1
|
Lv J, Sun R, Gao X. Emerging devices based on chiral nanomaterials. NANOSCALE 2025; 17:3585-3599. [PMID: 39750744 DOI: 10.1039/d4nr03998j] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/04/2025]
Abstract
As advanced materials, chiral nanomaterials have recently gained vast attention due to their special geometry-based physical and chemical properties. The fast development of the related science and technology means that various devices involving polarization-based information encryption, photoelectronic and spintronic devices, 3D displays, biomedical sensors and measurement, photonic engineering, electronic engineering, solar devices, etc., been explored extensively. These fields are at their beginning, and much effort needs to be made, including improving the optical, electronic, and magnetic properties of advanced chiral nanomaterials, precisely designing materials, and developing more efficient construction methods. This review tries to offer a whole picture of these state-of-the-art conditions in these fields and offers perspectives on future development.
Collapse
Affiliation(s)
- Jiawei Lv
- Wenzhou Key Laboratory of Biophysics, Wenzhou Institute, University of Chinese Academy of Sciences, Wenzhou, Zhejiang 325000, China.
- Department of Materials Science and Engineering, Seoul National University, Seoul 08826, Republic of Korea
| | - Rui Sun
- Postgraduate training base Alliance of Wenzhou Medical University, Wenzhou, Zhejiang 325000, China
| | - Xiaoqing Gao
- Wenzhou Key Laboratory of Biophysics, Wenzhou Institute, University of Chinese Academy of Sciences, Wenzhou, Zhejiang 325000, China.
- Postgraduate training base Alliance of Wenzhou Medical University, Wenzhou, Zhejiang 325000, China
| |
Collapse
|
2
|
Wang YJ, Shi XY, Guo Y, Wang XN, Zheng KX, Yang XW, Xing P, Zang SQ. Macroscopic Gold Cluster Helical Tendrils. J Am Chem Soc 2025; 147:5408-5416. [PMID: 39882669 DOI: 10.1021/jacs.4c17800] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2025]
Abstract
Handedness-controllable macroscopic helices are needed for understanding the chirality transfer through scales and design of high-performance devices. Bottom-up self-assembly rarely affords macroscopic helical superstructures because of accumulating disorder that is difficult to avoid during hierarchical self-assembly. Here, we demonstrate that tetragold Au4 clusters can assemble into macroscopic helices at the centimeter scale. Halogen-bond induces hierarchical self-assembly from nanotubes to aslant stacked nanotubes and finally to macrohelices. Sacrificial template synthesis via solvent-corrosion sufficiently removes the embedded 1,3,5-trifluoro-2,4,6-triiodobenzene to produce helical skeletons. Homochiral macroscopic tendrils are controllably synthesized by chiral halogen bonding donors, allowing high-fidelity chiral amplification. This work contributes to the development of macroscopic helical superstructures by hierarchical assembly.
Collapse
Affiliation(s)
- Ya-Jie Wang
- Henan Key Laboratory of Crystalline Molecular Functional Materials, College of Chemistry, Zhengzhou University, Zhengzhou 450001, P. R. China
| | - Xiao-Yan Shi
- Henan Key Laboratory of Crystalline Molecular Functional Materials, College of Chemistry, Zhengzhou University, Zhengzhou 450001, P. R. China
| | - Yu Guo
- Henan Key Laboratory of Crystalline Molecular Functional Materials, College of Chemistry, Zhengzhou University, Zhengzhou 450001, P. R. China
| | - Xing-Nan Wang
- Henan Key Laboratory of Crystalline Molecular Functional Materials, College of Chemistry, Zhengzhou University, Zhengzhou 450001, P. R. China
| | - Ke-Xin Zheng
- Henan Key Laboratory of Crystalline Molecular Functional Materials, College of Chemistry, Zhengzhou University, Zhengzhou 450001, P. R. China
| | - Xue-Wen Yang
- Henan Key Laboratory of Crystalline Molecular Functional Materials, College of Chemistry, Zhengzhou University, Zhengzhou 450001, P. R. China
| | - Pengyao Xing
- School of Chemistry and Chemical Engineering, Shandong University, Jinan 250100, P. R. China
| | - Shuang-Quan Zang
- Henan Key Laboratory of Crystalline Molecular Functional Materials, College of Chemistry, Zhengzhou University, Zhengzhou 450001, P. R. China
| |
Collapse
|
3
|
Okada D. Chirality-Dependent Anisotropic Nonlinear Optical Effect in Low-Dimensional Hybrid Metal Halides. Chemistry 2025; 31:e202404034. [PMID: 39592418 DOI: 10.1002/chem.202404034] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2024] [Revised: 11/24/2024] [Accepted: 11/26/2024] [Indexed: 11/28/2024]
Abstract
Low-dimensional hybrid metal halides (LDHMHs) have emerged as a highly promising class of functional materials for a wide range of optoelectronic applications. Their exceptional structural tunability, facilitated by the hybridization of metal halides with organic compounds, enables the formation of three-, two-, one-, or zero-dimensional structures. This flexibility in structural design also allows the incorporation of chirality into the crystalline lattice, giving rise to novel LDHMH materials that are capable of selectively interacting with the spin angular momentum of electrons and photons. Among the unique optoelectronic properties of LDHMHs, the focus of this concept article is their chiroptical nonlinear optical (NLO) effect. LDHMHs demonstrate a highly effective discrimination and generation of circularly polarized (CP) light in the NLO regime, particularly in the second harmonic generation (SHG) process, referred to as SHG-circular dichroism (SHG-CD) and CP-SHG. These anisotropic responses are several orders of magnitude larger than linear chiroptical responses, such as CD and CP luminescence; consequently, LDHMHs are expected to be promising candidates for future optical-information devices and encryption systems. This article introduces recently reported chiral LDHMH materials that exhibit excellent CP-dependent anisotropic SHG responses.
Collapse
Affiliation(s)
- Daichi Okada
- Faculty of Electrical Engineering and Electronics, Kyoto Institute of Technology, Matsugasaki, Sakyo-ku, Kyoto, 606-8585, Japan
| |
Collapse
|
4
|
Pancotti G, Killalea CE, Rees TW, Liirò-Peluso L, Riera-Galindo S, Beton PH, Campoy-Quiles M, Siligardi G, Amabilino DB. Film thickness dependence of nanoscale arrangement of a chiral electron donor in its blends with an achiral electron acceptor. NANOSCALE 2025; 17:3133-3144. [PMID: 39692272 DOI: 10.1039/d4nr04269g] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/19/2024]
Abstract
The nanoscale chiral arrangement in a bicomponent organic material system comprising donor and acceptor small molecules is shown to depend on the thickness of a film that is responsive to chiral light in an optoelectronic device. In this bulk heterojunction, a previously unreported chiral bis(diketopyrrolopyrrole) derivative was combined with an achiral non-fullerene acceptor. The optical activity of the chiral compound is dramatically different in the pure material and the composite, showing how the electron acceptor influences the donor's arrangement compared with the pure molecule. Mueller matrix polarimetric imaging shows the authenticity of this effect and the homogeneity of short range chiral orientations between the molecules, as well as more heterogeneous short and longer range arrangements in the films observed in linear dichroic and birefringent effects. The two-dimensional circular dichroism (CD) maps and spectra show the uniformity of the short range supramolecular interactions both in spun-cast films on quartz and blade-coated films on photovoltaic device substrates, where evidence for the chiral arrangement is uniquely provided by the synchrotron CD measurements. The external quantum efficiency of the devices depends upon the handedness of the light used to excite them and the film thickness, that influences the supramolecular arrangement and organization in the film, and determines the selectivity for left or right circularly polarised light. The difference in external quantum efficiency of the photovoltaic devices between the two handedness' of light correlates with the apparent differential absorbance (g-factor) of the films.
Collapse
Affiliation(s)
- Giulia Pancotti
- Institut de Ciència de Materials de Barcelona (ICMAB-CSIC), Carrer dels Til·lers, Bellaterra, 08193, Spain.
| | - C Elizabeth Killalea
- School of Chemistry and GSK Carbon Neutral Laboratories for Sustainable Chemistry, University of Nottingham, Triumph Road, Nottingham, NG7 2TU, UK
| | - Thomas W Rees
- School of Chemistry and GSK Carbon Neutral Laboratories for Sustainable Chemistry, University of Nottingham, Triumph Road, Nottingham, NG7 2TU, UK
| | - Letizia Liirò-Peluso
- School of Chemistry and GSK Carbon Neutral Laboratories for Sustainable Chemistry, University of Nottingham, Triumph Road, Nottingham, NG7 2TU, UK
| | - Sergi Riera-Galindo
- Institut de Ciència de Materials de Barcelona (ICMAB-CSIC), Carrer dels Til·lers, Bellaterra, 08193, Spain.
| | - Peter H Beton
- School of Physics and Astronomy, The University of Nottingham, University Park, Nottingham, NG7 2RD, UK
| | - Mariano Campoy-Quiles
- Institut de Ciència de Materials de Barcelona (ICMAB-CSIC), Carrer dels Til·lers, Bellaterra, 08193, Spain.
| | - Giuliano Siligardi
- Diamond Light Source, Harwell Science and Innovation Campus, Didcot, Oxfordshire OX11 0DE, UK
| | - David B Amabilino
- Institut de Ciència de Materials de Barcelona (ICMAB-CSIC), Carrer dels Til·lers, Bellaterra, 08193, Spain.
| |
Collapse
|
5
|
Xie Z, Liu D, Gao C, Zhang X, Dong H, Hu W. High Mobility Emissive Organic Semiconductors for Optoelectronic Devices. J Am Chem Soc 2025; 147:2239-2256. [PMID: 39792593 DOI: 10.1021/jacs.4c11208] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2025]
Abstract
High mobility emissive organic semiconductors (HMEOSCs) are a kind of unique semiconducting material that simultaneously integrates high charge carrier mobility and strong emission features, which are not only crucial for overcoming the performance bottlenecks of current organic optoelectronic devices but also important for constructing high-density integrated devices/circuits for potential smart display technologies and electrically pumped organic lasers. However, the development of HMEOSCs is facing great challenges due to the mutually exclusive requirements of molecular structures and packing modes between high charge carrier mobility and strong solid-state emission. Encouragingly, considerable advances on HMEOSCs have been made with continuous efforts, and the successful integration of these two properties within individual organic semiconductors currently presents a promising research direction in organic electronics. Representative progress, including the molecular design of HMEOSCs, and the exploration of their applications in photoelectric conversion devices and electroluminescent devices, especially organic photovoltaic cells, organic light-emitting diodes, and organic light-emitting transistors, are summarized in a timely manner. The current challenges of developing HMEOSCs and their potential applications in other related devices including electrically pumped organic lasers, spin organic light-emitting transistors are also discussed. We hope that this perspective will boost the rapid development of HMEOSCs with a new mechanism understanding and their wide applications in different fields entering a new stage.
Collapse
Affiliation(s)
- Ziyi Xie
- Beijing National Laboratory for Molecular Science, Key Laboratory of Organic Solids, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Dan Liu
- Beijing National Laboratory for Molecular Science, Key Laboratory of Organic Solids, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, China
| | - Can Gao
- Beijing National Laboratory for Molecular Science, Key Laboratory of Organic Solids, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, China
| | - Xiaotao Zhang
- Tianjin Key Laboratory of Molecular Optoelectronic Sciences, Department of Chemistry, School of Science, Tianjin University and Collaborative Innovation Center of Chemical Science and Engineering, Tianjin 300072, China
| | - Huanli Dong
- Beijing National Laboratory for Molecular Science, Key Laboratory of Organic Solids, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, China
| | - Wenping Hu
- Tianjin Key Laboratory of Molecular Optoelectronic Sciences, Department of Chemistry, School of Science, Tianjin University and Collaborative Innovation Center of Chemical Science and Engineering, Tianjin 300072, China
| |
Collapse
|
6
|
Zhao WL, Guo WC, Tan KK, Yu ZX, Li M, Chen CF. Chiral Co-assembly Based on a Stimuli-Responsive Polymer towards Amplified Full-Color Circularly Polarized Luminescence. Angew Chem Int Ed Engl 2025; 64:e202416863. [PMID: 39387346 DOI: 10.1002/anie.202416863] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2024] [Revised: 10/08/2024] [Accepted: 10/09/2024] [Indexed: 10/15/2024]
Abstract
Stimuli-responsive circularly polarized luminescence (CPL) materials have been attaching wide attention in the field of optical information storage and encryption, while still facing the challenge of the realization of high luminescence dissymmetry factors (glum). This work presents a pair of stimuli-responsive chiral co-assemblies P7R3 and P7S3 by combining polymer PFIQ containing iso-quinoline units with chiral inducers. The obtained chiral co-assemblies can reversibly undergo significant modification in CPL behavior under trifluoroacetic acid (TFA) fumigation and annealing treatment, with the |glum| values exhibiting a reversible shift between 0.2 and 0.3. Moreover, the chiral co-assemblies before TFA fumigating can effectively induce achiral emitters to generate intense full-color CPL signals through CPL energy transfer (CPL-ET), with the corresponding |glum| values larger than 0.2. Moreover, information encryption and decryption as well as a multi-level logic gates application are achieved by leveraging the reversible stimuli-responsive CPL activity of the chiral co-assembly. This work provides a new perspective for the construction of stimuli-responsive chiral luminescent materials with large |glum| values and the activation of CPL behavior in achiral emitters.
Collapse
Affiliation(s)
- Wen-Long Zhao
- Beijing National Laboratory for Molecular Sciences, CAS Key Laboratory of Molecular Recognition and Function, Institute of Chemistry, Chinese Academy of Sciences, Beijing, 100190, China
- School of Chemical Sciences, University of Chinese Academy of Sciences, Beijing, 100084, China
| | - Wei-Chen Guo
- Beijing National Laboratory for Molecular Sciences, CAS Key Laboratory of Molecular Recognition and Function, Institute of Chemistry, Chinese Academy of Sciences, Beijing, 100190, China
- School of Chemical Sciences, University of Chinese Academy of Sciences, Beijing, 100084, China
| | - Ke-Ke Tan
- Beijing National Laboratory for Molecular Sciences, CAS Key Laboratory of Molecular Recognition and Function, Institute of Chemistry, Chinese Academy of Sciences, Beijing, 100190, China
- School of Chemical Sciences, University of Chinese Academy of Sciences, Beijing, 100084, China
| | - Zhen-Xing Yu
- College of Sciences, Northeastern University, Shenyang, 110000, China
| | - Meng Li
- Beijing National Laboratory for Molecular Sciences, CAS Key Laboratory of Molecular Recognition and Function, Institute of Chemistry, Chinese Academy of Sciences, Beijing, 100190, China
- School of Chemical Sciences, University of Chinese Academy of Sciences, Beijing, 100084, China
| | - Chuan-Feng Chen
- Beijing National Laboratory for Molecular Sciences, CAS Key Laboratory of Molecular Recognition and Function, Institute of Chemistry, Chinese Academy of Sciences, Beijing, 100190, China
- School of Chemical Sciences, University of Chinese Academy of Sciences, Beijing, 100084, China
| |
Collapse
|
7
|
Wang F, Yang W, Ding Q, Xing X, Xu L, Lin H, Xu C, Li S. Chiral Au@CeO 2 Helical Nanorods with Spatially Separated Structures for Polarization-Dependent N 2 Photofixation. Angew Chem Int Ed Engl 2025; 64:e202415031. [PMID: 39320103 DOI: 10.1002/anie.202415031] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2024] [Revised: 09/15/2024] [Accepted: 09/23/2024] [Indexed: 09/26/2024]
Abstract
Chiral photocatalytic nanomaterials possess numerous unique properties and hold promise for various applications in chemical synthesis, environmental protection, energy conversion, and photoelectric devices. Nevertheless, it is uncommon to develop effective means to enhance the asymmetric catalytic performances of chiral plasmonic nanomaterials. In this study, a type of L/D-Au@CeO2 helical nanorods (HNRs) was fabricated by selectively growing CeO2 on the surface of Au HNRs via a facile wet-chemistry construction method. Chiral Au@CeO2 HNRs, featuring Au and CeO2 with spatially separated structures, exhibited the highest photocatalytic performance for N2 fixation, being 50.80±2.64 times greater than that of Au HNRs. Furthermore, when L-Au@CeO2 HNRs were exposed to left circularly polarized light (CPL) and D-Au@CeO2 HNRs were exposed to right CPL, their photocatalytic efficiency was enhanced by 3.06±0.06 times compared to the samples illuminated with the opposite CPL, which can be attributed to the asymmetrical generation of hot carriers upon CPL excitation. This study not only offers a simple approach to enhance the photocatalytic performance of chiral plasmonic nanomaterials but also demonstrates the potential of chiral plasmonic materials for application in specific photocatalytic reactions, such as N2 fixation.
Collapse
Affiliation(s)
- Fang Wang
- International Joint Research Center for Photo-responsive Molecules and Materials, Jiangnan University, Wuxi, Jiangsu, 214122, P.R. China
| | - Weimin Yang
- International Joint Research Center for Photo-responsive Molecules and Materials, Jiangnan University, Wuxi, Jiangsu, 214122, P.R. China
| | - Qi Ding
- International Joint Research Center for Photo-responsive Molecules and Materials, Jiangnan University, Wuxi, Jiangsu, 214122, P.R. China
| | - Xinhe Xing
- International Joint Research Center for Photo-responsive Molecules and Materials, Jiangnan University, Wuxi, Jiangsu, 214122, P.R. China
| | - Liguang Xu
- International Joint Research Laboratory for Biointerface and Biodetection, State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu, 214122, P.R. China
| | - Hengwei Lin
- International Joint Research Center for Photo-responsive Molecules and Materials, Jiangnan University, Wuxi, Jiangsu, 214122, P.R. China
| | - Chuanlai Xu
- International Joint Research Laboratory for Biointerface and Biodetection, State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu, 214122, P.R. China
| | - Si Li
- International Joint Research Center for Photo-responsive Molecules and Materials, Jiangnan University, Wuxi, Jiangsu, 214122, P.R. China
- International Joint Research Laboratory for Biointerface and Biodetection, State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu, 214122, P.R. China
| |
Collapse
|
8
|
Wang H, Yao L, Zhan Y, Yu H, Wu S, Liu X. A Self-Powered Circularly Polarized Light Photodetector with High Responsivity Based on the Chiral Quasi-2D Perovskite Film. ACS APPLIED MATERIALS & INTERFACES 2025; 17:3716-3724. [PMID: 39739371 DOI: 10.1021/acsami.4c18208] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/02/2025]
Abstract
Low-dimensional hybrid organic-inorganic perovskites (HOIPs) containing chiral organic ligands have recently emerged as promising candidates for circularly polarized light (CPL) detection, which can distinguish left- and right-handed CPL directly. However, the increase in responsivity and realization of self-powered CPL photodetector remain a challenge. Meanwhile, there is a trade-off between the photocurrent responsivity and the ability to differentially absorb CPL in detectors based on these low-dimensional perovskites. Herein, we report the CPL photodetector based on chiral quasi-2D perovskite films (S/R-MBA)2MAPb2I7 and propose a crystallization regulation method using dimethyl sulfoxide (DMSO) and methylammonium thiocyanate (MASCN). We found that the photoelectric response capability and circular dichroism (CD) intensities of chiral quasi-2D perovskite can be enhanced simultaneously by the improved crystallinity and surface morphology of chiral films. Meanwhile, the formation of the tetragonal perovskite structure leads to symmetry-breaking distortion of the inorganic frameworks, further enhancing the chirality of the perovskite films. In addition, the distribution of n-phase can be tuned by DMSO and MASCN to form graded band alignment, effectively promoting the charge transfer in perovskite. As a result, a self-powered CPL photodetector with a high responsivity of 0.82 A/W and an anisotropy factor of 0.09 at 0 V bias is obtained. To the best of our knowledge, it is the first attempt to enhance the CD characteristics of chiral quasi-2D perovskite films. We believe our work further advances the research of low-dimensional chiral perovskite films in the field of CPL detection.
