1
|
Wu J, Qian P, Han Y, Xu C, Xia M, Zhan P, Wei J, Dong J. GLP1 alleviates oleic acid-propelled lipocalin-2 generation by tumor-infiltrating CD8 + T cells to reduce polymorphonuclear MDSC recruitment and enhances viral immunotherapy in pancreatic cancer. Cell Mol Immunol 2025:10.1038/s41423-025-01260-3. [PMID: 39910336 DOI: 10.1038/s41423-025-01260-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2024] [Accepted: 01/12/2025] [Indexed: 02/07/2025] Open
Abstract
Recruitment of polymorphonuclear MDSCs (PMN-MDSCs) in the TME suppresses the antitumor activity of tumor-infiltrating CD8+ T cells (CD8+ TILs). Little is known about the role of antitumoral CD8+ TILs in actively initiating an immune-tolerant microenvironment, particularly in the recruitment of PMN-MDSCs. In this study, we found that immunotherapy-activated CD8+ TILs significantly increased PNM-MDSC infiltration in the TME, resulting in antitumor resistance. When CD8+ T cells are activated, lipocalin-2 (LCN2) expression is strongly upregulated, which significantly enhances PMN-MDSC chemotaxis. Mechanistically, immune activation increased fatty acid synthesis in CD8+ T cells, particularly oleic acid (OA), which induced lysosomal membrane permeabilization, releasing cathepsin B and subsequently activating NF-κB to promote LCN2 expression. Moreover, we showed that glucagon-like peptide 1 (GLP1) effectively inhibited OA synthesis in activated CD8+ T cells, reducing LCN2 production. We then developed a recombinant adenovirus encoding GLP1 (AdV-GLP1), which significantly reduced PMN-MDSC infiltration and reinvigorated the antitumor activity of CD8+ TILs. In various pancreatic cancer models, including subcutaneous, orthotopic, and humanized CDX/PDX models, AdV-GLP1 displayed excellent antitumor efficacy. Our work advances the understanding of how immunotherapy-activated CD8+ TILs initiate PMN-MDSC infiltration and provides a clinically relevant strategy to target this interaction and improve cancer immunotherapy.
Collapse
Affiliation(s)
- Jingyi Wu
- State Key Laboratory of Pharmaceutical Biotechnology and Jiangsu Key Laboratory of Molecular Medicine, Medical School of Nanjing University, Nanjing, Jiangsu, China
| | - Peng Qian
- State Key Laboratory of Pharmaceutical Biotechnology and Jiangsu Key Laboratory of Molecular Medicine, Medical School of Nanjing University, Nanjing, Jiangsu, China
| | - Yifeng Han
- State Key Laboratory of Pharmaceutical Biotechnology and Jiangsu Key Laboratory of Molecular Medicine, Medical School of Nanjing University, Nanjing, Jiangsu, China
| | - Chuning Xu
- State Key Laboratory of Pharmaceutical Biotechnology and Jiangsu Key Laboratory of Molecular Medicine, Medical School of Nanjing University, Nanjing, Jiangsu, China
| | - Mao Xia
- Department of Clinical Laboratory Medicine, the Affiliated Hospital of Nantong University, Nantong, Jiangsu, China
| | - Ping Zhan
- Department of Respiratory Medicine, Jinling Hospital, Medical School of Nanjing University, Nanjing, Jiangsu, China
| | - Jiwu Wei
- State Key Laboratory of Pharmaceutical Biotechnology and Jiangsu Key Laboratory of Molecular Medicine, Medical School of Nanjing University, Nanjing, Jiangsu, China.
| | - Jie Dong
- State Key Laboratory of Pharmaceutical Biotechnology and Jiangsu Key Laboratory of Molecular Medicine, Medical School of Nanjing University, Nanjing, Jiangsu, China.
- Department of Pathogen Biology, School of Medicine, Nantong University, Nantong, Jiangsu, 226001, China.
| |
Collapse
|
2
|
Liang J, Cheng G, Qiu L, Xue L, Xu H, Qiao X, Guo N, Xiang H, Chen Y, Ding H. Activatable Sulfur Dioxide Nanosonosensitizer Enables Precisely Controllable Sono-Gaseous Checkpoint Trimodal Therapy for Orthotopic Hepatocellular Carcinoma. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2025; 12:e2409442. [PMID: 39679828 PMCID: PMC11791957 DOI: 10.1002/advs.202409442] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/09/2024] [Revised: 10/28/2024] [Indexed: 12/17/2024]
Abstract
Immune checkpoint blockade (ICB) is combined with sonodynamic therapy (SDT) to increase response rates and enhance anticancer efficacy. However, the "always on" property of most sonosensitizers in reducing tumor microenvironment (TME) compromises the therapeutic outcome of sonoimmunotherapy and exacerbates adverse side effects. Precisely controllable strategies combining sulfur dioxide (SO2) gas therapy with cancer immunotherapy can address these issues but remain lacking. Herein an "activatable SO2 nanosonosensitizer" for precise sono-gaseous checkpoint trimodal therapy of orthotopic hepatocellular carcinoma (HCC) is reported, whose full activity is initiated by ultrasound (US) irradiation in the reducing TME. This "activatable SO2 nanosonosensitizer," Aza-DNBS nanoparticles (NPs), are established by self-assembling Aza-boron-dipyrromethene based sonosensitizer molecules and 2,4-dinitrobenzenesulfonate (DNBS)-caged SO2 prodrug. The activity of Aza-DNBS NPs is initially silenced, and the sonodynamic, gaseous, and immunosuppressive TME reprogramming activities are precisely awakened under US irradiation. Due to the glutathione-responsiveness of Aza-DNBS NPs, Aza-DNBS NPs can generate large amounts of SO2 for gas therapy-enhanced SDT, which triggers robust immunogenic cell death activation and reprogramming of the immunosuppressive TME, thereby significantly suppressing orthotopic tumor growth and delaying lung metastasis. Thus, this study represents a strategy for designing a generic nanoplatform for precisely combined immunotherapy of orthotopic HCC.
Collapse
Affiliation(s)
- Jing Liang
- Department of UltrasoundHuashan HospitalFudan UniversityShanghai200040China
| | - Guangwen Cheng
- Department of UltrasoundHuashan HospitalFudan UniversityShanghai200040China
| | - Luping Qiu
- Department of UltrasoundHuashan HospitalFudan UniversityShanghai200040China
| | - Liyun Xue
- Department of UltrasoundHuashan HospitalFudan UniversityShanghai200040China
| | - Huning Xu
- Department of UltrasoundHuashan HospitalFudan UniversityShanghai200040China
| | - Xiaohui Qiao
- Department of UltrasoundHuashan HospitalFudan UniversityShanghai200040China
| | - Na Guo
- Department of PathologyZhejiang Cancer HospitalHangzhouZhejiang310022China
| | - Huijing Xiang
- Materdicine LabSchool of Life SciencesShanghai UniversityShanghai2000444China
| | - Yu Chen
- Materdicine LabSchool of Life SciencesShanghai UniversityShanghai2000444China
| | - Hong Ding
- Department of UltrasoundHuashan HospitalFudan UniversityShanghai200040China
| |
Collapse
|
3
|
Du Y, Yang Y, Zheng B, Zhang Q, Zhou S, Zhao L. Finding a needle in a haystack: functional screening for novel targets in cancer immunology and immunotherapies. Oncogene 2025:10.1038/s41388-025-03273-8. [PMID: 39863748 DOI: 10.1038/s41388-025-03273-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2024] [Revised: 12/06/2024] [Accepted: 01/14/2025] [Indexed: 01/27/2025]
Abstract
Genome-wide functional genetic screening has been widely used in the biomedicine field, which makes it possible to find a needle in a haystack at the genetic level. In cancer research, gene mutations are closely related to tumor development, metastasis, and recurrence, and the use of state-of-the-art powerful screening technologies, such as clustered regularly interspaced short palindromic repeat (CRISPR), to search for the most critical genes or coding products provides us with a new possibility to further refine the cancer mapping and provide new possibilities for the treatment of cancer patients. The use of CRISPR screening for the most critical genes or coding products has further refined the cancer atlas and provided new possibilities for the treatment of cancer patients. Immunotherapy, as a highly promising cancer treatment method, has been widely validated in the clinic, but it could only meet the needs of a small proportion of cancer patients. Finding new immunotherapy targets is the key to the future of tumor immunotherapy. Here, we revisit the application of functional screening in cancer immunology from different perspectives, from the selection of diverse in vitro and in vivo screening models to the screening of potential immune checkpoints and potentiating genes for CAR-T cells. The data will offer fresh therapeutic clues for cancer patients.
Collapse
Affiliation(s)
- Yi Du
- Department of Obstetrics and Gynecology, Key Laboratory of Birth Defects and Related Diseases of Women and Children of MOE, West China Second Hospital, State Key Laboratory of Biotherapy, and Department of Neurosurgery, West China Hospital, Sichuan University and Collaborative Innovation Center, Chengdu, P. R. China
| | - Yang Yang
- Department of Obstetrics and Gynecology, Key Laboratory of Birth Defects and Related Diseases of Women and Children of MOE, West China Second Hospital, State Key Laboratory of Biotherapy, and Department of Neurosurgery, West China Hospital, Sichuan University and Collaborative Innovation Center, Chengdu, P. R. China
| | - Bohao Zheng
- Department of Obstetrics and Gynecology, Key Laboratory of Birth Defects and Related Diseases of Women and Children of MOE, West China Second Hospital, State Key Laboratory of Biotherapy, and Department of Neurosurgery, West China Hospital, Sichuan University and Collaborative Innovation Center, Chengdu, P. R. China
- Wuxi School of Medicine, Jiangnan University, Wuxi, Jiangsu, China
| | - Qian Zhang
- Department of Obstetrics and Gynecology, Key Laboratory of Birth Defects and Related Diseases of Women and Children of MOE, West China Second Hospital, State Key Laboratory of Biotherapy, and Department of Neurosurgery, West China Hospital, Sichuan University and Collaborative Innovation Center, Chengdu, P. R. China.
| | - Shengtao Zhou
- Department of Obstetrics and Gynecology, Key Laboratory of Birth Defects and Related Diseases of Women and Children of MOE, West China Second Hospital, State Key Laboratory of Biotherapy, and Department of Neurosurgery, West China Hospital, Sichuan University and Collaborative Innovation Center, Chengdu, P. R. China.
| | - Linjie Zhao
- Department of Obstetrics and Gynecology, Key Laboratory of Birth Defects and Related Diseases of Women and Children of MOE, West China Second Hospital, State Key Laboratory of Biotherapy, and Department of Neurosurgery, West China Hospital, Sichuan University and Collaborative Innovation Center, Chengdu, P. R. China.
| |
Collapse
|
4
|
Huang S, Shi J, Shen J, Fan X. Metabolic reprogramming of neutrophils in the tumor microenvironment: Emerging therapeutic targets. Cancer Lett 2025; 612:217466. [PMID: 39862916 DOI: 10.1016/j.canlet.2025.217466] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2024] [Revised: 01/12/2025] [Accepted: 01/13/2025] [Indexed: 01/27/2025]
Abstract
Neutrophils are pivotal in the immune system and have been recognized as significant contributors to cancer development and progression. These cells undergo metabolic reprogramming in response to various stimulus, including infections, diseases, and the tumor microenvironment (TME). Under normal conditions, neutrophils primarily rely on aerobic glucose metabolism for energy production. However, within the TME featured by hypoxic and nutrient-deprived conditions, they shift to altered anaerobic glycolysis, lipid metabolism, mitochondrial metabolism and amino acid metabolism to perform their immunosuppressive functions and facilitate tumor progression. Targeting neutrophils within the TME is a promising therapeutic approach. Yet, focusing on their metabolic pathways presents a novel strategy to enhance cancer immunotherapy. This review synthesizes the current understanding of neutrophil metabolic reprogramming in the TME, with an emphasis on the underlying molecular mechanisms and signaling pathways. Studying neutrophil metabolism in the TME poses challenges, such as their short lifespan and the metabolic complexity of the environment, necessitating the development of advanced research methodologies. This review also discusses emerging solutions to these challenges. In conclusion, given their integral role in the TME, targeting the metabolic pathways of neutrophils could offer a promising avenue for cancer therapy.
Collapse
Affiliation(s)
- Shiyun Huang
- Department of Ophthalmology, Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, China; Shanghai Key Laboratory of Orbital Diseases and Ocular Oncology, Shanghai, 200025, China.
| | - Jiahao Shi
- Department of Ophthalmology, Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, China; Shanghai Key Laboratory of Orbital Diseases and Ocular Oncology, Shanghai, 200025, China.
| | - Jianfeng Shen
- Department of Ophthalmology, Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, China; Shanghai Key Laboratory of Orbital Diseases and Ocular Oncology, Shanghai, 200025, China.
| | - Xianqun Fan
- Department of Ophthalmology, Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, China; Shanghai Key Laboratory of Orbital Diseases and Ocular Oncology, Shanghai, 200025, China.
| |
Collapse
|
5
|
Chen T, Liu J, Hang R, Chen Q, Wang D. Neutrophils: From Inflammatory Bowel Disease to Colitis-Associated Colorectal Cancer. J Inflamm Res 2025; 18:925-947. [PMID: 39871958 PMCID: PMC11770381 DOI: 10.2147/jir.s497701] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2024] [Accepted: 01/06/2025] [Indexed: 01/29/2025] Open
Abstract
Inflammatory bowel disease (IBD) is a non-specific inflammatory disease of digestive tract, primarily manifesting as ulcerative colitis (UC) and Crohn's disease (CD). The precise etiology of IBD remains elusive. The interplay of genetic factors, environmental influences, and intestinal microbiota contributes to the establishment of an uncontrolled immune environment within the intestine, which can progressively lead to atypical hyperplasia and ultimately to malignancy over a long period. This colorectal malignant tumor that arises from chronic IBD is referred to as colitis-associated colorectal cancer (CAC). Dysregulation in the quantity and functionality of neutrophils plays a significant role in the onset, progression, and recurrence of IBD, as well as in the transition from IBD to CAC. Neutrophils affect the pathophysiology of IBD through various mechanisms, including the production of reactive oxygen species (ROS), degranulation, the release of inflammatory mediators and chemokines, and the formation of neutrophil extracellular traps (NETs). These processes can induce DNA mutations, thereby facilitating the development of colon cancer. Given the incomplete understanding of the disease mechanisms underlying IBD and CAC, effective treatment and prevention strategies remain challenging. Consequently, a comprehensive review of the functional roles of neutrophils in IBD and CAC is essential for advancing our understanding of IBD pathogenesis and identifying potential therapeutic targets.
Collapse
Affiliation(s)
- Tianyi Chen
- Cancer Center, Daping Hospital, Army Medical University, Chongqing, People’s Republic of China
| | - Jiachen Liu
- Radiology Department, Daping Hospital, Army Medical University, Chongqing, People’s Republic of China
| | - Ruyi Hang
- Cancer Center, Daping Hospital, Army Medical University, Chongqing, People’s Republic of China
| | - Qian Chen
- Cancer Center, Daping Hospital, Army Medical University, Chongqing, People’s Republic of China
| | - Dong Wang
- Cancer Center, Daping Hospital, Army Medical University, Chongqing, People’s Republic of China
- Oncology Department of Qianjiang Center Hospital, Chongqing University, Chongqing, People’s Republic of China
| |
Collapse
|
6
|
Wang C, Lu M, Chen C, Chen J, Cai Y, Wang H, Tao L, Yin W, Chen J. Integrating scRNA-seq and Visium HD for the analysis of the tumor microenvironment in the progression of colorectal cancer. Int Immunopharmacol 2025; 145:113752. [PMID: 39642568 DOI: 10.1016/j.intimp.2024.113752] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2024] [Revised: 11/26/2024] [Accepted: 11/27/2024] [Indexed: 12/09/2024]
Abstract
BACKGROUND Colorectal cancer (CRC) development is a complex, multi-stage process, transitioning from normal to adenomatous tissue, and then to invasive carcinoma. Despite research, there's a knowledge gap on using high-resolution spatial omics to understand CRC's tumor microenvironment dynamics. METHODS We used single-cell transcriptomics to study major biological changes and cell interactions in CRC progression. Additionally, high-resolution spatial transcriptomics helped us examine the spatial distribution of cells with significant pathway changes, offering insights into the tumor microenvironment's development throughout CRC stages. RESULTS In the progression of CRC, plasma cells, neutrophils, and fibroblasts exhibit the most significant changes in hallmark pathways, while epithelial cells show the most pronounced alterations in metabolic pathways. We also identified a population of NOTUM + epithelial cells and IGHG1/3 + plasma cells that are concentrated at the boundary between normal tissue and adenomas. Pathway analysis further suggests that these NOTUM + cells activate numerous cancer-related pathways, despite the absence of significant pathological morphological changes. Additionally, we conducted a targeted drug prediction analysis to identify potential therapeutic agents for NOTUM-expressing epithelial cells. CONCLUSIONS Analyzing scRNA-seq and Visium HD data, we found that IGHG1/3 + plasma cells and tumor-associated neutrophil (TANs) may significantly affect colorectal tissue transformation from normal to adenoma and carcinoma. These cells are concentrated at the transition between normal and adenomatous tissue. We also found NOTUM-expressing cells at the edge of normal and adenomatous areas, possibly indicating a morphological transition as normal cells evolve into adenoma cells.
