1
|
Roesel T, Cao C, Bada Juarez JF, Dal Peraro M, Roke S. Dissecting the Membrane Association Mechanism of Aerolysin Pores at Femtomolar Concentrations Using Water as a Probe. NANO LETTERS 2024; 24:13888-13894. [PMID: 39469905 PMCID: PMC11544699 DOI: 10.1021/acs.nanolett.4c00035] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/17/2024] [Revised: 10/07/2024] [Accepted: 10/09/2024] [Indexed: 10/30/2024]
Abstract
Aerolysin is a bacterial toxin that forms transmembrane pores at the host plasma membrane and has a narrow internal diameter and great stability. These assets make it a highly promising nanopore for detecting biopolymers such as nucleic acids and peptides. Although much is known about aerolysin from a microbiological and structural perspective, its membrane association and pore-formation mechanism are not yet fully understood. Here, we used angle-resolved second harmonic scattering (AR-SHS) and single-channel current measurements to investigate how wild-type (wt) aerolysin and its mutants interact with liposomes in aqueous solutions at femtomolar concentrations. Our AR-SHS experiments were sensitive enough to detect changes in the electrostatic properties of membrane-bound aerolysin, which were induced by variations in pH levels. We reported for the first time the membrane binding affinity of aerolysin at different stages of the pore formation mechanism: while wt aerolysin has a binding affinity as high as 20 fM, the quasi-pore and the prepore states show gradually decreasing membrane affinities, incomplete insertion, and a pore opening signature. Moreover, we quantitatively characterized the membrane affinity of mutants relevant for applications to nanopore sensing. Our study provides a label-free method for efficiently screening biological pores suitable for conducting molecular sensing and sequencing measurements as well as for probing pore-forming processes.
Collapse
Affiliation(s)
- Tereza Roesel
- Laboratory
for Fundamental BioPhotonics (LBP), Institute of Bioengineering (IBI),
and Institute of Materials Science (IMX), School of Engineering (STI),
and Lausanne Centre for Ultrafast Science (LACUS), École Polytechnique Fédérale de Lausanne (EPFL), CH-1015 Lausanne, Switzerland
| | - Chan Cao
- Department
of Inorganic and Analytical Chemistry, School of Chemistry and Biochemistry, University of Geneva, 1211 Geneva, Switzerland
| | - Juan F. Bada Juarez
- Institute
of Bioengineering, School of Life Sciences, École Polytechnique Fédérale de Lausanne, CH-1015 Lausanne, Switzerland
| | - Matteo Dal Peraro
- Institute
of Bioengineering, School of Life Sciences, École Polytechnique Fédérale de Lausanne, CH-1015 Lausanne, Switzerland
| | - Sylvie Roke
- Laboratory
for Fundamental BioPhotonics (LBP), Institute of Bioengineering (IBI),
and Institute of Materials Science (IMX), School of Engineering (STI),
and Lausanne Centre for Ultrafast Science (LACUS), École Polytechnique Fédérale de Lausanne (EPFL), CH-1015 Lausanne, Switzerland
| |
Collapse
|
2
|
Mohapatra S, Teherpuria H, Mogurampelly S, Downton M, Kannam SK. Ionic flow through partially blocked nanopores. Phys Chem Chem Phys 2024; 26:26911-26920. [PMID: 39415632 DOI: 10.1039/d4cp02365j] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2024]
Abstract
Employing atomistic molecular dynamics simulations, we investigate the ionic conductivity mechanisms in a partially blocked nanopore containing a centrally positioned spherical constriction, exploring the effects of pore diameter, surface charge, and blockage size. Our results show that ionic mobilities are significantly influenced by the polarity of the surface charge and the size of the pore gap. Particularly, we observe ion-specific effects for K+ and Cl- ions based on their size and charge, especially in sub-nanometer pore gaps. Furthermore, we find that the current flow in partially blocked nanopores sensitively depends on the surface charges, consistent with the calculated free energy profiles. The percentage of the current drop is found to be correlated to the volume of the spherical constriction with the effects more pronounced when the sizes of the spherical blockage and nanopore are comparable.
Collapse
Affiliation(s)
- Sipra Mohapatra
- Polymer Electrolytes and Materials Group (PEMG), Department of Physics, Indian Institute of Technology Jodhpur, N.H. 62, Nagaur Road, Karwar, Jodhpur, Rajasthan 342030, India
| | - Hema Teherpuria
- Polymer Electrolytes and Materials Group (PEMG), Department of Physics, Indian Institute of Technology Jodhpur, N.H. 62, Nagaur Road, Karwar, Jodhpur, Rajasthan 342030, India
| | - Santosh Mogurampelly
- Polymer Electrolytes and Materials Group (PEMG), Department of Physics, Indian Institute of Technology Jodhpur, N.H. 62, Nagaur Road, Karwar, Jodhpur, Rajasthan 342030, India
| | - Matthew Downton
- National Computational Infrastructure, The Australian National University, Australia
| | - Sridhar Kumar Kannam
- Department of Mathematics, School of Science, Computing and Engineering Technologies, Swinburne University of Technology, Melbourne, Victoria 3122, Australia.
| |
Collapse
|
3
|
Sinha A, So H. Synthesis of chiral graphene structures and their comprehensive applications: a critical review. NANOSCALE HORIZONS 2024; 9:1855-1895. [PMID: 39171372 DOI: 10.1039/d4nh00021h] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/23/2024]
Abstract
From a molecular viewpoint, chirality is a crucial factor in biological processes. Enantiomers of a molecule have identical chemical and physical properties, but chiral molecules found in species exist in one enantiomer form throughout life, growth, and evolution. Chiral graphene materials have considerable potential for application in various domains because of their unique structural framework, properties, and controlled synthesis, including chiral creation, segregation, and transmission. This review article provides an in-depth analysis of the synthesis of chiral graphene materials reported over the past decade, including chiral nanoribbons, chiral tunneling, chiral dichroism, chiral recognition, and chiral transfer. The second segment focuses on the diverse applications of chiral graphene in biological engineering, electrochemical sensors, and photodetectors. Finally, we discuss research challenges and potential future uses, along with probable outcomes.
Collapse
Affiliation(s)
- Animesh Sinha
- Department of Mechanical Convergence Engineering, Hanyang University, Seoul 04763, South Korea.
| | - Hongyun So
- Department of Mechanical Convergence Engineering, Hanyang University, Seoul 04763, South Korea.
- Institute of Nano Science and Technology, Hanyang University, Seoul 04763, South Korea
| |
Collapse
|
4
|
Ali I, Ali MM, Liu Q, Hu L. Unraveling Clinical Glycoproteome by Integrating Affinity Enrichment with Nanopore Sequencing. Chembiochem 2024; 25:e202400419. [PMID: 39234982 DOI: 10.1002/cbic.202400419] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2024] [Revised: 06/28/2024] [Indexed: 09/06/2024]
Abstract
This prospect explores the integration of enrichment strategies with nanopore detection to advance clinical glycoproteomics. Glycoproteins, crucial for understanding biological processes, pose challenges due to their low abundance and structural diversity. Enrichment techniques using lectin affinity, boronate affinity, and hydrazide chemistry and especially molecular imprinted polymers may selectively and specifically isolate glycoproteins from complex samples, while nanopore technology enables label-free, real-time, and single-molecule analysis. This approach holds promise for disease-related glycosylation studies, biomarker discovery, personalized medicine, and streamlined clinical analysis. Standardization, optimization, and data analysis remain challenges, requiring interdisciplinary collaborations and technological advancements. Overall, this integration may offer transformative potential for clinical glycoproteomics and innovative diagnostic and therapeutic strategies.
Collapse
Affiliation(s)
- Irshad Ali
- State Key Laboratory of Digital Medical Engineering, Southeast University, Nanjing, China
| | - Muhammad Mujahid Ali
- State Key Laboratory of Digital Medical Engineering, Southeast University, Nanjing, China
- Center for Supramolecular Chemical Biology, State Key Laboratory of Supramolecular Structure and Materials, School of Life Sciences, Jilin University, Changchun, 130012, China
- Department of Biochemistry, Purdue University, West Lafayette, IN 47906, US
| | - Quanjun Liu
- State Key Laboratory of Digital Medical Engineering, Southeast University, Nanjing, China
| | - Lianghai Hu
- Center for Supramolecular Chemical Biology, State Key Laboratory of Supramolecular Structure and Materials, School of Life Sciences, Jilin University, Changchun, 130012, China
| |
Collapse
|
5
|
Zhang Y, Hu C, Liu R, He S, Yang J, Yao W, Li Y, Guo X. Protein nanopore-based sensors for public health analyte detection. J Mater Chem B 2024; 12:9845-9862. [PMID: 39258387 DOI: 10.1039/d4tb01149j] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/12/2024]
Abstract
High-throughput and label-free protein nanopore-based sensors are extensively used in DNA sequencing, single-protein analysis, molecular sensing and chemical catalysis with single channel recording. These technologies show great potential for identifying various harmful substances linked to public health by addressing the limitations of current portability and the speed of existing techniques. In this review, we provide an overview of the fundamental principles of nanopore sensing, with a focus on chemical modification and genetic engineering strategies aimed at enhancing the detection sensitivity and identification accuracy of protein nanopores. The engineered protein nanopores enable direct sensing, while the introduction of aptamers and substrates enables indirect sensing, translating the physical structure and chemical properties of analytes into readable signals. These scientific discoveries and engineering efforts have provided new prospects for detecting and monitoring trace hazardous substances.
Collapse
Affiliation(s)
- Yanhua Zhang
- Dongguan Key Laboratory of Public Health Laboratory Science, School of Public Health, Guangdong Medical University, Dongguan 523808, China.
| | - Chan Hu
- Dongguan Key Laboratory of Public Health Laboratory Science, School of Public Health, Guangdong Medical University, Dongguan 523808, China.
| | - Ronghui Liu
- School of Microelectronics, Southern University of Science and Technology, Shenzhen 518055, People's Republic of China.
| | - Shujun He
- Dongguan Key Laboratory of Public Health Laboratory Science, School of Public Health, Guangdong Medical University, Dongguan 523808, China.
| | - Jie Yang
- Dongguan Key Laboratory of Public Health Laboratory Science, School of Public Health, Guangdong Medical University, Dongguan 523808, China.
| | - Wen Yao
- Dongguan Key Laboratory of Public Health Laboratory Science, School of Public Health, Guangdong Medical University, Dongguan 523808, China.
| | - Yi Li
- School of Microelectronics, Southern University of Science and Technology, Shenzhen 518055, People's Republic of China.
| | - Xinrong Guo
- Dongguan Key Laboratory of Public Health Laboratory Science, School of Public Health, Guangdong Medical University, Dongguan 523808, China.
| |
Collapse
|
6
|
Niu H, Li MY, Gao Y, Li JG, Jiang J, Ying YL, Long YT. Direct mapping of tyrosine sulfation states in native peptides by nanopore. Nat Chem Biol 2024:10.1038/s41589-024-01734-x. [PMID: 39322788 DOI: 10.1038/s41589-024-01734-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2023] [Accepted: 08/19/2024] [Indexed: 09/27/2024]
Abstract
Sulfation is considered the most prevalent post-translational modification (PTM) on tyrosine; however, its importance is frequently undervalued due to difficulties in direct and unambiguous determination from phosphorylation. Here we present a sequence-independent strategy to directly map and quantify the tyrosine sulfation states in universal native peptides using an engineered protein nanopore. Molecular dynamics simulations and nanopore mutations reveal specific interactions between tyrosine sulfation and the engineered nanopore, dominating identification across diverse peptide sequences. We show a nanopore framework to discover tyrosine sulfation in unknown peptide fragments digested from a native protein and determine the sequence of the sulfated fragment based on current blockade enhancement induced by sulfation. Moreover, our method allows direct observation of peptide sulfation in ultra-low abundance, down to 1%, and distinguishes it from isobaric phosphorylation. This sequence-independent strategy suggests the potential of nanopore to explore specific PTMs in real-life samples and at the omics level.
Collapse
Affiliation(s)
- Hongyan Niu
- Molecular Sensing and Imaging Center, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing, China
- Chemistry and Biomedicine Innovation Center, Nanjing University, Nanjing, China
| | - Meng-Yin Li
- Molecular Sensing and Imaging Center, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing, China.
- Chemistry and Biomedicine Innovation Center, Nanjing University, Nanjing, China.
| | - Yan Gao
- Molecular Sensing and Imaging Center, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing, China
| | - Jun-Ge Li
- Molecular Sensing and Imaging Center, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing, China
| | - Jie Jiang
- Molecular Sensing and Imaging Center, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing, China
| | - Yi-Lun Ying
- Molecular Sensing and Imaging Center, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing, China
- Chemistry and Biomedicine Innovation Center, Nanjing University, Nanjing, China
| | - Yi-Tao Long
- Molecular Sensing and Imaging Center, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing, China.
| |
Collapse
|
7
|
Sauciuc A, Whittaker J, Tadema M, Tych K, Guskov A, Maglia G. Blobs form during the single-file transport of proteins across nanopores. Proc Natl Acad Sci U S A 2024; 121:e2405018121. [PMID: 39264741 PMCID: PMC11420176 DOI: 10.1073/pnas.2405018121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2024] [Accepted: 08/05/2024] [Indexed: 09/14/2024] Open
Abstract
The transport of biopolymers across nanopores is an important biological process currently under investigation for the rapid analysis of DNA and proteins. While the transport of DNA is generally understood, methods to induce unfolded protein translocation have only recently been discovered (Yu et al., 2023, Sauciuc et al., 2023). Here, we found that during electroosmotically driven translocation of polypeptides, blob-like structures typically form inside nanopores, often obstructing their transport and preventing addressing individual amino acids. This is in contrast with the electrophoretic transport of DNA, where the formation of such structures has not been reported. Comparisons between different nanopore sizes and shapes and modifications by different surface chemistries allowed formulating a mechanism for blob formation. We also show that single-file transport can be achieved by using 1) nanopores that have an entry and an internal diameter smaller than the persistence length of the polymer, 2) nanopores with a nonsticky (i.e., nonaromatic) inner surface, and 3) moderate translocation velocities. These experiments provide a basis for understanding polypeptide transport under confinement and for improving the design and engineering of nanopores for protein analysis.
Collapse
Affiliation(s)
- Adina Sauciuc
- Chemical Biology I, Groningen Biomolecular Sciences and Biotechnology Institute, University of Groningen, Groningen 9747 AG, The Netherlands
| | - Jacob Whittaker
- Chemical Biology I, Groningen Biomolecular Sciences and Biotechnology Institute, University of Groningen, Groningen 9747 AG, The Netherlands
| | - Matthijs Tadema
- Chemical Biology I, Groningen Biomolecular Sciences and Biotechnology Institute, University of Groningen, Groningen 9747 AG, The Netherlands
| | - Katarzyna Tych
- Chemical Biology I, Groningen Biomolecular Sciences and Biotechnology Institute, University of Groningen, Groningen 9747 AG, The Netherlands
| | - Albert Guskov
- Chemical Biology I, Groningen Biomolecular Sciences and Biotechnology Institute, University of Groningen, Groningen 9747 AG, The Netherlands
| | - Giovanni Maglia
- Chemical Biology I, Groningen Biomolecular Sciences and Biotechnology Institute, University of Groningen, Groningen 9747 AG, The Netherlands
| |
Collapse
|
8
|
He P, Wang H, Zhu A, Zhang Z, Sha J, Ni Z, Chen Y. Detection of Intrinsically Disordered Peptides by Biological Nanopore. Chem Asian J 2024; 19:e202400389. [PMID: 38865098 DOI: 10.1002/asia.202400389] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2024] [Revised: 06/03/2024] [Accepted: 06/11/2024] [Indexed: 06/13/2024]
Abstract
Intrinsically disordered protein regions (IDPRs) are pivotal in regulation of transcription and facilitation of signal transduction. Because of their multiple conformational states of structure, characterizing the highly flexible structures of IDPRs becomes challenging. Herein, we employed the wild-type (WT) aerolysin nanopore as a real-time biosensor for identification and monitoring of long peptides containing IDPRs. This sensor successfully identified three intrinsically disordered peptides, with the lengths up to 43 amino acids, by distinguishing the unique signatures of blockade current and duration time. The analysis of the binding constant revealed that interactions between the nanopore and peptides are critical for peptide translocation, which suggests that mechanisms beyond mere volume exclusion. Furthermore, we were able to compare the conformational stabilities of various IDPRs by examining the detailed current traces of blockade events. Our approach can detect the conformational changes of IDPR in a confined nanopore space. These insights broaden the understanding of peptide structural changes. The nanopore biosensor showed the potential to study the conformations change of IDPRs, IDPRs transmembrane interactions, and protein drug discovery.
