1
|
Mao D, Tang X, Zhang R, Hu S, Gou H, Zhang P, Li W, Pan Q, Shen B, Zhu X. Multichrome encoding-based multiplexed, spatially resolved imaging reveals single-cell RNA epigenetic modifications heterogeneity. Nat Commun 2025; 16:958. [PMID: 39843433 DOI: 10.1038/s41467-025-56331-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2024] [Accepted: 01/14/2025] [Indexed: 01/24/2025] Open
Abstract
Understanding the heterogeneity of epigenetic modifications within single cells is pivotal for unraveling the nature of the complexity of gene expression and cellular function. In this study, we have developed a strategy based on multichrome encoding and "AND" Boolean logic recognition for multiplexed, spatially resolved imaging of single-cell RNA epigenetic modifications, termed as PRoximity Exchange-assisted Encoding of Multichrome (PREEM). Through the implementation of this strategy, we can now map the expression and nuclear distribution of multiple site-specific RNA N6-methyladenosine (m6A) modifications at the single-molecule resolution level in single-cells, and reveal the previously unknown heterogeneity. Notably, we demonstrate how these patterns change after treatment with various drugs. Moreover, cyclic imaging with tailed DNA self-assembly further suggest the scalability and adaptability of PREEM's design. As an innovative epigenetic modification imaging tool, PREEM not only broadens the horizons of single-cell epigenetics research, enabling joint analysis of multiple targets beyond the limitations of imaging channels, but also reveals cell-to-cell variability, thereby enhancing our capacity to explore cellular functions.
Collapse
Affiliation(s)
- Dongsheng Mao
- Shanghai Tenth People's Hospital of Tongji University, Shanghai, PR China
| | - Xiaochen Tang
- Department of Clinical Laboratory Medicine, Shanghai Children's Medical Center, Shanghai Jiao Tong University School of Medicine, Shanghai, PR China
| | - Runchi Zhang
- Shanghai Tenth People's Hospital of Tongji University, Shanghai, PR China
| | - Song Hu
- Shanghai Pudong New Area People's Hospital, Shanghai, PR China
| | - Hongquan Gou
- Shanghai Tenth People's Hospital of Tongji University, Shanghai, PR China
| | - Penghui Zhang
- Shanghai Pudong New Area People's Hospital, Shanghai, PR China
| | - Wenxing Li
- Shanghai Tenth People's Hospital of Tongji University, Shanghai, PR China.
| | - Qiuhui Pan
- Department of Clinical Laboratory Medicine, Shanghai Children's Medical Center, Shanghai Jiao Tong University School of Medicine, Shanghai, PR China.
| | - Bing Shen
- Shanghai Tenth People's Hospital of Tongji University, Shanghai, PR China.
| | - Xiaoli Zhu
- Shanghai Tenth People's Hospital of Tongji University, Shanghai, PR China.
| |
Collapse
|
2
|
VanInsberghe M, van Oudenaarden A. Sequencing technologies to measure translation in single cells. Nat Rev Mol Cell Biol 2025:10.1038/s41580-024-00822-z. [PMID: 39833532 DOI: 10.1038/s41580-024-00822-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 12/09/2024] [Indexed: 01/22/2025]
Abstract
Translation is one of the most energy-intensive processes in a cell and, accordingly, is tightly regulated. Genome-wide methods to measure translation and the translatome and to study the complex regulation of protein synthesis have enabled unprecedented characterization of this crucial step of gene expression. However, technological limitations have hampered our understanding of translation control in multicellular tissues, rare cell types and dynamic cellular processes. Recent optimizations, adaptations and new techniques have enabled these measurements to be made at single-cell resolution. In this Progress, we discuss single-cell sequencing technologies to measure translation, including ribosome profiling, ribosome affinity purification and spatial translatome methods.
Collapse
Affiliation(s)
- Michael VanInsberghe
- Oncode Institute, Utrecht, the Netherlands.
- Hubrecht Institute-KNAW (Royal Netherlands Academy of Arts and Sciences), Utrecht, the Netherlands.
- University Medical Center Utrecht, Utrecht, the Netherlands.
| | - Alexander van Oudenaarden
- Oncode Institute, Utrecht, the Netherlands
- Hubrecht Institute-KNAW (Royal Netherlands Academy of Arts and Sciences), Utrecht, the Netherlands
- University Medical Center Utrecht, Utrecht, the Netherlands
| |
Collapse
|
3
|
Wang H, Wang Y, Zhou J, Song B, Tu G, Nguyen A, Su J, Coenen F, Wei Z, Rigden DJ, Meng J. Statistical modeling of single-cell epitranscriptomics enabled trajectory and regulatory inference of RNA methylation. CELL GENOMICS 2025; 5:100702. [PMID: 39642887 DOI: 10.1016/j.xgen.2024.100702] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/15/2024] [Revised: 10/07/2024] [Accepted: 11/06/2024] [Indexed: 12/09/2024]
Abstract
As a fundamental mechanism for gene expression regulation, post-transcriptional RNA methylation plays versatile roles in various biological processes and disease mechanisms. Recent advances in single-cell technology have enabled simultaneous profiling of transcriptome-wide RNA methylation in thousands of cells, holding the promise to provide deeper insights into the dynamics, functions, and regulation of RNA methylation. However, it remains a major challenge to determine how to best analyze single-cell epitranscriptomics data. In this study, we developed SigRM, a computational framework for effectively mining single-cell epitranscriptomics datasets with a large cell number, such as those produced by the scDART-seq technique from the SMART-seq2 platform. SigRM not only outperforms state-of-the-art models in RNA methylation site detection on both simulated and real datasets but also provides rigorous quantification metrics of RNA methylation levels. This facilitates various downstream analyses, including trajectory inference and regulatory network reconstruction concerning the dynamics of RNA methylation.
