1
|
Danzi MC, Xu IRL, Fazal S, Dolzhenko E, Pellerin D, Weisburd B, Reuter C, Sampson J, Folland C, Wheeler M, O’Donnell-Luria A, Wuchty S, Ravenscroft G, Eberle MA, Zuchner S. Detailed tandem repeat allele profiling in 1,027 long-read genomes reveals genome-wide patterns of pathogenicity. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2025:2025.01.06.631535. [PMID: 39868092 PMCID: PMC11760257 DOI: 10.1101/2025.01.06.631535] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/28/2025]
Abstract
Tandem repeats are a highly polymorphic class of genomic variation that play causal roles in rare diseases but are notoriously difficult to sequence using short-read techniques 1,2 . Most previous studies profiling tandem repeats genome-wide have reduced the description of each locus to the singular value of the length of the entire repetitive locus 3,4 . Here we introduce a comprehensive database of 3.6 billion tandem repeat allele sequences from over one thousand individuals using HiFi long-read sequencing. We show that the previously identified pathogenic loci are among the most variable tandem repeat loci in the genome, when incorporating nucleotide resolution sequence content to measure the longest pure motif segment. More broadly, we introduce a novel measure, 'tandem repeat constraint', that assists in distinguishing potentially pathogenic from benign loci. Our approach of measuring variation as 'the length of the longest pure segment' successfully prioritizes pathogenic repeats within their previously published linkage regions. We also present evidence for two novel pathogenic repeat expansion candidates. In summary, this analysis significantly clarifies the potential for short tandem repeat pathogenicity at over 1.7 million tandem repeat loci and will aid the identification of disease-causing repeat expansions.
Collapse
Affiliation(s)
- Matt C. Danzi
- Dr. John T. Macdonald Foundation Department of Human Genetics and John P. Hussman Institute for Human Genomics, University of Miami Miller School of Medicine, Miami, FL, USA
| | - Isaac R. L. Xu
- Dr. John T. Macdonald Foundation Department of Human Genetics and John P. Hussman Institute for Human Genomics, University of Miami Miller School of Medicine, Miami, FL, USA
| | - Sarah Fazal
- Dr. John T. Macdonald Foundation Department of Human Genetics and John P. Hussman Institute for Human Genomics, University of Miami Miller School of Medicine, Miami, FL, USA
| | | | - David Pellerin
- Dr. John T. Macdonald Foundation Department of Human Genetics and John P. Hussman Institute for Human Genomics, University of Miami Miller School of Medicine, Miami, FL, USA
| | - Ben Weisburd
- Program in Medical and Population Genetics, Broad Institute of MIT and Harvard, Cambridge, MA, USA
- Center for Genomic Medicine, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
| | - Chloe Reuter
- Stanford Center for Undiagnosed Diseases, Stanford University, Stanford, CA, USA
- Division of Cardiovascular Medicine, Department of Medicine, Stanford University School of Medicine, Stanford, CA, USA
| | - Jacinda Sampson
- Stanford Center for Undiagnosed Diseases, Stanford University, Stanford, CA, USA
- Division of Cardiovascular Medicine, Department of Medicine, Stanford University School of Medicine, Stanford, CA, USA
| | - Chiara Folland
- Centre for Medical Research University of Western Australia and Harry Perkins Institute of Medical Research, Perth, Western Australia, Australia
| | - Matthew Wheeler
- Stanford Center for Undiagnosed Diseases, Stanford University, Stanford, CA, USA
- Division of Cardiovascular Medicine, Department of Medicine, Stanford University School of Medicine, Stanford, CA, USA
| | - Anne O’Donnell-Luria
- Program in Medical and Population Genetics, Broad Institute of MIT and Harvard, Cambridge, MA, USA
- Center for Genomic Medicine, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
- Division of Genetics and Genomics, Boston Children’s Hospital, Harvard Medical School, Boston, MA, USA
| | - Stefan Wuchty
- Departments of Biology and Computer Science, University of Miami, Miami, FL, USA
- Sylvester Comprehensive Cancer Center, University of Miami Miller School of Medicine, Miami, FL, USA
| | - Gianina Ravenscroft
- Centre for Medical Research University of Western Australia and Harry Perkins Institute of Medical Research, Perth, Western Australia, Australia
| | | | | | - Stephan Zuchner
- Dr. John T. Macdonald Foundation Department of Human Genetics and John P. Hussman Institute for Human Genomics, University of Miami Miller School of Medicine, Miami, FL, USA
| |
Collapse
|
2
|
Lehr AW, McDaniel KF, Roche KW. Analyses of Human Genetic Data to Identify Clinically Relevant Domains of Neuroligins. Genes (Basel) 2024; 15:1601. [PMID: 39766868 PMCID: PMC11675371 DOI: 10.3390/genes15121601] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2024] [Revised: 12/03/2024] [Accepted: 12/11/2024] [Indexed: 01/30/2025] Open
