1
|
Onodera M, Ataka M, Zhang Y, Moriya R, Watanabe K, Taniguchi T, Toshiyoshi H, Machida T. Dry Transfer of van der Waals Junctions of Two-Dimensional Materials onto Patterned Substrates Using Plasticized Poly(vinyl chloride)/Kamaboko-Shaped Polydimethylsiloxane. ACS APPLIED MATERIALS & INTERFACES 2024. [PMID: 39481391 DOI: 10.1021/acsami.4c05972] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/02/2024]
Abstract
Two-dimensional (2D) materials can be transferred onto substrates with various surface structures, opening up multiple functions and applications for 2D materials in the form of suspended membranes. In this paper, we present a method for transferring exfoliated 2D crystal flakes from SiO2 substrates onto patterned substrates using a poly(vinyl chloride) (PVC) layer mounted on a polydimethylsiloxane (PDMS) stamp structure. 2D crystal flakes can be transferred onto various patterned structures such as grooves, round holes, and periodic hole or groove patterns. Our method can also be used to fabricate suspended van der Waals (vdW) heterostructures by assembling 2D crystal flakes on the PVC/PDMS stamp and then transferring them onto patterned substrates. The adhesiveness and curvature of the PVC/PDMS stamp were tuned, and a high successful transfer rate was realized due to the use of kamaboko-shaped (semicylindrical) PDMS and the addition of an appropriate amount of a high-viscosity plasticizer to the PVC layer. Taking advantage of this method, we demonstrate the facile fabrication, simply by transferring a vdW heterostructure onto an Au-coated groove substrate, of a suspended vdW field-effect transistor device with the carrier density tuned using ionic gating. This method enables the transfer of 2D crystal flakes and vdW heterostructures onto various patterned substrates, and hence it should help to advance suspended 2D materials research.
Collapse
Affiliation(s)
- Momoko Onodera
- Institute of Industrial Science, University of Tokyo, 4-6-1 Komaba, Meguro, Tokyo 153-8505, Japan
| | - Manabu Ataka
- Institute of Industrial Science, University of Tokyo, 4-6-1 Komaba, Meguro, Tokyo 153-8505, Japan
| | - Yijin Zhang
- Institute of Industrial Science, University of Tokyo, 4-6-1 Komaba, Meguro, Tokyo 153-8505, Japan
| | - Rai Moriya
- Institute of Industrial Science, University of Tokyo, 4-6-1 Komaba, Meguro, Tokyo 153-8505, Japan
| | - Kenji Watanabe
- Research Center for Electronic and Optical Materials, National Institute for Materials Science, 1-1 Namiki, Tsukuba 305-0044, Japan
| | - Takashi Taniguchi
- Research Center for Materials Nanoarchitectonics, National Institute for Materials Science, 1-1 Namiki, Tsukuba 305-0044, Japan
| | - Hiroshi Toshiyoshi
- Institute of Industrial Science, University of Tokyo, 4-6-1 Komaba, Meguro, Tokyo 153-8505, Japan
| | - Tomoki Machida
- Institute of Industrial Science, University of Tokyo, 4-6-1 Komaba, Meguro, Tokyo 153-8505, Japan
| |
Collapse
|
2
|
Jin W, Zuo J, Pang J, Yang J, Yu X, Zhong H, Kuang X, Lu C. Two-Dimensional MoSi 2N 4 Family: Progress and Perspectives Form Theory. J Phys Chem Lett 2024; 15:10284-10294. [PMID: 39361969 DOI: 10.1021/acs.jpclett.4c02452] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/05/2024]
Abstract
Recently, a new two-dimensional (2D) layered MoSi2N4 has been successfully synthesized by chemical vapor deposition without knowing the 3D counterparts [ Science 2020, 369, 670-674]. The unique septuple-atomic-layer structure and diverse composition of MoSi2N4 have drawn tremendous interest in studying 2D MA2Z4 systems based on the MoSi2N4 structure. As an emerging family of 2D materials, MA2Z4 materials exhibit a wide range of properties and excellent tunability, making them highly promising for various applications. Herein, we summarize recent significant progress in property characterization of the MA2Z4 family. The electronic, magnetic, thermal transport, and superconducting properties, including their tunability through strain engineering and elemental substitution, are presented and elaborated in detail. Further perspectives and new opportunities of the emerging MA2Z4 family are presented at the end of this Perspective.
Collapse
Affiliation(s)
- Wenyuan Jin
- Institute of Physics, Henan Academy of Sciences, Zhengzhou 450046, China
| | - Jingning Zuo
- School of Mathematics and Physics, China University of Geosciences (Wuhan), Wuhan 430074, China
| | - Jiafei Pang
- Institute of Atomic and Molecular Physics, Sichuan University, Chengdu 610065, China
- Department of Mechanical Engineering and Science, Kyoto University, Kyoto 615-8540, Japan
| | - Jinni Yang
- Institute of Atomic and Molecular Physics, Sichuan University, Chengdu 610065, China
| | - Xin Yu
- Institute of Atomic and Molecular Physics, Sichuan University, Chengdu 610065, China
| | - Hongxia Zhong
- School of Mathematics and Physics, China University of Geosciences (Wuhan), Wuhan 430074, China
| | - Xiaoyu Kuang
- Institute of Atomic and Molecular Physics, Sichuan University, Chengdu 610065, China
| | - Cheng Lu
- School of Mathematics and Physics, China University of Geosciences (Wuhan), Wuhan 430074, China
| |
Collapse
|
3
|
Pan J, Wu F, Wang Z, Liu S, Guo P, Yin J, Zhao B, Tian H, Yang Y, Ren TL. Multibarrier Collaborative Modulation Devices with Ultra-High Logic Operation Density. ACS NANO 2024; 18:28189-28197. [PMID: 39361333 DOI: 10.1021/acsnano.4c08009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/16/2024]
Abstract
The demands for highly miniaturized and multifunctional electronics are rapidly increasing. As scaling-down processes of transistors are restricted by physical limits, reconfigurable electronics with switchable operation functions for different tasks are developed for higher function integration based on split- or vertical-dual-gate structures. To promote the present reconfigurable electronics and exceed the function integration limit, the critical issue is to integrate complex operations into simple circuit forms by establishing more control dimensions. This work proposes a multibarrier collaborative (MBC) modulation architecture to increase the control dimension by multiple forms of potential barriers and achieves combinational and reconfigurable logic operations by a single MBC device. The MBC architecture exhibits ultrahigh logic operation density, including 58.8% area reduction for multiplexer operations and 71.4% area reduction for 4-logic reconfigurable operations. Besides, a hardware security module composed of 4 MBC devices implementing 8 types of logic operations is demonstrated. This work reveals an effective design of function integration for next-generation electronics.
Collapse
Affiliation(s)
- Jiong Pan
- School of Integrated Circuits, Tsinghua University, 100084 Beijing, China
- Beijing National Research Center for Information Science and Technology (BNRist), Tsinghua University, 100084 Beijing, China
| | - Fan Wu
- School of Integrated Circuits, Tsinghua University, 100084 Beijing, China
- Beijing National Research Center for Information Science and Technology (BNRist), Tsinghua University, 100084 Beijing, China
| | - Zeda Wang
- School of Integrated Circuits, Tsinghua University, 100084 Beijing, China
- Beijing National Research Center for Information Science and Technology (BNRist), Tsinghua University, 100084 Beijing, China
| | - Shangjian Liu
- School of Integrated Circuits, Tsinghua University, 100084 Beijing, China
- Beijing National Research Center for Information Science and Technology (BNRist), Tsinghua University, 100084 Beijing, China
| | - Pengwen Guo
- School of Integrated Circuits, Tsinghua University, 100084 Beijing, China
- Beijing National Research Center for Information Science and Technology (BNRist), Tsinghua University, 100084 Beijing, China
| | - Jiaju Yin
- School of Integrated Circuits, Tsinghua University, 100084 Beijing, China
- Beijing National Research Center for Information Science and Technology (BNRist), Tsinghua University, 100084 Beijing, China
| | - Bingchen Zhao
- School of Integrated Circuits, Tsinghua University, 100084 Beijing, China
- Beijing National Research Center for Information Science and Technology (BNRist), Tsinghua University, 100084 Beijing, China
| | - He Tian
- School of Integrated Circuits, Tsinghua University, 100084 Beijing, China
- Beijing National Research Center for Information Science and Technology (BNRist), Tsinghua University, 100084 Beijing, China
| | - Yi Yang
- School of Integrated Circuits, Tsinghua University, 100084 Beijing, China
- Beijing National Research Center for Information Science and Technology (BNRist), Tsinghua University, 100084 Beijing, China
| | - Tian-Ling Ren
- School of Integrated Circuits, Tsinghua University, 100084 Beijing, China
- Beijing National Research Center for Information Science and Technology (BNRist), Tsinghua University, 100084 Beijing, China
| |
Collapse
|
4
|
Yang J, Huang L, Li H, Li X, Song L, Peng Y, Xu R, Wen X, Sun H, Jiang Y, He J, Shi J. Understanding Iron-Doping Modulating Domain Orientation and Improving the Device Performance of Monolayer Molybdenum Disulfide. NANO LETTERS 2024. [PMID: 39373390 DOI: 10.1021/acs.nanolett.4c03264] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/08/2024]
Abstract
Domain orientation modulation and controlled doping of two-dimensional (2D) transition-metal dichalcogenides (TMDCs) are two pivotal tasks for synthesizing wafer-scale single crystals and boosting device performances. However, realizing two such targets and uncovering internal physical mechanisms remain daunting challenges. We develop an accurate Fe doping strategy, which enables domain orientation control and electron mobility improvement of monolayer MoS2. By tuning of the Fe dopant dosages, parallel steps with different heights are formed, which induce edge-nucleation of unidirectionally aligned monolayer MoS2. In parallel, Fe doping induces the down shift of the conduction band minimum of monolayer MoS2 and matches well with the work function of an electrode, which reduces Schottky barrier height and delivers ultralow contact resistance (561 Ω μm) and excellent electron mobility (37.5 cm2 V-1 s-1). The modulation mechanism is clarified by combining theory calculations and electronic structure characterizations. This work hereby provides a new paradigm for synthesizing wafer-scale 2D TMDC single crystals and constructing high-performance devices.