Collapse
Affiliation(s)
- Haozhe Wang
- Department of Biosciences and Bioinformatics, Center for Intelligent RNA Therapeutics, Suzhou Key Laboratory of Cancer Biology and Chronic Disease, School of Science, XJTLU Entrepreneur College, Xi'an Jiaotong-Liverpool University, Suzhou, Jiangsu 215123, China; Department of Computer Science, University of Liverpool, L7 8TX Liverpool, UK
| | - Yue Wang
- School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing, Jiangsu 210023, China.
| | - Jingxian Zhou
- School of AI and Advanced Computing, XJTLU Entrepreneur College, Xi'an Jiaotong-Liverpool University, Suzhou, Jiangsu 215123, China; Department of Computer Science, University of Liverpool, L7 8TX Liverpool, UK; Sino-French Hoffmann Institute, School of Basic Medical Sciences, Guangzhou Medical University, Guangzhou, Guangdong 511436, China
| | - Bowen Song
- Department of Public Health, School of Medicine, Nanjing University of Chinese Medicine, Nanjing, Jiangsu 210023, China; Synthetic and Functional Biomolecules Center, Beijing National Laboratory for Molecular Sciences, Key Laboratory of Bioorganic Chemistry and Molecular Engineering of Ministry of Education, College of Chemistry and Molecular Engineering, Peking University, Beijing 100871, China
| | - Gang Tu
- Department of Biosciences and Bioinformatics, Center for Intelligent RNA Therapeutics, Suzhou Key Laboratory of Cancer Biology and Chronic Disease, School of Science, XJTLU Entrepreneur College, Xi'an Jiaotong-Liverpool University, Suzhou, Jiangsu 215123, China
| | - Anh Nguyen
- Department of Computer Science, University of Liverpool, L7 8TX Liverpool, UK
| | - Jionglong Su
- School of AI and Advanced Computing, XJTLU Entrepreneur College, Xi'an Jiaotong-Liverpool University, Suzhou, Jiangsu 215123, China
| | - Frans Coenen
- Department of Computer Science, University of Liverpool, L7 8TX Liverpool, UK
| | - Zhi Wei
- Department of Computer Science, New Jersey Institute of Technology, Newark, NJ 07102, USA
| | - Daniel J Rigden
- Institute of Systems, Molecular and Integrative Biology, University of Liverpool, L7 8TX Liverpool, UK
| | - Jia Meng
- Department of Biosciences and Bioinformatics, Center for Intelligent RNA Therapeutics, Suzhou Key Laboratory of Cancer Biology and Chronic Disease, School of Science, XJTLU Entrepreneur College, Xi'an Jiaotong-Liverpool University, Suzhou, Jiangsu 215123, China; Institute of Biomedical Research, Regulatory Mechanism and Targeted Therapy for Liver Cancer Shiyan Key Laboratory, Hubei Provincial Clinical Research Center for Precise Diagnosis and Treatment of Liver Cancer, Taihe Hospital, Hubei University of Medicine, Shiyan, Hubei 442000, China; Institute of Systems, Molecular and Integrative Biology, University of Liverpool, L7 8TX Liverpool, UK.
| |
Collapse
|
4
|
Louwagie A, Vu LP. Emerging interactions between RNA methylation and chromatin architecture. Curr Opin Genet Dev 2024; 89:102270. [PMID: 39426116 DOI: 10.1016/j.gde.2024.102270] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2024] [Revised: 09/17/2024] [Accepted: 09/23/2024] [Indexed: 10/21/2024]
Abstract
Epitranscriptomics, the study of chemical modifications of RNA molecules, is increasingly recognized as an important component of gene expression regulation. While the majority of research has focused on N6-methyladenosine (m6A) RNA methylation on mRNAs, emerging evidence has revealed that the m6A modification extends beyond mRNAs to include chromatin-associated RNAs (caRNAs). CaRNAs constitute an important class of RNAs characterized by their interaction with the genome and epigenome. These features allow caRNAs to be actively involved in shaping genome organization. In this review, we bring into focus recent findings of the dynamic interactions between caRNAs and chromatin architecture and how RNA methylation impacts caRNAs' function in this interplay. We highlight several enabling techniques, which were critical for genome-wide profiling of caRNAs and their modifications. Given the nascent stage of the field, we emphasize on the need to address critical gaps in study of these modifications in more relevant biological systems. Overall, these exciting progress have expanded the scope and reach of epitranscriptomics, unveiling new mechanisms that underpin the control of gene expression and cellular phenotypes, with potential therapeutic implications.
Collapse
Affiliation(s)
- Amber Louwagie
- Faculty of Pharmaceutical Sciences, University of British Columbia, Vancouver, Canada; Terry Fox Laboratory, British Columbia Cancer Research Centre, Vancouver, Canada
| | - Ly P Vu
- Faculty of Pharmaceutical Sciences, University of British Columbia, Vancouver, Canada; Terry Fox Laboratory, British Columbia Cancer Research Centre, Vancouver, Canada.