Collapse
Affiliation(s)
- Pinyao He
- School of Mechanical Engineering, Southeast University, Nanjing, 211189, China
- Jiangsu Key Laboratory for Design and Manufacture of Micro-nano Biomedical Instruments, Southeast University, Nanjing, 211189, China
| | - Haiyan Wang
- School of Mechanical Engineering, Southeast University, Nanjing, 211189, China
- Jiangsu Key Laboratory for Design and Manufacture of Micro-nano Biomedical Instruments, Southeast University, Nanjing, 211189, China
- Engineering Research Center of New Light Sources Technology and Equipment, Ministry of Education, Southeast University, Nanjing, 211189, China
| | - Anqi Zhu
- School of Mechanical Engineering, Southeast University, Nanjing, 211189, China
- Jiangsu Key Laboratory for Design and Manufacture of Micro-nano Biomedical Instruments, Southeast University, Nanjing, 211189, China
| | - Zhenyu Zhang
- School of Mechanical Engineering, Southeast University, Nanjing, 211189, China
- Jiangsu Key Laboratory for Design and Manufacture of Micro-nano Biomedical Instruments, Southeast University, Nanjing, 211189, China
| | - Jingjie Sha
- School of Mechanical Engineering, Southeast University, Nanjing, 211189, China
- Jiangsu Key Laboratory for Design and Manufacture of Micro-nano Biomedical Instruments, Southeast University, Nanjing, 211189, China
| | - Zhonghua Ni
- School of Mechanical Engineering, Southeast University, Nanjing, 211189, China
- Jiangsu Key Laboratory for Design and Manufacture of Micro-nano Biomedical Instruments, Southeast University, Nanjing, 211189, China
| | - Yunfei Chen
- School of Mechanical Engineering, Southeast University, Nanjing, 211189, China
- Jiangsu Key Laboratory for Design and Manufacture of Micro-nano Biomedical Instruments, Southeast University, Nanjing, 211189, China
| |
Collapse
|
9
|
Li M, Wang J, Zhang C, Zhao X, Xiong Y, Cao Y, Wang D, Li X, Liang X, Qing G. Single-Molecule Identification and Quantification of Steviol Glycosides with a Deep Learning-Powered Nanopore Sensor. ACS NANO 2024; 18:25155-25169. [PMID: 39189792 DOI: 10.1021/acsnano.4c07038] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/28/2024]
Abstract
Steviol glycosides (SGs) are a class of high-potency noncalorie natural sweeteners made up of a common diterpenoid core and varying glycans. Thus, the diversity of glycans in composition, linkage, and isomerism results in the tremendous structural complexity of the SG family, which poses challenges for the precise identification and leads to the fact that SGs are frequently used in mixtures and their variances in biological activity remain largely unexplored. Here we show that a wild-type aerolysin nanopore can detect and discriminate diverse SG species through the modulable electro-osmotic flow effect at varied applied voltages. At low voltages, the neutral SG molecule was drawn and stuck in the pore entrance due to an energy barrier around R220 sites. The ensuing binding events enable the identification of the majority of SG species. Increasing the voltage can break the barrier and cause translocation events, allowing for the unambiguous identification of several pairs of SGs differing by only one hydroxyl group through recognition accumulation from multiple sensing regions and sites. Based on nanopore data of 15 SGs, a deep learning-based artificial intelligence (AI) model was created to process the individual blockage events, achieving the rapid, automated, and precise single-molecule identification and quantification of SGs in real samples. This work highlights the value of nanopore sensing for precise structural analysis of complex glycans-containing glycosides, as well as the potential for sensitive and rapid quality assurance analysis of glycoside products with the use of AI.
Collapse
Affiliation(s)
- Minmin Li
- State Key Laboratory of Medical Proteomics, National Chromatographic R. & A. Center, CAS Key Laboratory of Separation Science for Analytical Chemistry, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, P. R. China
| | - Jing Wang
- State Key Laboratory of Medical Proteomics, National Chromatographic R. & A. Center, CAS Key Laboratory of Separation Science for Analytical Chemistry, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, P. R. China
- University of Chinese Academy of Sciences, Beijing 100049, P. R. China
| | - Chen Zhang
- Jiangxi Provincial Key Laboratory for Pharmacodynamic Material Basis of Traditional Chinese Medicine, Ganjiang Chinese Medicine Innovation Center, Nanchang 330000, P. R. China
| | - Xinjia Zhao
- State Key Laboratory of Medical Proteomics, National Chromatographic R. & A. Center, CAS Key Laboratory of Separation Science for Analytical Chemistry, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, P. R. China
| | - Yuting Xiong
- State Key Laboratory of Medical Proteomics, National Chromatographic R. & A. Center, CAS Key Laboratory of Separation Science for Analytical Chemistry, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, P. R. China
- Dalian Lingshui Bay Laboratory, Dalian 116023, P. R. China
| | - Yuchen Cao
- State Key Laboratory of Medical Proteomics, National Chromatographic R. & A. Center, CAS Key Laboratory of Separation Science for Analytical Chemistry, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, P. R. China
- University of Chinese Academy of Sciences, Beijing 100049, P. R. China
| | - Dongdong Wang
- State Key Laboratory of Medical Proteomics, National Chromatographic R. & A. Center, CAS Key Laboratory of Separation Science for Analytical Chemistry, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, P. R. China
| | - Xiaonong Li
- Jiangxi Provincial Key Laboratory for Pharmacodynamic Material Basis of Traditional Chinese Medicine, Ganjiang Chinese Medicine Innovation Center, Nanchang 330000, P. R. China
| | - Xinmiao Liang
- State Key Laboratory of Medical Proteomics, National Chromatographic R. & A. Center, CAS Key Laboratory of Separation Science for Analytical Chemistry, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, P. R. China
- Jiangxi Provincial Key Laboratory for Pharmacodynamic Material Basis of Traditional Chinese Medicine, Ganjiang Chinese Medicine Innovation Center, Nanchang 330000, P. R. China
- University of Chinese Academy of Sciences, Beijing 100049, P. R. China
| | - Guangyan Qing
- State Key Laboratory of Medical Proteomics, National Chromatographic R. & A. Center, CAS Key Laboratory of Separation Science for Analytical Chemistry, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, P. R. China
- University of Chinese Academy of Sciences, Beijing 100049, P. R. China
| |
Collapse
|
10
|
Bhandari BK, Goldman N. A generalized protein identification method for novel and diverse sequencing technologies. NAR Genom Bioinform 2024; 6:lqae126. [PMID: 39296929 PMCID: PMC11409062 DOI: 10.1093/nargab/lqae126] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2024] [Revised: 08/01/2024] [Accepted: 09/03/2024] [Indexed: 09/21/2024] Open
Abstract
Protein sequencing is a rapidly evolving field with much progress towards the realization of a new generation of protein sequencers. The early devices, however, may not be able to reliably discriminate all 20 amino acids, resulting in a partial, noisy and possibly error-prone signature of a protein. Rather than achieving de novo sequencing, these devices may aim to identify target proteins by comparing such signatures to databases of known proteins. However, there are no broadly applicable methods for this identification problem. Here, we devise a hidden Markov model method to study the generalized problem of protein identification from noisy signature data. Based on a hypothetical sequencing device that can simulate several novel technologies, we show that on the human protein database (N = 20 181) our method has a good performance under many different operating conditions such as various levels of signal resolvability, different numbers of discriminated amino acids, sequence fragments, and insertion and deletion error rates. Our results demonstrate the possibility of protein identification with high accuracy on many early experimental devices. We anticipate our method to be applicable for a wide range of protein sequencing devices in the future.
Collapse
Affiliation(s)
- Bikash Kumar Bhandari
- European Molecular Biology Laboratory, European Bioinformatics Institute (EMBL-EBI), Wellcome Genome Campus, Hinxton, Cambridgeshire, CB10 1SD, UK
| | - Nick Goldman
- European Molecular Biology Laboratory, European Bioinformatics Institute (EMBL-EBI), Wellcome Genome Campus, Hinxton, Cambridgeshire, CB10 1SD, UK
| |
Collapse
|
11
|
Cobley JN. Exploring the unmapped cysteine redox proteoform landscape. Am J Physiol Cell Physiol 2024; 327:C844-C866. [PMID: 39099422 DOI: 10.1152/ajpcell.00152.2024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2024] [Revised: 07/16/2024] [Accepted: 07/16/2024] [Indexed: 08/06/2024]
Abstract
Cysteine redox proteoforms define the diverse molecular states that proteins with cysteine residues can adopt. A protein with one cysteine residue must adopt one of two binary proteoforms: reduced or oxidized. Their numbers scale: a protein with 10 cysteine residues must assume one of 1,024 proteoforms. Although they play pivotal biological roles, the vast cysteine redox proteoform landscape comprising vast numbers of theoretical proteoforms remains largely uncharted. Progress is hampered by a general underappreciation of cysteine redox proteoforms, their intricate complexity, and the formidable challenges that they pose to existing methods. The present review advances cysteine redox proteoform theory, scrutinizes methodological barriers, and elaborates innovative technologies for detecting unique residue-defined cysteine redox proteoforms. For example, chemistry-enabled hybrid approaches combining the strengths of top-down mass spectrometry (TD-MS) and bottom-up mass spectrometry (BU-MS) for systematically cataloguing cysteine redox proteoforms are delineated. These methods provide the technological means to map uncharted redox terrain. To unravel hidden redox regulatory mechanisms, discover new biomarkers, and pinpoint therapeutic targets by mining the theoretical cysteine redox proteoform space, a community-wide initiative termed the "Human Cysteine Redox Proteoform Project" is proposed. Exploring the cysteine redox proteoform landscape could transform current understanding of redox biology.
Collapse
Affiliation(s)
- James N Cobley
- School of Life Sciences, University of Dundee, Dundee, United Kingdom
| |
Collapse
|
12
|
Aksimentiev A. Thread, read, rewind, repeat: towards using nanopores for protein sequencing. Nature 2024; 633:533-534. [PMID: 39261683 DOI: 10.1038/d41586-024-02664-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/13/2024]
|
13
|
Motone K, Kontogiorgos-Heintz D, Wee J, Kurihara K, Yang S, Roote G, Fox OE, Fang Y, Queen M, Tolhurst M, Cardozo N, Jain M, Nivala J. Multi-pass, single-molecule nanopore reading of long protein strands. Nature 2024; 633:662-669. [PMID: 39261738 PMCID: PMC11410661 DOI: 10.1038/s41586-024-07935-7] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2023] [Accepted: 08/09/2024] [Indexed: 09/13/2024]
Abstract
The ability to sequence single protein molecules in their native, full-length form would enable a more comprehensive understanding of proteomic diversity. Current technologies, however, are limited in achieving this goal1,2. Here, we establish a method for the long-range, single-molecule reading of intact protein strands on a commercial nanopore sensor array. By using the ClpX unfoldase to ratchet proteins through a CsgG nanopore3,4, we provide single-molecule evidence that ClpX translocates substrates in two-residue steps. This mechanism achieves sensitivity to single amino acids on synthetic protein strands hundreds of amino acids in length, enabling the sequencing of combinations of single-amino-acid substitutions and the mapping of post-translational modifications, such as phosphorylation. To enhance classification accuracy further, we demonstrate the ability to reread individual protein molecules multiple times, and we explore the potential for highly accurate protein barcode sequencing. Furthermore, we develop a biophysical model that can simulate raw nanopore signals a priori on the basis of residue volume and charge, enhancing the interpretation of raw signal data. Finally, we apply these methods to examine full-length, folded protein domains for complete end-to-end analysis. These results provide proof of concept for a platform that has the potential to identify and characterize full-length proteoforms at single-molecule resolution.
Collapse
Affiliation(s)
- Keisuke Motone
- Paul. G. Allen School of Computer Science and Engineering, University of Washington, Seattle, WA, USA
- Department of Biotechnology, Graduate School of Engineering, Osaka University, Suita, Japan
| | | | - Jasmine Wee
- Paul. G. Allen School of Computer Science and Engineering, University of Washington, Seattle, WA, USA
| | - Kyoko Kurihara
- Paul. G. Allen School of Computer Science and Engineering, University of Washington, Seattle, WA, USA
| | - Sangbeom Yang
- Paul. G. Allen School of Computer Science and Engineering, University of Washington, Seattle, WA, USA
| | - Gwendolin Roote
- Paul. G. Allen School of Computer Science and Engineering, University of Washington, Seattle, WA, USA
| | - Oren E Fox
- Paul. G. Allen School of Computer Science and Engineering, University of Washington, Seattle, WA, USA
| | - Yishu Fang
- Paul. G. Allen School of Computer Science and Engineering, University of Washington, Seattle, WA, USA
| | - Melissa Queen
- Paul. G. Allen School of Computer Science and Engineering, University of Washington, Seattle, WA, USA
| | - Mattias Tolhurst
- Molecular Engineering and Science Institute, University of Washington, Seattle, WA, USA
| | - Nicolas Cardozo
- Molecular Engineering and Science Institute, University of Washington, Seattle, WA, USA
| | - Miten Jain
- Department of Bioengineering, Department of Physics, Northeastern University, Boston, MA, USA
| | - Jeff Nivala
- Paul. G. Allen School of Computer Science and Engineering, University of Washington, Seattle, WA, USA.
- Molecular Engineering and Science Institute, University of Washington, Seattle, WA, USA.
| |
Collapse
|
14
|
Liu W, Zhu Q, Yang CN, Fu YH, Zhang JC, Li MY, Yang ZL, Xin KL, Ma J, Winterhalter M, Ying YL, Long YT. Single-molecule sensing inside stereo- and regio-defined hetero-nanopores. NATURE NANOTECHNOLOGY 2024:10.1038/s41565-024-01721-2. [PMID: 39164412 DOI: 10.1038/s41565-024-01721-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Subscribe] [Scholar Register] [Received: 03/08/2023] [Accepted: 06/17/2024] [Indexed: 08/22/2024]
Abstract
Heteromeric pore-forming proteins often contain recognition patterns or stereospecific selection filters. However, the construction of heteromeric pore-forming proteins for single-molecule sensing is challenging due to the uncontrollability of producing position isomers and difficulties in purification of regio-defined products. To overcome these preparation obstacles, we present an in situ strategy involving single-molecule chemical modification of a heptameric pore-forming protein to build a stereo- and regio-specific heteromeric nanopore (hetero-nanopore) with a subunit stoichiometric ratio of 3:4. The steric hindrance inherent in the homo-nanopore of K238C aerolysin directs the stereo- and regio-selective modification of maleimide derivatives. Our method utilizes real-time ionic current recording to facilitate controlled voltage manipulation for stoichiometric modification and position-based side-isomer removal. Single-molecule experiments and all-atom molecular dynamics simulations revealed that the hetero-nanopore features an asymmetric stereo- and regio-defined residue structure. The hetero-nanopore produced was characterized by mass spectrometry and single-particle cryogenic electron microscopy. In a proof-of-concept single-molecule sensing experiment, the hetero-nanopore exhibited 95% accuracy for label-free discrimination of four peptide stereoisomers with single-amino-acid structural and chiral differences in the mixtures. The customized hetero-nanopores could advance single-molecule sensing.