Collapse
Affiliation(s)
- Chun Wang
- Department of Pathology, Peking University Shenzhen Hospital, Shenzhen, China
| | - Mengying Lu
- Department of Pathology, Peking University Shenzhen Hospital, Shenzhen, China; School of Medicine,Southern University of Science and Technology, Shenzhen, China
| | - Cuimin Chen
- Department of Pathology, Peking University Shenzhen Hospital, Shenzhen, China
| | - Jiajun Chen
- Department of Pathology, The Eighth Affiliated Hospital of Sun Yat-sen University, Shenzhen, China
| | - Yusi Cai
- Department of Pathology, Peking University Shenzhen Hospital, Shenzhen, China
| | - Hao Wang
- Department of Pathology, Peking University Shenzhen Hospital, Shenzhen, China
| | - Lili Tao
- Department of Pathology, Peking University Shenzhen Hospital, Shenzhen, China; School of Medicine,Southern University of Science and Technology, Shenzhen, China
| | - Weihua Yin
- Department of Pathology, Peking University Shenzhen Hospital, Shenzhen, China
| | - Jiakang Chen
- Department of Pathology, Peking University Shenzhen Hospital, Shenzhen, China.
| |
Collapse
|
7
|
Yao J, Ji L, Wang G, Ding J. Effect of neutrophils on tumor immunity and immunotherapy resistance with underlying mechanisms. Cancer Commun (Lond) 2025; 45:15-42. [PMID: 39485719 PMCID: PMC11758154 DOI: 10.1002/cac2.12613] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2024] [Revised: 09/08/2024] [Accepted: 09/17/2024] [Indexed: 11/03/2024] Open
Abstract
Neutrophils are key mediators of the immune response and play essential roles in the development of tumors and immune evasion. Emerging studies indicate that neutrophils also play a critical role in the immunotherapy resistance in cancer. In this review, firstly, we summarize the novel classification and phenotypes of neutrophils and describe the regulatory relationships between neutrophils and tumor metabolism, flora microecology, neuroendocrine and tumor therapy from a new perspective. Secondly, we review the mechanisms by which neutrophils affect drug resistance in tumor immunotherapy from the aspects of the immune microenvironment, tumor antigens, and epigenetics. Finally, we propose several promising strategies for overcoming tumor immunotherapy resistance by targeting neutrophils and provide new research ideas in this area.
Collapse
Affiliation(s)
- Jiali Yao
- Clinical Cancer InstituteCenter for Translational MedicineNaval Medical UniversityShanghaiChina
| | - Linlin Ji
- Clinical Cancer InstituteCenter for Translational MedicineNaval Medical UniversityShanghaiChina
| | - Guang Wang
- Clinical Cancer InstituteCenter for Translational MedicineNaval Medical UniversityShanghaiChina
| | - Jin Ding
- Clinical Cancer InstituteCenter for Translational MedicineNaval Medical UniversityShanghaiChina
| |
Collapse
|
8
|
Ma K, Wang L, Li W, Tang T, Ma B, Zhang L, Zhang L. Turning cold into hot: emerging strategies to fire up the tumor microenvironment. Trends Cancer 2024:S2405-8033(24)00278-4. [PMID: 39730243 DOI: 10.1016/j.trecan.2024.11.011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2024] [Revised: 11/22/2024] [Accepted: 11/26/2024] [Indexed: 12/29/2024]
Abstract
The tumor microenvironment (TME) is a complex, highly structured, and dynamic ecosystem that plays a pivotal role in the progression of both primary and metastatic tumors. Precise assessment of the dynamic spatiotemporal features of the TME is crucial for understanding cancer evolution and designing effective therapeutic strategies. Cancer is increasingly recognized as a systemic disease, influenced not only by the TME, but also by a multitude of systemic factors, including whole-body metabolism, gut microbiome, endocrine signaling, and circadian rhythm. In this review, we summarize the intrinsic, extrinsic, and systemic factors contributing to the formation of 'cold' tumors within the framework of the cancer-immunity cycle. Correspondingly, we discuss potential strategies for converting 'cold' tumors into 'hot' ones to enhance therapeutic efficacy.
Collapse
Affiliation(s)
- Kaili Ma
- National Key Laboratory of Immunity and Inflammation, Suzhou Institute of Systems Medicine, Chinese Academy of Medical Sciences and Peking Union Medical College, Suzhou, Jiangsu 215123, China; Key Laboratory of Synthetic Biology Regulatory Element, Institute of Systems Medicine, Chinese Academy of Medical Sciences and Peking Union Medical College, Suzhou, Jiangsu 215123, China
| | - Lin Wang
- National Key Laboratory of Immunity and Inflammation, Suzhou Institute of Systems Medicine, Chinese Academy of Medical Sciences and Peking Union Medical College, Suzhou, Jiangsu 215123, China; Key Laboratory of Synthetic Biology Regulatory Element, Institute of Systems Medicine, Chinese Academy of Medical Sciences and Peking Union Medical College, Suzhou, Jiangsu 215123, China
| | - Wenhui Li
- National Key Laboratory of Immunity and Inflammation, Suzhou Institute of Systems Medicine, Chinese Academy of Medical Sciences and Peking Union Medical College, Suzhou, Jiangsu 215123, China; Key Laboratory of Synthetic Biology Regulatory Element, Institute of Systems Medicine, Chinese Academy of Medical Sciences and Peking Union Medical College, Suzhou, Jiangsu 215123, China
| | - Tingting Tang
- Jiangsu Center for the Collaboration and Innovation of Cancer Biotherapy, Xuzhou Medical University, Xuzhou, 221004, Jiangsu, China
| | - Bo Ma
- Jiangsu Center for the Collaboration and Innovation of Cancer Biotherapy, Xuzhou Medical University, Xuzhou, 221004, Jiangsu, China.
| | - Liyuan Zhang
- Center for Cancer Diagnosis and Treatment, The Second Affiliated Hospital of Soochow University, Suzhou, Jiangsu 215123, China; PRAG Therapy Center, The Second Affiliated Hospital of Soochow University, Suzhou, Jiangsu 215123, China.
| | - Lianjun Zhang
- National Key Laboratory of Immunity and Inflammation, Suzhou Institute of Systems Medicine, Chinese Academy of Medical Sciences and Peking Union Medical College, Suzhou, Jiangsu 215123, China; Key Laboratory of Synthetic Biology Regulatory Element, Institute of Systems Medicine, Chinese Academy of Medical Sciences and Peking Union Medical College, Suzhou, Jiangsu 215123, China.
| |
Collapse
|
9
|
Masui H, Kawada K, Obama K. Neutrophil and Colorectal Cancer. Int J Mol Sci 2024; 26:6. [PMID: 39795864 PMCID: PMC11720084 DOI: 10.3390/ijms26010006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2024] [Revised: 12/20/2024] [Accepted: 12/21/2024] [Indexed: 01/13/2025] Open
Abstract
Colorectal cancer (CRC) is often associated with metastasis and recurrence and is the leading cause of cancer-related mortality. In the progression of CRC, recent studies have highlighted the critical role of neutrophils, particularly tumor-associated neutrophils (TANs). TANs have both tumor-promoting and tumor-suppressing activities, contributing to metastasis, immunosuppression, angiogenesis, and epithelial-to-mesenchymal transition. Tumor-promoting TANs promote tumor growth by releasing proteases, reactive oxygen species, and cytokines, whereas tumor-suppressing TANs enhance immune responses by activating T cells and natural killer cells. Understanding the mechanisms underlying TAN mobilization, plasticity, and their role in the tumor microenvironment has revealed potential therapeutic targets. This review provides a comprehensive overview of TAN biology in CRC and discusses both the tumor-promoting and tumor-suppressing functions of neutrophils. Novel therapeutic approaches targeting TANs, such as chemokine receptor antagonists, aim to modulate neutrophil reprogramming and offer promising avenues for improving treatment outcomes of CRC.
Collapse
Affiliation(s)
- Hideyuki Masui
- Department of Surgery, Graduate School of Medicine, Kyoto University, Kyoto 606-8507, Japan; (H.M.); (K.O.)
- Department of Surgery, Hirakata Kohsai Hospital, Osaka 573-0153, Japan
| | - Kenji Kawada
- Department of Surgery, Graduate School of Medicine, Kyoto University, Kyoto 606-8507, Japan; (H.M.); (K.O.)
- Department of Surgery, Kurashiki Central Hospital, Okayama 710-8602, Japan
| | - Kazutaka Obama
- Department of Surgery, Graduate School of Medicine, Kyoto University, Kyoto 606-8507, Japan; (H.M.); (K.O.)
| |
Collapse
|
10
|
Liu H, Zhao H, Zhou M, Zhao X, Lu Y. Neutrophils in cancer drug resistance: Roles and therapeutic opportunities. Cancer Lett 2024; 611:217417. [PMID: 39722405 DOI: 10.1016/j.canlet.2024.217417] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2024] [Revised: 12/09/2024] [Accepted: 12/22/2024] [Indexed: 12/28/2024]
Abstract
The tumor microenvironment (TME) is closely associated with the therapeutic response and clinical outcome of cancer drug therapies, which mainly include immunotherapy, chemotherapy and targeted therapy. Neutrophils that infiltrate tumors, also known as tumor-associated neutrophils (TANs), constitute a primary part of the TME. However, the functional importance of TANs in cancer drug therapy has long been overlooked because of their relatively short life span. Recent studies have shown that TANs play crucial protumoral or antitumoral roles in cancer drug treatment, largely because of their diversity and plasticity. This review describes the development, heterogeneity and recruitment of neutrophils in the context of cancer and emphasizes the role and mechanisms of TANs in cancer drug resistance. Additionally, several potential neutrophil-targeted strategies are discussed.
Collapse
Affiliation(s)
- Hao Liu
- State Key Laboratory of Holistic Integrative Management of Gastrointestinal Cancers, National Clinical Research Center for Digestive Diseases, Xijing Hospital, Fourth Military Medical University, 710032, Xi'an, Shaanxi, China
| | - Hongyu Zhao
- State Key Laboratory of Holistic Integrative Management of Gastrointestinal Cancers, National Clinical Research Center for Digestive Diseases, Xijing Hospital, Fourth Military Medical University, 710032, Xi'an, Shaanxi, China
| | - Mingzhen Zhou
- State Key Laboratory of Holistic Integrative Management of Gastrointestinal Cancers, National Clinical Research Center for Digestive Diseases, Xijing Hospital, Fourth Military Medical University, 710032, Xi'an, Shaanxi, China
| | - Xiaodi Zhao
- State Key Laboratory of Holistic Integrative Management of Gastrointestinal Cancers, National Clinical Research Center for Digestive Diseases, Xijing Hospital, Fourth Military Medical University, 710032, Xi'an, Shaanxi, China.
| | - Yuanyuan Lu
- State Key Laboratory of Holistic Integrative Management of Gastrointestinal Cancers, National Clinical Research Center for Digestive Diseases, Xijing Hospital, Fourth Military Medical University, 710032, Xi'an, Shaanxi, China.
| |
Collapse
|
11
|
Xu B, He Q, Sun D, Li X, Fan J, Yan X, Ruan R, Wang N, Cheng P. Inhibition mechanism of leukemia cells HL-60 by exopolysaccharides from Botryococcus braunii in response to high-concentration cobalt. Int J Biol Macromol 2024; 290:139092. [PMID: 39716694 DOI: 10.1016/j.ijbiomac.2024.139092] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2024] [Revised: 12/16/2024] [Accepted: 12/20/2024] [Indexed: 12/25/2024]
Abstract
The influence of metal elements on the biomedical activity of microalgal exopolysaccharides (EPS) remains underexplored. This study examined the antitumor properties of Botryococcus braunii EPS under high cobalt conditions and the role of exogenous 3-indole acetic acid (IAA) in enhancing its activity. Results showed that IAA mitigated cobalt-induced inhibition of B. braunii growth and improved its antioxidant capacity. Notably, EPS obtained from B. braunii treated with IAA under high cobalt conditions (HC-IAA-EPS) exhibited a 98.06 % inhibition of human promyelocytic leukemia cells (HL-60), significantly higher than the control (83.86 %). HC-IAA-EPS induced mitochondrial damage in HL-60 cells, evidenced by a decrease in mitochondrial transmembrane potential (observed via fluorescence microscopy) and a 1.5-fold increase in reactive oxygen species (ROS) levels compared to the control, ultimately triggering endogenous apoptosis. Proteomic analysis revealed that HC-IAA-EPS caused significant changes in apoptosis and cell cycle-related protein changes in HL-60. Gene Ontology (GO) analysis indicated enrichment in pathways such as neutrophil degranulation, Toll-like receptor (TLR) signaling, and vesicle binding complexes. This study concludes that HC-IAA-EPS inhibits HL-60 cell proliferation by inducing mitochondrial dysfunction, reducing transmembrane potential, and increasing ROS production, providing valuable insights into the antitumor potential of microalgal EPS under metal stress conditions.
Collapse
Affiliation(s)
- Baoyu Xu
- College of Food Science and Engineering, Ningbo University, Ningbo, Zhejiang 315211, China
| | - Qilin He
- College of Food Science and Engineering, Ningbo University, Ningbo, Zhejiang 315211, China
| | - Danni Sun
- College of Food Science and Engineering, Ningbo University, Ningbo, Zhejiang 315211, China
| | - Xiaohui Li
- College of Food Science and Engineering, Ningbo University, Ningbo, Zhejiang 315211, China
| | - Jianhua Fan
- State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, Shanghai 200237, China
| | - Xiaojun Yan
- School of Marine Sciences, Ningbo University, Ningbo, Zhejiang 315211, China
| | - Roger Ruan
- Center for Biorefining, and Department of Bioproducts and Biosystems Engineering, University of Minnesota-Twin Cities, Saint Paul, MN 55108, USA.
| | - Ning Wang
- Institute of Drug Discovery Technology, Ningbo University, Ningbo, Zhejiang 315211, China.
| | - Pengfei Cheng
- College of Food Science and Engineering, Ningbo University, Ningbo, Zhejiang 315211, China.
| |
Collapse
|
12
|
Guo X, Guo S, Tian F, Gao Z, Fan Y, Wang C, Xu S. CCN1 Promotes Mesenchymal Phenotype Transition Through Activating NF-κB Signaling Pathway Regulated by S100A8 in Glioma Stem Cells. CNS Neurosci Ther 2024; 30:e70128. [PMID: 39659236 PMCID: PMC11632201 DOI: 10.1111/cns.70128] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2024] [Revised: 10/28/2024] [Accepted: 11/03/2024] [Indexed: 12/12/2024] Open
Abstract
BACKGROUND The presence of glioma stem cells (GSCs) and the occurrence of mesenchymal phenotype transition contribute to the miserable prognosis of glioblastoma (GBM). Cellular communication network factor 1 (CCN1) is upregulated within various malignancies and associated with cancer development and progression, while the implications of CCN1 in the phenotype transition and tumorigenicity of GSCs remain unclear. METHODS Data for bioinformatic analysis were obtained from The Cancer Genome Atlas (TCGA) and Chinese Glioma Genome Atlas (CGGA) databases. A range of primary GBM and GSC cell models were then used to demonstrate the regulatory role of CCN1 via the phenotype validation, tumor sphere formation assays, extreme limiting dilution assays (ELDA), and transwell assays. To screen out the downstream signaling pathway, we employed high-throughput RNA-seq. Intracranial xenograft GSC mouse models were used to investigate the role of CCN1 in vivo. RESULTS Among the CCN family members, CCN1 was highly expressed in MES-GBM/GSCs and was correlated with a poor prognosis. Both in vitro and in vivo assays indicated that knockdown of CCN1 in MES-GSCs reduced the tumor stemness, proliferation, invasion, and tumorigenicity, whereas CCN1 overexpression in PN-GSCs exhibited the opposite effects. Mechanistically, CCN1 triggered the FAK/STAT3 signaling in autocrine and paracrine manners to upregulate the expression of S100A8. Knockdown of S100A8 inactivated NF-κB/p65 pathway and significantly suppressed the tumorigenesis of MES-GSCs. CONCLUSION Our findings reveal that CCN1 may be an important factor in the enhanced invasiveness and MES phenotype transition of GSCs and highlight the potential to target CCN1 for treating GBM.
Collapse
Affiliation(s)
- Xing Guo
- Department of NeurosurgeryQilu Hospital, Cheeloo College of Medicine and Institute of Brain and Brain‐Inspired Science, Shandong UniversityJinanShandongChina
| | - Shuhua Guo
- Department of Clinical LaboratoryThe Second Hospital of Shandong UniversityJinanShandongChina
| | - Feng Tian
- Department of Clinical LaboratoryThe Second Hospital of Shandong UniversityJinanShandongChina
| | - Zijie Gao
- Department of NeurosurgeryQilu Hospital, Cheeloo College of Medicine and Institute of Brain and Brain‐Inspired Science, Shandong UniversityJinanShandongChina
| | - Yang Fan
- Department of NeurosurgeryThe First Affiliated Hospital of Shandong First Medical University &Shandong Provincial Qianfoshan HospitalJinanShandongChina
| | - Chuanxin Wang
- Department of Clinical LaboratoryThe Second Hospital of Shandong UniversityJinanShandongChina
| | - Shuo Xu
- Department of NeurosurgeryQilu Hospital, Cheeloo College of Medicine and Institute of Brain and Brain‐Inspired Science, Shandong UniversityJinanShandongChina
| |
Collapse
|
13
|
Ning Y, Chen Y, Tian T, Gao X, Liu X, Wang J, Chu H, Zhao C, Yang Y, Lei K, Ren H, Cui Z. S100A7 orchestrates neutrophil chemotaxis and drives neutrophil extracellular traps (NETs) formation to facilitate lymph node metastasis in cervical cancer patients. Cancer Lett 2024; 605:217288. [PMID: 39384116 DOI: 10.1016/j.canlet.2024.217288] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2024] [Revised: 10/04/2024] [Accepted: 10/06/2024] [Indexed: 10/11/2024]
Abstract
Neutrophil extracellular traps (NETs) have been shown to promote the metastatic potential of many kinds of tumors. Our study aimed to investigate the role and mechanisms of NETs in lymph node metastasis (LNM) of cervical cancer (CCa), and evaluated the therapeutic value of targeting NETs in CCa. Immunohistochemistry demonstrated that neutrophil infiltration and NETs formation were increased in CCa patients with LNM, as well as confirming a positive correlation between S100A7 expression and neutrophil infiltration in CCa. NETs enhanced the migratory capability of CCa by activating the P38-MAPK/ERK/NFκB pathway through interaction with TLR2. Digesting NETs with deoxyribonuclease 1 (DNase 1) or inhibiting TLR2 with chloroquine eliminated the NETs-induced metastatic potential of CCa. Additionally, NETs promoted lymphangiogenesis and increased the permeability of lymphatic vessels, thus facilitating translymphatic movement of CCa. CCa-derived S100A7 exhibited a chemotactic effect on neutrophils and promoted NETs generation by elevating ROS levels rather than activating autophagy in neutrophils. The mouse model with footpad implantation illustrated that DNase 1 effectively reduced LNM in LPS-induced mice and in mice seeded with S100A7-overexpressing CCa cells. In conclusion, our study reveals a new tumor-promoting mechanism of S100A7, clarifies the crucial role and mechanism of NETs in LNM of CCa, and indicates that the NETs-targeted therapy emerges as a promising anti-metastasis therapy in CCa.
