1
|
Xing G, Lin JM. Microfluidics for foodborne bacteria analysis: Moving toward multiple technologies integration. BIOMICROFLUIDICS 2024; 18:061301. [PMID: 39502579 PMCID: PMC11537706 DOI: 10.1063/5.0231916] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/03/2024] [Accepted: 10/22/2024] [Indexed: 11/08/2024]
Abstract
Food security related to bacterial pathogens has seriously threatened human life and caused public health problems. Most of the reported methods are targeted at known major pathogens commonly found in food samples, but to some extent, they have the disadvantage of lacking simplicity, speed, high throughput, and high sensitivity. Microfluidics has become a promising tool for foodborne bacteria analysis and addresses the above limitations. In this perspective, we briefly discussed the ongoing research and development in this field. We outline the major types of microfluidics, the strategies of target biorecognition, and signal amplification technologies in the microfluidic system for the foodborne bacteria analysis. We also proposed the future directions of microfluidics for foodborne bacterial analysis, which aims to integrate multiple technologies toward intelligent analysis with high selectivity and sensitivity for unknown samples, multiple bacterial detection, and simultaneous detection of multiple food pollutants.
Collapse
Affiliation(s)
| | - Jin-Ming Lin
- Beijing Key Laboratory of Microanalytical Methods and Instrumentation, Key Laboratory of Bioorganic Phosphorus Chemistry and Chemical Biology (Ministry of Education), Department of Chemistry, Tsinghua University, Beijing 100084, China
| |
Collapse
|
2
|
Tao X, Ding H, Wu S, Wang F, Xu H, Li J, Zhai C, Li S, Chen K, Wu S, Liu Y, Ma L. Structural and mechanistic insights into a mesophilic prokaryotic Argonaute. Nucleic Acids Res 2024; 52:11895-11910. [PMID: 39315697 PMCID: PMC11514475 DOI: 10.1093/nar/gkae820] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2024] [Revised: 09/03/2024] [Accepted: 09/11/2024] [Indexed: 09/25/2024] Open
Abstract
Argonaute (Ago) proteins are programmable nucleases found in all domains of life, playing a crucial role in biological processes like DNA/RNA interference and gene regulation. Mesophilic prokaryotic Agos (pAgos) have gained increasing research interest due to their broad range of potential applications, yet their molecular mechanisms remain poorly understood. Here, we present seven cryo-electron microscopy structures of Kurthia massiliensis Ago (KmAgo) in various states. These structures encompass the steps of apo-form, guide binding, target recognition, cleavage, and release, revealing that KmAgo employs a unique DDD catalytic triad, instead of a DEDD tetrad, for DNA target cleavage under 5'P-DNA guide conditions. Notably, the last catalytic residue, D713, is positioned outside the catalytic pocket in the absence of guide. After guide binding, D713 enters the catalytic pocket. In contrast, the corresponding catalytic residue in other Agos has been consistently located in the catalytic pocket. Moreover, we identified several sites exhibiting enhanced catalytic activity through alanine mutagenesis. These sites have the potential to serve as engineering targets for augmenting the catalytic efficiency of KmAgo. This structural analysis of KmAgo advances the understanding of the diversity of molecular mechanisms by Agos, offering insights for developing and optimizing mesophilic pAgos-based programmable DNA and RNA manipulation tools.
Collapse
Affiliation(s)
- Xin Tao
- State Key Laboratory of Biocatalysis and Enzyme Engineering, Hubei Key Laboratory of Industrial Biotechnology, School of Life Sciences, Hubei University, Wuhan, Hubei 430062, China
| | - Hui Ding
- State Key Laboratory of Biocatalysis and Enzyme Engineering, Hubei Key Laboratory of Industrial Biotechnology, School of Life Sciences, Hubei University, Wuhan, Hubei 430062, China
| | - Shaowen Wu
- State Key Laboratory of Swine and Poultry Breeding Industry, Agro-biological Gene Research Center, Guangdong Academy of Agricultural Sciences, Guangzhou 510640, China
| | - Fei Wang
- State Key Laboratory of Biocatalysis and Enzyme Engineering, Hubei Key Laboratory of Industrial Biotechnology, School of Life Sciences, Hubei University, Wuhan, Hubei 430062, China
| | - Hu Xu
- State Key Laboratory of Biocatalysis and Enzyme Engineering, Hubei Key Laboratory of Industrial Biotechnology, School of Life Sciences, Hubei University, Wuhan, Hubei 430062, China
| | - Jie Li
- State Key Laboratory of Biocatalysis and Enzyme Engineering, Hubei Key Laboratory of Industrial Biotechnology, School of Life Sciences, Hubei University, Wuhan, Hubei 430062, China
| | - Chao Zhai
- State Key Laboratory of Biocatalysis and Enzyme Engineering, Hubei Key Laboratory of Industrial Biotechnology, School of Life Sciences, Hubei University, Wuhan, Hubei 430062, China
| | - Shunshun Li
- State Key Laboratory of Biocatalysis and Enzyme Engineering, Hubei Key Laboratory of Industrial Biotechnology, School of Life Sciences, Hubei University, Wuhan, Hubei 430062, China
| | - Kai Chen
- State Key Laboratory of Biocatalysis and Enzyme Engineering, Hubei Key Laboratory of Industrial Biotechnology, School of Life Sciences, Hubei University, Wuhan, Hubei 430062, China
| | - Shan Wu
- State Key Laboratory of Biocatalysis and Enzyme Engineering, Hubei Key Laboratory of Industrial Biotechnology, School of Life Sciences, Hubei University, Wuhan, Hubei 430062, China
| | - Yang Liu
- State Key Laboratory of Biocatalysis and Enzyme Engineering, Hubei Key Laboratory of Industrial Biotechnology, School of Life Sciences, Hubei University, Wuhan, Hubei 430062, China
| | - Lixin Ma
- State Key Laboratory of Biocatalysis and Enzyme Engineering, Hubei Key Laboratory of Industrial Biotechnology, School of Life Sciences, Hubei University, Wuhan, Hubei 430062, China
| |
Collapse
|
3
|
Zhen X, Zhou B, Liu Z, Wang X, Zhao H, Wu S, Li Z, Liang J, Zhang W, Zhu Q, He J, Xiong X, Ouyang S. Mechanistic basis for the allosteric activation of NADase activity in the Sir2-HerA antiphage defense system. Nat Commun 2024; 15:9269. [PMID: 39465277 PMCID: PMC11514289 DOI: 10.1038/s41467-024-53614-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2024] [Accepted: 10/18/2024] [Indexed: 10/29/2024] Open
Abstract
Sir2-HerA is a widely distributed antiphage system composed of a RecA-like ATPase (HerA) and an effector with potential NADase activity (Sir2). Sir2-HerA is believed to provide defense against phage infection in Sir2-dependent NAD+ depletion to arrest the growth of infected cells. However, the detailed mechanism underlying its antiphage activity remains largely unknown. Here, we report functional investigations of Sir2-HerA from Staphylococcus aureus (SaSir2-HerA), unveiling that the NADase function of SaSir2 can be allosterically activated by the binding of SaHerA, which then assembles into a supramolecular complex with NADase activity. By combining the cryo-EM structure of SaSir2-HerA in complex with the NAD+ cleavage product, it is surprisingly observed that Sir2 protomers that interact with HerA are in the activated state, which is due to the opening of the α15-helix covering the active site, allowing NAD+ to access the catalytic pocket for hydrolysis. In brief, our study provides a comprehensive view of an allosteric activation mechanism for Sir2 NADase activity in the Sir2-HerA immune system.
Collapse
Affiliation(s)
- Xiangkai Zhen
- Kev Laboratory of Microbial Pathogenesis and Interventions of Fuian Province University, the Key Laboratory of inmate lmmune Biology of Fuijian Province, Biomedical Research Center of South China, Key Laboratory of Opto Electronic Science and Technology for Medicine of the Ministry of Education, College of Life Sciences, Fujian Normal University, Fuzhou, 350117, China
| | - Biao Zhou
- State Key Laboratory of Respiratory Disease, Guangzhou Chest Hospital, Institute of Tuberculosis, Guangzhou Medical University, Guangdong, 510095, P. R. China
- State Key Laboratory of Respiratory Disease, CAS Key Laboratory of Regenerative Biology, Guangdong Provincial Key Laboratory of Stem Cell and Regenerative Medicine, Guangdong Provincial Key Laboratory of Biocomputing, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, China
- Guangzhou National Laboratory, Guangzhou, China
| | - Zihe Liu
- Kev Laboratory of Microbial Pathogenesis and Interventions of Fuian Province University, the Key Laboratory of inmate lmmune Biology of Fuijian Province, Biomedical Research Center of South China, Key Laboratory of Opto Electronic Science and Technology for Medicine of the Ministry of Education, College of Life Sciences, Fujian Normal University, Fuzhou, 350117, China
| | - Xurong Wang
- Kev Laboratory of Microbial Pathogenesis and Interventions of Fuian Province University, the Key Laboratory of inmate lmmune Biology of Fuijian Province, Biomedical Research Center of South China, Key Laboratory of Opto Electronic Science and Technology for Medicine of the Ministry of Education, College of Life Sciences, Fujian Normal University, Fuzhou, 350117, China
| | - Heyu Zhao
- State Key Laboratory of Respiratory Disease, CAS Key Laboratory of Regenerative Biology, Guangdong Provincial Key Laboratory of Stem Cell and Regenerative Medicine, Guangdong Provincial Key Laboratory of Biocomputing, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, China
- Chinese Academy of Sciences, University of Chinese Academy of Sciences, Beijing, China
| | - Shuxian Wu
- Kev Laboratory of Microbial Pathogenesis and Interventions of Fuian Province University, the Key Laboratory of inmate lmmune Biology of Fuijian Province, Biomedical Research Center of South China, Key Laboratory of Opto Electronic Science and Technology for Medicine of the Ministry of Education, College of Life Sciences, Fujian Normal University, Fuzhou, 350117, China
| | - Zekai Li
- Kev Laboratory of Microbial Pathogenesis and Interventions of Fuian Province University, the Key Laboratory of inmate lmmune Biology of Fuijian Province, Biomedical Research Center of South China, Key Laboratory of Opto Electronic Science and Technology for Medicine of the Ministry of Education, College of Life Sciences, Fujian Normal University, Fuzhou, 350117, China
| | - Jiamin Liang
- Kev Laboratory of Microbial Pathogenesis and Interventions of Fuian Province University, the Key Laboratory of inmate lmmune Biology of Fuijian Province, Biomedical Research Center of South China, Key Laboratory of Opto Electronic Science and Technology for Medicine of the Ministry of Education, College of Life Sciences, Fujian Normal University, Fuzhou, 350117, China
| | - Wanyue Zhang
- Kev Laboratory of Microbial Pathogenesis and Interventions of Fuian Province University, the Key Laboratory of inmate lmmune Biology of Fuijian Province, Biomedical Research Center of South China, Key Laboratory of Opto Electronic Science and Technology for Medicine of the Ministry of Education, College of Life Sciences, Fujian Normal University, Fuzhou, 350117, China
| | - Qingjian Zhu
- Kev Laboratory of Microbial Pathogenesis and Interventions of Fuian Province University, the Key Laboratory of inmate lmmune Biology of Fuijian Province, Biomedical Research Center of South China, Key Laboratory of Opto Electronic Science and Technology for Medicine of the Ministry of Education, College of Life Sciences, Fujian Normal University, Fuzhou, 350117, China
| | - Jun He
- State Key Laboratory of Respiratory Disease, CAS Key Laboratory of Regenerative Biology, Guangdong Provincial Key Laboratory of Stem Cell and Regenerative Medicine, Guangdong Provincial Key Laboratory of Biocomputing, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, China.