Collapse
Affiliation(s)
- Wei Liu
- School of Chemistry and Chemical Engineering, Nanjing University, Nanjing, China
- Molecular Sensing and Imaging Center, Nanjing University, Nanjing, China
| | - Qiang Zhu
- School of Chemistry and Chemical Engineering, Nanjing University, Nanjing, China
| | - Chao-Nan Yang
- School of Chemistry and Chemical Engineering, Nanjing University, Nanjing, China
- Molecular Sensing and Imaging Center, Nanjing University, Nanjing, China
| | - Ying-Huan Fu
- School of Chemistry and Chemical Engineering, Nanjing University, Nanjing, China
- Molecular Sensing and Imaging Center, Nanjing University, Nanjing, China
| | - Ji-Chang Zhang
- School of Chemistry and Chemical Engineering, Nanjing University, Nanjing, China
- Molecular Sensing and Imaging Center, Nanjing University, Nanjing, China
| | - Meng-Yin Li
- School of Chemistry and Chemical Engineering, Nanjing University, Nanjing, China
- Molecular Sensing and Imaging Center, Nanjing University, Nanjing, China
- Chemistry and Biomedicine Innovation Center, Nanjing University, Nanjing, China
| | - Zhong-Lin Yang
- School of Chemistry and Chemical Engineering, Nanjing University, Nanjing, China
| | - Kai-Li Xin
- School of Chemistry and Chemical Engineering, Nanjing University, Nanjing, China
- Molecular Sensing and Imaging Center, Nanjing University, Nanjing, China
| | - Jing Ma
- School of Chemistry and Chemical Engineering, Nanjing University, Nanjing, China
| | | | - Yi-Lun Ying
- School of Chemistry and Chemical Engineering, Nanjing University, Nanjing, China.
- Molecular Sensing and Imaging Center, Nanjing University, Nanjing, China.
- Chemistry and Biomedicine Innovation Center, Nanjing University, Nanjing, China.
| | - Yi-Tao Long
- School of Chemistry and Chemical Engineering, Nanjing University, Nanjing, China
- Molecular Sensing and Imaging Center, Nanjing University, Nanjing, China
| |
Collapse
|
15
|
Cieśla M, Dybiec B, Krasowska M, Siwy Z, Strzelewicz A. Numerical Modeling of Anisotropic Particle Diffusion through a Cylindrical Channel. Molecules 2024; 29:3795. [PMID: 39202873 PMCID: PMC11356997 DOI: 10.3390/molecules29163795] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2024] [Revised: 07/23/2024] [Accepted: 07/26/2024] [Indexed: 09/03/2024] Open
Abstract
The transport of molecules and particles through single pores is the basis of biological processes, including DNA and protein sequencing. As individual objects pass through a pore, they cause a transient change in the current that can be correlated with the object size, surface charge, and even chemical properties. The majority of experiments and modeling have been performed with spherical objects, while much less is known about the transport characteristics of aspherical particles, which would act as a model system, for example, for proteins and bacteria. The transport kinetics of aspherical objects is an especially important, yet understudied, problem in nanopore analytics. Here, using the Wiener process, we present a simplified model of the diffusion of rod-shaped particles through a cylindrical pore, and apply it to understand the translation and rotation of the particles as they pass through the pore. Specifically, we analyze the influence of the particles' geometrical characteristics on the effective diffusion type, the first passage time distribution, and the particles' orientation in the pore. Our model shows that thicker particles pass through the channel slower than thinner ones, while their lengths do not affect the passage time. We also demonstrate that both spherical and rod-shaped particles undergo normal diffusion, and the first passage time distribution follows an exponential asymptotics. The model provides guidance on how the shape of the particle can be modified to achieve an optimal passage time.
Collapse
Affiliation(s)
- Michał Cieśla
- Institute of Theoretical Physics and Mark Kac Center for Complex Systems Research, Jagiellonian University, ul. St. Łojasiewicza 11, 30-348 Kraków, Poland;
| | - Bartłomiej Dybiec
- Institute of Theoretical Physics and Mark Kac Center for Complex Systems Research, Jagiellonian University, ul. St. Łojasiewicza 11, 30-348 Kraków, Poland;
| | - Monika Krasowska
- Faculty of Chemistry, Silesian University of Technology, Strzody 9, 44-100 Gliwice, Poland; (M.K.); (A.S.)
| | - Zuzanna Siwy
- Department of Physics and Astronomy, University of California, Irvine, CA 92697, USA;
| | - Anna Strzelewicz
- Faculty of Chemistry, Silesian University of Technology, Strzody 9, 44-100 Gliwice, Poland; (M.K.); (A.S.)
| |
Collapse
|
16
|
Sheng C, Gao X, Ding Y, Guo M. Water-Soluble Luminescent Polymers with Room-Temperature Phosphorescence Based on the α-Amino Acids. Macromol Rapid Commun 2024; 45:e2400201. [PMID: 38747029 DOI: 10.1002/marc.202400201] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2024] [Revised: 05/04/2024] [Indexed: 05/24/2024]
Abstract
Nonconventional luminophores have received increasing attention, owing to their fundamental importance, advantages in outstanding biocompatibility, easy preparation, environmental friendliness, and potential applications in sensing, imaging, and encryption. Purely organic molecules with outstanding fluorescence and room-temperature phosphorescence (RTP) have emerged as a new library of benign afterglow agents. However, the cost, toxicity, high reactivity, and poor stability of materials also limit their practical applications. Therefore, some natural products, synthetic compounds, and biomolecules have entered horizons of people. The as-designed exhibits sky blue and green fluorescence emission and green RTP emission (a lifetime of 343 ms and phosphorescence quantum of 15.3%) under air condition. This study presents an organic fluorescence for biological imaging and RTP for anti-counterfeiting and encryption based on amino acids, maleic anhydride and 4-vinylbenzenesulfonic acid sodium salt hydrate. This study provides a strategy for nonconventional luminophores in designing and synthesizing pure organic RTP materials.
Collapse
Affiliation(s)
- Chengju Sheng
- Southwest University, School of Chemistry and Chemical Engineering, Chongqing, 400715, P. R. China
| | - Xiujuan Gao
- Southwest University, School of Chemistry and Chemical Engineering, Chongqing, 400715, P. R. China
| | - Yanjun Ding
- Southwest University, School of Chemistry and Chemical Engineering, Chongqing, 400715, P. R. China
| | - Mingming Guo
- Southwest University, School of Chemistry and Chemical Engineering, Chongqing, 400715, P. R. China
| |
Collapse
|
17
|
Searle BC. Nanopore Protein Sequencing Achieves Significant New Milestones. Clin Chem 2024; 70:1006-1008. [PMID: 38593193 DOI: 10.1093/clinchem/hvae041] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2023] [Accepted: 03/04/2024] [Indexed: 04/11/2024]
Affiliation(s)
- Brian C Searle
- Department of Biomedical Informatics, The Ohio State University Medical Center, Columbus, OH, United States
- Pelotonia Institute for Immuno-Oncology, The Ohio State University Comprehensive Cancer Center, Columbus, OH, United States
- Department of Chemistry and Biochemistry, The Ohio State University, Columbus, OH, United States
| |
Collapse
|
18
|
Mayse L, Wang Y, Ahmad M, Movileanu L. Real-Time Measurement of a Weak Interaction of a Transcription Factor Motif with a Protein Hub at Single-Molecule Precision. ACS NANO 2024; 18:20468-20481. [PMID: 39049818 PMCID: PMC11308778 DOI: 10.1021/acsnano.4c04857] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/12/2024] [Revised: 07/17/2024] [Accepted: 07/22/2024] [Indexed: 07/27/2024]
Abstract
Transcription factors often interact with other protein cofactors, regulating gene expression. Direct detection of these brief events using existing technologies remains challenging due to their transient nature. In addition, intrinsically disordered domains, intranuclear location, and lack of cofactor-dependent active sites of transcription factors further complicate the quantitative analysis of these critical processes. Here, we create a genetically encoded label-free sensor to identify the interaction between a motif of the MYC transcription factor, a primary cancer driver, and WDR5, a chromatin-associated protein hub. Using an engineered nanopore equipped with this motif, WDR5 is probed through reversible captures and releases in a one-by-one and time-resolved fashion. Our single-molecule kinetic measurements indicate a weak-affinity interaction arising from a relatively slow complex association and a fast dissociation of WDR5 from the tethered motif. Further, we validate this subtle interaction by determinations in an ensemble using single nanodisc-wrapped nanopores immobilized on a biolayer interferometry sensor. This study also provides the proof-of-concept for a sensor that reveals unique recognition signatures of different protein binding sites. Our foundational work may be further developed to produce sensing elements for analytical proteomics and cancer nanomedicine.
Collapse
Affiliation(s)
- Lauren
A. Mayse
- Department
of Physics, Syracuse University, 201 Physics Building, Syracuse, New York 13244, United States
- Department
of Biomedical and Chemical Engineering, Syracuse University, 329 Link Hall, Syracuse, New York 13244, United States
| | - Yazheng Wang
- Department
of Physics, Syracuse University, 201 Physics Building, Syracuse, New York 13244, United States
- Department
of Biomedical and Chemical Engineering, Syracuse University, 329 Link Hall, Syracuse, New York 13244, United States
| | - Mohammad Ahmad
- Department
of Physics, Syracuse University, 201 Physics Building, Syracuse, New York 13244, United States
| | - Liviu Movileanu
- Department
of Physics, Syracuse University, 201 Physics Building, Syracuse, New York 13244, United States
- Department
of Biomedical and Chemical Engineering, Syracuse University, 329 Link Hall, Syracuse, New York 13244, United States
- Department
of Biology, Syracuse University, 114 Life Sciences Complex, Syracuse, New York 13244, United States
- The
BioInspired Institute, Syracuse University, Syracuse, New York 13244, United States
| |
Collapse
|
19
|
Mehrafrooz B, Yu L, Pandey L, Siwy ZS, Wanunu M, Aksimentiev A. Electro-osmotic Flow Generation via a Sticky Ion Action. ACS NANO 2024; 18:17521-17533. [PMID: 38832758 PMCID: PMC11233251 DOI: 10.1021/acsnano.4c00829] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/05/2024]
Abstract
Selective transport of ions through nanometer-sized pores is fundamental to cell biology and central to many technological processes such as water desalination and electrical energy storage. Conventional methods for generating ion selectivity include placement of fixed electrical charges at the inner surface of a nanopore through either point mutations in a protein pore or chemical treatment of a solid-state nanopore surface, with each nanopore type requiring a custom approach. Here, we describe a general method for transforming a nanoscale pore into a highly selective, anion-conducting channel capable of generating a giant electro-osmotic effect. Our molecular dynamics simulations and reverse potential measurements show that exposure of a biological nanopore to high concentrations of guanidinium chloride renders the nanopore surface positively charged due to transient binding of guanidinium cations to the protein surface. A comparison of four biological nanopores reveals the relationship between ion selectivity, nanopore shape, composition of the nanopore surface, and electro-osmotic flow. Guanidinium ions are also found to produce anion selectivity and a giant electro-osmotic flow in solid-state nanopores via the same mechanism. Our sticky-ion approach to generate electro-osmotic flow can have numerous applications in controlling molecular transport at the nanoscale and for detection, identification, and sequencing of individual proteins.
Collapse
Affiliation(s)
- Behzad Mehrafrooz
- Center for Biophysics and Quantitative Biology, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801, United States
- Beckman Institute for Advanced Science and Technology, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801, United States
- Department of Physics, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801, United States
| | - Luning Yu
- Department of Physics, Northeastern University, Boston, Massachusetts 02115, United States
| | - Laxmi Pandey
- Department of Physics, Northeastern University, Boston, Massachusetts 02115, United States
| | - Zuzanna S Siwy
- Department of Physics, University of California at Irvine, Irvine, California 92697, United States
| | - Meni Wanunu
- Department of Physics, Northeastern University, Boston, Massachusetts 02115, United States
- Department of Bioengineering, Northeastern University, Boston, Massachusetts 02115, United States
| | - Aleksei Aksimentiev
- Center for Biophysics and Quantitative Biology, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801, United States
- Beckman Institute for Advanced Science and Technology, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801, United States
- Department of Physics, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801, United States
| |
Collapse
|
20
|
Ju H, Cheng L, Li M, Mei K, He S, Jia C, Guo X. Single-Molecule Electrical Profiling of Peptides and Proteins. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2024; 11:e2401877. [PMID: 38639403 PMCID: PMC11267281 DOI: 10.1002/advs.202401877] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/22/2024] [Revised: 04/03/2024] [Indexed: 04/20/2024]
Abstract
In recent decades, there has been a significant increase in the application of single-molecule electrical analysis platforms in studying proteins and peptides. These advanced analysis methods have the potential for deep investigation of enzymatic working mechanisms and accurate monitoring of dynamic changes in protein configurations, which are often challenging to achieve in ensemble measurements. In this work, the prominent research progress in peptide and protein-related studies are surveyed using electronic devices with single-molecule/single-event sensitivity, including single-molecule junctions, single-molecule field-effect transistors, and nanopores. In particular, the successful commercial application of nanopores in DNA sequencing has made it one of the most promising techniques in protein sequencing at the single-molecule level. From single peptides to protein complexes, the correlation between their electrical characteristics, structures, and biological functions is gradually being established. This enables to distinguish different molecular configurations of these biomacromolecules through real-time electrical monitoring of their life activities, significantly improving the understanding of the mechanisms underlying various life processes.
Collapse
Affiliation(s)
- Hongyu Ju
- School of Pharmaceutical Science and TechnologyTianjin UniversityTianjin300072P. R. China
- Center of Single‐Molecule SciencesInstitute of Modern OpticsFrontiers Science Center for New Organic MatterTianjin Key Laboratory of Microscale Optical Information Science and TechnologyCollege of Electronic Information and Optical EngineeringNankai UniversityTianjin300350P. R. China
| | - Li Cheng
- Center of Single‐Molecule SciencesInstitute of Modern OpticsFrontiers Science Center for New Organic MatterTianjin Key Laboratory of Microscale Optical Information Science and TechnologyCollege of Electronic Information and Optical EngineeringNankai UniversityTianjin300350P. R. China
| | - Mengmeng Li
- Center of Single‐Molecule SciencesInstitute of Modern OpticsFrontiers Science Center for New Organic MatterTianjin Key Laboratory of Microscale Optical Information Science and TechnologyCollege of Electronic Information and Optical EngineeringNankai UniversityTianjin300350P. R. China
| | - Kunrong Mei
- School of Pharmaceutical Science and TechnologyTianjin UniversityTianjin300072P. R. China
| | - Suhang He
- Center of Single‐Molecule SciencesInstitute of Modern OpticsFrontiers Science Center for New Organic MatterTianjin Key Laboratory of Microscale Optical Information Science and TechnologyCollege of Electronic Information and Optical EngineeringNankai UniversityTianjin300350P. R. China
| | - Chuancheng Jia
- Center of Single‐Molecule SciencesInstitute of Modern OpticsFrontiers Science Center for New Organic MatterTianjin Key Laboratory of Microscale Optical Information Science and TechnologyCollege of Electronic Information and Optical EngineeringNankai UniversityTianjin300350P. R. China
| | - Xuefeng Guo
- Center of Single‐Molecule SciencesInstitute of Modern OpticsFrontiers Science Center for New Organic MatterTianjin Key Laboratory of Microscale Optical Information Science and TechnologyCollege of Electronic Information and Optical EngineeringNankai UniversityTianjin300350P. R. China
- Beijing National Laboratory for Molecular SciencesNational Biomedical Imaging CenterCollege of Chemistry and Molecular EngineeringPeking UniversityBeijing100871P. R. China
| |
Collapse
|
21
|
Ratinho L, Bacri L, Thiebot B, Cressiot B, Pelta J. Identification and Detection of a Peptide Biomarker and Its Enantiomer by Nanopore. ACS CENTRAL SCIENCE 2024; 10:1167-1178. [PMID: 38947203 PMCID: PMC11212137 DOI: 10.1021/acscentsci.4c00020] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/04/2024] [Revised: 04/24/2024] [Accepted: 04/25/2024] [Indexed: 07/02/2024]
Abstract
Until now, no fast, low-cost, and direct technique exists to identify and detect protein/peptide enantiomers, because their mass and charge are identical. They are essential since l- and d-protein enantiomers have different biological activities due to their unique conformations. Enantiomers have potential for diagnostic purposes for several diseases or normal bodily functions but have yet to be utilized. This work uses an aerolysin nanopore and electrical detection to identify vasopressin enantiomers, l-AVP and d-AVP, associated with different biological processes and pathologies. We show their identification according to their conformations, in either native or reducing conditions, using their specific electrical signature. To improve their identification, we used a principal component analysis approach to define the most relevant electrical parameters for their identification. Finally, we used the Monte Carlo prediction to assign each event type to a specific l- or d-AVP enantiomer.