Collapse
Affiliation(s)
- Ying Ning
- Department of Obstetrics and Gynecology, The Affiliated Hospital of Qingdao University, Qingdao, 266000, China; Center of Tumor Immunology and Cytotherapy, Medical Research Center, The Affiliated Hospital of Qingdao University, Qingdao, 266000, China
| | - Yu Chen
- Department of Clinical Medicine, Qingdao University, Qingdao, 266003, China
| | - Tian Tian
- Department of Obstetrics and Gynecology, The Affiliated Hospital of Qingdao University, Qingdao, 266000, China
| | - Xinyan Gao
- Department of Clinical Medicine, Qingdao University, Qingdao, 266003, China
| | - Xiaolan Liu
- Department of Clinical Medicine, Qingdao University, Qingdao, 266003, China
| | - Jia Wang
- Center of Tumor Immunology and Cytotherapy, Medical Research Center, The Affiliated Hospital of Qingdao University, Qingdao, 266000, China
| | - Huijun Chu
- Department of Obstetrics and Gynecology, The Affiliated Hospital of Qingdao University, Qingdao, 266000, China
| | - Chenyang Zhao
- Center of Tumor Immunology and Cytotherapy, Medical Research Center, The Affiliated Hospital of Qingdao University, Qingdao, 266000, China
| | - Yufei Yang
- Department of Clinical Medicine, Qingdao University, Qingdao, 266003, China
| | - Ke Lei
- Center of Tumor Immunology and Cytotherapy, Medical Research Center, The Affiliated Hospital of Qingdao University, Qingdao, 266000, China.
| | - He Ren
- Center of Tumor Immunology and Cytotherapy, Medical Research Center, The Affiliated Hospital of Qingdao University, Qingdao, 266000, China.
| | - Zhumei Cui
- Department of Obstetrics and Gynecology, The Affiliated Hospital of Qingdao University, Qingdao, 266000, China.
| |
Collapse
|
14
|
Kiviaho A, Eerola SK, Kallio HML, Andersen MK, Hoikka M, Tiihonen AM, Salonen I, Spotbeen X, Giesen A, Parker CTA, Taavitsainen S, Hantula O, Marttinen M, Hermelo I, Ismail M, Midtbust E, Wess M, Devlies W, Sharma A, Krossa S, Häkkinen T, Afyounian E, Vandereyken K, Kint S, Kesseli J, Tolonen T, Tammela TLJ, Viset T, Størkersen Ø, Giskeødegård GF, Rye MB, Murtola T, Erickson A, Latonen L, Bova GS, Mills IG, Joniau S, Swinnen JV, Voet T, Mirtti T, Attard G, Claessens F, Visakorpi T, Rautajoki KJ, Tessem MB, Urbanucci A, Nykter M. Single cell and spatial transcriptomics highlight the interaction of club-like cells with immunosuppressive myeloid cells in prostate cancer. Nat Commun 2024; 15:9949. [PMID: 39550375 PMCID: PMC11569175 DOI: 10.1038/s41467-024-54364-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2024] [Accepted: 11/08/2024] [Indexed: 11/18/2024] Open
Abstract
Prostate cancer treatment resistance is a significant challenge facing the field. Genomic and transcriptomic profiling have partially elucidated the mechanisms through which cancer cells escape treatment, but their relation toward the tumor microenvironment (TME) remains elusive. Here we present a comprehensive transcriptomic landscape of the prostate TME at multiple points in the standard treatment timeline employing single-cell RNA-sequencing and spatial transcriptomics data from 120 patients. We identify club-like cells as a key epithelial cell subtype that acts as an interface between the prostate and the immune system. Tissue areas enriched with club-like cells have depleted androgen signaling and upregulated expression of luminal progenitor cell markers. Club-like cells display a senescence-associated secretory phenotype and their presence is linked to increased polymorphonuclear myeloid-derived suppressor cell (PMN-MDSC) activity. Our results indicate that club-like cells are associated with myeloid inflammation previously linked to androgen deprivation therapy resistance, providing a rationale for their therapeutic targeting.
Collapse
Affiliation(s)
- Antti Kiviaho
- Faculty of Medicine and Health Technology, Tampere University, Tampere, Finland
- Prostate Cancer Research Center, Tampere University and TAYS Cancer Center, Tampere, Finland
| | - Sini K Eerola
- Faculty of Medicine and Health Technology, Tampere University, Tampere, Finland
- Prostate Cancer Research Center, Tampere University and TAYS Cancer Center, Tampere, Finland
| | - Heini M L Kallio
- Faculty of Medicine and Health Technology, Tampere University, Tampere, Finland
- Prostate Cancer Research Center, Tampere University and TAYS Cancer Center, Tampere, Finland
| | - Maria K Andersen
- Department of Circulation and Medical Imaging, Norwegian University of Science and Technology, Trondheim, Norway
- Clinic of Surgery, St. Olavs Hospital, Trondheim University Hospital, Trondheim, Norway
| | - Miina Hoikka
- Faculty of Medicine and Health Technology, Tampere University, Tampere, Finland
- Prostate Cancer Research Center, Tampere University and TAYS Cancer Center, Tampere, Finland
| | - Aliisa M Tiihonen
- Faculty of Medicine and Health Technology, Tampere University, Tampere, Finland
- Prostate Cancer Research Center, Tampere University and TAYS Cancer Center, Tampere, Finland
| | - Iida Salonen
- Faculty of Medicine and Health Technology, Tampere University, Tampere, Finland
- Prostate Cancer Research Center, Tampere University and TAYS Cancer Center, Tampere, Finland
| | - Xander Spotbeen
- Laboratory of Lipid Metabolism and Cancer, KU Leuven and Leuven Cancer Institute (LKI), Leuven, Belgium
- KU Leuven Institute for Single Cell Omics (LISCO), KU Leuven, Leuven, Belgium
| | - Alexander Giesen
- Department of Urology, University Hospitals Leuven, Leuven, Belgium
- Department of Development and Regeneration, KU Leuven, Leuven, Belgium
| | | | - Sinja Taavitsainen
- Faculty of Medicine and Health Technology, Tampere University, Tampere, Finland
- Prostate Cancer Research Center, Tampere University and TAYS Cancer Center, Tampere, Finland
| | - Olli Hantula
- Faculty of Medicine and Health Technology, Tampere University, Tampere, Finland
- Prostate Cancer Research Center, Tampere University and TAYS Cancer Center, Tampere, Finland
| | - Mikael Marttinen
- Faculty of Medicine and Health Technology, Tampere University, Tampere, Finland
- Prostate Cancer Research Center, Tampere University and TAYS Cancer Center, Tampere, Finland
- European Molecular Biology Laboratory, Structural and Computational Biology Unit, Heidelberg, Germany
- European Molecular Biology Laboratory, Genome Biology Unit, Heidelberg, Germany
| | - Ismaïl Hermelo
- Faculty of Medicine and Health Technology, Tampere University, Tampere, Finland
- Prostate Cancer Research Center, Tampere University and TAYS Cancer Center, Tampere, Finland
| | | | - Elise Midtbust
- Department of Circulation and Medical Imaging, Norwegian University of Science and Technology, Trondheim, Norway
- Clinic of Surgery, St. Olavs Hospital, Trondheim University Hospital, Trondheim, Norway
| | - Maximilian Wess
- Department of Circulation and Medical Imaging, Norwegian University of Science and Technology, Trondheim, Norway
- Clinic of Surgery, St. Olavs Hospital, Trondheim University Hospital, Trondheim, Norway
| | - Wout Devlies
- Department of Urology, University Hospitals Leuven, Leuven, Belgium
- Molecular Endocrinology Laboratory, Cellular and Molecular Medicine, KU Leuven, Leuven, Belgium
| | - Abhibhav Sharma
- Department of Public Health and Nursing, Norwegian University of Science and Technology (NTNU), Trondheim, Norway
| | - Sebastian Krossa
- Department of Circulation and Medical Imaging, Norwegian University of Science and Technology, Trondheim, Norway
- Central staff, St. Olavs Hospital HF, 7006, Trondheim, Norway
| | - Tomi Häkkinen
- Faculty of Medicine and Health Technology, Tampere University, Tampere, Finland
- Prostate Cancer Research Center, Tampere University and TAYS Cancer Center, Tampere, Finland
| | - Ebrahim Afyounian
- Faculty of Medicine and Health Technology, Tampere University, Tampere, Finland
- Prostate Cancer Research Center, Tampere University and TAYS Cancer Center, Tampere, Finland
| | - Katy Vandereyken
- KU Leuven Institute for Single Cell Omics (LISCO), KU Leuven, Leuven, Belgium
- Laboratory of Reproductive Genomics, Department of Human Genetics, KU Leuven, Leuven, Belgium
| | - Sam Kint
- KU Leuven Institute for Single Cell Omics (LISCO), KU Leuven, Leuven, Belgium
- Laboratory of Reproductive Genomics, Department of Human Genetics, KU Leuven, Leuven, Belgium
| | - Juha Kesseli
- Faculty of Medicine and Health Technology, Tampere University, Tampere, Finland
- Prostate Cancer Research Center, Tampere University and TAYS Cancer Center, Tampere, Finland
| | - Teemu Tolonen
- Prostate Cancer Research Center, Tampere University and TAYS Cancer Center, Tampere, Finland
- Department of Pathology, Fimlab Laboratories, Ltd, Tampere University Hospital, Tampere, Finland
| | - Teuvo L J Tammela
- Faculty of Medicine and Health Technology, Tampere University, Tampere, Finland
- Department of Urology, Tampere University Hospital, Tampere, Finland
| | - Trond Viset
- Department of Pathology, St. Olav's Hospital, Trondheim University Hospital, Trondheim, Norway
| | - Øystein Størkersen
- Department of Pathology, St. Olav's Hospital, Trondheim University Hospital, Trondheim, Norway
| | - Guro F Giskeødegård
- Clinic of Surgery, St. Olavs Hospital, Trondheim University Hospital, Trondheim, Norway
- Department of Public Health and Nursing, Norwegian University of Science and Technology (NTNU), Trondheim, Norway
| | - Morten B Rye
- Clinic of Surgery, St. Olavs Hospital, Trondheim University Hospital, Trondheim, Norway
- Department of Clinical and Molecular Medicine, Norwegian University of Science and Technology (NTNU), Trondheim, Norway
| | - Teemu Murtola
- Faculty of Medicine and Health Technology, Tampere University, Tampere, Finland
- Prostate Cancer Research Center, Tampere University and TAYS Cancer Center, Tampere, Finland
| | - Andrew Erickson
- Research Program in Systems Oncology, Faculty of Medicine, University of Helsinki, Helsinki, Finland
- ICAN-Digital Precision Cancer Medicine Flagship, Helsinki, Finland
- Nuffield Department of Surgical Sciences, University of Oxford, Oxford, UK
| | - Leena Latonen
- Institute of Biomedicine, University of Eastern Finland, Kuopio, Finland
| | - G Steven Bova
- Faculty of Medicine and Health Technology, Tampere University, Tampere, Finland
- Prostate Cancer Research Center, Tampere University and TAYS Cancer Center, Tampere, Finland
| | - Ian G Mills
- Nuffield Department of Surgical Sciences, University of Oxford, Oxford, UK
- Patrick G Johnston Centre for Cancer Research, Queen's University of Belfast, Belfast, UK
| | - Steven Joniau
- Department of Urology, University Hospitals Leuven, Leuven, Belgium
- Department of Development and Regeneration, KU Leuven, Leuven, Belgium
| | - Johannes V Swinnen
- Laboratory of Lipid Metabolism and Cancer, KU Leuven and Leuven Cancer Institute (LKI), Leuven, Belgium
- KU Leuven Institute for Single Cell Omics (LISCO), KU Leuven, Leuven, Belgium
| | - Thierry Voet
- KU Leuven Institute for Single Cell Omics (LISCO), KU Leuven, Leuven, Belgium
- Laboratory of Reproductive Genomics, Department of Human Genetics, KU Leuven, Leuven, Belgium
| | - Tuomas Mirtti
- Research Program in Systems Oncology, Faculty of Medicine, University of Helsinki, Helsinki, Finland
- ICAN-Digital Precision Cancer Medicine Flagship, Helsinki, Finland
- Department of Pathology, University of Helsinki & Helsinki University Hospital, Helsinki, Finland
| | - Gerhardt Attard
- University College London Cancer Institute, London, UK
- University College London Hospitals, London, UK
| | - Frank Claessens
- Molecular Endocrinology Laboratory, Cellular and Molecular Medicine, KU Leuven, Leuven, Belgium
| | - Tapio Visakorpi
- Faculty of Medicine and Health Technology, Tampere University, Tampere, Finland
- Prostate Cancer Research Center, Tampere University and TAYS Cancer Center, Tampere, Finland
- Fimlab Laboratories, Ltd, Tampere University Hospital, Tampere, Finland
| | - Kirsi J Rautajoki
- Faculty of Medicine and Health Technology, Tampere University, Tampere, Finland
- Prostate Cancer Research Center, Tampere University and TAYS Cancer Center, Tampere, Finland
| | - May-Britt Tessem
- Department of Circulation and Medical Imaging, Norwegian University of Science and Technology, Trondheim, Norway
- Clinic of Surgery, St. Olavs Hospital, Trondheim University Hospital, Trondheim, Norway
| | - Alfonso Urbanucci
- Faculty of Medicine and Health Technology, Tampere University, Tampere, Finland.
- Prostate Cancer Research Center, Tampere University and TAYS Cancer Center, Tampere, Finland.
- Department of Tumor Biology, Institute for Cancer Research, Oslo University Hospital, Oslo, Norway.
| | - Matti Nykter
- Faculty of Medicine and Health Technology, Tampere University, Tampere, Finland.
- Prostate Cancer Research Center, Tampere University and TAYS Cancer Center, Tampere, Finland.
| |
Collapse
|
15
|
Hu C, Long L, Lou J, Leng M, Yang Q, Xu X, Zhou X. CTC-neutrophil interaction: A key driver and therapeutic target of cancer metastasis. Biomed Pharmacother 2024; 180:117474. [PMID: 39316968 DOI: 10.1016/j.biopha.2024.117474] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2024] [Revised: 09/19/2024] [Accepted: 09/19/2024] [Indexed: 09/26/2024] Open
Abstract
Circulating tumor cells (CTCs) are cancer cells that detach from the primary tumor and enter the bloodstream, where they can seed new metastatic lesions in distant organs. CTCs are often associated with white blood cells (WBCs), especially neutrophils, the most abundant and versatile immune cells in the blood. Neutrophils can interact with CTCs through various mechanisms, such as cell-cell adhesion, cytokine secretion, protease release, and neutrophil extracellular traps (NETs) formation. These interactions can promote the survival, proliferation, invasion, and extravasation of CTCs, as well as modulate the pre-metastatic niche and the tumor microenvironment. Therefore, inhibiting CTC-neutrophils interaction could be a potential strategy to reduce tumor metastasis and improve the prognosis of cancer patients. In this review, we summarize the current literature on CTC-neutrophils interaction' role in tumor metastasis and discuss the possible therapeutic approaches to target this interaction.