- Center for Biomedical Digital Science, State Key Laboratory of Respiratory Disease, Guangdong Provincial Key Laboratory of Stem Cell and Regenerative Medicine, Guangdong-Hong Kong Joint Laboratory for Stem Cell and Regenerative Medicine, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, China.
| | - Xiaoli Xiong
- State Key Laboratory of Respiratory Disease, CAS Key Laboratory of Regenerative Biology, Guangdong Provincial Key Laboratory of Stem Cell and Regenerative Medicine, Guangdong Provincial Key Laboratory of Biocomputing, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, China.
| | - Songying Ouyang
- Kev Laboratory of Microbial Pathogenesis and Interventions of Fuian Province University, the Key Laboratory of inmate lmmune Biology of Fuijian Province, Biomedical Research Center of South China, Key Laboratory of Opto Electronic Science and Technology for Medicine of the Ministry of Education, College of Life Sciences, Fujian Normal University, Fuzhou, 350117, China.
| |
Collapse
|
4
|
Wang Y, Wang C, Guan Z, Cao J, Xu J, Wang S, Cui Y, Wang Q, Chen Y, Yin Y, Zhang D, Liu H, Sun M, Jin S, Tao P, Zou T. DNA methylation activates retron Ec86 filaments for antiphage defense. Cell Rep 2024; 43:114857. [PMID: 39395169 DOI: 10.1016/j.celrep.2024.114857] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2024] [Revised: 09/08/2024] [Accepted: 09/25/2024] [Indexed: 10/14/2024] Open
Abstract
Retrons are a class of multigene antiphage defense systems typically consisting of a retron reverse transcriptase, a non-coding RNA, and a cognate effector. Although triggers for several retron systems have been discovered recently, the complete mechanism by which these systems detect invading phages and mediate defense remains unclear. Here, we focus on the retron Ec86 defense system, elucidating its modes of activation and mechanisms of action. We identified a phage-encoded DNA cytosine methyltransferase (Dcm) as a trigger of the Ec86 system and demonstrated that Ec86 is activated upon multicopy single-stranded DNA (msDNA) methylation. We further elucidated the structure of a tripartite retron Ec86-effector filament assembly that is primed for activation by Dcm and capable of hydrolyzing nicotinamide adenine dinucleotide (NAD+). These findings provide insights into the retron Ec86 defense mechanism and underscore an emerging theme of antiphage defense through supramolecular complex assemblies.
Collapse
Affiliation(s)
- Yanjing Wang
- National Key Laboratory of Agricultural Microbiology, Hubei Hongshan Laboratory, Huazhong Agricultural University, Wuhan 430070, China
| | - Chen Wang
- National Key Laboratory of Crop Genetic Improvement, Hubei Hongshan Laboratory, Huazhong Agricultural University, Wuhan 430070, China
| | - Zeyuan Guan
- National Key Laboratory of Crop Genetic Improvement, Hubei Hongshan Laboratory, Huazhong Agricultural University, Wuhan 430070, China
| | - Jie Cao
- National Key Laboratory of Agricultural Microbiology, Hubei Hongshan Laboratory, Huazhong Agricultural University, Wuhan 430070, China
| | - Jia Xu
- National Key Laboratory of Agricultural Microbiology, Hubei Hongshan Laboratory, Huazhong Agricultural University, Wuhan 430070, China
| | - Shuangshuang Wang
- National Key Laboratory of Agricultural Microbiology, Hubei Hongshan Laboratory, Huazhong Agricultural University, Wuhan 430070, China
| | - Yongqing Cui
- National Key Laboratory of Agricultural Microbiology, Hubei Hongshan Laboratory, Huazhong Agricultural University, Wuhan 430070, China
| | - Qiang Wang
- National Key Laboratory of Crop Genetic Improvement, Hubei Hongshan Laboratory, Huazhong Agricultural University, Wuhan 430070, China
| | - Yibei Chen
- National Key Laboratory of Agricultural Microbiology, Hubei Hongshan Laboratory, Huazhong Agricultural University, Wuhan 430070, China
| | - Yongqi Yin
- National Key Laboratory of Agricultural Microbiology, Hubei Hongshan Laboratory, Huazhong Agricultural University, Wuhan 430070, China
| | - Delin Zhang
- National Key Laboratory of Crop Genetic Improvement, Hubei Hongshan Laboratory, Huazhong Agricultural University, Wuhan 430070, China
| | - Hongbo Liu
- National Key Laboratory of Crop Genetic Improvement, Hubei Hongshan Laboratory, Huazhong Agricultural University, Wuhan 430070, China
| | - Ming Sun
- National Key Laboratory of Agricultural Microbiology, Hubei Hongshan Laboratory, Huazhong Agricultural University, Wuhan 430070, China
| | - Shuangxia Jin
- National Key Laboratory of Crop Genetic Improvement, Hubei Hongshan Laboratory, Huazhong Agricultural University, Wuhan 430070, China
| | - Pan Tao
- National Key Laboratory of Agricultural Microbiology, Hubei Hongshan Laboratory, Huazhong Agricultural University, Wuhan 430070, China.
| | - Tingting Zou
- National Key Laboratory of Agricultural Microbiology, Hubei Hongshan Laboratory, Huazhong Agricultural University, Wuhan 430070, China.
| |
Collapse
|
5
|
Xu X, Yang H, Dong H, Li X, Liu Q, Feng Y. Characterization of argonaute nucleases from mesophilic bacteria Pseudobutyrivibrio ruminis. BIORESOUR BIOPROCESS 2024; 11:94. [PMID: 39373873 PMCID: PMC11458871 DOI: 10.1186/s40643-024-00797-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2024] [Accepted: 08/14/2024] [Indexed: 10/08/2024] Open
Abstract
Mesophilic Argonautes (Agos) from microbial resources have received significant attention due to their potential applications in genome editing and molecular diagnostics. This study characterizes a novel Ago from Pseudobutyrivibrio ruminis (PrAgo), which can cleave single-stranded DNA using guide DNA (gDNA). PrAgo, functioning as a multi-turnover enzyme, effectively cleaves DNA using 5'-phosphate gDNA, 14-30 nucleotides in length, in the presence of both Mn2+ and Mg2+ ions. PrAgo demonstrates DNA cleavage activity over a broad pH range (pH 4-12), with optimal activity at pH 11. As a mesophilic enzyme, PrAgo cleaves efficiently DNA at temperatures ranging from 25 to 65 °C, particularly at 65 °C. PrAgo does not show strong preferences for the 5'-nucleotide in gDNA. It shows high tolerance for single-base mismatches, except at positions 13 and 15 of gDNA. Continuous double-nucleotide mismatches at positions 10-16 of gDNA significantly reduce cleavage activity. Furthermore, PrAgo mediates DNA-guided DNA cleavage of AT-rich double stranded DNA at 65 °C. Additionally, molecular dynamic simulations suggest that interactions between the PAZ domain and different nucleic acids strongly influence cleavage efficiency. These findings expand our understanding of Protokaryotic Agos and their potential applications in biotechnology.
