1
|
Shoae-Hagh P, Razavi BM, Sadeghnia HR, Mehri S, Karimi G, Hosseinzadeh H. Molecular and Behavioral Neuroprotective Effects of Clavulanic Acid and Crocin in Haloperidol-Induced Tardive Dyskinesia in Rats. Mol Neurobiol 2025; 62:5156-5182. [PMID: 39520654 DOI: 10.1007/s12035-024-04566-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2024] [Accepted: 10/18/2024] [Indexed: 11/16/2024]
Abstract
Clavulanic acid (ClvA), a beta-lactamase inhibitor, is being explored for its significant neuroprotective potential. The effects of ClvA were assessed both individually and in combination with crocin (Cr), an antioxidant derived from saffron, in the context of tardive dyskinesia (TD). In rat haloperidol (Hp)-induced-TD (1 mg/kg, i.p. 21 days), the effects of ClvA (50, 100, 150 mg/kg) and Cr (10, 20, 40 mg/kg) were assessed via vacuous chewing movements (VCM) and tongue protrusion (TP). Striatal malondialdehyde (MDA) and glutathione (GSH) were measured spectrophotometrically. Based on the results, ClvA (100 mg/kg) and Cr (10 mg/kg) were determined with sub-effective doses. Glutamate transporter-subtype1 (GLT1), dopamine active transporter (DAT), vesicular monoamine transporter-type2 (VMAT2), Bax/Bcl2, cleaved Caspase3, phosphorylated AKT/AKT, IL1β, and TNFα levels were quantified using western blotting in sub-effective doses and their combination. The behavioral results of catalepsy and orofacial dyskinesia demonstrated model establishment. Hp decreased GLT1 (p < 0.05), DAT (p < 0.01), VMAT2 (p < 0.001), GSH and pAKT/AKT (p < 0.0001); increased TNFα (p < 0.05), IL1β, cleaved Caspase3 (p < 0.001); MDA and Bax/Bcl2 (p < 0.0001). ClvA 100 mg/kg reversed the decreased GLT1 and VMAT2 (p < 0.01), alongside the increased MDA (p < 0.0001) and VCM (p < 0.05). It also increased AKT phosphorylation (p < 0.05). No effects were noted on DAT, GSH, Bax/Bcl2, or inflammatory factors. However, the combination with Cr at 10 mg/kg influenced ClvA on DAT (p < 0.01) and resulted in a significant increase in GSH (p < 0.0001). Additionally, there was a marked decrease in TNFα (p < 0.0001) and IL1β (p < 0.001), enhancing its effects on reducing MDA and increasing pAKT/AKT (p < 0.0001). The combination adversely affected GLT1. ClvA protects against TD via GLT1 and VMAT2; combined with Cr, it enhances antioxidant effects, improves DAT, and requires dose optimization for GLT1 disruption.
Collapse
Affiliation(s)
- Parisa Shoae-Hagh
- Student Research Committee, Mashhad University of Medical Sciences, Mashhad, Iran
- Department of Pharmacodynamics and Toxicology, School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Bibi Marjan Razavi
- Department of Pharmacodynamics and Toxicology, School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran.
- Targeted Drug Delivery Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad, Iran.
| | - Hamid Reza Sadeghnia
- Pharmacological Research Center of Medicinal Plants, Mashhad University of Medical Sciences, Mashhad, Iran
- Department of Pharmacology, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
- Division of Neurocognitive Sciences, Psychiatry and Behavioral Sciences Research Center, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Soghra Mehri
- Department of Pharmacodynamics and Toxicology, School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran
- Pharmaceutical Research Centre, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Gholamreza Karimi
- Department of Pharmacodynamics and Toxicology, School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran
- Pharmaceutical Research Centre, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Hossein Hosseinzadeh
- Department of Pharmacodynamics and Toxicology, School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran.
- Pharmaceutical Research Centre, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad, Iran.
| |
Collapse
|
2
|
Liu L, Liu L, Yuan Z, Zhao W, Huang L, Luo X, Li F, Zheng H. Enantioselective disruption of circadian rhythm behavior in goldfish (Carassius auratus) induced by chiral fungicide triadimefon at environmentally-relevant concentration. JOURNAL OF HAZARDOUS MATERIALS 2025; 485:136891. [PMID: 39708603 DOI: 10.1016/j.jhazmat.2024.136891] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/30/2024] [Revised: 11/12/2024] [Accepted: 12/13/2024] [Indexed: 12/23/2024]
Abstract
The pollution of triadimefon (TDF) fungicides significantly hinders the "One Health" frame achievement. However, the enantioselective effects of chiral TDF on the circadian rhythm of fish remained unclear. Herein, TDF enantiomers (R(-)-TDF and S(+)-TDF) and racemic Rac-TDF were selected to investigate their enantioselective effects and mechanisms on circadian rhythm of goldfish (Carassius auratus) at an environmentally-relevant concentration (100 µg L⁻¹). S(+)-TDF reduced the diurnal-nocturnal differences in schooling behavior more strongly than R(-)-TDF, proving the enantioselectively weakened circadian rhythm of goldfish by TDF. S(+)-TDF more preferentially bioaccumulated in goldfish than R(-)-TDF, mainly contributed to the enantioselectively disrupted circadian rhythm. On one hand, TDF enantiomers in brains differentially inhibited neuronal activity, leading to cholinergic system dysfunction. On the other hand, TDF enantiomers in intestines differentially disrupted intestinal barriers, thus potentially dysregulating the "brain-gut" axis. Importantly, the commercial probiotics alleviated the behavioral disorder, indirectly confirming that the dysbiosis of intestinal bacteria contributed to the TDF-induced circadian rhythm disruption. These findings provide novel insights into the enantioselective disruption of fish circadian rhythm behaviors by chiral fungicides at enantiomer levels, and offer novel strategies for early assessing the ecological risks of chiral agrochemicals in aquatic ecosystems.
Collapse
Affiliation(s)
- Linjia Liu
- Institute of Coastal Environmental Pollution Control, College of Environmental Science and Engineering, Key Laboratory of Marine Environment and Ecology, Ocean University of China, Qingdao 266100, China
| | - Liuqingqing Liu
- Institute of Coastal Environmental Pollution Control, College of Environmental Science and Engineering, Key Laboratory of Marine Environment and Ecology, Ocean University of China, Qingdao 266100, China.
| | - Zixi Yuan
- Institute of Coastal Environmental Pollution Control, College of Environmental Science and Engineering, Key Laboratory of Marine Environment and Ecology, Ocean University of China, Qingdao 266100, China
| | - Wenting Zhao
- Institute of Coastal Environmental Pollution Control, College of Environmental Science and Engineering, Key Laboratory of Marine Environment and Ecology, Ocean University of China, Qingdao 266100, China
| | - Liyan Huang
- Institute of Coastal Environmental Pollution Control, College of Environmental Science and Engineering, Key Laboratory of Marine Environment and Ecology, Ocean University of China, Qingdao 266100, China
| | - Xianxiang Luo
- Institute of Coastal Environmental Pollution Control, College of Environmental Science and Engineering, Key Laboratory of Marine Environment and Ecology, Ocean University of China, Qingdao 266100, China; Sanya Oceanographic Institution, Ocean University of China, Sanya 57200, China
| | - Fengmin Li
- Institute of Coastal Environmental Pollution Control, College of Environmental Science and Engineering, Key Laboratory of Marine Environment and Ecology, Ocean University of China, Qingdao 266100, China; Sanya Oceanographic Institution, Ocean University of China, Sanya 57200, China
| | - Hao Zheng
- Institute of Coastal Environmental Pollution Control, College of Environmental Science and Engineering, Key Laboratory of Marine Environment and Ecology, Ocean University of China, Qingdao 266100, China; Sanya Oceanographic Institution, Ocean University of China, Sanya 57200, China.
| |
Collapse
|
3
|
Khan R, Turner A, Berk M, Walder K, Rossell S, Guerin AA, Kim JH. Genes, Cognition, and Their Interplay in Methamphetamine Use Disorder. Biomolecules 2025; 15:306. [PMID: 40001609 PMCID: PMC11852989 DOI: 10.3390/biom15020306] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2025] [Revised: 02/09/2025] [Accepted: 02/17/2025] [Indexed: 02/27/2025] Open
Abstract
Methamphetamine use disorder is a pressing global health issue, often accompanied by significant cognitive deficits that impair daily functioning and quality of life and complicate treatment. Emerging evidence highlights the potential role of genetic factors in methamphetamine use disorder, particularly in association with cognitive function. This review examines the key genetic and cognitive dimensions and their interplay in methamphetamine use disorder. There is converging evidence from several studies that genetic polymorphisms in BDNF, FAAH, SLC18A1, and SLC18A2 are associated with protection against or susceptibility to the disorder. In addition, people with methamphetamine use disorder consistently displayed impairments in cognitive flexibility and inhibitory control compared with people without the disorder. These cognitive domains were associated with reactivity to methamphetamine cues that were positively correlated with total years of methamphetamine use history. Emerging research also suggests that inhibitory control is negatively correlated with lower blood FAAH mRNA levels, while cognitive flexibility positively correlates with higher blood SLC18A2 mRNA levels, highlighting how genetic and cognitive dimensions interact in methamphetamine use disorder. We also include some future directions, emphasizing potential personalized therapeutic strategies that integrate genetic and cognitive insights. By drawing attention to the interplay between genes and cognition, we hope to advance our understanding of methamphetamine use disorder and inform the development of targeted interventions.