Collapse
Affiliation(s)
- Junbo Yang
- The Institute for Advanced Studies, Wuhan University, Wuhan 430072, China
| | - Ling Huang
- The Institute for Advanced Studies, Wuhan University, Wuhan 430072, China
| | - Hui Li
- Shandong Provincial Key Laboratory of Monocrystalline Silicon Semiconductor Materials and Technology, College of Chemistry and Chemical Engineering, DeZhou University, DeZhou 253023, China
| | - Xiaohui Li
- The Institute for Advanced Studies, Wuhan University, Wuhan 430072, China
| | - Luying Song
- The Institute for Advanced Studies, Wuhan University, Wuhan 430072, China
| | - Yanan Peng
- The Institute for Advanced Studies, Wuhan University, Wuhan 430072, China
| | - Ruihan Xu
- The Institute for Advanced Studies, Wuhan University, Wuhan 430072, China
| | - Xia Wen
- The Institute for Advanced Studies, Wuhan University, Wuhan 430072, China
| | - Hang Sun
- The Institute for Advanced Studies, Wuhan University, Wuhan 430072, China
| | - Yulin Jiang
- The Institute for Advanced Studies, Wuhan University, Wuhan 430072, China
| | - Jun He
- Key Laboratory of Artificial Micro- and Nano-Structures of Ministry of Education, School of Physics and Technology, Wuhan University, Wuhan 430072, China
| | - Jianping Shi
- The Institute for Advanced Studies, Wuhan University, Wuhan 430072, China
| |
Collapse
|
5
|
Peng Z, Tong L, Shi W, Xu L, Huang X, Li Z, Yu X, Meng X, He X, Lv S, Yang G, Hao H, Jiang T, Miao X, Ye L. Multifunctional human visual pathway-replicated hardware based on 2D materials. Nat Commun 2024; 15:8650. [PMID: 39369011 PMCID: PMC11455896 DOI: 10.1038/s41467-024-52982-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2024] [Accepted: 09/26/2024] [Indexed: 10/07/2024] Open
Abstract
Artificial visual system empowered by 2D materials-based hardware simulates the functionalities of the human visual system, leading the forefront of artificial intelligence vision. However, retina-mimicked hardware that has not yet fully emulated the neural circuits of visual pathways is restricted from realizing more complex and special functions. In this work, we proposed a human visual pathway-replicated hardware that consists of crossbar arrays with split floating gate 2D tungsten diselenide (WSe2) unit devices that simulate the retina and visual cortex, and related connective peripheral circuits that replicate connectomics between the retina and visual cortex. This hardware experimentally displays advanced multi-functions of red-green color-blindness processing, low-power shape recognition, and self-driven motion tracking, promoting the development of machine vision, driverless technology, brain-computer interfaces, and intelligent robotics.
Collapse
Affiliation(s)
- Zhuiri Peng
- School of Integrated Circuits, Wuhan National Laboratory for Optoelectronics, Huazhong University of Science and Technology, Wuhan, China
| | - Lei Tong
- Department of Electronic Engineering, Materials Science and Technology Research Center, The Chinese University of Hong Kong, Hong Kong, China
| | - Wenhao Shi
- School of Integrated Circuits, Wuhan National Laboratory for Optoelectronics, Huazhong University of Science and Technology, Wuhan, China
| | - Langlang Xu
- School of Integrated Circuits, Wuhan National Laboratory for Optoelectronics, Huazhong University of Science and Technology, Wuhan, China
| | - Xinyu Huang
- School of Integrated Circuits, Wuhan National Laboratory for Optoelectronics, Huazhong University of Science and Technology, Wuhan, China
| | - Zheng Li
- School of Integrated Circuits, Wuhan National Laboratory for Optoelectronics, Huazhong University of Science and Technology, Wuhan, China
| | - Xiangxiang Yu
- School of Integrated Circuits, Wuhan National Laboratory for Optoelectronics, Huazhong University of Science and Technology, Wuhan, China
| | - Xiaohan Meng
- School of Integrated Circuits, Wuhan National Laboratory for Optoelectronics, Huazhong University of Science and Technology, Wuhan, China
| | - Xiao He
- School of Integrated Circuits, Wuhan National Laboratory for Optoelectronics, Huazhong University of Science and Technology, Wuhan, China
| | - Shengjie Lv
- School of Integrated Circuits, Wuhan National Laboratory for Optoelectronics, Huazhong University of Science and Technology, Wuhan, China
| | - Gaochen Yang
- School of Integrated Circuits, Wuhan National Laboratory for Optoelectronics, Huazhong University of Science and Technology, Wuhan, China
| | - Hao Hao
- College of Advanced Interdisciplinary Studies, National University of Defense Technology, Changsha, China
| | - Tian Jiang
- College of Advanced Interdisciplinary Studies, National University of Defense Technology, Changsha, China.
| | - Xiangshui Miao
- School of Integrated Circuits, Wuhan National Laboratory for Optoelectronics, Huazhong University of Science and Technology, Wuhan, China.
- Hubei Yangtze Memory Laboratories, Wuhan, China.
| | - Lei Ye
- School of Integrated Circuits, Wuhan National Laboratory for Optoelectronics, Huazhong University of Science and Technology, Wuhan, China.
- Hubei Yangtze Memory Laboratories, Wuhan, China.
| |
Collapse
|
6
|
Gao B, Wang W, Meng Y, Du C, Long Y, Zhang Y, Shao H, Lai Z, Wang W, Xie P, Yip S, Zhong X, Ho JC. Electrical Polarity Modulation in V-Doped Monolayer WS 2 for Homogeneous CMOS Inverters. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2024; 20:e2402217. [PMID: 38924273 DOI: 10.1002/smll.202402217] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/20/2024] [Revised: 05/14/2024] [Indexed: 06/28/2024]
Abstract
As demand for higher integration density and smaller devices grows, silicon-based complementary metal-oxide-semiconductor (CMOS) devices will soon reach their ultimate limits. 2D transition metal dichalcogenides (TMDs) semiconductors, known for excellent electrical performance and stable atomic structure, are seen as promising materials for future integrated circuits. However, controlled and reliable doping of 2D TMDs, a key step for creating homogeneous CMOS logic components, remains a challenge. In this study, a continuous electrical polarity modulation of monolayer WS2 from intrinsic n-type to ambipolar, then to p-type, and ultimately to a quasi-metallic state is achieved simply by introducing controllable amounts of vanadium (V) atoms into the WS2 lattice as p-type dopants during chemical vapor deposition (CVD). The achievement of purely p-type field-effect transistors (FETs) is particularly noteworthy based on the 4.7 at% V-doped monolayer WS2, demonstrating a remarkable on/off current ratio of 105. Expanding on this triumph, the first initial prototype of ultrathin homogeneous CMOS inverters based on monolayer WS2 is being constructed. These outcomes validate the feasibility of constructing homogeneous CMOS devices through the atomic doping process of 2D materials, marking a significant milestone for the future development of integrated circuits.
Collapse
Affiliation(s)
- Boxiang Gao
- Department of Materials Science and Engineering, City University of Hong Kong, Hong Kong SAR, 999077, China
| | - Weijun Wang
- Department of Materials Science and Engineering, City University of Hong Kong, Hong Kong SAR, 999077, China
| | - You Meng
- Department of Materials Science and Engineering, City University of Hong Kong, Hong Kong SAR, 999077, China
| | - Congcong Du
- Department of Materials Science and Engineering, City University of Hong Kong, Hong Kong SAR, 999077, China
- Qingyuan Innovation Laboratory, Quanzhou, 362801, China
| | - Yunchen Long
- Department of Materials Science and Engineering, City University of Hong Kong, Hong Kong SAR, 999077, China
| | - Yuxuan Zhang
- Department of Materials Science and Engineering, City University of Hong Kong, Hong Kong SAR, 999077, China
| | - He Shao
- Department of Materials Science and Engineering, City University of Hong Kong, Hong Kong SAR, 999077, China
| | - Zhengxun Lai
- College of Semiconductors (College of Integrated Circuits), Hunan University, Changsha, 410082, China
| | - Wei Wang
- Department of Materials Science and Engineering, City University of Hong Kong, Hong Kong SAR, 999077, China
| | - Pengshan Xie
- Department of Materials Science and Engineering, City University of Hong Kong, Hong Kong SAR, 999077, China
| | - SenPo Yip
- Institute for Materials Chemistry and Engineering, Kyushu University, Fukuoka, 816-8580, Japan
| | - Xiaoyan Zhong
- Department of Materials Science and Engineering, City University of Hong Kong, Hong Kong SAR, 999077, China
- City University of Hong Kong Matter Science Research Institute (Futian, Shenzhen), Shenzhen, 518048, China
- Nanomanufacturing Laboratory (NML), City University of Hong Kong Shenzhen Research Institute, Shenzhen, 518057, China
| | - Johnny C Ho
- Department of Materials Science and Engineering, City University of Hong Kong, Hong Kong SAR, 999077, China
- Institute for Materials Chemistry and Engineering, Kyushu University, Fukuoka, 816-8580, Japan
- State Key Laboratory of Terahertz and Millimeter Waves, City University of Hong Kong, Hong Kong SAR, 999077, China
| |
Collapse
|
7
|
Wu R, Zhang H, Ma H, Zhao B, Li W, Chen Y, Liu J, Liang J, Qin Q, Qi W, Chen L, Li J, Li B, Duan X. Synthesis, Modulation, and Application of Two-Dimensional TMD Heterostructures. Chem Rev 2024; 124:10112-10191. [PMID: 39189449 DOI: 10.1021/acs.chemrev.4c00174] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/28/2024]
Abstract
Two-dimensional (2D) transition metal dichalcogenide (TMD) heterostructures have attracted a lot of attention due to their rich material diversity and stack geometry, precise controllability of structure and properties, and potential practical applications. These heterostructures not only overcome the inherent limitations of individual materials but also enable the realization of new properties through appropriate combinations, establishing a platform to explore new physical and chemical properties at micro-nano-pico scales. In this review, we systematically summarize the latest research progress in the synthesis, modulation, and application of 2D TMD heterostructures. We first introduce the latest techniques for fabricating 2D TMD heterostructures, examining the rationale, mechanisms, advantages, and disadvantages of each strategy. Furthermore, we emphasize the importance of characteristic modulation in 2D TMD heterostructures and discuss some approaches to achieve novel functionalities. Then, we summarize the representative applications of 2D TMD heterostructures. Finally, we highlight the challenges and future perspectives in the synthesis and device fabrication of 2D TMD heterostructures and provide some feasible solutions.