| |
Collapse
|
5
|
Wang S, Zeng Y, Zhu L, Zhang M, Zhou L, Yang W, Luo W, Wang L, Liu Y, Zhu H, Xu X, Su P, Zhang X, Ahmed M, Chen W, Chen M, Chen S, Slobodyanyuk M, Xie Z, Guan J, Zhang W, Khan AA, Sakashita S, Liu N, Pham NA, Boutros PC, Ke Z, Moran MF, Cai Z, Cheng C, Yu J, Tsao MS, He HH. The N6-methyladenosine Epitranscriptomic Landscape of Lung Adenocarcinoma. Cancer Discov 2024; 14:2279-2299. [PMID: 38922581 PMCID: PMC11528209 DOI: 10.1158/2159-8290.cd-23-1212] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2023] [Revised: 04/25/2024] [Accepted: 06/21/2024] [Indexed: 06/27/2024]
Abstract
Comprehensive N6-methyladenosine (m6A) epitranscriptomic profiling of primary tumors remains largely uncharted. Here, we profiled the m6A epitranscriptome of 10 nonneoplastic lung tissues and 51 lung adenocarcinoma (LUAD) tumors, integrating the corresponding transcriptomic, proteomic, and extensive clinical annotations. We identified distinct clusters and genes that were exclusively linked to disease progression through m6A modifications. In comparison with nonneoplastic lung tissues, we identified 430 transcripts to be hypo-methylated and 222 to be hyper-methylated in tumors. Among these genes, EML4 emerged as a novel metastatic driver, displaying significant hypermethylation in tumors. m6A modification promoted the translation of EML4, leading to its widespread overexpression in primary tumors. Functionally, EML4 modulated cytoskeleton dynamics by interacting with ARPC1A, enhancing lamellipodia formation, cellular motility, local invasion, and metastasis. Clinically, high EML4 protein abundance correlated with features of metastasis. METTL3 small-molecule inhibitor markedly diminished both EML4 m6A and protein abundance and efficiently suppressed lung metastases in vivo. Significance: Our study reveals a dynamic and functional epitranscriptomic landscape in LUAD, offering a valuable resource for further research in the field. We identified EML4 hypermethylation as a key driver of tumor metastasis, highlighting a novel therapeutic strategy of targeting EML4 to prevent LUAD metastasis.
Collapse
Affiliation(s)
- Shiyan Wang
- Department of Thoracic Surgery, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
- Princess Margaret Cancer Centre, University Health Network, Toronto, Canada
- Institute of Precision Medicine, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
| | - Yong Zeng
- Princess Margaret Cancer Centre, University Health Network, Toronto, Canada
| | - Lin Zhu
- State Key Laboratory of Environmental and Biological Analysis, Hong Kong Baptist University, Hong Kong, China
| | - Min Zhang
- Institute of Precision Medicine, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
| | - Lei Zhou
- Institute of Precision Medicine, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
| | - Weixiong Yang
- Department of Thoracic Surgery, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
| | - Weishan Luo
- Institute of Precision Medicine, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
| | - Lina Wang
- Institute of Precision Medicine, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
| | - Yanming Liu
- Institute of Precision Medicine, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
| | - Helen Zhu
- Princess Margaret Cancer Centre, University Health Network, Toronto, Canada
- Department of Medical Biophysics, University of Toronto, Toronto, Canada
- Vector Institute, Toronto, Canada
| | - Xin Xu
- Princess Margaret Cancer Centre, University Health Network, Toronto, Canada
| | - Peiran Su
- Princess Margaret Cancer Centre, University Health Network, Toronto, Canada
- Department of Medical Biophysics, University of Toronto, Toronto, Canada
| | - Xinyue Zhang
- Institute of Precision Medicine, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
| | - Musaddeque Ahmed
- Princess Margaret Cancer Centre, University Health Network, Toronto, Canada
| | - Wei Chen
- Princess Margaret Cancer Centre, University Health Network, Toronto, Canada
- Department of Respiratory and Critical Care Medicine, The Affiliated Huaian No.1 People’s Hospital of Nanjing Medical University, Huai’an, China
| | - Moliang Chen
- Princess Margaret Cancer Centre, University Health Network, Toronto, Canada
| | - Sujun Chen
- Princess Margaret Cancer Centre, University Health Network, Toronto, Canada
- Department of Medical Biophysics, University of Toronto, Toronto, Canada
| | - Mykhaylo Slobodyanyuk
- Department of Medical Biophysics, University of Toronto, Toronto, Canada
- Ontario Institute of Cancer Research, Toronto, Canada
| | - Zhongpeng Xie
- Department of Pathology, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
| | - Jiansheng Guan
- Princess Margaret Cancer Centre, University Health Network, Toronto, Canada
- College of Electrical Engineering and Automation, Xiamen University of Technology, Xiamen, China
| | - Wen Zhang
- Program in Cell Biology, Hospital for Sick Children, Toronto, Canada
- Department of Molecular Genetics, University of Toronto, Toronto, Canada
| | | | - Shingo Sakashita
- Princess Margaret Cancer Centre, University Health Network, Toronto, Canada
| | - Ni Liu
- Princess Margaret Cancer Centre, University Health Network, Toronto, Canada
| | - Nhu-An Pham
- Princess Margaret Cancer Centre, University Health Network, Toronto, Canada
| | - Paul C. Boutros
- Department of Human Genetics, University of California, Los Angeles, California
- Department of Urology, University of California, Los Angeles, California
- Jonsson Comprehensive Cancer Centre, University of California, Los Angeles, California
