review articles encompassing the NLRP3 inflammasome and cannabidiol in inflammation from central databases, including PubMed and Web of Science. RESULTS AND CONCLUSIONS In this review, we first summarize the composition and activation process of the NLRP3 inflammasome. Then, we list possible molecular mechanisms of action of cannabidiol. Next, we explain the role of the NLRP3 inflammasome and the anti-inflammatory effect of cannabidiol in inflammatory disorders. Finally, we emphasize the capacity of cannabidiol to suppress inflammation by blocking the NLRP3 signaling pathway, which indicates that cannabidiol is a quite promising anti-inflammatory compound.
Collapse
Affiliation(s)
- Feng-Xin Chu
- Office of China National Narcotics Control Commission, China Pharmaceutical University Joint Laboratory on Key Technologies of Narcotics Control, Nanjing, 210009, China
- Jiangsu Key Laboratory of Drug Design and Optimization, China Pharmaceutical University, Nanjing, 210009, China
| | - Xiao Wang
- Office of China National Narcotics Control Commission, China Pharmaceutical University Joint Laboratory on Key Technologies of Narcotics Control, Nanjing, 210009, China
- Jiangsu Key Laboratory of Drug Design and Optimization, China Pharmaceutical University, Nanjing, 210009, China
| | - Bo Li
- Office of China National Narcotics Control Commission, China Pharmaceutical University Joint Laboratory on Key Technologies of Narcotics Control, Nanjing, 210009, China.
- Jiangsu Key Laboratory of Drug Design and Optimization, China Pharmaceutical University, Nanjing, 210009, China.
| | - Li-Li Xu
- Office of China National Narcotics Control Commission, China Pharmaceutical University Joint Laboratory on Key Technologies of Narcotics Control, Nanjing, 210009, China.
- Jiangsu Key Laboratory of Drug Design and Optimization, China Pharmaceutical University, Nanjing, 210009, China.
| | - Bin Di
- Office of China National Narcotics Control Commission, China Pharmaceutical University Joint Laboratory on Key Technologies of Narcotics Control, Nanjing, 210009, China.
- Jiangsu Key Laboratory of Drug Design and Optimization, China Pharmaceutical University, Nanjing, 210009, China.
| |
Collapse
|
45
|
Ronchini C, Caprioli C, Tunzi G, D’Amico FF, Colombo E, Giani M, Foti G, Conconi D, Lavitrano M, Passerini R, Pase L, Capizzi S, Mastrilli F, Alcalay M, Orecchia R, Natoli G, Pelicci PG. High-sensitivity analysis of clonal hematopoiesis reveals increased clonal complexity of potential-driver mutations in severe COVID-19 patients. PLoS One 2024; 19:e0282546. [PMID: 38198467 PMCID: PMC10781164 DOI: 10.1371/journal.pone.0282546] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2023] [Accepted: 11/27/2023] [Indexed: 01/12/2024] Open
Abstract
Whether Clonal Hematopoiesis (CH) represents a risk factor for severity of the COVID-19 disease remains a controversial issue. We report the first high- sensitivity analysis of CH in COVID-19 patients (threshold of detection at 0.5% vs 1 or 2% in previous studies). We analyzed 24 patients admitted to ICU for COVID-19 (COV-ICU) and 19 controls, including healthy subjects and asymptomatic SARS-CoV2-positive individuals. Despite the significantly higher numbers of CH mutations identified (80% mutations with <2% variant allele frequency, VAF), we did not find significant differences between COV-ICU patients and controls in the prevalence of CH or in the numbers, VAF or functional categories of the mutated genes, suggesting that CH is not overrepresented in patients with COVID-19. However, when considering potential drivers CH mutations (CH-PD), COV-ICU patients showed higher clonal complexity, in terms of both mutation numbers and VAF, and enrichment of variants reported in myeloid neoplasms. However, we did not score an impact of increased CH-PD on patient survival or clinical parameters associated with inflammation. These data suggest that COVID-19 influence the clonal composition of the peripheral blood and call for further investigations addressing the potential long-term clinical impact of CH on people experiencing severe COVID-19. We acknowledge that it will indispensable to perform further studies on larger patient cohorts in order to validate and generalize our conclusions. Moreover, we performed CH analysis at a single time point. It will be necessary to consider longitudinal approaches with long periods of follow-up in order to assess if the COVID-19 disease could have an impact on the evolution of CH and long-term consequences in patients that experienced severe COVID-19.