Collapse
Affiliation(s)
- Ruixia Wu
- Key Laboratory for Micro-Nano Optoelectronic Devices of Ministry of Education, School of Physics and Electronics, Hunan University, Changsha 410082, China
- Hunan Provincial Key Laboratory of Two-Dimensional Materials, State Key Laboratory for Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Hunan University, Changsha 410082, China
| | - Hongmei Zhang
- Hunan Provincial Key Laboratory of Two-Dimensional Materials, State Key Laboratory for Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Hunan University, Changsha 410082, China
| | - Huifang Ma
- Innovation Center for Gallium Oxide Semiconductor (IC-GAO), National and Local Joint Engineering Laboratory for RF Integration and Micro-Assembly Technologies, College of Integrated Circuit Science and Engineering, Nanjing University of Posts and Telecommunications, Nanjing 210023, China
- School of Flexible Electronics (Future Technologies) Institute of Advanced Materials, Jiangsu National Synergetic Innovation Center for Advanced Materials, Nanjing Tech University, Nanjing 211816, China
| | - Bei Zhao
- School of Physics and Key Laboratory of Quantum Materials and Devices of Ministry of Education, Southeast University, Nanjing 211189, China
| | - Wei Li
- Hunan Provincial Key Laboratory of Two-Dimensional Materials, State Key Laboratory for Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Hunan University, Changsha 410082, China
| | - Yang Chen
- Hunan Provincial Key Laboratory of Two-Dimensional Materials, State Key Laboratory for Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Hunan University, Changsha 410082, China
| | - Jianteng Liu
- Key Laboratory for Micro-Nano Optoelectronic Devices of Ministry of Education, School of Physics and Electronics, Hunan University, Changsha 410082, China
| | - Jingyi Liang
- Hunan Provincial Key Laboratory of Two-Dimensional Materials, State Key Laboratory for Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Hunan University, Changsha 410082, China
| | - Qiuyin Qin
- Hunan Provincial Key Laboratory of Two-Dimensional Materials, State Key Laboratory for Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Hunan University, Changsha 410082, China
| | - Weixu Qi
- Key Laboratory for Micro-Nano Optoelectronic Devices of Ministry of Education, School of Physics and Electronics, Hunan University, Changsha 410082, China
| | - Liang Chen
- Hunan Provincial Key Laboratory of Two-Dimensional Materials, State Key Laboratory for Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Hunan University, Changsha 410082, China
| | - Jia Li
- Hunan Provincial Key Laboratory of Two-Dimensional Materials, State Key Laboratory for Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Hunan University, Changsha 410082, China
| | - Bo Li
- Changsha Semiconductor Technology and Application Innovation Research Institute, School of Physics and Electronics, College of Semiconductors (College of Integrated Circuits), Hunan University, Changsha 410082, China
| | - Xidong Duan
- Hunan Provincial Key Laboratory of Two-Dimensional Materials, State Key Laboratory for Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Hunan University, Changsha 410082, China
| |
Collapse
|
8
|
Maßmeyer O, Günkel R, Glowatzki J, Klement P, Ojaghi Dogahe B, Kachel SR, Gruber F, Müller M, Fey M, Schörmann J, Belz J, Beyer A, Gottfried JM, Chatterjee S, Volz K. Synthesis of 2D Gallium Sulfide with Ultraviolet Emission by MOCVD. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2024; 20:e2402155. [PMID: 38795001 DOI: 10.1002/smll.202402155] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/19/2024] [Revised: 04/18/2024] [Indexed: 05/27/2024]
Abstract
Two-dimensional (2D) materials exhibit the potential to transform semiconductor technology. Their rich compositional and stacking varieties allow tailoring materials' properties toward device applications. Monolayer to multilayer gallium sulfide (GaS) with its ultraviolet band gap, which can be tuned by varying the layer number, holds promise for solar-blind photodiodes and light-emitting diodes as applications. However, achieving commercial viability requires wafer-scale integration, contrasting with established, limited methods such as mechanical exfoliation. Here the one-step synthesis of 2D GaS is introduced via metal-organic chemical vapor deposition on sapphire substrates. The pulsed-mode deposition of industry-standard precursors promotes 2D growth by inhibiting the vapor phase and on-surface pre-reactions. The interface chemistry with the growth of a Ga adlayer that results in an epitaxial relationship is revealed. Probing structure and composition validate thin-film quality and 2D nature with the possibility to control the thickness by the number of GaS pulses. The results highlight the adaptability of established growth facilities for producing atomically thin to multilayered 2D semiconductor materials, paving the way for practical applications.
Collapse
Affiliation(s)
- Oliver Maßmeyer
- Material Sciences Center and Department of Physics, Philipps-Universität Marburg, Hans-Meerwein-Straße 6, 35043, Marburg, Germany
| | - Robin Günkel
- Material Sciences Center and Department of Physics, Philipps-Universität Marburg, Hans-Meerwein-Straße 6, 35043, Marburg, Germany
| | - Johannes Glowatzki
- Material Sciences Center and Department of Physics, Philipps-Universität Marburg, Hans-Meerwein-Straße 6, 35043, Marburg, Germany
| | - Philip Klement
- Institute of Experimental Physics I and Center for Materials Research, Justus Liebig University Giessen, Heinrich-Buff-Ring 16, D-35392, Giessen, Germany
| | - Badrosadat Ojaghi Dogahe
- Material Sciences Center and Department of Physics, Philipps-Universität Marburg, Hans-Meerwein-Straße 6, 35043, Marburg, Germany
| | - Stefan Renato Kachel
- Material Sciences Center and Department of Chemistry, Philipps-Universität Marburg, Hans-Meerwein-Straße 4, 35043, Marburg, Germany
| | - Felix Gruber
- Material Sciences Center and Department of Physics, Philipps-Universität Marburg, Hans-Meerwein-Straße 6, 35043, Marburg, Germany
| | - Marius Müller
- Institute of Experimental Physics I and Center for Materials Research, Justus Liebig University Giessen, Heinrich-Buff-Ring 16, D-35392, Giessen, Germany
| | - Melanie Fey
- Institute of Experimental Physics I and Center for Materials Research, Justus Liebig University Giessen, Heinrich-Buff-Ring 16, D-35392, Giessen, Germany
| | - Jörg Schörmann
- Institute of Experimental Physics I and Center for Materials Research, Justus Liebig University Giessen, Heinrich-Buff-Ring 16, D-35392, Giessen, Germany
| | - Jürgen Belz
- Material Sciences Center and Department of Physics, Philipps-Universität Marburg, Hans-Meerwein-Straße 6, 35043, Marburg, Germany
| | - Andreas Beyer
- Material Sciences Center and Department of Physics, Philipps-Universität Marburg, Hans-Meerwein-Straße 6, 35043, Marburg, Germany
| | - J Michael Gottfried
- Material Sciences Center and Department of Chemistry, Philipps-Universität Marburg, Hans-Meerwein-Straße 4, 35043, Marburg, Germany
| | - Sangam Chatterjee
- Institute of Experimental Physics I and Center for Materials Research, Justus Liebig University Giessen, Heinrich-Buff-Ring 16, D-35392, Giessen, Germany
| | - Kerstin Volz
- Material Sciences Center and Department of Physics, Philipps-Universität Marburg, Hans-Meerwein-Straße 6, 35043, Marburg, Germany
| |
Collapse
|
9
|
Liang M, Yan H, Wazir N, Zhou C, Ma Z. Two-Dimensional Semiconductors for State-of-the-Art Complementary Field-Effect Transistors and Integrated Circuits. NANOMATERIALS (BASEL, SWITZERLAND) 2024; 14:1408. [PMID: 39269071 PMCID: PMC11397490 DOI: 10.3390/nano14171408] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/31/2024] [Revised: 08/23/2024] [Accepted: 08/26/2024] [Indexed: 09/15/2024]
Abstract
As the trajectory of transistor scaling defined by Moore's law encounters challenges, the paradigm of ever-evolving integrated circuit technology shifts to explore unconventional materials and architectures to sustain progress. Two-dimensional (2D) semiconductors, characterized by their atomic-scale thickness and exceptional electronic properties, have emerged as a beacon of promise in this quest for the continued advancement of field-effect transistor (FET) technology. The energy-efficient complementary circuit integration necessitates strategic engineering of both n-channel and p-channel 2D FETs to achieve symmetrical high performance. This intricate process mandates the realization of demanding device characteristics, including low contact resistance, precisely controlled doping schemes, high mobility, and seamless incorporation of high- κ dielectrics. Furthermore, the uniform growth of wafer-scale 2D film is imperative to mitigate defect density, minimize device-to-device variation, and establish pristine interfaces within the integrated circuits. This review examines the latest breakthroughs with a focus on the preparation of 2D channel materials and device engineering in advanced FET structures. It also extensively summarizes critical aspects such as the scalability and compatibility of 2D FET devices with existing manufacturing technologies, elucidating the synergistic relationships crucial for realizing efficient and high-performance 2D FETs. These findings extend to potential integrated circuit applications in diverse functionalities.
