1
|
Wang S, Ren J, Jing Y, Qu J, Liu GH. Perspectives on biomarkers of reproductive aging for fertility and beyond. NATURE AGING 2024; 4:1697-1710. [PMID: 39672897 DOI: 10.1038/s43587-024-00770-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/01/2024] [Accepted: 10/29/2024] [Indexed: 12/15/2024]
Abstract
Reproductive aging, spanning an age-related functional decline in the female and male reproductive systems, compromises fertility and leads to a range of health complications. In this Perspective, we first introduce a comprehensive framework for biomarkers applicable in clinical settings and discuss the existing repertoire of biomarkers used in practice. These encompass functional, imaging-based and biofluid-based biomarkers, all of which reflect the physiological characteristics of reproductive aging and help to determine the reproductive biological age. Next, we delve into the molecular alterations associated with aging in the reproductive system, highlighting the gap between these changes and their potential as biomarkers. Finally, to enhance the precision and practicality of assessing reproductive aging, we suggest adopting cutting-edge technologies for identifying new biomarkers and conducting thorough validations in population studies before clinical applications. These advancements will foster improved comprehension, prognosis and treatment of subfertility, thereby increasing chances of preserving reproductive health and resilience in populations of advanced age.
Collapse
Affiliation(s)
- Si Wang
- Advanced Innovation Center for Human Brain Protection, National Clinical Research Center for Geriatric Disorders, Xuanwu Hospital, Capital Medical University, Beijing, China.
- Aging Translational Medicine Center, Beijing Municipal Geriatric Medical Research Center, Xuanwu Hospital, Capital Medical University, Beijing, China.
- Aging Biomarker Consortium, Beijing, China.
| | - Jie Ren
- Aging Biomarker Consortium, Beijing, China
- Key Laboratory of RNA Science and Engineering, China National Center for Bioinformation, Beijing, China
- Beijing Institute of Genomics, Chinese Academy of Sciences, Beijing, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Ying Jing
- Advanced Innovation Center for Human Brain Protection, National Clinical Research Center for Geriatric Disorders, Xuanwu Hospital, Capital Medical University, Beijing, China
- Aging Translational Medicine Center, Beijing Municipal Geriatric Medical Research Center, Xuanwu Hospital, Capital Medical University, Beijing, China
| | - Jing Qu
- Aging Biomarker Consortium, Beijing, China.
- University of Chinese Academy of Sciences, Beijing, China.
- Key Laboratory of Organ Regeneration and Reconstruction, State Key Laboratory of Membrane Biology, State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, China.
- Institute for Stem Cell and Regeneration, CAS, Beijing, China.
- Beijing Institute for Stem Cell and Regenerative Medicine, Beijing, China.
| | - Guang-Hui Liu
- Advanced Innovation Center for Human Brain Protection, National Clinical Research Center for Geriatric Disorders, Xuanwu Hospital, Capital Medical University, Beijing, China.
- Aging Biomarker Consortium, Beijing, China.
- University of Chinese Academy of Sciences, Beijing, China.
- Key Laboratory of Organ Regeneration and Reconstruction, State Key Laboratory of Membrane Biology, State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, China.
- Institute for Stem Cell and Regeneration, CAS, Beijing, China.
- Beijing Institute for Stem Cell and Regenerative Medicine, Beijing, China.