Collapse
Affiliation(s)
- Haoyu Wang
- School of Optoelectronic Engineering, Changchun University of Science and Technology (CUST), Changchun 130013, PR China
| | - Lunjia Yao
- School of Optoelectronic Science and Engineering, University of Electronic Science and Technology of China (UESTC), Chengdu 610054, PR China
| | - Yuzhuo Zhan
- School of Optoelectronic Science and Engineering, University of Electronic Science and Technology of China (UESTC), Chengdu 610054, PR China
| | - He Yu
- School of Optoelectronic Science and Engineering, University of Electronic Science and Technology of China (UESTC), Chengdu 610054, PR China
| | - Shuanghong Wu
- School of Optoelectronic Science and Engineering, University of Electronic Science and Technology of China (UESTC), Chengdu 610054, PR China
| | - Xiaodong Liu
- School of Optoelectronic Science and Engineering, University of Electronic Science and Technology of China (UESTC), Chengdu 610054, PR China
| |
Collapse
|
9
|
Xiao Z, Wang R, Zhang L, Liu M. A fluorinated chiral liquid with thermal robustness for inducing circularly polarized luminescence. Chem Commun (Camb) 2025; 61:764-767. [PMID: 39666326 DOI: 10.1039/d4cc05693k] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2024]
Abstract
A chiral liquid based on a fluorinated glutamate was designed and synthesized, exhibiting the capacity to transfer chirality to achiral components along with thermal stability in the induced chirality. Notably, the induced chiroptical signal inverted upon phase transition of fluorinated glutamate, which is attributed to alteration in the chiral arrangement.
Collapse
Affiliation(s)
- Zibing Xiao
- Beijing National Laboratory for Molecular Science (BNLMS), CAS Key Laboratory of Colloid, Interface and Chemical Thermodynamics, Institute of Chemistry, Chinese Academy of Sciences, Beijing, China.
- University of Chinese Academy of Sciences, Beijing, China
| | - Runjia Wang
- Beijing National Laboratory for Molecular Science (BNLMS), CAS Key Laboratory of Colloid, Interface and Chemical Thermodynamics, Institute of Chemistry, Chinese Academy of Sciences, Beijing, China.
- University of Chinese Academy of Sciences, Beijing, China
| | - Li Zhang
- Beijing National Laboratory for Molecular Science (BNLMS), CAS Key Laboratory of Colloid, Interface and Chemical Thermodynamics, Institute of Chemistry, Chinese Academy of Sciences, Beijing, China.
| | - Minghua Liu
- Beijing National Laboratory for Molecular Science (BNLMS), CAS Key Laboratory of Colloid, Interface and Chemical Thermodynamics, Institute of Chemistry, Chinese Academy of Sciences, Beijing, China.
- University of Chinese Academy of Sciences, Beijing, China
| |
Collapse
|
10
|
Yu X, Chen L, Liu Q, Liu X, Qiu Z, Zhang X, Zhu M, Cheng Y. Mechanically Twisting-Induced Top-Down Chirality Transfer for Tunable Full-Color Circularly Polarized Luminescent Fibers. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2025; 12:e2412778. [PMID: 39630003 PMCID: PMC11775519 DOI: 10.1002/advs.202412778] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/13/2024] [Revised: 11/20/2024] [Indexed: 01/30/2025]
Abstract
Circularly polarized luminescence (CPL) materials with rich optical information are highly attractive for optical display, information storage, and encryption. Although previous investigations have shown that external force fields can induce CPL activity in nonchiral systems, the unique role of macroscopic external forces in inducing CPL has not been demonstrated at the level of molecule or molecular aggregate. Here, a canonical example of CPL generation by mechanical twisting in an achiral system consisting of a polymer matrix with embedded fluorescent molecules is presented. By carefully adjusting the twisting parameters in time and space, in conjunction with circular dichroism (CD), CPL, and 2D wide-angle X-ray scattering (2D WAXS) studies, a twisting-induced top-down chiral transfer mechanism derived from the molecular-level asymmetric rearrangement of fluorescent units is elucidated within polymers under external torsional forces. This top-down chiral transfer provides a simple, scalable, and versatile mechanical twisting strategy for the fabrication of CPL materials, allowing for fabricating full-color and handedness-tunable CPL fibers, where the macroscopic twist direction determines the CPL handedness. Moreover, the weavability of CPL fibers greatly extend their applications in anti-counterfeit encryption, as demonstrated by using embroidery techniques to design multilevel encryption patterns.
Collapse
Affiliation(s)
- Xiaoxiao Yu
- State Key Laboratory for Modification of Chemical Fibers and Polymer MaterialsCollege of Materials Science and EngineeringDonghua UniversityShanghai201620P. R. China
| | - Linfeng Chen
- State Key Laboratory for Modification of Chemical Fibers and Polymer MaterialsCollege of Materials Science and EngineeringDonghua UniversityShanghai201620P. R. China
| | - Qin Liu
- State Key Laboratory for Modification of Chemical Fibers and Polymer MaterialsCollege of Materials Science and EngineeringDonghua UniversityShanghai201620P. R. China
| | - Xiaoqing Liu
- State Key Laboratory for Modification of Chemical Fibers and Polymer MaterialsCollege of Materials Science and EngineeringDonghua UniversityShanghai201620P. R. China
| | - Zhenduo Qiu
- State Key Laboratory for Modification of Chemical Fibers and Polymer MaterialsCollege of Materials Science and EngineeringDonghua UniversityShanghai201620P. R. China
| | - Xinhai Zhang
- State Key Laboratory for Modification of Chemical Fibers and Polymer MaterialsCollege of Materials Science and EngineeringDonghua UniversityShanghai201620P. R. China
| | - Meifang Zhu
- State Key Laboratory for Modification of Chemical Fibers and Polymer MaterialsCollege of Materials Science and EngineeringDonghua UniversityShanghai201620P. R. China
| | - Yanhua Cheng
- State Key Laboratory for Modification of Chemical Fibers and Polymer MaterialsCollege of Materials Science and EngineeringDonghua UniversityShanghai201620P. R. China
| |
Collapse
|
11
|
Imayoshi A, Fujio S, Nagaya Y, Sakai M, Terazawa A, Sakura M, Okada K, Kimoto T, Mori T, Imai Y, Hada M, Tsubaki K. Inversion of circularly polarized luminescence by electric current flow during transition. Phys Chem Chem Phys 2024; 27:77-82. [PMID: 39569563 DOI: 10.1039/d4cp02968b] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2024]
Abstract
The development of chiral compounds exhibiting circularly polarized luminescence (CPL) has advanced remarkably in recent years. Designing CPL-active compounds requires an understanding of the electric transition dipole moment (μ) and the magnetic transition dipole moment (m) in the excited state. However, while the direction and magnitude of μ can, to some extent, be visually inferred from chemical structures, m remains elusive, posing challenges for direct predictions based on structural information. This study utilized binaphthol, a prominent chiral scaffold, and achieved CPL-sign inversion by strategically varying the substitution positions of phenylethynyl (PE) groups on the binaphthyl backbone, while maintaining consistent axial chirality. Theoretical investigation revealed that the substitution position of PE groups significantly affects the orientation of m in the excited state, leading to CPL-sign inversion. Furthermore, we propose that this CPL-sign inversion results from a reversal in the rotation of instantaneous current flow during the S1 → S0 transition, which in turn alters the orientation of m. The current flow can be predicted from the chemical structure, allowing anticipation of the properties of m and, consequently, the characteristics of CPL. This insight provides a new perspective in designing CPL-active compounds, particularly for C2-symmetric molecules where the S1 → S0 transition predominantly involves LUMO → HOMO transitions. If μ represents the directionality of electron movement during transitions, i.e., the "difference" in electron locations before and after transitions, then m could be represented as the "path" of electron movement based on the current flow during the transition.
Collapse
Affiliation(s)
- Ayumi Imayoshi
- Graduate School of Life and Environmental Sciences, Kyoto Prefectural University, 1-5 Hangi-cho, Shimogamo, Sakyo-ku, Kyoto 606-8522, Japan.
| | - Shinya Fujio
- Graduate School of Life and Environmental Sciences, Kyoto Prefectural University, 1-5 Hangi-cho, Shimogamo, Sakyo-ku, Kyoto 606-8522, Japan.
| | - Yuuki Nagaya
- Graduate School of Life and Environmental Sciences, Kyoto Prefectural University, 1-5 Hangi-cho, Shimogamo, Sakyo-ku, Kyoto 606-8522, Japan.
| | - Misato Sakai
- Graduate School of Life and Environmental Sciences, Kyoto Prefectural University, 1-5 Hangi-cho, Shimogamo, Sakyo-ku, Kyoto 606-8522, Japan.
| | - Atsushi Terazawa
- Graduate School of Life and Environmental Sciences, Kyoto Prefectural University, 1-5 Hangi-cho, Shimogamo, Sakyo-ku, Kyoto 606-8522, Japan.
| | - Misa Sakura
- Graduate School of Life and Environmental Sciences, Kyoto Prefectural University, 1-5 Hangi-cho, Shimogamo, Sakyo-ku, Kyoto 606-8522, Japan.
| | - Keita Okada
- Department of Applied Chemistry, Faculty of Science and Engineering, Kindai University, 3-4-1 Kowakae, Higashi-Osaka, Osaka 577-8502, Japan
| | - Takahiro Kimoto
- Department of Applied Chemistry, Faculty of Science and Engineering, Kindai University, 3-4-1 Kowakae, Higashi-Osaka, Osaka 577-8502, Japan
| | - Tadashi Mori
- Department of Applied Chemistry, Graduate School of Engineering, Osaka University, 2-1 Yamada-oka, Suita, Osaka 565-0871, Japan
| | - Yoshitane Imai
- Department of Applied Chemistry, Faculty of Science and Engineering, Kindai University, 3-4-1 Kowakae, Higashi-Osaka, Osaka 577-8502, Japan
| | - Masahiko Hada
- Graduate School of Life and Environmental Sciences, Kyoto Prefectural University, 1-5 Hangi-cho, Shimogamo, Sakyo-ku, Kyoto 606-8522, Japan.
| | - Kazunori Tsubaki
- Graduate School of Life and Environmental Sciences, Kyoto Prefectural University, 1-5 Hangi-cho, Shimogamo, Sakyo-ku, Kyoto 606-8522, Japan.
| |
Collapse
|
12
|
Gao K, Lee SH, Zhao W, Ahn J, Kim TW, Li Z, Zhuo H, Wang Z, Zheng X, Yan Y, Chang G, Ma W, Zhang M, Long G, Oh JH, Shang X. Reversal of chirality in solutions and aggregates of chiral tetrachlorinated diperylene diimides towards efficient circularly polarized light detection. MATERIALS HORIZONS 2024. [PMID: 39688194 DOI: 10.1039/d4mh01435a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/18/2024]
Abstract
Helicenes exhibit promise as active layer materials for circularly polarized light (CPL) detectors due to their strong chiroptical activity. However, their practical application is limited by the complicated synthesis and loosely solid-state packing. This study introduces a chiral induction strategy towards the synthesis of helicene derivatives, chiral tetrachlorinated diperylene diimides ((SSSS)-4CldiPDI or (RRRR)-4CldiPDI). When incorporating the chiral (S/R)-1-cyclohexylethyl (Cy) substituents, the chirality is directly transferred to the π-aromatic core and forms the PP- or MM-helicene subunit. Notably, (SSSS)-Cy induces preferred PP helicity while (RRRR)-Cy leads to the MM helicity in the monomers. However, these molecules exhibit reversed chirality in crystals, where (SSSS)-Cy controls MM helicity and (RRRR)-Cy induces PP helicity. Theoretical calculations reveal that the (SSSS)-PP structure demonstrates lower energy distribution in monomers, whereas the (SSSS)-MM structure exhibits lower energy in crystals. Then, the CPL detection based on n-type PDI-helicene derivatives is achieved by using (SSSS)-4CldiPDI or (RRRR)-4CldiPDI crystals. The maximum photocurrent dissymmetry factor gph of +0.16 for (RRRR)-4CldiPDI and -0.15 for (SSSS)-4CldiPDI is obtained. Our work demonstrates a novel chiral induction strategy for designing helicene-based materials with both high dissymmetry factor and large charge carrier mobility, which offers great potential for the advancement of CPL detection.
Collapse
Affiliation(s)
- Ke Gao
- State Key Laboratory for Mechanical Behavior of Materials, Shaanxi International Research Center for Soft Matter, School of Materials Science and Engineering, Xi'an Jiaotong University, Xi'an 710049, P. R. China.
| | - Sang Hyuk Lee
- School of Chemical and Biological Engineering, Institute of Chemical Processes, Seoul National University, 1 Gwanak-ro, Gwanak-gu, Seoul 08826, Republic of Korea.
| | - Wenkai Zhao
- Tianjin Key Lab for Rare Earth Materials and Applications, Smart Sensing Interdisciplinary Science Center, Renewable Energy Conversion and Storage Center (RECAST), School of Materials Science and Engineering, Nankai University, Tianjin 300350, P. R. China.
| | - Jaeyong Ahn
- School of Chemical and Biological Engineering, Institute of Chemical Processes, Seoul National University, 1 Gwanak-ro, Gwanak-gu, Seoul 08826, Republic of Korea.
| | - Tae Woo Kim
- School of Chemical and Biological Engineering, Institute of Chemical Processes, Seoul National University, 1 Gwanak-ro, Gwanak-gu, Seoul 08826, Republic of Korea.
| | - Zhenping Li
- State Key Laboratory for Mechanical Behavior of Materials, Shaanxi International Research Center for Soft Matter, School of Materials Science and Engineering, Xi'an Jiaotong University, Xi'an 710049, P. R. China.
| | - Huagui Zhuo
- State Key Laboratory for Mechanical Behavior of Materials, Shaanxi International Research Center for Soft Matter, School of Materials Science and Engineering, Xi'an Jiaotong University, Xi'an 710049, P. R. China.
| | - Zhiwei Wang
- State Key Laboratory for Mechanical Behavior of Materials, Shaanxi International Research Center for Soft Matter, School of Materials Science and Engineering, Xi'an Jiaotong University, Xi'an 710049, P. R. China.
| | - Xinglong Zheng
- Department of Cardiovascular Surgery, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, 710061, P. R. China
| | - Yang Yan
- Department of Cardiovascular Surgery, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, 710061, P. R. China
| | - Gang Chang
- Instrumental Analysis Center of Xi'an Jiaotong University, Xi'an, 710049, P. R. China
| | - Wei Ma
- State Key Laboratory for Mechanical Behavior of Materials, Xi'an Jiaotong University, Xi'an, 710049, P. R. China
| | - Mingming Zhang
- State Key Laboratory for Mechanical Behavior of Materials, Shaanxi International Research Center for Soft Matter, School of Materials Science and Engineering, Xi'an Jiaotong University, Xi'an 710049, P. R. China.
| | - Guankui Long
- Tianjin Key Lab for Rare Earth Materials and Applications, Smart Sensing Interdisciplinary Science Center, Renewable Energy Conversion and Storage Center (RECAST), School of Materials Science and Engineering, Nankai University, Tianjin 300350, P. R. China.
| | - Joon Hak Oh
- School of Chemical and Biological Engineering, Institute of Chemical Processes, Seoul National University, 1 Gwanak-ro, Gwanak-gu, Seoul 08826, Republic of Korea.
| | - Xiaobo Shang
- State Key Laboratory for Mechanical Behavior of Materials, Shaanxi International Research Center for Soft Matter, School of Materials Science and Engineering, Xi'an Jiaotong University, Xi'an 710049, P. R. China.
| |
Collapse
|
13
|
Wang N, Hong R, Zhang G, Pan M, Bao Y, Zhang W. Molecular Imprinting Strategy Enables Circularly Polarized Luminescence Enhancement of Recyclable Chiral Polymer Films. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2024:e2409078. [PMID: 39551998 DOI: 10.1002/smll.202409078] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/03/2024] [Revised: 11/02/2024] [Indexed: 11/19/2024]
Abstract
Circularly polarized luminescence (CPL) plays a crucial role in the fields of optical display and information technology. The pursuit of high dissymmetry factors (glum) and fluorescence quantum yields in CPL materials remains challenging due to inherent trade-offs. In this work, molecular imprinting technology is employed to develop novel CPL-active polymer films based entirely on achiral fluorene-based polymers, achieving an enhanced glum value exceeding 4.2 × 10-2 alongside high quantum yields. These chiral molecularly imprinted polymer films (MIPF) are synthesized via a systematic three-step process: co-assembly with limonene and a porphyrin derivative (TBPP), interchain crosslinking, and subsequent removal of small molecules. During this process, limonene acts as the chiral inducer, while TBPP serves dual roles as both the chiral enhancer and imprinted molecule. The elimination of TBPP creates chiral sites for various fluorescent molecules, facilitating full-color CPL emission. The chiral MIPF exhibits stable CPL performance even after multiple cycles of post-assembly and removal. Furthermore, these films can function as interfacial microreactors, enabling in situ chemical reactions that dynamically regulate CPL signals. Additionally, chiral self-organization within achiral azobenzene polymer films can also be achieved using MIPF, serving as intense chiral light sources.