Collapse
Affiliation(s)
- Ramisha Khan
- IMPACT, Institute for Innovation in Physical and Mental Health and Clinical Translation, School of Medicine, Deakin University, Geelong, VIC 3220, Australia; (R.K.); (A.T.); (M.B.); (K.W.)
| | - Alyna Turner
- IMPACT, Institute for Innovation in Physical and Mental Health and Clinical Translation, School of Medicine, Deakin University, Geelong, VIC 3220, Australia; (R.K.); (A.T.); (M.B.); (K.W.)
| | - Michael Berk
- IMPACT, Institute for Innovation in Physical and Mental Health and Clinical Translation, School of Medicine, Deakin University, Geelong, VIC 3220, Australia; (R.K.); (A.T.); (M.B.); (K.W.)
| | - Ken Walder
- IMPACT, Institute for Innovation in Physical and Mental Health and Clinical Translation, School of Medicine, Deakin University, Geelong, VIC 3220, Australia; (R.K.); (A.T.); (M.B.); (K.W.)
| | - Susan Rossell
- Centre for Mental Health, Swinburne University of Technology, Melbourne, VIC 3122, Australia;
| | - Alexandre A. Guerin
- Centre for Youth Mental Health, University of Melbourne, Melbourne, VIC 3010, Australia;
- Orygen, Melbourne, VIC 3052, Australia
| | - Jee Hyun Kim
- IMPACT, Institute for Innovation in Physical and Mental Health and Clinical Translation, School of Medicine, Deakin University, Geelong, VIC 3220, Australia; (R.K.); (A.T.); (M.B.); (K.W.)
| |
Collapse
|
4
|
Wu D, Zhao Y, Jiang D. Structural insights into substrate transport and drug inhibition of the human vesicular monoamine transporter 2 (VMAT2). FEBS J 2025. [PMID: 39887614 DOI: 10.1111/febs.70003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2024] [Revised: 01/10/2025] [Accepted: 01/23/2025] [Indexed: 02/01/2025]
Abstract
Vesicular monoamine transporter 2 (VMAT2) is a proton-monoamine antiporter that is widely expressed in central and peripheral neurons and plays a crucial role in loading monoamine neurotransmitters into secretory vesicles. Dysfunction of VMAT2 causes many neuropsychiatric disorders, such as depression and Parkinson's disease. Consequently, VMAT2 is a valid and important therapeutic target. Reserpine alleviates symptoms of hypertension via potent inhibition of VMAT2. Tetrabenazine selectively inhibits VMAT2 and has been used for the management of chorea, including Huntington's disease. Decades of extensive studies have defined the substrate specificity and transport kinetics of VMAT2. However, the structure and precise mechanisms of monoamine recognition and drug inhibition in VMAT2 remain unknown. Recently, we determined an ensemble of high-resolution cryo-EM structures of human VMAT2 in three distinct states bound to multiple substrates and inhibitors. These results lay a structural foundation for a comprehensive understanding of substrate recognition and transport, drug inhibition, and proton coupling in VMAT2 and shed light on future therapeutic development.
Collapse
Affiliation(s)
- Di Wu
- Laboratory of Soft Matter Physics, Institute of Physics, Chinese Academy of Sciences, Beijing, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Yan Zhao
- University of Chinese Academy of Sciences, Beijing, China
- National Laboratory of Biomacromolecules, CAS Center for Excellence in Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing, China
| | - Daohua Jiang
- Laboratory of Soft Matter Physics, Institute of Physics, Chinese Academy of Sciences, Beijing, China
- University of Chinese Academy of Sciences, Beijing, China
| |
Collapse
|
5
|
Chen H, Ha HTT, Elghobashi-Meinhardt N, Le NA, Schmiege P, Nguyen LN, Li X. Molecular basis of Spns1-mediated lysophospholipid transport from the lysosome. Proc Natl Acad Sci U S A 2025; 122:e2409596121. [PMID: 39739806 PMCID: PMC11725778 DOI: 10.1073/pnas.2409596121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2024] [Accepted: 11/25/2024] [Indexed: 01/02/2025] Open
Abstract
Spns1 mediates the rate-limiting efflux of lysophospholipids from the lysosome to the cytosol. Deficiency of Spns1 is associated with embryonic senescence, as well as liver and skeletal muscle atrophy in animal models. However, the mechanisms by which Spns1 transports lysophospholipid and proton sensing remain unclear. Here, we present a cryogenic electron microscopy structure of human Spns1 in lysophosphatidylcholine (LPC)-bound lumen-facing conformation. Notably, LPC snugly binds within the luminal-open cavity, where the molecular dynamics simulations reveal that LPC presents a propensity to enter between transmembrane-helices (TM) 5 and 8. Structural comparisons and cell-based transport assays uncover several pivotal residues at TM 5/8 that orchestrate the transport cycle, which are unique to Spns1. Furthermore, we identify a five-residue network that is crucial for proton-sensing by Spns1. Transference of these network residues to Spns2, a sphingosine-1-phosphate uniporter, causes the chimeric Spns2 to be low pH dependent. Our results reveal molecular insights into lysosomal LPC transport and the proton-sensing mechanism by Spns1.
Collapse
Affiliation(s)
- Hongwen Chen
- Department of Molecular Genetics, University of Texas Southwestern Medical Center, Dallas, TX75390
| | - Hoa T. T. Ha
- Department of Biochemistry, Yong Loo Lin School of Medicine, National University of Singapore, Singapore119228
| | | | - Nhung A. Le
- Department of Biochemistry, Yong Loo Lin School of Medicine, National University of Singapore, Singapore119228
| | - Philip Schmiege
- Department of Molecular Genetics, University of Texas Southwestern Medical Center, Dallas, TX75390
| | - Long N. Nguyen
- Department of Biochemistry, Yong Loo Lin School of Medicine, National University of Singapore, Singapore119228
- Immunology Program, Life Sciences Institute, National University of Singapore, Singapore117456
- Singapore Lipidomics Incubator (SLING), Life Sciences Institute, National University of Singapore, Singapore117456
- Cardiovascular Disease Research (CVD) Programme, Yong Loo Lin, School of Medicine, National University of Singapore, Singapore117545
- Immunology Translational Research Program, Yong Loo Lin, School of Medicine, National University of Singapore, Singapore117456
| | - Xiaochun Li
- Department of Molecular Genetics, University of Texas Southwestern Medical Center, Dallas, TX75390
- Department of Biophysics, University of Texas Southwestern Medical Center, Dallas, TX75390
| |
Collapse
|
6
|
Xie P, Li Y, Lamon G, Kuang H, Wang DN, Traaseth NJ. A fiducial-assisted strategy compatible with resolving small MFS transporter structures in multiple conformations using cryo-EM. Nat Commun 2025; 16:7. [PMID: 39746942 PMCID: PMC11695964 DOI: 10.1038/s41467-024-54986-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2024] [Accepted: 11/24/2024] [Indexed: 01/04/2025] Open
Abstract
Advancements in cryo-EM have stimulated a revolution in structural biology. Yet, for membrane proteins near the cryo-EM size threshold of approximately 40 kDa, including transporters and G-protein coupled receptors, the absence of distinguishable structural features makes image alignment and structure determination a significant challenge. Furthermore, resolving more than one protein conformation within a sample, a major advantage of cryo-EM, represents an even greater degree of difficulty. Here, we describe a strategy for introducing a rigid fiducial marker (BRIL domain) at the C-terminus of membrane transporters from the Major Facilitator Superfamily (MFS) with AlphaFold2. This approach involves fusion of the last transmembrane domain helix of the target protein with the first helix of BRIL through a short poly-alanine linker to promote helicity. Combining this strategy with a BRIL-specific Fab, we elucidated four cryo-EM structures of the 42 kDa Staphylococcus aureus transporter NorA, three of which were derived from a single sample corresponding to inward-open, inward-occluded, and occluded conformations. Hence, this fusion construct facilitated experiments to characterize the conformational landscape of NorA and validated our design to position the BRIL/antibody pair in an orientation that avoids steric clash with the transporter. The latter was enabled through AlphaFold2 predictions, which minimized guesswork and reduced the need for screening several constructs. We further validated the suitability of the method to three additional MFS transporters (GlpT, Bmr, and Blt), results that supported a rigid linker between the transporter and BRIL. The successful application to four MFS proteins, the largest family of secondary transporters in nature, and analysis of predicted structures for the family indicates this strategy will be a valuable tool for studying other MFS members using cryo-EM.
Collapse
Affiliation(s)
- Pujun Xie
- Department of Chemistry, New York University, New York, NY, USA
| | - Yan Li
- Department of Cell Biology, New York University School of Medicine, New York, NY, USA
| | - Gaëlle Lamon
- Department of Chemistry, New York University, New York, NY, USA
| | - Huihui Kuang
- Cryo-EM Core Laboratory, New York University School of Medicine, New York, NY, USA
| | - Da-Neng Wang
- Department of Cell Biology, New York University School of Medicine, New York, NY, USA.
| | | |
Collapse
|
7
|
Wei F, Liu H, Zhang W, Wang J, Zhang Y. Drug inhibition and substrate transport mechanisms of human VMAT2. Nat Commun 2025; 16:323. [PMID: 39747030 PMCID: PMC11695631 DOI: 10.1038/s41467-024-55361-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2024] [Accepted: 12/10/2024] [Indexed: 01/04/2025] Open
Abstract
Vesicular monoamine transporter 2 (VMAT2) is crucial for packaging monoamine neurotransmitters into synaptic vesicles, with their dysregulation linked to schizophrenia, mood disorders, and Parkinson's disease. Tetrabenazine (TBZ) and valbenazine (VBZ), both FDA-approved VMAT2 inhibitors, are employed to treat chorea and tardive dyskinesia (TD). Our study presents the structures of VMAT2 bound to substrates serotonin (5-HT) and dopamine (DA), as well as the inhibitors TBZ and VBZ. Utilizing cryo-electron microscopy (cryo-EM), mutagenesis functional assays, and molecular dynamics (MD) simulations, we elucidate the mechanisms of substrate transport and drug inhibition. Our MD simulations indicate potential binding poses of substrate (5-HT) in both cytosol-facing and lumen-facing states, emphasizing the significance of protonation of key acidic residues for substrate release. We demonstrate that TBZ locks VMAT2 in a lumen-facing occluded state, while VBZ stabilizes it in a lumen-facing conformation. These insights enhance our understanding of VMAT2 function and provide valuable insights for the development of novel therapeutic strategies for psychiatric disorders.