Collapse
Affiliation(s)
- Meng Liang
- School of Microelectronics, South China University of Technology, Guangzhou 511442, China
| | - Han Yan
- School of Microelectronics, South China University of Technology, Guangzhou 511442, China
| | - Nasrullah Wazir
- School of Microelectronics, South China University of Technology, Guangzhou 511442, China
| | - Changjian Zhou
- School of Microelectronics, South China University of Technology, Guangzhou 511442, China
| | - Zichao Ma
- School of Microelectronics, South China University of Technology, Guangzhou 511442, China
| |
Collapse
|
10
|
Logelin ME, Schreiber E, Mercado BQ, Burke MJ, Davis CM, Bartholomew AK. Exfoliation of a metal-organic framework enabled by post-synthetic cleavage of a dipyridyl dianthracene ligand. Chem Sci 2024:d4sc03524k. [PMID: 39246333 PMCID: PMC11378025 DOI: 10.1039/d4sc03524k] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2024] [Accepted: 08/13/2024] [Indexed: 09/10/2024] Open
Abstract
The synthetic tunability and porosity of two-dimensional (2D) metal-organic frameworks (MOFs) renders them a promising class of materials for ultrathin and nanoscale applications. Conductive 2D MOFs are of particular interest for applications in nanoelectronics, chemo-sensing, and memory storage. However, the lack of covalency along the stacking axis typically leads to poor crystallinity in 2D MOFs, limiting structural analysis and precluding exfoliation. One strategy to improve crystal growth is to increase order along the stacking direction. Here, we demonstrate the synthesis of mechanically exfoliatable macroscopic crystals of a 2D zinc MOF by selective dimensional reduction of a 3D zinc MOF bearing a dianthracene (diAn) ligand along the stacking axis. The diAn ligand, a thermally cleavable analogue of 4,4'-bipyridine, is synthesized by the direct functionalization of dianthraldehyde in a novel "dianthracene-first" approach. This work presents a new strategy for the growth of macroscopic crystals of 2D materials while introducing the functionalization of dianthraldehyde as a means to access new stimuli-responsive ligands.
Collapse
Affiliation(s)
- Madison E Logelin
- Department of Chemistry, Yale University New Haven Connecticut 06520 USA
| | - Eric Schreiber
- Department of Chemistry, Yale University New Haven Connecticut 06520 USA
| | - Brandon Q Mercado
- Department of Chemistry, Yale University New Haven Connecticut 06520 USA
| | - Michael J Burke
- Department of Chemistry, Yale University New Haven Connecticut 06520 USA
| | - Caitlin M Davis
- Department of Chemistry, Yale University New Haven Connecticut 06520 USA
| | | |
Collapse
|
11
|
Yoo J, Nam CY, Bussmann E. Atomic Precision Processing of Two-Dimensional Materials for Next-Generation Microelectronics. ACS NANO 2024; 18:21614-21622. [PMID: 39105703 DOI: 10.1021/acsnano.4c04908] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/07/2024]
Abstract
The growth of the information era economy is driving the pursuit of advanced materials for microelectronics, spurred by exploration into "Beyond CMOS" and "More than Moore" paradigms. Atomically thin 2D materials, such as transition metal dichalcogenides (TMDCs), show great potential for next-generation microelectronics due to their properties and defect engineering capabilities. This perspective delves into atomic precision processing (APP) techniques like atomic layer deposition (ALD), epitaxy, atomic layer etching (ALE), and atomic precision advanced manufacturing (APAM) for the fabrication and modification of 2D materials, essential for future semiconductor devices. Additive APP methods like ALD and epitaxy provide precise control over composition, crystallinity, and thickness at the atomic scale, facilitating high-performance device integration. Subtractive APP techniques, such as ALE, focus on atomic-scale etching control for 2D material functionality and manufacturing. In APAM, modification techniques aim at atomic-scale defect control, offering tailored device functions and improved performance. Achieving optimal performance and energy efficiency in 2D material-based microelectronics requires a comprehensive approach encompassing fundamental understanding, process modeling, and high-throughput metrology. The outlook for APP in 2D materials is promising, with ongoing developments poised to impact manufacturing and fundamental materials science. Integration with advanced metrology and codesign frameworks will accelerate the realization of next-generation microelectronics enabled by 2D materials.
Collapse
Affiliation(s)
- Jinkyoung Yoo
- Center for Integrated Nanotechnologies, Los Alamos National Laboratory, Los Alamos, New Mexico 87545, United States
| | - Chang-Yong Nam
- Center for Functional Materials, Brookhaven National Laboratory, Upton, New York 11973, United States
| | - Ezra Bussmann
- Center for Integrated Nanotechnologies, Sandia National Laboratories, Albuquerque, New Mexico 87185, United States
| |
Collapse
|
12
|
Kim B, Lee S, Park JH. Innovations of metallic contacts on semiconducting 2D transition metal dichalcogenides toward advanced 3D-structured field-effect transistors. NANOSCALE HORIZONS 2024; 9:1417-1431. [PMID: 38973382 DOI: 10.1039/d4nh00030g] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/09/2024]
Abstract
2D semiconductors, represented by transition metal dichalcogenides (TMDs), have the potential to be alternative channel materials for advanced 3D field-effect transistors, such as gate-all-around field-effect-transistors (GAAFETs) and complementary field-effect-transistors (C-FETs), due to their inherent atomic thinness, moderate mobility, and short scaling lengths. However, 2D semiconductors encounter several technological challenges, especially the high contact resistance issue between 2D semiconductors and metals. This review provides a comprehensive overview of the high contact resistance issue in 2D semiconductors, including its physical background and the efforts to address it, with respect to their applicability to GAAFET structures.
Collapse
Affiliation(s)
- Byeongchan Kim
- Department of Electrical and Computer Engineering, Sungkyunkwan University (SKKU), Suwon, 16419, Korea.
| | - Seojoo Lee
- Department of Electrical and Computer Engineering, Sungkyunkwan University (SKKU), Suwon, 16419, Korea.
| | - Jin-Hong Park
- Department of Electrical and Computer Engineering, Sungkyunkwan University (SKKU), Suwon, 16419, Korea.
- Sungkyunkwan Advanced Institute of Nanotechnology (SAINT), Sungkyunkwan University, Suwon, 16417, Korea
| |
Collapse
|
13
|
Hong W, Zhang J, Zeng D, Wang C, Xue Z, Zhang M, Tian Z, Di Z. High-Yield Production of High-κ/Metal Gate Nanopattern Array for 2D Devices via Oxidation-Assisted Etching Approach. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2024:e2403187. [PMID: 39092678 DOI: 10.1002/smll.202403187] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/20/2024] [Revised: 06/30/2024] [Indexed: 08/04/2024]
Abstract
2D materials with atomically thin nature are promising to develop scaled transistors and enable the extreme miniaturization of electronic components. However, batch manufacturing of top-gate 2D transistors remains a challenge since gate dielectrics or gate electrodes transferred from 2D material easily peel away as gate pitch decreases to the nanometer scale during lift-off processes. In this study, an oxidation-assisted etching technique is developed for batch manufacturing of nanopatterned high-κ/metal gate (HKMG) stacks on 2D materials. This strategy produces nano-pitch self-oxidized Al2O3/Al patterns with a resolution of 150 nm on 2D channel material, including graphene, MoS2, and WS2 without introducing any additional damage. Through a gate-first technology in which the Al2O3/Al gate stacks are used as a mask for the formation of source and drain, a short-channel HKMG MoS2 transistor with a nearly ideal subthreshold swing (SS) of 61 mV dec-1, and HKMG graphene transistor with a cut-off frequency of 150 GHz are achieved. Moreover, both graphene and MoS2 HKMG transistor arrays exhibit high uniformity. The study may bring the potential for the massive production of large-scale integrated circuits using 2D materials.
Collapse
Affiliation(s)
- Weida Hong
- State Key Laboratory of Materials for Integrated Circuits, Shanghai Institute of Microsystem and Information Technology, Chinese Academy of Sciences, Shanghai, 200050, China
- Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Jiejun Zhang
- State Key Laboratory of Materials for Integrated Circuits, Shanghai Institute of Microsystem and Information Technology, Chinese Academy of Sciences, Shanghai, 200050, China
- Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Daobing Zeng
- State Key Laboratory of Materials for Integrated Circuits, Shanghai Institute of Microsystem and Information Technology, Chinese Academy of Sciences, Shanghai, 200050, China
- Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Chen Wang
- State Key Laboratory of Materials for Integrated Circuits, Shanghai Institute of Microsystem and Information Technology, Chinese Academy of Sciences, Shanghai, 200050, China
- Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Zhongying Xue
- State Key Laboratory of Materials for Integrated Circuits, Shanghai Institute of Microsystem and Information Technology, Chinese Academy of Sciences, Shanghai, 200050, China
| | - Miao Zhang
- State Key Laboratory of Materials for Integrated Circuits, Shanghai Institute of Microsystem and Information Technology, Chinese Academy of Sciences, Shanghai, 200050, China
| | - Ziao Tian
- State Key Laboratory of Materials for Integrated Circuits, Shanghai Institute of Microsystem and Information Technology, Chinese Academy of Sciences, Shanghai, 200050, China
| | - Zengfeng Di
- State Key Laboratory of Materials for Integrated Circuits, Shanghai Institute of Microsystem and Information Technology, Chinese Academy of Sciences, Shanghai, 200050, China
| |
Collapse
|
14
|
Song H, Chen S, Sun X, Cui Y, Yildirim T, Kang J, Yang S, Yang F, Lu Y, Zhang L. Enhancing 2D Photonics and Optoelectronics with Artificial Microstructures. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2024; 11:e2403176. [PMID: 39031754 PMCID: PMC11348073 DOI: 10.1002/advs.202403176] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/26/2024] [Revised: 06/04/2024] [Indexed: 07/22/2024]
Abstract
By modulating subwavelength structures and integrating functional materials, 2D artificial microstructures (2D AMs), including heterostructures, superlattices, metasurfaces and microcavities, offer a powerful platform for significant manipulation of light fields and functions. These structures hold great promise in high-performance and highly integrated optoelectronic devices. However, a comprehensive summary of 2D AMs remains elusive for photonics and optoelectronics. This review focuses on the latest breakthroughs in 2D AM devices, categorized into electronic devices, photonic devices, and optoelectronic devices. The control of electronic and optical properties through tuning twisted angles is discussed. Some typical strategies that enhance light-matter interactions are introduced, covering the integration of 2D materials with external photonic structures and intrinsic polaritonic resonances. Additionally, the influences of external stimuli, such as vertical electric fields, enhanced optical fields and plasmonic confinements, on optoelectronic properties is analysed. The integrations of these devices are also thoroughly addressed. Challenges and future perspectives are summarized to stimulate research and development of 2D AMs for future photonics and optoelectronics.