Collapse
Affiliation(s)
- Nianwei Wang
- State and Local Joint Engineering Laboratory for Novel Functional Polymeric Materials, Jiangsu Engineering Laboratory of Novel Functional Polymeric Materials, Suzhou Key Laboratory of Macromolecular Design and Precision Synthesis, College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou, 215123, P. R. China
| | - Ran Hong
- School of Chemical and Environmental Engineering, Anhui Polytechnic University, Wuhu, 241000, P. R. China
| | - Gong Zhang
- State and Local Joint Engineering Laboratory for Novel Functional Polymeric Materials, Jiangsu Engineering Laboratory of Novel Functional Polymeric Materials, Suzhou Key Laboratory of Macromolecular Design and Precision Synthesis, College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou, 215123, P. R. China
- School of Material Science and Engineering, Henan University of Technology, Zhengzhou, 450001, P. R. China
| | - Menghan Pan
- State and Local Joint Engineering Laboratory for Novel Functional Polymeric Materials, Jiangsu Engineering Laboratory of Novel Functional Polymeric Materials, Suzhou Key Laboratory of Macromolecular Design and Precision Synthesis, College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou, 215123, P. R. China
| | - Yinglong Bao
- State and Local Joint Engineering Laboratory for Novel Functional Polymeric Materials, Jiangsu Engineering Laboratory of Novel Functional Polymeric Materials, Suzhou Key Laboratory of Macromolecular Design and Precision Synthesis, College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou, 215123, P. R. China
| | - Wei Zhang
- State and Local Joint Engineering Laboratory for Novel Functional Polymeric Materials, Jiangsu Engineering Laboratory of Novel Functional Polymeric Materials, Suzhou Key Laboratory of Macromolecular Design and Precision Synthesis, College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou, 215123, P. R. China
- School of Chemical and Environmental Engineering, Anhui Polytechnic University, Wuhu, 241000, P. R. China
| |
Collapse
|
14
|
Guo G, Li H, Yan Y, Zhao W, Gao Z, Cao H, Yan X, Li H, Xie G, Chen R, Tao Y, Huang W. A Dynamic H-Bonding Network Enables Stimuli-Responsive Color-Tunable Chiral Afterglow Polymer for 4D Encryption. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2024; 36:e2412100. [PMID: 39370766 DOI: 10.1002/adma.202412100] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/15/2024] [Revised: 09/22/2024] [Indexed: 10/08/2024]
Abstract
The development of stimuli-responsive and color-tunable chiral organic afterglow materials has attracted great attention but remains a daunting challenge. Here, a simple yet effective strategy through the construction of a dynamic H-bonding network is proposed to explore the multi-color stimuli-responsive chiral afterglow by doping a self-designed chiral phosphorescent chromophore into a polyvinyl alcohol matrix. A stimuli-responsive deep blue chiral afterglow system with a lifetime of up to 3.35 s, quantum yield of 25.0%, and luminescent dissymmetry factor of up to 0.05 is achieved through reversible formation and breakdown of the H-bonding network upon thermal-heating and water-fumigating. Moreover, multi-color stimuli-responsive chiral afterglow can be obtained by chiral and afterglow energy transfer, allowing the establishment of afterglow information displays and high-level 4D encryption. This work not only offers a facile platform to develop advanced stimuli-responsive materials but also opens a new avenue for developing next-generation optical information technology with enhanced functionality and responsiveness.
Collapse
Affiliation(s)
- Guangyao Guo
- State Key Laboratory of Organic Electronics and Information Displays & Institute of Advanced Materials (IAM), Nanjing University of Posts & Telecommunications, Nanjing, 210023, China
| | - Huanhuan Li
- State Key Laboratory of Organic Electronics and Information Displays & Institute of Advanced Materials (IAM), Nanjing University of Posts & Telecommunications, Nanjing, 210023, China
| | - Yingmeng Yan
- State Key Laboratory of Organic Electronics and Information Displays & Institute of Advanced Materials (IAM), Nanjing University of Posts & Telecommunications, Nanjing, 210023, China
| | - Wei Zhao
- State Key Laboratory of Organic Electronics and Information Displays & Institute of Advanced Materials (IAM), Nanjing University of Posts & Telecommunications, Nanjing, 210023, China
| | - Zhisheng Gao
- State Key Laboratory of Organic Electronics and Information Displays & Institute of Advanced Materials (IAM), Nanjing University of Posts & Telecommunications, Nanjing, 210023, China
| | - Hengyu Cao
- State Key Laboratory of Organic Electronics and Information Displays & Institute of Advanced Materials (IAM), Nanjing University of Posts & Telecommunications, Nanjing, 210023, China
| | - Xin Yan
- State Key Laboratory of Organic Electronics and Information Displays & Institute of Advanced Materials (IAM), Nanjing University of Posts & Telecommunications, Nanjing, 210023, China
| | - Hui Li
- State Key Laboratory of Organic Electronics and Information Displays & Institute of Advanced Materials (IAM), Nanjing University of Posts & Telecommunications, Nanjing, 210023, China
| | - Gaozhan Xie
- State Key Laboratory of Organic Electronics and Information Displays & Institute of Advanced Materials (IAM), Nanjing University of Posts & Telecommunications, Nanjing, 210023, China
| | - Runfeng Chen
- State Key Laboratory of Organic Electronics and Information Displays & Institute of Advanced Materials (IAM), Nanjing University of Posts & Telecommunications, Nanjing, 210023, China
| | - Ye Tao
- State Key Laboratory of Organic Electronics and Information Displays & Institute of Advanced Materials (IAM), Nanjing University of Posts & Telecommunications, Nanjing, 210023, China
- Songshan Lake Materials Laboratory, Dongguan, Guangdong, 523808, China
| | - Wei Huang
- State Key Laboratory of Organic Electronics and Information Displays & Institute of Advanced Materials (IAM), Nanjing University of Posts & Telecommunications, Nanjing, 210023, China
- Frontiers Science Center for Flexible Electronics (FSCFE), MIIT Key Laboratory of Flexible Electronics (KLoFE), Northwestern Polytechnical University, Xi'an, Shaanxi, 710072, China
| |
Collapse
|
15
|
Liu ZF, Liu XX, Zhang H, Zeng L, Niu LY, Chen PZ, Fang WH, Peng X, Cui G, Yang QZ. Intense Circularly Polarized Luminescence Induced by Chiral Supramolecular Assembly: The Importance of Intermolecular Electronic Coupling. Angew Chem Int Ed Engl 2024; 63:e202407135. [PMID: 39018249 DOI: 10.1002/anie.202407135] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2024] [Revised: 07/16/2024] [Accepted: 07/17/2024] [Indexed: 07/19/2024]
Abstract
Herein we report on circularly polarized luminescence (CPL) emission originating from supramolecular chirality of organic microcrystals with a |glum| value up to 0.11. The microcrystals were prepared from highly emissive difluoroboron β-diketonate (BF2dbk) dyes R-1 or S-1 with chiral binaphthol (BINOL) skeletons. R-1 and S-1 exhibit undetectable CPL signals in solution but manifest intense CPL emission in their chiral microcrystals. The chiral superstructures induced by BINOL skeletons were confirmed by single-crystal XRD analysis. Spectral analysis and theoretical calculations indicate that intermolecular electronic coupling, mediated by the asymmetric stacking in the chiral superstructures, effectively alters excited-state electronic structures and facilitates electron transitions perpendicular to BF2bdk planes. The coupling increases cosθμ,m from 0.05 (monomer) to 0.86 (tetramer) and triggers intense optical activity of BF2bdk. The results demonstrate that optical activity of chromophores within assemblies can be regulated by both orientation and extent of intermolecular electronic couplings.
Collapse
Affiliation(s)
- Zheng-Fei Liu
- Key Laboratory of Radiopharmaceuticals, Key Laboratory of Theoretical and Computational Photochemistry, Ministry of Education, College of Chemistry, Beijing Normal University, Beijing, 100875, P. R. China
| | - Xin-Xin Liu
- Key Laboratory of Radiopharmaceuticals, Key Laboratory of Theoretical and Computational Photochemistry, Ministry of Education, College of Chemistry, Beijing Normal University, Beijing, 100875, P. R. China
| | - Han Zhang
- Key Laboratory of Radiopharmaceuticals, Key Laboratory of Theoretical and Computational Photochemistry, Ministry of Education, College of Chemistry, Beijing Normal University, Beijing, 100875, P. R. China
| | - Lan Zeng
- Key Laboratory of Radiopharmaceuticals, Key Laboratory of Theoretical and Computational Photochemistry, Ministry of Education, College of Chemistry, Beijing Normal University, Beijing, 100875, P. R. China
| | - Li-Ya Niu
- Key Laboratory of Radiopharmaceuticals, Key Laboratory of Theoretical and Computational Photochemistry, Ministry of Education, College of Chemistry, Beijing Normal University, Beijing, 100875, P. R. China
| | - Peng-Zhong Chen
- State Key Laboratory of Fine Chemicals, Dalian University of Technology, Dalian, 116024, P. R. China
| | - Wei-Hai Fang
- Key Laboratory of Radiopharmaceuticals, Key Laboratory of Theoretical and Computational Photochemistry, Ministry of Education, College of Chemistry, Beijing Normal University, Beijing, 100875, P. R. China
| | - Xiaojun Peng
- State Key Laboratory of Fine Chemicals, Dalian University of Technology, Dalian, 116024, P. R. China
| | - Ganglong Cui
- Key Laboratory of Radiopharmaceuticals, Key Laboratory of Theoretical and Computational Photochemistry, Ministry of Education, College of Chemistry, Beijing Normal University, Beijing, 100875, P. R. China
| | - Qing-Zheng Yang
- Key Laboratory of Radiopharmaceuticals, Key Laboratory of Theoretical and Computational Photochemistry, Ministry of Education, College of Chemistry, Beijing Normal University, Beijing, 100875, P. R. China
| |
Collapse
|
16
|
Mo X, Chen G, Li Y, Xiao B, Chen X, Yin X, Yang C. Enhanced chiroptical activity for narrow deep-blue emission in axial chiral frameworks via three-dimensional interlocking. Chem Sci 2024; 15:d4sc05056h. [PMID: 39391380 PMCID: PMC11459705 DOI: 10.1039/d4sc05056h] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2024] [Accepted: 10/04/2024] [Indexed: 10/12/2024] Open
Abstract
The advancement of desirable circularly polarized luminescence (CPL) emitters is predominantly constrained by the effective regulation of magnetic and electric transition vectors, particularly within the deep-blue spectral domain. Herein, we present four pairs of novel chiral emitters with systematically varied molecular rigidity, symmetry, and chiral centers to elucidate the intrinsic coupling of key molecular parameters influencing their chiroptical properties. Notably, the incorporation of appropriate intramolecular 3D-interlocking within a natural binaphthyl chirality skeleton offers an effective approach to achieving both significantly narrowed full width at half maximum (FWHM, as low as 18 nm) and substantially enhanced chiroptical activity (luminous dissymmetry factor, g PL, up to 3.0 × 10-3). Additionally, introducing a secondary chiral center closely parallel to the primary chiral plane facilitates strong chiral-chiral interactions, further affording a 50% improvement in their g PL values. As a demonstration, vacuum-deposited circularly polarized organic light-emitting diodes incorporating these pure fluorescent emitters exhibit outstanding electroluminescent performance, with maximum external quantum efficiency exceeding 5.35%, favorable FWHM of approximately 25 nm, and extreme CIE y values below 0.03.
Collapse
Affiliation(s)
- Xuechao Mo
- Shenzhen Key Laboratory of New Information Display and Storage Materials, College of Materials Science and Engineering, Shenzhen University Shenzhen 518060 P. R. China
| | - Guohao Chen
- Shenzhen Key Laboratory of New Information Display and Storage Materials, College of Materials Science and Engineering, Shenzhen University Shenzhen 518060 P. R. China
| | - Yulan Li
- Shenzhen Key Laboratory of New Information Display and Storage Materials, College of Materials Science and Engineering, Shenzhen University Shenzhen 518060 P. R. China
| | - Biao Xiao
- Shenzhen Key Laboratory of New Information Display and Storage Materials, College of Materials Science and Engineering, Shenzhen University Shenzhen 518060 P. R. China
| | - Xuefeng Chen
- Shenzhen Key Laboratory of New Information Display and Storage Materials, College of Materials Science and Engineering, Shenzhen University Shenzhen 518060 P. R. China
| | - Xiaojun Yin
- Shenzhen Key Laboratory of New Information Display and Storage Materials, College of Materials Science and Engineering, Shenzhen University Shenzhen 518060 P. R. China
| | - Chuluo Yang
- Shenzhen Key Laboratory of New Information Display and Storage Materials, College of Materials Science and Engineering, Shenzhen University Shenzhen 518060 P. R. China
| |
Collapse
|
17
|
Li SJ, Sun YW, Li ZW. Two-Step Chirality Transfer to Twisted Assemblies: Synergistic Interplay of Chiral and Aggregation Interactions. ACS NANO 2024; 18:26560-26567. [PMID: 39298663 DOI: 10.1021/acsnano.4c03147] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/22/2024]
Abstract
Chirality plays a pivotal role in both the origin of life and the self-assembly of materials. However, the governing principles behind chirality transfer in hierarchical self-assembly across multiple length scales remain elusive. Here, we propose a concise and versatile simulation strategy using the patchy particle chain model to investigate the self-assembly of rods interacting through chiral and aggregation interactions. We reveal that chiral interaction possessing an entropic nature, amplifies the fluctuations and twists in the alignment of rods, while aggregation interaction serves as a foundational platform for aggregation and assembly. When both interactions exhibit moderate absolute and relative values, their synergistic interplay facilitates the chirality transfer from rods to assemblies, resulting in the formation of chiral mesoscale ordered structures. Furthermore, we observe a two-step chirality transfer process by monitoring the formation kinetics of the twisted assemblies. This work not only provides a comprehensive insight into chirality transfer mechanisms, but also introduces a versatile mesoscale simulation framework for exploring the role of chirality in hierarchical self-assembly.
Collapse
Affiliation(s)
- Shu-Jia Li
- College of Chemistry, Zhengzhou University, Zhengzhou 450001, China
| | - Yu-Wei Sun
- College of Chemistry, Zhengzhou University, Zhengzhou 450001, China
| | - Zhan-Wei Li
- College of Chemistry, Zhengzhou University, Zhengzhou 450001, China
| |
Collapse
|
18
|
Zhang G, Lyu X, Qin Y, Li Y, Fan Z, Meng X, Cheng Y, Cao Z, Xu Y, Sun D, Gao Y, Gong Q, Lyu G. High discrimination ratio, broadband circularly polarized light photodetector using dielectric achiral nanostructures. LIGHT, SCIENCE & APPLICATIONS 2024; 13:275. [PMID: 39327415 PMCID: PMC11427471 DOI: 10.1038/s41377-024-01634-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/15/2024] [Revised: 08/29/2024] [Accepted: 09/08/2024] [Indexed: 09/28/2024]
Abstract
The on-chip measurement of polarization states plays an increasingly crucial role in modern sensing and imaging applications. While high-performance monolithic linearly polarized photodetectors have been extensively studied, integrated circularly polarized light (CPL) photodetectors are still hindered by inadequate discrimination capability. This study presents a broadband CPL photodetector utilizing achiral all-dielectric nanostructures, achieving an impressive discrimination ratio of ~107 at a wavelength of 405 nm. Our device shows outstanding CPL discrimination capability across the visible band without requiring intensity calibration. It functions based on the CPL-dependent near-field modes within achiral structures: under left or right CPL illumination, distinct near-field modes are excited, resulting in asymmetric irradiation of the two electrodes and generating a photovoltage with directions determined by the chirality of the incident light field. The proposed design strategy facilitates ultra-compact CPL detection across diverse materials, structures, and spectral ranges, presenting a novel avenue for achieving high-performance monolithic CPL detection.
Collapse
Affiliation(s)
- Guanyu Zhang
- State Key Laboratory for Mesoscopic Physics, Collaborative Innovation Center of Quantum Matter, Frontiers Science Center for Nano-Optoelectronics, School of Physics, Peking University, Beijing, China
| | - Xiaying Lyu
- State Key Laboratory for Mesoscopic Physics, Collaborative Innovation Center of Quantum Matter, Frontiers Science Center for Nano-Optoelectronics, School of Physics, Peking University, Beijing, China
| | - Yulu Qin
- State Key Laboratory for Mesoscopic Physics, Collaborative Innovation Center of Quantum Matter, Frontiers Science Center for Nano-Optoelectronics, School of Physics, Peking University, Beijing, China
| | - Yaolong Li
- State Key Laboratory for Mesoscopic Physics, Collaborative Innovation Center of Quantum Matter, Frontiers Science Center for Nano-Optoelectronics, School of Physics, Peking University, Beijing, China
| | - Zipu Fan
- International Center for Quantum Materials, School of Physics, Peking University, Beijing, China
| | - Xianghan Meng
- State Key Laboratory for Mesoscopic Physics, Collaborative Innovation Center of Quantum Matter, Frontiers Science Center for Nano-Optoelectronics, School of Physics, Peking University, Beijing, China
| | - Yuqing Cheng
- School of Mathematics and Physics, University of Science and Technology Beijing, Beijing, China.
| | - Zini Cao
- State Key Laboratory for Mesoscopic Physics, Collaborative Innovation Center of Quantum Matter, Frontiers Science Center for Nano-Optoelectronics, School of Physics, Peking University, Beijing, China
| | - Yixuan Xu
- State Key Laboratory for Mesoscopic Physics, Collaborative Innovation Center of Quantum Matter, Frontiers Science Center for Nano-Optoelectronics, School of Physics, Peking University, Beijing, China
| | - Dong Sun
- International Center for Quantum Materials, School of Physics, Peking University, Beijing, China
| | - Yunan Gao
- State Key Laboratory for Mesoscopic Physics, Collaborative Innovation Center of Quantum Matter, Frontiers Science Center for Nano-Optoelectronics, School of Physics, Peking University, Beijing, China
- Collaborative Innovation Center of Extreme Optics, Shanxi University, Taiyuan, Shanxi, China
- Peking University Yangtze Delta Institute of Optoelectronics, Nantong, Jiangsu, China
| | - Qihuang Gong
- State Key Laboratory for Mesoscopic Physics, Collaborative Innovation Center of Quantum Matter, Frontiers Science Center for Nano-Optoelectronics, School of Physics, Peking University, Beijing, China
- Collaborative Innovation Center of Extreme Optics, Shanxi University, Taiyuan, Shanxi, China
- Peking University Yangtze Delta Institute of Optoelectronics, Nantong, Jiangsu, China
| | - Guowei Lyu
- State Key Laboratory for Mesoscopic Physics, Collaborative Innovation Center of Quantum Matter, Frontiers Science Center for Nano-Optoelectronics, School of Physics, Peking University, Beijing, China.