Collapse
Affiliation(s)
- Xiaoyi Xu
- State Key Laboratory of Microbial Metabolism, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai, 200240, People's Republic of China
| | - Hao Yang
- State Key Laboratory of Microbial Metabolism, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai, 200240, People's Republic of China
| | - Huarong Dong
- State Key Laboratory of Microbial Metabolism, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai, 200240, People's Republic of China
| | - Xiao Li
- State Key Laboratory of Microbial Metabolism, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai, 200240, People's Republic of China
| | - Qian Liu
- State Key Laboratory of Microbial Metabolism, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai, 200240, People's Republic of China.
| | - Yan Feng
- State Key Laboratory of Microbial Metabolism, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai, 200240, People's Republic of China.
| |
Collapse
|
6
|
Cui N, Zhang JT, Li Z, Wei XY, Wang J, Jia N. Tetramerization-dependent activation of the Sir2-associated short prokaryotic Argonaute immune system. Nat Commun 2024; 15:8610. [PMID: 39366953 PMCID: PMC11452484 DOI: 10.1038/s41467-024-52910-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2024] [Accepted: 09/23/2024] [Indexed: 10/06/2024] Open
Abstract
Eukaryotic Argonaute proteins (eAgos) utilize short nucleic acid guides to target complementary sequences for RNA silencing, while prokaryotic Agos (pAgos) provide immunity against invading plasmids or bacteriophages. The Sir2-domain associated short pAgo (SPARSA) immune system defends against invaders by depleting NAD+ and triggering cell death. However, the molecular mechanism underlying SPARSA activation remains unknown. Here, we present cryo-EM structures of inactive monomeric, active tetrameric and active NAD+-bound tetrameric SPARSA complexes, elucidating mechanisms underlying SPARSA assembly, guide RNA preference, target ssDNA-triggered SPARSA tetramerization, and tetrameric-dependent NADase activation. Short pAgos form heterodimers with Sir2-APAZ, favoring short guide RNA with a 5'-AU from ColE-like plasmids. RNA-guided recognition of the target ssDNA triggers SPARSA tetramerization via pAgo- and Sir2-mediated interactions. The resulting tetrameric Sir2 rearrangement aligns catalytic residue H186 for NAD+ hydrolysis. These insights advance our understanding of Sir2-domain associated pAgos immune systems and should facilitate the development of a short pAgo-associated biotechnological toolbox.
Collapse
Affiliation(s)
- Ning Cui
- Department of Biochemistry, School of Medicine, Southern University of Science and Technology, Shenzhen, China
| | - Jun-Tao Zhang
- Department of Biochemistry, School of Medicine, Southern University of Science and Technology, Shenzhen, China
| | - Zhuolin Li
- Department of Biochemistry, School of Medicine, Southern University of Science and Technology, Shenzhen, China
| | - Xin-Yang Wei
- Department of Biochemistry, School of Medicine, Southern University of Science and Technology, Shenzhen, China
| | - Jie Wang
- Department of Chemistry, Southern University of Science and Technology, Shenzhen, China
| | - Ning Jia
- Department of Biochemistry, School of Medicine, Southern University of Science and Technology, Shenzhen, China.
- Shenzhen Key Laboratory of Cell Microenvironment, Guangdong Provincial Key Laboratory of Cell Microenvironment and Disease Research, Southern University of Science and Technology, Shenzhen, China.
- Key University Laboratory of Metabolism and Health of Guangdong, Institute for Biological Electron Microscopy, Southern University of Science and Technology, Shenzhen, China.
| |
Collapse
|
7
|
Yang XY, Shen Z, Wang C, Nakanishi K, Fu TM. DdmDE eliminates plasmid invasion by DNA-guided DNA targeting. Cell 2024; 187:5253-5266.e16. [PMID: 39173632 DOI: 10.1016/j.cell.2024.07.028] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2023] [Revised: 05/09/2024] [Accepted: 07/17/2024] [Indexed: 08/24/2024]
Abstract
Horizontal gene transfer is a key driver of bacterial evolution, but it also presents severe risks to bacteria by introducing invasive mobile genetic elements. To counter these threats, bacteria have developed various defense systems, including prokaryotic Argonautes (pAgos) and the DNA defense module DdmDE system. Through biochemical analysis, structural determination, and in vivo plasmid clearance assays, we elucidate the assembly and activation mechanisms of DdmDE, which eliminates small, multicopy plasmids. We demonstrate that DdmE, a pAgo-like protein, acts as a catalytically inactive, DNA-guided, DNA-targeting defense module. In the presence of guide DNA, DdmE targets plasmids and recruits a dimeric DdmD, which contains nuclease and helicase domains. Upon binding to DNA substrates, DdmD transitions from an autoinhibited dimer to an active monomer, which then translocates along and cleaves the plasmids. Together, our findings reveal the intricate mechanisms underlying DdmDE-mediated plasmid clearance, offering fundamental insights into bacterial defense systems against plasmid invasions.
Collapse
Affiliation(s)
- Xiao-Yuan Yang
- Department of Biological Chemistry and Pharmacology, The Ohio State University, Columbus, OH 43210, USA; The Ohio State University Comprehensive Cancer Center, Columbus, OH 43210, USA; Ohio State Biochemistry Program, The Ohio State University, Columbus, OH 43210, USA; Center for RNA Biology, The Ohio State University, Columbus, OH 43210, USA
| | - Zhangfei Shen
- Department of Biological Chemistry and Pharmacology, The Ohio State University, Columbus, OH 43210, USA; The Ohio State University Comprehensive Cancer Center, Columbus, OH 43210, USA; Center for RNA Biology, The Ohio State University, Columbus, OH 43210, USA
| | - Chen Wang
- Department of Biological Chemistry and Pharmacology, The Ohio State University, Columbus, OH 43210, USA; The Ohio State University Comprehensive Cancer Center, Columbus, OH 43210, USA
| | - Kotaro Nakanishi
- Ohio State Biochemistry Program, The Ohio State University, Columbus, OH 43210, USA; Center for RNA Biology, The Ohio State University, Columbus, OH 43210, USA; Department of Chemistry and Biochemistry, The Ohio State University, Columbus, OH 43210, USA
| | - Tian-Min Fu
- Department of Biological Chemistry and Pharmacology, The Ohio State University, Columbus, OH 43210, USA; The Ohio State University Comprehensive Cancer Center, Columbus, OH 43210, USA; Ohio State Biochemistry Program, The Ohio State University, Columbus, OH 43210, USA; Center for RNA Biology, The Ohio State University, Columbus, OH 43210, USA.
| |
Collapse
|
8
|
Bhatt A, Mishra BP, Gu W, Sorbello M, Xu H, Ve T, Kobe B. Structural characterization of TIR-domain signalosomes through a combination of structural biology approaches. IUCRJ 2024; 11:695-707. [PMID: 39190506 PMCID: PMC11364022 DOI: 10.1107/s2052252524007693] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/04/2024] [Accepted: 08/05/2024] [Indexed: 08/29/2024]
Abstract
The TIR (Toll/interleukin-1 receptor) domain represents a vital structural element shared by proteins with roles in immunity signalling pathways across phyla (from humans and plants to bacteria). Decades of research have finally led to identifying the key features of the molecular basis of signalling by these domains, including the formation of open-ended (filamentous) assemblies (responsible for the signalling by cooperative assembly formation mechanism, SCAF) and enzymatic activities involving the cleavage of nucleotides. We present a historical perspective of the research that led to this understanding, highlighting the roles that different structural methods played in this process: X-ray crystallography (including serial crystallography), microED (micro-crystal electron diffraction), NMR (nuclear magnetic resonance) spectroscopy and cryo-EM (cryogenic electron microscopy) involving helical reconstruction and single-particle analysis. This perspective emphasizes the complementarity of different structural approaches.
Collapse
Affiliation(s)
- Akansha Bhatt
- Institute for GlycomicsGriffith UniversitySouthportQLD4222Australia
- School of Pharmacy and Medical SciencesGriffith UniversitySouthportQLD4222Australia
| | - Biswa P. Mishra
- Institute for GlycomicsGriffith UniversitySouthportQLD4222Australia
| | - Weixi Gu
- School of Chemistry and Molecular BiosciencesUniversity of QueenslandBrisbaneQLD4072Australia
- Institute for Molecular BioscienceThe University of QueenslandBrisbaneQLD4072Australia
- Australian Infectious Diseases Research CentreThe University of QueenslandBrisbaneQLD4072Australia
| | - Mitchell Sorbello
- School of Chemistry and Molecular BiosciencesUniversity of QueenslandBrisbaneQLD4072Australia
- Institute for Molecular BioscienceThe University of QueenslandBrisbaneQLD4072Australia
- Australian Infectious Diseases Research CentreThe University of QueenslandBrisbaneQLD4072Australia
| | - Hongyi Xu
- School of Chemistry and Molecular BiosciencesUniversity of QueenslandBrisbaneQLD4072Australia
- Department of Materials and Environmental ChemistryStockholm UniversityStockholmSweden
| | - Thomas Ve
- Institute for GlycomicsGriffith UniversitySouthportQLD4222Australia
| | - Bostjan Kobe
- School of Chemistry and Molecular BiosciencesUniversity of QueenslandBrisbaneQLD4072Australia
- Institute for Molecular BioscienceThe University of QueenslandBrisbaneQLD4072Australia
- Australian Infectious Diseases Research CentreThe University of QueenslandBrisbaneQLD4072Australia
| |
Collapse
|
9
|
Sun D, Zhu K, Wang L, Mu Z, Wu K, Hua L, Qin B, Gao X, Wang Y, Cui S. Nucleic acid-induced NADase activation of a short Sir2-associated prokaryotic Argonaute system. Cell Rep 2024; 43:114391. [PMID: 38923459 DOI: 10.1016/j.celrep.2024.114391] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2023] [Revised: 04/25/2024] [Accepted: 06/07/2024] [Indexed: 06/28/2024] Open
Abstract
Inhibition of nucleic acid targets is mediated by Argonaute (Ago) proteins guided by RNA or DNA. Although the mechanisms underpinning the functions of eukaryotic and "long" prokaryotic Ago proteins (pAgos) are well understood, those for short pAgos remain enigmatic. Here, we determine two cryoelectron microscopy structures of short pAgos in association with the NADase-domain-containing protein Sir2-APAZ from Geobacter sulfurreducens (GsSir2/Ago): the guide RNA-target DNA-loaded GsSir2/Ago quaternary complex (2.58 Å) and the dimer of the quaternary complex (2.93Å). These structures show that the nucleic acid binding causes profound conformational changes that result in disorder or partial dissociation of the Sir2 domain, suggesting that it adopts a NADase-active conformation. Subsequently, two RNA-/DNA-loaded GsSir2/Ago complexes form a dimer through their MID domains, further enhancing NADase activity through synergistic effects. The findings provide a structural basis for short-pAgo-mediated defense against invading nucleic acids.