Collapse
Affiliation(s)
- Haizeng Song
- Henan Key Laboratory of Rare Earth Functional MaterialsZhoukou Normal UniversityZhoukou466001China
- College of Physics, Nanjing University of Aeronautics and AstronauticsKey Laboratory of Aerospace Information Materials and Physics (NUAA), MIITNanjing211106China
| | - Shuai Chen
- College of Physics, Nanjing University of Aeronautics and AstronauticsKey Laboratory of Aerospace Information Materials and Physics (NUAA), MIITNanjing211106China
| | - Xueqian Sun
- School of Engineering, College of Engineering and Computer Sciencethe Australian National UniversityCanberraACT2601Australia
| | - Yichun Cui
- National Key Laboratory of Science and Technology on Test Physics and Numerical MathematicsBeijing100190China
| | - Tanju Yildirim
- Faculty of Science and EngineeringSouthern Cross UniversityEast LismoreNSW2480Australia
| | - Jian Kang
- College of Physics, Nanjing University of Aeronautics and AstronauticsKey Laboratory of Aerospace Information Materials and Physics (NUAA), MIITNanjing211106China
| | - Shunshun Yang
- College of Physics, Nanjing University of Aeronautics and AstronauticsKey Laboratory of Aerospace Information Materials and Physics (NUAA), MIITNanjing211106China
| | - Fan Yang
- College of Physics, Nanjing University of Aeronautics and AstronauticsKey Laboratory of Aerospace Information Materials and Physics (NUAA), MIITNanjing211106China
| | - Yuerui Lu
- School of Engineering, College of Engineering and Computer Sciencethe Australian National UniversityCanberraACT2601Australia
| | - Linglong Zhang
- College of Physics, Nanjing University of Aeronautics and AstronauticsKey Laboratory of Aerospace Information Materials and Physics (NUAA), MIITNanjing211106China
- Laboratory of Solid State MicrostructuresNanjing UniversityNanjing210093China
| |
Collapse
|
15
|
Somay S, Balasubramanian K. Defect structure-electronic property correlations in transition metal dichalcogenide grain boundaries. Phys Chem Chem Phys 2024; 26:19787-19794. [PMID: 38985158 DOI: 10.1039/d4cp00959b] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/11/2024]
Abstract
Grain boundaries (Gb) in transition metal dichalcogenides are a rich source of interesting physics as well as a cause of concern because of its impact on electron transport across them in large area electronic device applications. Here, using first principles calculations, we show that beyond the conventional definition of grain boundaries based on misorientation, the defect structure present at the grain boundaries plays a significant role in defining the local electronic properties. We observed that even the standard 5-7 defect ring has differing electronic characteristics depending on its internal configuration. While the 5-7 ring presents shallow defect states, and induce long range strain fields with the local bandgap increasing up to 32.7%, the other commonly observed 4-8 defect rings introduce only mid-gap states, induce smaller strain fields with no observable bandgap change. The results show the seminal character of the individual defect structures at grain boundaries, and that their relative density can be used to determine the overall physico-chemical properties of the grain boundary.
Collapse
Affiliation(s)
- Srest Somay
- Department of Materials Science and Engineering, Indian Institute of Technology Delhi, New Delhi 110016, India.
| | - Krishna Balasubramanian
- Department of Materials Science and Engineering, Indian Institute of Technology Delhi, New Delhi 110016, India.
| |
Collapse
|
16
|
Ren Q, Zhu C, Ma S, Wang Z, Yan J, Wan T, Yan W, Chai Y. Optoelectronic Devices for In-Sensor Computing. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2024:e2407476. [PMID: 39004873 DOI: 10.1002/adma.202407476] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/26/2024] [Revised: 06/27/2024] [Indexed: 07/16/2024]
Abstract
The demand for accurate perception of the physical world leads to a dramatic increase in sensory nodes. However, the transmission of massive and unstructured sensory data from sensors to computing units poses great challenges in terms of power-efficiency, transmission bandwidth, data storage, time latency, and security. To efficiently process massive sensory data, it is crucial to achieve data compression and structuring at the sensory terminals. In-sensor computing integrates perception, memory, and processing functions within sensors, enabling sensory terminals to perform data compression and data structuring. Here, vision sensors are adopted as an example and discuss the functions of electronic, optical, and optoelectronic hardware for visual processing. Particularly, hardware implementations of optoelectronic devices for in-sensor visual processing that can compress and structure multidimensional vision information are examined. The underlying resistive switching mechanisms of volatile/nonvolatile optoelectronic devices and their processing operations are explored. Finally, a perspective on the future development of optoelectronic devices for in-sensor computing is provided.
Collapse
Affiliation(s)
- Qinqi Ren
- Department of Applied Physics, The Hong Kong Polytechnic University, Kowloon, Hong Kong, 999077, China
- Joint Research Centre of Microelectronics, The Hong Kong Polytechnic University, Kowloon, Hong Kong, 999077, China
| | - Chaoyi Zhu
- Department of Applied Physics, The Hong Kong Polytechnic University, Kowloon, Hong Kong, 999077, China
- Joint Research Centre of Microelectronics, The Hong Kong Polytechnic University, Kowloon, Hong Kong, 999077, China
| | - Sijie Ma
- Department of Applied Physics, The Hong Kong Polytechnic University, Kowloon, Hong Kong, 999077, China
- Joint Research Centre of Microelectronics, The Hong Kong Polytechnic University, Kowloon, Hong Kong, 999077, China
| | - Zhaoqing Wang
- Department of Applied Physics, The Hong Kong Polytechnic University, Kowloon, Hong Kong, 999077, China
- Joint Research Centre of Microelectronics, The Hong Kong Polytechnic University, Kowloon, Hong Kong, 999077, China
| | - Jianmin Yan
- Department of Applied Physics, The Hong Kong Polytechnic University, Kowloon, Hong Kong, 999077, China
- Joint Research Centre of Microelectronics, The Hong Kong Polytechnic University, Kowloon, Hong Kong, 999077, China
| | - Tianqing Wan
- Department of Applied Physics, The Hong Kong Polytechnic University, Kowloon, Hong Kong, 999077, China
- Joint Research Centre of Microelectronics, The Hong Kong Polytechnic University, Kowloon, Hong Kong, 999077, China
| | - Weicheng Yan
- Department of Applied Physics, The Hong Kong Polytechnic University, Kowloon, Hong Kong, 999077, China
- Joint Research Centre of Microelectronics, The Hong Kong Polytechnic University, Kowloon, Hong Kong, 999077, China
| | - Yang Chai
- Department of Applied Physics, The Hong Kong Polytechnic University, Kowloon, Hong Kong, 999077, China
- Joint Research Centre of Microelectronics, The Hong Kong Polytechnic University, Kowloon, Hong Kong, 999077, China
| |
Collapse
|
17
|
Huang H, Zha J, Xu S, Yang P, Xia Y, Wang H, Dong D, Zheng L, Yao Y, Zhang Y, Chen Y, Ho JC, Chan HP, Zhao C, Tan C. Precursor-Confined Chemical Vapor Deposition of 2D Single-Crystalline Se xTe 1-x Nanosheets for p-Type Transistors and Inverters. ACS NANO 2024; 18:17293-17303. [PMID: 38885180 DOI: 10.1021/acsnano.4c05323] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/20/2024]
Abstract
Two-dimensional (2D) tellurium (Te) is emerging as a promising p-type candidate for constructing complementary metal-oxide-semiconductor (CMOS) architectures. However, its small bandgap leads to a high leakage current and a low on/off current ratio. Although alloying Te with selenium (Se) can tune its bandgap, thermally evaporated SexTe1-x thin films often suffer from grain boundaries and high-density defects. Herein, we introduce a precursor-confined chemical vapor deposition (CVD) method for synthesizing single-crystalline SexTe1-x alloy nanosheets. These nanosheets, with tunable compositions, are ideal for high-performance field-effect transistors (FETs) and 2D inverters. The preformation of Se-Te frameworks in our developed CVD method plays a critical role in the growth of SexTe1-x nanosheets with high crystallinity. Optimizing the Se composition resulted in a Se0.30Te0.70 nanosheet-based p-type FET with a large on/off current ratio of 4 × 105 and a room-temperature hole mobility of 120 cm2·V-1·s-1, being eight times higher than thermally evaporated SexTe1-x with similar composition and thickness. Moreover, we successfully fabricated an inverter based on p-type Se0.30Te0.70 and n-type MoS2 nanosheets, demonstrating a typical voltage transfer curve with a gain of 30 at an operation voltage of Vdd = 3 V.