Collapse
Affiliation(s)
- Chengyi Hu
- School of Pharmacy and Bioengineering, Chongqing University of Technology, Chongqing 400054, PR China; Yunnan Key Laboratory of Stem Cell and Regenerative Medicine & School of Rehabilitation, Kunming Medical University, Kunming 650500, PR China
| | - Ling Long
- School of Pharmacy, Kunming Medical University, Kunming 650500, PR China; Department of Oncology, Xinqiao Hospital, Army Medical University, Chongqing 400054, PR China
| | - Jie Lou
- School of Pharmacy and Bioengineering, Chongqing University of Technology, Chongqing 400054, PR China
| | - Mingjing Leng
- School of Pharmacy and Bioengineering, Chongqing University of Technology, Chongqing 400054, PR China
| | - Qingqing Yang
- School of Pharmacy and Bioengineering, Chongqing University of Technology, Chongqing 400054, PR China
| | - Xiang Xu
- Yunnan Key Laboratory of Stem Cell and Regenerative Medicine & School of Rehabilitation, Kunming Medical University, Kunming 650500, PR China; Department of Stem Cell & Regenerative Medicine, State Key Laboratory of Trauma, Burn and Combined Injury, Daping Hospital, Army Medical University, No. 10, Changjiang Branch Road, Yuzhong District, Chongqing 400042, PR China.
| | - Xing Zhou
- Yunnan Key Laboratory of Stem Cell and Regenerative Medicine & School of Rehabilitation, Kunming Medical University, Kunming 650500, PR China.
| |
Collapse
|
16
|
Pan X, Wang Q, Sun B. Multifaceted roles of neutrophils in tumor microenvironment. Biochim Biophys Acta Rev Cancer 2024; 1879:189231. [PMID: 39615862 DOI: 10.1016/j.bbcan.2024.189231] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2024] [Revised: 11/20/2024] [Accepted: 11/24/2024] [Indexed: 12/14/2024]
Abstract
Neutrophils, the most abundant leukocyte population in circulation, play a crucial role in detecting and responding to foreign cells, such as pathogens and tumor cells. However, the impact of neutrophils on cancer pathogenesis has been overlooked because of their short lifespan, terminal differentiation, and limited transcriptional activity. Within the tumor microenvironment (TME), neutrophils can be influenced by tumor cells or other stromal cells to acquire either protumor or antitumor properties via the cytokine environment. Despite progress in neutrophil-related research, a comprehensive understanding of tissue-specific neutrophil diversity and adaptability in the TME is still lacking, which poses a significant obstacle to the development of neutrophil-based cancer therapies. This review evaluated the current studies on the dual roles of neutrophils in cancer progression, emphasizing their importance in predicting clinical outcomes, and explored various approaches for targeting neutrophils in cancer treatment, including their potential synergy with cancer immunotherapy.
Collapse
Affiliation(s)
- Xueyin Pan
- Department of Hepatobiliary Surgery, The First Affiliated Hospital of Anhui Medical University, Hefei, China; Innovative Institute of Tumor Immunity and Medicine (ITIM), Anhui Provincial Innovation Institute for Pharmaceutical Basic Research, Hefei, Anhui, China; Anhui Province Key Laboratory of Tumor Immune Microenvironment and Immunotherapy, Hefei, Anhui, China
| | - Qiang Wang
- Department of Hepatobiliary Surgery, The First Affiliated Hospital of Anhui Medical University, Hefei, China; Innovative Institute of Tumor Immunity and Medicine (ITIM), Anhui Provincial Innovation Institute for Pharmaceutical Basic Research, Hefei, Anhui, China; Anhui Province Key Laboratory of Tumor Immune Microenvironment and Immunotherapy, Hefei, Anhui, China.
| | - Beicheng Sun
- Department of Hepatobiliary Surgery, The First Affiliated Hospital of Anhui Medical University, Hefei, China; Innovative Institute of Tumor Immunity and Medicine (ITIM), Anhui Provincial Innovation Institute for Pharmaceutical Basic Research, Hefei, Anhui, China; Anhui Province Key Laboratory of Tumor Immune Microenvironment and Immunotherapy, Hefei, Anhui, China.
| |
Collapse
|
17
|
Qi Y, Zhang L, Liu Y, Li Y, Liu Y, Zhang Z. Targeted modulation of myeloid-derived suppressor cells in the tumor microenvironment: Implications for cancer therapy. Biomed Pharmacother 2024; 180:117590. [PMID: 39423752 DOI: 10.1016/j.biopha.2024.117590] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2024] [Revised: 10/08/2024] [Accepted: 10/14/2024] [Indexed: 10/21/2024] Open
Abstract
Myeloid-derived suppressor cells (MDSCs) represent a heterogeneous population of immature myeloid cells originating from the bone marrow, known for their potent immunosuppressive functions that contribute to tumor immune evasion and progression. This paper provides a comprehensive analysis of the multifaceted interactions between MDSCs and tumors, exploring their distinct phenotypes and immunosuppressive mechanisms. Key roles of MDSCs in tumor biology are discussed, including their involvement in the formation of the pre-metastatic niche, facilitation of angiogenesis, enhancement of vascular permeability, suppression of tumor cell apoptosis, and promotion of resistance to cancer therapies. Additionally, the review highlights recent advances in the development of MDSC-targeting therapies, with a focus on their potential to enhance anti-tumor immunity. The therapeutic potential of Traditional Chinese Medicine (TCM) in modulating MDSC quantity and function is also explored, suggesting a novel approach to cancer treatment by integrating traditional and modern therapeutic strategies.
Collapse
Affiliation(s)
- Yafeng Qi
- Clinical School of Traditional Chinese Medicine, Gansu University of Traditional Chinese Medicine, Lanzhou, Gansu 730000, China.
| | - Liying Zhang
- School of Integrative Chinese and Western Medicine, Gansu University of Traditional Chinese Medicine, Lanzhou, Gansu 730000, China.
| | - Yeyuan Liu
- Clinical School of Traditional Chinese Medicine, Gansu University of Traditional Chinese Medicine, Lanzhou, Gansu 730000, China.
| | - Yangyang Li
- Clinical School of Traditional Chinese Medicine, Gansu University of Traditional Chinese Medicine, Lanzhou, Gansu 730000, China.
| | - Yongqi Liu
- School of Basic Medicine, Gansu University of Traditional Chinese Medicine, Lanzhou, Gansu 730000, China.
| | - Zhiming Zhang
- Department of Oncology, Gansu Provincial Hospital of Traditional Chinese Medicine, Lanzhou, Gansu 730000, China.
| |
Collapse
|
18
|
Qian J, Ma C, Waterbury QT, Zhi X, Moon CS, Tu R, Kobayashi H, Wu F, Zheng B, Zeng Y, Zheng H, Ochiai Y, White RA, Harle DW, LaBella JS, Zamechek LB, Hu LZ, Moy RH, Han AS, Daugherty B, Lederman S, Wang TC. A CXCR4 partial agonist improves immunotherapy by targeting polymorphonuclear myeloid-derived suppressor cells and cancer-driven granulopoiesis. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.10.09.617228. [PMID: 39416177 PMCID: PMC11482799 DOI: 10.1101/2024.10.09.617228] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/19/2024]
Abstract
Polymorphonuclear myeloid-derived suppressor cells (PMN-MDSCs) are pathologically activated neutrophils that potently impair immunotherapy responses. The chemokine receptor CXCR4, a central regulator of hematopoiesis, represents an attractive PMN-MDSC target1. Here, we fused a secreted CXCR4 partial agonist TFF2 to mouse serum albumin (MSA) and demonstrated that TFF2-MSA peptide synergized with anti-PD-1 to induce tumor regression or eradication, inhibited distant metastases, and prolonged survival in multiple gastric cancer (GC) models. Using histidine decarboxylase (Hdc)-GFP transgenic mice to track PMN-MDSC in vivo , we found TFF2-MSA selectively reduced the immunosuppressive Hdc-GFP + CXCR4 hi tumor PMN-MDSCs while preserving proinflammatory neutrophils, thereby boosting CD8 + T cell-mediated anti-tumor response together with anti-PD-1. Furthermore, TFF2-MSA systemically reduced PMN-MDSCs and bone marrow granulopoiesis. In contrast, CXCR4 antagonism plus anti-PD-1 failed to provide a similar therapeutic benefit. In GC patients, expanded PMN-MDSCs containing a prominent CXCR4 + LOX-1 + subset are inversely correlated with the TFF2 level and CD8 + T cells in circulation. Collectively, our studies introduce a strategy of using CXCR4 partial agonism to restore anti-PD-1 sensitivity in GC by targeting PMN-MDSCs and granulopoiesis.
Collapse
|
19
|
Emmanuelli A, Salvagno C, Hwang SM, Awasthi D, Sandoval TA, Chae CS, Cheong JG, Tan C, Iwawaki T, Cubillos-Ruiz JR. High-grade serous ovarian cancer development and anti-PD-1 resistance is driven by IRE1α activity in neutrophils. Oncoimmunology 2024; 13:2411070. [PMID: 39364290 PMCID: PMC11448341 DOI: 10.1080/2162402x.2024.2411070] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2024] [Revised: 09/24/2024] [Accepted: 09/25/2024] [Indexed: 10/05/2024] Open
Abstract
High-grade serious ovarian cancer (HGSOC) is an aggressive malignancy that remains refractory to current immunotherapies. While advanced stage disease has been extensively studied, the cellular and molecular mechanisms that promote early immune escape in HGSOC remain largely unexplored. Here, we report that primary HGSO tumors program neutrophils to inhibit T cell anti-tumor function by activating the endoplasmic reticulum (ER) stress sensor IRE1α. We found that intratumoral neutrophils exhibited overactivation of ER stress response markers compared with their counterparts at non-tumor sites. Selective deletion of IRE1α in neutrophils delayed primary ovarian tumor growth and extended the survival of mice with HGSOC by enabling early T cell-mediated tumor control. Notably, loss of IRE1α in neutrophils sensitized tumor-bearing mice to PD-1 blockade, inducing HGSOC regression and long-term survival in ~ 50% of the treated hosts. Hence, neutrophil-intrinsic IRE1α facilitates early adaptive immune escape in HGSOC and targeting this ER stress sensor might be used to unleash endogenous and immunotherapy-elicited immunity that controls metastatic disease.
Collapse
Affiliation(s)
- Alexander Emmanuelli
- Weill Cornell Graduate School of Medical Sciences, Weill Cornell Medicine, New York, NY, USA
- Department of Obstetrics and Gynecology, Weill Cornell Medicine, New York, NY, USA
- Sandra and Edward Meyer Cancer Center, Weill Cornell Medicine, New York, NY, USA
| | - Camilla Salvagno
- Department of Obstetrics and Gynecology, Weill Cornell Medicine, New York, NY, USA
- Sandra and Edward Meyer Cancer Center, Weill Cornell Medicine, New York, NY, USA
| | - Sung-Min Hwang
- Department of Obstetrics and Gynecology, Weill Cornell Medicine, New York, NY, USA
- Sandra and Edward Meyer Cancer Center, Weill Cornell Medicine, New York, NY, USA
| | - Deepika Awasthi
- Department of Obstetrics and Gynecology, Weill Cornell Medicine, New York, NY, USA
- Sandra and Edward Meyer Cancer Center, Weill Cornell Medicine, New York, NY, USA
| | - Tito A. Sandoval
- Department of Obstetrics and Gynecology, Weill Cornell Medicine, New York, NY, USA
- Sandra and Edward Meyer Cancer Center, Weill Cornell Medicine, New York, NY, USA
| | - Chang-Suk Chae
- Department of Obstetrics and Gynecology, Weill Cornell Medicine, New York, NY, USA
- Sandra and Edward Meyer Cancer Center, Weill Cornell Medicine, New York, NY, USA
| | - Jin-Gyu Cheong
- Weill Cornell Graduate School of Medical Sciences, Weill Cornell Medicine, New York, NY, USA
| | - Chen Tan
- Department of Obstetrics and Gynecology, Weill Cornell Medicine, New York, NY, USA
- Sandra and Edward Meyer Cancer Center, Weill Cornell Medicine, New York, NY, USA
| | - Takao Iwawaki
- Division of Cell Medicine, Medical Research Institute, Kanazawa Medical University, Ishikawa, Japan
| | - Juan R. Cubillos-Ruiz
- Weill Cornell Graduate School of Medical Sciences, Weill Cornell Medicine, New York, NY, USA
- Department of Obstetrics and Gynecology, Weill Cornell Medicine, New York, NY, USA
- Sandra and Edward Meyer Cancer Center, Weill Cornell Medicine, New York, NY, USA
| |
Collapse
|
20
|
Ghosh S, Zanoni I. The Dark Knight: Functional Reprogramming of Neutrophils in the Pathogenesis of Colitis-Associated Cancer. Cancer Immunol Res 2024; 12:1311-1319. [PMID: 39270036 PMCID: PMC11444878 DOI: 10.1158/2326-6066.cir-23-0642] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2023] [Revised: 01/05/2024] [Accepted: 07/17/2024] [Indexed: 09/15/2024]
Abstract
Neutrophils are the primary myeloid cells that are recruited to inflamed tissues, and they are key players during colitis, being also present within the tumor microenvironment during the initiation and growth of colon cancer. Neutrophils fundamentally serve to protect the host against microorganism invasion, but during cancer development, they can become protumoral and lead to tumor initiation, growth, and eventually, metastasis-hence, playing a dichotomic role for the host. Protumoral neutrophils in cancer patients can be immunosuppressive and serve as markers for disease progression but their characteristics are not fully defined. In this review, we explore the current knowledge on how neutrophils in the gut fluctuate between an inflammatory or immunosuppressive state and how they contribute to tumor development. We describe neutrophils' antitumoral and protumoral effects during inflammatory bowel diseases and highlight their capacity to provoke the advent of inflammation-driven colorectal cancer. We present the functional ambivalence of the neutrophil populations within the colon tumor microenvironment, which can be potentially exploited to establish therapies that will prevent, or even reverse, inflammation-dependent colon cancer incidence in high-risk patients.
Collapse
Affiliation(s)
- Sreya Ghosh
- Harvard Medical School, Boston Children’s Hospital, Division of Immunology and Division of Gastroenterology, Boston, 02115, USA
| | - Ivan Zanoni
- Harvard Medical School, Boston Children’s Hospital, Division of Immunology and Division of Gastroenterology, Boston, 02115, USA
| |
Collapse
|
21
|
Chen H, Guo G, Yang G. CD300ld: A new target for tumor immunotherapy and new hope for cancer patients. Sci Bull (Beijing) 2024; 69:2653-2655. [PMID: 39069455 DOI: 10.1016/j.scib.2024.05.048] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2023] [Revised: 04/03/2024] [Accepted: 05/06/2024] [Indexed: 07/30/2024]
Affiliation(s)
- Huiqin Chen
- Wenzhou Institute, University of Chinese Academy of Sciences, Wenzhou 325000, China
| | - Guanqun Guo
- Wenzhou Institute, University of Chinese Academy of Sciences, Wenzhou 325000, China
| | - Gen Yang
- Wenzhou Institute, University of Chinese Academy of Sciences, Wenzhou 325000, China; School of Physics, Peking University, Beijing 100871, China.
| |
Collapse
|
22
|
Yu S, Yao X. Advances on immunotherapy for osteosarcoma. Mol Cancer 2024; 23:192. [PMID: 39245737 PMCID: PMC11382402 DOI: 10.1186/s12943-024-02105-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2024] [Accepted: 08/30/2024] [Indexed: 09/10/2024] Open
Abstract
Osteosarcoma is the most common primary bone cancer in children and young adults. Limited progress has been made in improving the survival outcomes in patients with osteosarcoma over the past four decades. Especially in metastatic or recurrent osteosarcoma, the survival rate is extremely unsatisfactory. The treatment of osteosarcoma urgently needs breakthroughs. In recent years, immunotherapy has achieved good therapeutic effects in various solid tumors. Due to the low immunogenicity and immunosuppressive microenvironment of osteosarcoma, immunotherapy has not yet been approved in osteosarcoma patients. However, immune-based therapies, including immune checkpoint inhibitors, chimeric antigen receptor T cells, and bispecfic antibodies are in active clinical development. In addition, other immunotherapy strategies including modified-NK cells/macrophages, DC vaccines, and cytokines are still in the early stages of research, but they will be hot topics for future study. In this review, we showed the functions of cell components including tumor-promoting and tumor-suppressing cells in the tumor microenvironment of osteosarcoma, and summarized the preclinical and clinical research results of various immunotherapy strategies in osteosarcoma, hoping to provide new ideas for future research in this field.
Collapse
Affiliation(s)
- Shengnan Yu
- Department of Oncology, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Xudong Yao
- Center for Joint Surgery, Department of Orthopedic Surgery, The Second Affiliated Hospital of Chongqing Medical University, Chongqing, China.
| |
Collapse
|
23
|
Emmanuelli A, Salvagno C, Min-Hwang S, Awasthi D, Sandoval TA, Chae CS, Cheong JG, Tan C, Iwawaki T, Cubillos-Ruiz JR. High-grade serous ovarian cancer development and anti-PD-1 resistance is driven by IRE1α activity in neutrophils. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.08.05.606646. [PMID: 39211073 PMCID: PMC11361179 DOI: 10.1101/2024.08.05.606646] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/04/2024]
Abstract
High-grade serous ovarian cancer (HGSOC) is an aggressive malignancy that remains refractory to current immunotherapies. While advanced stage disease has been extensively studied, the cellular and molecular mechanisms that promote early immune escape in HGSOC remain largely unexplored. Here we report that primary HGSO tumors program neutrophils to inhibit T cell anti-tumor function by activating the endoplasmic reticulum (ER) stress sensor IRE1α. We found that intratumoral neutrophils exhibited overactivation of ER stress response markers compared with their counterparts at non-tumor sites. Selective deletion of IRE1α in neutrophils delayed primary ovarian tumor growth and extended the survival of mice with HGSOC by enabling early T cell-mediated tumor control. Notably, loss of IRE1α in neutrophils sensitized tumor-bearing mice to PD-1 blockade, inducing HGSOC regression and long-term survival in ∼50% of treated hosts. Hence, neutrophil-intrinsic IRE1α facilitates early adaptive immune escape in HGSOC and targeting this ER stress sensor might be used to unleash endogenous and immunotherapy-elicited immunity that controls metastatic disease.