Collapse
Affiliation(s)
- Dapeng Sun
- Institute of Physics, Chinese Academy of Sciences, Beijing 100190, China
| | - Kaixiang Zhu
- NHC Key Laboratory of Systems Biology of Pathogens, State Key Laboratory of Respiratory Health and Multimorbidity, National Institute of Pathogen Biology and Center for Tuberculosis Research, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, P.R. China; Key Laboratory of Pathogen Infection Prevention and Control (Ministry of Education), National Institute of Pathogen Biology, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, P.R. China
| | - Linyue Wang
- NHC Key Laboratory of Systems Biology of Pathogens, State Key Laboratory of Respiratory Health and Multimorbidity, National Institute of Pathogen Biology and Center for Tuberculosis Research, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, P.R. China; Key Laboratory of Pathogen Infection Prevention and Control (Ministry of Education), National Institute of Pathogen Biology, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, P.R. China
| | - Zhixia Mu
- NHC Key Laboratory of Systems Biology of Pathogens, State Key Laboratory of Respiratory Health and Multimorbidity, National Institute of Pathogen Biology and Center for Tuberculosis Research, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, P.R. China; Key Laboratory of Pathogen Infection Prevention and Control (Ministry of Education), National Institute of Pathogen Biology, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, P.R. China
| | - Kang Wu
- Institute of Physics, Chinese Academy of Sciences, Beijing 100190, China
| | - Lei Hua
- NHC Key Laboratory of Systems Biology of Pathogens, State Key Laboratory of Respiratory Health and Multimorbidity, National Institute of Pathogen Biology and Center for Tuberculosis Research, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, P.R. China; Medical School, Yan'an University, Yan'an, Shaanxi 716000, China
| | - Bo Qin
- NHC Key Laboratory of Systems Biology of Pathogens, State Key Laboratory of Respiratory Health and Multimorbidity, National Institute of Pathogen Biology and Center for Tuberculosis Research, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, P.R. China; Key Laboratory of Pathogen Infection Prevention and Control (Ministry of Education), National Institute of Pathogen Biology, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, P.R. China
| | - Xiaopan Gao
- NHC Key Laboratory of Systems Biology of Pathogens, State Key Laboratory of Respiratory Health and Multimorbidity, National Institute of Pathogen Biology and Center for Tuberculosis Research, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, P.R. China; Key Laboratory of Pathogen Infection Prevention and Control (Ministry of Education), National Institute of Pathogen Biology, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, P.R. China.
| | - Yumei Wang
- Institute of Physics, Chinese Academy of Sciences, Beijing 100190, China; Songshan Lake Materials Laboratory, Dongguan, Guangdong 523808, China.
| | - Sheng Cui
- NHC Key Laboratory of Systems Biology of Pathogens, State Key Laboratory of Respiratory Health and Multimorbidity, National Institute of Pathogen Biology and Center for Tuberculosis Research, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, P.R. China; Key Laboratory of Pathogen Infection Prevention and Control (Ministry of Education), National Institute of Pathogen Biology, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, P.R. China.
| |
Collapse
|
10
|
Wang R, Xu Q, Wu Z, Li J, Guo H, Liao T, Shi Y, Yuan L, Gao H, Yang R, Shi Z, Li F. The structural basis of the activation and inhibition of DSR2 NADase by phage proteins. Nat Commun 2024; 15:6185. [PMID: 39039073 PMCID: PMC11263360 DOI: 10.1038/s41467-024-50410-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2024] [Accepted: 07/09/2024] [Indexed: 07/24/2024] Open
Abstract
DSR2, a Sir2 domain-containing protein, protects bacteria from phage infection by hydrolyzing NAD+. The enzymatic activity of DSR2 is triggered by the SPR phage tail tube protein (TTP), while suppressed by the SPbeta phage-encoded DSAD1 protein, enabling phages to evade the host defense. However, the molecular mechanisms of activation and inhibition of DSR2 remain elusive. Here, we report the cryo-EM structures of apo DSR2, DSR2-TTP-NAD+ and DSR2-DSAD1 complexes. DSR2 assembles into a head-to-head tetramer mediated by its Sir2 domain. The C-terminal helical regions of DSR2 constitute four partner-binding cavities with opened and closed conformation. Two TTP molecules bind to two of the four C-terminal cavities, inducing conformational change of Sir2 domain to activate DSR2. Furthermore, DSAD1 competes with the activator for binding to the C-terminal cavity of DSR2, effectively suppressing its enzymatic activity. Our results provide the mechanistic insights into the DSR2-mediated anti-phage defense system and DSAD1-dependent phage immune evasion.
Collapse
Affiliation(s)
- Ruiwen Wang
- MOE Key Laboratory of Rare Pediatric Diseases, Center for Medical Genetics, School of Life Sciences, Central South University, Changsha, Hunan, China
| | - Qi Xu
- Zhejiang Key Laboratory of Structural Biology, School of Life Sciences, Westlake University, Hangzhou, Zhejiang, China
- Westlake Laboratory of Life Sciences and Biomedicine, Hangzhou, Zhejiang, China
| | - Zhuoxi Wu
- MOE Key Laboratory of Rare Pediatric Diseases, Center for Medical Genetics, School of Life Sciences, Central South University, Changsha, Hunan, China
| | - Jialu Li
- Zhejiang Key Laboratory of Structural Biology, School of Life Sciences, Westlake University, Hangzhou, Zhejiang, China
- Westlake Laboratory of Life Sciences and Biomedicine, Hangzhou, Zhejiang, China
| | - Hao Guo
- MOE Key Laboratory of Rare Pediatric Diseases, Center for Medical Genetics, School of Life Sciences, Central South University, Changsha, Hunan, China
| | - Tianzhui Liao
- MOE Key Laboratory of Rare Pediatric Diseases, Center for Medical Genetics, School of Life Sciences, Central South University, Changsha, Hunan, China
| | - Yuan Shi
- Zhejiang Key Laboratory of Structural Biology, School of Life Sciences, Westlake University, Hangzhou, Zhejiang, China
- Westlake Laboratory of Life Sciences and Biomedicine, Hangzhou, Zhejiang, China
| | - Ling Yuan
- MOE Key Laboratory of Rare Pediatric Diseases, Center for Medical Genetics, School of Life Sciences, Central South University, Changsha, Hunan, China
| | - Haishan Gao
- Zhejiang Key Laboratory of Structural Biology, School of Life Sciences, Westlake University, Hangzhou, Zhejiang, China
- Westlake Laboratory of Life Sciences and Biomedicine, Hangzhou, Zhejiang, China
| | - Rong Yang
- State Key Laboratory of Developmental Biology of Freshwater Fish, Engineering Research Center of Polyploid Fish Reproduction and Breeding of the State Education Ministry, College of Life Sciences, Hunan Normal University, Changsha, Hunan, China.
| | - Zhubing Shi
- Zhejiang Key Laboratory of Structural Biology, School of Life Sciences, Westlake University, Hangzhou, Zhejiang, China.
- Westlake Laboratory of Life Sciences and Biomedicine, Hangzhou, Zhejiang, China.
| | - Faxiang Li
- MOE Key Laboratory of Rare Pediatric Diseases, Center for Medical Genetics, School of Life Sciences, Central South University, Changsha, Hunan, China.
| |
Collapse
|
11
|
Yang XY, Shen Z, Wang C, Nakanishi K, Fu TM. DdmDE eliminates plasmid invasion by DNA-guided DNA targeting. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.07.20.604412. [PMID: 39071313 PMCID: PMC11275911 DOI: 10.1101/2024.07.20.604412] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/30/2024]
Abstract
Horizontal gene transfer is a key driver of bacterial evolution, but it also presents severe risks to bacteria by introducing invasive mobile genetic elements. To counter these threats, bacteria have developed various defense systems, including prokaryotic Argonautes (pAgo) and the D NA D efense M odule DdmDE system. Through biochemical analysis, structural determination, and in vivo plasmid clearance assays, we elucidate the assembly and activation mechanisms of DdmDE, which eliminates small, multicopy plasmids. We demonstrate that DdmE, a pAgo-like protein, acts as a catalytically inactive, DNA-guided, DNA-targeting defense module. In the presence of guide DNA, DdmE targets plasmids and recruits a dimeric DdmD, which contains nuclease and helicase domains. Upon binding to DNA substrates, DdmD transitions from an autoinhibited dimer to an active monomer, which then translocates along and cleaves the plasmids. Together, our findings reveal the intricate mechanisms underlying DdmDE-mediated plasmid clearance, offering fundamental insights into bacterial defense systems against plasmid invasions.