| |
Collapse
|
3
|
Ivarsdottir EV, Gudmundsson J, Tragante V, Sveinbjornsson G, Kristmundsdottir S, Stacey SN, Halldorsson GH, Magnusson MI, Oddsson A, Walters GB, Sigurdsson A, Saevarsdottir S, Beyter D, Thorleifsson G, Halldorsson BV, Melsted P, Stefansson H, Jonsdottir I, Sørensen E, Pedersen OB, Erikstrup C, Bøgsted M, Pøhl M, Røder A, Stroomberg HV, Gögenur I, Hillingsø J, Bojesen SE, Lassen U, Høgdall E, Ullum H, Brunak S, Ostrowski SR, Sonderby IE, Frei O, Djurovic S, Havdahl A, Moller P, Dominguez-Valentin M, Haavik J, Andreassen OA, Hovig E, Agnarsson BA, Hilmarsson R, Johannsson OT, Valdimarsson T, Jonsson S, Moller PH, Olafsson JH, Sigurgeirsson B, Jonasson JG, Tryggvason G, Holm H, Sulem P, Rafnar T, Gudbjartsson DF, Stefansson K. Gene-based burden tests of rare germline variants identify six cancer susceptibility genes. Nat Genet 2024; 56:2422-2433. [PMID: 39472694 DOI: 10.1038/s41588-024-01966-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2023] [Accepted: 09/30/2024] [Indexed: 11/10/2024]
Abstract
Discovery of cancer risk variants in the sequence of the germline genome can shed light on carcinogenesis. Here we describe gene burden association analyses, aggregating rare missense and loss of function variants, at 22 cancer sites, including 130,991 cancer cases and 733,486 controls from Iceland, Norway and the United Kingdom. We identified four genes associated with increased cancer risk; the pro-apoptotic BIK for prostate cancer, the autophagy involved ATG12 for colorectal cancer, TG for thyroid cancer and CMTR2 for both lung cancer and cutaneous melanoma. Further, we found genes with rare variants that associate with decreased risk of cancer; AURKB for any cancer, irrespective of site, and PPP1R15A for breast cancer, suggesting that inhibition of PPP1R15A may be a preventive strategy for breast cancer. Our findings pinpoint several new cancer risk genes and emphasize autophagy, apoptosis and cell stress response as a focus point for developing new therapeutics.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | | | | | | | - Saedis Saevarsdottir
- deCODE genetics/Amgen, Reykjavik, Iceland
- Faculty of Medicine, School of Health Sciences, University of Iceland, Reykjavik, Iceland
- Department of Medicine, Landspitali University Hospital, Reykjavik, Iceland
| | | | | | - Bjarni V Halldorsson
- deCODE genetics/Amgen, Reykjavik, Iceland
- School of Technology, Reykjavik University, Reykjavik, Iceland
| | - Pall Melsted
- deCODE genetics/Amgen, Reykjavik, Iceland
- School of Engineering and Natural Sciences, University of Iceland, Reykjavik, Iceland
| | | | - Ingileif Jonsdottir
- deCODE genetics/Amgen, Reykjavik, Iceland
- Faculty of Medicine, School of Health Sciences, University of Iceland, Reykjavik, Iceland
- Department of Immunology, Landspitali University Hospital, Reykjavik, Iceland
| | - Erik Sørensen
- Department of Clinical Immunology, Rigshospitalet, University of Copenhagen, Copenhagen, Denmark
| | - Ole B Pedersen
- Department of Clinical Medicine, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
- Department of Clinical Immunology, Zealand University Hospital, Koege, Denmark
| | - Christian Erikstrup
- Department of Clinical Immunology, Aarhus University Hospital, Aarhus, Denmark
- Department of Clinical Medicine, Aarhus University, Aarhus, Denmark
| | - Martin Bøgsted
- Center for Clinical Data Science, Aalborg University and Aalborg University Hospital, Aalborg, Denmark
| | - Mette Pøhl
- Department of Oncology, Rigshospitalet, University of Copenhagen, Copenhagen, Denmark
| | - Andreas Røder
- Department of Clinical Medicine, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
- Department of Urology, Rigshospitalet, University of Copenhagen, Copenhagen, Denmark
| | - Hein Vincent Stroomberg
- Department of Clinical Medicine, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
- Department of Urology, Rigshospitalet, University of Copenhagen, Copenhagen, Denmark
| | - Ismail Gögenur
- Department of Clinical Medicine, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
- Center for Surgical Science, Zealand University Hospital, Køge, Denmark
| | - Jens Hillingsø
- Department of Transplantation, Digestive Diseases and General Surgery, Rigshospitalet, University of Copenhagen, Copenhagen, Denmark
| | - Stig E Bojesen
- Department of Clinical Medicine, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
- Department of Clinical Biochemistry, Herlev Gentofte Hospital, University of Copenhagen, Copenhagen, Denmark
| | - Ulrik Lassen
- Department of Clinical Medicine, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
- Department of Oncology, Rigshospitalet, University of Copenhagen, Copenhagen, Denmark