Collapse
|
24
|
Tang J, Chen Y, Wang C, Xia Y, Yu T, Tang M, Meng K, Yin L, Yang Y, Shen L, Xing H, Mao X. The role of mesenchymal stem cells in cancer and prospects for their use in cancer therapeutics. MedComm (Beijing) 2024; 5:e663. [PMID: 39070181 PMCID: PMC11283587 DOI: 10.1002/mco2.663] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2024] [Revised: 06/26/2024] [Accepted: 07/01/2024] [Indexed: 07/30/2024] Open
Abstract
Mesenchymal stem cells (MSCs) are recruited by malignant tumor cells to the tumor microenvironment (TME) and play a crucial role in the initiation and progression of malignant tumors. This role encompasses immune evasion, promotion of angiogenesis, stimulation of cancer cell proliferation, correlation with cancer stem cells, multilineage differentiation within the TME, and development of treatment resistance. Simultaneously, extensive research is exploring the homing effect of MSCs and MSC-derived extracellular vesicles (MSCs-EVs) in tumors, aiming to design them as carriers for antitumor substances. These substances are targeted to deliver antitumor drugs to enhance drug efficacy while reducing drug toxicity. This paper provides a review of the supportive role of MSCs in tumor progression and the associated molecular mechanisms. Additionally, we summarize the latest therapeutic strategies involving engineered MSCs and MSCs-EVs in cancer treatment, including their utilization as carriers for gene therapeutic agents, chemotherapeutics, and oncolytic viruses. We also discuss the distribution and clearance of MSCs and MSCs-EVs upon entry into the body to elucidate the potential of targeted therapies based on MSCs and MSCs-EVs in cancer treatment, along with the challenges they face.
Collapse
Affiliation(s)
- Jian Tang
- Central LaboratoryXiangyang Central HospitalAffiliated Hospital of Hubei University of Arts and ScienceXiangyangChina
| | - Yu Chen
- Central LaboratoryXiangyang Central HospitalAffiliated Hospital of Hubei University of Arts and ScienceXiangyangChina
- Medical Affairs, Xiangyang Central HospitalAffiliated Hospital of Hubei University of Arts and ScienceXiangyangChina
| | - Chunhua Wang
- Department of Clinical LaboratoryXiangyang No. 1 People's HospitalHubei University of MedicineXiangyangHubei ProvinceChina
| | - Ying Xia
- Central LaboratoryXiangyang Central HospitalAffiliated Hospital of Hubei University of Arts and ScienceXiangyangChina
| | - Tingyu Yu
- Central LaboratoryXiangyang Central HospitalAffiliated Hospital of Hubei University of Arts and ScienceXiangyangChina
| | - Mengjun Tang
- Central LaboratoryXiangyang Central HospitalAffiliated Hospital of Hubei University of Arts and ScienceXiangyangChina
| | - Kun Meng
- Central LaboratoryXiangyang Central HospitalAffiliated Hospital of Hubei University of Arts and ScienceXiangyangChina
| | - Lijuan Yin
- State Key Laboratory of Food Nutrition and SafetyKey Laboratory of Industrial MicrobiologyMinistry of EducationTianjin Key Laboratory of Industry MicrobiologyNational and Local United Engineering Lab of Metabolic Control Fermentation TechnologyChina International Science and Technology Cooperation Base of Food Nutrition/Safety and Medicinal ChemistryCollege of BiotechnologyTianjin University of Science & TechnologyTianjinChina
| | - Yang Yang
- Shenzhen Key Laboratory of Pathogen and ImmunityNational Clinical Research Center for Infectious DiseaseState Key Discipline of Infectious DiseaseShenzhen Third People's HospitalSecond Hospital Affiliated to Southern University of Science and TechnologyShenzhenChina
| | - Liang Shen
- Central LaboratoryXiangyang Central HospitalAffiliated Hospital of Hubei University of Arts and ScienceXiangyangChina
| | - Hui Xing
- Central LaboratoryXiangyang Central HospitalAffiliated Hospital of Hubei University of Arts and ScienceXiangyangChina
- Department of Obstetrics and GynecologyXiangyang Central HospitalAffiliated Hospital of Hubei University of Arts and SciencesXiangyangChina
| | - Xiaogang Mao
- Central LaboratoryXiangyang Central HospitalAffiliated Hospital of Hubei University of Arts and ScienceXiangyangChina
- Department of Obstetrics and GynecologyXiangyang Central HospitalAffiliated Hospital of Hubei University of Arts and SciencesXiangyangChina
| |
Collapse
|
25
|
Li H, Han Z, Sun Y, Wang F, Hu P, Gao Y, Bai X, Peng S, Ren C, Xu X, Liu Z, Chen H, Yang Y, Bo X. CGMega: explainable graph neural network framework with attention mechanisms for cancer gene module dissection. Nat Commun 2024; 15:5997. [PMID: 39013885 PMCID: PMC11252405 DOI: 10.1038/s41467-024-50426-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2023] [Accepted: 07/09/2024] [Indexed: 07/18/2024] Open
Abstract
Cancer is rarely the straightforward consequence of an abnormality in a single gene, but rather reflects a complex interplay of many genes, represented as gene modules. Here, we leverage the recent advances of model-agnostic interpretation approach and develop CGMega, an explainable and graph attention-based deep learning framework to perform cancer gene module dissection. CGMega outperforms current approaches in cancer gene prediction, and it provides a promising approach to integrate multi-omics information. We apply CGMega to breast cancer cell line and acute myeloid leukemia (AML) patients, and we uncover the high-order gene module formed by ErbB family and tumor factors NRG1, PPM1A and DLG2. We identify 396 candidate AML genes, and observe the enrichment of either known AML genes or candidate AML genes in a single gene module. We also identify patient-specific AML genes and associated gene modules. Together, these results indicate that CGMega can be used to dissect cancer gene modules, and provide high-order mechanistic insights into cancer development and heterogeneity.
Collapse
Affiliation(s)
- Hao Li
- Academy of Military Medical Sciences, Beijing, China
| | - Zebei Han
- Department of Computer Science and Engineering, Shanghai Jiao Tong University, Key Laboratory of Shanghai Education Commission for Intelligent Interaction and Cognitive Engineering, Shanghai, China
| | - Yu Sun
- Academy of Military Medical Sciences, Beijing, China
| | - Fu Wang
- Department of Computer Science and Engineering, Shanghai Jiao Tong University, Key Laboratory of Shanghai Education Commission for Intelligent Interaction and Cognitive Engineering, Shanghai, China
| | - Pengzhen Hu
- School of Life Sciences, Northwestern Polytechnical University, Xi'an, China
| | - Yuang Gao
- Department of Hematology, PLA General Hospital, the Fifth Medical Center, Beijing, China
| | - Xuemei Bai
- Academy of Military Medical Sciences, Beijing, China
| | - Shiyu Peng
- Academy of Military Medical Sciences, Beijing, China
| | - Chao Ren
- Academy of Military Medical Sciences, Beijing, China
| | - Xiang Xu
- Academy of Military Medical Sciences, Beijing, China
| | - Zeyu Liu
- Academy of Military Medical Sciences, Beijing, China
| | - Hebing Chen
- Academy of Military Medical Sciences, Beijing, China.
| | - Yang Yang
- Department of Computer Science and Engineering, Shanghai Jiao Tong University, Key Laboratory of Shanghai Education Commission for Intelligent Interaction and Cognitive Engineering, Shanghai, China.
| | - Xiaochen Bo
- Academy of Military Medical Sciences, Beijing, China.
| |
Collapse
|
26
|
Li S, Long X. Targeting polymorphonuclear myeloid-derived suppressor cells in the immunosuppressive tumor microenvironment for cancer immunotherapy. MedComm (Beijing) 2024; 5:e602. [PMID: 38911064 PMCID: PMC11193132 DOI: 10.1002/mco2.602] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2023] [Revised: 02/16/2024] [Accepted: 03/25/2024] [Indexed: 06/25/2024] Open
Abstract
Tumor-driven immune suppression is a critical mechanism by which cancer cells evade the host immune system, leading to tumor growth and metastasis. The tumor immune microenvironment contains a large population of immune-suppressing myeloid cells, which play a key role in tumor development and drug resistance to existing immunotherapy. Polymorphonuclear myeloid-derived suppressor cells (PMN-MDSCs) are important components of the immunosuppressive microenvironment. Uncovering the molecular mechanisms of PMN-MDSCs and finding specific targets for PMN-MDSCs to regulate tumor immune microenvironment is the focus and challenge of current immunotherapy. In a recent issue of Nature, Wang and colleagues revealed that CD300ld on PMN-MDSCs is required for tumor-driven immune suppression(1), this provided a new target for cancer immunotherapy, The study identified CD300ld as a novel, highly conserved tumor immunosuppressive receptor. CD300ld is highly expressed specifically on PMN-MDSCs and is a key receptor in regulating the recruitment and immunosuppressant function of PMN-MDSCs. Targeting CD300ld can reshape the tumor immune microenvironment by inhibiting the recruitment and function of PMN-MDSCs, resulting in broad-spectrum anti-tumor effects. CD300ld target shows good safety, conservation, anti-tumor effectiveness, and synergism with the Programmed death-1 target, which is expected to become a new ideal target for tumor immunotherapy.
Collapse
Affiliation(s)
- Shiqi Li
- Department of Laboratory MedicineZhongnan Hospital of Wuhan UniversityWuhanChina
| | - Xinghua Long
- Department of Laboratory MedicineZhongnan Hospital of Wuhan UniversityWuhanChina
| |
Collapse
|
27
|
Liu M, Yang M, Zhang B, Xia S, Zhao J, Yan L, Ren Y, Guo H, Zhao J. PCDH11X mutation as a potential biomarker for immune checkpoint therapies in lung adenocarcinoma. J Mol Med (Berl) 2024; 102:899-912. [PMID: 38739269 DOI: 10.1007/s00109-024-02450-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2022] [Revised: 04/14/2024] [Accepted: 04/25/2024] [Indexed: 05/14/2024]
Abstract
Immune checkpoint inhibitors (ICIs) have achieved impressive success in lung adenocarcinoma (LUAD). However, the response to ICIs varies among patients, and predictive biomarkers are urgently needed. PCDH11X is frequently mutated in LUAD, while its role in ICI treatment is unclear. In this study, we curated genomic and clinical data of 151 LUAD patients receiving ICIs from three independent cohorts. Relations between PCDH11X and treatment outcomes of ICIs were examined. A melanoma cohort collected from five published studies, a pan-cancer cohort, and non-ICI-treated TCGA-LUAD cohort were also examined to investigate whether PCDH11X mutation is a specific predictive biomarker for LUAD ICI treatment. Among the three ICI-treated LUAD cohorts, PCDH11X mutation (PCDH11X-MUT) was associated with better clinical response compared to wild-type PCDH11X (PCDH11X-WT). While in ICI-treated melanoma cohort, the pan-cancer cohort excluding LUAD, and the non-ICI-treated TCGA-LUAD cohort, no significant differences in overall survival (OS) were observed between the PCDH11X-MUT and PCDH11X-WT groups. PCDH11X mutation was associated with increased PD-L1 expression, tumor mutation burden (TMB), neoantigen load, DNA damage repair (DDR) mutations, and hot tumor microenvironment in TCGA-LUAD cohort. Our findings suggested that the PCDH11X mutation might serve as a specific biomarker to predict the efficacy of ICIs for LUAD patients. Considering the relatively small sample size of ICI-treated cohorts, future research with larger cohorts and prospective clinical trials will be essential for validating and further exploring the role of PCDH11X mutation in the context of immunotherapy outcomes in LUAD. KEY MESSAGES: PCDH11X mutation is associated with better clinical response compared to wild type PCDH11X in three ICIs-treated LUAD cohorts. In ICIs-treated melanoma cohort, the pan-cancer cohort excluding LUAD, and non-ICIs-treated TCGA-LUAD cohorts PCDH11X mutation is not associated with better clinical response, suggesting PCDH11X mutation might be a specific biomarker to predict the efficacy of ICIs treatment for LUAD patients. PCDH11X mutation is associated with increased PD-L1 expression, tumor mutation burden, and neoantigen load in TCGA-LUAD cohort. PCDH11X mutation is associated with hot tumor microenvironment in TCGA-LUAD cohort.
Collapse
Affiliation(s)
- Manjiao Liu
- State Key Laboratory of Translational Medicine and Innovative Drug Development, Jiangsu Simcere Diagnostics Co., Ltd, Nanjing, 210042, China
- Nanjing Simcere Medical Laboratory Science Co., Ltd, Nanjing, 210042, China
| | - Meijia Yang
- National Engineering Laboratory for Internet Medical Systems and Applications, The First Affiliated Hospital of Zhengzhou University, Zhengzhou University, Zhengzhou, Henan, China
| | - Bei Zhang
- State Key Laboratory of Translational Medicine and Innovative Drug Development, Jiangsu Simcere Diagnostics Co., Ltd, Nanjing, 210042, China
- Nanjing Simcere Medical Laboratory Science Co., Ltd, Nanjing, 210042, China
| | - Sijian Xia
- State Key Laboratory of Translational Medicine and Innovative Drug Development, Jiangsu Simcere Diagnostics Co., Ltd, Nanjing, 210042, China
- Nanjing Simcere Medical Laboratory Science Co., Ltd, Nanjing, 210042, China
| | - Jie Zhao
- State Key Laboratory of Translational Medicine and Innovative Drug Development, Jiangsu Simcere Diagnostics Co., Ltd, Nanjing, 210042, China
- Nanjing Simcere Medical Laboratory Science Co., Ltd, Nanjing, 210042, China
| | - Linlin Yan
- State Key Laboratory of Translational Medicine and Innovative Drug Development, Jiangsu Simcere Diagnostics Co., Ltd, Nanjing, 210042, China
- Nanjing Simcere Medical Laboratory Science Co., Ltd, Nanjing, 210042, China
| | - Yong Ren
- State Key Laboratory of Translational Medicine and Innovative Drug Development, Jiangsu Simcere Diagnostics Co., Ltd, Nanjing, 210042, China
- Nanjing Simcere Medical Laboratory Science Co., Ltd, Nanjing, 210042, China
| | - Hao Guo
- State Key Laboratory of Translational Medicine and Innovative Drug Development, Jiangsu Simcere Diagnostics Co., Ltd, Nanjing, 210042, China.
- Nanjing Simcere Medical Laboratory Science Co., Ltd, Nanjing, 210042, China.
| | - Jie Zhao
- National Engineering Laboratory for Internet Medical Systems and Applications, The First Affiliated Hospital of Zhengzhou University, Zhengzhou University, Zhengzhou, Henan, China.
| |
Collapse
|
28
|
Zhang L, He X, Zhu H. Targeting CD300ld to normalize the tumor microenvironment: an emerging insight in cancer immunotherapy. MedComm (Beijing) 2024; 5:e607. [PMID: 38911066 PMCID: PMC11190349 DOI: 10.1002/mco2.607] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2023] [Revised: 05/16/2024] [Accepted: 05/16/2024] [Indexed: 06/25/2024] Open
Abstract
In a recent Nature elegant study, Wang et al. identified CD300ld, a novel functionally highly conserved tumor immunosuppressive receptor, highly expressed specifically on polymorphonuclear myeloid-derived suppressor cells (PMN-MDSCs), as well as a key receptor in the regulation of recruitment and immunosuppressive function of PMN-MDSCs. Targeting CD300ld could remodel the tumor immune microenvironment, resulting in a broad-spectrum anti-tumor effect.
Collapse
Affiliation(s)
- Lin‐Zhu Zhang
- Department of RadiologyCenter of Interventional Radiology and Vascular SurgeryMedical SchoolNurturing Center of Jiangsu Province for State Laboratory of AI Imaging and Interventional Radiology (Southeast University)Zhongda HospitalSoutheast UniversityNanjingChina
- National Innovation Platform for Integration of Medical Engineering Education (NMEE) (Southeast University)NanjingChina
| | - Xu He
- Zhuhai Interventional Medical CenterZhuhai Precision Medical CenterZhuhai People's HospitalZhuhai Hospital Affiliated with Jinan UniversityJinan UniversityZhuhaiChina
| | - Hai‐Dong Zhu
- Department of RadiologyCenter of Interventional Radiology and Vascular SurgeryMedical SchoolNurturing Center of Jiangsu Province for State Laboratory of AI Imaging and Interventional Radiology (Southeast University)Zhongda HospitalSoutheast UniversityNanjingChina
- National Innovation Platform for Integration of Medical Engineering Education (NMEE) (Southeast University)NanjingChina
| |
Collapse
|
29
|
Nepal MR, Shah S, Kang KT. Dual roles of myeloid-derived suppressor cells in various diseases: a review. Arch Pharm Res 2024; 47:597-616. [PMID: 39008186 DOI: 10.1007/s12272-024-01504-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2023] [Accepted: 06/30/2024] [Indexed: 07/16/2024]
Abstract
Myeloid-derived suppressor cells (MDSCs) are a heterogeneous population of cells that originate from bone marrow stem cells. In pathological conditions, such as autoimmune disorders, allergies, infections, and cancer, normal myelopoiesis is altered to facilitate the formation of MDSCs. MDSCs were first shown to promote cancer initiation and progression by immunosuppression with the assistance of various chemokines and cytokines. Recently, various studies have demonstrated that MDSCs play two distinct roles depending on the physiological and pathological conditions. MDSCs have protective roles in autoimmune disorders (such as uveoretinitis, multiple sclerosis, rheumatoid arthritis, ankylosing spondylitis, type 1 diabetes, autoimmune hepatitis, inflammatory bowel disease, alopecia areata, and systemic lupus erythematosus), allergies, and organ transplantation. However, they play negative roles in infections and various cancers. Several immunosuppressive functions and mechanisms of MDSCs have been determined in different disease conditions. This review comprehensively discusses the associations between MDSCs and various pathological conditions and briefly describes therapeutic approaches.