Collapse
Affiliation(s)
- Laura Ratinho
- Université
Paris-Saclay, Univ Evry, CY Cergy Paris Université, CNRS, LAMBE, 95000, Cergy, France
| | - Laurent Bacri
- Université
Paris-Saclay, Univ Evry, CY Cergy Paris Université, CNRS, LAMBE, 91025, Evry-Courcouronnes, France
| | - Bénédicte Thiebot
- Université
Paris-Saclay, Univ Evry, CY Cergy Paris Université, CNRS, LAMBE, 95000, Cergy, France
| | - Benjamin Cressiot
- Université
Paris-Saclay, Univ Evry, CY Cergy Paris Université, CNRS, LAMBE, 95000, Cergy, France
| | - Juan Pelta
- Université
Paris-Saclay, Univ Evry, CY Cergy Paris Université, CNRS, LAMBE, 91025, Evry-Courcouronnes, France
| |
Collapse
|
22
|
Huster D, Maiti S, Herrmann A. Phospholipid Membranes as Chemically and Functionally Tunable Materials. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2024; 36:e2312898. [PMID: 38456771 DOI: 10.1002/adma.202312898] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/29/2023] [Revised: 02/12/2024] [Indexed: 03/09/2024]
Abstract
The sheet-like lipid bilayer is the fundamental structural component of all cell membranes. Its building blocks are phospholipids and cholesterol. Their amphiphilic structure spontaneously leads to the formation of a bilayer in aqueous environment. Lipids are not just structural elements. Individual lipid species, the lipid membrane structure, and lipid dynamics influence and regulate membrane protein function. An exciting field is emerging where the membrane-associated material properties of different bilayer systems are used in designing innovative solutions for widespread applications across various fields, such as the food industry, cosmetics, nano- and biomedicine, drug storage and delivery, biotechnology, nano- and biosensors, and computing. Here, the authors summarize what is known about how lipids determine the properties and functions of biological membranes and how this has been or can be translated into innovative applications. Based on recent progress in the understanding of membrane structure, dynamics, and physical properties, a perspective is provided on how membrane-controlled regulation of protein functions can extend current applications and even offer new applications.
Collapse
Affiliation(s)
- Daniel Huster
- Institute of Medical Physics and Biophysics, University of Leipzig, Härtelstr. 16/18, D-04107, Leipzig, Germany
| | - Sudipta Maiti
- Department of Chemical Sciences, Tata Institute of Fundamental Research, Homi Bhabha Road, Colaba, Mumbai, 400 005, India
| | - Andreas Herrmann
- Freie Universität Berlin, Department Chemistry and Biochemistry, SupraFAB, Altensteinstr. 23a, D-14195, Berlin, Germany
| |
Collapse
|
23
|
Ohayon S, Taib L, Verma NC, Iarossi M, Bhattacharya I, Marom B, Huttner D, Meller A. Full-Length Single Protein Molecules Tracking and Counting in Thin Silicon Channels. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2024; 36:e2314319. [PMID: 38461367 DOI: 10.1002/adma.202314319] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/29/2023] [Revised: 02/25/2024] [Indexed: 03/11/2024]
Abstract
Emerging single-molecule protein sensing techniques are ushering in a transformative era in biomedical research. Nevertheless, challenges persist in realizing ultra-fast full-length protein sensing, including loss of molecular integrity due to protein fragmentation, biases introduced by antibodies affinity, identification of proteoforms, and low throughputs. Here, a single-molecule method for parallel protein separation and tracking is introduced, yielding multi-dimensional molecular properties used for their identification. Proteins are tagged by chemo-selective dual amino-acid specific labels and are electrophoretically separated by their mass/charge in custom-designed thin silicon channel with subwavelength height. This approach allows analysis of thousands of individual proteins within a few minutes by tracking their motion during the migration. The power of the method is demonstrated by quantifying a cytokine panel for host-response discrimination between viral and bacterial infections. Moreover, it is shown that two clinically-relevant splice isoforms of Vascular endothelial growth factor (VEGF) can be accurately quantified from human serum samples. Being non-destructive and compatible with full-length intact proteins, this method opens up ways for antibody-free single-protein molecule quantification.
Collapse
Affiliation(s)
- Shilo Ohayon
- Department of Biomedical Engineering, Technion-IIT, Haifa, 3200003, Israel
| | - Liran Taib
- Department of Biomedical Engineering, Technion-IIT, Haifa, 3200003, Israel
| | | | - Marzia Iarossi
- Department of Biomedical Engineering, Technion-IIT, Haifa, 3200003, Israel
| | - Ivy Bhattacharya
- Department of Biomedical Engineering, Technion-IIT, Haifa, 3200003, Israel
| | - Barak Marom
- Department of Biomedical Engineering, Technion-IIT, Haifa, 3200003, Israel
| | - Diana Huttner
- Department of Biomedical Engineering, Technion-IIT, Haifa, 3200003, Israel
| | - Amit Meller
- Department of Biomedical Engineering, Technion-IIT, Haifa, 3200003, Israel
- Russell Berrie Nanotechnology Institute, Technion-IIT, Haifa, 3200003, Israel
| |
Collapse
|
24
|
Xie Z, Chen Z, Li A, Huang B, Guo C, Zhai Y. Specific Small-Molecule Detection Using Designed Nucleic Acid Nanostructure Carriers and Nanopores. Anal Chem 2024; 96:8528-8533. [PMID: 38728651 DOI: 10.1021/acs.analchem.4c00475] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/12/2024]
Abstract
In the realm of nanopore sensor technology, an enduring challenge lies in achieving the discerning detection of small biomolecules with a sufficiently high signal-to-noise ratio. This study introduces a method for reliably quantifying the concentration of target small molecules, utilizing tetrahedral DNA nanostructures as surrogates for the captured molecules through a magnetic-bead-based competition substitution mechanism. Magnetic Fe3O4-DNA tetrahedron nanoparticles (MNPs) are incorporated into a nanopore electrochemical system for small-molecule sensing. In the presence of the target, the DNA tetrahedron, featuring an aptamer tail acting as a molecular carrier, detaches from the MNPs due to aptamer deformation. Following removal of the MNPs, the DNA tetrahedron bound to the target traversed the nanopore by applying a positive potential. This approach exhibits various advantages, including heightened sensitivity, selectivity, an improved signal-to-noise ratio (SNR), and robust anti-interference capabilities. Our findings demonstrate that this innovative methodology has the potential to significantly enhance the sensing of various small-molecule targets by nanopores, thereby advancing the sensitivity and dynamic range. This progress holds promise for the development of precise clinical diagnostic tools.
Collapse
Affiliation(s)
- Zhipeng Xie
- The Institute for Advanced Studies, Wuhan University, Wuhan 430072, Hubei, P. R. China
| | - Zihao Chen
- The Institute for Advanced Studies, Wuhan University, Wuhan 430072, Hubei, P. R. China
| | - Aijia Li
- The Institute for Advanced Studies, Wuhan University, Wuhan 430072, Hubei, P. R. China
| | - Bing Huang
- Key Laboratory of Analytical Chemistry for Biology and Medicine (Ministry of Education), College of Chemistry and Molecular Sciences, Wuhan University, Wuhan 430072, Hubei, P. R. China
| | - Cunlan Guo
- Key Laboratory of Analytical Chemistry for Biology and Medicine (Ministry of Education), College of Chemistry and Molecular Sciences, Wuhan University, Wuhan 430072, Hubei, P. R. China
| | - Yueming Zhai
- The Institute for Advanced Studies, Wuhan University, Wuhan 430072, Hubei, P. R. China
| |
Collapse
|
25
|
Zhou W, Guo Y, Guo W, Qiu H. High-Resolution and Low-Noise Single-Molecule Sensing with Bio-Inspired Solid-State Nanopores. J Phys Chem Lett 2024; 15:5556-5563. [PMID: 38752895 DOI: 10.1021/acs.jpclett.4c00615] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/24/2024]
Abstract
Solid-state nanopores have been extensively explored as single-molecule sensors, bearing the potential for the sequencing of DNA. Although they offer advantages in terms of high mechanical robustness, tunable geometry, and compatibility with existing semiconductor fabrication techniques in comparison with their biological counterparts, efforts to sequence DNA with these nanopores have been hampered by insufficient spatial resolution and high noise in the measured ionic current signal. Here we show that these limitations can be overcome by the use of solid-state nanopores featuring a thin, narrow constriction as the sensing region, inspired by biological protein nanopores that have achieved notable success in DNA sequencing. Our extensive molecular dynamics simulations show that these bio-inspired nanopores can provide high spatial resolution equivalent to 2D material nanopores and, meanwhile, significantly inhibit noise levels. A theoretical model is also provided to assess the performance of the bio-inspired nanopore, which could guide its design and optimization.
Collapse
Affiliation(s)
- Wanqi Zhou
- State Key Laboratory of Mechanics and Control for Aerospace Structures and Key Laboratory for Intelligent Nano Materials and Devices of MOE, Institute of Nano Science, Nanjing University of Aeronautics and Astronautics, Nanjing 210016, China
| | - Yufeng Guo
- State Key Laboratory of Mechanics and Control for Aerospace Structures and Key Laboratory for Intelligent Nano Materials and Devices of MOE, Institute of Nano Science, Nanjing University of Aeronautics and Astronautics, Nanjing 210016, China
| | - Wanlin Guo
- State Key Laboratory of Mechanics and Control for Aerospace Structures and Key Laboratory for Intelligent Nano Materials and Devices of MOE, Institute of Nano Science, Nanjing University of Aeronautics and Astronautics, Nanjing 210016, China
| | - Hu Qiu
- State Key Laboratory of Mechanics and Control for Aerospace Structures and Key Laboratory for Intelligent Nano Materials and Devices of MOE, Institute of Nano Science, Nanjing University of Aeronautics and Astronautics, Nanjing 210016, China
| |
Collapse
|
26
|
Lu W, Zhao X, Li M, Li Y, Zhang C, Xiong Y, Li J, Zhou H, Ye X, Li X, Wang J, Liang X, Qing G. Precise Structural Analysis of Neutral Glycans Using Aerolysin Mutant T240R Nanopore. ACS NANO 2024; 18:12412-12426. [PMID: 38693619 DOI: 10.1021/acsnano.4c01571] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/03/2024]
Abstract
Glycans play vital roles in nearly all life processes of multicellular organisms, and understanding these activities is inseparable from elucidating the biological significance of glycans. However, glycan research has lagged behind that of DNA and protein due to the challenges posed by structural heterogeneity and isomerism (i.e., structures with equal molecular weights) the lack of high-efficiency structural analysis techniques. Nanopore technology has emerged as a sensitive single-molecule biosensor, shining a light on glycan analysis. However, a significant number of glycans are small and uncharged, making it challenging to elicit identifiable nanopore signals. Here we introduce a R-binaphthyl tag into glycans, which enhances the cation-π interaction between the derivatized glycan molecules and the nanopore interface, enabling the detection of neutral glycans with an aerolysin nanopore. This approach allows for the distinction of di-, tri-, and tetrasaccharides with monosaccharide resolution and has the potential for group discrimination, the monitoring of enzymatic transglycosylation reactions. Notably, the aerolysin mutant T240R achieves unambiguous identification of six disaccharide isomers, trisaccharide and tetrasaccharide linkage isomers. Molecular docking simulations reveal that multiple noncovalent interactions occur between residues R282, K238, and R240 and the glycans and R-binaphthyl tag, significantly slowing down their translocation across the nanopore. Importantly, we provide a demonstration of the kinetic translocation process of neutral glycan isomers, establishing a solid theoretical foundation for glycan nanopore analysis. The development of our technology could promote the analysis of glycan structural isomers and has the potential for nanopore-based glycan structural determination and sequencing.
Collapse
Affiliation(s)
- Wenqi Lu
- State Key Laboratory of Medical Proteomics, National Chromatographic R. & A. Center, CAS Key Laboratory of Separation Science for Analytical Chemistry, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, P. R. China
- University of Chinese Academy of Sciences, Beijing 100049, P. R. China
| | - Xinjia Zhao
- State Key Laboratory of Medical Proteomics, National Chromatographic R. & A. Center, CAS Key Laboratory of Separation Science for Analytical Chemistry, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, P. R. China
| | - Minmin Li
- State Key Laboratory of Medical Proteomics, National Chromatographic R. & A. Center, CAS Key Laboratory of Separation Science for Analytical Chemistry, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, P. R. China
| | - Yuting Li
- Jiangxi Provincial Key Laboratory for Pharmacodynamic Material Basis of Traditional Chinese Medicine, Ganjiang Chinese Medicine Innovation Center, Nanchang 330000, P. R. China
| | - Chen Zhang
- Jiangxi Provincial Key Laboratory for Pharmacodynamic Material Basis of Traditional Chinese Medicine, Ganjiang Chinese Medicine Innovation Center, Nanchang 330000, P. R. China
| | - Yuting Xiong
- State Key Laboratory of Medical Proteomics, National Chromatographic R. & A. Center, CAS Key Laboratory of Separation Science for Analytical Chemistry, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, P. R. China
| | - Jiaqi Li
- CAS Key Laboratory of Separation Science for Analytical Chemistry, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, P. R. China
| | - Han Zhou
- Jiangxi Provincial Key Laboratory for Pharmacodynamic Material Basis of Traditional Chinese Medicine, Ganjiang Chinese Medicine Innovation Center, Nanchang 330000, P. R. China
| | - Xianlong Ye
- Jiangxi Provincial Key Laboratory for Pharmacodynamic Material Basis of Traditional Chinese Medicine, Ganjiang Chinese Medicine Innovation Center, Nanchang 330000, P. R. China
| | - Xiaonong Li
- Jiangxi Provincial Key Laboratory for Pharmacodynamic Material Basis of Traditional Chinese Medicine, Ganjiang Chinese Medicine Innovation Center, Nanchang 330000, P. R. China
| | - Jing Wang
- CAS Key Laboratory of Separation Science for Analytical Chemistry, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, P. R. China
| | - Xinmiao Liang
- CAS Key Laboratory of Separation Science for Analytical Chemistry, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, P. R. China
- Jiangxi Provincial Key Laboratory for Pharmacodynamic Material Basis of Traditional Chinese Medicine, Ganjiang Chinese Medicine Innovation Center, Nanchang 330000, P. R. China
| | - Guangyan Qing
- State Key Laboratory of Medical Proteomics, National Chromatographic R. & A. Center, CAS Key Laboratory of Separation Science for Analytical Chemistry, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, P. R. China
| |
Collapse
|
27
|
Meyer N, Torrent J, Balme S. Characterizing Prion-Like Protein Aggregation: Emerging Nanopore-Based Approaches. SMALL METHODS 2024:e2400058. [PMID: 38644684 DOI: 10.1002/smtd.202400058] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/12/2024] [Revised: 03/10/2024] [Indexed: 04/23/2024]
Abstract
Prion-like protein aggregation is characteristic of numerous neurodegenerative diseases, such as Alzheimer's and Parkinson's diseases. This process involves the formation of aggregates ranging from small and potentially neurotoxic oligomers to highly structured self-propagating amyloid fibrils. Various approaches are used to study protein aggregation, but they do not always provide continuous information on the polymorphic, transient, and heterogeneous species formed. This review provides an updated state-of-the-art approach to the detection and characterization of a wide range of protein aggregates using nanopore technology. For each type of nanopore, biological, solid-state polymer, and nanopipette, discuss the main achievements for the detection of protein aggregates as well as the significant contributions to the understanding of protein aggregation and diagnostics.