| | - Estrid Høgdall
- Department of Clinical Medicine, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
- Department of Pathology, Herlev Hospital, University of Copenhagen, Copenhagen, Denmark
| | | | - Søren Brunak
- Novo Nordisk Foundation Center for Protein Research, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Sisse R Ostrowski
- Department of Clinical Immunology, Rigshospitalet, University of Copenhagen, Copenhagen, Denmark
- Department of Clinical Medicine, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Ida Elken Sonderby
- Department of Medical Genetics, Oslo University Hospital and University of Oslo, Oslo, Norway
- Division of Mental Health and Addiction, Centre for Precision Psychiatry, University of Oslo and Oslo University Hospital, Oslo, Norway
- K.G. Jebsen Centre for Neurodevelopmental Disorders, University of Oslo, Oslo, Norway
| | - Oleksandr Frei
- K.G. Jebsen Centre for Neurodevelopmental Disorders, University of Oslo, Oslo, Norway
- Division of Mental Health and Addiction, Oslo University Hospital, Oslo, Norway
- Department of Informatics, Centre for Bioinformatics, University of Oslo, Oslo, Norway
| | - Srdjan Djurovic
- Department of Medical Genetics, Oslo University Hospital and University of Oslo, Oslo, Norway
- Division of Mental Health and Addiction, Centre for Precision Psychiatry, University of Oslo and Oslo University Hospital, Oslo, Norway
- K.G. Jebsen Centre for Neurodevelopmental Disorders, University of Oslo, Oslo, Norway
| | - Alexandra Havdahl
- Center for Genetic Epidemiology and Mental Health, Norwegian Institute of Public Health, Oslo, Norway
- Nic Waals Institute, Lovisenberg Diaconal Hospital, Oslo, Norway
- Department of Psychology, PROMENTA Research Center, University of Oslo, Oslo, Norway
| | - Pal Moller
- Department of Tumor Biology, Institute for Cancer Research, Oslo University Hospital, Oslo, Norway
| | - Mev Dominguez-Valentin
- Department of Tumor Biology, Institute for Cancer Research, Oslo University Hospital, Oslo, Norway
| | - Jan Haavik
- Department of Biomedicine, University of Bergen, Bergen, Norway
- Division of Psychiatry, Bergen Center of Brain Plasticity, Haukeland University Hospital, Bergen, Norway
| | - Ole A Andreassen
- Division of Mental Health and Addiction, Centre for Precision Psychiatry, University of Oslo and Oslo University Hospital, Oslo, Norway
- K.G. Jebsen Centre for Neurodevelopmental Disorders, University of Oslo, Oslo, Norway
- Division of Mental Health and Addiction, Oslo University Hospital, Oslo, Norway
| | - Eivind Hovig
- Department of Informatics, Centre for Bioinformatics, University of Oslo, Oslo, Norway
- Department of Tumor Biology, Institute for Cancer Research, Oslo University Hospital, Oslo, Norway
| | - Bjarni A Agnarsson
- Faculty of Medicine, School of Health Sciences, University of Iceland, Reykjavik, Iceland
- Department of Pathology, Landspitali University Hospital, Reykjavik, Iceland
| | - Rafn Hilmarsson
- Department of General Surgery, Landspitali University Hospital, Reykjavik, Iceland
| | | | - Trausti Valdimarsson
- The Medical Center, Glaesibae, Reykjavik, Iceland
- Department of Medicine, West Iceland Healthcare Centre, Akranes, Iceland
| | - Steinn Jonsson
- Faculty of Medicine, School of Health Sciences, University of Iceland, Reykjavik, Iceland
- Department of Medicine, Landspitali University Hospital, Reykjavik, Iceland
| | - Pall H Moller
- Faculty of Medicine, School of Health Sciences, University of Iceland, Reykjavik, Iceland
- Department of General Surgery, Landspitali University Hospital, Reykjavik, Iceland
| | - Jon H Olafsson
- Faculty of Medicine, School of Health Sciences, University of Iceland, Reykjavik, Iceland
- Department of Dermatology Oncology, Landspitali University Hospital, Reykjavik, Iceland
| | - Bardur Sigurgeirsson
- Faculty of Medicine, School of Health Sciences, University of Iceland, Reykjavik, Iceland
- Department of Dermatology Oncology, Landspitali University Hospital, Reykjavik, Iceland
| | - Jon G Jonasson
- Faculty of Medicine, School of Health Sciences, University of Iceland, Reykjavik, Iceland
- Department of Pathology, Landspitali University Hospital, Reykjavik, Iceland
| | - Geir Tryggvason
- Faculty of Medicine, School of Health Sciences, University of Iceland, Reykjavik, Iceland
- Department of Otorhinolaryngology, Landspitali University Hospital, Reykjavik, Iceland
| | - Hilma Holm
- deCODE genetics/Amgen, Reykjavik, Iceland
| | | | | | - Daniel F Gudbjartsson
- deCODE genetics/Amgen, Reykjavik, Iceland
- School of Engineering and Natural Sciences, University of Iceland, Reykjavik, Iceland
| | - Kari Stefansson
- deCODE genetics/Amgen, Reykjavik, Iceland.