Collapse
Affiliation(s)
- Haoxin Huang
- Department of Electrical Engineering, City University of Hong Kong, Hong Kong SAR, China
| | - Jiajia Zha
- Department of Electrical and Electronic Engineering, University of Hong Kong, Hong Kong SAR, China
| | - Songcen Xu
- Department of Electronic & Computer Engineering, The Hong Kong University of Science and Technology, Hong Kong SAR, China
| | - Peng Yang
- College of Integrated Circuits and Optoelectronic Chips, Shenzhen Technology University, Shenzhen 518118, China
| | - Yunpeng Xia
- Department of Electrical Engineering, City University of Hong Kong, Hong Kong SAR, China
| | - Huide Wang
- College of Physics and Optoelectronic Engineering, Shenzhen University, Shenzhen 518060, China
| | - Dechen Dong
- Department of Electrical and Electronic Engineering, University of Hong Kong, Hong Kong SAR, China
| | - Long Zheng
- Department of Chemistry, The Chinese University of Hong Kong, Hong Kong SAR, China
| | - Yao Yao
- Department of Chemistry, City University of Hong Kong, Hong Kong SAR, China
| | - Yuxuan Zhang
- Department of Materials Science and Engineering, City University of Hong Kong, Hong Kong SAR, China
| | - Ye Chen
- Department of Chemistry, The Chinese University of Hong Kong, Hong Kong SAR, China
| | - Johnny C Ho
- Department of Materials Science and Engineering, City University of Hong Kong, Hong Kong SAR, China
| | - Hau Ping Chan
- Department of Electrical Engineering, City University of Hong Kong, Hong Kong SAR, China
| | - Chunsong Zhao
- Huawei Technologies Co., LTD., Shenzhen 518129, China
| | - Chaoliang Tan
- Department of Electrical and Electronic Engineering, University of Hong Kong, Hong Kong SAR, China
| |
Collapse
|
18
|
Pendurthi R, Sakib NU, Sadaf MUK, Zhang Z, Sun Y, Chen C, Jayachandran D, Oberoi A, Ghosh S, Kumari S, Stepanoff SP, Somvanshi D, Yang Y, Redwing JM, Wolfe DE, Das S. Monolithic three-dimensional integration of complementary two-dimensional field-effect transistors. NATURE NANOTECHNOLOGY 2024; 19:970-977. [PMID: 39043826 DOI: 10.1038/s41565-024-01705-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/05/2023] [Accepted: 05/27/2024] [Indexed: 07/25/2024]
Abstract
The semiconductor industry is transitioning to the 'More Moore' era, driven by the adoption of three-dimensional (3D) integration schemes surpassing the limitations of traditional two-dimensional scaling. Although innovative packaging solutions have made 3D integrated circuits (ICs) commercially viable, the inclusion of through-silicon vias and microbumps brings about increased area overhead and introduces parasitic capacitances that limit overall performance. Monolithic 3D integration (M3D) is regarded as the future of 3D ICs, yet its application faces hurdles in silicon ICs due to restricted thermal processing budgets in upper tiers, which can degrade device performance. To overcome these limitations, emerging materials like carbon nanotubes and two-dimensional semiconductors have been integrated into the back end of silicon ICs. Here we report the M3D integration of complementary WSe2 FETs, in which n-type FETs are placed in tier 1 and p-type FETs are placed in tier 2. In particular, we achieve dense and scaled integration through 300 nm vias with a pitch of <1 µm, connecting more than 300 devices in tiers 1 and 2. Moreover, we have effectively implemented vertically integrated logic gates, encompassing inverters, NAND gates and NOR gates. Our demonstration highlights the two-dimensional materials' role in advancing M3D integration in complementary metal-oxide-semiconductor circuits.
Collapse
Affiliation(s)
- Rahul Pendurthi
- Engineering Science and Mechanics, Penn State University, University Park, PA, USA.
| | - Najam U Sakib
- Engineering Science and Mechanics, Penn State University, University Park, PA, USA
| | | | - Zhiyu Zhang
- Engineering Science and Mechanics, Penn State University, University Park, PA, USA
| | - Yongwen Sun
- Engineering Science and Mechanics, Penn State University, University Park, PA, USA
| | - Chen Chen
- 2D Crystal Consortium Materials Innovation Platform, Penn State University, University Park, PA, USA
| | - Darsith Jayachandran
- Engineering Science and Mechanics, Penn State University, University Park, PA, USA
| | - Aaryan Oberoi
- Engineering Science and Mechanics, Penn State University, University Park, PA, USA
| | - Subir Ghosh
- Engineering Science and Mechanics, Penn State University, University Park, PA, USA
| | - Shalini Kumari
- 2D Crystal Consortium Materials Innovation Platform, Penn State University, University Park, PA, USA
- Materials Science and Engineering, Penn State University, University Park, PA, USA
| | - Sergei P Stepanoff
- Materials Science and Engineering, Penn State University, University Park, PA, USA
| | - Divya Somvanshi
- Department of Physics, Harcourt Butler Technical University, Kanpur, India
| | - Yang Yang
- Engineering Science and Mechanics, Penn State University, University Park, PA, USA
- Materials Research Institute, Penn State University, University Park, PA, USA
- Nuclear Engineering, Penn State University, University Park, PA, USA
| | - Joan M Redwing
- 2D Crystal Consortium Materials Innovation Platform, Penn State University, University Park, PA, USA
- Materials Science and Engineering, Penn State University, University Park, PA, USA
- Materials Research Institute, Penn State University, University Park, PA, USA
| | - Douglas E Wolfe
- Engineering Science and Mechanics, Penn State University, University Park, PA, USA
- Materials Science and Engineering, Penn State University, University Park, PA, USA
- Nuclear Engineering, Penn State University, University Park, PA, USA
| | - Saptarshi Das
- Engineering Science and Mechanics, Penn State University, University Park, PA, USA.
- Materials Science and Engineering, Penn State University, University Park, PA, USA.
- Materials Research Institute, Penn State University, University Park, PA, USA.
- Electrical Engineering, Penn State University, University Park, PA, USA.
| |
Collapse
|
19
|
Wu Y, Wang Y, Bao D, Deng X, Zhang S, Yu-Chun L, Ke S, Liu J, Liu Y, Wang Z, Ham P, Hanna A, Pan J, Hu X, Li Z, Zhou J, Wang C. Emerging probing perspective of two-dimensional materials physics: terahertz emission spectroscopy. LIGHT, SCIENCE & APPLICATIONS 2024; 13:146. [PMID: 38951490 PMCID: PMC11217405 DOI: 10.1038/s41377-024-01486-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/16/2023] [Revised: 04/09/2024] [Accepted: 05/15/2024] [Indexed: 07/03/2024]
Abstract
Terahertz (THz) emission spectroscopy (TES) has emerged as a highly effective and versatile technique for investigating the photoelectric properties of diverse materials and nonlinear physical processes in the past few decades. Concurrently, research on two-dimensional (2D) materials has experienced substantial growth due to their atomically thin structures, exceptional mechanical and optoelectronic properties, and the potential for applications in flexible electronics, sensing, and nanoelectronics. Specifically, these materials offer advantages such as tunable bandgap, high carrier mobility, wideband optical absorption, and relatively short carrier lifetime. By applying TES to investigate the 2D materials, their interfaces and heterostructures, rich information about the interplay among photons, charges, phonons and spins can be unfolded, which provides fundamental understanding for future applications. Thus it is timely to review the nonlinear processes underlying THz emission in 2D materials including optical rectification, photon-drag, high-order harmonic generation and spin-to-charge conversion, showcasing the rich diversity of the TES employed to unravel the complex nature of these materials. Typical applications based on THz emissions, such as THz lasers, ultrafast imaging and biosensors, are also discussed. Step further, we analyzed the unique advantages of spintronic terahertz emitters and the future technological advancements in the development of new THz generation mechanisms leading to advanced THz sources characterized by wide bandwidth, high power and integration, suitable for industrial and commercial applications. The continuous advancement and integration of TES with the study of 2D materials and heterostructures promise to revolutionize research in different areas, including basic materials physics, novel optoelectronic devices, and chips for post-Moore's era.