Collapse
Affiliation(s)
- Feiwen Wei
- Shanghai Fifth People's Hospital, Fudan University, and Shanghai Key Laboratory of Medical Epigenetics, International Co-laboratory of Medical Epigenetics and Metabolism (Ministry of Science and Technology), Institutes of Biomedical Sciences, Fudan University, Shanghai, China
| | - Huihui Liu
- Arieh Warshel Institute for Computational Biology, School of Medicine, The Chinese University of Hong Kong, Shenzhen, Guangdong, China
| | - Wei Zhang
- Shanghai Fifth People's Hospital, Fudan University, and Shanghai Key Laboratory of Medical Epigenetics, International Co-laboratory of Medical Epigenetics and Metabolism (Ministry of Science and Technology), Institutes of Biomedical Sciences, Fudan University, Shanghai, China
| | - Jufang Wang
- Shanghai Fifth People's Hospital, Fudan University, and Shanghai Key Laboratory of Medical Epigenetics, International Co-laboratory of Medical Epigenetics and Metabolism (Ministry of Science and Technology), Institutes of Biomedical Sciences, Fudan University, Shanghai, China
| | - Yanqing Zhang
- Shanghai Fifth People's Hospital, Fudan University, and Shanghai Key Laboratory of Medical Epigenetics, International Co-laboratory of Medical Epigenetics and Metabolism (Ministry of Science and Technology), Institutes of Biomedical Sciences, Fudan University, Shanghai, China.
| |
Collapse
|
8
|
Zhu J, Cirincione AB, Strauss MJ, Davis SE, Eans SO, Tribbitt DK, Alshakhshir N, McLaughlin JP. Impact of HIV-1 tat protein on methamphetamine-induced inhibition of vesicular monoamine transporter2-mediated dopamine transport and methamphetamine conditioned place preference in HIV-1 tat transgenic mice. Eur J Pharmacol 2024; 984:177030. [PMID: 39366503 PMCID: PMC11563864 DOI: 10.1016/j.ejphar.2024.177030] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2024] [Revised: 10/01/2024] [Accepted: 10/02/2024] [Indexed: 10/06/2024]
Abstract
Perturbation of dopamine transmission has been implicated as a contributing factor in HIV-1 associated neurocognitive disorders with concurrent methamphetamine (METH) abuse. We have demonstrated that the HIV-1 protein, transactivator of transcription (Tat), decreases dopamine transport through inhibition of vesicular monoamine transporter2 (VMAT2). This study determined the effects of Tat protein on METH-inhibited VMAT2 function and METH-conditioned place preference (CPP). In vitro exposure of isolated mouse whole brain vesicles to recombinant Tat1-86 or METH displayed a concentration-dependent inhibition of the vesicular [3H]Dopamine uptake, in which a combination of Tat and METH induced a greater reduction of dopamine uptake compared to Tat or METH alone. In vivo, the maximal velocity (Vmax) of vesicular [3H]Dopamine uptake was decreased in inducible Tat transgenic (iTat-tg) mice harvested after treatment with either 21-day doxycycline (Dox) or 14-day METH (3 mg/kg, i.p., daily), whereas these mice treated with both Dox and METH displayed an additive reduction of the Vmax compared to either Tat or METH alone. Moreover, Dox-induced Tat expression increased METH-CPP in an exposure-dependent manner, with iTat-tg mice demonstrating a 2.3-fold potentiation of METH-CPP compared with Tat null control mice upon administration of Dox for 14 days. Furthermore, a 7-day administration of Dox reinstated extinguished METH-CPP. Collectively, these results suggest a synergistic effect of Tat protein and METH on inhibition of VMAT2-mediated DA transport, potentially contributing to potentiation of METH-CPP in iTat-tg mice.
Collapse
Affiliation(s)
- Jun Zhu
- Department of Drug Discovery and Biomedical Sciences, College of Pharmacy, University of South Carolina, Columbia, SC, 29208, USA.
| | - Abagail B Cirincione
- Department of Drug Discovery and Biomedical Sciences, College of Pharmacy, University of South Carolina, Columbia, SC, 29208, USA
| | - Matthew J Strauss
- Department of Drug Discovery and Biomedical Sciences, College of Pharmacy, University of South Carolina, Columbia, SC, 29208, USA
| | - Sarah E Davis
- Department of Drug Discovery and Biomedical Sciences, College of Pharmacy, University of South Carolina, Columbia, SC, 29208, USA
| | - Shainnel O Eans
- Department of Pharmacodynamics, College of Pharmacy, University of Florida, Gainesville, FL, 32610, USA
| | - Danielle K Tribbitt
- Department of Pharmacodynamics, College of Pharmacy, University of Florida, Gainesville, FL, 32610, USA
| | - Nadine Alshakhshir
- Department of Pharmacodynamics, College of Pharmacy, University of Florida, Gainesville, FL, 32610, USA
| | - Jay P McLaughlin
- Department of Pharmacodynamics, College of Pharmacy, University of Florida, Gainesville, FL, 32610, USA
| |
Collapse
|
9
|
Frolova VS, Nikishina YO, Shmukler YB, Nikishin DA. Serotonin Signaling in Mouse Preimplantation Development: Insights from Transcriptomic and Structural-Functional Analyses. Int J Mol Sci 2024; 25:12954. [PMID: 39684667 DOI: 10.3390/ijms252312954] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2024] [Revised: 11/24/2024] [Accepted: 12/01/2024] [Indexed: 12/18/2024] Open
Abstract
Serotonin (5-HT), a versatile signaling molecule, plays a variety of roles in both neurotransmission and tissue regulation. The influence of serotonin on early development was first studied in marine invertebrate embryos and has since been documented in a variety of vertebrate species, including mammals. The present study investigates the expression and functional activity of serotonin components in mouse embryos, focusing on key receptors and transporters. Transcriptomic analyses revealed that mRNA transcripts related to serotonin show marked expression during the oogenesis and preimplantation stages. The results of the immunohistochemical studies show the presence of serotonin, the vesicular monoamine transporter VMAT2, and several membrane receptors (5-HT1B, 5-HT1D, 5-HT2B, 5-HT7) in the early stages of development. A functional analysis performed with the VMAT inhibitor reserpine revealed the crucial role of vesicular transport in the maintenance of serotonin signaling. The findings presented here support the hypothesis that serotonin plays a significant role in oocyte maturation and embryonic development, as well as in interblastomere interactions.
Collapse
Affiliation(s)
- Veronika S Frolova
- Department of Embryology, Faculty of Biology, Lomonosov Moscow State University, Moscow 119234, Russia
| | - Yulia O Nikishina
- Koltzov Institute of Developmental Biology, Russian Academy of Sciences, Moscow 119334, Russia
| | - Yuri B Shmukler
- Koltzov Institute of Developmental Biology, Russian Academy of Sciences, Moscow 119334, Russia
| | - Denis A Nikishin
- Department of Embryology, Faculty of Biology, Lomonosov Moscow State University, Moscow 119234, Russia
- Koltzov Institute of Developmental Biology, Russian Academy of Sciences, Moscow 119334, Russia
| |
Collapse
|
10
|
Elbahnsi A, Dudas B, Callebaut I, Hinzpeter A, Miteva MA. ATP-Binding Cassette and Solute Carrier Transporters: Understanding Their Mechanisms and Drug Modulation Through Structural and Modeling Approaches. Pharmaceuticals (Basel) 2024; 17:1602. [PMID: 39770445 PMCID: PMC11676857 DOI: 10.3390/ph17121602] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2024] [Revised: 11/25/2024] [Accepted: 11/25/2024] [Indexed: 01/11/2025] Open
Abstract
The ATP-binding cassette (ABC) and solute carrier (SLC) transporters play pivotal roles in cellular transport mechanisms, influencing a wide range of physiological processes and impacting various medical conditions. Recent advancements in structural biology and computational modeling have provided significant insights into their function and regulation. This review provides an overview of the current knowledge of human ABC and SLC transporters, emphasizing their structural and functional relationships, transport mechanisms, and the contribution of computational approaches to their understanding. Current challenges and promising future research and methodological directions are also discussed.
Collapse
Affiliation(s)
- Ahmad Elbahnsi
- Inserm U1268 MCTR, CiTCoM UMR 8038 CNRS, Université Paris Cité, 75006 Paris, France
| | - Balint Dudas
- Inserm U1268 MCTR, CiTCoM UMR 8038 CNRS, Université Paris Cité, 75006 Paris, France
| | - Isabelle Callebaut
- Muséum National d’Histoire Naturelle, UMR CNRS 7590, Institut de Minéralogie, de Physique des Matériaux et de Cosmochimie—IMPMC, Sorbonne Université, 75005 Paris, France
| | - Alexandre Hinzpeter
- CNRS, INSERM, Institut Necker Enfants Malades—INEM, Université Paris Cité, 75015 Paris, France
| | - Maria A. Miteva
- Inserm U1268 MCTR, CiTCoM UMR 8038 CNRS, Université Paris Cité, 75006 Paris, France
| |
Collapse
|
11
|
Dai Y, Lee CH. Transport mechanism and structural pharmacology of human urate transporter URAT1. Cell Res 2024; 34:776-787. [PMID: 39245778 PMCID: PMC11528023 DOI: 10.1038/s41422-024-01023-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2024] [Accepted: 08/20/2024] [Indexed: 09/10/2024] Open
Abstract
Urate is an endogenous product of purine metabolism in the liver. High urate levels in the blood lead to gout, a very common and painful inflammatory arthritis. Excreted urate is reabsorbed in the kidney mainly by URAT1 antiporter, a key target for anti-gout drugs. To uncover the mechanisms of urate transport and drug inhibition, we determined cryo-EM structures of human URAT1 with urate, counter anion pyrazinoate, or anti-gout drugs of different chemotypes - lesinurad, verinurad, and dotinurad. We captured the outward-to-inward transition of URAT1 during urate uptake, revealing that urate binds in a phenylalanine-rich pocket and engages with key gating residues to drive the transport cycle. In contrast to the single binding site for urate, pyrazinoate interacts with three distinct, functionally relevant sites within URAT1, a mechanism that has not yet been observed in other anion antiporters. In addition, we found that while all three drugs compete with substrates and halt the transport cycle, verinurad and dotinurad further hijack gating residues to achieve high potency. These insights advance our understanding of organic anion transport and provide a foundation for designing improved gout therapeutics.