- Faculty of Medicine, School of Health Sciences, University of Iceland, Reykjavik, Iceland.
| |
Collapse
|
5
|
Davies NM, Hemani G, Neiderhiser JM, Martin HC, Mills MC, Visscher PM, Yengo L, Young AS, Keller MC. The importance of family-based sampling for biobanks. Nature 2024; 634:795-803. [PMID: 39443775 PMCID: PMC11623399 DOI: 10.1038/s41586-024-07721-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2023] [Accepted: 06/13/2024] [Indexed: 10/25/2024]
Abstract
Biobanks aim to improve our understanding of health and disease by collecting and analysing diverse biological and phenotypic information in large samples. So far, biobanks have largely pursued a population-based sampling strategy, where the individual is the unit of sampling, and familial relatedness occurs sporadically and by chance. This strategy has been remarkably efficient and successful, leading to thousands of scientific discoveries across multiple research domains, and plans for the next wave of biobanks are underway. In this Perspective, we discuss the strengths and limitations of a complementary sampling strategy for future biobanks based on oversampling of close genetic relatives. Such family-based samples facilitate research that clarifies causal relationships between putative risk factors and outcomes, particularly in estimates of genetic effects, because they enable analyses that reduce or eliminate confounding due to familial and demographic factors. Family-based biobank samples would also shed new light on fundamental questions across multiple fields that are often difficult to explore in population-based samples. Despite the potential for higher costs and greater analytical complexity, the many advantages of family-based samples should often outweigh their potential challenges.
Collapse
Affiliation(s)
- Neil M Davies
- Division of Psychiatry, University College London, London, UK.
- Department of Statistical Science, University College London, London, UK.
- Department of Public Health and Nursing, Norwegian University of Science and Technology, Trondheim, Norway.
| | - Gibran Hemani
- Medical Research Council Integrative Epidemiology Unit, University of Bristol, Bristol, UK
- Population Health Sciences, Bristol Medical School, University of Bristol, Bristol, UK
| | - Jenae M Neiderhiser
- Department of Psychology, The Pennsylvania State University, University Park, PA, USA
| | - Hilary C Martin
- Human Genetics Programme, Wellcome Sanger Institute, Wellcome Genome Campus, Hinxton, UK
| | - Melinda C Mills
- Department of Economics, Econometrics & Finance, University of Groningen, Groningen, The Netherlands
- Department of Genetics, University Medical Centre Groningen, Groningen, The Netherlands
- Leverhulme Centre for Demographic Science, Nuffield Department of Population Health, University of Oxford, Oxford, UK
| | - Peter M Visscher
- Institute for Molecular Bioscience, The University of Queensland, Brisbane, Queensland, Australia
- Big Data Institute, Li Ka Shing Centre for Health Information and Discovery, Nuffield Department of Population Health, University of Oxford, Oxford, UK
| | - Loïc Yengo
- Institute for Molecular Bioscience, The University of Queensland, Brisbane, Queensland, Australia
| | - Alexander Strudwick Young
- UCLA Anderson School of Management, Los Angeles, CA, USA
- Human Genetics Department, UCLA David Geffen School of Medicine, Los Angeles, CA, USA
| | - Matthew C Keller
- Institute for Behavioral Genetics, University of Colorado at Boulder, Boulder, CO, USA.
- Department of Psychology and Neuroscience, University of Colorado at Boulder, Boulder, CO, USA.
| |
Collapse
|