- Institute for Precision Health, University of California, Los Angeles, California
| | - Zunfu Ke
- Institute of Precision Medicine, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
- Department of Pathology, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
| | - Michael F. Moran
- Princess Margaret Cancer Centre, University Health Network, Toronto, Canada
- Program in Cell Biology, Hospital for Sick Children, Toronto, Canada
- Department of Molecular Genetics, University of Toronto, Toronto, Canada
| | - Zongwei Cai
- State Key Laboratory of Environmental and Biological Analysis, Hong Kong Baptist University, Hong Kong, China
| | - Chao Cheng
- Department of Thoracic Surgery, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
| | - Jun Yu
- Institute of Digestive Disease and Department of Medicine and Therapeutics, State Key Laboratory of Digestive Disease, Li Ka Shing Institute of Health Sciences, CUHK Shenzhen Research Institute, The Chinese University of Hong Kong, Hong Kong, China
| | - Ming S. Tsao
- Princess Margaret Cancer Centre, University Health Network, Toronto, Canada
- Department of Medical Biophysics, University of Toronto, Toronto, Canada
- Department of Laboratory Medicine and Pathobiology, University of Toronto, Toronto, Canada
| | - Housheng H. He
- Princess Margaret Cancer Centre, University Health Network, Toronto, Canada
- Department of Medical Biophysics, University of Toronto, Toronto, Canada
| |
Collapse
|
6
|
Yang W, Zhao Y, Yang Y. Dynamic RNA methylation modifications and their regulatory role in mammalian development and diseases. SCIENCE CHINA. LIFE SCIENCES 2024; 67:2084-2104. [PMID: 38833084 DOI: 10.1007/s11427-023-2526-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/08/2023] [Accepted: 11/15/2023] [Indexed: 06/06/2024]
Abstract
Among over 170 different types of chemical modifications on RNA nucleobases identified so far, RNA methylation is the major type of epitranscriptomic modifications existing on almost all types of RNAs, and has been demonstrated to participate in the entire process of RNA metabolism, including transcription, pre-mRNA alternative splicing and maturation, mRNA nucleus export, mRNA degradation and stabilization, mRNA translation. Attributing to the development of high-throughput detection technologies and the identification of both dynamic regulators and recognition proteins, mechanisms of RNA methylation modification in regulating the normal development of the organism as well as various disease occurrence and developmental abnormalities upon RNA methylation dysregulation have become increasingly clear. Here, we particularly focus on three types of RNA methylations: N6-methylcytosine (m6A), 5-methylcytosine (m5C), and N7-methyladenosine (m7G). We summarize the elements related to their dynamic installment and removal, specific binding proteins, and the development of high-throughput detection technologies. Then, for a comprehensive understanding of their biological significance, we also overview the latest knowledge on the underlying mechanisms and key roles of these three mRNA methylation modifications in gametogenesis, embryonic development, immune system development, as well as disease and tumor progression.
Collapse
Affiliation(s)
- Wenlan Yang
- State Key Laboratory of Reproductive Regulation & Breeding of Grassland Livestock, Inner Mongolia Key Laboratory for Molecular Regulation of the Cell, School of Life Sciences, Inner Mongolia University, Hohhot, 010020, China
- CAS Key Laboratory of Genomic and Precision Medicine, Beijing Institute of Genomics, Chinese Academy of Sciences, Beijing, 100101, China
- China National Center for Bioinformation, Beijing, 100101, China
| | - Yongliang Zhao
- CAS Key Laboratory of Genomic and Precision Medicine, Beijing Institute of Genomics, Chinese Academy of Sciences, Beijing, 100101, China
- China National Center for Bioinformation, Beijing, 100101, China
| | - Yungui Yang
- CAS Key Laboratory of Genomic and Precision Medicine, Beijing Institute of Genomics, Chinese Academy of Sciences, Beijing, 100101, China.
- China National Center for Bioinformation, Beijing, 100101, China.
- School of Future Technology, University of Chinese Academy of Sciences, Beijing, 100049, China.
- Sino-Danish College, University of Chinese Academy of Sciences, Beijing, 101408, China.
| |
Collapse
|
7
|
Xia W, Liu Y, Lu J, Cheung HH, Meng Q, Huang B. RNA methylation in neurodevelopment and related diseases. Acta Biochim Biophys Sin (Shanghai) 2024; 56:1723-1732. [PMID: 39344412 PMCID: PMC11693867 DOI: 10.3724/abbs.2024159] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2024] [Accepted: 05/23/2024] [Indexed: 10/01/2024] Open
Abstract
Biological development and genetic information transfer are governed by genetic, epigenetic, transcriptional, and posttranscriptional mechanisms. RNA methylation, the attachment of methyl (-CH 3) groups to RNA molecules, is a posttranscriptional modification that has gained increasing attention in recent years because of its role in RNA epitranscriptomics. RNA modifications (RMs) influence various aspects of RNA metabolism and are involved in the regulation of diverse biological processes and diseases. Neural cell types emerge at specific stages of brain development, and recent studies have revealed that neurodevelopment, aging, and disease are tightly linked to transcriptome dysregulation. In this review, we discuss the roles of N6-methyladenine (m6A) and 5-methylcytidine (m5C) RNA modifications in neurodevelopment, physiological functions, and related diseases.