Collapse
Affiliation(s)
- Yaxin Dai
- Department of Structural Biology, St. Jude Children's Research Hospital, Memphis, TN, USA
| | - Chia-Hsueh Lee
- Department of Structural Biology, St. Jude Children's Research Hospital, Memphis, TN, USA.
| |
Collapse
|
12
|
Duo Y, Han L, Yang Y, Wang Z, Wang L, Chen J, Xiang Z, Yoon J, Luo G, Tang BZ. Aggregation-Induced Emission Luminogen: Role in Biopsy for Precision Medicine. Chem Rev 2024; 124:11242-11347. [PMID: 39380213 PMCID: PMC11503637 DOI: 10.1021/acs.chemrev.4c00244] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2024] [Revised: 09/11/2024] [Accepted: 09/17/2024] [Indexed: 10/10/2024]
Abstract
Biopsy, including tissue and liquid biopsy, offers comprehensive and real-time physiological and pathological information for disease detection, diagnosis, and monitoring. Fluorescent probes are frequently selected to obtain adequate information on pathological processes in a rapid and minimally invasive manner based on their advantages for biopsy. However, conventional fluorescent probes have been found to show aggregation-caused quenching (ACQ) properties, impeding greater progresses in this area. Since the discovery of aggregation-induced emission luminogen (AIEgen) have promoted rapid advancements in molecular bionanomaterials owing to their unique properties, including high quantum yield (QY) and signal-to-noise ratio (SNR), etc. This review seeks to present the latest advances in AIEgen-based biofluorescent probes for biopsy in real or artificial samples, and also the key properties of these AIE probes. This review is divided into: (i) tissue biopsy based on smart AIEgens, (ii) blood sample biopsy based on smart AIEgens, (iii) urine sample biopsy based on smart AIEgens, (iv) saliva sample biopsy based on smart AIEgens, (v) biopsy of other liquid samples based on smart AIEgens, and (vi) perspectives and conclusion. This review could provide additional guidance to motivate interest and bolster more innovative ideas for further exploring the applications of various smart AIEgens in precision medicine.
Collapse
Affiliation(s)
- Yanhong Duo
- Department
of Radiation Oncology, Shenzhen People’s Hospital, The Second
Clinical Medical College, Jinan University, The First Affiliated Hospital, Southern University of Science and Technology, Shenzhen 518020, Guangdong China
- Wyss
Institute for Biologically Inspired Engineering, Harvard University, Boston, Massachusetts 02138, United States
| | - Lei Han
- College of
Chemistry and Pharmaceutical Sciences, Qingdao
Agricultural University, 700 Changcheng Road, Qingdao 266109, Shandong China
| | - Yaoqiang Yang
- Department
of Radiation Oncology, Shenzhen People’s Hospital, The Second
Clinical Medical College, Jinan University, The First Affiliated Hospital, Southern University of Science and Technology, Shenzhen 518020, Guangdong China
| | - Zhifeng Wang
- Department
of Urology, Henan Provincial People’s Hospital, Zhengzhou University
People’s Hospital, Henan University
People’s Hospital, Zhengzhou, 450003, China
| | - Lirong Wang
- State
Key Laboratory of Luminescent Materials and Devices, South China University of Technology, Guangzhou 510640, China
| | - Jingyi Chen
- Wyss
Institute for Biologically Inspired Engineering, Harvard University, Boston, Massachusetts 02138, United States
| | - Zhongyuan Xiang
- Department
of Laboratory Medicine, The Second Xiangya Hospital, Central South University, Changsha 410000, Hunan, China
| | - Juyoung Yoon
- Department
of Chemistry and Nanoscience, Ewha Womans
University, 52 Ewhayeodae-gil, Seodaemun-gu, Seoul 03760, Korea
| | - Guanghong Luo
- Department
of Radiation Oncology, Shenzhen People’s Hospital, The Second
Clinical Medical College, Jinan University, The First Affiliated Hospital, Southern University of Science and Technology, Shenzhen 518020, Guangdong China
| | - Ben Zhong Tang
- School
of Science and Engineering, Shenzhen Institute of Aggregate Science
and Technology, The Chinese University of
Hong Kong, Shenzhen 518172, Guangdong China
| |
Collapse
|
13
|
Yue L, Huang H, Lin W. Development of a Fluorescent Probe with High Selectivity based on Thiol-ene Click Nucleophilic Cascade Reactions for Delving into the Action Mechanism of Serotonin in Depression. Angew Chem Int Ed Engl 2024; 63:e202407308. [PMID: 38995157 DOI: 10.1002/anie.202407308] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2024] [Revised: 05/26/2024] [Accepted: 07/12/2024] [Indexed: 07/13/2024]
Abstract
The intrinsic correlation between depression and serotonin (5-HT) is a highly debated topic, with significant implications for the diagnosis, treatment, and advancement of drugs targeting neurological disorders. To address this important question, it is of utmost priority to understand the action mechanism of serotonin in depression through fluorescence imaging studies. However, the development of efficient molecular probes for serotonin is hindered by the lack of responsive sites with high selectivity for serotonin at the present time. Herein, we developed the first highly selective serotonin responsive site, 3-mercaptopropionate, utilizing thiol-ene click cascade nucleophilic reactions. The novel responsive site was then employed to construct the powerful molecular probe SJ-5-HT for imaging the serotonin level changes in the depression cells and brain tissues. Importantly, the imaging studies reveal that the level of serotonin in patients with depression may not be the primary factor, while the ability of neurons in patients with depression to release serotonin appears to be more critical. Additionally, this serotonin release capability correlates strongly with the levels of mTOR (intracellular mammalian target of rapamycin). These discoveries could offer valuable insights into the molecular mechanisms underpinning depression and furnish mTOR as a novel direction for the advancement of antidepressant therapies.
Collapse
Affiliation(s)
- Lizhou Yue
- Institute of Optical Materials and Chemical Biology, Guangxi Key Laboratory of Electrochemical Energy Materials, School of Chemistry and Chemical Engineering, Guangxi University, Nanning, Guangxi, 530004, P. R. China
| | - Huawei Huang
- Institute of Optical Materials and Chemical Biology, Guangxi Key Laboratory of Electrochemical Energy Materials, School of Chemistry and Chemical Engineering, Guangxi University, Nanning, Guangxi, 530004, P. R. China
| | - Weiying Lin
- Institute of Optical Materials and Chemical Biology, Guangxi Key Laboratory of Electrochemical Energy Materials, School of Chemistry and Chemical Engineering, Guangxi University, Nanning, Guangxi, 530004, P. R. China
| |
Collapse
|
14
|
Zhan S, Zhang J, Gao C, Yin Z, Liu H. An electrochemical microbiosensor for serotonin based on surface imprinted layer coordinated bimetal functionalized acupuncture needle. Talanta 2024; 277:126334. [PMID: 38838564 DOI: 10.1016/j.talanta.2024.126334] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2024] [Revised: 05/08/2024] [Accepted: 05/28/2024] [Indexed: 06/07/2024]
Abstract
Serotonin (5-hydroxytryptamine, 5-HT) is a pivotal monoamine neurotransmitter, which is widely distributed in human brain for biological, physical and psychopathological processes. The content of 5-HT can support diagnose of various diseases. To selectively detect 5-HT is very important in clinical medicine. Here, a novel microbiosensor for 5-HT is studied on acupuncture needle. Molecularly imprinted film enwrapped 5-HT was electropolymerized onto bimetallic gold/platinum (Au/Pt) nanoparticles on acupuncture needle microelectrode (ANME). Au/Pt nanostructure exhibited active sites to catalyze the oxidation of 5-HT and bind the generated polymer. 5-HT can be enwrapped by the functional monomer of pyrrole (Py) in the process of electropolymerization with suitably electroactive conformation. Comparing with interfaces of single metal or molecularly imprinted layer, synergistic microbiosensor exhibit better performance for 5-HT. 5-HT can be adsorbed and catalytically oxidized by the imprinted cavities. Under optimized conditions, the peak current linearly increases with the concentration of 5-HT from 0.03 to 500 μM, and a detection limit of 0.0106 μM is obtained. The performance of this microbiosensor is competitive with previous studies. Furthermore, the prepared microbiosensor showed effective application to analyze 5-HT in human serum and urine. Interestingly, the microbiosensor expressed the real-time monitoring ability to 5-HT from stimulated PC12 cells by K+. The microbiosensor also exhibited high selectivity, stability and reproducibility, which is promising in view of the low price, fast response and simple operation.