Collapse
|
12
|
Shi Y, Masic V, Mosaiab T, Rajaratman P, Hartley-Tassell L, Sorbello M, Goulart CC, Vasquez E, Mishra BP, Holt S, Gu W, Kobe B, Ve T. Structural characterization of macro domain-containing Thoeris antiphage defense systems. SCIENCE ADVANCES 2024; 10:eadn3310. [PMID: 38924412 PMCID: PMC11204291 DOI: 10.1126/sciadv.adn3310] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/14/2023] [Accepted: 05/20/2024] [Indexed: 06/28/2024]
Abstract
Thoeris defense systems protect bacteria from infection by phages via abortive infection. In these systems, ThsB proteins serve as sensors of infection and generate signaling nucleotides that activate ThsA effectors. Silent information regulator and SMF/DprA-LOG (SIR2-SLOG) containing ThsA effectors are activated by cyclic ADP-ribose (ADPR) isomers 2'cADPR and 3'cADPR, triggering abortive infection via nicotinamide adenine dinucleotide (NAD+) depletion. Here, we characterize Thoeris systems with transmembrane and macro domain (TM-macro)-containing ThsA effectors. We demonstrate that ThsA macro domains bind ADPR and imidazole adenine dinucleotide (IAD), but not 2'cADPR or 3'cADPR. Combining crystallography, in silico predictions, and site-directed mutagenesis, we show that ThsA macro domains form nucleotide-induced higher-order oligomers, enabling TM domain clustering. We demonstrate that ThsB can produce both ADPR and IAD, and we identify a ThsA TM-macro-specific ThsB subfamily with an active site resembling deoxy-nucleotide and deoxy-nucleoside processing enzymes. Collectively, our study demonstrates that Thoeris systems with SIR2-SLOG and TM-macro ThsA effectors trigger abortive infection via distinct mechanisms.
Collapse
Affiliation(s)
- Yun Shi
- Institute for Glycomics, Griffith University, Southport, QLD 4222, Australia
| | - Veronika Masic
- Institute for Glycomics, Griffith University, Southport, QLD 4222, Australia
| | - Tamim Mosaiab
- Institute for Glycomics, Griffith University, Southport, QLD 4222, Australia
| | - Premraj Rajaratman
- Institute for Glycomics, Griffith University, Southport, QLD 4222, Australia
| | | | - Mitchell Sorbello
- School of Chemistry and Molecular Biosciences, The University of Queensland, Brisbane, QLD 4072, Australia
- Australian Infectious Diseases Research Centre, The University of Queensland, Brisbane, QLD 4072, Australia
- Institute for Molecular Bioscience, The University of Queensland, Brisbane, QLD 4072, Australia
| | - Cassia C. Goulart
- Institute for Glycomics, Griffith University, Southport, QLD 4222, Australia
| | - Eduardo Vasquez
- Institute for Glycomics, Griffith University, Southport, QLD 4222, Australia
| | - Biswa P. Mishra
- Institute for Glycomics, Griffith University, Southport, QLD 4222, Australia
| | - Stephanie Holt
- Institute for Glycomics, Griffith University, Southport, QLD 4222, Australia
| | - Weixi Gu
- School of Chemistry and Molecular Biosciences, The University of Queensland, Brisbane, QLD 4072, Australia
- Australian Infectious Diseases Research Centre, The University of Queensland, Brisbane, QLD 4072, Australia
- Institute for Molecular Bioscience, The University of Queensland, Brisbane, QLD 4072, Australia
| | - Bostjan Kobe
- School of Chemistry and Molecular Biosciences, The University of Queensland, Brisbane, QLD 4072, Australia
- Australian Infectious Diseases Research Centre, The University of Queensland, Brisbane, QLD 4072, Australia
- Institute for Molecular Bioscience, The University of Queensland, Brisbane, QLD 4072, Australia
| | - Thomas Ve
- Institute for Glycomics, Griffith University, Southport, QLD 4222, Australia
| |
Collapse
|
13
|
Kottur J, Malik R, Aggarwal AK. Nucleic acid mediated activation of a short prokaryotic Argonaute immune system. Nat Commun 2024; 15:4852. [PMID: 38844755 PMCID: PMC11156904 DOI: 10.1038/s41467-024-49271-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2023] [Accepted: 05/30/2024] [Indexed: 06/09/2024] Open
Abstract
A short prokaryotic Argonaute (pAgo) TIR-APAZ (SPARTA) defense system, activated by invading DNA to unleash its TIR domain for NAD(P)+ hydrolysis, was recently identified in bacteria. We report the crystal structure of SPARTA heterodimer in the absence of guide-RNA/target-ssDNA (2.66 Å) and a cryo-EM structure of the SPARTA oligomer (tetramer of heterodimers) bound to guide-RNA/target-ssDNA at nominal 3.15-3.35 Å resolution. The crystal structure provides a high-resolution view of SPARTA, revealing the APAZ domain as equivalent to the N, L1, and L2 regions of long pAgos and the MID domain containing a unique insertion (insert57). Cryo-EM structure reveals regions of the PIWI (loop10-9) and APAZ (helix αN) domains that reconfigure for nucleic-acid binding and decrypts regions/residues that reorganize to expose a positively charged pocket for higher-order assembly. The TIR domains amass in a parallel-strands arrangement for catalysis. We visualize SPARTA before and after RNA/ssDNA binding and uncover the basis of its active assembly leading to abortive infection.
Collapse
Affiliation(s)
- Jithesh Kottur
- Department of Pharmacological Sciences, Icahn School of Medicine at Mount Sinai, New York, NY, 10029, USA.
- Department of Antiviral Drug Research, Institute of Advanced Virology, Thiruvananthapuram, Kerala, 695317, India.
| | - Radhika Malik
- Department of Pharmacological Sciences, Icahn School of Medicine at Mount Sinai, New York, NY, 10029, USA.
| | - Aneel K Aggarwal
- Department of Pharmacological Sciences, Icahn School of Medicine at Mount Sinai, New York, NY, 10029, USA.
| |
Collapse
|
14
|
Huang J, Zhu K, Gao Y, Ye F, Li Z, Ge Y, Liu S, Yang J, Gao A. Molecular basis of bacterial DSR2 anti-phage defense and viral immune evasion. Nat Commun 2024; 15:3954. [PMID: 38729958 PMCID: PMC11087589 DOI: 10.1038/s41467-024-48291-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2023] [Accepted: 04/25/2024] [Indexed: 05/12/2024] Open
Abstract
Defense-associated sirtuin 2 (DSR2) systems are widely distributed across prokaryotic genomes, providing robust protection against phage infection. DSR2 recognizes phage tail tube proteins and induces abortive infection by depleting intracellular NAD+, a process that is counteracted by another phage-encoded protein, DSR Anti Defense 1 (DSAD1). Here, we present cryo-EM structures of Bacillus subtilis DSR2 in its apo, Tube-bound, and DSAD1-bound states. DSR2 assembles into an elongated tetramer, with four NADase catalytic modules clustered in the center and the regulatory-sensing modules distributed at four distal corners. Interestingly, monomeric Tube protein, rather than its oligomeric states, docks at each corner of the DSR2 tetramer to form a 4:4 DSR2-Tube assembly, which is essential for DSR2 NADase activity. DSAD1 competes with Tube for binding to DSR2 by occupying an overlapping region, thereby inhibiting DSR2 immunity. Thus, our results provide important insights into the assembly, activation and inhibition of the DSR2 anti-phage defense system.
Collapse
Affiliation(s)
- Jiafeng Huang
- Key Laboratory of Molecular Medicine and Biotherapy, Aerospace Center Hospital, School of Life Science, Beijing Institute of Technology, Beijing, 100081, China.
- Key Laboratory of Biomacromolecules (CAS), National Laboratory of Biomacromolecules, CAS Center for Excellence in Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing, 100101, China.
| | - Keli Zhu
- Key Laboratory of Molecular Medicine and Biotherapy, Aerospace Center Hospital, School of Life Science, Beijing Institute of Technology, Beijing, 100081, China
| | - Yina Gao
- Key Laboratory of Biomacromolecules (CAS), National Laboratory of Biomacromolecules, CAS Center for Excellence in Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing, 100101, China
| | - Feng Ye
- Key Laboratory of Molecular Medicine and Biotherapy, Aerospace Center Hospital, School of Life Science, Beijing Institute of Technology, Beijing, 100081, China
| | - Zhaolong Li
- Key Laboratory of Biomacromolecules (CAS), National Laboratory of Biomacromolecules, CAS Center for Excellence in Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing, 100101, China
| | - Yao Ge
- Key Laboratory of Molecular Medicine and Biotherapy, Aerospace Center Hospital, School of Life Science, Beijing Institute of Technology, Beijing, 100081, China
| | - Songqing Liu
- Key Laboratory of Biomacromolecules (CAS), National Laboratory of Biomacromolecules, CAS Center for Excellence in Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing, 100101, China
| | - Jing Yang
- Department of Neurology, Aerospace Center Hospital, Peking University Aerospace School of Clinical Medicine, Beijing, 100049, China.
| | - Ang Gao
- Key Laboratory of Molecular Medicine and Biotherapy, Aerospace Center Hospital, School of Life Science, Beijing Institute of Technology, Beijing, 100081, China.
- Science and Technology Innovation Center, Shandong First Medical University & Shandong Academy of Medical Sciences, Jinan, China.
| |
Collapse
|
15
|
Prostova M, Kanevskaya A, Panteleev V, Lisitskaya L, Perfilova Tugaeva KV, Sluchanko NN, Esyunina D, Kulbachinskiy A. DNA-targeting short Argonautes complex with effector proteins for collateral nuclease activity and bacterial population immunity. Nat Microbiol 2024; 9:1368-1381. [PMID: 38622379 DOI: 10.1038/s41564-024-01654-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2023] [Accepted: 02/28/2024] [Indexed: 04/17/2024]
Abstract
Two prokaryotic defence systems, prokaryotic Argonautes (pAgos) and CRISPR-Cas, detect and cleave invader nucleic acids using complementary guides and the nuclease activities of pAgo or Cas proteins. However, not all pAgos are active nucleases. A large clade of short pAgos bind nucleic acid guides but lack nuclease activity, suggesting a different mechanism of action. Here we investigate short pAgos associated with a putative effector nuclease, NbaAgo from Novosphingopyxis baekryungensis and CmeAgo from Cupriavidus metallidurans. We show that these pAgos form a heterodimeric complex with co-encoded effector nucleases (short prokaryotic Argonaute, DNase and RNase associated (SPARDA)). RNA-guided target DNA recognition unleashes the nuclease activity of SPARDA leading to indiscriminate collateral cleavage of DNA and RNA. Activation of SPARDA by plasmids or phages results in degradation of cellular DNA and cell death or dormancy, conferring target-specific population protection and expanding the range of known prokaryotic immune systems.