- Collaborative Innovation Center of Extreme Optics, Shanxi University, Taiyuan, Shanxi, China.
- Peking University Yangtze Delta Institute of Optoelectronics, Nantong, Jiangsu, China.
| |
Collapse
|
19
|
Lu M, Li P, Dong X, Jiang Z, Ren S, Yao J, Dong H, Zhao YS. Adaptive Helical Chirality in Supramolecular Microcrystals for Circularly Polarized Lasing. Angew Chem Int Ed Engl 2024; 63:e202408619. [PMID: 38924245 DOI: 10.1002/anie.202408619] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2024] [Revised: 06/18/2024] [Accepted: 06/24/2024] [Indexed: 06/28/2024]
Abstract
Chiral organic molecules offer a promising platform for exploring circularly polarized lasing, which, however, faces a great challenge that the spatial separation of molecular chiral and luminescent centers limits chiroptical activity. Here we develop a helically chiral supramolecular system with completely overlapped chiral and luminescent units for realizing high-performance circularly polarized lasing. Adaptive helical chirality is obtained by incorporating chiral agents into organic microcrystals. Benefiting from the efficient coupling of stimulated emission with the adaptive helical chirality, the supramolecular microcrystals enable high-performance circularly polarized lasing emission with dissymmetry factors up to ~0.7. This work opens up the way to rational design of chiral organic materials for circularly polarized lasing.
Collapse
Affiliation(s)
- Miaosen Lu
- Key Laboratory of Photochemistry, Institute of Chemistry, Chinese Academy of Sciences, Beijing, 100190, China
- School of Chemical Sciences, University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Penghao Li
- Key Laboratory of Photochemistry, Institute of Chemistry, Chinese Academy of Sciences, Beijing, 100190, China
- School of Chemical Sciences, University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Xinyu Dong
- Key Laboratory of Photochemistry, Institute of Chemistry, Chinese Academy of Sciences, Beijing, 100190, China
- School of Chemical Sciences, University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Zhengjun Jiang
- Key Laboratory of Photochemistry, Institute of Chemistry, Chinese Academy of Sciences, Beijing, 100190, China
- School of Chemical Sciences, University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Shizhe Ren
- Key Laboratory of Photochemistry, Institute of Chemistry, Chinese Academy of Sciences, Beijing, 100190, China
- School of Chemical Sciences, University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Jiannian Yao
- Key Laboratory of Photochemistry, Institute of Chemistry, Chinese Academy of Sciences, Beijing, 100190, China
- School of Chemical Sciences, University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Haiyun Dong
- Key Laboratory of Photochemistry, Institute of Chemistry, Chinese Academy of Sciences, Beijing, 100190, China
- School of Chemical Sciences, University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Yong Sheng Zhao
- Key Laboratory of Photochemistry, Institute of Chemistry, Chinese Academy of Sciences, Beijing, 100190, China
- School of Chemical Sciences, University of Chinese Academy of Sciences, Beijing, 100049, China
| |
Collapse
|
20
|
Guo CH, Zhang Y, Zhao WL, Tan KK, Feng L, Duan L, Chen CF, Li M. Chiral Co-Assembly with Narrowband Multi-Resonance Characteristics for High-Performance Circularly Polarized Organic Light-Emitting Diodes. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2024; 36:e2406550. [PMID: 39054732 DOI: 10.1002/adma.202406550] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/07/2024] [Revised: 07/01/2024] [Indexed: 07/27/2024]
Abstract
A promising kind of ternary chiral co-assemblies with high PLQY, large dissymmetry factor (glum), and narrowband multi-resonance characteristics are achieved by codoped-thermal annealing treatments of achiral luminescent polymer F8BT, chiral inducers R/S-5011, and achiral FRET acceptor DBN-ICZ. The optimized co-assemblies (F8BT)0.9-(R/S-5011)0.1-(DBN-ICZ)0.005 display narrowband yellow emission with full-width half maximum (FWHM) of 37 nm, PLQY of 79%, and intense CPL signals with |glum| of up to 0.26. Meaningfully, solution-processed CP-OLEDs by using those ternary chiral co-assemblies as emitting layer are successfully fabricated, which display yellow circularly polarized electroluminescence (CPEL) with EQEmax of 4.6% and gEL of up to 0.16. The corresponding Q-factor could reach up to 7.36 × 10-3, which is the highest of all the reported CP-OLEDs. Moreover, the devices also exhibit excellent comprehensive device performance with low Von of 7.0 V, high Lmax of about 25 000 cd m-2, extremely low efficiency roll-off with EQE of 4.3% at 10 000 cd m-2, as well as narrowband EL with FWHM of only 39 nm. The proposed ternary co-assembly strategy in fabricating CP-OLED provides the possibility to achieve high comprehensive device performance such as balancing high EQE and large gEL value, as well as narrowband emission, high brightness and low efficiency roll-off simultaneously.
Collapse
Affiliation(s)
- Chen-Hao Guo
- Beijing National Laboratory for Molecular Sciences, CAS Key Laboratory of Molecular Recognition and Function, Institute of Chemistry, Chinese Academy of Sciences, Beijing, 100190, China
- School of Chemistry and Chemical Engineering, Shanxi University, Taiyuan, 030006, China
| | - Yuewei Zhang
- Laboratory of Flexible Electronics Technology, Tsinghua University, Beijing, 100084, China
| | - Wen-Long Zhao
- Beijing National Laboratory for Molecular Sciences, CAS Key Laboratory of Molecular Recognition and Function, Institute of Chemistry, Chinese Academy of Sciences, Beijing, 100190, China
| | - Ke-Ke Tan
- Beijing National Laboratory for Molecular Sciences, CAS Key Laboratory of Molecular Recognition and Function, Institute of Chemistry, Chinese Academy of Sciences, Beijing, 100190, China
| | - Liheng Feng
- School of Chemistry and Chemical Engineering, Shanxi University, Taiyuan, 030006, China
| | - Lian Duan
- Laboratory of Flexible Electronics Technology, Tsinghua University, Beijing, 100084, China
| | - Chuan-Feng Chen
- Beijing National Laboratory for Molecular Sciences, CAS Key Laboratory of Molecular Recognition and Function, Institute of Chemistry, Chinese Academy of Sciences, Beijing, 100190, China
| | - Meng Li
- Beijing National Laboratory for Molecular Sciences, CAS Key Laboratory of Molecular Recognition and Function, Institute of Chemistry, Chinese Academy of Sciences, Beijing, 100190, China
| |
Collapse
|
21
|
Kim H, Choi W, Kim YJ, Kim J, Ahn J, Song I, Kwak M, Kim J, Park J, Yoo D, Park J, Kwak SK, Oh JH. Giant chiral amplification of chiral 2D perovskites via dynamic crystal reconstruction. SCIENCE ADVANCES 2024; 10:eado5942. [PMID: 39167654 PMCID: PMC11338236 DOI: 10.1126/sciadv.ado5942] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/09/2024] [Accepted: 07/16/2024] [Indexed: 08/23/2024]
Abstract
Chiral hybrid perovskites show promise for advanced spin-resolved optoelectronics due to their excellent polarization-sensitive properties. However, chiral perovskites developed to date rely solely on the interaction between chiral organic ligand cations exhibiting point chirality and an inorganic framework, leading to a poorly ordered short-range chiral system. Here, we report a powerful method to overcome this limitation using dynamic long-range organization of chiral perovskites guided by the incorporation of chiral dopants, which induces strong interactions between chiral dopants and chiral cations. The additional interplay of chiral cations with chiral dopants reorganizes the morphological and crystallographic properties of chiral perovskites, notably enhancing the asymmetric behavior of chiral 2D perovskites by more than 10-fold, along with the highest dissymmetry factor of photocurrent (gPh) of ~1.16 reported to date. Our findings present a pioneering approach to efficiently amplify the chiroptical response in chiral perovskites, opening avenues for exploring their potential in cutting-edge optoelectronic applications.
Collapse
Affiliation(s)
- Hongki Kim
- School of Chemical and Biological Engineering, Institute of Chemical Processes, Seoul National University, Seoul 08826, Republic of Korea
- Department of Applied Physical Sciences, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Wonbin Choi
- School of Chemical and Biological Engineering, Institute of Chemical Processes, Seoul National University, Seoul 08826, Republic of Korea
| | - Yu Jin Kim
- School of Energy and Chemical Engineering, Ulsan National Institute of Science and Technology (UNIST), Ulsan 44919, Republic of Korea
| | - Jihoon Kim
- Center for Nanoparticle Research, Institute for Basic Science (IBS), Seoul National University, Seoul 08826, Republic of Korea
| | - Jaeyong Ahn
- School of Chemical and Biological Engineering, Institute of Chemical Processes, Seoul National University, Seoul 08826, Republic of Korea
| | - Inho Song
- School of Chemical and Biological Engineering, Institute of Chemical Processes, Seoul National University, Seoul 08826, Republic of Korea
- Department of Chemistry, Purdue University, West Lafayette, IN, USA
| | - Minjoon Kwak
- School of Chemical and Biological Engineering, Institute of Chemical Processes, Seoul National University, Seoul 08826, Republic of Korea
| | - Jongchan Kim
- School of Chemical and Biological Engineering, Institute of Chemical Processes, Seoul National University, Seoul 08826, Republic of Korea
| | - Jonghyun Park
- School of Chemical and Biological Engineering, Institute of Chemical Processes, Seoul National University, Seoul 08826, Republic of Korea
| | - Dongwon Yoo
- School of Chemical and Biological Engineering, Institute of Chemical Processes, Seoul National University, Seoul 08826, Republic of Korea
- Center for Nanoparticle Research, Institute for Basic Science (IBS), Seoul National University, Seoul 08826, Republic of Korea
| | - Jungwon Park
- School of Chemical and Biological Engineering, Institute of Chemical Processes, Seoul National University, Seoul 08826, Republic of Korea
- Center for Nanoparticle Research, Institute for Basic Science (IBS), Seoul National University, Seoul 08826, Republic of Korea
| | - Sang Kyu Kwak
- Department of Chemical and Biological Engineering, Korea University, Seoul 02841, Republic of Korea
| | - Joon Hak Oh
- School of Chemical and Biological Engineering, Institute of Chemical Processes, Seoul National University, Seoul 08826, Republic of Korea
| |
Collapse
|
22
|
Huang J, You C, Wu B, Wang Y, Zhang Z, Zhang X, Liu C, Huang N, Zheng Z, Wu T, Kiravittaya S, Mei Y, Huang G. Enhanced photothermoelectric conversion in self-rolled tellurium photodetector with geometry-induced energy localization. LIGHT, SCIENCE & APPLICATIONS 2024; 13:153. [PMID: 38965220 PMCID: PMC11224300 DOI: 10.1038/s41377-024-01496-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/11/2024] [Revised: 05/23/2024] [Accepted: 05/26/2024] [Indexed: 07/06/2024]
Abstract
Photodetection has attracted significant attention for information transmission. While the implementation relies primarily on the photonic detectors, they are predominantly constrained by the intrinsic bandgap of active materials. On the other hand, photothermoelectric (PTE) detectors have garnered substantial research interest for their promising capabilities in broadband detection, owing to the self-driven photovoltages induced by the temperature differences. To get higher performances, it is crucial to localize light and heat energies for efficient conversion. However, there is limited research on the energy conversion in PTE detectors at micro/nano scale. In this study, we have achieved a two-order-of-magnitude enhancement in photovoltage responsivity in the self-rolled tubular tellurium (Te) photodetector with PTE effect. Under illumination, the tubular device demonstrates a maximum photovoltage responsivity of 252.13 V W-1 and a large detectivity of 1.48 × 1011 Jones. We disclose the mechanism of the PTE conversion in the tubular structure with the assistance of theoretical simulation. In addition, the device exhibits excellent performances in wide-angle and polarization-dependent detection. This work presents an approach to remarkably improve the performance of photodetector by concentrating light and corresponding heat generated, and the proposed self-rolled devices thus hold remarkable promises for next-generation on-chip photodetection.
Collapse
Affiliation(s)
- Jiayuan Huang
- Department of Materials Science & State Key Laboratory of Molecular Engineering of Polymers, Fudan University, Shanghai, 200438, China
- Yiwu Research Institute of Fudan University, Yiwu, 322000, Zhejiang, China
- International Institute of Intelligent Nanorobots and Nanosystems, Fudan University, Shanghai, 200438, China
| | - Chunyu You
- Department of Materials Science & State Key Laboratory of Molecular Engineering of Polymers, Fudan University, Shanghai, 200438, China
- Yiwu Research Institute of Fudan University, Yiwu, 322000, Zhejiang, China
- International Institute of Intelligent Nanorobots and Nanosystems, Fudan University, Shanghai, 200438, China
| | - Binmin Wu
- Department of Materials Science & State Key Laboratory of Molecular Engineering of Polymers, Fudan University, Shanghai, 200438, China
- Yiwu Research Institute of Fudan University, Yiwu, 322000, Zhejiang, China
- International Institute of Intelligent Nanorobots and Nanosystems, Fudan University, Shanghai, 200438, China
| | - Yunqi Wang
- Department of Materials Science & State Key Laboratory of Molecular Engineering of Polymers, Fudan University, Shanghai, 200438, China
- Yiwu Research Institute of Fudan University, Yiwu, 322000, Zhejiang, China
- International Institute of Intelligent Nanorobots and Nanosystems, Fudan University, Shanghai, 200438, China
| | - Ziyu Zhang
- Department of Materials Science & State Key Laboratory of Molecular Engineering of Polymers, Fudan University, Shanghai, 200438, China
- Yiwu Research Institute of Fudan University, Yiwu, 322000, Zhejiang, China
- International Institute of Intelligent Nanorobots and Nanosystems, Fudan University, Shanghai, 200438, China
| | - Xinyu Zhang
- Department of Materials Science & State Key Laboratory of Molecular Engineering of Polymers, Fudan University, Shanghai, 200438, China
| | - Chang Liu
- Department of Materials Science & State Key Laboratory of Molecular Engineering of Polymers, Fudan University, Shanghai, 200438, China
- Yiwu Research Institute of Fudan University, Yiwu, 322000, Zhejiang, China
- International Institute of Intelligent Nanorobots and Nanosystems, Fudan University, Shanghai, 200438, China
| | - Ningge Huang
- Department of Materials Science & State Key Laboratory of Molecular Engineering of Polymers, Fudan University, Shanghai, 200438, China
- Yiwu Research Institute of Fudan University, Yiwu, 322000, Zhejiang, China
- International Institute of Intelligent Nanorobots and Nanosystems, Fudan University, Shanghai, 200438, China
| | - Zhi Zheng
- Department of Materials Science & State Key Laboratory of Molecular Engineering of Polymers, Fudan University, Shanghai, 200438, China
- Yiwu Research Institute of Fudan University, Yiwu, 322000, Zhejiang, China
- International Institute of Intelligent Nanorobots and Nanosystems, Fudan University, Shanghai, 200438, China
| | - Tingqi Wu
- ShanghaiTech Quantum Device Lab, ShanghaiTech University, Shanghai, 200120, China
| | - Suwit Kiravittaya
- Department of Electrical Engineering, Faculty of Engineering, Chulalongkorn University, Bangkok, Thailand
| | - Yongfeng Mei
- Department of Materials Science & State Key Laboratory of Molecular Engineering of Polymers, Fudan University, Shanghai, 200438, China
- Yiwu Research Institute of Fudan University, Yiwu, 322000, Zhejiang, China
- International Institute of Intelligent Nanorobots and Nanosystems, Fudan University, Shanghai, 200438, China
- Shanghai Frontiers Science Research Base of Intelligent Optoelectronics and Perception, Institute of Optoelectronics, Fudan University, Shanghai, 200438, China
| | - Gaoshan Huang
- Department of Materials Science & State Key Laboratory of Molecular Engineering of Polymers, Fudan University, Shanghai, 200438, China.
- Yiwu Research Institute of Fudan University, Yiwu, 322000, Zhejiang, China.
- International Institute of Intelligent Nanorobots and Nanosystems, Fudan University, Shanghai, 200438, China.
| |
Collapse
|
23
|
Zhao T, Duan P. Photon Upconversion Cooperates with Downshifting in Chiral Systems: Modulation, Amplification, and Applications of Circularly Polarized Luminescence. Angew Chem Int Ed Engl 2024; 63:e202406524. [PMID: 38702292 DOI: 10.1002/anie.202406524] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2024] [Revised: 05/02/2024] [Accepted: 05/03/2024] [Indexed: 05/06/2024]
Abstract
Circularly polarized luminescence (CPL)-active materials are increasingly recognized for their potential applications such as 3D imaging, data storage, and optoelectronic devices. Typically, CPL materials have required high-energy (HE) photons for excitation to emit low-energy (LE) circularly polarized light, a process known as downshifting CPL (DSCPL). However, the emergence of upconverted CPL (UCCPL), where the absorption of multi LE photons results in the emission of a single HE photon with circular polarization, has recently attracted considerable attention. This minireview highlights the intricate relationship between upconversion and CPL phenomena. During upconversion, the dissymmetry factor (glum) value can be improved in certain systems. Additionally, the integration of both LE and HE photons in upconversion-downshifting-synergistic systems offers avenues for dual-excitation or dual-emission CPL functionalities. More in detail, the emerging UCCPL based on various photon upconversion mechanisms and their synergy with DSCPL are introduced. Additionally, several examples that demonstrate the applications of UCCPL are presented to highlight the future opportunities.