Collapse
Affiliation(s)
- Chiara Ronchini
- Clinical Genomics, European Institute of Oncology IRCCS, Milan, Italy
| | - Chiara Caprioli
- Department of Experimental Oncology, European Institute of Oncology IRCCS, Milan, Italy
| | - Gianleo Tunzi
- Clinical Genomics, European Institute of Oncology IRCCS, Milan, Italy
| | | | - Emanuela Colombo
- Department of Experimental Oncology, European Institute of Oncology IRCCS, Milan, Italy
- Department of Oncology and Hemato-Oncology, University of Milan, Milan, Italy
| | - Marco Giani
- School of Medicine and Surgery, University of Milano-Bicocca, Monza, Italy
- Department of Emergency and Intensive Care, Ospedale San Gerardo, Monza, Italy
| | - Giuseppe Foti
- School of Medicine and Surgery, University of Milano-Bicocca, Monza, Italy
- Department of Emergency and Intensive Care, Ospedale San Gerardo, Monza, Italy
| | - Donatella Conconi
- School of Medicine and Surgery, University of Milano-Bicocca, Monza, Italy
| | | | - Rita Passerini
- Division of Laboratory Medicine, European Institute of Oncology IRCCS, Milan, Italy
| | - Luca Pase
- Occupational Medicine, European Institute of Oncology IRCCS, Milan, Italy
| | - Silvio Capizzi
- Medical Administration, CMO, IEO, European Institute of Oncology, IRCCS, Milan, Italy
| | - Fabrizio Mastrilli
- Medical Administration, CMO, IEO, European Institute of Oncology, IRCCS, Milan, Italy
| | - Myriam Alcalay
- Department of Experimental Oncology, European Institute of Oncology IRCCS, Milan, Italy
- Department of Oncology and Hemato-Oncology, University of Milan, Milan, Italy
| | - Roberto Orecchia
- Scientific Directorate, European Institute of Oncology IRCCS, Milan, Italy
| | - Gioacchino Natoli
- Department of Experimental Oncology, European Institute of Oncology IRCCS, Milan, Italy
| | - Pier Giuseppe Pelicci
- Department of Experimental Oncology, European Institute of Oncology IRCCS, Milan, Italy
- Department of Oncology and Hemato-Oncology, University of Milan, Milan, Italy
| |
Collapse
|
46
|
Craig JM, Gerhard GS, Sharma S, Yankovskiy A, Miura S, Kumar S. Methods for Estimating Personal Disease Risk and Phylogenetic Diversity of Hematopoietic Stem Cells. Mol Biol Evol 2024; 41:msad279. [PMID: 38124397 PMCID: PMC10768883 DOI: 10.1093/molbev/msad279] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2023] [Revised: 12/08/2023] [Accepted: 12/12/2023] [Indexed: 12/23/2023] Open
Abstract
An individual's chronological age does not always correspond to the health of different tissues in their body, especially in cases of disease. Therefore, estimating and contrasting the physiological age of tissues with an individual's chronological age may be a useful tool to diagnose disease and its progression. In this study, we present novel metrics to quantify the loss of phylogenetic diversity in hematopoietic stem cells (HSCs), which are precursors to most blood cell types and are associated with many blood-related diseases. These metrics showed an excellent correspondence with an age-related increase in blood cancer incidence, enabling a model to estimate the phylogeny-derived age (phyloAge) of HSCs present in an individual. The HSC phyloAge was generally older than the chronological age of patients suffering from myeloproliferative neoplasms (MPNs). We present a model that relates excess HSC aging with increased MPN risk. It predicted an over 200 times greater risk based on the HSC phylogenies of the youngest MPN patients analyzed. Our new metrics are designed to be robust to sampling biases and do not rely on prior knowledge of driver mutations or physiological assessments. Consequently, they complement conventional biomarker-based methods to estimate physiological age and disease risk.