Collapse
Affiliation(s)
- Nathan Meyer
- Institut Européen des Membranes, UMR5635 University of Montpellier ENCSM CNRS, Place Eugène Bataillon, Cedex 5, Montpellier, 34095, France
- INM, University of Montpellier, INSERM, Montpellier, 34095, France
| | - Joan Torrent
- INM, University of Montpellier, INSERM, Montpellier, 34095, France
| | - Sébastien Balme
- Institut Européen des Membranes, UMR5635 University of Montpellier ENCSM CNRS, Place Eugène Bataillon, Cedex 5, Montpellier, 34095, France
| |
Collapse
|
28
|
Lv J, Wu X, Wu M, Wang X, Gong L, Li D, Qian R. Nanoconfined Electrokinetic Chromatography (NEC): Gradient Separation and Sensing of Short DNA Fragments at the Single-Molecule Level. Anal Chem 2024; 96:5702-5710. [PMID: 38538555 DOI: 10.1021/acs.analchem.4c00841] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/10/2024]
Abstract
Glass nanopipets have been demonstrated to be a powerful tool for the sensing and discrimination of biomolecules, such as DNA strands with different lengths or configurations. Despite progress made in nanopipet-based sensors, it remains challenging to develop effective strategies that separate and sense in one operation. In this study, we demonstrate an agarose gel-filled nanopipet that enables hyphenated length-dependent separation and electrochemical sensing of short DNA fragments based on the electrokinetic flow of DNA molecules in the nanoconfined channel at the tip of the nanopipet. This nanoconfined electrokinetic chromatography (NEC) method is used to distinguish the mixture of DNA strands without labels, and the ionic current signals measured in real time show that the mixed DNA strands pass through the tip hole in order according to the molecular weight. With NEC, gradient separation and electrochemical measurement of biomolecules can be achieved simultaneously at the single-molecule level, which is further applied for programmable gene delivery into single living cells. Overall, NEC provides a multipurpose platform integrating separation, sensing, single-cell delivery, and manipulation, which may bring new insights into advanced bioapplication.
Collapse
Affiliation(s)
- Jian Lv
- Key Laboratory for Advanced Materials, Feringa Nobel Prize Scientist Joint Research Center, School of Chemistry & Molecular Engineering, East China University of Science and Technology, Shanghai 200237, P. R. China
| | - Xue Wu
- Key Laboratory for Advanced Materials, Feringa Nobel Prize Scientist Joint Research Center, School of Chemistry & Molecular Engineering, East China University of Science and Technology, Shanghai 200237, P. R. China
| | - Mansha Wu
- Key Laboratory for Advanced Materials, Feringa Nobel Prize Scientist Joint Research Center, School of Chemistry & Molecular Engineering, East China University of Science and Technology, Shanghai 200237, P. R. China
| | - Xiaoyuan Wang
- Key Laboratory for Advanced Materials, Feringa Nobel Prize Scientist Joint Research Center, School of Chemistry & Molecular Engineering, East China University of Science and Technology, Shanghai 200237, P. R. China
| | - Lijuan Gong
- Key Laboratory for Advanced Materials, Feringa Nobel Prize Scientist Joint Research Center, School of Chemistry & Molecular Engineering, East China University of Science and Technology, Shanghai 200237, P. R. China
| | - Dawei Li
- Key Laboratory for Advanced Materials, Feringa Nobel Prize Scientist Joint Research Center, School of Chemistry & Molecular Engineering, East China University of Science and Technology, Shanghai 200237, P. R. China
| | - Ruocan Qian
- Key Laboratory for Advanced Materials, Feringa Nobel Prize Scientist Joint Research Center, School of Chemistry & Molecular Engineering, East China University of Science and Technology, Shanghai 200237, P. R. China
| |
Collapse
|
29
|
Zhang M, Tang C, Wang Z, Chen S, Zhang D, Li K, Sun K, Zhao C, Wang Y, Xu M, Dai L, Lu G, Shi H, Ren H, Chen L, Geng J. Real-time detection of 20 amino acids and discrimination of pathologically relevant peptides with functionalized nanopore. Nat Methods 2024; 21:609-618. [PMID: 38443507 PMCID: PMC11009107 DOI: 10.1038/s41592-024-02208-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2022] [Accepted: 02/12/2024] [Indexed: 03/07/2024]
Abstract
Precise identification and quantification of amino acids is crucial for many biological applications. Here we report a copper(II)-functionalized Mycobacterium smegmatis porin A (MspA) nanopore with the N91H substitution, which enables direct identification of all 20 proteinogenic amino acids when combined with a machine-learning algorithm. The validation accuracy reaches 99.1%, with 30.9% signal recovery. The feasibility of ultrasensitive quantification of amino acids was also demonstrated at the nanomolar range. Furthermore, the capability of this system for real-time analyses of two representative post-translational modifications (PTMs), one unnatural amino acid and ten synthetic peptides using exopeptidases, including clinically relevant peptides associated with Alzheimer's disease and cancer neoantigens, was demonstrated. Notably, our strategy successfully distinguishes peptides with only one amino acid difference from the hydrolysate and provides the possibility to infer the peptide sequence.
Collapse
Affiliation(s)
- Ming Zhang
- Department of Laboratory Medicine, State Key Laboratory of Biotherapy and Cancer Center, Clinical Laboratory Medicine Research Center, West China Hospital, Sichuan University, Chengdu, China
| | - Chao Tang
- Biosafety Laboratory of West China Hospital, West China Hospital, Sichuan University, Chengdu, China
| | - Zichun Wang
- Department of Laboratory Medicine, State Key Laboratory of Biotherapy and Cancer Center, Clinical Laboratory Medicine Research Center, West China Hospital, Sichuan University, Chengdu, China
| | - Shanchuan Chen
- Department of Laboratory Medicine, State Key Laboratory of Biotherapy and Cancer Center, Clinical Laboratory Medicine Research Center, West China Hospital, Sichuan University, Chengdu, China
| | - Dan Zhang
- Key Laboratory of Birth Defects and Related Diseases of Women and Children of MOE, Department of Laboratory Medicine, State Key Laboratory of Biotherapy, West China Second University Hospital, Sichuan University, Chengdu, China
| | - Kaiju Li
- Department of Laboratory Medicine, State Key Laboratory of Biotherapy and Cancer Center, Clinical Laboratory Medicine Research Center, West China Hospital, Sichuan University, Chengdu, China
| | - Ke Sun
- Department of Laboratory Medicine, State Key Laboratory of Biotherapy and Cancer Center, Clinical Laboratory Medicine Research Center, West China Hospital, Sichuan University, Chengdu, China
| | - Changjian Zhao
- Department of Laboratory Medicine, State Key Laboratory of Biotherapy and Cancer Center, Clinical Laboratory Medicine Research Center, West China Hospital, Sichuan University, Chengdu, China
| | - Yu Wang
- Department of Laboratory Medicine, State Key Laboratory of Biotherapy and Cancer Center, Clinical Laboratory Medicine Research Center, West China Hospital, Sichuan University, Chengdu, China
| | - Mengying Xu
- Key Laboratory of Birth Defects and Related Diseases of Women and Children of MOE, Department of Laboratory Medicine, State Key Laboratory of Biotherapy, West China Second University Hospital, Sichuan University, Chengdu, China
| | - Lunzhi Dai
- National Clinical Research Center for Geriatrics and Department of General Practice, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, China
| | - Guangwen Lu
- West China Hospital Emergency Department (WCHED), State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, China
| | - Hubing Shi
- Laboratory of Tumor Targeted and Immune Therapy, Clinical Research Center for Breast, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University and Collaborative Innovation Center, Chengdu, China
| | - Haiyan Ren
- Division of Respiratory and Critical Care Medicine, State Key Laboratory of Biotherapy, West China Hospital of Sichuan University, Chengdu, China
| | - Lu Chen
- Key Laboratory of Birth Defects and Related Diseases of Women and Children of MOE, Department of Laboratory Medicine, State Key Laboratory of Biotherapy, West China Second University Hospital, Sichuan University, Chengdu, China.
| | - Jia Geng
- Department of Laboratory Medicine, State Key Laboratory of Biotherapy and Cancer Center, Clinical Laboratory Medicine Research Center, West China Hospital, Sichuan University, Chengdu, China.
- Tianfu Jincheng Laboratory, City of Future Medicine, Chengdu, China.
| |
Collapse
|
30
|
Satheesan R, Vikraman D, Jayan P, Vijayan V, Chimerel C, Mahendran KR. Sensing PEGylated Peptide Conformations Using a Protein Nanopore. NANO LETTERS 2024; 24:3566-3574. [PMID: 38316144 DOI: 10.1021/acs.nanolett.3c03247] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/07/2024]
Abstract
Membrane pores are exploited for the stochastic sensing of various analytes, and here, we use electrical recordings to explore the interaction of PEGylated peptides of different sizes with a protein pore, CymA. This wide-diameter natural pore comprises densely filled charged residues, facilitating electrophoretic binding of polyethylene glycol (PEG) tagged with a nonaarginine peptide. The small PEG 200 peptide conjugates produced monodisperse blockages and exhibited voltage-dependent translocation across the pores. Notably, the larger PEG 1000 and 2000 peptide conjugates yielded heterogeneous blockages, indicating a multitude of PEG conformations hindering their translocation through the pore. Furthermore, a much larger PEG 5000 peptide occludes the pore entrance, resulting in complete closure. The competitive binding of different PEGylated peptides with the same pore produced specific blockage signals reflecting their identity, size, and conformation. Our proposed model of sensing distinct polypeptide conformations corresponds to disordered protein unfolding, suggesting that this pore can find applications in proteomics.
Collapse
Affiliation(s)
- Remya Satheesan
- Membrane Biology Laboratory, Transdisciplinary Biology Program, Rajiv Gandhi Centre for Biotechnology, Thiruvananthapuram 695014, India
- Manipal Academy of Higher Education, Manipal, Karnataka 576104, India
| | - Devika Vikraman
- Membrane Biology Laboratory, Transdisciplinary Biology Program, Rajiv Gandhi Centre for Biotechnology, Thiruvananthapuram 695014, India
- Manipal Academy of Higher Education, Manipal, Karnataka 576104, India
| | - Parvathy Jayan
- School of Chemistry, Indian Institute of Science Education and Research Thiruvananthapuram, Maruthamala PO, Vithura, Kerala 695551, India
| | - Vinesh Vijayan
- School of Chemistry, Indian Institute of Science Education and Research Thiruvananthapuram, Maruthamala PO, Vithura, Kerala 695551, India
| | - Catalin Chimerel
- Automation Department, Faculty of Electrical Engineering and Computer Science, Transilvania University of Brasov, Brasov 500036, Romania
| | - Kozhinjampara R Mahendran
- Membrane Biology Laboratory, Transdisciplinary Biology Program, Rajiv Gandhi Centre for Biotechnology, Thiruvananthapuram 695014, India
| |
Collapse
|
31
|
Ma C, Xu W, Liu W, Xu C, Qin G, Chen D, Sha J. Confined Transport Behavior of Biomolecules within Tilted Nanopores. J Phys Chem B 2024; 128:2792-2798. [PMID: 38471969 DOI: 10.1021/acs.jpcb.3c07417] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/14/2024]
Abstract
The transport behavior of biomolecules at the confined nanoscale is very different from that of the bulk state. Numerous disease diagnostics and targeted drug treatments are performed based on nanochannels in cells. The specific structure and shape of nanochannels play an important role in the behavior and efficiency of substance transport. In this paper, we fabricated nanopores with different tilt angles and the same diameters using focused ion beam. The capture frequency and the blocking current amplitude of λ-DNA within large-angle nanopores decrease obviously, suggesting an increase in the energy barrier of large-angle nanopores and the fact that they stretch biomolecules to thinness. Most importantly, large-angle nanopores slow down λ-DNA transport by 2-4 times. MD simulations find that the sloped electroosmotic flow inside the tilted nanopores is the main factor contributing to the transport phenomena. The increase in the capture time of biomolecules by nanopores assists in obtaining more biological information from the current trajectories. Our study provides a new understanding of substance transport in specially shaped nanopores, which can be instrumental in providing fresh inspiration and approaches to the biomedical field.
Collapse
Affiliation(s)
- Chaofan Ma
- Jiangsu Key Laboratory for Design and Manufacture of Micro-Nano Biomedical Instruments, Southeast University, Nanjing 211189, China
- School of Mechanical Engineering, Southeast University, Nanjing 211189, China
| | - Wei Xu
- Jiangsu Key Laboratory for Design and Manufacture of Micro-Nano Biomedical Instruments, Southeast University, Nanjing 211189, China
- School of Mechanical Engineering, Southeast University, Nanjing 211189, China
| | - Wei Liu
- Jiangsu Key Laboratory for Design and Manufacture of Micro-Nano Biomedical Instruments, Southeast University, Nanjing 211189, China
- School of Mechanical Engineering, Southeast University, Nanjing 211189, China
| | - Changhui Xu
- Jiangsu Key Laboratory for Design and Manufacture of Micro-Nano Biomedical Instruments, Southeast University, Nanjing 211189, China
- School of Mechanical Engineering, Southeast University, Nanjing 211189, China
| | - Guangle Qin
- Jiangsu Key Laboratory for Design and Manufacture of Micro-Nano Biomedical Instruments, Southeast University, Nanjing 211189, China
- School of Mechanical Engineering, Southeast University, Nanjing 211189, China
- Jiangsu Automation Research Institute, Lianyungang, Jiangsu 222000, China
| | - Dapeng Chen
- Jiangsu Key Laboratory for Design and Manufacture of Micro-Nano Biomedical Instruments, Southeast University, Nanjing 211189, China
- School of Mechanical Engineering, Southeast University, Nanjing 211189, China
- Jiangsu Automation Research Institute, Lianyungang, Jiangsu 222000, China
| | - Jingjie Sha
- Jiangsu Key Laboratory for Design and Manufacture of Micro-Nano Biomedical Instruments, Southeast University, Nanjing 211189, China
- School of Mechanical Engineering, Southeast University, Nanjing 211189, China
| |
Collapse
|
32
|
Zossimova E, Fiedler J, Vollmer F, Walter M. Hybrid quantum-classical polarizability model for single molecule biosensing. NANOSCALE 2024; 16:5820-5828. [PMID: 38436120 DOI: 10.1039/d3nr05396b] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/05/2024]
Abstract
Optical whispering gallery mode biosensors are able to detect single molecules through effects of their polarizability. We address the factors that affect the polarizability of amino acids, which are the building blocks of life, via electronic structure theory. Amino acids are detected in aqueous environments, where their polarizability is different compared to the gasphase due to solvent effects. Solvent effects include structural changes, protonation and the local field enhancement through the solvent (water). We analyse the impact of these effects and find that all contribute to an increased effective polarizability in the solvent. We also address the excess polarizability relative to the displaced water cavity and develop a hybrid quantum-classical model that is in good agreement with self-consistent calculations. We apply our model to calculate the excess polarizability of 20 proteinogenic amino acids and determine the minimum resolution required to distinguish the different molecules and their ionised conformers based on their polarizability.