Collapse
Affiliation(s)
- Wenjuan Xia
- State Key Laboratory of Reproductive Medicine and Offspring Health (Suzhou)Suzhou Affiliated Hospital of Nanjing Medical UniversitySuzhou Municipal HospitalGusu SchoolNanjing Medical UniversitySuzhou215002China
| | - Yue Liu
- State Key Laboratory of Reproductive Medicine and Offspring Health (Suzhou)Suzhou Affiliated Hospital of Nanjing Medical UniversitySuzhou Municipal HospitalGusu SchoolNanjing Medical UniversitySuzhou215002China
| | - Jiafeng Lu
- State Key Laboratory of Reproductive Medicine and Offspring Health (Suzhou)Suzhou Affiliated Hospital of Nanjing Medical UniversitySuzhou Municipal HospitalGusu SchoolNanjing Medical UniversitySuzhou215002China
| | - Hoi-Hung Cheung
- School of Biomedical SciencesFaculty of MedicineThe Chinese University of Hong KongHong Kong 999077China
| | - Qingxia Meng
- State Key Laboratory of Reproductive Medicine and Offspring Health (Suzhou)Suzhou Affiliated Hospital of Nanjing Medical UniversitySuzhou Municipal HospitalGusu SchoolNanjing Medical UniversitySuzhou215002China
| | - Boxian Huang
- State Key Laboratory of Reproductive Medicine and Offspring Health (Suzhou)Suzhou Affiliated Hospital of Nanjing Medical UniversitySuzhou Municipal HospitalGusu SchoolNanjing Medical UniversitySuzhou215002China
| |
Collapse
|
8
|
Feng S, Tellaetxe-Abete M, Zhang Y, Peng Y, Zhou H, Dong M, Larrea E, Xue L, Zhang L, Koziol MJ. Single-cell discovery of m 6A RNA modifications in the hippocampus. Genome Res 2024; 34:822-836. [PMID: 39009472 PMCID: PMC11293556 DOI: 10.1101/gr.278424.123] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2023] [Accepted: 06/11/2024] [Indexed: 07/17/2024]
Abstract
N 6-Methyladenosine (m6A) is a prevalent and highly regulated RNA modification essential for RNA metabolism and normal brain function. It is particularly important in the hippocampus, where m6A is implicated in neurogenesis and learning. Although extensively studied, its presence in specific cell types remains poorly understood. We investigated m6A in the hippocampus at a single-cell resolution, revealing a comprehensive landscape of m6A modifications within individual cells. Through our analysis, we uncovered transcripts exhibiting a dense m6A profile, notably linked to neurological disorders such as Alzheimer's disease. Our findings suggest a pivotal role of m6A-containing transcripts, particularly in the context of CAMK2A neurons. Overall, this work provides new insights into the molecular mechanisms underlying hippocampal physiology and lays the foundation for future studies investigating the dynamic nature of m6A RNA methylation in the healthy and diseased brain.
Collapse
Affiliation(s)
- Shuangshuang Feng
- State Key Laboratory of Cognitive Neuroscience and Learning, Beijing Normal University, Beijing 100875, China
- Chinese Institute for Brain Research, Beijing 102206, China
- Research Unit of Medical Neurobiology, Chinese Academy of Medical Sciences, Beijing 102206, China
| | - Maitena Tellaetxe-Abete
- Intelligent Systems Group, Computer Science Faculty, University of the Basque Country, Donostia/San Sebastian 20018, Spain
| | - Yujie Zhang
- Chinese Institute for Brain Research, Beijing 102206, China
- Research Unit of Medical Neurobiology, Chinese Academy of Medical Sciences, Beijing 102206, China
| | - Yan Peng
- Chinese Institute for Brain Research, Beijing 102206, China
- Research Unit of Medical Neurobiology, Chinese Academy of Medical Sciences, Beijing 102206, China
- Peking University, Beijing, 100871, China
| | - Han Zhou
- Chinese Institute for Brain Research, Beijing 102206, China
| | - Mingjie Dong
- Chinese Institute for Brain Research, Beijing 102206, China
| | - Erika Larrea
- Chinese Institute for Brain Research, Beijing 102206, China
- Research Unit of Medical Neurobiology, Chinese Academy of Medical Sciences, Beijing 102206, China
- Tsinghua University, Beijing 100084, China
| | - Liang Xue
- Chinese Institute for Brain Research, Beijing 102206, China
- Research Unit of Medical Neurobiology, Chinese Academy of Medical Sciences, Beijing 102206, China
| | - Li Zhang
- Chinese Institute for Brain Research, Beijing 102206, China
| | - Magdalena J Koziol
- State Key Laboratory of Cognitive Neuroscience and Learning, Beijing Normal University, Beijing 100875, China;
- Chinese Institute for Brain Research, Beijing 102206, China
- Research Unit of Medical Neurobiology, Chinese Academy of Medical Sciences, Beijing 102206, China
| |
Collapse
|
9
|
Xiang Y, Zhang D, Li L, Xue YX, Zhang CY, Meng QF, Wang J, Tan XL, Li YL. Detection, distribution, and functions of RNA N 6-methyladenosine (m 6A) in plant development and environmental signal responses. FRONTIERS IN PLANT SCIENCE 2024; 15:1429011. [PMID: 39081522 PMCID: PMC11286456 DOI: 10.3389/fpls.2024.1429011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 05/07/2024] [Accepted: 06/24/2024] [Indexed: 08/02/2024]
Abstract
The epitranscriptomic mark N 6-methyladenosine (m6A) is the most common type of messenger RNA (mRNA) post-transcriptional modification in eukaryotes. With the discovery of the demethylase FTO (FAT MASS AND OBESITY-ASSOCIATED PROTEIN) in Homo Sapiens, this modification has been proven to be dynamically reversible. With technological advances, research on m6A modification in plants also rapidly developed. m6A modification is widely distributed in plants, which is usually enriched near the stop codons and 3'-UTRs, and has conserved modification sequences. The related proteins of m6A modification mainly consist of three components: methyltransferases (writers), demethylases (erasers), and reading proteins (readers). m6A modification mainly regulates the growth and development of plants by modulating the RNA metabolic processes and playing an important role in their responses to environmental signals. In this review, we briefly outline the development of m6A modification detection techniques; comparatively analyze the distribution characteristics of m6A in plants; summarize the methyltransferases, demethylases, and binding proteins related to m6A; elaborate on how m6A modification functions in plant growth, development, and response to environmental signals; and provide a summary and outlook on the research of m6A in plants.