Collapse
Affiliation(s)
- Shanshan Zhan
- College of Automation, Hangzhou Dianzi University, Hangzhou, 310018, China; Shanghai Institute of Nutrition and Health, Chinese Academy of Sciences, Shanghai, 200000, China
| | - Jiayi Zhang
- College of Automation, Hangzhou Dianzi University, Hangzhou, 310018, China
| | | | - Zhengzhi Yin
- College of Biological, Chemical Sciences and Engineering, Jiaxing University, Jiaxing, 314001, China
| | - Hongying Liu
- College of Automation, Hangzhou Dianzi University, Hangzhou, 310018, China.
| |
Collapse
|
15
|
Zhao M, Zhou Y, Sheng R, Zhang H, Xiang J, Wang J, Li P, Ma T, Liu P, Chen Q, Wen W, Xu S. Gastrodin relieves Parkinson's disease-related motor deficits by facilitating the MEK-dependent VMAT2 to maintain dopamine homeostasis. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2024; 132:155819. [PMID: 38885579 DOI: 10.1016/j.phymed.2024.155819] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/19/2024] [Revised: 05/30/2024] [Accepted: 06/10/2024] [Indexed: 06/20/2024]
Abstract
BACKGROUND Dysfunction of dopamine homeostasis (DAH), which is regulated by vesicular monoamine transporter 2 (VMAT2), is a vital cause of dopamine (DA) neurotoxicity and motor deficits in Parkinson's disease (PD). Gastrodin (4-hydroxybenzyl alcohol 4-O-β-D-glucoside; GTD), a natural active compound derived from Gastrodia elata Blume, can be used to treat multiple neurological disorders, including PD. However, whether GTD regulates VMAT2-mediated DAH dysfunction in PD models remains unclear. PURPOSE To explore whether GTD confers dopaminergic neuroprotection by facilitating DA vesicle storage and maintaining DAH in PD models. METHODS Mice were treated with 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP) and PC12 cells with 1-methyl-4-phenyl-pyridinium (MPP+) to induce PD characteristics. Multiple behavioural tests were performed to evaluate the motor functions of the mice. HPLC was used to measure DA and 3,4-dihydroxyphenylacetic acid (DOPAC) levels. Transmission electron microscopy was used to observe synaptic vesicles. Molecular docking and molecular dynamics were used to determine the binding affinity of GTD to the target protein. Reserpine (Res, a VMAT2 inhibitor) and PD0325901 (901, a MEK inhibitor) were employed to investigate the mechanism of GTD. Western blotting and immunohistochemistry were used to assess the expression of the target proteins. RESULTS GTD attenuated motor deficits and dopaminergic neuronal injury, reversed the imbalance of DAH, and increased VMAT2 levels and vesicle volume in MPTP-induced mice. GTD ameliorated cell damage, ROS release, and dysfunction of DAH in MPP+-induced PC12 cells. Moreover, the neuroprotective effects of GTD were reversed by Res in vitro and in vivo. Furthermore, GTD can activate the MEK/ERK/CREB pathway to upregulate VMAT2 in vitro and in vivo. Interestingly, 901 reversed the effects of GTD on VMAT2 and dopaminergic neuronal impairment. CONCLUSION GTD relieved PD-related motor deficits and dopaminergic neuronal impairment by facilitating MEK-depended VMAT2 to regulate DAH, which offers new insights into its therapeutic potential.
Collapse
Affiliation(s)
- Meihuan Zhao
- State Key Laboratory of Southwestern Chinese Medicine Resources, Chengdu University of Traditional Chinese Medicine, 611137, PR China; School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, PR China; Institute of Material Medica Integration and Transformation for Brain Disorders, Chengdu University traditional Chinese medicine, Chengdu, 611137, PR China
| | - Yongtao Zhou
- State Key Laboratory of Southwestern Chinese Medicine Resources, Chengdu University of Traditional Chinese Medicine, 611137, PR China; School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, PR China; Institute of Material Medica Integration and Transformation for Brain Disorders, Chengdu University traditional Chinese medicine, Chengdu, 611137, PR China
| | - Ruilin Sheng
- State Key Laboratory of Southwestern Chinese Medicine Resources, Chengdu University of Traditional Chinese Medicine, 611137, PR China; School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, PR China; Institute of Material Medica Integration and Transformation for Brain Disorders, Chengdu University traditional Chinese medicine, Chengdu, 611137, PR China
| | - Haijun Zhang
- State Key Laboratory of Southwestern Chinese Medicine Resources, Chengdu University of Traditional Chinese Medicine, 611137, PR China; School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, PR China; Institute of Material Medica Integration and Transformation for Brain Disorders, Chengdu University traditional Chinese medicine, Chengdu, 611137, PR China
| | - Junbao Xiang
- State Key Laboratory of Southwestern Chinese Medicine Resources, Chengdu University of Traditional Chinese Medicine, 611137, PR China; School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, PR China; Institute of Material Medica Integration and Transformation for Brain Disorders, Chengdu University traditional Chinese medicine, Chengdu, 611137, PR China
| | - Jie Wang
- State Key Laboratory of Southwestern Chinese Medicine Resources, Chengdu University of Traditional Chinese Medicine, 611137, PR China; School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, PR China; Institute of Material Medica Integration and Transformation for Brain Disorders, Chengdu University traditional Chinese medicine, Chengdu, 611137, PR China
| | - Ping Li
- State Key Laboratory of Southwestern Chinese Medicine Resources, Chengdu University of Traditional Chinese Medicine, 611137, PR China; School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, PR China; Institute of Material Medica Integration and Transformation for Brain Disorders, Chengdu University traditional Chinese medicine, Chengdu, 611137, PR China
| | - Tengyun Ma
- State Key Laboratory of Southwestern Chinese Medicine Resources, Chengdu University of Traditional Chinese Medicine, 611137, PR China; School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, PR China; Institute of Material Medica Integration and Transformation for Brain Disorders, Chengdu University traditional Chinese medicine, Chengdu, 611137, PR China
| | - Panwang Liu
- State Key Laboratory of Southwestern Chinese Medicine Resources, Chengdu University of Traditional Chinese Medicine, 611137, PR China; School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, PR China; Institute of Material Medica Integration and Transformation for Brain Disorders, Chengdu University traditional Chinese medicine, Chengdu, 611137, PR China
| | - Qi Chen
- State Key Laboratory of Southwestern Chinese Medicine Resources, Chengdu University of Traditional Chinese Medicine, 611137, PR China; School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, PR China; Institute of Material Medica Integration and Transformation for Brain Disorders, Chengdu University traditional Chinese medicine, Chengdu, 611137, PR China
| | - Wen Wen
- State Key Laboratory of Southwestern Chinese Medicine Resources, Chengdu University of Traditional Chinese Medicine, 611137, PR China; School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, PR China; Institute of Material Medica Integration and Transformation for Brain Disorders, Chengdu University traditional Chinese medicine, Chengdu, 611137, PR China.
| | - Shijun Xu
- State Key Laboratory of Southwestern Chinese Medicine Resources, Chengdu University of Traditional Chinese Medicine, 611137, PR China; School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, PR China; Institute of Material Medica Integration and Transformation for Brain Disorders, Chengdu University traditional Chinese medicine, Chengdu, 611137, PR China.
| |
Collapse
|
16
|
Zhang Y, Dai F, Chen N, Zhou D, Lee CH, Song C, Zhang Y, Zhang Z. Structural insights into VAChT neurotransmitter recognition and inhibition. Cell Res 2024; 34:665-668. [PMID: 38862671 PMCID: PMC11369146 DOI: 10.1038/s41422-024-00986-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2024] [Accepted: 05/29/2024] [Indexed: 06/13/2024] Open
Affiliation(s)
- Yang Zhang
- State Key Laboratory of Membrane Biology, School of Life Sciences, Peking University, Beijing, China
| | - Fei Dai
- Interdisciplinary Research Center on Biology and Chemistry, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, Shanghai, China
- State Key Laboratory of Chemical Biology, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, Shanghai, China
| | - Nanhao Chen
- Center for Quantitative Biology, Academy for Advanced Interdisciplinary Studies, Peking University, Beijing, China
| | - Dong Zhou
- Center for Life Sciences, Academy for Advanced Interdisciplinary Studies, Peking University, Beijing, China
| | - Chia-Hsueh Lee
- Department of Structural Biology, St. Jude Children's Research Hospital, Memphis, TN, USA.
| | - Chen Song
- Center for Quantitative Biology, Academy for Advanced Interdisciplinary Studies, Peking University, Beijing, China.
- Center for Life Sciences, Academy for Advanced Interdisciplinary Studies, Peking University, Beijing, China.
| | - Yixiao Zhang
- Interdisciplinary Research Center on Biology and Chemistry, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, Shanghai, China.
- State Key Laboratory of Chemical Biology, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, Shanghai, China.
| | - Zhe Zhang
- State Key Laboratory of Membrane Biology, School of Life Sciences, Peking University, Beijing, China.
- Center for Life Sciences, Academy for Advanced Interdisciplinary Studies, Peking University, Beijing, China.
| |
Collapse
|
17
|
Lyu Y, Fu C, Ma H, Su Z, Sun Z, Zhou X. Engineering of a mammalian VMAT2 for cryo-EM analysis results in non-canonical protein folding. Nat Commun 2024; 15:6511. [PMID: 39095428 PMCID: PMC11297040 DOI: 10.1038/s41467-024-50934-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2024] [Accepted: 07/24/2024] [Indexed: 08/04/2024] Open
Abstract
Vesicular monoamine transporter 2 (VMAT2) belongs to the major facilitator superfamily (MFS), and mediates cytoplasmic monoamine packaging into presynaptic vesicles. Here, we present two cryo-EM structures of VMAT2, with a frog VMAT2 adopting a canonical MFS fold and an engineered sheep VMAT2 adopting a non-canonical fold. Both VMAT2 proteins mediate uptake of a selective fluorescent VMAT2 substrate into cells. Molecular docking, substrate binding and transport analysis reveal potential substrate binding mechanism in VMAT2. Meanwhile, caution is advised when interpreting engineered membrane protein structures.