Collapse
Affiliation(s)
- Yifei Wu
- State Key Laboratory of New Ceramics and Fine Processing, Key Laboratory of Advanced Materials of Ministry of Education, School of Materials Science and Engineering, Tsinghua University, 100084, Beijing, China
| | - Yuqi Wang
- State Key Laboratory of New Ceramics and Fine Processing, Key Laboratory of Advanced Materials of Ministry of Education, School of Materials Science and Engineering, Tsinghua University, 100084, Beijing, China
| | - Di Bao
- State Key Laboratory of New Ceramics and Fine Processing, Key Laboratory of Advanced Materials of Ministry of Education, School of Materials Science and Engineering, Tsinghua University, 100084, Beijing, China
| | - Xiaonan Deng
- State Key Laboratory of New Ceramics and Fine Processing, Key Laboratory of Advanced Materials of Ministry of Education, School of Materials Science and Engineering, Tsinghua University, 100084, Beijing, China
| | - Simian Zhang
- State Key Laboratory of New Ceramics and Fine Processing, Key Laboratory of Advanced Materials of Ministry of Education, School of Materials Science and Engineering, Tsinghua University, 100084, Beijing, China
| | - Lin Yu-Chun
- State Key Laboratory of New Ceramics and Fine Processing, Key Laboratory of Advanced Materials of Ministry of Education, School of Materials Science and Engineering, Tsinghua University, 100084, Beijing, China
| | - Shengxian Ke
- State Key Laboratory of New Ceramics and Fine Processing, Key Laboratory of Advanced Materials of Ministry of Education, School of Materials Science and Engineering, Tsinghua University, 100084, Beijing, China
| | - Jianing Liu
- State Key Laboratory of New Ceramics and Fine Processing, Key Laboratory of Advanced Materials of Ministry of Education, School of Materials Science and Engineering, Tsinghua University, 100084, Beijing, China
| | - Yingjie Liu
- State Key Laboratory of New Ceramics and Fine Processing, Key Laboratory of Advanced Materials of Ministry of Education, School of Materials Science and Engineering, Tsinghua University, 100084, Beijing, China
| | - Zeli Wang
- State Key Laboratory of New Ceramics and Fine Processing, Key Laboratory of Advanced Materials of Ministry of Education, School of Materials Science and Engineering, Tsinghua University, 100084, Beijing, China
| | - Pingren Ham
- State Key Laboratory of New Ceramics and Fine Processing, Key Laboratory of Advanced Materials of Ministry of Education, School of Materials Science and Engineering, Tsinghua University, 100084, Beijing, China
| | - Andrew Hanna
- State Key Laboratory of New Ceramics and Fine Processing, Key Laboratory of Advanced Materials of Ministry of Education, School of Materials Science and Engineering, Tsinghua University, 100084, Beijing, China
| | - Jiaming Pan
- State Key Laboratory of New Ceramics and Fine Processing, Key Laboratory of Advanced Materials of Ministry of Education, School of Materials Science and Engineering, Tsinghua University, 100084, Beijing, China
| | - Xinyue Hu
- State Key Laboratory of New Ceramics and Fine Processing, Key Laboratory of Advanced Materials of Ministry of Education, School of Materials Science and Engineering, Tsinghua University, 100084, Beijing, China
| | - Zhengcao Li
- State Key Laboratory of New Ceramics and Fine Processing, Key Laboratory of Advanced Materials of Ministry of Education, School of Materials Science and Engineering, Tsinghua University, 100084, Beijing, China
| | - Ji Zhou
- State Key Laboratory of New Ceramics and Fine Processing, Key Laboratory of Advanced Materials of Ministry of Education, School of Materials Science and Engineering, Tsinghua University, 100084, Beijing, China
| | - Chen Wang
- State Key Laboratory of New Ceramics and Fine Processing, Key Laboratory of Advanced Materials of Ministry of Education, School of Materials Science and Engineering, Tsinghua University, 100084, Beijing, China.
- Beijing Advanced Innovation Center for Integrated Circuits, 100084, Beijing, China.
| |
Collapse
|
20
|
Bae J, Ryu H, Kim D, Lee CS, Seol M, Byun KE, Kim S, Lee S. Optimizing Ultrathin 2D Transistors for Monolithic 3D Integration: A Study on Directly Grown Nanocrystalline Interconnects and Buried Contacts. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2024; 36:e2314164. [PMID: 38608715 DOI: 10.1002/adma.202314164] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/26/2023] [Revised: 04/02/2024] [Indexed: 04/14/2024]
Abstract
The potential of monolithic 3D integration technology is largely dependent on the enhancement of interconnect characteristics which can lead to thinner stacks, better heat dissipation, and reduced signal delays. Carbon materials such as graphene, characterized by sp2 hybridized carbons, are promising candidates for future interconnects due to their exceptional electrical, thermal conductivity and resistance to electromigration. However, a significant challenge lies in achieving low contact resistance between extremely thin semiconductor channels and graphitic materials. To address this issue, an innovative wafer-scale synthesis approach is proposed that enables low contact resistance between dry-transferred 2D semiconductors and the as-grown nanocrystalline graphitic interconnects. A hybrid graphitic interconnect with metal doping reduces the sheet resistance by 84% compared to an equivalent thickness metal film. Furthermore, the introduction of a buried graphitic contact results in a contact resistance that is 17 times lower than that of bulk metal contacts (>40 nm). Transistors with this optimal structure are used to successfully demonstrate a simple logic function. The thickness of active layer is maintained within sub-7 nm range, encompassing both channels and contacts. The ultrathin transistor and interconnect stack developed here, characterized by a readily etchable interlayer and low parasitic resistance, leads to heterogeneous integration of future 3D integrated circuits (ICs).
Collapse
Affiliation(s)
- Junseong Bae
- Department of Electronic Engineering, Kyung Hee University, Yongin, 17104, Republic of Korea
| | - Hyeyoon Ryu
- Department of Electronic Engineering, Kyung Hee University, Yongin, 17104, Republic of Korea
| | - Dohee Kim
- Department of Electronic Engineering, Kyung Hee University, Yongin, 17104, Republic of Korea
| | - Chang-Seok Lee
- Device Research Center, Samsung Advanced Institute of Technology, Suwon, 18448, Republic of Korea
| | - Minsu Seol
- Device Research Center, Samsung Advanced Institute of Technology, Suwon, 18448, Republic of Korea
| | - Kyung-Eun Byun
- Device Research Center, Samsung Advanced Institute of Technology, Suwon, 18448, Republic of Korea
| | - Sangwon Kim
- Device Research Center, Samsung Advanced Institute of Technology, Suwon, 18448, Republic of Korea
| | - Seunghyun Lee
- Department of Electronic Engineering, Kyung Hee University, Yongin, 17104, Republic of Korea
| |
Collapse
|
21
|
Guo Y, Li J, Zhan X, Wang C, Li M, Zhang B, Wang Z, Liu Y, Yang K, Wang H, Li W, Gu P, Luo Z, Liu Y, Liu P, Chen B, Watanabe K, Taniguchi T, Chen XQ, Qin C, Chen J, Sun D, Zhang J, Wang R, Liu J, Ye Y, Li X, Hou Y, Zhou W, Wang H, Han Z. Van der Waals polarity-engineered 3D integration of 2D complementary logic. Nature 2024; 630:346-352. [PMID: 38811731 PMCID: PMC11168927 DOI: 10.1038/s41586-024-07438-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2023] [Accepted: 04/18/2024] [Indexed: 05/31/2024]
Abstract
Vertical three-dimensional integration of two-dimensional (2D) semiconductors holds great promise, as it offers the possibility to scale up logic layers in the z axis1-3. Indeed, vertical complementary field-effect transistors (CFETs) built with such mixed-dimensional heterostructures4,5, as well as hetero-2D layers with different carrier types6-8, have been demonstrated recently. However, so far, the lack of a controllable doping scheme (especially p-doped WSe2 (refs. 9-17) and MoS2 (refs. 11,18-28)) in 2D semiconductors, preferably in a stable and non-destructive manner, has greatly impeded the bottom-up scaling of complementary logic circuitries. Here we show that, by bringing transition metal dichalcogenides, such as MoS2, atop a van der Waals (vdW) antiferromagnetic insulator chromium oxychloride (CrOCl), the carrier polarity in MoS2 can be readily reconfigured from n- to p-type via strong vdW interfacial coupling. The consequential band alignment yields transistors with room-temperature hole mobilities up to approximately 425 cm2 V-1 s-1, on/off ratios reaching 106 and air-stable performance for over one year. Based on this approach, vertically constructed complementary logic, including inverters with 6 vdW layers, NANDs with 14 vdW layers and SRAMs with 14 vdW layers, are further demonstrated. Our findings of polarity-engineered p- and n-type 2D semiconductor channels with and without vdW intercalation are robust and universal to various materials and thus may throw light on future three-dimensional vertically integrated circuits based on 2D logic gates.
Collapse
Affiliation(s)
- Yimeng Guo
- Shenyang National Laboratory for Materials Science, Institute of Metal Research, Chinese Academy of Sciences, Shenyang, China
- School of Materials Science and Engineering, University of Science and Technology of China, Anhui, China
| | - Jiangxu Li
- Shenyang National Laboratory for Materials Science, Institute of Metal Research, Chinese Academy of Sciences, Shenyang, China
| | - Xuepeng Zhan
- School of Information Science and Engineering (ISE), Shandong University, Qingdao, People's Republic of China
| | - Chunwen Wang
- School of Physical Sciences and CAS Key Laboratory of Vacuum Physics, University of Chinese Academy of Sciences, Beijing, People's Republic of China
| | - Min Li
- School of Physical Science and Technology, ShanghaiTech University, Shanghai, China
- ShanghaiTech Laboratory for Topological Physics, ShanghaiTech University, Shanghai, China
| | - Biao Zhang
- School of Materials, Shenzhen Campus of Sun Yat-Sen University, Shenzhen, China
- School of Materials Science and Engineering, Beijing Key Laboratory for Magnetoelectric Materials and Devices, Peking University, Beijing, China
| | - Zirui Wang
- School of Integrated Circuits, Peking University, Beijing, China
| | - Yueyang Liu
- State Key Laboratory of Superlattices and Microstructures, Institute of Semiconductors, Chinese Academy of Sciences Beijing, Beijing, China
| | - Kaining Yang
- State Key Laboratory of Quantum Optics and Quantum Optics Devices, Institute of Optoelectronics, Shanxi University, Taiyuan, China
- Collaborative Innovation Center of Extreme Optics, Shanxi University, Taiyuan, China
| | - Hai Wang
- School of Information Science and Engineering (ISE), Shandong University, Qingdao, People's Republic of China
| | - Wanying Li
- Shenyang National Laboratory for Materials Science, Institute of Metal Research, Chinese Academy of Sciences, Shenyang, China
| | - Pingfan Gu
- Collaborative Innovation Center of Quantum Matter, Beijing, China
- State Key Lab for Mesoscopic Physics and Frontiers Science Center for Nano-Optoelectronics, School of Physics, Peking University, Beijing, China
| | - Zhaoping Luo
- Shenyang National Laboratory for Materials Science, Institute of Metal Research, Chinese Academy of Sciences, Shenyang, China
| | - Yingjia Liu
- Shenyang National Laboratory for Materials Science, Institute of Metal Research, Chinese Academy of Sciences, Shenyang, China
- School of Materials Science and Engineering, University of Science and Technology of China, Anhui, China
| | - Peitao Liu
- Shenyang National Laboratory for Materials Science, Institute of Metal Research, Chinese Academy of Sciences, Shenyang, China
| | - Bo Chen
- School of Information Science and Engineering (ISE), Shandong University, Qingdao, People's Republic of China
| | - Kenji Watanabe
- Research Center for Functional Materials, National Institute for Materials Science, Tsukuba, Japan
| | - Takashi Taniguchi
- International Center for Materials Nanoarchitectonics, National Institute for Materials Science, Tsukuba, Japan
| | - Xing-Qiu Chen
- Shenyang National Laboratory for Materials Science, Institute of Metal Research, Chinese Academy of Sciences, Shenyang, China
| | - Chengbing Qin
- Collaborative Innovation Center of Extreme Optics, Shanxi University, Taiyuan, China
- State Key Laboratory of Quantum Optics and Quantum Optics Devices, Institute of Laser Spectroscopy, Shanxi University, Taiyuan, China
| | - Jiezhi Chen
- School of Information Science and Engineering (ISE), Shandong University, Qingdao, People's Republic of China
| | - Dongming Sun
- Shenyang National Laboratory for Materials Science, Institute of Metal Research, Chinese Academy of Sciences, Shenyang, China
| | - Jing Zhang
- State Key Laboratory of Quantum Optics and Quantum Optics Devices, Institute of Optoelectronics, Shanxi University, Taiyuan, China
- Collaborative Innovation Center of Extreme Optics, Shanxi University, Taiyuan, China
| | - Runsheng Wang
- School of Integrated Circuits, Peking University, Beijing, China
| | - Jianpeng Liu
- School of Physical Science and Technology, ShanghaiTech University, Shanghai, China
- ShanghaiTech Laboratory for Topological Physics, ShanghaiTech University, Shanghai, China
- Liaoning Academy of Materials, Shenyang, China
| | - Yu Ye
- Collaborative Innovation Center of Quantum Matter, Beijing, China
- State Key Lab for Mesoscopic Physics and Frontiers Science Center for Nano-Optoelectronics, School of Physics, Peking University, Beijing, China
- Liaoning Academy of Materials, Shenyang, China
| | - Xiuyan Li
- Shenyang National Laboratory for Materials Science, Institute of Metal Research, Chinese Academy of Sciences, Shenyang, China.