Collapse
|
10
|
Vignolini T, Couble JEC, Doré GRG, Baumgarten S. Transcript tinkering: RNA modifications in protozoan parasites. Curr Opin Microbiol 2024; 79:102477. [PMID: 38663181 DOI: 10.1016/j.mib.2024.102477] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2023] [Revised: 03/19/2024] [Accepted: 04/03/2024] [Indexed: 06/11/2024]
Abstract
Apicomplexan and trypanosomatid parasites have evolved a wide range of post-transcriptional processes that allow them to replicate, differentiate, and transmit within and among multiple different tissue, host, and vector environments. In this review, we highlight the recent advances that point toward the regulatory potential of RNA modifications in mediating these processes on the coding and noncoding transcriptome throughout the life cycle of protozoan parasites. We discuss the recent technical advancements enabling the study of the 'epitranscriptome' and how parasites evolved RNA modification-mediated mechanisms adapted to their unique lifestyles.
Collapse
Affiliation(s)
- Tiziano Vignolini
- Institut Pasteur, Université Paris Cité, G5 Parasite RNA Biology, Department of Parasites and Insect Vectors, F-75015 Paris, France
| | - Justine E C Couble
- Institut Pasteur, Université Paris Cité, G5 Parasite RNA Biology, Department of Parasites and Insect Vectors, F-75015 Paris, France
| | - Grégory R G Doré
- Institut Pasteur, Université Paris Cité, G5 Parasite RNA Biology, Department of Parasites and Insect Vectors, F-75015 Paris, France
| | - Sebastian Baumgarten
- Institut Pasteur, Université Paris Cité, G5 Parasite RNA Biology, Department of Parasites and Insect Vectors, F-75015 Paris, France.
| |
Collapse
|
11
|
Tegowski M, Meyer KD. Studying m 6A in the brain: a perspective on current methods, challenges, and future directions. Front Mol Neurosci 2024; 17:1393973. [PMID: 38711483 PMCID: PMC11070500 DOI: 10.3389/fnmol.2024.1393973] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/29/2024] [Accepted: 04/12/2024] [Indexed: 05/08/2024] Open
Abstract
A major mechanism of post-transcriptional RNA regulation in cells is the addition of chemical modifications to RNA nucleosides, which contributes to nearly every aspect of the RNA life cycle. N6-methyladenosine (m6A) is a highly prevalent modification in cellular mRNAs and non-coding RNAs, and it plays important roles in the control of gene expression and cellular function. Within the brain, proper regulation of m6A is critical for neurodevelopment, learning and memory, and the response to injury, and m6A dysregulation has been implicated in a variety of neurological disorders. Thus, understanding m6A and how it is regulated in the brain is important for uncovering its roles in brain function and potentially identifying novel therapeutic pathways for human disease. Much of our knowledge of m6A has been driven by technical advances in the ability to map and quantify m6A sites. Here, we review current technologies for characterizing m6A and highlight emerging methods. We discuss the advantages and limitations of current tools as well as major challenges going forward, and we provide our perspective on how continued developments in this area can propel our understanding of m6A in the brain and its role in brain disease.
Collapse
Affiliation(s)
- Matthew Tegowski
- Department of Biochemistry, Duke University School of Medicine, Durham, NC, United States
| | - Kate D. Meyer
- Department of Biochemistry, Duke University School of Medicine, Durham, NC, United States
- Department of Neurobiology, Duke University School of Medicine, Durham, NC, United States
| |
Collapse
|
12
|
Crespo-García E, Bueno-Costa A, Esteller M. Single-cell analysis of the epitranscriptome: RNA modifications under the microscope. RNA Biol 2024; 21:1-8. [PMID: 38368619 PMCID: PMC10877985 DOI: 10.1080/15476286.2024.2315385] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Revised: 01/19/2024] [Accepted: 02/02/2024] [Indexed: 02/20/2024] Open
Abstract
The identification of mechanisms capable of modifying genetic information by the addition of covalent RNA modifications distinguishes a level of complexity in gene expression which challenges key long-standing concepts of RNA biology. One of the current challenges of molecular biology is to properly understand the molecular functions of these RNA modifications, with more than 170 different ones having been identified so far. However, it has not been possible to map specific RNA modifications at a single-cell resolution until very recently. This review will highlight the technological advances in single-cell methodologies aimed at assessing and testing the biological function of certain RNA modifications, focusing on m6A. These advances have allowed for the development of novel strategies that enable the study of the 'epitranscriptome'. Nevertheless, despite all these improvements, many challenges and difficulties still need fixing for these techniques to work efficiently.