Collapse
Affiliation(s)
- Tonghan Zhao
- CAS Key Laboratory of Nanosystem and Hierarchical Fabrication, National Center for Nanoscience and Technology (NCNST), No.11, ZhongGuanCun BeiYiTiao, Beijing, 100190, P.R. China
- Present address T. Zhao, Karlsruhe Institute of Technology, Hermann-von-Helmholtz-Platz 1, 76344, Eggenstein-Leopoldshafen, Germany
| | - Pengfei Duan
- CAS Key Laboratory of Nanosystem and Hierarchical Fabrication, National Center for Nanoscience and Technology (NCNST), No.11, ZhongGuanCun BeiYiTiao, Beijing, 100190, P.R. China
- Present address T. Zhao, Karlsruhe Institute of Technology, Hermann-von-Helmholtz-Platz 1, 76344, Eggenstein-Leopoldshafen, Germany
- University of Chinese Academy of Sciences, No.1 Yanqihu East Rd, Huairou District, Beijing, 100049, P. R. China
| |
Collapse
|
24
|
Gong ZL, Dan TX, Chen JC, Li ZQ, Yao J, Zhong YW. Boost the Circularly Polarized Phosphorescence of Chiral Organometallic Platinum Complexes by Hierarchical Assembly into Fibrillar Networks. Angew Chem Int Ed Engl 2024; 63:e202402882. [PMID: 38594208 DOI: 10.1002/anie.202402882] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2024] [Revised: 04/06/2024] [Accepted: 04/09/2024] [Indexed: 04/11/2024]
Abstract
Circularly polarized luminescence (CPL)-active molecular materials have drawn increasing attention due to their promising applications for next-generation display and optoelectronic technologies. Currently, it is challenging to obtain CPL materials with both large luminescence dissymmetry factor (glum) and high quantum yield (Φ). A pair of enantiomeric N N C-type Pt(II) complexes (L/D)-1 modified with chiral Leucine methyl ester are presented herein. Though the solutions of these complexes are CPL-inactive, the spin-coated thin films of (L/D)-1 exhibit giantly-amplified circularly polarized phosphorescences with |glum| of 0.53 at 560 nm and Φair of ~50 %, as well as appealing circular dichroism (CD) signals with the maximum absorption dissymmetry factor |gabs| of 0.37-0.43 at 480 nm. This superior CPL performance benefits from the hierarchical formation of crystalline fibrillar networks upon spin coating. Comparative studies of another pair of chiral Pt(II) complexes (L/D)-2 with a symmetric N C N coordination mode suggest that the asymmetric N N C coordination of (L/D)-1 are favorable for the efficient exciton delocalization to amplify the CPL performance. Optical applications of the thin films of (L/D)-1 in CPL-contrast imaging and inducing CP light generation from achiral emitters and common light-emitting diode lamps have been successfully realized.
Collapse
Affiliation(s)
- Zhong-Liang Gong
- Beijing National Laboratory for Molecular Sciences, CAS Key Laboratory of Photochemistry, CAS Research/Education Center for Excellence in Molecular Sciences, Institute of Chemistry, Chinese Academy of Sciences, Beijing, 100190, China
| | - Ti-Xiong Dan
- Beijing National Laboratory for Molecular Sciences, CAS Key Laboratory of Photochemistry, CAS Research/Education Center for Excellence in Molecular Sciences, Institute of Chemistry, Chinese Academy of Sciences, Beijing, 100190, China
- School of Chemical Sciences, University of Chinese Academy of Sciences, Beijing, 100190, China
| | - Jian-Cheng Chen
- Beijing National Laboratory for Molecular Sciences, CAS Key Laboratory of Photochemistry, CAS Research/Education Center for Excellence in Molecular Sciences, Institute of Chemistry, Chinese Academy of Sciences, Beijing, 100190, China
- School of Chemical Sciences, University of Chinese Academy of Sciences, Beijing, 100190, China
| | - Zhong-Qiu Li
- Beijing National Laboratory for Molecular Sciences, CAS Key Laboratory of Photochemistry, CAS Research/Education Center for Excellence in Molecular Sciences, Institute of Chemistry, Chinese Academy of Sciences, Beijing, 100190, China
| | - Jiannian Yao
- Beijing National Laboratory for Molecular Sciences, CAS Key Laboratory of Photochemistry, CAS Research/Education Center for Excellence in Molecular Sciences, Institute of Chemistry, Chinese Academy of Sciences, Beijing, 100190, China
- School of Chemical Sciences, University of Chinese Academy of Sciences, Beijing, 100190, China
| | - Yu-Wu Zhong
- Beijing National Laboratory for Molecular Sciences, CAS Key Laboratory of Photochemistry, CAS Research/Education Center for Excellence in Molecular Sciences, Institute of Chemistry, Chinese Academy of Sciences, Beijing, 100190, China
- School of Chemical Sciences, University of Chinese Academy of Sciences, Beijing, 100190, China
| |
Collapse
|
25
|
Wang N, Zeng K, Zheng Y, Jiang H, Yang Y, Zhang Y, Li D, Yu S, Ye Q, Peng H. High-Performance Thermoelectric Fibers from Metal-Backboned Polymers for Body-Temperature Wearable Power Devices. Angew Chem Int Ed Engl 2024; 63:e202403415. [PMID: 38573437 DOI: 10.1002/anie.202403415] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2024] [Revised: 03/19/2024] [Accepted: 04/02/2024] [Indexed: 04/05/2024]
Abstract
Metal-backboned polymers (MBPs), with a unique backbone consisting of bonded metal atoms, are promising for optic, electric, magnetic, and thermoelectric fields. However, the application of MBP remains relatively understudied. Here, we develop a shear-induced orientation method to construct a flexible nickel-backboned polymer/carbon nanotube (NBP/CNT) thermoelectric composite fiber. It demonstrated a power factor of 719.48 μW ⋅m-1 K-2, which is ca. 3.5 times as high as the bare CNT fiber. Remarkably, with the regulation of carrier mobility and carrier concentration of NBP, the composite fiber further showed simultaneous increases in electrical conductivity and Seebeck coefficient in comparison to the bare CNT fiber. The NBP/CNT fiber can be integrated into fabrics to harvest thermal energy of human body to generate an output voltage of 3.09 mV at a temperature difference of 8 K. This research opens a new avenue for the development of MBPs in power supply.
Collapse
Affiliation(s)
- Ning Wang
- State Key Laboratory of Molecular Engineering of Polymers, Department of Macromolecular Science, Institute of Fiber Materials and Devices, and Laboratory of Advanced Materials, Fudan University, Shanghai, 200438, China
| | - Kaiwen Zeng
- State Key Laboratory of Molecular Engineering of Polymers, Department of Macromolecular Science, Institute of Fiber Materials and Devices, and Laboratory of Advanced Materials, Fudan University, Shanghai, 200438, China
| | - Yuanyuan Zheng
- State Key Laboratory of Molecular Engineering of Polymers, Department of Macromolecular Science, Institute of Fiber Materials and Devices, and Laboratory of Advanced Materials, Fudan University, Shanghai, 200438, China
| | - Hongyu Jiang
- State Key Laboratory of Molecular Engineering of Polymers, Department of Macromolecular Science, Institute of Fiber Materials and Devices, and Laboratory of Advanced Materials, Fudan University, Shanghai, 200438, China
| | - Yibei Yang
- State Key Laboratory of Molecular Engineering of Polymers, Department of Macromolecular Science, Institute of Fiber Materials and Devices, and Laboratory of Advanced Materials, Fudan University, Shanghai, 200438, China
| | - Yifeng Zhang
- State Key Laboratory of Molecular Engineering of Polymers, Department of Macromolecular Science, Institute of Fiber Materials and Devices, and Laboratory of Advanced Materials, Fudan University, Shanghai, 200438, China
| | - Dingke Li
- State Key Laboratory of Molecular Engineering of Polymers, Department of Macromolecular Science, Institute of Fiber Materials and Devices, and Laboratory of Advanced Materials, Fudan University, Shanghai, 200438, China
| | - Sihui Yu
- State Key Laboratory of Molecular Engineering of Polymers, Department of Macromolecular Science, Institute of Fiber Materials and Devices, and Laboratory of Advanced Materials, Fudan University, Shanghai, 200438, China
| | - Qian Ye
- State Key Laboratory of Molecular Engineering of Polymers, Department of Macromolecular Science, Institute of Fiber Materials and Devices, and Laboratory of Advanced Materials, Fudan University, Shanghai, 200438, China
| | - Huisheng Peng
- State Key Laboratory of Molecular Engineering of Polymers, Department of Macromolecular Science, Institute of Fiber Materials and Devices, and Laboratory of Advanced Materials, Fudan University, Shanghai, 200438, China
| |
Collapse
|
26
|
Fan Y, Huang W, Zhu F, Liu X, Jin C, Guo C, An Y, Kivshar Y, Qiu CW, Li W. Dispersion-assisted high-dimensional photodetector. Nature 2024; 630:77-83. [PMID: 38750367 DOI: 10.1038/s41586-024-07398-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2023] [Accepted: 04/09/2024] [Indexed: 06/07/2024]
Abstract
Intensity, polarization and wavelength are intrinsic characteristics of light. Characterizing light with arbitrarily mixed information on polarization and spectrum is in high demand1-4. Despite the extensive efforts in the design of polarimeters5-18 and spectrometers19-27, concurrently yielding high-dimensional signatures of intensity, polarization and spectrum of the light fields is challenging and typically requires complicated integration of polarization- and/or wavelength-sensitive elements in the space or time domains. Here we demonstrate that simple thin-film interfaces with spatial and frequency dispersion can project and tailor polarization and spectrum responses in the wavevector domain. By this means, high-dimensional light information can be encoded into single-shot imaging and deciphered with the assistance of a deep residual network. To the best of our knowledge, our work not only enables full characterization of light with arbitrarily mixed full-Stokes polarization states across a broadband spectrum with a single device and a single measurement but also presents comparable, if not better, performance than state-of-the-art single-purpose miniaturized polarimeters or spectrometers. Our approach can be readily used as an alignment-free retrofit for the existing imaging platforms, opening up new paths to ultra-compact and high-dimensional photodetection and imaging.
Collapse
Affiliation(s)
- Yandong Fan
- GPL Photonics Laboratory, State Key Laboratory of Luminescence Science and Technology, Changchun Institute of Optics, Fine Mechanics and Physics, Chinese Academy of Sciences, Changchun, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Weian Huang
- GPL Photonics Laboratory, State Key Laboratory of Luminescence Science and Technology, Changchun Institute of Optics, Fine Mechanics and Physics, Chinese Academy of Sciences, Changchun, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Fei Zhu
- GPL Photonics Laboratory, State Key Laboratory of Luminescence Science and Technology, Changchun Institute of Optics, Fine Mechanics and Physics, Chinese Academy of Sciences, Changchun, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Xingsi Liu
- Department of Electrical and Computer Engineering, National University of Singapore, Singapore, Singapore
| | - Chunqi Jin
- GPL Photonics Laboratory, State Key Laboratory of Luminescence Science and Technology, Changchun Institute of Optics, Fine Mechanics and Physics, Chinese Academy of Sciences, Changchun, China.
- University of Chinese Academy of Sciences, Beijing, China.
| | - Chenzi Guo
- GPL Photonics Laboratory, State Key Laboratory of Luminescence Science and Technology, Changchun Institute of Optics, Fine Mechanics and Physics, Chinese Academy of Sciences, Changchun, China
| | - Yang An
- GPL Photonics Laboratory, State Key Laboratory of Luminescence Science and Technology, Changchun Institute of Optics, Fine Mechanics and Physics, Chinese Academy of Sciences, Changchun, China
| | - Yuri Kivshar
- Nonlinear Physics Centre, Research School of Physics, Australian National University, Canberra, Australian Capital Territory, Australia
- Qingdao Innovation and Development Center, Harbin Engineering University, Qingdao, China
| | - Cheng-Wei Qiu
- Department of Electrical and Computer Engineering, National University of Singapore, Singapore, Singapore.
| | - Wei Li
- GPL Photonics Laboratory, State Key Laboratory of Luminescence Science and Technology, Changchun Institute of Optics, Fine Mechanics and Physics, Chinese Academy of Sciences, Changchun, China.
- University of Chinese Academy of Sciences, Beijing, China.
| |
Collapse
|
27
|
Chen K, Liu Y, Wang Z, Hu S, Zhao Y, Wang W, Liu G, Wang Z, Jiang W. Longitudinal Extension of Double π-Helix Enables Near-Infrared Amplified Dissymmetry and Chiroptical Response. J Am Chem Soc 2024; 146:13499-13508. [PMID: 38696816 DOI: 10.1021/jacs.4c02914] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/04/2024]
Abstract
Near-infrared (NIR) circularly polarized light absorbing or emitting holds great promise for highly sensitive and precise bioimaging, biosensing, and photodetectors. Aiming at designing NIR chiral molecular systems with amplified dissymmetry and robust chiroptical response, herein, we present a series of double π-helical dimers with longitudinally extended π-entwined substructures via Ullmann or Yamamoto homocoupling reactions. Circular dichroism (CD) spectra revealed an approximate linear bathochromic shift with the rising number of naphthalene subunits, indicating a red to NIR chiroptical response. Particularly, the terrylene diimide-entwined dimers exhibited the strongest CD intensities, with the maximal |Δε| reaching up to 393 M-1 cm-1 at 666 nm for th-TDI[2]; and a record-high chiroptical response (|ΔΔε|) between the neutral and dianionic species of 520 M-1 cm-1 at 833 nm for th-TDI[2]Cl was achieved upon further reduction to its dianionic state. Time-dependent density functional theory (TDDFT) calculations suggested that the pronounced intensification of the CD spectra originated from a simultaneous enhancement of both electric (μ) and magnetic (m) transition dipole moments, ultimately leading to an overall increase in the rotatory strength (R). Notably, the circularly polarized luminescence (CPL) brightness (BCPL) reached 77 M-1 cm-1 for th-TDI[2]Cl, among the highest values reported for NIR-CPL emitters. Furthermore, all chiral dianions exhibited excellent air stability under ambient conditions with half-life times of up to 10 days in N-methylpyrrolidone (NMP), which is significant for future biological applications and chiroptic switches.
Collapse
Affiliation(s)
- Kai Chen
- Key Laboratory for Advanced Materials and Joint International Research Laboratory of Precision Chemistry and Molecular Engineering, Feringa Nobel Prize Scientist Joint Research Center, Frontiers Science Center for Materiobiology and Dynamic Chemistry, Institute of Fine Chemicals, School of Chemistry and Molecular Engineering, East China University of Science and Technology, Shanghai 200237, China
| | - Yujian Liu
- Key Laboratory of Organic Optoelectronics and Molecular Engineering, Department of Chemistry, Tsinghua University, Beijing 100084, China
| | - Zhaolong Wang
- State Key Laboratory of Molecular Reaction Dynamics and Collaborative Innovation Center of Chemistry for Energy Materials (iChEM), Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, China
| | - Shunlong Hu
- Key Laboratory for Advanced Materials and Joint International Research Laboratory of Precision Chemistry and Molecular Engineering, Feringa Nobel Prize Scientist Joint Research Center, Frontiers Science Center for Materiobiology and Dynamic Chemistry, Institute of Fine Chemicals, School of Chemistry and Molecular Engineering, East China University of Science and Technology, Shanghai 200237, China
| | - Yilun Zhao
- Key Laboratory for Advanced Materials and Joint International Research Laboratory of Precision Chemistry and Molecular Engineering, Feringa Nobel Prize Scientist Joint Research Center, Frontiers Science Center for Materiobiology and Dynamic Chemistry, Institute of Fine Chemicals, School of Chemistry and Molecular Engineering, East China University of Science and Technology, Shanghai 200237, China
| | - Wei Wang
- Key Laboratory for Advanced Materials and Joint International Research Laboratory of Precision Chemistry and Molecular Engineering, Feringa Nobel Prize Scientist Joint Research Center, Frontiers Science Center for Materiobiology and Dynamic Chemistry, Institute of Fine Chemicals, School of Chemistry and Molecular Engineering, East China University of Science and Technology, Shanghai 200237, China
| | - Guogang Liu
- Key Laboratory for Advanced Materials and Joint International Research Laboratory of Precision Chemistry and Molecular Engineering, Feringa Nobel Prize Scientist Joint Research Center, Frontiers Science Center for Materiobiology and Dynamic Chemistry, Institute of Fine Chemicals, School of Chemistry and Molecular Engineering, East China University of Science and Technology, Shanghai 200237, China
| | - Zhaohui Wang
- Key Laboratory for Advanced Materials and Joint International Research Laboratory of Precision Chemistry and Molecular Engineering, Feringa Nobel Prize Scientist Joint Research Center, Frontiers Science Center for Materiobiology and Dynamic Chemistry, Institute of Fine Chemicals, School of Chemistry and Molecular Engineering, East China University of Science and Technology, Shanghai 200237, China
- Key Laboratory of Organic Optoelectronics and Molecular Engineering, Department of Chemistry, Tsinghua University, Beijing 100084, China
| | - Wei Jiang
- Key Laboratory of Organic Optoelectronics and Molecular Engineering, Department of Chemistry, Tsinghua University, Beijing 100084, China
| |
Collapse
|
28
|
Sun C, Zhang X, Xie Y, Zhou Y, Gao X. True and False Chirality in Chiral Magnetic Nanoparticles. J Phys Chem Lett 2024; 15:4679-4685. [PMID: 38656159 DOI: 10.1021/acs.jpclett.4c01016] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/26/2024]
Abstract
Determining the true or false chirality of a system is essential for the design of advanced chiral materials and for improving their applications. Typically, a magnetic field would cause false optical activity in the chiral material system, thus confusing the true chirality's influence. Here, we provide a simple way to uncover the true and false chirality in chiral ferrimagnetic nanoparticles (FNPs) by using the gel as a rigid frame. The remnant local magnetic field of the FNP gel can be easily adjusted by an external magnetic field or by controlling the concentration of the FNPs. Moreover, the potential application of the FNP gel is detected by induced magnetic circularly polarized luminescence. This work provides deep insight into the true and false chirality in magnetic nanosystems and offers a strategy to construct new optic elements with an adjustable local magnetic field.