- Liaoning Academy of Materials, Shenyang, China.
| | - Yanglong Hou
- School of Materials, Shenzhen Campus of Sun Yat-Sen University, Shenzhen, China.
- School of Materials Science and Engineering, Beijing Key Laboratory for Magnetoelectric Materials and Devices, Peking University, Beijing, China.
| | - Wu Zhou
- School of Physical Sciences and CAS Key Laboratory of Vacuum Physics, University of Chinese Academy of Sciences, Beijing, People's Republic of China.
| | - Hanwen Wang
- Liaoning Academy of Materials, Shenyang, China.
| | - Zheng Han
- State Key Laboratory of Quantum Optics and Quantum Optics Devices, Institute of Optoelectronics, Shanxi University, Taiyuan, China.
- Collaborative Innovation Center of Extreme Optics, Shanxi University, Taiyuan, China.
- Liaoning Academy of Materials, Shenyang, China.
| |
Collapse
|
22
|
Lu D, Chen Y, Lu Z, Ma L, Tao Q, Li Z, Kong L, Liu L, Yang X, Ding S, Liu X, Li Y, Wu R, Wang Y, Hu Y, Duan X, Liao L, Liu Y. Monolithic three-dimensional tier-by-tier integration via van der Waals lamination. Nature 2024; 630:340-345. [PMID: 38778106 DOI: 10.1038/s41586-024-07406-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2023] [Accepted: 04/10/2024] [Indexed: 05/25/2024]
Abstract
Two-dimensional (2D) semiconductors have shown great potential for monolithic three-dimensional (M3D) integration due to their dangling-bonds-free surface and the ability to integrate to various substrates without the conventional constraint of lattice matching1-10. However, with atomically thin body thickness, 2D semiconductors are not compatible with various high-energy processes in microelectronics11-13, where the M3D integration of multiple 2D circuit tiers is challenging. Here we report an alternative low-temperature M3D integration approach by van der Waals (vdW) lamination of entire prefabricated circuit tiers, where the processing temperature is controlled to 120 °C. By further repeating the vdW lamination process tier by tier, an M3D integrated system is achieved with 10 circuit tiers in the vertical direction, overcoming previous thermal budget limitations. Detailed electrical characterization demonstrates the bottom 2D transistor is not impacted after repetitively laminating vdW circuit tiers on top. Furthermore, by vertically connecting devices within different tiers through vdW inter-tier vias, various logic and heterogeneous structures are realized with desired system functions. Our demonstration provides a low-temperature route towards fabricating M3D circuits with increased numbers of tiers.
Collapse
Affiliation(s)
- Donglin Lu
- Key Laboratory for Micro-Nano Optoelectronic Devices of Ministry of Education, School of Physics and Electronics, Hunan University, Changsha, China
| | - Yang Chen
- Key Laboratory for Micro-Nano Optoelectronic Devices of Ministry of Education, School of Physics and Electronics, Hunan University, Changsha, China
| | - Zheyi Lu
- Key Laboratory for Micro-Nano Optoelectronic Devices of Ministry of Education, School of Physics and Electronics, Hunan University, Changsha, China
| | - Likuan Ma
- Key Laboratory for Micro-Nano Optoelectronic Devices of Ministry of Education, School of Physics and Electronics, Hunan University, Changsha, China
| | - Quanyang Tao
- Key Laboratory for Micro-Nano Optoelectronic Devices of Ministry of Education, School of Physics and Electronics, Hunan University, Changsha, China
| | - Zhiwei Li
- Key Laboratory for Micro-Nano Optoelectronic Devices of Ministry of Education, School of Physics and Electronics, Hunan University, Changsha, China
| | - Lingan Kong
- Key Laboratory for Micro-Nano Optoelectronic Devices of Ministry of Education, School of Physics and Electronics, Hunan University, Changsha, China
| | - Liting Liu
- Key Laboratory for Micro-Nano Optoelectronic Devices of Ministry of Education, School of Physics and Electronics, Hunan University, Changsha, China
| | - Xiaokun Yang
- Key Laboratory for Micro-Nano Optoelectronic Devices of Ministry of Education, School of Physics and Electronics, Hunan University, Changsha, China
| | - Shuimei Ding
- Key Laboratory for Micro-Nano Optoelectronic Devices of Ministry of Education, School of Physics and Electronics, Hunan University, Changsha, China
| | - Xiao Liu
- Key Laboratory for Micro-Nano Optoelectronic Devices of Ministry of Education, School of Physics and Electronics, Hunan University, Changsha, China
| | - Yunxin Li
- Key Laboratory for Micro-Nano Optoelectronic Devices of Ministry of Education, School of Physics and Electronics, Hunan University, Changsha, China
| | - Ruixia Wu
- Key Laboratory for Micro-Nano Optoelectronic Devices of Ministry of Education, School of Physics and Electronics, Hunan University, Changsha, China
- State Key Laboratory for Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Hunan University, Changsha, China
| | - Yiliu Wang
- Key Laboratory for Micro-Nano Optoelectronic Devices of Ministry of Education, School of Physics and Electronics, Hunan University, Changsha, China
| | - Yuanyuan Hu
- Changsha Semiconductor Technology and Application Innovation Research Institute, College of Semiconductors (College of Integrated Circuits), Hunan University, Changsha, China
| | - Xidong Duan
- State Key Laboratory for Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Hunan University, Changsha, China
| | - Lei Liao
- Changsha Semiconductor Technology and Application Innovation Research Institute, College of Semiconductors (College of Integrated Circuits), Hunan University, Changsha, China
| | - Yuan Liu
- Key Laboratory for Micro-Nano Optoelectronic Devices of Ministry of Education, School of Physics and Electronics, Hunan University, Changsha, China.
| |
Collapse
|
23
|
Wali A, Ravichandran H, Das S. A 2D Cryptographic Hash Function Incorporating Homomorphic Encryption for Secure Digital Signatures. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2024:e2400661. [PMID: 38373292 DOI: 10.1002/adma.202400661] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/13/2024] [Indexed: 02/21/2024]
Abstract
User authentication is a critical aspect of any information exchange system which verifies the identities of individuals seeking access to sensitive information. Conventionally, this approachrelies on establishing robust digital signature protocols which employ asymmetric encryption techniques involving a key pair consisting of a public key and its matching private key. In this article, a user verification platform constructed using integrated circuits (ICs) with atomically thin two-dimensional (2D) monolayer molybdenum disulfide (MoS2 ) memtransistors is presented. First, generation of secure cryptographic keys is demonstrated by exploiting the inherent stochasticity of carrier trapping and detrapping at the 2D/oxide interface trap sites. Subsequently, the ability to manipulate the functionality of logical NOR is leveraged to create a secure one-way hash function which when homomorphically operated upon with NAND, XOR, OR, NOT, and AND logic circuits generate distinct digital signatures. These signatures when subsequently decrypted, verify the authenticity of the receiver while ensuring complete preservation of data integrity and confidentiality as the underlying information is never revealed. Finally, the advantages of implementing a NOR-based hashing techniques in comparison to the conventional XOR-based encryption method are established. This demonstration highlights the potential of 2D-based ICs in developing critical hardware information security primitives.
Collapse
Affiliation(s)
- Akshay Wali
- Electrical Engineering and Computer Science, Penn State University, University Park, PA, 16802, USA
| | | | - Saptarshi Das
- Electrical Engineering and Computer Science, Penn State University, University Park, PA, 16802, USA
- Engineering Science and Mechanics, Penn State University, University Park, PA, 16802, USA
- Materials Science and Engineering, Penn State University, University Park, PA, 16802, USA
- Materials Research Institute, Penn State University, University Park, PA, 16802, USA
| |
Collapse
|
24
|
Roy T. A 2D route to 3D computer chips. Nature 2024; 625:249-250. [PMID: 38200305 DOI: 10.1038/d41586-023-03992-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2024]
|