Collapse
Affiliation(s)
- Ekaterina Zossimova
- Department of Physics and Astronomy, Living Systems Institute, University of Exeter, EX4 4QD, Exeter, UK.
- Freiburg Center for Interactive Materials and Bioinspired Technologies (FIT), University of Freiburg, D-79110 Freiburg, Germany
| | - Johannes Fiedler
- Department of Physics and Technology, University of Bergen, Allégaten 55, 5007 Bergen, Norway
| | - Frank Vollmer
- Department of Physics and Astronomy, Living Systems Institute, University of Exeter, EX4 4QD, Exeter, UK.
| | - Michael Walter
- Freiburg Center for Interactive Materials and Bioinspired Technologies (FIT), University of Freiburg, D-79110 Freiburg, Germany
- Cluster of Excellence livMatS @ FIT, Freiburg, Germany
- Fraunhofer IWM, MikroTribologie Centrum μTC, Freiburg, Germany
| |
Collapse
|
33
|
Dorey A, Howorka S. Nanopore DNA sequencing technologies and their applications towards single-molecule proteomics. Nat Chem 2024; 16:314-334. [PMID: 38448507 DOI: 10.1038/s41557-023-01322-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2022] [Accepted: 07/14/2023] [Indexed: 03/08/2024]
Abstract
Sequencing of nucleic acids with nanopores has emerged as a powerful tool offering rapid readout, high accuracy, low cost and portability. This label-free method for sequencing at the single-molecule level is an achievement on its own. However, nanopores also show promise for the technologically even more challenging sequencing of polypeptides, something that could considerably benefit biological discovery, clinical diagnostics and homeland security, as current techniques lack portability and speed. Here we survey the biochemical innovations underpinning commercial and academic nanopore DNA/RNA sequencing techniques, and explore how these advances can fuel developments in future protein sequencing with nanopores.
Collapse
Affiliation(s)
- Adam Dorey
- Department of Chemistry & Institute of Structural Molecular Biology, University College London, London, UK.
| | - Stefan Howorka
- Department of Chemistry & Institute of Structural Molecular Biology, University College London, London, UK.
| |
Collapse
|
34
|
Peng Z, Iwabuchi S, Izumi K, Takiguchi S, Yamaji M, Fujita S, Suzuki H, Kambara F, Fukasawa G, Cooney A, Di Michele L, Elani Y, Matsuura T, Kawano R. Lipid vesicle-based molecular robots. LAB ON A CHIP 2024; 24:996-1029. [PMID: 38239102 PMCID: PMC10898420 DOI: 10.1039/d3lc00860f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/10/2023] [Accepted: 12/12/2023] [Indexed: 02/28/2024]
Abstract
A molecular robot, which is a system comprised of one or more molecular machines and computers, can execute sophisticated tasks in many fields that span from nanomedicine to green nanotechnology. The core parts of molecular robots are fairly consistent from system to system and always include (i) a body to encapsulate molecular machines, (ii) sensors to capture signals, (iii) computers to make decisions, and (iv) actuators to perform tasks. This review aims to provide an overview of approaches and considerations to develop molecular robots. We first introduce the basic technologies required for constructing the core parts of molecular robots, describe the recent progress towards achieving higher functionality, and subsequently discuss the current challenges and outlook. We also highlight the applications of molecular robots in sensing biomarkers, signal communications with living cells, and conversion of energy. Although molecular robots are still in their infancy, they will unquestionably initiate massive change in biomedical and environmental technology in the not too distant future.
Collapse
Affiliation(s)
- Zugui Peng
- Department of Biotechnology and Life Science, Tokyo University of Agriculture and Technology, 2-24-16 Naka-cho, Koganei-shi, Tokyo185-8588, Japan.
| | - Shoji Iwabuchi
- Department of Biotechnology and Life Science, Tokyo University of Agriculture and Technology, 2-24-16 Naka-cho, Koganei-shi, Tokyo185-8588, Japan.
| | - Kayano Izumi
- Department of Biotechnology and Life Science, Tokyo University of Agriculture and Technology, 2-24-16 Naka-cho, Koganei-shi, Tokyo185-8588, Japan.
| | - Sotaro Takiguchi
- Department of Biotechnology and Life Science, Tokyo University of Agriculture and Technology, 2-24-16 Naka-cho, Koganei-shi, Tokyo185-8588, Japan.
| | - Misa Yamaji
- Department of Biotechnology and Life Science, Tokyo University of Agriculture and Technology, 2-24-16 Naka-cho, Koganei-shi, Tokyo185-8588, Japan.
| | - Shoko Fujita
- Department of Biotechnology and Life Science, Tokyo University of Agriculture and Technology, 2-24-16 Naka-cho, Koganei-shi, Tokyo185-8588, Japan.
| | - Harune Suzuki
- Department of Biotechnology and Life Science, Tokyo University of Agriculture and Technology, 2-24-16 Naka-cho, Koganei-shi, Tokyo185-8588, Japan.
| | - Fumika Kambara
- Department of Biotechnology and Life Science, Tokyo University of Agriculture and Technology, 2-24-16 Naka-cho, Koganei-shi, Tokyo185-8588, Japan.
| | - Genki Fukasawa
- School of Life Science and Technology, Tokyo Institute of Technology, Ookayama 2-12-1, Meguro-Ku, Tokyo 152-8550, Japan
| | - Aileen Cooney
- Department of Chemistry, Molecular Sciences Research Hub, Imperial College London, London W12 0BZ, UK
| | - Lorenzo Di Michele
- Department of Chemical Engineering and Biotechnology, University of Cambridge, Cambridge CB3 0AS, UK
- Department of Chemistry, Molecular Sciences Research Hub, Imperial College London, London W12 0BZ, UK
- FabriCELL, Molecular Sciences Research Hub, Imperial College London, London W12 0BZ, UK
| | - Yuval Elani
- Department of Chemical Engineering, Imperial College London, South Kensington, London SW7 2AZ, UK
- FabriCELL, Molecular Sciences Research Hub, Imperial College London, London W12 0BZ, UK
| | - Tomoaki Matsuura
- Earth-Life Science Institute, Tokyo Institute of Technology, Ookayama 2-12-1, Meguro-Ku, Tokyo 152-8550, Japan
| | - Ryuji Kawano
- Department of Biotechnology and Life Science, Tokyo University of Agriculture and Technology, 2-24-16 Naka-cho, Koganei-shi, Tokyo185-8588, Japan.
| |
Collapse
|
35
|
Schlotter T, Kloter T, Hengsteler J, Yang K, Zhan L, Ragavan S, Hu H, Zhang X, Duru J, Vörös J, Zambelli T, Nakatsuka N. Aptamer-Functionalized Interface Nanopores Enable Amino Acid-Specific Peptide Detection. ACS NANO 2024; 18:6286-6297. [PMID: 38355286 PMCID: PMC10906075 DOI: 10.1021/acsnano.3c10679] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/30/2023] [Revised: 02/06/2024] [Accepted: 02/08/2024] [Indexed: 02/16/2024]
Abstract
Single-molecule proteomics based on nanopore technology has made significant advances in recent years. However, to achieve nanopore sensing with single amino acid resolution, several bottlenecks must be tackled: controlling nanopore sizes with nanoscale precision and slowing molecular translocation events. Herein, we address these challenges by integrating amino acid-specific DNA aptamers into interface nanopores with dynamically tunable pore sizes. A phenylalanine aptamer was used as a proof-of-concept: aptamer recognition of phenylalanine moieties led to the retention of specific peptides, slowing translocation speeds. Importantly, while phenylalanine aptamers were isolated against the free amino acid, the aptamers were determined to recognize the combination of the benzyl or phenyl and the carbonyl group in the peptide backbone, enabling binding to specific phenylalanine-containing peptides. We decoupled specific binding between aptamers and phenylalanine-containing peptides from nonspecific interactions (e.g., electrostatics and hydrophobic interactions) using optical waveguide lightmode spectroscopy. Aptamer-modified interface nanopores differentiated peptides containing phenylalanine vs. control peptides with structurally similar amino acids (i.e., tyrosine and tryptophan). When the duration of aptamer-target interactions inside the nanopore were prolonged by lowering the applied voltage, discrete ionic current levels with repetitive motifs were observed. Such reoccurring signatures in the measured signal suggest that the proposed method has the possibility to resolve amino acid-specific aptamer recognition, a step toward single-molecule proteomics.
Collapse
Affiliation(s)
- Tilman Schlotter
- Laboratory
of Biosensors and Bioelectronics, Institute for Biomedical Engineering, ETH Zürich, 8092 Zürich, Switzerland
| | - Tom Kloter
- Laboratory
of Biosensors and Bioelectronics, Institute for Biomedical Engineering, ETH Zürich, 8092 Zürich, Switzerland
| | - Julian Hengsteler
- Laboratory
of Biosensors and Bioelectronics, Institute for Biomedical Engineering, ETH Zürich, 8092 Zürich, Switzerland
| | - Kyungae Yang
- Department
of Medicine, Columbia University Irving
Medical Center, New York, New York 10032, United States
| | - Lijian Zhan
- Laboratory
of Biosensors and Bioelectronics, Institute for Biomedical Engineering, ETH Zürich, 8092 Zürich, Switzerland
| | - Sujeni Ragavan
- Laboratory
of Biosensors and Bioelectronics, Institute for Biomedical Engineering, ETH Zürich, 8092 Zürich, Switzerland
| | - Haiying Hu
- Laboratory
of Biosensors and Bioelectronics, Institute for Biomedical Engineering, ETH Zürich, 8092 Zürich, Switzerland
| | - Xinyu Zhang
- Laboratory
of Biosensors and Bioelectronics, Institute for Biomedical Engineering, ETH Zürich, 8092 Zürich, Switzerland
| | - Jens Duru
- Laboratory
of Biosensors and Bioelectronics, Institute for Biomedical Engineering, ETH Zürich, 8092 Zürich, Switzerland
| | - János Vörös
- Laboratory
of Biosensors and Bioelectronics, Institute for Biomedical Engineering, ETH Zürich, 8092 Zürich, Switzerland
| | - Tomaso Zambelli
- Laboratory
of Biosensors and Bioelectronics, Institute for Biomedical Engineering, ETH Zürich, 8092 Zürich, Switzerland
| | - Nako Nakatsuka
- Laboratory
of Biosensors and Bioelectronics, Institute for Biomedical Engineering, ETH Zürich, 8092 Zürich, Switzerland
| |
Collapse
|
36
|
Liu J, Aksimentiev A. Molecular Determinants of Current Blockade Produced by Peptide Transport Through a Nanopore. ACS NANOSCIENCE AU 2024; 4:21-29. [PMID: 38406313 PMCID: PMC10885333 DOI: 10.1021/acsnanoscienceau.3c00046] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/15/2023] [Revised: 10/28/2023] [Accepted: 11/03/2023] [Indexed: 02/27/2024]
Abstract
The nanopore sensing method holds the promise of delivering a single molecule technology for identification of biological proteins, direct detection of post-translational modifications, and perhaps de novo determination of a protein's amino acid sequence. The key quantity measured in such nanopore sensing experiments is the magnitude of the ionic current passing through a nanopore blocked by a polypeptide chain. Establishing a relationship between the amino acid sequence of a peptide fragment confined within a nanopore and the blockade current flowing through the nanopore remains a major challenge for realizing the nanopore protein sequencing. Using the results of all-atom molecular dynamics simulations, here we compare nanopore sequencing of DNA with nanopore sequencing of proteins. We then delineate the factors affecting the blockade current modulation by the peptide sequence, showing that the current can be determined by (i) the steric footprint of an amino acid, (ii) its interactions with the pore wall, (iii) the local stretching of a polypeptide chain, and (iv) the local enhancement of the ion concentration at the nanopore constriction. We conclude with a brief discussion of the prospects for purely computational prediction of the blockade currents.
Collapse
Affiliation(s)
- Jingqian Liu
- Center
for Biophysics and Quantitative Biology, University of Illinois at Urbana−Champaign, Urbana, Illinois 61801, United States
- Beckman
Institute for Advanced Science and Technology, University of Illinois at Urbana−Champaign, Urbana, Illinois 61801, United States
| | - Aleksei Aksimentiev
- Center
for Biophysics and Quantitative Biology, University of Illinois at Urbana−Champaign, Urbana, Illinois 61801, United States
- Beckman
Institute for Advanced Science and Technology, University of Illinois at Urbana−Champaign, Urbana, Illinois 61801, United States
- Department
of Physics, University of Illinois at Urbana−Champaign, Urbana, Illinois 61801, United States
| |
Collapse
|
37
|
Secme A, Kucukoglu B, Pisheh HS, Alatas YC, Tefek U, Uslu HD, Kaynak BE, Alhmoud H, Hanay MS. Dielectric Detection of Single Nanoparticles Using a Microwave Resonator Integrated with a Nanopore. ACS OMEGA 2024; 9:7827-7834. [PMID: 38405444 PMCID: PMC10882703 DOI: 10.1021/acsomega.3c07506] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/28/2023] [Revised: 12/06/2023] [Accepted: 12/11/2023] [Indexed: 02/27/2024]
Abstract
The characterization of individual nanoparticles in a liquid constitutes a critical challenge for the environmental, material, and biological sciences. To detect nanoparticles, electronic approaches are especially desirable owing to their compactness and lower costs. While electronic detection in the form of resistive-pulse sensing has enabled the acquisition of geometric properties of various analytes, impedimetric measurements to obtain dielectric signatures of nanoparticles have scarcely been reported. To explore this orthogonal sensing modality, we developed an impedimetric sensor based on a microwave resonator with a nanoscale sensing gap surrounding a nanopore built on a 220 nm silicon nitride membrane. The microwave resonator has a coplanar waveguide configuration with a resonance frequency of approximately 6.6 GHz. The approach of single nanoparticles near the sensing region and their translocation through the nanopores induced sudden changes in the impedance of the structure. The impedance changes, in turn, were picked up by the phase response of the microwave resonator. We worked with 100 and 50 nm polystyrene nanoparticles to observe single-particle events. Our current implementation was limited by the nonuniform electric field at the sensing region. This work provides a complementary sensing modality for nanoparticle characterization, where the dielectric response, rather than ionic current, determines the signal.