Collapse
Affiliation(s)
- Maria Prostova
- Institute of Gene Biology, Russian Academy of Sciences, Moscow, Russia.
| | - Anna Kanevskaya
- Institute of Gene Biology, Russian Academy of Sciences, Moscow, Russia.
| | | | - Lidia Lisitskaya
- Institute of Gene Biology, Russian Academy of Sciences, Moscow, Russia
| | - Kristina V Perfilova Tugaeva
- A.N. Bach Institute of Biochemistry, Federal Research Center of Biotechnology, Russian Academy of Sciences, Moscow, Russia
| | - Nikolai N Sluchanko
- A.N. Bach Institute of Biochemistry, Federal Research Center of Biotechnology, Russian Academy of Sciences, Moscow, Russia
| | - Daria Esyunina
- Institute of Gene Biology, Russian Academy of Sciences, Moscow, Russia
| | | |
Collapse
|
16
|
Yin H, Li X, Wang X, Zhang C, Gao J, Yu G, He Q, Yang J, Liu X, Wei Y, Li Z, Zhang H. Insights into the modulation of bacterial NADase activity by phage proteins. Nat Commun 2024; 15:2692. [PMID: 38538592 PMCID: PMC10973363 DOI: 10.1038/s41467-024-47030-z] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2024] [Accepted: 03/19/2024] [Indexed: 11/12/2024] Open
Abstract
The Silent Information Regulator 2 (SIR2) protein is widely implicated in antiviral response by depleting the cellular metabolite NAD+. The defense-associated sirtuin 2 (DSR2) effector, a SIR2 domain-containing protein, protects bacteria from phage infection by depleting NAD+, while an anti-DSR2 protein (DSR anti-defense 1, DSAD1) is employed by some phages to evade this host defense. The NADase activity of DSR2 is unleashed by recognizing the phage tail tube protein (TTP). However, the activation and inhibition mechanisms of DSR2 are unclear. Here, we determine the cryo-EM structures of DSR2 in multiple states. DSR2 is arranged as a dimer of dimers, which is facilitated by the tetramerization of SIR2 domains. Moreover, the DSR2 assembly is essential for activating the NADase function. The activator TTP binding would trigger the opening of the catalytic pocket and the decoupling of the N-terminal SIR2 domain from the C-terminal domain (CTD) of DSR2. Importantly, we further show that the activation mechanism is conserved among other SIR2-dependent anti-phage systems. Interestingly, the inhibitor DSAD1 mimics TTP to trap DSR2, thus occupying the TTP-binding pocket and inhibiting the NADase function. Together, our results provide molecular insights into the regulatory mechanism of SIR2-dependent NAD+ depletion in antiviral immunity.
Collapse
Affiliation(s)
- Hang Yin
- State Key Laboratory of Experimental Hematology, Key Laboratory of Immune Microenvironment and Disease (Ministry of Education), The Province and Ministry Co-sponsored Collaborative Innovation Center for Medical Epigenetics, International Joint Laboratory of Ocular Diseases (Ministry of Education), Tianjin Key Laboratory of Ocular Trauma, School of Basic Medical Sciences, Tianjin Medical University, Tianjin, China
- Department of Pharmacology, School of Basic Medical Sciences, Tianjin Medical University, Tianjin, China
| | - Xuzichao Li
- State Key Laboratory of Experimental Hematology, Key Laboratory of Immune Microenvironment and Disease (Ministry of Education), The Province and Ministry Co-sponsored Collaborative Innovation Center for Medical Epigenetics, International Joint Laboratory of Ocular Diseases (Ministry of Education), Tianjin Key Laboratory of Ocular Trauma, School of Basic Medical Sciences, Tianjin Medical University, Tianjin, China
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Tianjin Medical University, Tianjin, China
| | - Xiaoshen Wang
- State Key Laboratory of Experimental Hematology, Key Laboratory of Immune Microenvironment and Disease (Ministry of Education), The Province and Ministry Co-sponsored Collaborative Innovation Center for Medical Epigenetics, International Joint Laboratory of Ocular Diseases (Ministry of Education), Tianjin Key Laboratory of Ocular Trauma, School of Basic Medical Sciences, Tianjin Medical University, Tianjin, China
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Tianjin Medical University, Tianjin, China
| | - Chendi Zhang
- State Key Laboratory of Biocatalysis and Enzyme Engineering, School of Life Sciences, Hubei University, Wuhan, China
| | - Jiaqi Gao
- State Key Laboratory of Experimental Hematology, Key Laboratory of Immune Microenvironment and Disease (Ministry of Education), The Province and Ministry Co-sponsored Collaborative Innovation Center for Medical Epigenetics, International Joint Laboratory of Ocular Diseases (Ministry of Education), Tianjin Key Laboratory of Ocular Trauma, School of Basic Medical Sciences, Tianjin Medical University, Tianjin, China
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Tianjin Medical University, Tianjin, China
| | - Guimei Yu
- State Key Laboratory of Experimental Hematology, Key Laboratory of Immune Microenvironment and Disease (Ministry of Education), The Province and Ministry Co-sponsored Collaborative Innovation Center for Medical Epigenetics, International Joint Laboratory of Ocular Diseases (Ministry of Education), Tianjin Key Laboratory of Ocular Trauma, School of Basic Medical Sciences, Tianjin Medical University, Tianjin, China
| | - Qiuqiu He
- State Key Laboratory of Experimental Hematology, Key Laboratory of Immune Microenvironment and Disease (Ministry of Education), The Province and Ministry Co-sponsored Collaborative Innovation Center for Medical Epigenetics, International Joint Laboratory of Ocular Diseases (Ministry of Education), Tianjin Key Laboratory of Ocular Trauma, School of Basic Medical Sciences, Tianjin Medical University, Tianjin, China
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Tianjin Medical University, Tianjin, China
| | - Jie Yang
- State Key Laboratory of Experimental Hematology, Key Laboratory of Immune Microenvironment and Disease (Ministry of Education), The Province and Ministry Co-sponsored Collaborative Innovation Center for Medical Epigenetics, International Joint Laboratory of Ocular Diseases (Ministry of Education), Tianjin Key Laboratory of Ocular Trauma, School of Basic Medical Sciences, Tianjin Medical University, Tianjin, China
| | - Xiang Liu
- State Key Laboratory of Medicinal Chemical Biology, Frontiers Science Center for Cell Responses, College of Life Sciences, Nankai University, TianJin, China
| | - Yong Wei
- The Cancer Hospital of the University of Chinese Academy of Sciences (Zhejiang Cancer Hospital), Institute of Basic Medicine and Cancer (IBMC), Chinese Academy of Sciences, HangZhou, China.
| | - Zhuang Li
- State Key Laboratory of Biocatalysis and Enzyme Engineering, School of Life Sciences, Hubei University, Wuhan, China.
| | - Heng Zhang
- State Key Laboratory of Experimental Hematology, Key Laboratory of Immune Microenvironment and Disease (Ministry of Education), The Province and Ministry Co-sponsored Collaborative Innovation Center for Medical Epigenetics, International Joint Laboratory of Ocular Diseases (Ministry of Education), Tianjin Key Laboratory of Ocular Trauma, School of Basic Medical Sciences, Tianjin Medical University, Tianjin, China.
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Tianjin Medical University, Tianjin, China.
| |
Collapse
|
17
|
Manakova E, Golovinas E, Pocevičiūtė R, Sasnauskas G, Silanskas A, Rutkauskas D, Jankunec M, Zagorskaitė E, Jurgelaitis E, Grybauskas A, Venclovas Č, Zaremba M. The missing part: the Archaeoglobus fulgidus Argonaute forms a functional heterodimer with an N-L1-L2 domain protein. Nucleic Acids Res 2024; 52:2530-2545. [PMID: 38197228 PMCID: PMC10954474 DOI: 10.1093/nar/gkad1241] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2023] [Revised: 12/05/2023] [Accepted: 12/16/2023] [Indexed: 01/11/2024] Open
Abstract
Argonaute (Ago) proteins are present in all three domains of life (bacteria, archaea and eukaryotes). They use small (15-30 nucleotides) oligonucleotide guides to bind complementary nucleic acid targets and are responsible for gene expression regulation, mobile genome element silencing, and defence against viruses or plasmids. According to their domain organization, Agos are divided into long and short Agos. Long Agos found in prokaryotes (long-A and long-B pAgos) and eukaryotes (eAgos) comprise four major functional domains (N, PAZ, MID and PIWI) and two structural linker domains L1 and L2. The majority (∼60%) of pAgos are short pAgos, containing only the MID and inactive PIWI domains. Here we focus on the prokaryotic Argonaute AfAgo from Archaeoglobus fulgidus DSM4304. Although phylogenetically classified as a long-B pAgo, AfAgo contains only MID and catalytically inactive PIWI domains, akin to short pAgos. We show that AfAgo forms a heterodimeric complex with a protein encoded upstream in the same operon, which is a structural equivalent of the N-L1-L2 domains of long pAgos. This complex, structurally equivalent to a long PAZ-less pAgo, outperforms standalone AfAgo in guide RNA-mediated target DNA binding. Our findings provide a missing piece to one of the first and the most studied pAgos.