Collapse
Affiliation(s)
- Ying Lyu
- Department of Integrated Traditional Chinese and Western Medicine, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, Sichuan, 610041, China
| | - Chunting Fu
- Department of Integrated Traditional Chinese and Western Medicine, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, Sichuan, 610041, China
| | - Haiyun Ma
- State Key Laboratory of Biotherapy, Department of Geriatrics and National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu, Sichuan, 610041, China
| | - Zhaoming Su
- State Key Laboratory of Biotherapy, Department of Geriatrics and National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu, Sichuan, 610041, China.
| | - Ziyi Sun
- Department of Integrated Traditional Chinese and Western Medicine, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, Sichuan, 610041, China.
| | - Xiaoming Zhou
- Department of Integrated Traditional Chinese and Western Medicine, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, Sichuan, 610041, China.
| |
Collapse
|
18
|
Wu D, Yu Z, Chen Q, Zhao J, Huang B, Wang Y, Su J, Li N, Jiang D, Zhao Y. Structural snapshots of human VMAT2 reveal insights into substrate recognition and proton coupling mechanism. Cell Res 2024; 34:586-589. [PMID: 38777861 PMCID: PMC11291630 DOI: 10.1038/s41422-024-00974-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2024] [Accepted: 05/01/2024] [Indexed: 05/25/2024] Open
Affiliation(s)
- Di Wu
- Institute of Physics, Chinese Academy of Sciences, Beijing, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Zhuoya Yu
- University of Chinese Academy of Sciences, Beijing, China
- Key Laboratory of Biomacromolecules (CAS), National Laboratory of Biomacromolecules, CAS Center for Excellence in Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing, China
| | - Qihao Chen
- University of Chinese Academy of Sciences, Beijing, China
- Key Laboratory of Biomacromolecules (CAS), National Laboratory of Biomacromolecules, CAS Center for Excellence in Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing, China
| | - Jun Zhao
- Peking University Institute of Advanced Agricultural Sciences, Shandong Laboratory of Advanced Agricultural Sciences at Weifang, Weifang, Shandong, China
| | - Bo Huang
- Beijing StoneWise Technology Co., Ltd, Beijing, China
| | - Yuhang Wang
- University of Chinese Academy of Sciences, Beijing, China
- Key Laboratory of Biomacromolecules (CAS), National Laboratory of Biomacromolecules, CAS Center for Excellence in Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing, China
| | - Jiawei Su
- University of Chinese Academy of Sciences, Beijing, China
- Key Laboratory of Biomacromolecules (CAS), National Laboratory of Biomacromolecules, CAS Center for Excellence in Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing, China
| | - Na Li
- Heart Center and Beijing Key Laboratory of Hypertension, Beijing Chaoyang Hospital, Capital Medical University, Beijing, China
| | - Daohua Jiang
- Institute of Physics, Chinese Academy of Sciences, Beijing, China.
- University of Chinese Academy of Sciences, Beijing, China.
| | - Yan Zhao
- University of Chinese Academy of Sciences, Beijing, China.
- Key Laboratory of Biomacromolecules (CAS), National Laboratory of Biomacromolecules, CAS Center for Excellence in Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing, China.
| |
Collapse
|
19
|
Kang T, Zheng J, Jiang C, Jin L, Li C, Chen B, Shen Y. Amelioration of walnut, peony seed and camellia seed oils against D-galactose-induced cognitive impairment in mice by regulating gut microbiota. Food Funct 2024; 15:7063-7080. [PMID: 38867661 DOI: 10.1039/d4fo01409j] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/14/2024]
Abstract
Diet adjustment will affect the health of gut microbiota, which in turn influences the development and function of the organism's brain through the gut-brain axis. Walnut oil (WO), peony seed oil (PSO) and camellia seed oil (CSO), as typical representatives of woody plant oils, have been shown to have the potential to improve cognitive impairment in mice, but the function mechanisms are not clear. In this study, we comparatively investigated the neuroprotective effects of these three oils on D-galactose (D-gal)-induced cognitive impairment in mice, and found that the ameliorative effect of WO was more prominent. During the behavioral experiments, supplementation with all three oils would improve spatial learning and memory functions in D-gal mice, with a significant reduction in the error times (p < 0.001) and a significant increase in step-down latency (p < 0.001); walnut oil supplementation also significantly increased the number of hidden platform traversals, the target quadrant spent times and percentage of distance (p < 0.05). The results of biomarker analysis showed that WO, in addition to significantly inhibiting D-gal-induced oxidative stress and neuroinflammation as did PSO, significantly increased the ACh content in the mouse brain (p < 0.05) and modulated neurotransmitter levels. The results of further microbiota diversity sequencing experiments also confirmed that dietary supplementation with all three oils affected the diversity and composition of the gut microbiota in mice. Among them, WO significantly restored the balance of the mouse gut microbiota by increasing the abundance of beneficial bacteria (Bacteroidetes, Actinobacteria, Firmicutes) and decreasing the abundance of harmful bacteria (Clostridium, Shigella, Serratia), which was consistent with the results of behavioral experiments and biomarker analyses. Based on the analysis of the fatty acid composition of the three oils and changes in the gut microbiota, it is hypothesized that there is a correlation between the fatty acid composition of the dietary supplement oils and neuroprotective effects. The superiority of WO over PSO and CSO in improving cognitive impairment is mainly attributed to its balanced composition of omega-6 and omega-3 fatty acids.
Collapse
Affiliation(s)
- Ting Kang
- Key Laboratory of Synthetic and Natural Functional Molecule of Ministry of Education, College of Chemistry and Materials Science, National Demonstration Center for Experimental Chemistry Education, Northwest University, Xi'an, Shaanxi 710127, China.
| | - Jingyi Zheng
- Key Laboratory of Synthetic and Natural Functional Molecule of Ministry of Education, College of Chemistry and Materials Science, National Demonstration Center for Experimental Chemistry Education, Northwest University, Xi'an, Shaanxi 710127, China.
| | - Chao Jiang
- Key Laboratory of Synthetic and Natural Functional Molecule of Ministry of Education, College of Chemistry and Materials Science, National Demonstration Center for Experimental Chemistry Education, Northwest University, Xi'an, Shaanxi 710127, China.
| | - Lihua Jin
- Key Laboratory of Synthetic and Natural Functional Molecule of Ministry of Education, College of Chemistry and Materials Science, National Demonstration Center for Experimental Chemistry Education, Northwest University, Xi'an, Shaanxi 710127, China.
| | - Cong Li
- Key Laboratory of Synthetic and Natural Functional Molecule of Ministry of Education, College of Chemistry and Materials Science, National Demonstration Center for Experimental Chemistry Education, Northwest University, Xi'an, Shaanxi 710127, China.
| | - Bang Chen
- Key Laboratory of Synthetic and Natural Functional Molecule of Ministry of Education, College of Chemistry and Materials Science, National Demonstration Center for Experimental Chemistry Education, Northwest University, Xi'an, Shaanxi 710127, China.
| | - Yehua Shen
- Key Laboratory of Synthetic and Natural Functional Molecule of Ministry of Education, College of Chemistry and Materials Science, National Demonstration Center for Experimental Chemistry Education, Northwest University, Xi'an, Shaanxi 710127, China.
| |
Collapse
|
20
|
Zhang H, Yin YL, Dai A, Zhang T, Zhang C, Wu C, Hu W, He X, Pan B, Jin S, Yuan Q, Wang MW, Yang D, Xu HE, Jiang Y. Dimerization and antidepressant recognition at noradrenaline transporter. Nature 2024; 630:247-254. [PMID: 38750358 DOI: 10.1038/s41586-024-07437-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2023] [Accepted: 04/17/2024] [Indexed: 06/07/2024]
Abstract
The noradrenaline transporter has a pivotal role in regulating neurotransmitter balance and is crucial for normal physiology and neurobiology1. Dysfunction of noradrenaline transporter has been implicated in numerous neuropsychiatric diseases, including depression and attention deficit hyperactivity disorder2. Here we report cryo-electron microscopy structures of noradrenaline transporter in apo and substrate-bound forms, and as complexes with six antidepressants. The structures reveal a noradrenaline transporter dimer interface that is mediated predominantly by cholesterol and lipid molecules. The substrate noradrenaline binds deep in the central binding pocket, and its amine group interacts with a conserved aspartate residue. Our structures also provide insight into antidepressant recognition and monoamine transporter selectivity. Together, these findings advance our understanding of noradrenaline transporter regulation and inhibition, and provide templates for designing improved antidepressants to treat neuropsychiatric disorders.
Collapse
Affiliation(s)
- Heng Zhang
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, China
| | | | - Antao Dai
- State Key Laboratory of Chemical Biology, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, China
- National Center for Drug Screening, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, China
| | - Tianwei Zhang
- Lingang Laboratory, Shanghai, China
- School of Life Science and Technology, ShanghaiTech University, Shanghai, China
| | - Chao Zhang
- National Center for Drug Screening, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, China
- School of Pharmacy, Fudan University, Shanghai, China
| | - Canrong Wu
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, China
| | - Wen Hu
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, China
- Shanghai Advanced Electron Microscope Center, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, China
| | - Xinheng He
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, China
- University of Chinese Academy of Sciences, Beijing, China
| | | | | | - Qingning Yuan
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, China
- Shanghai Advanced Electron Microscope Center, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, China
| | - Ming-Wei Wang
- Research Center for Deepsea Bioresources, Sanya, China
- Department of Pharmacology, School of Basic Medical Sciences, Fudan University, Shanghai, China
- School of Pharmacy, Hainan Medical University, Haikou, China
| | - Dehua Yang
- State Key Laboratory of Chemical Biology, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, China.