Collapse
Affiliation(s)
- Arda Secme
- Department
of Mechanical Engineering, Bilkent University, Ankara 06800, Turkey
- UNAM
− Institute of Materials Science and Nanotechnology, Bilkent University, Ankara 06800, Turkey
| | - Berk Kucukoglu
- Department
of Mechanical Engineering, Bilkent University, Ankara 06800, Turkey
- UNAM
− Institute of Materials Science and Nanotechnology, Bilkent University, Ankara 06800, Turkey
| | - Hadi S. Pisheh
- Department
of Mechanical Engineering, Bilkent University, Ankara 06800, Turkey
- UNAM
− Institute of Materials Science and Nanotechnology, Bilkent University, Ankara 06800, Turkey
| | - Yagmur Ceren Alatas
- Department
of Mechanical Engineering, Bilkent University, Ankara 06800, Turkey
- UNAM
− Institute of Materials Science and Nanotechnology, Bilkent University, Ankara 06800, Turkey
| | - Uzay Tefek
- Department
of Mechanical Engineering, Bilkent University, Ankara 06800, Turkey
- UNAM
− Institute of Materials Science and Nanotechnology, Bilkent University, Ankara 06800, Turkey
| | - Hatice Dilara Uslu
- Department
of Mechanical Engineering, Bilkent University, Ankara 06800, Turkey
- UNAM
− Institute of Materials Science and Nanotechnology, Bilkent University, Ankara 06800, Turkey
| | - Batuhan E. Kaynak
- Department
of Mechanical Engineering, Bilkent University, Ankara 06800, Turkey
- UNAM
− Institute of Materials Science and Nanotechnology, Bilkent University, Ankara 06800, Turkey
| | - Hashim Alhmoud
- Department
of Mechanical Engineering, Bilkent University, Ankara 06800, Turkey
- UNAM
− Institute of Materials Science and Nanotechnology, Bilkent University, Ankara 06800, Turkey
| | - M. Selim Hanay
- Department
of Mechanical Engineering, Bilkent University, Ankara 06800, Turkey
- UNAM
− Institute of Materials Science and Nanotechnology, Bilkent University, Ankara 06800, Turkey
| |
Collapse
|
38
|
Wei X, Ma D, Ou J, Song G, Guo J, Robertson JW, Wang Y, Wang Q, Liu C. Narrowing Signal Distribution by Adamantane Derivatization for Amino Acid Identification Using an α-Hemolysin Nanopore. NANO LETTERS 2024; 24:1494-1501. [PMID: 38264980 PMCID: PMC10947511 DOI: 10.1021/acs.nanolett.3c03593] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/25/2024]
Abstract
The rapid progress in nanopore sensing has sparked interest in protein sequencing. Despite recent notable advancements in amino acid recognition using nanopores, chemical modifications usually employed in this process still need further refinements. One of the challenges is to enhance the chemical specificity to avoid downstream misidentification of amino acids. By employing adamantane to label proteinogenic amino acids, we developed an approach to fingerprint individual amino acids using the wild-type α-hemolysin nanopore. The unique structure of adamantane-labeled amino acids (ALAAs) improved the spatial resolution, resulting in distinctive current signals. Various nanopore parameters were explored using a machine-learning algorithm and achieved a validation accuracy of 81.3% for distinguishing nine selected amino acids. Our results not only advance the effort in single-molecule protein characterization using nanopores but also offer a potential platform for studying intrinsic and variant structures of individual molecules.
Collapse
Affiliation(s)
- Xiaojun Wei
- Department of Biomedical Engineering, University of South Carolina, Columbia, SC 29208, United States
- Department of Chemical Engineering, University of South Carolina, Columbia, SC 29208, United States
| | - Dumei Ma
- Department of Chemistry and Biochemistry, University of South Carolina, Columbia, SC 29208, United States
| | - Junlin Ou
- Department of Mechanical Engineering, University of South Carolina, Columbia, SC 29208, United States
| | - Ge Song
- Department of Mechanical Engineering, University of South Carolina, Columbia, SC 29208, United States
| | - Jiawei Guo
- Department of Mechanical Engineering, University of South Carolina, Columbia, SC 29208, United States
| | - Joseph W.F. Robertson
- Biophysics and Biomedical Measurement Group, Microsystems and Nanotechnology Division, National Institute of Standards and Technology, Gaithersburg, MD 20899, United States
| | - Yi Wang
- Department of Mechanical Engineering, University of South Carolina, Columbia, SC 29208, United States
| | - Qian Wang
- Department of Chemistry and Biochemistry, University of South Carolina, Columbia, SC 29208, United States
| | - Chang Liu
- Department of Biomedical Engineering, University of South Carolina, Columbia, SC 29208, United States
- Department of Chemical Engineering, University of South Carolina, Columbia, SC 29208, United States
| |
Collapse
|
39
|
Chen G, Xu W, Long Z, Chong Y, Lin B, Jie Y. Single-cell Technologies Provide Novel Insights into Liver Physiology and Pathology. J Clin Transl Hepatol 2024; 12:79-90. [PMID: 38250462 PMCID: PMC10794276 DOI: 10.14218/jcth.2023.00224] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/12/2023] [Revised: 06/25/2023] [Accepted: 07/12/2023] [Indexed: 01/23/2024] Open
Abstract
The liver is the largest glandular organ in the body and has a unique distribution of cells and biomolecules. However, the treatment outcome of end-stage liver disease is extremely poor. Single-cell sequencing is a new advanced and powerful technique for identifying rare cell populations and biomolecules by analyzing the characteristics of gene expression between individual cells. These cells and biomolecules might be used as potential targets for immunotherapy of liver diseases and contribute to the development of precise individualized treatment. Compared to whole-tissue RNA sequencing, single-cell RNA sequencing (scRNA-seq) or other single-cell histological techniques have solved the problem of cell population heterogeneity and characterize molecular changes associated with liver diseases with higher accuracy and resolution. In this review, we comprehensively summarized single-cell approaches including transcriptomic, spatial transcriptomic, immunomic, proteomic, epigenomic, and multiomic technologies, and described their application in liver physiology and pathology. We also discussed advanced techniques and recent studies in the field of single-cell; our review might provide new insights into the pathophysiological mechanisms of the liver to achieve precise and individualized treatment of liver diseases.
Collapse
Affiliation(s)
| | | | - Zhicong Long
- Department of Infectious Diseases, The Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, Guangdong, China
| | - Yutian Chong
- Department of Infectious Diseases, The Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, Guangdong, China
| | - Bingliang Lin
- Department of Infectious Diseases, The Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, Guangdong, China
| | - Yusheng Jie
- Department of Infectious Diseases, The Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, Guangdong, China
| |
Collapse
|
40
|
Sauciuc A, Whittaker J, Tadema M, Tych K, Guskov A, Maglia G. Unravelled proteins form blobs during translocation across nanopores. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.01.23.576815. [PMID: 38328101 PMCID: PMC10849628 DOI: 10.1101/2024.01.23.576815] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/09/2024]
Abstract
The electroosmotic-driven transport of unravelled proteins across nanopores is an important biological process that is now under investigation for the rapid analysis and sequencing of proteins. For this approach to work, however, it is crucial that the polymer is threaded in single file. Here we found that, contrary to the electrophoretic transport of charged polymers such as DNA, during polypeptide translocation blob-like structures typically form inside nanopores. Comparisons between different nanopore sizes, shapes and surface chemistries showed that under electroosmotic-dominated regimes single-file transport of polypeptides can be achieved using nanopores that simultaneously have an entry and an internal diameter that is smaller than the persistence length of the polymer, have a uniform non-sticky ( i . e . non-aromatic) nanopore inner surface, and using moderate translocation velocities.
Collapse
|
41
|
Cao C, Magalhães P, Krapp LF, Bada Juarez JF, Mayer SF, Rukes V, Chiki A, Lashuel HA, Dal Peraro M. Deep Learning-Assisted Single-Molecule Detection of Protein Post-translational Modifications with a Biological Nanopore. ACS NANO 2024; 18:1504-1515. [PMID: 38112538 PMCID: PMC10795472 DOI: 10.1021/acsnano.3c08623] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/10/2023] [Revised: 11/16/2023] [Accepted: 12/12/2023] [Indexed: 12/21/2023]
Abstract
Protein post-translational modifications (PTMs) play a crucial role in countless biological processes, profoundly modulating protein properties on both spatial and temporal scales. Protein PTMs have also emerged as reliable biomarkers for several diseases. However, only a handful of techniques are available to accurately measure their levels, capture their complexity at a single molecule level, and characterize their multifaceted roles in health and disease. Nanopore sensing provides high sensitivity for the detection of low-abundance proteins, holding the potential to impact single-molecule proteomics and PTM detection, in particular. Here, we demonstrate the ability of a biological nanopore, the pore-forming toxin aerolysin, to detect and distinguish α-synuclein-derived peptides bearing single or multiple PTMs, namely, phosphorylation, nitration, and oxidation occurring at different positions and in various combinations. The characteristic current signatures of the α-synuclein peptide and its PTM variants could be confidently identified by using a deep learning model for signal processing. We further demonstrate that this framework can quantify α-synuclein peptides at picomolar concentrations and detect the C-terminal peptides generated by digestion of full-length α-synuclein. Collectively, our work highlights the advantage of using nanopores as a tool for simultaneous detection of multiple PTMs and facilitates their use in biomarker discovery and diagnostics.
Collapse
Affiliation(s)
- Chan Cao
- Institute
of Bioengineering, School of Life Sciences, Ecole Polytechnique Fédérale de Lausanne, EPFL, Lausanne 1015, Switzerland
- Department
of Inorganic and Analytical Chemistry, Chemistry and Biochemistry, University of Geneva, 1211 Geneva, Switzerland
| | - Pedro Magalhães
- Laboratory
of Molecular and Chemical Biology of Neurodegeneration, Brain Mind
Institute, School of Life Sciences, Ecole
Polytechnique Fédérale de Lausanne, EPFL, Lausanne 1015, Switzerland
| | - Lucien F. Krapp
- Institute
of Bioengineering, School of Life Sciences, Ecole Polytechnique Fédérale de Lausanne, EPFL, Lausanne 1015, Switzerland
| | - Juan F. Bada Juarez
- Institute
of Bioengineering, School of Life Sciences, Ecole Polytechnique Fédérale de Lausanne, EPFL, Lausanne 1015, Switzerland
| | - Simon Finn Mayer
- Institute
of Bioengineering, School of Life Sciences, Ecole Polytechnique Fédérale de Lausanne, EPFL, Lausanne 1015, Switzerland
| | - Verena Rukes
- Institute
of Bioengineering, School of Life Sciences, Ecole Polytechnique Fédérale de Lausanne, EPFL, Lausanne 1015, Switzerland
| | - Anass Chiki
- Laboratory
of Molecular and Chemical Biology of Neurodegeneration, Brain Mind
Institute, School of Life Sciences, Ecole
Polytechnique Fédérale de Lausanne, EPFL, Lausanne 1015, Switzerland
| | - Hilal A. Lashuel
- Laboratory
of Molecular and Chemical Biology of Neurodegeneration, Brain Mind
Institute, School of Life Sciences, Ecole
Polytechnique Fédérale de Lausanne, EPFL, Lausanne 1015, Switzerland
| | - Matteo Dal Peraro
- Institute
of Bioengineering, School of Life Sciences, Ecole Polytechnique Fédérale de Lausanne, EPFL, Lausanne 1015, Switzerland
| |
Collapse
|
42
|
Greive SJ, Bacri L, Cressiot B, Pelta J. Identification of Conformational Variants for Bradykinin Biomarker Peptides from a Biofluid Using a Nanopore and Machine Learning. ACS NANO 2024; 18:539-550. [PMID: 38134312 DOI: 10.1021/acsnano.3c08433] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/24/2023]
Abstract
There is a current need to develop methods for the sensitive detection of peptide biomarkers in complex mixtures of molecules, such as biofluids, to enable early disease detection. Moreover, to our knowledge, there is currently no detection method capable of identifying the different conformations of a peptide biomarker differing by a single amino acid. Single-molecule nanopore sensing promises to provide this level of resolution. In order to be able to identify these differences in a biofluid such as serum, it is necessary to carefully characterize electrical parameters to obtain specific signatures of each biomarker population observed. We are interested here in a family of peptide biomarkers, kinins such as bradykinin and des-Arg9 bradykinin, that are involved in many disabling pathologies (allergy, asthma, angioedema, sepsis, or cancer). We show the proof of concept for direct identification of these biomarkers in serum at the single-molecule level using a protein nanopore. Each peptide exhibits two unique electrical signatures attributed to specific conformations in bulk. The same signatures are found in serum, allowing their discrimination and identification in a complex mixture such as biofluid. To extend the utility of our experimental results, we developed a principal component analysis approach to define the most relevant electrical parameters for their identification. Finally, we used semisupervised classification to assign each event type to a specific biomarker at physiological serum concentration. In the future, single-molecule scale analysis of peptide biomarkers using a powerful nanopore coupled with machine learning will facilitate the identification and quantification of other clinically relevant biomarkers from biofluids.
Collapse
Affiliation(s)
| | - Laurent Bacri
- Université Paris-Saclay, Univ Evry, CY Cergy Paris Université, CNRS, LAMBE, 91025 Evry-Courcouronnes, France
| | - Benjamin Cressiot
- Université Paris-Saclay, Univ Evry, CY Cergy Paris Université, CNRS, LAMBE, F-95000 Cergy, France
| | - Juan Pelta
- Université Paris-Saclay, Univ Evry, CY Cergy Paris Université, CNRS, LAMBE, 91025 Evry-Courcouronnes, France
- Université Paris-Saclay, Univ Evry, CY Cergy Paris Université, CNRS, LAMBE, F-95000 Cergy, France
| |
Collapse
|
43
|
Zhang Y, Yi Y, Li Z, Zhou K, Liu L, Wu HC. Peptide sequencing based on host-guest interaction-assisted nanopore sensing. Nat Methods 2024; 21:102-109. [PMID: 37957431 DOI: 10.1038/s41592-023-02095-4] [Citation(s) in RCA: 11] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2023] [Accepted: 10/20/2023] [Indexed: 11/15/2023]
Abstract
Direct protein sequencing technologies with improved sensitivity and throughput are still needed. Here, we propose an alternative method for peptide sequencing based on enzymatic cleavage and host-guest interaction-assisted nanopore sensing. We serendipitously discovered that the identity of any proteinogenic amino acid in a particular position of a phenylalanine-containing peptide could be determined via current blockage during translocation of the peptide through α-hemolysin nanopores in the presence of cucurbit[7]uril. Building upon this, we further present a proof-of-concept demonstration of peptide sequencing by sequentially cleaving off amino acids from C terminus of a peptide with carboxypeptidases, and then determining their identities and sequence with a peptide probe in nanopore. With future optimization, our results point to a different way of nanopore-based protein sequencing.
Collapse
Affiliation(s)
- Yun Zhang
- Beijing National Laboratory for Molecular Sciences, Key Laboratory of Analytical Chemistry for Living Biosystems, Institute of Chemistry, Chinese Academy of Sciences, Beijing, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Yakun Yi
- Beijing National Laboratory for Molecular Sciences, Key Laboratory of Analytical Chemistry for Living Biosystems, Institute of Chemistry, Chinese Academy of Sciences, Beijing, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Ziyi Li
- Beijing National Laboratory for Molecular Sciences, Key Laboratory of Analytical Chemistry for Living Biosystems, Institute of Chemistry, Chinese Academy of Sciences, Beijing, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Ke Zhou
- Beijing National Laboratory for Molecular Sciences, Key Laboratory of Analytical Chemistry for Living Biosystems, Institute of Chemistry, Chinese Academy of Sciences, Beijing, China
| | - Lei Liu
- Key Laboratory for Biomedical Effects of Nanomaterials & Nanosafety, Institute of High Energy Physics, Chinese Academy of Sciences, Beijing, China.
| | - Hai-Chen Wu
- Beijing National Laboratory for Molecular Sciences, Key Laboratory of Analytical Chemistry for Living Biosystems, Institute of Chemistry, Chinese Academy of Sciences, Beijing, China.