Abstract
Background/Objectives: Neuroligins (NLGNs) are postsynaptic adhesion molecules critical for neuronal development that are highly associated with autism spectrum disorder (ASD). Here, we provide an overview of the literature on NLGN rare variants. In addition, we introduce a new approach to analyze human variation within NLGN genes to identify sensitive regions that have an increased frequency of ASD-associated variants to better understand NLGN function. Methods: To identify critical protein subdomains within the NLGN gene family, we developed an algorithm that assesses tolerance to missense mutations in human genetic variation by comparing clinical variants from ClinVar to reference variants from gnomAD. This approach provides tolerance values to subdomains within the protein. Results: Our algorithm identified several critical regions that were conserved across multiple NLGN isoforms. Importantly, this approach also identified a previously reported cluster of pathogenic variants in NLGN4X (also conserved in NLGN1 and NLGN3) as well as a region around the highly characterized NLGN3 R451C ASD-associated mutation. Additionally, we highlighted other, as of yet, uncharacterized regions enriched with mutations. Conclusions: The systematic analysis of NLGN ASD-associated variants compared to variants identified in the unaffected population (gnomAD) reveals conserved domains in NLGN isoforms that are tolerant to variation or are enriched in clinically relevant variants. Examination of databases also allows for predictions of the presumed tolerance to loss of an allele. The use of the algorithm we developed effectively allowed the evaluation of subdomains of NLGNs and can be used to examine other ASD-associated genes.
Collapse
Affiliation(s)
- Alexander W. Lehr
- Receptor Biology Section, National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, MD 20892, USA; (A.W.L.); (K.F.M.)
- Department of Neuroscience, Brown University, Providence, RI 02906, USA
| | - Kathryn F. McDaniel
- Receptor Biology Section, National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, MD 20892, USA; (A.W.L.); (K.F.M.)
- Department of Neuroscience, Brown University, Providence, RI 02906, USA
| | - Katherine W. Roche
- Receptor Biology Section, National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, MD 20892, USA; (A.W.L.); (K.F.M.)
| |
Collapse
|
3
|
Chen LL, Naesström M, Halvorsen M, Fytagoridis A, Crowley SB, Mataix-Cols D, Rück C, Crowley JJ, Pascal D. Genomics of severe and treatment-resistant obsessive-compulsive disorder treated with deep brain stimulation: A preliminary investigation. Am J Med Genet B Neuropsychiatr Genet 2024; 195:e32983. [PMID: 38650085 PMCID: PMC11493841 DOI: 10.1002/ajmg.b.32983] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/05/2023] [Revised: 01/25/2024] [Accepted: 03/20/2024] [Indexed: 04/25/2024]
Abstract
Individuals with severe and treatment-resistant obsessive-compulsive disorder (trOCD) represent a small but severely disabled group of patients. Since trOCD cases eligible for deep brain stimulation (DBS) probably comprise the most severe end of the OCD spectrum, we hypothesize that they may be more likely to have a strong genetic contribution to their disorder. Therefore, while the worldwide population of DBS-treated cases may be small (~300), screening these individuals with modern genomic methods may accelerate gene discovery in OCD. As such, we have begun to collect DNA from trOCD cases who qualify for DBS, and here we report results from whole exome sequencing and microarray genotyping of our first five cases. All participants had previously received DBS in the bed nucleus of stria terminalis (BNST), with two patients responding to the surgery and one showing a partial response. Our analyses focused on gene-disruptive rare variants (GDRVs; rare, predicted-deleterious single-nucleotide variants or copy number variants overlapping protein-coding genes). Three of the five cases carried a GDRV, including a missense variant in the ion transporter domain of KCNB1, a deletion at 15q11.2, and a duplication at 15q26.1. The KCNB1 variant (hg19 chr20-47991077-C-T, NM_004975.3:c.1020G>A, p.Met340Ile) causes substitution of methionine for isoleucine in the trans-membrane region of neuronal potassium voltage-gated ion channel KV2.1. This KCNB1 substitution (Met340Ile) is located in a highly constrained region of the protein where other rare missense variants have previously been associated with neurodevelopmental disorders. The patient carrying the Met340Ile variant responded to DBS, which suggests that genetic factors could potentially be predictors of treatment response in DBS for OCD. In sum, we have established a protocol for recruiting and genomically characterizing trOCD cases. Preliminary results suggest that this will be an informative strategy for finding risk genes in OCD.