Collapse
Affiliation(s)
- Mahesh Raj Nepal
- College of Pharmacy, Duksung Women's University, Seoul, South Korea
- Duksung Innovative Drug Center, Duksung Women's University, Seoul, South Korea
- Division of Pharmaceutics and Pharmacology, College of Pharmacy, The Ohio State University, Columbus, OH, USA
| | - Sajita Shah
- College of Pharmacy, Duksung Women's University, Seoul, South Korea
- Duksung Innovative Drug Center, Duksung Women's University, Seoul, South Korea
- The Comprehensive Cancer Center, Department of Radiation Oncology, Ohio State University, Columbus, OH, USA
| | - Kyu-Tae Kang
- College of Pharmacy, Duksung Women's University, Seoul, South Korea.
- Duksung Innovative Drug Center, Duksung Women's University, Seoul, South Korea.
| |
Collapse
|
30
|
Li Z, Xia Q, He Y, Li L, Yin P. MDSCs in bone metastasis: Mechanisms and therapeutic potential. Cancer Lett 2024; 592:216906. [PMID: 38649108 DOI: 10.1016/j.canlet.2024.216906] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2023] [Revised: 04/17/2024] [Accepted: 04/17/2024] [Indexed: 04/25/2024]
Abstract
Bone metastasis (BM) is a frequent complication associated with advanced cancer that significantly increases patient mortality. Myeloid-derived suppressor cells (MDSCs) play a pivotal role in BM progression by promoting angiogenesis, inhibiting immune responses, and inducing osteoclastogenesis. MDSCs induce immunosuppression through diverse mechanisms, including the generation of reactive oxygen species, nitric oxide, and immunosuppressive cytokines. Within the bone metastasis niche (BMN), MDSCs engage in intricate interactions with tumor, stromal, and bone cells, thereby establishing a complex regulatory network. The biological activities and functions of MDSCs are regulated by the microenvironment within BMN. Conversely, MDSCs actively contribute to microenvironmental regulation, thereby promoting BM development. A comprehensive understanding of the indispensable role played by MDSCs in BM is imperative for the development of novel therapeutic strategies. This review highlights the involvement of MDSCs in BM development, their regulatory mechanisms, and their potential as viable therapeutic targets.
Collapse
Affiliation(s)
- Zhi Li
- Interventional Cancer Institute of Chinese Integrative Medicine, Putuo Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai 200062, China; Department of General Surgery, Hubei Provincial Clinical Research Center for Umbilical Cord Blood Hematopoietic Stem Cells, Taihe Hospital, Hubei University of Medicine, Shiyan 442000, China
| | - Qi Xia
- Interventional Cancer Institute of Chinese Integrative Medicine, Putuo Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai 200062, China
| | - Yujie He
- Interventional Cancer Institute of Chinese Integrative Medicine, Putuo Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai 200062, China
| | - Lei Li
- Shanghai Key Laboratory of Regulatory Biology, Institute of Biomedical Sciences, School of Life Sciences, East China Normal University, Shanghai 200241, China.
| | - Peihao Yin
- Interventional Cancer Institute of Chinese Integrative Medicine, Putuo Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai 200062, China.
| |
Collapse
|
31
|
Yang C, Li L, Ye Z, Zhang A, Bao Y, Wu X, Ren G, Jiang C, Wang O, Wang Z. Mechanisms underlying neutrophils adhesion to triple-negative breast cancer cells via CD11b-ICAM1 in promoting breast cancer progression. Cell Commun Signal 2024; 22:340. [PMID: 38907234 PMCID: PMC11191284 DOI: 10.1186/s12964-024-01716-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2024] [Accepted: 06/14/2024] [Indexed: 06/23/2024] Open
Abstract
BACKGROUND Triple-negative breast cancer (TNBC) is recognized as the most aggressive and immunologically infiltrated subtype of breast cancer. A high circulating neutrophil-to-lymphocyte ratio (NLR) is strongly linked to a poor prognosis among patients with breast cancer, emphasizing the critical role of neutrophils. Although the involvement of neutrophils in tumor metastasis is well documented, their interactions with primary tumors and tumor cells are not yet fully understood. METHODS Clinical data were analyzed to investigate the role of neutrophils in breast cancer. In vivo mouse model and in vitro co-culture system were used for mechanism researches. Blocking experiments were further performed to identify therapeutic agents against TNBC. RESULTS TNBC cells secreted GM-CSF to sustain the survival of mature neutrophils and upregulated CD11b expression. Through CD11b, neutrophils specifically binded to ICAM1 on TNBC cells, facilitating adhesion. Transcriptomic sequencing combined with human and murine functional experiments revealed that neutrophils, through direct CD11b-ICAM1 interactions, activated the MAPK signaling pathway in TNBC cells, thereby enhancing tumor cell invasion and migration. Atorvastatin effectively inhibited ICAM1 expression in tumor cells, and tumor cells with ICAM1 knockout or treated with atorvastatin were unresponsive to neutrophil activation. The MAPK pathway and MMP9 expression were significantly inhibited in the tumor tissues of TNBC patients treated with atorvastatin. CONCLUSIONS Targeting CD11b-ICAM1 with atorvastatin represented a potential clinical approach to reduce the malignant characteristics of TNBC.
Collapse
Affiliation(s)
- Chenghui Yang
- Department of Breast Surgery, First Affiliated Hospital of Wenzhou Medical University, Wenzhou, 325000, P.R. China
| | - Lili Li
- Department of Oncology, Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, 310009, P.R. China
- Key Laboratory of Tumor Microenvironment and Immune Therapy of Zhejiang Province, Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, 310009, P.R. China
| | - Zhiqiang Ye
- Department of Breast Surgery, First Affiliated Hospital of Wenzhou Medical University, Wenzhou, 325000, P.R. China
| | - Anqi Zhang
- Department of Anesthesiology, First Affiliated Hospital of Wenzhou Medical University, Wenzhou, 325000, P.R. China
| | - Yunjia Bao
- First Clinical College of Wenzhou Medical University, Wenzhou, 325000, P.R. China
| | - Xue Wu
- Department of Breast Surgery, First Affiliated Hospital of Wenzhou Medical University, Wenzhou, 325000, P.R. China
| | - Guohong Ren
- Key Laboratory of Tumor Microenvironment and Immune Therapy of Zhejiang Province, Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, 310009, P.R. China
| | - Chao Jiang
- Academy of Chinese Medical Sciences, Zhejiang Chinese Medical University, Hangzhou, 310005, P. R. China
| | - Ouchen Wang
- Department of Breast Surgery, First Affiliated Hospital of Wenzhou Medical University, Wenzhou, 325000, P.R. China.
| | - Zhen Wang
- Key Laboratory of Tumor Microenvironment and Immune Therapy of Zhejiang Province, Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, 310009, P.R. China.
- Department of Breast Surgery, Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, 310009, P.R. China.
| |
Collapse
|
32
|
Chen X, Cheng G, Zhu L, Liu T, Yang X, Liu R, Ou Z, Zhang S, Tan W, Lin D, Wu C. Alarmin S100A8 imparts chemoresistance of esophageal cancer by reprogramming cancer-associated fibroblasts. Cell Rep Med 2024; 5:101576. [PMID: 38776909 PMCID: PMC11228400 DOI: 10.1016/j.xcrm.2024.101576] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2023] [Revised: 03/08/2024] [Accepted: 04/23/2024] [Indexed: 05/25/2024]
Abstract
Chemotherapy remains the first-line treatment for advanced esophageal cancer. However, durable benefits are achieved by only a limited subset of individuals due to the elusive chemoresistance. Here, we utilize patient-derived xenografts (PDXs) from esophageal squamous-cell carcinoma to investigate chemoresistance mechanisms in preclinical settings. We observe that activated cancer-associated fibroblasts (CAFs) are enriched in the tumor microenvironment of PDXs resistant to chemotherapy. Mechanistically, we reveal that cancer-cell-derived S100A8 triggers the intracellular RhoA-ROCK-MLC2-MRTF-A pathway by binding to the CD147 receptor of CAFs, inducing CAF polarization and leading to chemoresistance. Therapeutically, we demonstrate that blocking the S100A8-CD147 pathway can improve chemotherapy efficiency. Prognostically, we found the S100A8 levels in peripheral blood can serve as an indicator of chemotherapy responsiveness. Collectively, our study offers a comprehensive understanding of the molecular mechanisms underlying chemoresistance in esophageal cancer and highlights the potential value of S100A8 in the clinical management of esophageal cancer.
Collapse
Affiliation(s)
- Xinjie Chen
- Department of Etiology and Carcinogenesis, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences (CAMS) and Peking Union Medical College (PUMC), Beijing 100021, China
| | - Guoyu Cheng
- Department of Etiology and Carcinogenesis, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences (CAMS) and Peking Union Medical College (PUMC), Beijing 100021, China
| | - Liang Zhu
- Department of Etiology and Carcinogenesis, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences (CAMS) and Peking Union Medical College (PUMC), Beijing 100021, China
| | - Tianyuan Liu
- Department of Etiology and Carcinogenesis, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences (CAMS) and Peking Union Medical College (PUMC), Beijing 100021, China
| | - Xinyu Yang
- Department of Etiology and Carcinogenesis, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences (CAMS) and Peking Union Medical College (PUMC), Beijing 100021, China
| | - Rucheng Liu
- Department of Etiology and Carcinogenesis, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences (CAMS) and Peking Union Medical College (PUMC), Beijing 100021, China
| | - Zhengjie Ou
- Department of Etiology and Carcinogenesis, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences (CAMS) and Peking Union Medical College (PUMC), Beijing 100021, China
| | - Shaosen Zhang
- Department of Etiology and Carcinogenesis, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences (CAMS) and Peking Union Medical College (PUMC), Beijing 100021, China
| | - Wen Tan
- Department of Etiology and Carcinogenesis, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences (CAMS) and Peking Union Medical College (PUMC), Beijing 100021, China
| | - Dongxin Lin
- Department of Etiology and Carcinogenesis, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences (CAMS) and Peking Union Medical College (PUMC), Beijing 100021, China; Key Laboratory of Cancer Genomic Biology, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100021, China; Collaborative Innovation Center for Cancer Personalized Medicine, Nanjing Medical University, Nanjing 211166, China; Sun Yat-sen University Cancer Center, State Key Laboratory of Oncology in South China, Guangzhou 510060, China.
| | - Chen Wu
- Department of Etiology and Carcinogenesis, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences (CAMS) and Peking Union Medical College (PUMC), Beijing 100021, China; Key Laboratory of Cancer Genomic Biology, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100021, China; Collaborative Innovation Center for Cancer Personalized Medicine, Nanjing Medical University, Nanjing 211166, China; CAMS Oxford Institute, Chinese Academy of Medical Sciences, Beijing 100006, China.
| |
Collapse
|
33
|
Li H, Wu J, Xu Q, Pang Y, Gu Y, Wang M, Cheng X. Functional genetic variants of GEN1 predict overall survival of Chinese epithelial ovarian cancer patients. J Transl Med 2024; 22:577. [PMID: 38890669 PMCID: PMC11184878 DOI: 10.1186/s12967-024-05236-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2024] [Accepted: 04/24/2024] [Indexed: 06/20/2024] Open
Abstract
BACKGROUND Inherited variations in DNA double-strand break (DSB) repair pathway are known to influence ovarian cancer occurrence, progression and treatment response. Despite its significance, survival-associated genetic variants within the DSB pathway remain underexplored. METHODS In the present study, we performed a two-phase analysis of 19,290 single-nucleotide polymorphisms (SNPs) in 199 genes in the DSB repair pathway from a genome-wide association study (GWAS) dataset and explored their associations with overall survival (OS) in 1039 Han Chinese epithelial ovarian carcinoma (EOC) patients. After utilizing multivariate Cox regression analysis with bayesian false-discovery probability for multiple test correction, significant genetic variations were identified and subsequently underwent functional prediction and validation. RESULTS We discovered a significant association between poor overall survival and the functional variant GEN1 rs56070363 C > T (CT + TT vs. TT, adjusted hazard ratio (HR) = 2.50, P < 0.001). And the impact of GEN1 rs56070363 C > T on survival was attributed to its reduced binding affinity to hsa-miR-1287-5p and the resultant upregulation of GEN1 mRNA expression. Overexpression of GEN1 aggregated EOC cell proliferation, invasion and migration presumably by influencing the expression of immune inhibitory factors, thereby elevating the proportion of polymorphonuclear myeloid-derived suppressor cells (PMN-MDSCs) and then constructing an immunosuppressive tumor microenvironment. CONCLUSIONS In conclusion, GEN1 rs56070363 variant could serve as a potential predictive biomarker and chemotherapeutic target for improving the survival of EOC patients.
Collapse
Affiliation(s)
- Haoran Li
- Department of Gynecological Oncology, Fudan University Shanghai Cancer Center, Shanghai, China
- Department of Oncology, Shanghai Medical College, Fudan University, 270 Dong'an Road, Shanghai, 200032, China
| | - Jiao Wu
- Department of Gynecological Oncology, Fudan University Shanghai Cancer Center, Shanghai, China
- Department of Oncology, Shanghai Medical College, Fudan University, 270 Dong'an Road, Shanghai, 200032, China
| | - Qing Xu
- Department of Gynecological Oncology, Fudan University Shanghai Cancer Center, Shanghai, China
- Department of Oncology, Shanghai Medical College, Fudan University, 270 Dong'an Road, Shanghai, 200032, China
| | - Yangyang Pang
- Department of Urology, Shanghai Xuhui Central Hospital, Zhongshan-Xuhui Hospital, Fudan University, Shanghai, China
| | - Yanzi Gu
- Department of Biobank, Fudan University Shanghai Cancer Center, Shanghai, China
| | - Mengyun Wang
- Department of Oncology, Shanghai Medical College, Fudan University, 270 Dong'an Road, Shanghai, 200032, China.
- Cancer Institute, Fudan University Shanghai Cancer Center, 270 Dong'an Road, Shanghai, 200032, China.
| | - Xi Cheng
- Department of Gynecological Oncology, Fudan University Shanghai Cancer Center, Shanghai, China.
- Department of Oncology, Shanghai Medical College, Fudan University, 270 Dong'an Road, Shanghai, 200032, China.
- Department of Gynecological Oncology, Minhang Branch, Fudan University Shanghai Cancer Center, Shanghai, China.
| |
Collapse
|
34
|
Schlam I, Corti C, Sammons S, Mittendorf EA, Tolaney SM. Checkpoint inhibition for early-stage hormone receptor-positive breast cancer. Expert Opin Biol Ther 2024; 24:511-520. [PMID: 38913933 DOI: 10.1080/14712598.2024.2370395] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2024] [Accepted: 06/17/2024] [Indexed: 06/26/2024]
Abstract
INTRODUCTION Most patients with breast cancer have early-stage hormone receptor (HR)-positive, human epidermal growth factor receptor-2 (HER2)-negative disease. Even though the prognosis for most of these patients is good, there is a need to identify patients at risk for poor outcomes and to develop strategies to mitigate this risk. AREAS COVERED The addition of immunotherapy to standard neoadjuvant chemotherapy represents a promising option for select patients with HR-positive early breast cancer. Three randomized clinical trials have shown favorable results to date. In this review, we discuss the findings of I-SPY2, CheckMate 7FL (NCT04109066), and KEYNOTE-756 (NCT03725059). EXPERT OPINION Despite the promising results of these trials, there are unanswered questions that need to be considered before incorporating neo/adjuvant immunotherapy in the treatment paradigm of early-stage HR-positive breast cancer. One example of an unanswered question is patient selection. Because the regimens used in these protocols are associated with long-term toxicities, identifying the patients who are more likely to derive a benefit from these agents, such as through the use of biomarkers, is critical. A second example is the optimal integration of adjuvant therapies that improve invasive disease-free survival, such as abemaciclib and ribociclib, which are not safely administered concurrently with immunotherapy.