Collapse
Affiliation(s)
- Chao Sun
- Wenzhou Key Laboratory of Biophysics, Wenzhou Institute, University of Chinese Academy of Sciences, Wenzhou, Zhejiang 325000, P. R. China
| | - Xueyan Zhang
- Wenzhou Key Laboratory of Biophysics, Wenzhou Institute, University of Chinese Academy of Sciences, Wenzhou, Zhejiang 325000, P. R. China
| | - Yuyu Xie
- Wenzhou Key Laboratory of Biophysics, Wenzhou Institute, University of Chinese Academy of Sciences, Wenzhou, Zhejiang 325000, P. R. China
| | - Yunlong Zhou
- Wenzhou Key Laboratory of Biophysics, Wenzhou Institute, University of Chinese Academy of Sciences, Wenzhou, Zhejiang 325000, P. R. China
| | - Xiaoqing Gao
- Wenzhou Key Laboratory of Biophysics, Wenzhou Institute, University of Chinese Academy of Sciences, Wenzhou, Zhejiang 325000, P. R. China
| |
Collapse
|
29
|
Zhang G, Bao Y, Ma H, Wang N, Cheng X, He Z, Wang X, Miao T, Zhang W. Precise Modulation of Circularly Polarized Luminescence via Polymer Chiral Co-assembly and Contactless Dynamic Chiral Communication. Angew Chem Int Ed Engl 2024; 63:e202401077. [PMID: 38456382 DOI: 10.1002/anie.202401077] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2024] [Revised: 02/17/2024] [Accepted: 03/06/2024] [Indexed: 03/09/2024]
Abstract
Circularly polarized luminescence (CPL) plays a pivotal role in cutting-edge display and information technologies. Currently achieving precise color control and dynamic signal regulation in CPL still remains challenging due to the elusory relationship between fluorescence and chirality. Inspired by the natural mechanisms governing color formation and chiral interaction, we proposed an addition-subtraction principle theory to address this issue. Three fluorene-based polymers synthesized by Suzuki polycondensation with different electron-deficient monomers exhibit similar structures and UV/Vis absorption, but distinct fluorescence emissions due to intramolecular charge transfer. Based on this, precise-color CPL-active films are obtained through quantitative supramolecular co-assembly directed by addition principle. Particularly, an ideal white-emitting CPL film (CIE coordinates: (0.33, 0.33)) is facilely fabricated with a high quantum yield of 80.8 % and a dissymmetry factor (glum) of 1.4×10-2. Structural analysis reveals that the ordered stacking orientation favors higher glum. Furthermore, to address the dynamically regulated challenge, the comparable subtraction principle is proposed, involving a contactless chiral communication between excited and ground states. The representative system consisting of as-prepared fluorene-based polymers and chirality-selective absorption azobenzene (Azo)-containing polymers is constructed, achieving CPL weakening, reversal, and enhancement. Finally, a switchable quick response code is realized based on trans-cis isomerization of Azo moiety.
Collapse
Affiliation(s)
- Gong Zhang
- State and Local Joint Engineering Laboratory for Novel Functional Polymeric Materials, Jiangsu Engineering Laboratory of Novel Functional Polymeric Materials, Suzhou Key Laboratory of Macromolecular Design and Precision Synthesis, College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou, 215123, China
| | - Yinglong Bao
- State and Local Joint Engineering Laboratory for Novel Functional Polymeric Materials, Jiangsu Engineering Laboratory of Novel Functional Polymeric Materials, Suzhou Key Laboratory of Macromolecular Design and Precision Synthesis, College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou, 215123, China
| | - Haotian Ma
- State and Local Joint Engineering Laboratory for Novel Functional Polymeric Materials, Jiangsu Engineering Laboratory of Novel Functional Polymeric Materials, Suzhou Key Laboratory of Macromolecular Design and Precision Synthesis, College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou, 215123, China
| | - Nianwei Wang
- State and Local Joint Engineering Laboratory for Novel Functional Polymeric Materials, Jiangsu Engineering Laboratory of Novel Functional Polymeric Materials, Suzhou Key Laboratory of Macromolecular Design and Precision Synthesis, College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou, 215123, China
| | - Xiaoxiao Cheng
- State and Local Joint Engineering Laboratory for Novel Functional Polymeric Materials, Jiangsu Engineering Laboratory of Novel Functional Polymeric Materials, Suzhou Key Laboratory of Macromolecular Design and Precision Synthesis, College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou, 215123, China
| | - Zixiang He
- State and Local Joint Engineering Laboratory for Novel Functional Polymeric Materials, Jiangsu Engineering Laboratory of Novel Functional Polymeric Materials, Suzhou Key Laboratory of Macromolecular Design and Precision Synthesis, College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou, 215123, China
| | - Xiang Wang
- State and Local Joint Engineering Laboratory for Novel Functional Polymeric Materials, Jiangsu Engineering Laboratory of Novel Functional Polymeric Materials, Suzhou Key Laboratory of Macromolecular Design and Precision Synthesis, College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou, 215123, China
| | - Tengfei Miao
- Jiangsu Key Laboratory for Chemistry of Low-Dimensional Materials, School of Chemistry and Chemical Engineering, Huaiyin Normal University, Huaian, 223300, China
| | - Wei Zhang
- State and Local Joint Engineering Laboratory for Novel Functional Polymeric Materials, Jiangsu Engineering Laboratory of Novel Functional Polymeric Materials, Suzhou Key Laboratory of Macromolecular Design and Precision Synthesis, College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou, 215123, China
- Department School of Chemical and Environmental Engineering, Anhui Polytechnic University, Wuhu, 241000, China
| |
Collapse
|
30
|
Ham SH, Han MJ, Kim M. Chiral Materials for Optics and Electronics: Ready to Rise? MICROMACHINES 2024; 15:528. [PMID: 38675339 PMCID: PMC11052036 DOI: 10.3390/mi15040528] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/09/2024] [Revised: 03/25/2024] [Accepted: 04/10/2024] [Indexed: 04/28/2024]
Abstract
Chiral materials have gained burgeoning interest in optics and electronics, beyond their classical application field of drug synthesis. In this review, we summarize the diverse chiral materials developed to date and how they have been effectively applied to optics and electronics to get an understanding and vision for the further development of chiral materials for advanced optics and electronics.
Collapse
Affiliation(s)
- Seo-Hyeon Ham
- Department of Chemical Engineering, Dankook University, Yongin 16890, Republic of Korea;
| | - Moon Jong Han
- Department of Electronic Engineering, Gachon University, Seongnam 13120, Republic of Korea
| | - Minkyu Kim
- Department of Chemical Engineering, Dankook University, Yongin 16890, Republic of Korea;
| |
Collapse
|
31
|
Yu G, Kuang H, Xu C, Sun M, Hao C. Tri-mode Responses to Reactive Oxygen Species In Vivo by Chiral Vanadium-Based Nanoparticles. Anal Chem 2024; 96:5677-5685. [PMID: 38533607 DOI: 10.1021/acs.analchem.4c00665] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/28/2024]
Abstract
Reactive oxygen species (ROS) are closely associated with the redox balance of the physiological environment, and monitoring ROS can aid in the early diagnosis of many diseases, including cancer. In this study, chiral vanadium trioxide/vanadium nitride (V2O3/VN) nanoparticles (NPs) modified with an organic dye (cyanine 3 [Cy3]) were prepared for ROS sensing. Chiral V2O3/VN NPs were prepared with the "ligand-induced chirality" strategy and showed a g-factor of up to 0.12 at a wavelength of 512 nm. To the best of our knowledge, this g-factor is the highest value of all chiral ceramic nanomaterials. The very high g-factor of the nanoprobe confers very high sensitivity, because the higher g-factor, the higher sensitivity. In the presence of ROS, V3+ in the chiral V2O3/VN nanoprobe undergoes a redox reaction to form V2O5, reducing the circular dichroism and absorbance signals, whereas the fluorescence signal of Cy3 is restored. With this nanoprobe, the limits of detection for the circular dichroic and fluorescence signals in living cells are 0.0045 nmol/106 and 0.018 nmol/106 cells, respectively. This chiral nanoprobe can also monitor ROS levels in vivo by fluorescence. This strategy provides an innovative approach to the detection of ROS and is expected to promote the wider application of chiral nanomaterials for biosensing.
Collapse
Affiliation(s)
- Guangbo Yu
- International Joint Research Laboratory for Biointerface and Biodetection, State Key Laboratory of Food Science and Technology, School of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu 214122, P. R. China
| | - Hua Kuang
- International Joint Research Laboratory for Biointerface and Biodetection, State Key Laboratory of Food Science and Technology, School of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu 214122, P. R. China
| | - Chuanlai Xu
- International Joint Research Laboratory for Biointerface and Biodetection, State Key Laboratory of Food Science and Technology, School of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu 214122, P. R. China
| | - Maozhong Sun
- International Joint Research Laboratory for Biointerface and Biodetection, State Key Laboratory of Food Science and Technology, School of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu 214122, P. R. China
| | - Changlong Hao
- International Joint Research Laboratory for Biointerface and Biodetection, State Key Laboratory of Food Science and Technology, School of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu 214122, P. R. China
| |
Collapse
|
32
|
Zeng M, Wang W, Zhang S, Gao Z, Yan Y, Liu Y, Qi Y, Yan X, Zhao W, Zhang X, Guo N, Li H, Li H, Xie G, Tao Y, Chen R, Huang W. Enabling robust blue circularly polarized organic afterglow through self-confining isolated chiral chromophore. Nat Commun 2024; 15:3053. [PMID: 38594234 PMCID: PMC11004163 DOI: 10.1038/s41467-024-47240-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2023] [Accepted: 03/25/2024] [Indexed: 04/11/2024] Open
Abstract
Creating circularly polarized organic afterglow system with elevated triplet energy levels, suppressed non-radiative transitions, and effective chirality, which are three critical prerequisites for achieving blue circularly polarized afterglow, has posed a formidable challenge. Herein, a straightforward approach is unveiled to attain blue circularly polarized afterglow materials by covalently self-confining isolated chiral chromophore within polymer matrix. The formation of robust hydrogen bonds within the polymer matrix confers a distinctly isolated and stabilized molecular state of chiral chromophores, endowing a blue emission band at 414 nm, lifetime of 3.0 s, and luminescent dissymmetry factor of ~ 10-2. Utilizing the synergistic afterglow and chirality energy transfer, full-color circularly polarized afterglow systems are endowed by doping colorful fluorescent molecules into designed blue polymers, empowering versatile applications. This work paves the way for the streamlined design of blue circularly polarized afterglow materials, expanding the horizons of circularly polarized afterglow materials into various domains.
Collapse
Affiliation(s)
- Mingjian Zeng
- State Key Laboratory of Organic Electronics and Information Displays & Institute of Advanced Materials (IAM), Nanjing University of Posts & Tele communications, Nanjing, China
| | - Weiguang Wang
- State Key Laboratory of Organic Electronics and Information Displays & Institute of Advanced Materials (IAM), Nanjing University of Posts & Tele communications, Nanjing, China
| | - Shuman Zhang
- State Key Laboratory of Organic Electronics and Information Displays & Institute of Advanced Materials (IAM), Nanjing University of Posts & Tele communications, Nanjing, China
| | - Zhisheng Gao
- State Key Laboratory of Organic Electronics and Information Displays & Institute of Advanced Materials (IAM), Nanjing University of Posts & Tele communications, Nanjing, China
| | - Yingmeng Yan
- State Key Laboratory of Organic Electronics and Information Displays & Institute of Advanced Materials (IAM), Nanjing University of Posts & Tele communications, Nanjing, China
| | - Yitong Liu
- State Key Laboratory of Organic Electronics and Information Displays & Institute of Advanced Materials (IAM), Nanjing University of Posts & Tele communications, Nanjing, China
| | - Yulong Qi
- State Key Laboratory of Organic Electronics and Information Displays & Institute of Advanced Materials (IAM), Nanjing University of Posts & Tele communications, Nanjing, China
| | - Xin Yan
- State Key Laboratory of Organic Electronics and Information Displays & Institute of Advanced Materials (IAM), Nanjing University of Posts & Tele communications, Nanjing, China
| | - Wei Zhao
- State Key Laboratory of Organic Electronics and Information Displays & Institute of Advanced Materials (IAM), Nanjing University of Posts & Tele communications, Nanjing, China
| | - Xin Zhang
- State Key Laboratory of Organic Electronics and Information Displays & Institute of Advanced Materials (IAM), Nanjing University of Posts & Tele communications, Nanjing, China
| | - Ningning Guo
- State Key Laboratory of Organic Electronics and Information Displays & Institute of Advanced Materials (IAM), Nanjing University of Posts & Tele communications, Nanjing, China
| | - Huanhuan Li
- State Key Laboratory of Organic Electronics and Information Displays & Institute of Advanced Materials (IAM), Nanjing University of Posts & Tele communications, Nanjing, China
| | - Hui Li
- State Key Laboratory of Organic Electronics and Information Displays & Institute of Advanced Materials (IAM), Nanjing University of Posts & Tele communications, Nanjing, China
| | - Gaozhan Xie
- State Key Laboratory of Organic Electronics and Information Displays & Institute of Advanced Materials (IAM), Nanjing University of Posts & Tele communications, Nanjing, China
| | - Ye Tao
- State Key Laboratory of Organic Electronics and Information Displays & Institute of Advanced Materials (IAM), Nanjing University of Posts & Tele communications, Nanjing, China.
- Songshan Lake Materials Laboratory, Dongguan, Guangdong, China.
| | - Runfeng Chen
- State Key Laboratory of Organic Electronics and Information Displays & Institute of Advanced Materials (IAM), Nanjing University of Posts & Tele communications, Nanjing, China.
| | - Wei Huang
- State Key Laboratory of Organic Electronics and Information Displays & Institute of Advanced Materials (IAM), Nanjing University of Posts & Tele communications, Nanjing, China.
- Frontiers Science Center for Flexible Electronics (FSCFE), MIIT Key Laboratory of Flexible Electronics (KLoFE), Northwestern Polytechnical University, Xi'an, Shanxi, China.
| |
Collapse
|
33
|
Kim H, Figueroa Morales CA, Seong S, Hu Z, Gong X. Perovskite-Supramolecular Co-Assembly for Chiral Optoelectronics. ACS APPLIED MATERIALS & INTERFACES 2024; 16:16515-16521. [PMID: 38507219 DOI: 10.1021/acsami.4c00622] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/22/2024]
Abstract
Hybrid inorganic-organic perovskites with chiral response and outstanding optoelectronic characteristics are promising materials for next-generation spin-optoelectronics. In particular, two-dimensional (2D) perovskites are promising chiroptical candidates due to their unique ability to incorporate chiral organic cations into their crystal structure, which imparts chirality. To enable their practical applications in chiral optoelectronic devices, it is essential to achieve an anisotropy factor (gCD ∼ 2) in chiral 2D perovskites. Currently, chiral 2D perovskites exhibit a relatively low gCD of 3.1 × 10-3. Several approaches have been explored to improve the chiral response of chiral 2D perovskites, including tailoring the molecular structure of chiral cations and increasing the degree of octahedral tilting in the perovskite lattice. However, current methods for chiral amplification have only achieved a moderate enhancement of gCD by 2-fold and are often accompanied by undesirable shifts or inversion in the circular dichroism spectra. There is a need for a more efficient approach to enhancing the chirality in 2D perovskites. Here, we report an innovative coassembly process that allows us to seamlessly grow chiral 2D perovskites on supramolecular helical structures. We discover that the interactions between perovskites and chiral supramolecular structures promote crystal lattice distortion in perovskites, which improves the chirality of 2D perovskites. Additionally, the obtained hierarchical coassembly can effectively harness the structural chirality of the supramolecular helices. The multilevel chiral enhancement leads to an enhancement in gCD by 2.7-fold without compromising the circular dichroism spectra of 2D perovskites.
Collapse
Affiliation(s)
- Hongki Kim
- Department of Chemical Engineering, University of Michigan, Ann Arbor, Michigan 48109, United States
| | - Carlos A Figueroa Morales
- Macromolecular Science and Engineering Program, University of Michigan, Ann Arbor, Michigan 48109, United States
| | - Sijun Seong
- Department of Chemical Engineering, University of Michigan, Ann Arbor, Michigan 48109, United States
| | - Zhengtao Hu
- Department of Material Science and Engineering, University of Michigan, Ann Arbor, Michigan 48109, United States
| | - Xiwen Gong
- Department of Chemical Engineering, University of Michigan, Ann Arbor, Michigan 48109, United States
- Macromolecular Science and Engineering Program, University of Michigan, Ann Arbor, Michigan 48109, United States
- Department of Material Science and Engineering, University of Michigan, Ann Arbor, Michigan 48109, United States
- Applied Physics Program, University of Michigan, Ann Arbor, Michigan 48109, United States
- Department of Electrical Engineering and Computer Science, University of Michigan, Ann Arbor, Michigan 48109, United States
| |
Collapse
|
34
|
Wang Q, Bao J, Zhang Y, Wang Y, Qiu D, Yang J, Zhang J, Gao H, Wu Y, Dong H, Yang H, Wei Z. High-Performance Organic Narrow Dual-Band Circular Polarized Light Detection for Encrypted Communications and Color Imaging. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2024; 36:e2312396. [PMID: 38198647 DOI: 10.1002/adma.202312396] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/20/2023] [Revised: 01/02/2024] [Indexed: 01/12/2024]
Abstract
Conventional circularly polarized light (CPL) detectors necessitate several optical elements, posing difficulties in achieving miniature and integrated devices. Recently developed organic CPL detectors require no additional optical elements but usually suffer from low detectivity or low asymmetry factor (g-factor). Here, an organic CPL detector with excellent detectivity and a high g-factor is fabricated. By employing an inverted quasi-planar heterojunction (IPHJ) structure and incorporating an additional liquid crystal film, a CPL detector with an outstanding g-factor of 1.62 is developed. Unfavorable charge injection is effectively suppressed by the IPHJ structure, which reduces the dark current of the organic photodetector. Consequently, a left CPL detectivity of 6.16 × 1014 Jones at 640 nm is realized, surpassing all of the latest photodiode-type CPL detectors. Adopting a liquid crystal film with adjustable wavelengths of selectively reflected light, the hybrid device achieves narrow dual-band CPL detection, varying from 530 to 640 nm, with a half-maximum full width below 90 nm. Notably, the device achieves excellent stability of 260 000 on/off cycles without attenuation. To the best of the authors' knowledge, all these features have rarely been reported in previous work. The CPL detector arrays are also demonstrated for encrypted communications and color imaging.