Collapse
Affiliation(s)
- Long Long Chen
- Department of Clinical Neuroscience, Centre for Psychiatry Research Karolinska Institutet, & Stockholm Health Care Services, Stockholm, Sweden
| | - Matilda Naesström
- Department of Clinical Sciences/Psychiatry, Umeå University, Umeå, Sweden
| | - Matthew Halvorsen
- Department of Clinical Neuroscience, Centre for Psychiatry Research Karolinska Institutet, & Stockholm Health Care Services, Stockholm, Sweden
- Department of Genetics, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Anders Fytagoridis
- Department of Neurosurgery, Karolinska Institutet and University Hospital, Stockholm, Sweden
| | | | - David Mataix-Cols
- Department of Clinical Neuroscience, Centre for Psychiatry Research Karolinska Institutet, & Stockholm Health Care Services, Stockholm, Sweden
| | - Christian Rück
- Department of Clinical Neuroscience, Centre for Psychiatry Research Karolinska Institutet, & Stockholm Health Care Services, Stockholm, Sweden
| | - James J. Crowley
- Department of Clinical Neuroscience, Centre for Psychiatry Research Karolinska Institutet, & Stockholm Health Care Services, Stockholm, Sweden
- Department of Genetics, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
- Department of Psychiatry, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Diana Pascal
- Department of Clinical Neuroscience, Centre for Psychiatry Research Karolinska Institutet, & Stockholm Health Care Services, Stockholm, Sweden
| |
Collapse
|
4
|
Lake NJ, Ma K, Liu W, Battle SL, Laricchia KM, Tiao G, Puiu D, Ng KK, Cohen J, Compton AG, Cowie S, Christodoulou J, Thorburn DR, Zhao H, Arking DE, Sunyaev SR, Lek M. Quantifying constraint in the human mitochondrial genome. Nature 2024; 635:390-397. [PMID: 39415008 PMCID: PMC11646341 DOI: 10.1038/s41586-024-08048-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2023] [Accepted: 09/13/2024] [Indexed: 10/18/2024]
Abstract
Mitochondrial DNA (mtDNA) has an important yet often overlooked role in health and disease. Constraint models quantify the removal of deleterious variation from the population by selection and represent powerful tools for identifying genetic variation that underlies human phenotypes1-4. However, nuclear constraint models are not applicable to mtDNA, owing to its distinct features. Here we describe the development of a mitochondrial genome constraint model and its application to the Genome Aggregation Database (gnomAD), a large-scale population dataset that reports mtDNA variation across 56,434 human participants5. Specifically, we analyse constraint by comparing the observed variation in gnomAD to that expected under neutrality, which was calculated using a mtDNA mutational model and observed maximum heteroplasmy-level data. Our results highlight strong depletion of expected variation, which suggests that many deleterious mtDNA variants remain undetected. To aid their discovery, we compute constraint metrics for every mitochondrial protein, tRNA and rRNA gene, which revealed a range of intolerance to variation. We further characterize the most constrained regions within genes through regional constraint and identify the most constrained sites within the entire mitochondrial genome through local constraint, which showed enrichment of pathogenic variation. Constraint also clustered in three-dimensional structures, which provided insight into functionally important domains and their disease relevance. Notably, we identify constraint at often overlooked sites, including in rRNA and noncoding regions. Last, we demonstrate that these metrics can improve the discovery of deleterious variation that underlies rare and common phenotypes.
Collapse
Affiliation(s)
- Nicole J Lake
- Department of Genetics, Yale School of Medicine, New Haven, CT, USA.