- National Center for Drug Screening, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, China.
- University of Chinese Academy of Sciences, Beijing, China.
| | - H Eric Xu
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, China.
- School of Life Science and Technology, ShanghaiTech University, Shanghai, China.
- Shanghai Advanced Electron Microscope Center, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, China.
| | - Yi Jiang
- Lingang Laboratory, Shanghai, China.
- School of Life Science and Technology, ShanghaiTech University, Shanghai, China.
| |
Collapse
|
21
|
Chen H, Lu M, Lyu Q, Shi L, Zhou C, Li M, Feng S, Liang X, Zhou X, Ren L. Mitochondrial dynamics dysfunction: Unraveling the hidden link to depression. Biomed Pharmacother 2024; 175:116656. [PMID: 38678964 DOI: 10.1016/j.biopha.2024.116656] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2024] [Revised: 04/08/2024] [Accepted: 04/24/2024] [Indexed: 05/01/2024] Open
Abstract
Depression is a common mental disorder and its pathogenesis is not fully understood. However, more and more evidence shows that mitochondrial dynamics dysfunction may play an important role in the occurrence and development of depression. Mitochondria are the centre of energy production in cells, and are also involved in important processes such as apoptosis and oxidative stress. Studies have found that there are abnormalities in mitochondrial function in patients with depression, including mitochondrial morphological changes, mitochondrial dynamics disorders, mitochondrial DNA damage, and impaired mitochondrial respiratory chain function. These abnormalities may cause excessive free radicals and oxidative stress in mitochondria, which further damage cells and affect the balance of neurotransmitters, causing or aggravating depressive symptoms. Studies have shown that mitochondrial dynamics dysfunction may participate in the occurrence and development of depression by affecting neuroplasticity, inflammation and neurotransmitters. This article reviews the effects of mitochondrial dynamics dysfunction on the pathogenesis of depression and its potential molecular pathway. The restorers for the treatment of depression by regulating the function of mitochondrial dynamics were summarized and the possibility of using mitochondrial dynamics as a biomarker of depression was discussed.
Collapse
Affiliation(s)
- Haiyang Chen
- Department of Acupuncture and Moxibustion, Liaoning University of Traditional Chinese Medicine, Shenyang 110847, China
| | - Mei Lu
- Department of Acupuncture and Moxibustion, Liaoning University of Traditional Chinese Medicine, Shenyang 110847, China
| | - Qin Lyu
- Graduate School, Liaoning University of Traditional Chinese Medicine, Shenyang, 110847, China
| | - Liuqing Shi
- Graduate School, Liaoning University of Traditional Chinese Medicine, Shenyang, 110847, China
| | - Chuntong Zhou
- Department of Acupuncture and Moxibustion, Liaoning University of Traditional Chinese Medicine, Shenyang 110847, China
| | - Mingjie Li
- Department of Acupuncture and Moxibustion, Liaoning University of Traditional Chinese Medicine, Shenyang 110847, China
| | - Shiyu Feng
- Graduate School, Liaoning University of Traditional Chinese Medicine, Shenyang, 110847, China
| | - Xicai Liang
- Experimental Animal Center of Liaoning University of traditional Chinese Medicine, Shenyang 110847, China
| | - Xin Zhou
- Department of Acupuncture and Moxibustion, Liaoning University of Traditional Chinese Medicine, Shenyang 110847, China.
| | - Lu Ren
- Graduate School, Liaoning University of Traditional Chinese Medicine, Shenyang, 110847, China; Mental disorders research laboratory, Liaoning University of Traditional Chinese Medicine, Shenyang 110847, China.
| |
Collapse
|
22
|
Gou R, Yang J, Guo M, Chen Y, Xue W. CNSMolGen: A Bidirectional Recurrent Neural Network-Based Generative Model for De Novo Central Nervous System Drug Design. J Chem Inf Model 2024; 64:4059-4070. [PMID: 38739718 DOI: 10.1021/acs.jcim.4c00504] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/16/2024]
Abstract
Central nervous system (CNS) drugs have had a significant impact on treating a wide range of neurodegenerative and psychiatric disorders. In recent years, deep learning-based generative models have shown great potential for accelerating drug discovery and improving efficacy. However, specific applications of these techniques in CNS drug discovery have not been widely reported. In this study, we developed the CNSMolGen model, which uses a framework of bidirectional recurrent neural networks (Bi-RNNs) for de novo molecular design of CNS drugs. Results showed that the pretrained model was able to generate more than 90% of completely new molecular structures, which possessed the properties of CNS drug molecules and were synthesizable. In addition, transfer learning was performed on small data sets with specific biological activities to evaluate the potential application of the model for CNS drug optimization. Here, we used drugs against the classical CNS disease target serotonin transporter (SERT) as a fine-tuned data set and generated a focused database against the target protein. The potential biological activities of the generated molecules were verified by using the physics-based induced-fit docking study. The success of this model demonstrates its potential in CNS drug design and optimization, which provides a new impetus for future CNS drug development.
Collapse
Affiliation(s)
- Rongpei Gou
- Chongqing Key Laboratory of Natural Product Synthesis and Drug Research, School of Pharmaceutical Sciences, Chongqing University, Chongqing 401331, China
| | - Jingyi Yang
- Chongqing Key Laboratory of Natural Product Synthesis and Drug Research, School of Pharmaceutical Sciences, Chongqing University, Chongqing 401331, China
| | - Menghan Guo
- Chongqing Key Laboratory of Natural Product Synthesis and Drug Research, School of Pharmaceutical Sciences, Chongqing University, Chongqing 401331, China
| | - Yingjun Chen
- Chongqing Key Laboratory of Natural Product Synthesis and Drug Research, School of Pharmaceutical Sciences, Chongqing University, Chongqing 401331, China
| | - Weiwei Xue
- Chongqing Key Laboratory of Natural Product Synthesis and Drug Research, School of Pharmaceutical Sciences, Chongqing University, Chongqing 401331, China
| |
Collapse
|
23
|
Ye J, Chen H, Wang K, Wang Y, Ammerman A, Awasthi S, Xu J, Liu B, Li W. Structural insights into vesicular monoamine storage and drug interactions. Nature 2024; 629:235-243. [PMID: 38499039 PMCID: PMC11070986 DOI: 10.1038/s41586-024-07290-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2023] [Accepted: 03/08/2024] [Indexed: 03/20/2024]
Abstract
Biogenic monoamines-vital transmitters orchestrating neurological, endocrinal and immunological functions1-5-are stored in secretory vesicles by vesicular monoamine transporters (VMATs) for controlled quantal release6,7. Harnessing proton antiport, VMATs enrich monoamines around 10,000-fold and sequester neurotoxicants to protect neurons8-10. VMATs are targeted by an arsenal of therapeutic drugs and imaging agents to treat and monitor neurodegenerative disorders, hypertension and drug addiction1,8,11-16. However, the structural mechanisms underlying these actions remain unclear. Here we report eight cryo-electron microscopy structures of human VMAT1 in unbound form and in complex with four monoamines (dopamine, noradrenaline, serotonin and histamine), the Parkinsonism-inducing MPP+, the psychostimulant amphetamine and the antihypertensive drug reserpine. Reserpine binding captures a cytoplasmic-open conformation, whereas the other structures show a lumenal-open conformation stabilized by extensive gating interactions. The favoured transition to this lumenal-open state contributes to monoamine accumulation, while protonation facilitates the cytoplasmic-open transition and concurrently prevents monoamine binding to avoid unintended depletion. Monoamines and neurotoxicants share a binding pocket that possesses polar sites for specificity and a wrist-and-fist shape for versatility. Variations in this pocket explain substrate preferences across the SLC18 family. Overall, these structural insights and supporting functional studies elucidate the mechanism of vesicular monoamine transport and provide the basis to develop therapeutics for neurodegenerative diseases and substance abuse.
Collapse
Affiliation(s)
- Jin Ye
- Department of Biochemistry and Molecular Biophysics, Washington University School of Medicine, St Louis, MO, USA
| | - Huaping Chen
- Department of Radiology, Washington University School of Medicine, St Louis, MO, USA
| | - Kaituo Wang
- Department of Biomedical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Yi Wang
- Department of Biochemistry and Molecular Biophysics, Washington University School of Medicine, St Louis, MO, USA
| | - Aaron Ammerman
- Department of Biochemistry and Molecular Biophysics, Washington University School of Medicine, St Louis, MO, USA
| | - Samjhana Awasthi
- Department of Biochemistry and Molecular Biophysics, Washington University School of Medicine, St Louis, MO, USA
| | - Jinbin Xu
- Department of Radiology, Washington University School of Medicine, St Louis, MO, USA
| | - Bin Liu
- The Hormel Institute, University of Minnesota, Austin, MN, USA.
| | - Weikai Li
- Department of Biochemistry and Molecular Biophysics, Washington University School of Medicine, St Louis, MO, USA.
| |
Collapse
|
24
|
Schuldiner S, Forrest LR. VMAT structures reveal exciting targets for drug development. Trends Pharmacol Sci 2024; 45:385-387. [PMID: 38429134 PMCID: PMC11191364 DOI: 10.1016/j.tips.2024.02.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2023] [Revised: 01/17/2024] [Accepted: 02/16/2024] [Indexed: 03/03/2024]
Abstract
Vesicular monoamine transporter (VMAT)-2 has a crucial role in the neurotransmission of biogenic amines. Recently, Dalton et al., Pidathala et al., Wu et al., and Wang et al. individually reported cryo-electron microscopy (EM) structures of human VMAT2, offering opportunities for developing improved therapeutics and deep insights into the functioning of this protein.