Collapse
Affiliation(s)
- Ilana Schlam
- Department of Hematology and Oncology, Tufts Medical Center, Boston, MA, USA
- School of Medicine, Tufts University, Boston, MA, USA
| | - Chiara Corti
- Medical Oncology, Dana-Farber Cancer Institute, Boston, MA, USA
- Breast Oncology Program, Dana-Farber Cancer Institute, Boston, MA, USA
- Harvard Medical School, Boston, MA, USA
- Division of New Drugs and Early Drug Development for Innovative Therapies, European Institute of Oncology, IRCCS, Milan, Italy
- Department of Oncology and Hemato-Oncology (DIPO), University of Milan, Milan, Italy
| | - Sarah Sammons
- Medical Oncology, Dana-Farber Cancer Institute, Boston, MA, USA
- Breast Oncology Program, Dana-Farber Cancer Institute, Boston, MA, USA
- Harvard Medical School, Boston, MA, USA
| | - Elizabeth A Mittendorf
- Breast Oncology Program, Dana-Farber Cancer Institute, Boston, MA, USA
- Harvard Medical School, Boston, MA, USA
- Division of Breast Surgery, Department of Surgery, Brigham and Women's Hospital, Boston, MA, USA
| | - Sara M Tolaney
- Medical Oncology, Dana-Farber Cancer Institute, Boston, MA, USA
- Breast Oncology Program, Dana-Farber Cancer Institute, Boston, MA, USA
- Harvard Medical School, Boston, MA, USA
| |
Collapse
|
35
|
Pu LF, Li MM, Feng XJ, Zhang T, Hu LH, Zheng HM, Charwudzi A, Ding YY, Liu J, Liu ZL, Xiong SD. Accumulation of circulating myeloid-derived suppressor cell subsets: predicting poor clinical efficacy and prognosis through T cell suppression in non-Hodgkin's lymphoma. J Leukoc Biol 2024; 115:1094-1107. [PMID: 38369808 DOI: 10.1093/jleuko/qiae032] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2023] [Revised: 12/21/2023] [Accepted: 01/24/2024] [Indexed: 02/20/2024] Open
Abstract
Myeloid-derived suppressor cells (MDSCs) are implicated in the regulation of immune responses closely associated with poor clinical outcomes in cancer. However, the MDSC subtypes in non-Hodgkin's lymphoma (NHL) have not been systematically investigated. So, we investigated the percentage of MDSC subsets in 78 newly diagnosed NHL patients by flow cytometry. The results showed that all MDSC subsets increased in NHL patients compared with healthy donors. Notably, MDSCs, monocytic MDSCs, and CD14 + CD66b + MDSCs significantly increased in NHL patients compared with those with lymphadenitis donors. polymorphonuclear MDSCs (PMN-MDSCs), early-stage MDSCs (e-MDSCs), and the International Prognostic Index were independent risk factors for poor clinical efficacy and were involved in constructing the nomogram for predicting clinical efficacy. Progression-free survival (PFS) was significantly shorter in patients with high level of MDSC subsets, and PMN-MDSCs emerged as an independent prognostic factor for PFS. PMN-MDSCs, e-MDSCs, and the International Prognostic Index were involved in constructing the nomogram for predicting PFS. Patients with a higher percentage of MDSCs, PMN-MDSCs, e-MDSCs, and CD14 + CD66b + MDSCs experienced a shorter overall survival compared with those with lower percentages. In addition, research on mechanisms found that T cell function was suppressed and mediated by the expansion of MDSCs via involving arginase-1 and interleukin-10 in vitro and in vivo. In conclusion, our study demonstrates that the increased circulating MDSC subsets predict poor clinical efficacy and prognosis in NHL, potentially involving T cell suppression through MDSC subset expansion. These findings indicate the potential of MDSC subsets as comprehensive diagnostic, prognostic biomarkers, and therapeutic targets for NHL.
Collapse
Affiliation(s)
- Lian-Fang Pu
- Hematological Lab, The Second Affiliated Hospital of Anhui Medical University, Hefei 230601, Anhui, People's Republic of China
- Department of Hematology, The Second Affiliated Hospital of Anhui Medical University, Hefei 230601, Anhui, People's Republic of China
| | - Man-Man Li
- Department of Hematology and Oncology, Minhang Hospital, Fudan University, Shanghai 201199, People's Republic of China
| | - Xiang-Jiang Feng
- Hematological Lab, The Second Affiliated Hospital of Anhui Medical University, Hefei 230601, Anhui, People's Republic of China
- Department of Hematology, The Second Affiliated Hospital of Anhui Medical University, Hefei 230601, Anhui, People's Republic of China
| | - Tun Zhang
- Hematological Lab, The Second Affiliated Hospital of Anhui Medical University, Hefei 230601, Anhui, People's Republic of China
- Department of Hematology, The Second Affiliated Hospital of Anhui Medical University, Hefei 230601, Anhui, People's Republic of China
| | - Lin-Hui Hu
- Hematological Lab, The Second Affiliated Hospital of Anhui Medical University, Hefei 230601, Anhui, People's Republic of China
- Department of Hematology, The Second Affiliated Hospital of Anhui Medical University, Hefei 230601, Anhui, People's Republic of China
| | - Hui-Min Zheng
- Hematological Lab, The Second Affiliated Hospital of Anhui Medical University, Hefei 230601, Anhui, People's Republic of China
- Department of Hematology, The Second Affiliated Hospital of Anhui Medical University, Hefei 230601, Anhui, People's Republic of China
| | - Alice Charwudzi
- Hematological Lab, The Second Affiliated Hospital of Anhui Medical University, Hefei 230601, Anhui, People's Republic of China
- Department of Hematology, The Second Affiliated Hospital of Anhui Medical University, Hefei 230601, Anhui, People's Republic of China
| | - Yang-Yang Ding
- Hematological Lab, The Second Affiliated Hospital of Anhui Medical University, Hefei 230601, Anhui, People's Republic of China
- Department of Hematology, The Second Affiliated Hospital of Anhui Medical University, Hefei 230601, Anhui, People's Republic of China
| | - Jun Liu
- Hematological Lab, The Second Affiliated Hospital of Anhui Medical University, Hefei 230601, Anhui, People's Republic of China
- Department of Hematology, The Second Affiliated Hospital of Anhui Medical University, Hefei 230601, Anhui, People's Republic of China
| | - Ze-Lin Liu
- Hematological Lab, The Second Affiliated Hospital of Anhui Medical University, Hefei 230601, Anhui, People's Republic of China
- Department of Hematology, The Second Affiliated Hospital of Anhui Medical University, Hefei 230601, Anhui, People's Republic of China
| | - Shu-Dao Xiong
- Hematological Lab, The Second Affiliated Hospital of Anhui Medical University, Hefei 230601, Anhui, People's Republic of China
- Department of Hematology, The Second Affiliated Hospital of Anhui Medical University, Hefei 230601, Anhui, People's Republic of China
- Research Center for Translational Medicine, The Second Hospital of Anhui Medical University, Hefei 230601, Anhui, People's Republic of China
| |
Collapse
|
36
|
Huang X, Nepovimova E, Adam V, Sivak L, Heger Z, Valko M, Wu Q, Kuca K. Neutrophils in Cancer immunotherapy: friends or foes? Mol Cancer 2024; 23:107. [PMID: 38760815 PMCID: PMC11102125 DOI: 10.1186/s12943-024-02004-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2024] [Accepted: 04/16/2024] [Indexed: 05/19/2024] Open
Abstract
Neutrophils play a Janus-faced role in the complex landscape of cancer pathogenesis and immunotherapy. As immune defense cells, neutrophils release toxic substances, including reactive oxygen species and matrix metalloproteinase 9, within the tumor microenvironment. They also modulate the expression of tumor necrosis factor-related apoptosis-inducing ligand and Fas ligand, augmenting their capacity to induce tumor cell apoptosis. Their involvement in antitumor immune regulation synergistically activates a network of immune cells, bolstering anticancer effects. Paradoxically, neutrophils can succumb to the influence of tumors, triggering signaling cascades such as JAK/STAT, which deactivate the immune system network, thereby promoting immune evasion by malignant cells. Additionally, neutrophil granular constituents, such as neutrophil elastase and vascular endothelial growth factor, intricately fuel tumor cell proliferation, metastasis, and angiogenesis. Understanding the mechanisms that guide neutrophils to collaborate with other immune cells for comprehensive tumor eradication is crucial to enhancing the efficacy of cancer therapeutics. In this review, we illuminate the underlying mechanisms governing neutrophil-mediated support or inhibition of tumor progression, with a particular focus on elucidating the internal and external factors that influence neutrophil polarization. We provide an overview of recent advances in clinical research regarding the involvement of neutrophils in cancer therapy. Moreover, the future prospects and limitations of neutrophil research are discussed, aiming to provide fresh insights for the development of innovative cancer treatment strategies targeting neutrophils.
Collapse
Affiliation(s)
- Xueqin Huang
- College of Life Science, Yangtze University, Jingzhou, 434025, China
| | - Eugenie Nepovimova
- Department of Chemistry, Faculty of Science, University of Hradec Králové, 500 03, Hradec Králové, Czech Republic
| | - Vojtech Adam
- Department of Chemistry and Biochemistry, Mendel University in Brno, 613 00, Brno, Czech Republic
| | - Ladislav Sivak
- Department of Chemistry and Biochemistry, Mendel University in Brno, 613 00, Brno, Czech Republic
| | - Zbynek Heger
- Department of Chemistry and Biochemistry, Mendel University in Brno, 613 00, Brno, Czech Republic
| | - Marian Valko
- Faculty of Chemical and Food Technology, Slovak University of Technology, 812 37, Bratislava, Slovakia
| | - Qinghua Wu
- College of Life Science, Yangtze University, Jingzhou, 434025, China.
- Department of Chemistry, Faculty of Science, University of Hradec Králové, 500 03, Hradec Králové, Czech Republic.
| | - Kamil Kuca
- Department of Chemistry, Faculty of Science, University of Hradec Králové, 500 03, Hradec Králové, Czech Republic.
- Biomedical Research Center, University Hospital Hradec Kralove, 500 05, Hradec Kralove, Czech Republic.
- Andalusian Research Institute in Data Science and Computational Intelligence (DaSCI), University of Granada, Granada, Spain.
| |
Collapse
|
37
|
Wang K, Wang Y, Yin K. Role played by MDSC in colitis-associated colorectal cancer and potential therapeutic strategies. J Cancer Res Clin Oncol 2024; 150:243. [PMID: 38717677 PMCID: PMC11078801 DOI: 10.1007/s00432-024-05755-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2024] [Accepted: 04/22/2024] [Indexed: 05/12/2024]
Abstract
Colitis-associated colorectal cancer has been a hot topic in public health issues worldwide. Numerous studies have demonstrated the significance of myeloid-derived suppressor cells (MDSCs) in the progression of this ailment, but the specific mechanism of their role in the transformation of inflammation to cancer is unclear, and potential therapies targeting MDSC are also unclear. This paper outlines the possible involvement of MDSC to the development of colitis-associated colorectal cancer. It also explores the immune and other relevant roles played by MDSC, and collates relevant targeted therapies against MDSC. In addition, current targeted therapies for colorectal cancer are analyzed and summarized.
Collapse
Affiliation(s)
- Kang Wang
- Department of General Surgery, Affiliated Hospital of Jiangsu University, Jiangsu University, Jiefang Road No. 438, Zhenjiang, Jiangsu Province, 212000, China
| | - Yun Wang
- Department of Dermatology, The First People's Hospital of Changzhou, Juqian Street, Changzhou, Jiangsu Province, 213003, China
| | - Kai Yin
- Department of General Surgery, Affiliated Hospital of Jiangsu University, Institute of Digestive Diseases, Jiangsu University, Jiefang Road No. 438, Zhenjiang, Jiangsu Province, 212000, China.
| |
Collapse
|
38
|
Shi S, Wang Y, Wu J, Zha B, Li P, Liu Y, Yang Y, Kong J, Gao S, Cui H, Huangfu L, Sun X, Li Z, Liang T, Zheng Y, Yang D. Predictive value of PD-L1 and TMB for short-term efficacy prognosis in non-small cell lung cancer and construction of prediction models. Front Oncol 2024; 14:1342262. [PMID: 38756661 PMCID: PMC11096522 DOI: 10.3389/fonc.2024.1342262] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2023] [Accepted: 04/08/2024] [Indexed: 05/18/2024] Open
Abstract
Objective To investigate the correlation between programmed death ligand 1(PD-L1), tumor mutation burden (TMB) and the short-term efficacy and clinical characteristics of anti-PD-1 immune checkpoint inhibitor combination chemotherapy in NSCLC patients. The efficacy of the prediction model was evaluated. Methods A total of 220 NSCLC patients receiving first-line treatment with anti-PD-1 immune checkpoint inhibitor combined with chemotherapy were retrospectively collected. The primary endpoint was short-term efficacy ORR. The correlation between short-term efficacy, PD-L1, TMB, and clinical characteristics using χ2 test or t-test was evaluated. Screen the independent prognostic factors using univariate and multivariate logistic regression analyses, and construct a nomogram prediction model using the "rms" package in R software. Using receiver operating characteristic (ROC) curve analysis to evaluate the independent Prognostic factors and the prediction model. Using decision curve analysis (DCA) to verify the superiority of the prediction model. Results The mean values of PD-L1, TMB, neutrophils, lymphocytes, neutrophil-to-lymphocyte ratio, and albumin were the highest in the ORR group, PD-L1 expression and TMB correlated with epidermal growth factor receptor expression. Multivariate analyses showed that PD-L1, TMB, and neutrophil were independent prognostic factors for ORR. The area under the ROC curve (AUC) values of the ROC constructed based on these three indicators were 0.7104, 0.7139, and 0.7131, respectively. The AUC value under the ROC of the nomogram model was 0.813. The DCA of the model showed that all three indicators used together to build the prediction model of the net return were higher than those of the single indicator prediction model. Conclusion PD-L1, TMB, and neutrophils are independent prognostic factors for short-term efficacy. The nomogram prediction model constructed using these three indicators can further improve predictive efficacy of ICIs in patients with NSCLC.
Collapse
Affiliation(s)
- Shuling Shi
- Department of Radiation Oncology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China
| | - Yingyi Wang
- Department of Radiation Oncology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China
| | - Jingjing Wu
- Department of Radiation Oncology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China
| | - Boya Zha
- Department of Radiation Oncology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China
| | - Peihong Li
- Department of Radiation Oncology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China
| | - Yukun Liu
- Department of Radiation Oncology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China
| | - Yuchuan Yang
- Department of Radiation Oncology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China
| | - Jinglin Kong
- Department of Radiation Oncology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China
| | - Shibo Gao
- Department of Radiation Oncology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China
| | - Haiyang Cui
- Department of Radiation Oncology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China
| | - Linkuan Huangfu
- Department of Radiation Oncology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China
| | - Xiaocong Sun
- Department of Radiation Oncology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China
| | - Zhikai Li
- Department of Radiation Oncology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China
| | - Tiansong Liang
- Department of Radiation Oncology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China
| | - Yingjuan Zheng
- Department of Radiation Oncology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China
- Institute of Radiotherapy and Critical Care Oncology, Zhengzhou University, Zhengzhou, Henan, China
| | - Daoke Yang
- Department of Radiation Oncology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China
- Institute of Radiotherapy and Critical Care Oncology, Zhengzhou University, Zhengzhou, Henan, China
| |
Collapse
|
39
|
Chen Z, Li Y, Niu Y, Zhang X, Yu J, Cui J, Ran S, Wang S, Ye W, Xia J, Wu J. MEK1/2-PKM2 Pathway Modulates the Immunometabolic Reprogramming of Proinflammatory Allograft-infiltrating Macrophages During Heart Transplant Rejection. Transplantation 2024; 108:1127-1141. [PMID: 38238904 DOI: 10.1097/tp.0000000000004899] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/26/2024]
Abstract
BACKGROUND Emerging evidence has highlighted the role of macrophages in heart transplant rejection (HTR). However, the molecular signals modulating the immunometabolic phenotype of allograft-infiltrating macrophages (AIMs) during HTR remain unknown. METHODS We analyzed single-cell RNA sequencing data from cardiac graft-infiltrating immunocytes to characterize the activation patterns and metabolic features of AIMs. We used flow cytometry to determine iNOS and PKM2 expression and MEK/ERK signaling activation levels in AIMs. We then generated macrophage-specific Mek1/2 knockout mice to determine the role of the MEK1/2-PKM2 pathway in the proinflammatory phenotype and glycolytic capacity of AIMs during HTR. RESULTS Single-cell RNA sequencing analysis showed that AIMs had a significantly elevated proinflammatory and glycolytic phenotype. Flow cytometry analysis verified that iNOS and PKM2 expressions were significantly upregulated in AIMs. Moreover, MEK/ERK signaling was activated in AIMs and positively correlated with proinflammatory and glycolytic signatures. Macrophage-specific Mek1/2 deletion significantly protected chronic cardiac allograft rejection and inhibited the proinflammatory phenotype and glycolytic capacity of AIMs. Mek1/2 ablation also reduced the proinflammatory phenotype and glycolytic capacity of lipopolysaccharides + interferon-γ-stimulated macrophages. Mek1/2 ablation impaired nuclear translocation and PKM2 expression in macrophages. PKM2 overexpression partially restored the proinflammatory phenotype and glycolytic capacity of Mek1/2 -deficient macrophages. Moreover, trametinib, an Food and Drug Administration-approved MEK1/2 inhibitor, ameliorated chronic cardiac allograft rejection. CONCLUSIONS These findings suggest that the MEK1/2-PKM2 pathway is essential for immunometabolic reprogramming of proinflammatory AIMs, implying that it may be a promising therapeutic target in clinical heart transplantation.
Collapse
Affiliation(s)
- Zhang Chen
- Department of Cardiovascular Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- Center for Translational Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Yuan Li
- Department of Cardiovascular Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- Center for Translational Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Yuqing Niu
- Department of Cardiovascular Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- Center for Translational Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Xi Zhang
- Department of Cardiovascular Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- Center for Translational Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Jizhang Yu
- Department of Cardiovascular Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- Center for Translational Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Jikai Cui
- Department of Cardiovascular Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- Center for Translational Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Shuan Ran
- Department of Cardiovascular Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- Center for Translational Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Song Wang
- Department of Cardiovascular Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- Center for Translational Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Weicong Ye
- Department of Cardiovascular Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- Center for Translational Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Jiahong Xia
- Department of Cardiovascular Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- Center for Translational Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- Hubei Key Laboratory of Biological Targeted Therapy, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology Wuhan, Wuhan, China
- Key Laboratory of Organ Transplantation, Ministry of Education, NHC Key Laboratory of Organ Transplantation, Key Laboratory of Organ Transplantation, Chinese Academy of Medical Sciences, Wuhan, China
- Institute of Translational Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Jie Wu
- Department of Cardiovascular Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- Center for Translational Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- Hubei Key Laboratory of Biological Targeted Therapy, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology Wuhan, Wuhan, China
- Key Laboratory of Organ Transplantation, Ministry of Education, NHC Key Laboratory of Organ Transplantation, Key Laboratory of Organ Transplantation, Chinese Academy of Medical Sciences, Wuhan, China
- Institute of Translational Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| |
Collapse
|
40
|
Chen X, Zhong S, Zhan Y, Zhang X. CRISPR-Cas9 applications in T cells and adoptive T cell therapies. Cell Mol Biol Lett 2024; 29:52. [PMID: 38609863 PMCID: PMC11010303 DOI: 10.1186/s11658-024-00561-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2023] [Accepted: 03/15/2024] [Indexed: 04/14/2024] Open
Abstract
T cell immunity is central to contemporary cancer and autoimmune therapies, encompassing immune checkpoint blockade and adoptive T cell therapies. Their diverse characteristics can be reprogrammed by different immune challenges dependent on antigen stimulation levels, metabolic conditions, and the degree of inflammation. T cell-based therapeutic strategies are gaining widespread adoption in oncology and treating inflammatory conditions. Emerging researches reveal that clustered regularly interspaced palindromic repeats-associated protein 9 (CRISPR-Cas9) genome editing has enabled T cells to be more adaptable to specific microenvironments, opening the door to advanced T cell therapies in preclinical and clinical trials. CRISPR-Cas9 can edit both primary T cells and engineered T cells, including CAR-T and TCR-T, in vivo and in vitro to regulate T cell differentiation and activation states. This review first provides a comprehensive summary of the role of CRISPR-Cas9 in T cells and its applications in preclinical and clinical studies for T cell-based therapies. We also explore the application of CRISPR screen high-throughput technology in editing T cells and anticipate the current limitations of CRISPR-Cas9, including off-target effects and delivery challenges, and envisioned improvements in related technologies for disease screening, diagnosis, and treatment.