Collapse
Affiliation(s)
- Jack M Craig
- Institute for Genomics and Evolutionary Medicine, Temple University, Philadelphia, PA, USA
- Department of Biology, Temple University, Philadelphia, PA, USA
| | - Glenn S Gerhard
- Department of Medical Genetics and Molecular Biochemistry, Lewis Katz School of Medicine, Temple University, Philadelphia, PA, USA
| | - Sudip Sharma
- Institute for Genomics and Evolutionary Medicine, Temple University, Philadelphia, PA, USA
- Department of Biology, Temple University, Philadelphia, PA, USA
| | - Anastasia Yankovskiy
- Institute for Genomics and Evolutionary Medicine, Temple University, Philadelphia, PA, USA
- Department of Biology, Temple University, Philadelphia, PA, USA
| | - Sayaka Miura
- Institute for Genomics and Evolutionary Medicine, Temple University, Philadelphia, PA, USA
- Department of Biology, Temple University, Philadelphia, PA, USA
| | - Sudhir Kumar
- Institute for Genomics and Evolutionary Medicine, Temple University, Philadelphia, PA, USA
- Department of Biology, Temple University, Philadelphia, PA, USA
| |
Collapse
|
47
|
Thomaides-Brears H, Banerjee R, Banerjee A. Reply to: "Reassessing the causal relationship between liver diseases and cardiovascular outcomes" and "From liver to heart: Enhancing the understanding of cardiovascular outcomes in the UK Biobank". J Hepatol 2024; 80:e24-e25. [PMID: 37821017 DOI: 10.1016/j.jhep.2023.09.037] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/28/2023] [Accepted: 09/29/2023] [Indexed: 10/13/2023]
Affiliation(s)
| | | | - Amitava Banerjee
- University College London Hospitals National Health Service Trust, London, United Kingdom; Institute of Health Informatics, University College London, London, United Kingdom; Barts Health National Health Service Trust, The Royal London Hospital, London, United Kingdom.
| |
Collapse
|
48
|
Park E, Evans MA, Walsh K. Regulators of clonal hematopoiesis and physiological consequences of this condition. THE JOURNAL OF CARDIOVASCULAR AGING 2024; 4:3. [PMID: 39119355 PMCID: PMC11309374 DOI: 10.20517/jca.2023.39] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Indexed: 08/10/2024]
Abstract
Clonal hematopoiesis (CH) is a prevalent condition that results from somatic mutations in hematopoietic stem cells. When these mutations occur in "driver" genes, they can potentially confer fitness advantages to the affected cells, leading to a clonal expansion. While most clonal expansions of mutant cells are generally considered to be asymptomatic since they do not impact overall blood cell numbers, CH carriers face long-term risks of all-cause mortality and age-associated diseases, including cardiovascular disease and hematological malignancies. While considerable research has focused on understanding the association between CH and these diseases, less attention has been given to exploring the regulatory factors that contribute to the expansion of the driver gene clone. This review focuses on the association between environmental stressors and inherited genetic risk factors in the context of CH development. A better understanding of how these stressors impact CH development will facilitate mechanistic studies and potentially lead to new therapeutic avenues to treat individuals with this condition.
Collapse
Affiliation(s)
- Eunbee Park
- Department of Biochemistry and Molecular Genetics, University of Virginia School of Medicine, Charlottesville, VA 22908, USA
| | - Megan A. Evans
- Hematovascular Biology Center, Robert M. Berne Cardiovascular Research Center, University of Virginia School of Medicine, Charlottesville, VA 22908, USA
| | - Kenneth Walsh
- Department of Biochemistry and Molecular Genetics, University of Virginia School of Medicine, Charlottesville, VA 22908, USA
- Hematovascular Biology Center, Robert M. Berne Cardiovascular Research Center, University of Virginia School of Medicine, Charlottesville, VA 22908, USA
| |
Collapse
|
49
|
Weeks LD, Ebert BL. Causes and consequences of clonal hematopoiesis. Blood 2023; 142:2235-2246. [PMID: 37931207 PMCID: PMC10862247 DOI: 10.1182/blood.2023022222] [Citation(s) in RCA: 9] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2023] [Revised: 10/25/2023] [Accepted: 10/25/2023] [Indexed: 11/08/2023] Open
Abstract
ABSTRACT Clonal hematopoiesis (CH) is described as the outsized contribution of expanded clones of hematopoietic stem and progenitor cells (HSPCs) to blood cell production. The prevalence of CH increases dramatically with age. CH can be caused by somatic mutations in individual genes or by gains and/or losses of larger chromosomal segments. CH is a premalignant state; the somatic mutations detected in CH are the initiating mutations for hematologic malignancies, and CH is a strong predictor of the development of blood cancers. Moreover, CH is associated with nonmalignant disorders and increased overall mortality. The somatic mutations that drive clonal expansion of HSPCs can alter the function of terminally differentiated blood cells, including the release of elevated levels of inflammatory cytokines. These cytokines may then contribute to a broad range of inflammatory disorders that increase in prevalence with age. Specific somatic mutations in the peripheral blood in coordination with blood count parameters can powerfully predict the development of hematologic malignancies and overall mortality in CH. In this review, we summarize the current understanding of CH nosology and origins. We provide an overview of available tools for risk stratification and discuss management strategies for patients with CH presenting to hematology clinics.