Collapse
Affiliation(s)
- Eva Crespo-García
- Cancer Epigenetics Group, Josep Carreras Leukaemia Research Institute (IJC), Badalona, Spain
| | - Alberto Bueno-Costa
- Cancer Epigenetics Group, Josep Carreras Leukaemia Research Institute (IJC), Badalona, Spain
| | - Manel Esteller
- Cancer Epigenetics Group, Josep Carreras Leukaemia Research Institute (IJC), Badalona, Spain
- Centro de Investigación Biomédica en Red Cancer (CIBERONC), Madrid, Spain
- Institució Catalana de Recerca i Estudis Avançats (ICREA), Barcelona, Spain
- Physiological Sciences Department, School of Medicine and Health Sciences, University of Barcelona (UB), Barcelona, Spain
| |
Collapse
|
13
|
Wang MK, Gao CC, Yang YG. Emerging Roles of RNA Methylation in Development. Acc Chem Res 2023; 56:3417-3427. [PMID: 37965760 DOI: 10.1021/acs.accounts.3c00448] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2023]
Abstract
ConspectusMore than 170 different types of chemical modifications have been identified on diverse types of RNA, collectively known as the epitranscriptome. Among them, N6-methyladenine (m6A), 5-methylcytosine (m5C), N1-methyladenine (m1A), and N7-methylguanosine (m7G) as the ubiquitous post-transcriptional modification are widely involved in regulating the metabolic processes such as RNA degradation, translation, stability, and export, mediating important physiological and pathological processes such as stress regulation, immune response, development, and tumorigenesis. Recently, the regulatory role of RNA modification during developmental processes is getting more attention. Therefore, the development of low-input even single-cell and high-resolution sequencing technologies is crucial for the exploration of the regulatory roles of RNA modifications in these important biological events of trace samples.This account focuses on the roles of RNA modifications in various developmental processes. We describe the distribution characteristics of various RNA modifications, catalytic enzymes, binding proteins, and the development of sequencing technologies. RNA modification is dynamically reversible, which can be catalyzed by methyltransferases and eliminated by demethylases. RNA m6A is the most abundant post-transcriptional modification on eukaryote mRNA, which is mainly concentrated near the stop codon, and involves in RNA metabolism regulation. RNA m5C, another most studied RNA modification, has been identified in a various of organisms and RNA species, mainly enriched in the regions downstream of translation initiation sites and broadly distributes across the whole coding sequence (CDS) in mammalian mRNAs. RNA m1A, with a lower abundance than m6A, is widely distributed in various RNA types, mainly locates in the 5' untranslated region (5'UTR) of mRNA and regulates translation. RNA m7G, one of the most common RNA modifications in eukaryotes, has been identified at cap regions and internal positions of RNAs and recently gained considerable attention.Thanks to the development of sequencing technology, m6A has been found to regulate the tumorigenic process, including tumor proliferation, invasion, and metastasis by modulating oncogenes and tumor suppressor genes, and affect oocyte maturation and embryonic development through regulating maternal and zygotic genes. m5C related proteins have been identified to participate in embryonic development, plant growth, and neural stem cell differentiation in a m5C dependent manner. m1A also has been revealed to be involved in these developmental processes. m7G dysregulation mainly involves in neurodevelopmental disorders and neurodegenerative diseases.Collectively, we summarized the gradually exhibited roles of RNA methylation during development, and discussed the possibility of RNA modifications as candidate biomarkers and potential therapeutic targets. The technological development is anticipated as the major driving force to expand our knowledge in this field.
Collapse
Affiliation(s)
- Meng-Ke Wang
- CAS Key Laboratory of Genomic and Precision Medicine, Collaborative Innovation Center of Genetics and Development, College of Future Technology, Beijing Institute of Genomics, Chinese Academy of Sciences and China National Center for Bioinformation, Beijing 100101, P. R. China
| | - Chun-Chun Gao
- CAS Key Laboratory of Genomic and Precision Medicine, Collaborative Innovation Center of Genetics and Development, College of Future Technology, Beijing Institute of Genomics, Chinese Academy of Sciences and China National Center for Bioinformation, Beijing 100101, P. R. China
| | - Yun-Gui Yang
- CAS Key Laboratory of Genomic and Precision Medicine, Collaborative Innovation Center of Genetics and Development, College of Future Technology, Beijing Institute of Genomics, Chinese Academy of Sciences and China National Center for Bioinformation, Beijing 100101, P. R. China
- Sino-Danish College, University of Chinese Academy of Sciences, Beijing 101408, P. R. China
- Institute of Stem Cell and Regeneration, Chinese Academy of Sciences, Beijing 100101, China
| |
Collapse
|
14
|
Zhang M, Xiao Y, Jiang Z, Yi C. Quantifying m 6A and Ψ Modifications in the Transcriptome via Chemical-Assisted Approaches. Acc Chem Res 2023; 56:2980-2991. [PMID: 37851547 DOI: 10.1021/acs.accounts.3c00436] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2023]
Abstract
Since the discovery of the first chemically modified RNA nucleotide in 1951, more than 170 types of chemical modifications have been characterized in RNA so far. Since the discovery of the reversible and dynamic nature of N6-methyladenosine (m6A) in mRNA modification, researchers have identified about ten modifications in eukaryotic mRNA; together with modifications on the noncoding RNAs, the term "epitranscriptome" has been coined to describe the ensemble of various chemical RNA modifications. The past decade has witnessed the discovery of many novel molecular functions of mRNA modifications, demonstrating their crucial roles in gene expression regulation. As the most abundant modifications in mRNA, the study of m6A and Ψ has been facilitated by innovative high-throughput sequencing technologies, which can be based on antibodies, enzymes, or novel chemistry. Among them, chemical-assisted methods utilize selective chemistry that can discriminate modified versus unmodified nucleotides, enabling the transcriptome-wide mapping of m6A and Ψ modifications and functional studies.Our group has developed several sequencing technologies to investigate these epitranscriptomic marks including m6A, Ψ, m1A, and m6Am. Among them, we have recently developed two methods for absolute quantification of m6A and Ψ in the transcriptome based on chemical reactivity to distinguish and measure the two modifications. In GLORI, we used glyoxal and nitrite to mediate efficient deamination of regular adenosine, while m6A remained unaffected, thereby enabling efficient and unbiased detection of single-base resolution and absolute quantification of m6A modification. In CeU-seq and PRAISE, we used different chemistry to achieve selective labeling and detection of transcriptome-wide Ψ. CeU-seq is based on an azido-derivatized carbodiimide compound, while PRAISE utilizes the unique activity of bisulfite to Ψ. PRAISE results in the formation of ring-opening Ψ-bisulfite adduct and quantitatively detects Ψ as 1-2 nt deletion signatures during sequencing. The resulting base-resolution and stoichiometric information expanded our understanding to the profiles of RNA modifications in the transcriptome. In particular, the quantitative information on RNA methylome is critical for characterizing the dynamic and reversible nature of RNA modifications, for instance, under environmental stress or during development. Additionally, base-resolution and stoichiometric information can greatly facilitate the analysis and characterization of functional modification sites that are important for gene expression regulation, especially when one modification type may have multiple or even opposing functions within a specific transcript. Together, the quantitative profiling methods provide the modification stoichiometry information, which is critical to study the regulatory roles of RNA modifications.In this Account, we will focus on the quantitative sequencing technologies of m6A and Ψ developed in our group, review recent advances in chemical-assisted reactions for m6A and Ψ detection, and discuss the challenges and future opportunities of transcriptome-wide mapping technologies for RNA modifications.