Collapse
Affiliation(s)
- Xiaoying Chen
- Department of Cardiology, Cardiovascular Institute of Zhengzhou University, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450003, China
| | - Shuhan Zhong
- Department of Hematology, Zhejiang University School of Medicine Second Affiliated Hospital, Hangzhou, 310003, China
| | - Yonghao Zhan
- Department of Urology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450003, China.
| | - Xuepei Zhang
- Department of Urology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450003, China.
| |
Collapse
|
41
|
Horio Y, Kuroda H, Masago K, Matsushita H, Sasaki E, Fujiwara Y. Current diagnosis and treatment of salivary gland-type tumors of the lung. Jpn J Clin Oncol 2024; 54:229-247. [PMID: 38018262 DOI: 10.1093/jjco/hyad160] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2023] [Accepted: 11/02/2023] [Indexed: 11/30/2023] Open
Abstract
Salivary gland-type tumors of the lung are thought to originate from the submucosal exocrine glands of the large airways. Due to their rare occurrence, reports of their study are limited to small-scale or case reports. Therefore, daily clinical practices often require a search for previous reports. In the last 20 years, several genetic rearrangements have been identified, such as MYB::NF1B rearrangements in adenoid cystic carcinoma, CRTC1::MAML2 rearrangements in mucoepidermoid carcinoma, EWSR1::ATF1 rearrangements in hyalinizing clear cell carcinoma and rearrangements of the EWSR1 locus or FUS (TLS) locus in myoepithelioma and myoepithelial carcinoma. These molecular alterations have been useful in diagnosing these tumors, although they have not yet been linked to molecularly targeted therapies. The morphologic, immunophenotypic, and molecular characteristics of these tumors are similar to those of their counterparts of extrapulmonary origin, so clinical and radiologic differential diagnosis is required to distinguish between primary and metastatic disease of other primary sites. However, these molecular alterations can be useful in differentiating them from other primary lung cancer histologic types. The management of these tumors requires broad knowledge of the latest diagnostics, surgery, radiotherapy, bronchoscopic interventions, chemotherapy, immunotherapy as well as therapeutic agents in development, including molecularly targeted agents. This review provides a comprehensive overview of the current diagnosis and treatment of pulmonary salivary gland tumors, with a focus on adenoid cystic carcinoma and mucoepidermoid carcinoma, which are the two most common subtypes.
Collapse
Affiliation(s)
- Yoshitsugu Horio
- Department of Outpatient Services, Aichi Cancer Center Hospital, Nagoya, Japan
- Department of Thoracic Oncology, Aichi Cancer Center Hospital, Nagoya, Japan
| | - Hiroaki Kuroda
- Department of Thoracic Surgery, Aichi Cancer Center Hospital, Nagoya, Japan
- Department of Thoracic Surgery, Teikyo University Hospital, Mizonokuchi, Kanagawa-prefecture, Japan
| | - Katsuhiro Masago
- Department of Pathology and Molecular Diagnostics, Aichi Cancer Center Hospital, Nagoya, Japan
| | - Hirokazu Matsushita
- Division of Translational Oncoimmunology, Aichi Cancer Center Research Institute, Nagoya, Japan
| | - Eiichi Sasaki
- Department of Pathology and Molecular Diagnostics, Aichi Cancer Center Hospital, Nagoya, Japan
| | - Yutaka Fujiwara
- Department of Thoracic Oncology, Aichi Cancer Center Hospital, Nagoya, Japan
| |
Collapse
|
42
|
Schrijver IT, Herderschee J, Théroude C, Kritikos A, Leijte G, Le Roy D, Brochut M, Chiche JD, Perreau M, Pantaleo G, Guery B, Kox M, Pickkers P, Calandra T, Roger T. Myeloid-Derived Suppressor-like Cells as a Prognostic Marker in Critically Ill Patients: Insights from Experimental Endotoxemia and Intensive Care Patients. Cells 2024; 13:314. [PMID: 38391927 PMCID: PMC10887109 DOI: 10.3390/cells13040314] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2023] [Revised: 01/29/2024] [Accepted: 02/07/2024] [Indexed: 02/24/2024] Open
Abstract
Patients admitted to the intensive care unit (ICU) often experience endotoxemia, nosocomial infections and sepsis. Polymorphonuclear and monocytic myeloid-derived suppressor cells (PMN-MDSCs and M-MDSCs) can have an important impact on the development of infectious diseases, but little is known about their potential predictive value in critically ill patients. Here, we used unsupervised flow cytometry analyses to quantify MDSC-like cells in healthy subjects challenged with endotoxin and in critically ill patients admitted to intensive care units and at risk of developing infections. Cells phenotypically similar to PMN-MDSCs and M-MDSCs increased after endotoxin challenge. Similar cells were elevated in patients at ICU admission and normalized at ICU discharge. A subpopulation of M-MDSC-like cells expressing intermediate levels of CD15 (CD15int M-MDSCs) was associated with overall mortality (p = 0.02). Interestingly, the high abundance of PMN-MDSCs and CD15int M-MDSCs was a good predictor of mortality (p = 0.0046 and 0.014), with area under the ROC curve for mortality of 0.70 (95% CI = 0.4-1.0) and 0.86 (0.62-1.0), respectively. Overall, our observations support the idea that MDSCs represent biomarkers for sepsis and that flow cytometry monitoring of MDSCs may be used to risk-stratify ICU patients for targeted therapy.
Collapse
Affiliation(s)
- Irene T. Schrijver
- Infectious Diseases Service, Department of Medicine, Lausanne University Hospital and University of Lausanne, 1011 Lausanne, Switzerland (M.B.)
| | - Jacobus Herderschee
- Infectious Diseases Service, Department of Medicine, Lausanne University Hospital and University of Lausanne, 1011 Lausanne, Switzerland (M.B.)
| | - Charlotte Théroude
- Infectious Diseases Service, Department of Medicine, Lausanne University Hospital and University of Lausanne, 1011 Lausanne, Switzerland (M.B.)
| | - Antonios Kritikos
- Infectious Diseases Service, Department of Medicine, Lausanne University Hospital and University of Lausanne, 1011 Lausanne, Switzerland (M.B.)
| | - Guus Leijte
- Radboud Center for Infectious Diseases, Radboud University Medical Center, 6525 GA Nijmegen, The Netherlands
- Department of Intensive Care Medicine, Radboud University Medical Center, 6525 EP Nijmegen, The Netherlands
| | - Didier Le Roy
- Infectious Diseases Service, Department of Medicine, Lausanne University Hospital and University of Lausanne, 1011 Lausanne, Switzerland (M.B.)
| | - Maelick Brochut
- Infectious Diseases Service, Department of Medicine, Lausanne University Hospital and University of Lausanne, 1011 Lausanne, Switzerland (M.B.)
| | - Jean-Daniel Chiche
- Service of Adult Intensive Care Medicine, Lausanne University Hospital and University of Lausanne, 1011 Lausanne, Switzerland
| | - Matthieu Perreau
- Service of Immunology and Allergy, Department of Medicine, Lausanne University Hospital and University of Lausanne, 1010 Lausanne, Switzerland
| | - Giuseppe Pantaleo
- Service of Immunology and Allergy, Department of Medicine, Lausanne University Hospital and University of Lausanne, 1010 Lausanne, Switzerland
| | - Benoit Guery
- Infectious Diseases Service, Department of Medicine, Lausanne University Hospital and University of Lausanne, 1011 Lausanne, Switzerland (M.B.)
| | - Matthijs Kox
- Radboud Center for Infectious Diseases, Radboud University Medical Center, 6525 GA Nijmegen, The Netherlands
- Department of Intensive Care Medicine, Radboud University Medical Center, 6525 EP Nijmegen, The Netherlands
| | - Peter Pickkers
- Radboud Center for Infectious Diseases, Radboud University Medical Center, 6525 GA Nijmegen, The Netherlands
- Department of Intensive Care Medicine, Radboud University Medical Center, 6525 EP Nijmegen, The Netherlands
| | - Thierry Calandra
- Infectious Diseases Service, Department of Medicine, Lausanne University Hospital and University of Lausanne, 1011 Lausanne, Switzerland (M.B.)
- Service of Immunology and Allergy, Department of Medicine, Lausanne University Hospital and University of Lausanne, 1010 Lausanne, Switzerland
| | - Thierry Roger
- Infectious Diseases Service, Department of Medicine, Lausanne University Hospital and University of Lausanne, 1011 Lausanne, Switzerland (M.B.)
| |
Collapse
|
43
|
Li Y, Wang C, Lu Z, Luo M. Targeting PMN-MDSCs via CD300ld receptor for cancer immunotherapy. Clin Transl Med 2024; 14:e1534. [PMID: 38205725 PMCID: PMC10782405 DOI: 10.1002/ctm2.1534] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2023] [Accepted: 12/23/2023] [Indexed: 01/12/2024] Open
Affiliation(s)
- Yuwei Li
- Institute of Pediatrics of Children's Hospital of Fudan UniversityShanghai Key Laboratory of Medical EpigeneticsInstitutes of Biomedical SciencesFudan UniversityShanghaiChina
- The Fifth People's Hospital of ShanghaiInstitutes of Biomedical SciencesFudan UniversityShanghaiChina
| | - Chaoxiong Wang
- State Key Laboratory of Cell BiologyCenter for Excellence in Molecular Cell ScienceShanghai Institute of Biochemistry and Cell BiologyUniversity of Chinese Academy of SciencesChinese Academy of SciencesShanghaiChina
| | - Zhigang Lu
- The Fifth People's Hospital of ShanghaiInstitutes of Biomedical SciencesFudan UniversityShanghaiChina
| | - Min Luo
- Institute of Pediatrics of Children's Hospital of Fudan UniversityShanghai Key Laboratory of Medical EpigeneticsInstitutes of Biomedical SciencesFudan UniversityShanghaiChina
| |
Collapse
|
44
|
Liang J, Qiao X, Qiu L, Xu H, Xiang H, Ding H, Chen Y. Engineering Versatile Nanomedicines for Ultrasonic Tumor Immunotherapy. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2024; 11:e2305392. [PMID: 38041509 PMCID: PMC10797440 DOI: 10.1002/advs.202305392] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/04/2023] [Revised: 10/15/2023] [Indexed: 12/03/2023]
Abstract
Due to the specific advantages of ultrasound (US) in therapeutic disease treatments, the unique therapeutic US technology has emerged. In addition to featuring a low-invasive targeted cancer-cell killing effect, the therapeutic US technology has been demonstrated to modulate the tumor immune landscape, amplify the therapeutic effect of other antitumor therapies, and induce immunosensitization of tumors to immunotherapy, shedding new light on the cancer treatment. Tremendous advances in nanotechnology are also expected to bring unprecedented benefits to enhancing the antitumor efficiency and immunological effects of therapeutic US, as well as therapeutic US-derived bimodal and multimodal synergistic therapies. This comprehensive review summarizes the immunological effects induced by different therapeutic US technologies, including ultrasound-mediated micro-/nanobubble destruction (UTMD/UTND), sonodynamic therapy (SDT), and focused ultrasound (FUS), as well as the main underlying mechanisms involved. It is also discussed that the recent research progress of engineering intelligent nanoplatform in improving the antitumor efficiency of therapeutic US technologies. Finally, focusing on clinical translation, the key issues and challenges currently faced are summarized, and the prospects for promoting the clinical translation of these emerging nanomaterials and ultrasonic immunotherapy in the future are proposed.
Collapse
Affiliation(s)
- Jing Liang
- Department of UltrasoundHuashan HospitalFudan UniversityShanghai200040China
| | - Xiaohui Qiao
- Department of UltrasoundHuashan HospitalFudan UniversityShanghai200040China
| | - Luping Qiu
- Department of UltrasoundHuashan HospitalFudan UniversityShanghai200040China
| | - Huning Xu
- Department of UltrasoundHuashan HospitalFudan UniversityShanghai200040China
| | - Huijing Xiang
- Materdicine LabSchool of Life SciencesShanghai UniversityShanghai2000444China
| | - Hong Ding
- Department of UltrasoundHuashan HospitalFudan UniversityShanghai200040China
| | - Yu Chen
- Materdicine LabSchool of Life SciencesShanghai UniversityShanghai2000444China
| |
Collapse
|
45
|
Wang L, Jiang C, Wang N, Wen YL, Wang SF, Xue C, Bi XW, Yuan ZY. "Moderate" adjuvant chemotherapy-induced leukopenia is beneficial for survival of patients with early breast cancer: a retrospective study. BMC Cancer 2023; 23:1227. [PMID: 38093246 PMCID: PMC10720186 DOI: 10.1186/s12885-023-11680-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2023] [Accepted: 11/27/2023] [Indexed: 12/17/2023] Open
Abstract
BACKGROUND The association between chemotherapy-induced leukopenia (CIL) and survival for patients with early breast cancer (EBC) is not known. We investigated the relationship between different grades of CIL and survival in patients with EBC receiving adjuvant chemotherapy. METHODS A total of 442 patients with EBC receiving a regimen containing an anthracycline (A) and taxane (T) were included into our analysis. Survival analyses were undertaken using Kaplan-Meier curves. The P-value was calculated using the log rank test. Subgroup analysis was conducted to investigate the correlation of CIL grade and survival based on the clinicopathological characteristics of patients. Afterwards, univariate and multivariate analyses screened out independent prognostic factors to construct a prognostic model, the robustness of which was verified. RESULTS Patients with EBC who experienced grade 2-4 ("moderate" and "severe") CIL were associated with longer overall survival (OS) than those with grade 0-1 (mild) CIL (P = 0.021). Compared with patients with mild CIL, OS was longer in patients with severe CIL (P = 0.029). Patients who suffered from moderate CIL tended to have longer OS than those with mild CIL (P = 0.082). Nevertheless, there was no distinguishable difference in OS between moderate- or severe-CIL groups. Subgroup analysis revealed that patients with moderate CIL had longer OS than those with mild CIL among patients who were premenstrual, or with human epidermal growth factor receptor 2-positive (HER2+), > 3 lymph nodes with metastases, a tumor diameter > 5 cm. A prognostic model based on menstrual status, N stage, and CIL grade showed satisfactory robustness. CONCLUSION The grade of CIL was strongly associated with the prognosis among patients with EBC who received a regimen containing both anthracyclines and taxanes. Patients with a "moderate" CIL grade tended to have better survival outcomes.
Collapse
Affiliation(s)
- Li Wang
- Department of Medical Oncology, State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Guangdong Provincial Clinical Research Center for Cancer, Sun Yat-sen University Cancer Center, 651 Dongfeng Road East, Guangzhou, 510060, People's Republic of China
| | - Chang Jiang
- Department of Medical Oncology, State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Guangdong Provincial Clinical Research Center for Cancer, Sun Yat-sen University Cancer Center, 651 Dongfeng Road East, Guangzhou, 510060, People's Republic of China
| | - Na Wang
- Department of Medical Oncology, State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Guangdong Provincial Clinical Research Center for Cancer, Sun Yat-sen University Cancer Center, 651 Dongfeng Road East, Guangzhou, 510060, People's Republic of China
| | - Yan-Ling Wen
- Department of Medical Oncology, State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Guangdong Provincial Clinical Research Center for Cancer, Sun Yat-sen University Cancer Center, 651 Dongfeng Road East, Guangzhou, 510060, People's Republic of China
| | - Si-Fen Wang
- Department of Medical Oncology, State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Guangdong Provincial Clinical Research Center for Cancer, Sun Yat-sen University Cancer Center, 651 Dongfeng Road East, Guangzhou, 510060, People's Republic of China
| | - Cong Xue
- Department of Medical Oncology, State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Guangdong Provincial Clinical Research Center for Cancer, Sun Yat-sen University Cancer Center, 651 Dongfeng Road East, Guangzhou, 510060, People's Republic of China.
| | - Xi-Wen Bi
- Department of Medical Oncology, State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Guangdong Provincial Clinical Research Center for Cancer, Sun Yat-sen University Cancer Center, 651 Dongfeng Road East, Guangzhou, 510060, People's Republic of China.
| | - Zhong-Yu Yuan
- Department of Medical Oncology, State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Guangdong Provincial Clinical Research Center for Cancer, Sun Yat-sen University Cancer Center, 651 Dongfeng Road East, Guangzhou, 510060, People's Republic of China.
| |
Collapse
|