- University of Chinese Academy of Sciences, Beijing, China.
| |
Collapse
|
44
|
Wang K, Zhang S, Zhou X, Yang X, Li X, Wang Y, Fan P, Xiao Y, Sun W, Zhang P, Li W, Huang S. Unambiguous discrimination of all 20 proteinogenic amino acids and their modifications by nanopore. Nat Methods 2024; 21:92-101. [PMID: 37749214 DOI: 10.1038/s41592-023-02021-8] [Citation(s) in RCA: 28] [Impact Index Per Article: 28.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2023] [Accepted: 08/21/2023] [Indexed: 09/27/2023]
Abstract
Natural proteins are composed of 20 proteinogenic amino acids and their post-translational modifications (PTMs). However, due to the lack of a suitable nanopore sensor that can simultaneously discriminate between all 20 amino acids and their PTMs, direct sequencing of protein with nanopores has not yet been realized. Here, we present an engineered hetero-octameric Mycobacterium smegmatis porin A (MspA) nanopore containing a sole Ni2+ modification. It enables full discrimination of all 20 proteinogenic amino acids and 4 representative modified amino acids, Nω,N'ω-dimethyl-arginine (Me-R), O-acetyl-threonine (Ac-T), N4-(β-N-acetyl-D-glucosaminyl)-asparagine (GlcNAc-N) and O-phosphoserine (P-S). Assisted by machine learning, an accuracy of 98.6% was achieved. Amino acid supplement tablets and peptidase-digested amino acids from peptides were also analyzed using this strategy. This capacity for simultaneous discrimination of all 20 proteinogenic amino acids and their PTMs suggests the potential to achieve protein sequencing using this nanopore-based strategy.
Collapse
Affiliation(s)
- Kefan Wang
- State Key Laboratory of Analytical Chemistry for Life Sciences, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing, China
- Chemistry and Biomedicine Innovation Center (ChemBIC), Nanjing University, Nanjing, China
| | - Shanyu Zhang
- State Key Laboratory of Analytical Chemistry for Life Sciences, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing, China
- Chemistry and Biomedicine Innovation Center (ChemBIC), Nanjing University, Nanjing, China
| | - Xiao Zhou
- Collaborative Innovation Center of Advanced Microstructures, National Laboratory of Solid State Microstructure, Department of Physics, Nanjing University, Nanjing, China
| | - Xian Yang
- State Key Laboratory of Analytical Chemistry for Life Sciences, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing, China
- Chemistry and Biomedicine Innovation Center (ChemBIC), Nanjing University, Nanjing, China
| | - Xinyue Li
- State Key Laboratory of Analytical Chemistry for Life Sciences, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing, China
- Chemistry and Biomedicine Innovation Center (ChemBIC), Nanjing University, Nanjing, China
| | - Yuqin Wang
- State Key Laboratory of Analytical Chemistry for Life Sciences, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing, China
- Chemistry and Biomedicine Innovation Center (ChemBIC), Nanjing University, Nanjing, China
| | - Pingping Fan
- State Key Laboratory of Analytical Chemistry for Life Sciences, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing, China
- Chemistry and Biomedicine Innovation Center (ChemBIC), Nanjing University, Nanjing, China
| | - Yunqi Xiao
- State Key Laboratory of Analytical Chemistry for Life Sciences, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing, China
- Chemistry and Biomedicine Innovation Center (ChemBIC), Nanjing University, Nanjing, China
| | - Wen Sun
- State Key Laboratory of Analytical Chemistry for Life Sciences, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing, China
- Chemistry and Biomedicine Innovation Center (ChemBIC), Nanjing University, Nanjing, China
| | - Panke Zhang
- State Key Laboratory of Analytical Chemistry for Life Sciences, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing, China
| | - Wenfei Li
- Collaborative Innovation Center of Advanced Microstructures, National Laboratory of Solid State Microstructure, Department of Physics, Nanjing University, Nanjing, China
| | - Shuo Huang
- State Key Laboratory of Analytical Chemistry for Life Sciences, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing, China.
- Chemistry and Biomedicine Innovation Center (ChemBIC), Nanjing University, Nanjing, China.
| |
Collapse
|
45
|
Bonini A, Sauciuc A, Maglia G. Engineered nanopores for exopeptidase protein sequencing. Nat Methods 2024; 21:16-17. [PMID: 38123862 DOI: 10.1038/s41592-023-02136-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2023]
Affiliation(s)
- Andrea Bonini
- Groningen Biomolecular Sciences and Biotechnology Institute, University of Groningen, Groningen, the Netherlands
| | - Adina Sauciuc
- Groningen Biomolecular Sciences and Biotechnology Institute, University of Groningen, Groningen, the Netherlands
| | - Giovanni Maglia
- Groningen Biomolecular Sciences and Biotechnology Institute, University of Groningen, Groningen, the Netherlands.
| |
Collapse
|
46
|
Mehrafrooz B, Yu L, Siwy Z, Wanunu M, Aksimentiev A. Electro-Osmotic Flow Generation via a Sticky Ion Action. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.12.14.571673. [PMID: 38168277 PMCID: PMC10760089 DOI: 10.1101/2023.12.14.571673] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/05/2024]
Abstract
Selective transport of ions through nanometer-sized pores is fundamental to cell biology and central to many technological processes such as water desalination and electrical energy storage. Conventional methods for generating ion selectivity include placement of fixed electrical charges at the inner surface of a nanopore through either point mutations in a protein pore or chemical treatment of a solid-state nanopore surface, with each nanopore type requiring a custom approach. Here, we describe a general method for transforming a nanoscale pore into a highly selective, anion-conducting channel capable of generating a giant electro-osmotic effect. Our molecular dynamics simulations and reverse potential measurements show that exposure of a biological nanopore to high concentrations of guanidinium chloride renders the nanopore surface positively charged due to transient binding of guanidinium cations to the protein surface. A comparison of four biological nanopores reveals the relationship between ion selectivity, nanopore shape, composition of the nanopore surface, and electro-osmotic flow. Remarkably, guanidinium ions are also found to produce anion selectivity and a giant electro-osmotic flow in solid-state nanopores via the same mechanism. Our sticky-ion approach to generate electro-osmotic flow can have numerous applications in controlling molecular transport at the nanoscale and for detection, identification, and sequencing of individual proteins.
Collapse
Affiliation(s)
- Behzad Mehrafrooz
- Center for Biophysics and Quantitative Biology
- Beckman Institute for Advanced Science and Technology
- Department of Physics, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA
| | - Luning Yu
- Department of Physics, Northeastern University, Boston, MA 02115 USA
| | - Zuzanna Siwy
- Department of Physics, University of California at Irvine, Irvine, CA 92697, USA
| | - Meni Wanunu
- Department of Physics, Northeastern University, Boston, MA 02115 USA
- Department of Bioengineering, Northeastern University, Boston, MA 02115, USA
| | - Aleksei Aksimentiev
- Center for Biophysics and Quantitative Biology
- Beckman Institute for Advanced Science and Technology
- Department of Physics, University of Illinois at Urbana-Champaign, Urbana, Illinois
| |
Collapse
|
47
|
Wu X, Borca B, Sen S, Koslowski S, Abb S, Rosenblatt DP, Gallardo A, Mendieta-Moreno JI, Nachtigall M, Jelinek P, Rauschenbach S, Kern K, Schlickum U. Molecular sensitised probe for amino acid recognition within peptide sequences. Nat Commun 2023; 14:8335. [PMID: 38097575 PMCID: PMC10721870 DOI: 10.1038/s41467-023-43844-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2022] [Accepted: 11/21/2023] [Indexed: 12/17/2023] Open
Abstract
The combination of low-temperature scanning tunnelling microscopy with a mass-selective electro-spray ion-beam deposition established the investigation of large biomolecules at nanometer and sub-nanometer scale. Due to complex architecture and conformational freedom, however, the chemical identification of building blocks of these biopolymers often relies on the presence of markers, extensive simulations, or is not possible at all. Here, we present a molecular probe-sensitisation approach addressing the identification of a specific amino acid within different peptides. A selective intermolecular interaction between the sensitiser attached at the tip-apex and the target amino acid on the surface induces an enhanced tunnelling conductance of one specific spectral feature, which can be mapped in spectroscopic imaging. Density functional theory calculations suggest a mechanism that relies on conformational changes of the sensitiser that are accompanied by local charge redistributions in the tunnelling junction, which, in turn, lower the tunnelling barrier at that specific part of the peptide.
Collapse
Affiliation(s)
- Xu Wu
- Max Planck Institute for Solid State Research, Stuttgart, Germany
- School of Integrated Circuits and Electronics, Beijing Institute of Technology, Beijing, 100081, China
| | - Bogdana Borca
- Institute of Applied Physics and Laboratory for Emerging Nanometrology, Technische Universität Braunschweig, 38104, Braunschweig, Germany
- National Institute of Materials Physics, 077125, Magurele, Romania
| | - Suman Sen
- Max Planck Institute for Solid State Research, Stuttgart, Germany
| | | | - Sabine Abb
- Max Planck Institute for Solid State Research, Stuttgart, Germany
| | | | - Aurelio Gallardo
- Institute of Physics of the Czech Academy of Science, Prague, Czech Republic
- Department of Condensed Matter Physics, Faculty of Mathematics and Physics, Charles University, Prague, Czech Republic
| | | | - Matyas Nachtigall
- Institute of Physics of the Czech Academy of Science, Prague, Czech Republic
| | - Pavel Jelinek
- Institute of Physics of the Czech Academy of Science, Prague, Czech Republic.
| | - Stephan Rauschenbach
- Max Planck Institute for Solid State Research, Stuttgart, Germany.
- Department of Chemistry, University of Oxford, Oxford, UK.
| | - Klaus Kern
- Max Planck Institute for Solid State Research, Stuttgart, Germany
- Institut de Physique, École Polytechnique Fédérale de Lausanne, Lausanne, Switzerland
| | - Uta Schlickum
- Max Planck Institute for Solid State Research, Stuttgart, Germany.
- Institute of Applied Physics and Laboratory for Emerging Nanometrology, Technische Universität Braunschweig, 38104, Braunschweig, Germany.
| |
Collapse
|
48
|
Lucas FLR, Finol-Urdaneta RK, Van Thillo T, McArthur JR, van der Heide NJ, Maglia G, Dedecker P, Strauss O, Wloka C. Evidence of Cytolysin A nanopore incorporation in mammalian cells assessed by a graphical user interface. NANOSCALE 2023; 15:16914-16923. [PMID: 37853831 DOI: 10.1039/d3nr01977b] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/20/2023]
Abstract
Technologies capable of assessing cellular metabolites with high precision and temporal resolution are currently limited. Recent developments in the field of nanopore sensors allow the non-stochastic quantification of metabolites, where a nanopore is acting as an electrical transducer for selective substrate binding proteins (SBPs). Here we show that incorporation of the pore-forming toxin Cytolysin A (ClyA) into the plasma membrane of Chinese hamster ovary cells (CHO-K1) results in the appearance of single-channel conductance amenable to multiplexed automated patch-clamp (APC) electrophysiology. In CHO-K1 cells, SBPs modify the ionic current flowing though ClyA nanopores, thus demonstrating its potential for metabolite sensing of living cells. Moreover, we developed a graphical user interface for the analysis of the complex signals resulting from multiplexed APC recordings. This system lays the foundation to bridge the gap between recent advances in the nanopore field (e.g., proteomic and transcriptomic) and potential cellular applications.
Collapse
Affiliation(s)
| | - Rocio K Finol-Urdaneta
- Illawarra Health and Medical Research Institute, Wollongong, NSW 2522, Australia.
- Electrophysiology Facility for Cell Phenotyping and Drug Discovery, Wollongong, NSW 2522, Australia
- Faculty of Science, Medicine and Health, University of Wollongong, Wollongong, NSW 2522, Australia
| | - Toon Van Thillo
- Lab for Nanobiology, Department of Chemistry, KU Leuven, Belgium.
| | - Jeffrey R McArthur
- Illawarra Health and Medical Research Institute, Wollongong, NSW 2522, Australia.
- Faculty of Science, Medicine and Health, University of Wollongong, Wollongong, NSW 2522, Australia
| | - Nieck Jordy van der Heide
- Groningen Biomolecular Sciences and Biotechnology Institute, University of Groningen, Groningen, 9747 AG, Groningen, The Netherlands
| | - Giovanni Maglia
- Groningen Biomolecular Sciences and Biotechnology Institute, University of Groningen, Groningen, 9747 AG, Groningen, The Netherlands
| | - Peter Dedecker
- Lab for Nanobiology, Department of Chemistry, KU Leuven, Belgium.
| | - Olaf Strauss
- Experimental Ophthalmology, Department of Ophthalmology, Charité - Universitätsmedizin Berlin, A Corporate Member of Freie Universität, Humboldt-University, The Berlin Institute of Health, Berlin, Germany.
| | - Carsten Wloka
- Experimental Ophthalmology, Department of Ophthalmology, Charité - Universitätsmedizin Berlin, A Corporate Member of Freie Universität, Humboldt-University, The Berlin Institute of Health, Berlin, Germany.
| |
Collapse
|
49
|
Dorey A, Howorka S. Unfolding the path to nanopore protein sequencing. NATURE NANOTECHNOLOGY 2023; 18:1259-1260. [PMID: 37626147 DOI: 10.1038/s41565-023-01480-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/27/2023]
Affiliation(s)
- Adam Dorey
- Department of Chemistry, Institute of Structural and Molecular Biology, University College London, London, UK
| | - Stefan Howorka
- Department of Chemistry, Institute of Structural and Molecular Biology, University College London, London, UK.
| |
Collapse
|
50
|
Lei X, Zhang J, Hong H, Wei J, Liu Z, Jiang L. Controllable Fabrication and Rectification of Bipolar Nanofluid Diodes in Funnel-Shaped Si 3 N 4 Nanopores. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2023; 19:e2303370. [PMID: 37420321 DOI: 10.1002/smll.202303370] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/21/2023] [Revised: 06/09/2023] [Indexed: 07/09/2023]
Abstract
Solid-state nanopores attract widespread interest, owning to outstanding robustness, extensive material availability, as well as capability for flexible manufacturing. Bioinspired solid-state nanopores further emerge as potential nanofluidic diodes for mimicking the rectification progress of unidirectional ionic transport in biological K+ channels. However, challenges that remain in rectification are over-reliance on complicated surface modifications and limited control accuracy in size and morphology. In this study, suspended Si3 N4 films of only 100 nm thickness are used as substrate and funnel-shaped nanopores are controllably etched on that with single-nanometer precision, by focused ion beam (FIB) equipped with a flexibly programmable ion dose at any position. A small diameter 7 nm nanopore can be accurately and efficiently fabricated in only 20 ms and verified by a self-designed mathematical model. Without additional modification, funnel-shaped Si3 N4 nanopores functioned as bipolar nanofluidic diodes achieve high rectification by simply filling each side with acidic and basic solution, respectively. Main factors are finely tuned experimentally and simulatively to enhance the controllability. Moreover, nanopore arrays are efficiently prepared to further improve rectification performance, which has great potential for high-throughput practical applications such as extended release of drugs, nanofluidic logic systems, and sensing for environmental monitoring and clinical diagnosis.
Collapse
Affiliation(s)
- Xin Lei
- School of Chemistry, Beihang University, Beijing, 100191, P. R. China
- School of Integrated Circuits, Tsinghua University, Beijing, 100084, P. R. China
| | - Jiayan Zhang
- School of Chemistry, Beihang University, Beijing, 100191, P. R. China
| | - Hao Hong
- School of Integrated Circuits, Tsinghua University, Beijing, 100084, P. R. China
- Department of Microelectronics, Delft University of Technology, Delft, 2628 CD, The Netherlands
| | - Jiangtao Wei
- School of Integrated Circuits, Tsinghua University, Beijing, 100084, P. R. China
| | - Zewen Liu
- School of Integrated Circuits, Tsinghua University, Beijing, 100084, P. R. China
| | - Lei Jiang
- Key Laboratory of Bio-Inspired Materials and Interfacial Science, Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Beijing, 100190, P. R. China
- School of Future Technology, University of Chinese Academy of Sciences, Beijing, 101407, P. R. China
| |
Collapse
|