Collapse
Affiliation(s)
- Elena Manakova
- Institute of Biotechnology, Life Sciences Center, Vilnius University, Sauletekio av. 7, LT-10257, Vilnius, Lithuania
| | - Edvardas Golovinas
- Institute of Biotechnology, Life Sciences Center, Vilnius University, Sauletekio av. 7, LT-10257, Vilnius, Lithuania
| | - Reda Pocevičiūtė
- Institute of Biotechnology, Life Sciences Center, Vilnius University, Sauletekio av. 7, LT-10257, Vilnius, Lithuania
| | - Giedrius Sasnauskas
- Institute of Biotechnology, Life Sciences Center, Vilnius University, Sauletekio av. 7, LT-10257, Vilnius, Lithuania
| | - Arunas Silanskas
- Institute of Biotechnology, Life Sciences Center, Vilnius University, Sauletekio av. 7, LT-10257, Vilnius, Lithuania
| | - Danielis Rutkauskas
- Institute of Biotechnology, Life Sciences Center, Vilnius University, Sauletekio av. 7, LT-10257, Vilnius, Lithuania
- Institute of Physics, Center for Physical Sciences and Technology, Savanoriu 231, LT-02300, Vilnius, Lithuania
| | - Marija Jankunec
- Institute of Biotechnology, Life Sciences Center, Vilnius University, Sauletekio av. 7, LT-10257, Vilnius, Lithuania
- Institute of Biochemistry, Life Sciences Center, Vilnius University, Sauletekio av. 7, LT-10257, Vilnius, Lithuania
| | - Evelina Zagorskaitė
- Institute of Biotechnology, Life Sciences Center, Vilnius University, Sauletekio av. 7, LT-10257, Vilnius, Lithuania
| | - Edvinas Jurgelaitis
- Institute of Biotechnology, Life Sciences Center, Vilnius University, Sauletekio av. 7, LT-10257, Vilnius, Lithuania
| | - Algirdas Grybauskas
- Institute of Biotechnology, Life Sciences Center, Vilnius University, Sauletekio av. 7, LT-10257, Vilnius, Lithuania
| | - Česlovas Venclovas
- Institute of Biotechnology, Life Sciences Center, Vilnius University, Sauletekio av. 7, LT-10257, Vilnius, Lithuania
| | - Mindaugas Zaremba
- Institute of Biotechnology, Life Sciences Center, Vilnius University, Sauletekio av. 7, LT-10257, Vilnius, Lithuania
| |
Collapse
|
18
|
Finocchio G, Koopal B, Potocnik A, Heijstek C, Westphal AH, Jinek M, Swarts DC. Target DNA-dependent activation mechanism of the prokaryotic immune system SPARTA. Nucleic Acids Res 2024; 52:2012-2029. [PMID: 38224450 PMCID: PMC10899771 DOI: 10.1093/nar/gkad1248] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2023] [Revised: 12/14/2023] [Accepted: 12/19/2023] [Indexed: 01/16/2024] Open
Abstract
In both prokaryotic and eukaryotic innate immune systems, TIR domains function as NADases that degrade the key metabolite NAD+ or generate signaling molecules. Catalytic activation of TIR domains requires oligomerization, but how this is achieved varies in distinct immune systems. In the Short prokaryotic Argonaute (pAgo)/TIR-APAZ (SPARTA) immune system, TIR NADase activity is triggered upon guide RNA-mediated recognition of invading DNA by an unknown mechanism. Here, we describe cryo-EM structures of SPARTA in the inactive monomeric and target DNA-activated tetrameric states. The monomeric SPARTA structure reveals that in the absence of target DNA, a C-terminal tail of TIR-APAZ occupies the nucleic acid binding cleft formed by the pAgo and TIR-APAZ subunits, inhibiting SPARTA activation. In the active tetrameric SPARTA complex, guide RNA-mediated target DNA binding displaces the C-terminal tail and induces conformational changes in pAgo that facilitate SPARTA-SPARTA dimerization. Concurrent release and rotation of one TIR domain allow it to form a composite NADase catalytic site with the other TIR domain within the dimer, and generate a self-complementary interface that mediates cooperative tetramerization. Combined, this study provides critical insights into the structural architecture of SPARTA and the molecular mechanism underlying target DNA-dependent oligomerization and catalytic activation.
Collapse
Affiliation(s)
- Giada Finocchio
- Department of Biochemistry, University of Zurich, 8057 Zurich, Switzerland
| | - Balwina Koopal
- Laboratory of Biochemistry, Wageningen University, 6708 WE Wageningen, the Netherlands
| | - Ana Potocnik
- Laboratory of Biochemistry, Wageningen University, 6708 WE Wageningen, the Netherlands
| | - Clint Heijstek
- Laboratory of Biochemistry, Wageningen University, 6708 WE Wageningen, the Netherlands
| | - Adrie H Westphal
- Laboratory of Biochemistry, Wageningen University, 6708 WE Wageningen, the Netherlands
| | - Martin Jinek
- Department of Biochemistry, University of Zurich, 8057 Zurich, Switzerland
| | - Daan C Swarts
- Laboratory of Biochemistry, Wageningen University, 6708 WE Wageningen, the Netherlands
| |
Collapse
|
19
|
Lu X, Xiao J, Wang L, Zhu B, Huang F. The nuclease-associated short prokaryotic Argonaute system nonspecifically degrades DNA upon activation by target recognition. Nucleic Acids Res 2024; 52:844-855. [PMID: 38048327 PMCID: PMC10810196 DOI: 10.1093/nar/gkad1145] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2023] [Revised: 11/10/2023] [Accepted: 11/14/2023] [Indexed: 12/06/2023] Open
Abstract
Prokaryotic Argonautes (pAgos) play a vital role in host defense by utilizing short nucleic acid guides to recognize and target complementary nucleic acids. Despite being the majority of pAgos, short pAgos have only recently received attention. Short pAgos are often associated with proteins containing an APAZ domain and a nuclease domain including DUF4365, SMEK, or HNH domain. In contrast to long pAgos that specifically cleave the target DNA, our study demonstrates that the short pAgo from Thermocrispum municipal, along with its associated DUF4365-APAZ protein, forms a heterodimeric complex. Upon RNA-guided target DNA recognition, this complex is activated to nonspecifically cleave DNA. Additionally, we found that the TmuRE-Ago complex shows a preference for 5'-OH guide RNA, specifically requires a uridine nucleotide at the 5' end of the guide RNA, and is sensitive to single-nucleotide mismatches between the guide RNA and target DNA. Based on its catalytic properties, our study has established a novel nucleic acid detection method and demonstrated its feasibility. This study not only expands our understanding of the defense mechanism employed by short pAgo systems but also suggests their potential applications in nucleic acid detection.
Collapse
Affiliation(s)
- Xueling Lu
- Key Laboratory of Molecular Biophysics, the Ministry of Education, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, Hubei 430074, China
| | - Jun Xiao
- School of Pharmaceutical Sciences, Wuhan University, Wuhan, 430072, China
| | - Longfei Wang
- School of Pharmaceutical Sciences, Wuhan University, Wuhan, 430072, China
| | - Bin Zhu
- Key Laboratory of Molecular Biophysics, the Ministry of Education, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, Hubei 430074, China
- Shenzhen Huazhong University of Science and Technology Research Institute, Shenzhen 518063, China
| | - Fengtao Huang
- Key Laboratory of Molecular Biophysics, the Ministry of Education, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, Hubei 430074, China
| |
Collapse
|
20
|
Zhen X, Xu X, Ye L, Xie S, Huang Z, Yang S, Wang Y, Li J, Long F, Ouyang S. Structural basis of antiphage immunity generated by a prokaryotic Argonaute-associated SPARSA system. Nat Commun 2024; 15:450. [PMID: 38200015 PMCID: PMC10781750 DOI: 10.1038/s41467-023-44660-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2023] [Accepted: 12/26/2023] [Indexed: 01/12/2024] Open
Abstract
Argonaute (Ago) proteins are ubiquitous across all kingdoms of life. Eukaryotic Agos (eAgos) use small RNAs to recognize transcripts for RNA silencing in eukaryotes. In contrast, the functions of prokaryotic counterparts (pAgo) are less well known. Recently, short pAgos in conjunction with the associated TIR or Sir2 (SPARTA or SPARSA) were found to serve as antiviral systems to combat phage infections. Herein, we present the cryo-EM structures of nicotinamide adenine dinucleotide (NAD+)-bound SPARSA with and without nucleic acids at resolutions of 3.1 Å and 3.6 Å, respectively. Our results reveal that the APAZ (Analogue of PAZ) domain and the short pAgo form a featured architecture similar to the long pAgo to accommodate nucleic acids. We further identified the key residues for NAD+ binding and elucidated the structural basis for guide RNA and target DNA recognition. Using structural comparisons, molecular dynamics simulations, and biochemical experiments, we proposed a putative mechanism for NAD+ hydrolysis in which an H186 loop mediates nucleophilic attack by catalytic water molecules. Overall, our study provides mechanistic insight into the antiphage role of the SPARSA system.