Collapse
Affiliation(s)
- Shimon Schuldiner
- Department of Biological Chemistry, Institute of Life Sciences, Silberman Bldg. 1-513, Edmond J. Safra Campus, Hebrew University of Jerusalem, Givat Ram, Jerusalem 91904, Israel.
| | - Lucy R Forrest
- Computational Structural Biology Section, 35 Convent Drive, Room 3D-991, National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, MD 20892-8202, USA.
| |
Collapse
|
25
|
Tu G, Fu T, Zheng G, Xu B, Gou R, Luo D, Wang P, Xue W. Computational Chemistry in Structure-Based Solute Carrier Transporter Drug Design: Recent Advances and Future Perspectives. J Chem Inf Model 2024; 64:1433-1455. [PMID: 38294194 DOI: 10.1021/acs.jcim.3c01736] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2024]
Abstract
Solute carrier transporters (SLCs) are a class of important transmembrane proteins that are involved in the transportation of diverse solute ions and small molecules into cells. There are approximately 450 SLCs within the human body, and more than a quarter of them are emerging as attractive therapeutic targets for multiple complex diseases, e.g., depression, cancer, and diabetes. However, only 44 unique transporters (∼9.8% of the SLC superfamily) with 3D structures and specific binding sites have been reported. To design innovative and effective drugs targeting diverse SLCs, there are a number of obstacles that need to be overcome. However, computational chemistry, including physics-based molecular modeling and machine learning- and deep learning-based artificial intelligence (AI), provides an alternative and complementary way to the classical drug discovery approach. Here, we present a comprehensive overview on recent advances and existing challenges of the computational techniques in structure-based drug design of SLCs from three main aspects: (i) characterizing multiple conformations of the proteins during the functional process of transportation, (ii) identifying druggability sites especially the cryptic allosteric ones on the transporters for substrates and drugs binding, and (iii) discovering diverse small molecules or synthetic protein binders targeting the binding sites. This work is expected to provide guidelines for a deep understanding of the structure and function of the SLC superfamily to facilitate rational design of novel modulators of the transporters with the aid of state-of-the-art computational chemistry technologies including artificial intelligence.
Collapse
Affiliation(s)
- Gao Tu
- Chongqing Key Laboratory of Natural Product Synthesis and Drug Research, School of Pharmaceutical Sciences, Chongqing University, Chongqing 401331, China
| | - Tingting Fu
- College of Pharmaceutical Sciences, Zhejiang University, Hangzhou 310058, China
| | | | - Binbin Xu
- Chengdu Sintanovo Biotechnology Co., Ltd., Chengdu 610200, China
| | - Rongpei Gou
- Chongqing Key Laboratory of Natural Product Synthesis and Drug Research, School of Pharmaceutical Sciences, Chongqing University, Chongqing 401331, China
| | - Ding Luo
- Chongqing Key Laboratory of Natural Product Synthesis and Drug Research, School of Pharmaceutical Sciences, Chongqing University, Chongqing 401331, China
| | - Panpan Wang
- College of Chemistry and Pharmaceutical Engineering, Huanghuai University, Zhumadian 463000, China
| | - Weiwei Xue
- Chongqing Key Laboratory of Natural Product Synthesis and Drug Research, School of Pharmaceutical Sciences, Chongqing University, Chongqing 401331, China
| |
Collapse
|
26
|
Yadav R, Gati C. Packaging monoamine neurotransmitters. Cell Res 2024; 34:185-186. [PMID: 38242944 PMCID: PMC10907750 DOI: 10.1038/s41422-023-00922-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2024] Open
Affiliation(s)
- Ravi Yadav
- Molecular and Computational Biology Section, Department of Biological Sciences, University of Southern California, Los Angeles, CA, USA
- The Bridge Institute, Michelson Center for Convergent Biosciences, University of Southern California, Los Angeles, CA, USA
| | - Cornelius Gati
- Molecular and Computational Biology Section, Department of Biological Sciences, University of Southern California, Los Angeles, CA, USA.
- The Bridge Institute, Michelson Center for Convergent Biosciences, University of Southern California, Los Angeles, CA, USA.
- Department of Chemistry, University of Southern California, Los Angeles, CA, USA.
| |
Collapse
|
27
|
Wang Y, Zhang P, Chao Y, Zhu Z, Yang C, Zhou Z, Li Y, Long Y, Liu Y, Li D, Wang S, Qu Q. Transport and inhibition mechanism for VMAT2-mediated synaptic vesicle loading of monoamines. Cell Res 2024; 34:47-57. [PMID: 38163846 PMCID: PMC10770148 DOI: 10.1038/s41422-023-00906-z] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2023] [Accepted: 11/21/2023] [Indexed: 01/03/2024] Open
Abstract
Monoamine neurotransmitters such as serotonin and dopamine are loaded by vesicular monoamine transporter 2 (VMAT2) into synaptic vesicles for storage and subsequent release in neurons. Impaired VMAT2 function underlies various neuropsychiatric diseases. VMAT2 inhibitors reserpine and tetrabenazine are used to treat hypertension, movement disorders associated with Huntington's Disease and Tardive Dyskinesia. Despite its physiological and pharmacological significance, the structural basis underlying VMAT2 substrate recognition and its inhibition by various inhibitors remains unknown. Here we present cryo-EM structures of human apo VMAT2 in addition to states bound to serotonin, tetrabenazine, and reserpine. These structures collectively capture three states, namely the lumen-facing, occluded, and cytosol-facing conformations. Notably, tetrabenazine induces a substantial rearrangement of TM2 and TM7, extending beyond the typical rocker-switch movement. These functionally dynamic snapshots, complemented by biochemical analysis, unveil the essential components responsible for ligand recognition, elucidate the proton-driven exchange cycle, and provide a framework to design improved pharmaceutics targeting VMAT2.
Collapse
Affiliation(s)
- Yuwei Wang
- Shanghai Stomatological Hospital, School of Stomatology, Institutes of Biomedical Sciences, Fudan University, Shanghai, China
- Shanghai Key Laboratory of Medical Epigenetics, International Co-laboratory of Medical Epigenetics and Metabolism (Ministry of Science and Technology), Department of Systems Biology for Medicine, Fudan University, Shanghai, China
| | - Pei Zhang
- State Key Laboratory of Molecular Biology, Shanghai Institute of Biochemistry and Cell Biology, Center for Excellence in Molecule Cell Science, Chinese Academy of Sciences, Shanghai, China
| | - Yulin Chao
- Shanghai Stomatological Hospital, School of Stomatology, Institutes of Biomedical Sciences, Fudan University, Shanghai, China
- Shanghai Key Laboratory of Medical Epigenetics, International Co-laboratory of Medical Epigenetics and Metabolism (Ministry of Science and Technology), Department of Systems Biology for Medicine, Fudan University, Shanghai, China
| | - Zhini Zhu
- Shanghai Stomatological Hospital, School of Stomatology, Institutes of Biomedical Sciences, Fudan University, Shanghai, China
- Shanghai Key Laboratory of Medical Epigenetics, International Co-laboratory of Medical Epigenetics and Metabolism (Ministry of Science and Technology), Department of Systems Biology for Medicine, Fudan University, Shanghai, China
| | - Chuanhui Yang
- Shanghai Stomatological Hospital, School of Stomatology, Institutes of Biomedical Sciences, Fudan University, Shanghai, China
- Shanghai Key Laboratory of Medical Epigenetics, International Co-laboratory of Medical Epigenetics and Metabolism (Ministry of Science and Technology), Department of Systems Biology for Medicine, Fudan University, Shanghai, China
| | - Zixuan Zhou
- Shanghai Stomatological Hospital, School of Stomatology, Institutes of Biomedical Sciences, Fudan University, Shanghai, China
- Shanghai Key Laboratory of Medical Epigenetics, International Co-laboratory of Medical Epigenetics and Metabolism (Ministry of Science and Technology), Department of Systems Biology for Medicine, Fudan University, Shanghai, China
| | - Yaohui Li
- Shanghai Stomatological Hospital, School of Stomatology, Institutes of Biomedical Sciences, Fudan University, Shanghai, China
- Shanghai Key Laboratory of Medical Epigenetics, International Co-laboratory of Medical Epigenetics and Metabolism (Ministry of Science and Technology), Department of Systems Biology for Medicine, Fudan University, Shanghai, China
| | - Yonghui Long
- Shanghai Stomatological Hospital, School of Stomatology, Institutes of Biomedical Sciences, Fudan University, Shanghai, China
- Shanghai Key Laboratory of Medical Epigenetics, International Co-laboratory of Medical Epigenetics and Metabolism (Ministry of Science and Technology), Department of Systems Biology for Medicine, Fudan University, Shanghai, China
| | - Yuehua Liu
- Shanghai Stomatological Hospital, School of Stomatology, Institutes of Biomedical Sciences, Fudan University, Shanghai, China
| | - Dianfan Li
- State Key Laboratory of Molecular Biology, Shanghai Institute of Biochemistry and Cell Biology, Center for Excellence in Molecule Cell Science, Chinese Academy of Sciences, Shanghai, China
| | - Sheng Wang
- State Key Laboratory of Molecular Biology, Shanghai Institute of Biochemistry and Cell Biology, Center for Excellence in Molecule Cell Science, Chinese Academy of Sciences, Shanghai, China.
- Key Laboratory of Systems Health Science of Zhejiang Province, School of Life Science, Hangzhou Institute for Advanced Study, University of Chinese Academy of Sciences, Hangzhou, Zhejiang, China.
| | - Qianhui Qu
- Shanghai Stomatological Hospital, School of Stomatology, Institutes of Biomedical Sciences, Fudan University, Shanghai, China.
- Shanghai Key Laboratory of Medical Epigenetics, International Co-laboratory of Medical Epigenetics and Metabolism (Ministry of Science and Technology), Department of Systems Biology for Medicine, Fudan University, Shanghai, China.
| |
Collapse
|