Collapse
Affiliation(s)
- Meiling Zhang
- State Key Laboratory of Protein and Plant Gene Research, School of Life Sciences, Peking University, Beijing 100871, China
| | - Ye Xiao
- Academy for Advanced Interdisciplinary Studies, Peking University, Beijing 100871, China
- Peking-Tsinghua Center for Life Sciences, Peking University, Beijing 100871, China
| | - Zhe Jiang
- State Key Laboratory of Protein and Plant Gene Research, School of Life Sciences, Peking University, Beijing 100871, China
| | - Chengqi Yi
- State Key Laboratory of Protein and Plant Gene Research, School of Life Sciences, Peking University, Beijing 100871, China
- Peking-Tsinghua Center for Life Sciences, Peking University, Beijing 100871, China
- Department of Chemical Biology and Synthetic and Functional Biomolecules Center, College of Chemistry and Molecular Engineering, Peking University, Beijing 100871, China
| |
Collapse
|
15
|
Möhler M, Jäschke A. Future Perspectives for the Identification and Sequencing of Nicotinamide Adenine Dinucleotide-Capped RNAs. Acc Chem Res 2023; 56:3000-3009. [PMID: 37852615 PMCID: PMC10634297 DOI: 10.1021/acs.accounts.3c00446] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2023] [Indexed: 10/20/2023]
Abstract
Ribonucleic acid (RNA) is composed primarily of four canonical building blocks. In addition, more than 170 modifications contribute to its stability and function. Metabolites like nicotinamide adenine dinucleotide (NAD) were found to function as 5'-cap structures of RNA, just like 7-methylguanosine (m7G). The identification of NAD-capped RNA sequences was first made possible by NAD captureSeq, a multistep protocol for the specific targeting, purification, and sequencing of NAD-capped RNAs, developed in the authors' laboratory in the year 2015. In recent years, a number of NAD-RNA identification protocols have been developed by researchers around the world. They have enabled the discovery and identification of NAD-RNAs in bacteria, archaea, yeast, plants, mice, and human cells, and they play a key role in studying the biological functions of NAD capping. We introduce the four parameters of yield, specificity, evaluability, and throughput and describe to the reader how an ideal NAD-RNA identification protocol would perform in each of these disciplines. These parameters are further used to describe and analyze existing protocols that follow two general methodologies: the capture approach and the decapping approach. Capture protocols introduce an exogenous moiety into the NAD-cap structure in order to either specifically purify or sequence NAD-capped RNAs. In decapping protocols, the NAD cap is digested to 5'-monophosphate RNA, which is then specifically targeted and sequenced. Both approaches, as well as the different protocols within them, have advantages and challenges that we evaluate based on the aforementioned parameters. In addition, we suggest improvements in order to meet the future needs of research on NAD-modified RNAs, which is beginning to emerge in the area of cell-type specific samples. A limiting factor of the capture approach is the need for large amounts of input RNA. Here we see a high potential for innovation within the key targeting step: The enzymatic modification reaction of the NAD-cap structure catalyzed by ADP-ribosyl cyclase (ADPRC) is a major contributor to the parameters of yield and specificity but has mostly seen minor changes since the pioneering protocol of NAD captureSeq and needs to be more stringently analyzed. The major challenge of the decapping approach remains the specificity of the decapping enzymes, many of which act on a variety of 5'-cap structures. Exploration of new decapping enzymes or engineering of already known enzymes could lead to improvements in NAD-specific protocols. The use of a curated set of decapping enzymes in a combinatorial approach could allow for the simultaneous detection of multiple 5'-caps. The throughput of both approaches could be greatly improved by early sample pooling. We propose that this could be achieved by introducing a barcode RNA sequence before or immediately after the NAD-RNA targeting steps. With increased processing capacity and a potential decrease in the cost per sample, protocols will gain the potential to analyze large numbers of samples from different growth conditions and treatments. This will support the search for biological roles of NAD-capped RNAs in all types of organisms.
Collapse
Affiliation(s)
- Marvin Möhler
- Institute of Pharmacy and
Molecular Biotechnology, Heidelberg University, Im Neuenheimer Feld 364, 69120 Heidelberg, Germany
| | - Andres Jäschke
- Institute of Pharmacy and
Molecular Biotechnology, Heidelberg University, Im Neuenheimer Feld 364, 69120 Heidelberg, Germany
| |
Collapse
|