Collapse
Affiliation(s)
- Xiangkai Zhen
- Key Laboratory of Microbial Pathogenesis and Interventions of Fujian Province University, the Key Laboratory of Innate Immune Biology of Fujian Province, Biomedical Research Center of South China, Key Laboratory of OptoElectronic Science and Technology for Medicine of the Ministry of Education, College of Life Sciences, Fujian Normal University, Fuzhou, 350117, China
| | - Xiaolong Xu
- Key Laboratory of Combinatorial Biosynthesis and Drug Discovery (Ministry of Education), School of Pharmaceutical Sciences, Department of Neurosurgery, Zhongnan Hospital of Wuhan University, Wuhan, China Wuhan University, Wuhan, 430071, China
| | - Le Ye
- Key Laboratory of Microbial Pathogenesis and Interventions of Fujian Province University, the Key Laboratory of Innate Immune Biology of Fujian Province, Biomedical Research Center of South China, Key Laboratory of OptoElectronic Science and Technology for Medicine of the Ministry of Education, College of Life Sciences, Fujian Normal University, Fuzhou, 350117, China
| | - Song Xie
- College of Chemistry, Fuzhou University, 350116, Fuzhou, China
| | - Zhijie Huang
- Key Laboratory of Microbial Pathogenesis and Interventions of Fujian Province University, the Key Laboratory of Innate Immune Biology of Fujian Province, Biomedical Research Center of South China, Key Laboratory of OptoElectronic Science and Technology for Medicine of the Ministry of Education, College of Life Sciences, Fujian Normal University, Fuzhou, 350117, China
| | - Sheng Yang
- Key Laboratory of Microbial Pathogenesis and Interventions of Fujian Province University, the Key Laboratory of Innate Immune Biology of Fujian Province, Biomedical Research Center of South China, Key Laboratory of OptoElectronic Science and Technology for Medicine of the Ministry of Education, College of Life Sciences, Fujian Normal University, Fuzhou, 350117, China
| | - Yanhui Wang
- Key Laboratory of Combinatorial Biosynthesis and Drug Discovery (Ministry of Education), School of Pharmaceutical Sciences, Department of Neurosurgery, Zhongnan Hospital of Wuhan University, Wuhan, China Wuhan University, Wuhan, 430071, China
| | - Jinyu Li
- College of Chemistry, Fuzhou University, 350116, Fuzhou, China.
| | - Feng Long
- Key Laboratory of Combinatorial Biosynthesis and Drug Discovery (Ministry of Education), School of Pharmaceutical Sciences, Department of Neurosurgery, Zhongnan Hospital of Wuhan University, Wuhan, China Wuhan University, Wuhan, 430071, China.
| | - Songying Ouyang
- Key Laboratory of Microbial Pathogenesis and Interventions of Fujian Province University, the Key Laboratory of Innate Immune Biology of Fujian Province, Biomedical Research Center of South China, Key Laboratory of OptoElectronic Science and Technology for Medicine of the Ministry of Education, College of Life Sciences, Fujian Normal University, Fuzhou, 350117, China.
| |
Collapse
|
21
|
Wang C, Shen Z, Yang XY, Fu TM. Structures and functions of short argonautes. RNA Biol 2024; 21:1-7. [PMID: 39219231 PMCID: PMC11370952 DOI: 10.1080/15476286.2024.2380948] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Revised: 07/03/2024] [Accepted: 07/08/2024] [Indexed: 09/04/2024] Open
Abstract
Argonaute proteins (Agos) represent a highly conserved family of proteins prevalent in all domains of life and have been implicated in various biological processes. Based on the domain architecture, Agos can be divided into long Agos and short Agos. While long Agos have been extensively studied over the past two decades, short Agos, found exclusively in prokaryotes, have recently gained attention for their roles in prokaryotic immune defence against mobile genetic elements, such as plasmids and phages. Notable functional and structural studies provide invaluable insights into the underlying molecular mechanisms of representative short Ago systems. Despite the diverse domain arrangements, short Agos generally form heterodimeric complexes with their associated effector proteins, activating the effector's enzymatic activities upon target detection. The activation of effector proteins in the short Ago systems leads to bacterial cell death, a mechanism of sacrificing individuals to protect the community.
Collapse
Affiliation(s)
- Chen Wang
- Department of Biological Chemistry and Pharmacology, Center for RNA Biology, The Ohio State University, Columbus, OH, USA
- The Ohio State University Comprehensive Cancer Center, Columbus, OH, USA
| | - Zhangfei Shen
- Department of Biological Chemistry and Pharmacology, Center for RNA Biology, The Ohio State University, Columbus, OH, USA
- The Ohio State University Comprehensive Cancer Center, Columbus, OH, USA
| | - Xiao-Yuan Yang
- Department of Biological Chemistry and Pharmacology, Center for RNA Biology, The Ohio State University, Columbus, OH, USA
- The Ohio State University Comprehensive Cancer Center, Columbus, OH, USA
- Program of OSBP, The Ohio State University, Columbus, OH, USA
| | - Tian-Min Fu
- Department of Biological Chemistry and Pharmacology, Center for RNA Biology, The Ohio State University, Columbus, OH, USA
- The Ohio State University Comprehensive Cancer Center, Columbus, OH, USA
- Program of OSBP, The Ohio State University, Columbus, OH, USA
| |
Collapse
|
22
|
Gao X, Shang K, Zhu K, Wang L, Mu Z, Fu X, Yu X, Qin B, Zhu H, Ding W, Cui S. Nucleic-acid-triggered NADase activation of a short prokaryotic Argonaute. Nature 2024; 625:822-831. [PMID: 37783228 DOI: 10.1038/s41586-023-06665-6] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2023] [Accepted: 09/21/2023] [Indexed: 10/04/2023]
Abstract
Argonaute (Ago) proteins mediate RNA- or DNA-guided inhibition of nucleic acids1,2. Although the mechanisms used by eukaryotic Ago proteins and long prokaryotic Ago proteins (pAgos) are known, that used by short pAgos remains elusive. Here we determined the cryo-electron microscopy structures of a short pAgo and the associated TIR-APAZ proteins (SPARTA) from Crenotalea thermophila (Crt): a free-state Crt-SPARTA; a guide RNA-target DNA-loaded Crt-SPARTA; two Crt-SPARTA dimers with distinct TIR organization; and a Crt-SPARTA tetramer. These structures reveal that Crt-SPARTA is composed of a bilobal-fold Ago lobe that connects with a TIR lobe. Whereas the Crt-Ago contains a MID and a PIWI domain, Crt-TIR-APAZ has a TIR domain, an N-like domain, a linker domain and a trigger domain. The bound RNA-DNA duplex adopts a B-form conformation that is recognized by base-specific contacts. Nucleic acid binding causes conformational changes because the trigger domain acts as a 'roadblock' that prevents the guide RNA 5' ends and the target DNA 3' ends from reaching their canonical pockets; this disorders the MID domain and promotes Crt-SPARTA dimerization. Two RNA-DNA-loaded Crt-SPARTA dimers form a tetramer through their TIR domains. Four Crt-TIR domains assemble into two parallel head-to-tail-organized TIR dimers, indicating an NADase-active conformation, which is supported by our mutagenesis study. Our results reveal the structural basis of short-pAgo-mediated defence against invading nucleic acids, and provide insights for optimizing the detection of SPARTA-based programmable DNA sequences.
Collapse
Affiliation(s)
- Xiaopan Gao
- NHC Key Laboratory of Systems Biology of Pathogens, Institute of Pathogen Biology, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
- Key Laboratory of Pathogen Infection Prevention and Control, Peking Union Medical College, Ministry of Education, Beijing, China
| | - Kun Shang
- Beijing National Laboratory for Condensed Matter Physics, Institute of Physics, Chinese Academy of Sciences, Beijing, China
- Medical School, Yan'an University, Yan'an, China
| | - Kaixiang Zhu
- NHC Key Laboratory of Systems Biology of Pathogens, Institute of Pathogen Biology, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
- Key Laboratory of Pathogen Infection Prevention and Control, Peking Union Medical College, Ministry of Education, Beijing, China
| | - Linyue Wang
- NHC Key Laboratory of Systems Biology of Pathogens, Institute of Pathogen Biology, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
- Key Laboratory of Pathogen Infection Prevention and Control, Peking Union Medical College, Ministry of Education, Beijing, China
| | - Zhixia Mu
- NHC Key Laboratory of Systems Biology of Pathogens, Institute of Pathogen Biology, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
- Key Laboratory of Pathogen Infection Prevention and Control, Peking Union Medical College, Ministry of Education, Beijing, China
| | - Xingke Fu
- Beijing National Laboratory for Condensed Matter Physics, Institute of Physics, Chinese Academy of Sciences, Beijing, China
| | - Xia Yu
- National Clinical Laboratory on Tuberculosis, Beijing Key Laboratory for Drug-resistant Tuberculosis Research, Beijing Chest Hospital, Capital Medical University, Beijing Tuberculosis and Thoracic Tumor Institute, Beijing, China
| | - Bo Qin
- NHC Key Laboratory of Systems Biology of Pathogens, Institute of Pathogen Biology, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
- Key Laboratory of Pathogen Infection Prevention and Control, Peking Union Medical College, Ministry of Education, Beijing, China
| | - Hongtao Zhu
- Beijing National Laboratory for Condensed Matter Physics, Institute of Physics, Chinese Academy of Sciences, Beijing, China.
| | - Wei Ding
- Beijing National Laboratory for Condensed Matter Physics, Institute of Physics, Chinese Academy of Sciences, Beijing, China.
| | - Sheng Cui
- NHC Key Laboratory of Systems Biology of Pathogens, Institute of Pathogen Biology, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China.
- Key Laboratory of Pathogen Infection Prevention and Control, Peking Union Medical College, Ministry of Education, Beijing, China.
| |
Collapse
|
23
|
Affiliation(s)
- Arpita Chakravarti
- Structural Biology Program, Memorial Sloan-Kettering Cancer Center, New York, NY, USA.
| | - Dinshaw J Patel
- Structural Biology Program, Memorial Sloan-Kettering Cancer Center, New York, NY, USA.
| |
Collapse
|