Collapse
Affiliation(s)
- Qingkai Wang
- CAS Key Laboratory of Nanosystem and Hierarchical Fabrication, CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology, Beijing, 100190, China
- University of Chinese Academy of Sciences, Beijing, 100049, P. R. China
| | - Jinying Bao
- School of Materials Science and Engineering, Peking University, Beijing, 100871, P. R. China
| | - Yajie Zhang
- CAS Key Laboratory of Nanosystem and Hierarchical Fabrication, CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology, Beijing, 100190, China
| | - Yuheng Wang
- Faculty of Electrical Engineering and Computer Science, Ningbo University, Ningbo, Zhejiang, 315211, China
| | - Dingding Qiu
- CAS Key Laboratory of Nanosystem and Hierarchical Fabrication, CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology, Beijing, 100190, China
| | - Jiaxin Yang
- Beijing National Laboratory for Molecular Sciences, Key Laboratory of Organic Solid, Institute of Chemistry, Chinese Academy of Sciences, Beijing, 100190, P. R. China
| | - Jianqi Zhang
- CAS Key Laboratory of Nanosystem and Hierarchical Fabrication, CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology, Beijing, 100190, China
| | - Hanfei Gao
- Key Laboratory of Bio-Inspired Materials and Interfacial Science, Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Beijing, 100190, China
| | - Yuchen Wu
- Key Laboratory of Bio-Inspired Materials and Interfacial Science, Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Beijing, 100190, China
| | - Huanli Dong
- Beijing National Laboratory for Molecular Sciences, Key Laboratory of Organic Solid, Institute of Chemistry, Chinese Academy of Sciences, Beijing, 100190, P. R. China
| | - Huai Yang
- School of Materials Science and Engineering, Peking University, Beijing, 100871, P. R. China
| | - Zhixiang Wei
- CAS Key Laboratory of Nanosystem and Hierarchical Fabrication, CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology, Beijing, 100190, China
| |
Collapse
|
35
|
Kwon Y, Jung J, Lee WB, Oh JH. Axially Chiral Organic Semiconductors for Visible-Blind UV-Selective Circularly Polarized Light Detection. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2024; 11:e2308262. [PMID: 38311579 PMCID: PMC11005684 DOI: 10.1002/advs.202308262] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/01/2023] [Revised: 12/23/2023] [Indexed: 02/06/2024]
Abstract
Technologies that detect circularly polarized light (CPL), particularly in the UV region, have significant potential for various applications, including bioimaging and optical communication. However, a major challenge in directly sensing CPL arises from the conflicting requirements of planar structures for efficient charge transport and distorted structures for effective interaction with CPL. Here, a novel design of an axially chiral n-type organic semiconductor is presented to surmount the challenge, in which a binaphthyl group results in a high dissymmetry factor at the molecular level, while maintaining excellent electron-transporting characteristics through the naphthalene diimide group. Experimental and computational methods reveal different stacking behaviors in homochiral and heterochiral assemblies, yielding different structures: Nanowires and nanoparticles, respectively. Especially, the homochiral assemblies exhibit effective π-π stacking between naphthalene diimides despite axial chirality. Thus, phototransistors fabricated using enantiomers exhibit a high maximum electron mobility of 0.22 cm2 V-1 s-1 and a detectivity of 3.9 × 1012 Jones, alongside the CPL distinguishing ability with a dissymmetry factor of responsivity of 0.05. Furthermore, the material possesses a wide bandgap, contributing to its excellent visible-blind UV-selective detection. These findings highlight the new strategy for compact CPL detectors, coupled with the demonstration of less-explored n-type and UV region phototransistors.
Collapse
Affiliation(s)
- Yejin Kwon
- School of Chemical and Biological EngineeringInstitute of Chemical ProcessesSeoul National University1 Gwanak‐ro, Gwanak‐guSeoul08826Republic of Korea
| | - Je‐Yeon Jung
- School of Chemical and Biological EngineeringInstitute of Chemical ProcessesSeoul National University1 Gwanak‐ro, Gwanak‐guSeoul08826Republic of Korea
| | - Won Bo Lee
- School of Chemical and Biological EngineeringInstitute of Chemical ProcessesSeoul National University1 Gwanak‐ro, Gwanak‐guSeoul08826Republic of Korea
| | - Joon Hak Oh
- School of Chemical and Biological EngineeringInstitute of Chemical ProcessesSeoul National University1 Gwanak‐ro, Gwanak‐guSeoul08826Republic of Korea
| |
Collapse
|
36
|
Liu Y, Li Z, Wang MW, Chan J, Liu G, Wang Z, Jiang W. Highly Luminescent Chiral Double π-Helical Nanoribbons. J Am Chem Soc 2024; 146:5295-5304. [PMID: 38363710 DOI: 10.1021/jacs.3c11942] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/18/2024]
Abstract
Unveiling the mechanism behind chirality propagation and dissymmetry amplification at the molecular level is of significance for the development of chiral systems with comprehensively outstanding chiroptical performances. Herein, we have presented a straightforward Cu-mediated Ullmann homocoupling approach to synthesize perylene diimide-entwined double π-helical nanoribbons encompassing dimer, trimer, and tetramer while producing homochiral or heterochiral linking of chiral centers. A significant dissymmetry amplification was achieved, with absorption dissymmetry factors (|gabs|) increasing from 0.009 to 0.017 and further to 0.019, and luminescence dissymmetry factors (|glum|) rising from 0.007 to 0.013 and eventually to 0.015 for homochiral double π-helical oligomers. The disparity of magnetic transition dipole moment (m) densities in homochiral and heterochiral tetramers by time-dependent density functional theory calculations confirmed that homochiral oligomerization can maximize the total m, which is favorable for achieving ever-increasing g factors. Notably, these double π-helices exhibited exceptional photoluminescence quantum yields (ΦPL) ranging from 83 to 95%. The circularly polarized luminescence brightness (BCPL) eventually reached a remarkable 575 M-1 cm-1 for the homochiral tetramer, which is among the highest values reported for chiral small molecules. This kind of linearly extended double π-helices offers a platform for a comprehensive understanding of the mechanism behind chirality propagation and dissymmetry amplification.
Collapse
Affiliation(s)
- Yujian Liu
- Key Laboratory of Organic Optoelectronics and Molecular Engineering, Department of Chemistry, Tsinghua University, Beijing 100084, China
| | - Zuoyu Li
- Key Laboratory of Organic Optoelectronics and Molecular Engineering, Department of Chemistry, Tsinghua University, Beijing 100084, China
| | - Ming-Wei Wang
- Key Laboratory of Organic Optoelectronics and Molecular Engineering, Department of Chemistry, Tsinghua University, Beijing 100084, China
| | - Jiangtao Chan
- Key Laboratory of Organic Optoelectronics and Molecular Engineering, Department of Chemistry, Tsinghua University, Beijing 100084, China
| | - Guogang Liu
- Key Laboratory for Advanced Materials and Joint International Research Laboratory of Precision Chemistry and Molecular Engineering, Feringa Nobel Prize Scientist Joint Research Center, Frontiers Science Center for Materiobiology and Dynamic Chemistry, Institute of Fine Chemicals, School of Chemistry and Molecular Engineering, East China University of Science and Technology, Shanghai 200237, China
| | - Zhaohui Wang
- Key Laboratory of Organic Optoelectronics and Molecular Engineering, Department of Chemistry, Tsinghua University, Beijing 100084, China
| | - Wei Jiang
- Key Laboratory of Organic Optoelectronics and Molecular Engineering, Department of Chemistry, Tsinghua University, Beijing 100084, China
| |
Collapse
|
37
|
Caricato M. A Perspective on the Simulation of Electronic Circular Dichroism and Circularly Polarized Luminescence Spectra in Chiral Solid Materials. J Phys Chem A 2024; 128:1197-1206. [PMID: 38295762 DOI: 10.1021/acs.jpca.3c08095] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/23/2024]
Abstract
Chiral materials have shown tremendous potential for many technological applications, such as optoelectronics, sensing, magnetism, information technology, and imaging. Characterization of these materials is mostly based on chiroptical spectroscopies, such as electronic circular dichroism (ECD) and circularly polarized luminescence (CPL). These experimental measurements would greatly benefit from theoretical simulations for interpretation of the spectra as well as predictions on new materials. While ECD and CPL simulations are well established for molecular systems, they are not for materials. In this Perspective, we describe the theoretical quantities necessary to simulate ECD and CPL spectra in oriented systems. Then, we discuss the approximate strategies currently used to perform these calculations, what computational machinery is already available to develop more general approaches, and some of the open challenges for the simulation of ECD and CPL spectra in solid materials. When methods that are as reliable and computationally efficient as those for molecules are developed, these simulations will provide invaluable insight and guidance for the rational design of optically active materials.
Collapse
Affiliation(s)
- Marco Caricato
- Department of Chemistry, University of Kansas, 1567 Irving Hill Road, Lawrence, Kansas 66045, United States
| |
Collapse
|
38
|
Liu L, Yan Y, Zhao S, Wang T, Zhang W, Zhang J, Hao X, Zhang Y, Zhang X, Wei Z. Stereoisomeric Non-Fullerene Acceptors-Based Organic Solar Cells. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2024; 20:e2305638. [PMID: 37699757 DOI: 10.1002/smll.202305638] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/05/2023] [Revised: 08/20/2023] [Indexed: 09/14/2023]
Abstract
Chiral alkyl chains are ubiquitously observed in organic semiconductor materials and can regulate solution processability and active layer morphology, but the effect of stereoisomers on photovoltaic performance has rarely been investigated. For the racemic Y-type acceptors widely used in organic solar cells, it remains unknown if the individual chiral molecules separate into the conglomerate phase or if racemic phase prevails. Here, the photovoltaic performance of enantiomerically pure Y6 derivatives, (S,S)/(R,R)-BTP-4F, and their chiral mixtures are compared. It is found that (S,S) and (R,R)-BTP-4F molecule in the racemic mixtures tends to interact with its enantiomer. The racemic mixtures enable efficient light harvesting, fast hole transfer, and long polaron lifetime, which is conducive to charge generation and suppresses the recombination losses. Moreover, abundant charge diffusion pathways provided by the racemate contribute to efficient charge transport. As a result, the racemate system maximizes the power output and minimizes losses, leading to a higher efficiency of 18.16% and a reduced energy loss of 0.549 eV, as compared to the enantiomerically pure molecules. This study demonstrates that the chirality of non-fullerene acceptors should receive more attention and be designed rationally to enhance the efficiency of organic solar cells.
Collapse
Affiliation(s)
- Lixuan Liu
- CAS Key Laboratory of Nanosystem and Hierarchical Fabrication, National Center for Nanoscience and Technology, Beijing, 100190, China
- School of Future Technology, University of Chinese Academy of Sciences (UCAS), Beijing, 100049, China
| | - Yangjun Yan
- CAS Key Laboratory of Nanosystem and Hierarchical Fabrication, National Center for Nanoscience and Technology, Beijing, 100190, China
- School of Science, Beijing Jiaotong University, Beijing, 100044, China
| | - Shengda Zhao
- School of Science, Beijing Jiaotong University, Beijing, 100044, China
| | - Tong Wang
- CAS Key Laboratory of Nanosystem and Hierarchical Fabrication, National Center for Nanoscience and Technology, Beijing, 100190, China
| | - Wenqing Zhang
- School of Physics, State Key Laboratory of Crystal Material, Shandong University, Jinan, 250100, China
| | - Jianqi Zhang
- CAS Key Laboratory of Nanosystem and Hierarchical Fabrication, National Center for Nanoscience and Technology, Beijing, 100190, China
| | - Xiaotao Hao
- School of Physics, State Key Laboratory of Crystal Material, Shandong University, Jinan, 250100, China
| | - Yajie Zhang
- CAS Key Laboratory of Nanosystem and Hierarchical Fabrication, National Center for Nanoscience and Technology, Beijing, 100190, China
| | - Xinghua Zhang
- School of Science, Beijing Jiaotong University, Beijing, 100044, China
| | - Zhixiang Wei
- CAS Key Laboratory of Nanosystem and Hierarchical Fabrication, National Center for Nanoscience and Technology, Beijing, 100190, China
- School of Future Technology, University of Chinese Academy of Sciences (UCAS), Beijing, 100049, China
| |
Collapse
|
39
|
Song I, You L, Chen K, Lee WJ, Mei J. Chiroptical Switching of Electrochromic Polymer Thin Films. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2024; 36:e2307057. [PMID: 37897242 DOI: 10.1002/adma.202307057] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/17/2023] [Revised: 10/17/2023] [Indexed: 10/30/2023]
Abstract
The interaction between light and chiroptical polymers plays a crucial role in chiroptics, spintronics, and chiral-spin selectivity. Despite considerable successes in creating dissymmetric polymer films, the elucidation of chiroptical activities under electrochemical switching remains unexplored. Here homogeneous chiral electrochromics is reported using chiral assembly of conjugated polymers through a transient solidification process with molecular chiral templates. In their neutral state, the chiral electrochromic polymers directly produce a remarkably dissymmetric polarization-dependent transmittance. The circular dichroism (CD) and dissymmetric transmission can be tuned by adjusting the doping level of the electrochemically active polymer films. Under high levels of oxidation, the chiroptical activities are reversed with strong bleaching in the visible, leading to formation of monosignate CD spectra over the infrared region. The matching between circular polarization handedness and chirality of chiroptical polymers makes a distinct impact on optical contrast and color switching dynamics due to the flipped chiroptical activities through polymer redox reactions. The differential circularly polarized transmission in the chiral see-through display can make a well-resolved color change in human eyes, demonstrating proof-of-concept devices for 3D imaging and information encryption. This work serves as a foundation to develop advanced on-chip fabrication of circular polarization-multiplexed display in flexible and highly integrated platforms.
Collapse
Affiliation(s)
- Inho Song
- Department of Chemistry, Purdue University, West Lafayette, IN, 47907, USA
| | - Liyan You
- Department of Chemistry, Purdue University, West Lafayette, IN, 47907, USA
| | - Ke Chen
- Department of Chemistry, Purdue University, West Lafayette, IN, 47907, USA
| | - Won-June Lee
- Department of Chemistry, Purdue University, West Lafayette, IN, 47907, USA
| | - Jianguo Mei
- Department of Chemistry, Purdue University, West Lafayette, IN, 47907, USA
| |
Collapse
|
40
|
Weng GG, Xu K, Hou T, Huang XD, Qin MF, Bao SS, Zheng LM. Enhancing the Circularly Polarized Luminescence of Europium Coordination Polymers by Doping a Chromophore Ligand into Superhelices. Inorg Chem 2023; 62:21044-21052. [PMID: 38051505 DOI: 10.1021/acs.inorgchem.3c02806] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/07/2023]
Abstract
Lanthanide-based molecular materials showing efficient circularly polarized luminescence (CPL) activity with a high quantum yield are attractive due to their potential applications in data storage, optical sensors, and 3D displays. Herein we present an innovative method to achieve enhanced CPL activity and a high quantum yield by doping a chromophore ligand into a coordination polymer superhelix. A series of homochiral europium(III) phosphonates with a helical morphology were prepared with the molecular formula S-, R-[Eu(cyampH)3-3n(nempH)3n]·3H2O (S/R-Eu-n, n = 0-5%). The doping of chromophore ligand S- or R-nempH2 into superhelices of S/R-Eu-0% not only turned on the CPL activity with the dissymmetry factor |glum| on the order of 10-3 but also increased the quantum yield by about 14-fold. This work may shed light on the development of efficient CPL-active lanthanide-based coordination polymers for applications.
Collapse
Affiliation(s)
- Guo-Guo Weng
- State Key Laboratory of Coordination Chemistry, School of Chemistry and Chemical Engineering, Collaborative Innovation Center of Advanced Microstructures, Nanjing University, Nanjing, Jiangsu 210023, P. R. China
- Key Laboratory of Jiangxi University for Functional Materials Chemistry, School of Chemistry and Chemical Engineering, Gannan Normal University, Ganzhou, Jiangxi 341000, P. R. China
| | - Kui Xu
- State Key Laboratory of Coordination Chemistry, School of Chemistry and Chemical Engineering, Collaborative Innovation Center of Advanced Microstructures, Nanjing University, Nanjing, Jiangsu 210023, P. R. China
| | - Ting Hou
- State Key Laboratory of Coordination Chemistry, School of Chemistry and Chemical Engineering, Collaborative Innovation Center of Advanced Microstructures, Nanjing University, Nanjing, Jiangsu 210023, P. R. China
| | - Xin-Da Huang
- State Key Laboratory of Coordination Chemistry, School of Chemistry and Chemical Engineering, Collaborative Innovation Center of Advanced Microstructures, Nanjing University, Nanjing, Jiangsu 210023, P. R. China
| | - Ming-Feng Qin
- State Key Laboratory of Coordination Chemistry, School of Chemistry and Chemical Engineering, Collaborative Innovation Center of Advanced Microstructures, Nanjing University, Nanjing, Jiangsu 210023, P. R. China
| | - Song-Song Bao
- State Key Laboratory of Coordination Chemistry, School of Chemistry and Chemical Engineering, Collaborative Innovation Center of Advanced Microstructures, Nanjing University, Nanjing, Jiangsu 210023, P. R. China
| | - Li-Min Zheng
- State Key Laboratory of Coordination Chemistry, School of Chemistry and Chemical Engineering, Collaborative Innovation Center of Advanced Microstructures, Nanjing University, Nanjing, Jiangsu 210023, P. R. China
| |
Collapse
|
41
|
Meskers SCJ. The Exciton Model for Molecular Materials: Past, Present and Future? Chemphyschem 2023:e202300666. [PMID: 38010974 DOI: 10.1002/cphc.202300666] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2023] [Revised: 10/09/2023] [Indexed: 11/29/2023]
Abstract
In assemblies of identical molecules or chromophores, electronic excitations can be described as excitons, bound electron-hole pairs that can move from site to site as a pair in a coherent manner. The understanding of excitons is crucial when trying to engineer favorable photophysical properties through structuring organic molecular matter. In recent decades, limitations of the concept of an exciton have become clear. The exciton can hybridize with phonon and photons. To clarify these issues, the exciton is discussed within the broader context of the gauge properties of the electromagnetic force.