Collapse
Affiliation(s)
- Lachelle D. Weeks
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA
- Center for Early Detection and Interception of Blood Cancers, Dana-Farber Cancer Institute, Boston, MA
- Department of Medicine, Harvard Medical School, Boston, MA
| | - Benjamin L. Ebert
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA
- Center for Early Detection and Interception of Blood Cancers, Dana-Farber Cancer Institute, Boston, MA
- Department of Medicine, Harvard Medical School, Boston, MA
- Howard Hughes Medical Institute, Boston, MA
| |
Collapse
|
50
|
Cacic AM, Schulz FI, Germing U, Dietrich S, Gattermann N. Molecular and clinical aspects relevant for counseling individuals with clonal hematopoiesis of indeterminate potential. Front Oncol 2023; 13:1303785. [PMID: 38162500 PMCID: PMC10754976 DOI: 10.3389/fonc.2023.1303785] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2023] [Accepted: 11/28/2023] [Indexed: 01/03/2024] Open
Abstract
Clonal hematopoiesis of indeterminate potential (CHIP) has fascinated the medical community for some time. Discovered about a decade ago, this phenomenon links age-related alterations in hematopoiesis not only to the later development of hematological malignancies but also to an increased risk of early-onset cardiovascular disease and some other disorders. CHIP is detected in the blood and is characterized by clonally expanded somatic mutations in cancer-associated genes, predisposing to the development of hematologic neoplasms such as MDS and AML. CHIP-associated mutations often involve DNA damage repair genes and are frequently observed following prior cytotoxic cancer therapy. Genetic predisposition seems to be a contributing factor. It came as a surprise that CHIP significantly elevates the risk of myocardial infarction and stroke, and also contributes to heart failure and pulmonary hypertension. Meanwhile, evidence of mutant clonal macrophages in vessel walls and organ parenchyma helps to explain the pathophysiology. Besides aging, there are some risk factors promoting the appearance of CHIP, such as smoking, chronic inflammation, chronic sleep deprivation, and high birth weight. This article describes fundamental aspects of CHIP and explains its association with hematologic malignancies, cardiovascular disorders, and other medical conditions, while also exploring potential progress in the clinical management of affected individuals. While it is important to diagnose conditions that can lead to adverse, but potentially preventable, effects, it is equally important not to stress patients by confronting them with disconcerting findings that cannot be remedied. Individuals with diagnosed or suspected CHIP should receive counseling in a specialized outpatient clinic, where professionals from relevant medical specialties may help them to avoid the development of CHIP-related health problems. Unfortunately, useful treatments and clinical guidelines for managing CHIP are still largely lacking. However, there are some promising approaches regarding the management of cardiovascular disease risk. In the future, strategies aimed at restoration of gene function or inhibition of inflammatory mediators may become an option.
Collapse
Affiliation(s)
- Anna Maria Cacic
- Department of Hematology, Oncology and Clinical Immunology, Medical Faculty and University Hospital Düsseldorf, Heinrich Heine Universität Düsseldorf, Düsseldorf, Germany
- Center for Integrated Oncology Aachen Bonn Cologne Düsseldorf (CIO ABCD), Düsseldorf, Germany
| | - Felicitas Isabel Schulz
- Department of Hematology, Oncology and Clinical Immunology, Medical Faculty and University Hospital Düsseldorf, Heinrich Heine Universität Düsseldorf, Düsseldorf, Germany
- Center for Integrated Oncology Aachen Bonn Cologne Düsseldorf (CIO ABCD), Düsseldorf, Germany
| | - Ulrich Germing
- Department of Hematology, Oncology and Clinical Immunology, Medical Faculty and University Hospital Düsseldorf, Heinrich Heine Universität Düsseldorf, Düsseldorf, Germany
- Center for Integrated Oncology Aachen Bonn Cologne Düsseldorf (CIO ABCD), Düsseldorf, Germany
| | - Sascha Dietrich
- Department of Hematology, Oncology and Clinical Immunology, Medical Faculty and University Hospital Düsseldorf, Heinrich Heine Universität Düsseldorf, Düsseldorf, Germany
- Center for Integrated Oncology Aachen Bonn Cologne Düsseldorf (CIO ABCD), Düsseldorf, Germany
| | - Norbert Gattermann
- Department of Hematology, Oncology and Clinical Immunology, Medical Faculty and University Hospital Düsseldorf, Heinrich Heine Universität Düsseldorf, Düsseldorf, Germany
- Center for Integrated Oncology Aachen Bonn Cologne Düsseldorf (CIO ABCD), Düsseldorf, Germany
| |
Collapse
|