Collapse
Affiliation(s)
- Stefan C J Meskers
- Molecular Materials and Nanosystems Institute for Complex Molecular Systems, Department of Chemical Engineering and Chemistry, Eindhoven university of Technology, 5600 MB, Eindhoven, The Netherlands
| |
Collapse
|
42
|
Park K, Luo X, Kwok JJ, Khasbaatar A, Mei J, Diao Y. Subtle Molecular Changes Largely Modulate Chiral Helical Assemblies of Achiral Conjugated Polymers by Tuning Solution-State Aggregation. ACS CENTRAL SCIENCE 2023; 9:2096-2107. [PMID: 38033802 PMCID: PMC10683494 DOI: 10.1021/acscentsci.3c00775] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 06/26/2023] [Revised: 09/11/2023] [Accepted: 10/04/2023] [Indexed: 12/02/2023]
Abstract
Understanding the solution-state aggregate structure and the consequent hierarchical assembly of conjugated polymers is crucial for controlling multiscale morphologies during solid thin-film deposition and the resultant electronic properties. However, it remains challenging to comprehend detailed solution aggregate structures of conjugated polymers, let alone their chiral assembly due to the complex aggregation behavior. Herein, we present solution-state aggregate structures and their impact on hierarchical chiral helical assembly using an achiral diketopyrrolopyrrole-quaterthiophene (DPP-T4) copolymer and its two close structural analogues wherein the bithiophene is functionalized with methyl groups (DPP-T2M2) or fluorine atoms (DPP-T2F2). Combining in-depth small-angle X-ray scattering analysis with various microscopic solution imaging techniques, we find distinct aggregate in each DPP solution: (i) semicrystalline 1D fiber aggregates of DPP-T2F2 with a strongly bound internal structure, (ii) semicrystalline 1D fiber aggregates of DPP-T2M2 with a weakly bound internal structure, and (iii) highly crystalline 2D sheet aggregates of DPP-T4. These nanoscopic aggregates develop into lyotropic chiral helical liquid crystal (LC) mesophases at high solution concentrations. Intriguingly, the dimensionality of solution aggregates largely modulates hierarchical chiral helical pitches across nanoscopic to micrometer scales, with the more rigid 2D sheet aggregate of DPP-T4 creating much larger pitch length than the more flexible 1D fiber aggregates. Combining relatively small helical pitch with long-range order, the striped twist-bent mesophase of DPP-T2F2 composed of highly ordered, more rigid 1D fiber aggregate exhibits an anisotropic dissymmetry factor (g-factor) as high as 0.09. This study can be a prominent addition to our knowledge on a solution-state hierarchical assembly of conjugated polymers and, in particular, chiral helical assembly of achiral organic semiconductors that can catalyze an emerging field of chiral (opto)electronics.
Collapse
Affiliation(s)
- Kyung
Sun Park
- Department
of Chemical and Biomolecular Engineering, University of Illinois at Urbana−Champaign, 600 S. Mathews Ave., Urbana, Illinois 61801, United States
| | - Xuyi Luo
- Department
of Chemistry, Purdue University, 560 Oval Dr., West Lafayette, Indiana 47907, United States
| | - Justin J. Kwok
- Department
of Materials Science and Engineering, University
of Illinois at Urbana−Champaign, 1304 W. Green St., Urbana, Illinois 61801, United States
| | - Azzaya Khasbaatar
- Department
of Chemical and Biomolecular Engineering, University of Illinois at Urbana−Champaign, 600 S. Mathews Ave., Urbana, Illinois 61801, United States
| | - Jianguo Mei
- Department
of Chemistry, Purdue University, 560 Oval Dr., West Lafayette, Indiana 47907, United States
| | - Ying Diao
- Department
of Chemical and Biomolecular Engineering, University of Illinois at Urbana−Champaign, 600 S. Mathews Ave., Urbana, Illinois 61801, United States
- Department
of Materials Science and Engineering, University
of Illinois at Urbana−Champaign, 1304 W. Green St., Urbana, Illinois 61801, United States
- Beckman
Institute, Molecular Science and Engineering, University of Illinois at Urbana−Champaign, 405 N. Mathews Ave., Urbana, Illinois 61801, United States
- Department
of Chemistry, University of Illinois at
Urbana−Champaign, 505 S. Mathews Ave., Urbana, Illinois 61801, United States
- Materials
Research Laboratory, The Grainger College of Engineering, University of Illinois at Urbana−Champaign, 104 S. Goodwin Ave., Urbana, Illinois 61801, United States
| |
Collapse
|
43
|
Li Y, Chen Y, Li H, Liu C, Li L, Quan Y, Cheng Y. Achiral Dichroic Dyes-mediated Circularly Polarized Emission Regulated by Orientational Order Parameter through Cholesteric Liquid Crystals. Angew Chem Int Ed Engl 2023; 62:e202312159. [PMID: 37776155 DOI: 10.1002/anie.202312159] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2023] [Revised: 09/27/2023] [Accepted: 09/28/2023] [Indexed: 10/01/2023]
Abstract
It is noteworthy that cholesteric liquid crystal (CLC) platforms have been witnessed in high-performance circularly polarized luminescence (CPL) behaviors through the highly organized chiral co-assembled arrangement of achiral dyes. However, most CPL-active design strategies are closely relative to the helix co-assembly structure of CLC rather than achiral dyes. Herein, we developed an intriguing regulation strategy for CPL-active CLC materials. They were regulated using the orientational order parameter (SF ) of achiral dichroic dyes as an incisive probe for the order arrangement degree of achiral dyes in CLC media. The I-shaped phenothiazine derivative PHECN dye (SF =0.30) emitted a strong CPL signal (|glum |=0.47). In contrast, the T-shaped derivative (PHEBen) dye (SF =0.09) showed a weak circular polarization level (|glum |=0.07) at similar CLC textures. Most interestingly, this kind of dichroic PHECN dye with a higher SF could greatly improve the contrast ratio of CPL (Δglum =0.47) and emission intensity (ΔFL=46.0 %) at direct-current electric field compared with the T-shaped PHEBen (Δglum =0.07 and ΔFL=1.0 %) in CLC. This work demonstrates that an induced CPL emission can be mediated using achiral dichroic dye, which will open a new avenue for developing excellent CPL-active display materials.
Collapse
Affiliation(s)
- Yang Li
- State Key Laboratory of Analytical Chemistry for Life Science, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing, 210023, China
| | - Yihan Chen
- State Key Laboratory of Analytical Chemistry for Life Science, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing, 210023, China
- Key Laboratory of High Performance Polymer Material and Technology of Ministry of Education, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing, 210023, China
| | - Hang Li
- State Key Laboratory of Analytical Chemistry for Life Science, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing, 210023, China
| | - Chao Liu
- State Key Laboratory of Analytical Chemistry for Life Science, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing, 210023, China
- Key Laboratory of High Performance Polymer Material and Technology of Ministry of Education, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing, 210023, China
| | - Lulu Li
- School of Environmental and Chemical Engineering, Jiangsu University of Science and Technology, Zhenjiang, 212003, China
| | - Yiwu Quan
- Key Laboratory of High Performance Polymer Material and Technology of Ministry of Education, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing, 210023, China
| | - Yixiang Cheng
- State Key Laboratory of Analytical Chemistry for Life Science, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing, 210023, China
| |
Collapse
|
44
|
Lee YH, Won Y, Mun J, Lee S, Kim Y, Yeom B, Dou L, Rho J, Oh JH. Hierarchically manufactured chiral plasmonic nanostructures with gigantic chirality for polarized emission and information encryption. Nat Commun 2023; 14:7298. [PMID: 37949853 PMCID: PMC10638435 DOI: 10.1038/s41467-023-43112-6] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2023] [Accepted: 10/31/2023] [Indexed: 11/12/2023] Open
Abstract
Chiral metamaterials have received significant attention due to their strong chiroptical interactions with electromagnetic waves of incident light. However, the fabrication of large-area, hierarchically manufactured chiral plasmonic structures with high dissymmetry factors (g-factors) over a wide spectral range remains the key barrier to practical applications. Here we report a facile yet efficient method to fabricate hierarchical chiral nanostructures over a large area (>11.7 × 11.7 cm2) and with high g-factors (up to 0.07 in the visible region) by imparting extrinsic chirality to nanostructured polymer substrates through the simple exertion of mechanical force. We also demonstrate the application of our approach in the polarized emission of quantum dots and information encryption, including chiral quick response codes and anti-counterfeiting. This study thus paves the way for the rational design and fabrication of large-area chiral nanostructures and for their application in quantum communications and security-enhanced optical communications.
Collapse
Affiliation(s)
- Yoon Ho Lee
- School of Chemical and Biological Engineering, Institute of Chemical Processes, Seoul National University, Seoul, 08826, Republic of Korea
- Davidson School of Chemical Engineering, Purdue University, West Lafayette, IN, 47907, USA
- Department of Chemistry, Purdue University, West Lafayette, IN, 47907, USA
| | - Yousang Won
- School of Chemical and Biological Engineering, Institute of Chemical Processes, Seoul National University, Seoul, 08826, Republic of Korea
| | - Jungho Mun
- Department of Mechanical Engineering, Pohang University of Science and Technology (POSTECH), Pohang, 37673, Republic of Korea
| | - Sanghyuk Lee
- School of Chemical and Biological Engineering, Institute of Chemical Processes, Seoul National University, Seoul, 08826, Republic of Korea
| | - Yeseul Kim
- Department of Mechanical Engineering, Pohang University of Science and Technology (POSTECH), Pohang, 37673, Republic of Korea
| | - Bongjun Yeom
- Department of Chemical Engineering, Hanyang University, Seoul, 04763, Republic of Korea
| | - Letian Dou
- Davidson School of Chemical Engineering, Purdue University, West Lafayette, IN, 47907, USA
| | - Junsuk Rho
- Department of Mechanical Engineering, Pohang University of Science and Technology (POSTECH), Pohang, 37673, Republic of Korea.
- Department of Chemical Engineering, Pohang University of Science and Technology (POSTECH), Pohang, 37673, Republic of Korea.
- POSCO-POSTECH-RIST Convergence Research Center for Flat Optics and Metaphotonics, Pohang, 37673, Republic of Korea.
| | - Joon Hak Oh
- School of Chemical and Biological Engineering, Institute of Chemical Processes, Seoul National University, Seoul, 08826, Republic of Korea.
| |
Collapse
|
45
|
You S, Yu P, Zhu T, Guan Q, Wu J, Dai H, Zhong H, Zhu ZK, Luo J. Alternating chiral and achiral spacers for constructing two-dimensional chiral hybrid perovskites toward circular-polarization-sensitive photodetection. MATERIALS HORIZONS 2023; 10:5307-5312. [PMID: 37750819 DOI: 10.1039/d3mh00745f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/27/2023]
Abstract
The intrinsic integration of structural flexibility, chiroptical activity, and photoelectric properties endows the two-dimensional (2D) chiral hybrid perovskites (CHPs) with significant application potential in chiroptoelectronics and spintronics. However, the scarcity of suitable chiral organic ligands severely hinders their extensive construction, necessitating the development of new strategies for designing 2D CHPs. Herein, by exploiting a half substitution method, we created a pair of 2D CHPs with alternating cations in the interlayer space (ACI), (R/S-PPA)(PA)PbBr4 (2R/2S, PPA = 1-phenylpropylamine, PA = n-pentylamine), from the achiral Ruddlesden-Popper (RP) (PA)2PbBr4 (1). The successful chirality transfer induces 2R/2S to crystallize in the chiral P212121 space group and thus acquire appealing chiroptical activity. Consequently, the single-crystal devices of 2R exhibit good distinguishability to the left- and right-handed circularly polarized 405 nm lights with a photocurrent dissymmetric factor of 0.10 at 10 V bias. This work demonstrates an intriguing achiral RP to chiral ACI motif reconstruction in 2D halide hybrid perovskites, opening a door for expanding the family of 2D CHPs.
Collapse
Affiliation(s)
- Shihai You
- State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou, Fujian 350002, China.
- Fujian Science and Technology Innovation Laboratory for Optoelectronic Information of China, Fuzhou, Fujian 350108, China
| | - Panpan Yu
- Key Laboratory of Fluorine and Silicon for Energy Materials and Chemistry of Ministry of Education, School of Chemistry and Chemical Engineering, Jiangxi Normal University, Nanchang, Jiangxi 330022, China
| | - Tingting Zhu
- State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou, Fujian 350002, China.
- Fujian Science and Technology Innovation Laboratory for Optoelectronic Information of China, Fuzhou, Fujian 350108, China
| | - Qianwen Guan
- State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou, Fujian 350002, China.
- Fujian Science and Technology Innovation Laboratory for Optoelectronic Information of China, Fuzhou, Fujian 350108, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Jianbo Wu
- State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou, Fujian 350002, China.
- Fujian Science and Technology Innovation Laboratory for Optoelectronic Information of China, Fuzhou, Fujian 350108, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Hongliang Dai
- Key Laboratory of Fluorine and Silicon for Energy Materials and Chemistry of Ministry of Education, School of Chemistry and Chemical Engineering, Jiangxi Normal University, Nanchang, Jiangxi 330022, China
| | - Haiqing Zhong
- State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou, Fujian 350002, China.
| | - Zeng-Kui Zhu
- State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou, Fujian 350002, China.
- Fujian Science and Technology Innovation Laboratory for Optoelectronic Information of China, Fuzhou, Fujian 350108, China
| | - Junhua Luo
- State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou, Fujian 350002, China.
- Fujian Science and Technology Innovation Laboratory for Optoelectronic Information of China, Fuzhou, Fujian 350108, China
- Key Laboratory of Fluorine and Silicon for Energy Materials and Chemistry of Ministry of Education, School of Chemistry and Chemical Engineering, Jiangxi Normal University, Nanchang, Jiangxi 330022, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| |
Collapse
|
46
|
Park G, Jeong DY, Yu SY, Park JJ, Kim JH, Yang H, You Y. Enhancing Circularly Polarized Phosphorescence via Integrated Top-Down and Bottom-Up Approach. Angew Chem Int Ed Engl 2023; 62:e202309762. [PMID: 37606233 DOI: 10.1002/anie.202309762] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2023] [Revised: 08/11/2023] [Accepted: 08/22/2023] [Indexed: 08/23/2023]
Abstract
In the dynamic domain of chiroptical technologies, it is imperative to engineer emitters endowed with circularly polarized luminescence (CPL) properties. This research demonstrates an advancement by employing a combined top-down and bottom-up strategy for the simultaneous amplification of photoluminescence quantum yield (Φ) and the luminescence dissymmetry factor (glum ). Square-planar Pt(II) complexes form helical assemblies, driven by torsional strain induced by bis(nonyl) chains. Integration of chiral anions leads these assemblies to prefer distinct helical sense. This arrangement activates the metal-metal-to-ligand charge transfer (MMLCT) transition that is CPL-active, with Φ and |glum | observing an upswing contingent on the charge number and aryl substituents in chiral anions. Utilizing the soft-lithographic micromolding in capillaries technique, we could fabricate exquisitely-ordered, one-dimensional co-assemblies to achieve the metrics to Φ of 0.32 and |glum | of 0.13. Finally, our spectroscopic research elucidates the underlying mechanism for the dual amplification, making a significant stride in the advancement of CPL-active emitters.
Collapse
Affiliation(s)
- Gyurim Park
- Department of Chemical and Biomolecular Engineering, Yonsei University, Seoul, 03722, Republic of Korea
| | - Dong Yeon Jeong
- Division of Chemical Engineering and Materials Science, Ewha Womans University, Seoul, 03760, Republic of Korea
| | - Seung Yeon Yu
- Division of Chemical Engineering and Materials Science, Ewha Womans University, Seoul, 03760, Republic of Korea
| | - Jong Jin Park
- Department of Molecular Science and Technology, Ajou University, Suwon, 16499, Republic of Korea
| | - Jong H Kim
- Department of Molecular Science and Technology, Ajou University, Suwon, 16499, Republic of Korea
| | - Hoichang Yang
- Department of Chemical Engineering, Inha University, Incheon, 22212, Republic of Korea
| | - Youngmin You
- Department of Chemical and Biomolecular Engineering, Yonsei University, Seoul, 03722, Republic of Korea
| |
Collapse
|
47
|
Niu X, Zhao R, Yan S, Pang Z, Li H, Yang X, Wang K. Chiral Materials: Progress, Applications, and Prospects. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2023; 19:e2303059. [PMID: 37217989 DOI: 10.1002/smll.202303059] [Citation(s) in RCA: 29] [Impact Index Per Article: 14.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/11/2023] [Revised: 05/10/2023] [Indexed: 05/24/2023]
Abstract
Chirality is a universal phenomenon in molecular and biological systems, denoting an asymmetric configurational property where an object cannot be superimposed onto its mirror image by any kind of translation or rotation, which is ubiquitous on the scale from neutrinos to spiral galaxies. Chirality plays a very important role in the life system. Many biological molecules in the life body show chirality, such as the "codebook" of the earth's biological diversity-DNA, nucleic acid, etc. Intriguingly, living organisms hierarchically consist of homochiral building blocks, for example, l-amino acids and d-sugars with unknown reason. When molecules with chirality interact with these chiral factors, only one conformation favors the positive development of life, that is, the chiral host environment can only selectively interact with chiral molecules of one of the conformations. The differences in chiral interactions are often manifested by chiral recognition, mutual matching, and interactions with chiral molecules, which means that the stereoselectivity of chiral molecules can produce changes in pharmacodynamics and pathology. Here, the latest investigations are summarized including the construction and applications of chiral materials based on natural small molecules as chiral source, natural biomacromolecules as chiral sources, and the material synthesized by design as a chiral source.
Collapse
Affiliation(s)
- Xiaohui Niu
- College of Petrochemical Technology, Lanzhou University of Technology, Lanzhou, 730050, P. R. China
| | - Rui Zhao
- College of Petrochemical Technology, Lanzhou University of Technology, Lanzhou, 730050, P. R. China
| | - Simeng Yan
- College of Petrochemical Technology, Lanzhou University of Technology, Lanzhou, 730050, P. R. China
| | - Zengwei Pang
- College of Petrochemical Technology, Lanzhou University of Technology, Lanzhou, 730050, P. R. China
| | - Hongxia Li
- College of Petrochemical Technology, Lanzhou University of Technology, Lanzhou, 730050, P. R. China
| | - Xing Yang
- College of Polymer Science and Engineering, Sichuan University, Chengdu, 610065, P. R. China
| | - Kunjie Wang
- College of Petrochemical Technology, Lanzhou University of Technology, Lanzhou, 730050, P. R. China
| |
Collapse
|