- Murdoch Children's Research Institute, Royal Children's Hospital, Melbourne, Victoria, Australia.
| | - Kaiyue Ma
- Department of Genetics, Yale School of Medicine, New Haven, CT, USA
| | - Wei Liu
- Program of Computational Biology and Bioinformatics, Yale University, New Haven, CT, USA
| | - Stephanie L Battle
- McKusick-Nathans Institute, Department of Genetic Medicine, Johns Hopkins University School of Medicine, Baltimore, MD, USA
- Department of Natural Sciences, Bowie State University, Bowie, MD, USA
| | - Kristen M Laricchia
- Broad Institute of MIT and Harvard, Cambridge, MA, USA
- Massachusetts General Hospital, Boston, MA, USA
| | - Grace Tiao
- Broad Institute of MIT and Harvard, Cambridge, MA, USA
- Massachusetts General Hospital, Boston, MA, USA
| | - Daniela Puiu
- Department of Biomedical Engineering, Johns Hopkins University, Baltimore, MD, USA
| | - Kenneth K Ng
- Department of Genetics, Yale School of Medicine, New Haven, CT, USA
| | - Justin Cohen
- Department of Genetics, Yale School of Medicine, New Haven, CT, USA
| | - Alison G Compton
- Murdoch Children's Research Institute, Royal Children's Hospital, Melbourne, Victoria, Australia
- Department of Paediatrics, University of Melbourne, Melbourne, Victoria, Australia
- Victorian Clinical Genetics Services, Royal Children's Hospital, Melbourne, Victoria, Australia
| | - Shannon Cowie
- Victorian Clinical Genetics Services, Royal Children's Hospital, Melbourne, Victoria, Australia
| | - John Christodoulou
- Murdoch Children's Research Institute, Royal Children's Hospital, Melbourne, Victoria, Australia
- Department of Paediatrics, University of Melbourne, Melbourne, Victoria, Australia
- Victorian Clinical Genetics Services, Royal Children's Hospital, Melbourne, Victoria, Australia
| | - David R Thorburn
- Murdoch Children's Research Institute, Royal Children's Hospital, Melbourne, Victoria, Australia
- Department of Paediatrics, University of Melbourne, Melbourne, Victoria, Australia
- Victorian Clinical Genetics Services, Royal Children's Hospital, Melbourne, Victoria, Australia
| | - Hongyu Zhao
- Department of Genetics, Yale School of Medicine, New Haven, CT, USA
- Program of Computational Biology and Bioinformatics, Yale University, New Haven, CT, USA
- Department of Biostatistics, Yale School of Public Health, New Haven, CT, USA
| | - Dan E Arking
- McKusick-Nathans Institute, Department of Genetic Medicine, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Shamil R Sunyaev
- Broad Institute of MIT and Harvard, Cambridge, MA, USA
- Department of Biomedical Informatics, Harvard Medical School, Boston, MA, USA
- Division of Genetics, Department of Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, MA, USA
| | - Monkol Lek
- Department of Genetics, Yale School of Medicine, New Haven, CT, USA.
| |
Collapse
|
5
|
Smal N, Majdoub F, Janssens K, Reyniers E, Meuwissen MEC, Ceulemans B, Northrup H, Hill JB, Liu L, Errichiello E, Gana S, Strong A, Rohena L, Franciskovich R, Murali CN, Huybrechs A, Sulem T, Fridriksdottir R, Sulem P, Stefansson K, Bai Y, Rosenfeld JA, Lalani SR, Streff H, Kooy RF, Weckhuysen S. Burden re-analysis of neurodevelopmental disorder cohorts for prioritization of candidate genes. Eur J Hum Genet 2024; 32:1378-1386. [PMID: 38965372 DOI: 10.1038/s41431-024-01661-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2024] [Revised: 04/12/2024] [Accepted: 06/25/2024] [Indexed: 07/06/2024] Open
Abstract
This study aimed to uncover novel genes associated with neurodevelopmental disorders (NDD) by leveraging recent large-scale de novo burden analysis studies to enhance a virtual gene panel used in a diagnostic setting. We re-analyzed historical trio-exome sequencing data from 745 individuals with NDD according to the most recent diagnostic standards, resulting in a cohort of 567 unsolved individuals. Next, we designed a virtual gene panel containing candidate genes from three large de novo burden analysis studies in NDD and prioritized candidate genes by stringent filtering for ultra-rare de novo variants with high pathogenicity scores. Our analysis revealed an increased burden of de novo variants in our selected candidate genes within the unsolved NDD cohort and identified qualifying de novo variants in seven candidate genes: RIF1, CAMK2D, RAB11FIP4, AGO3, PCBP2, LEO1, and VCP. Clinical data were collected from six new individuals with de novo or inherited LEO1 variants and three new individuals with de novo PCBP2 variants. Our findings add additional evidence for LEO1 as a risk gene for autism and intellectual disability. Furthermore, we prioritize PCBP2 as a candidate gene for NDD associated with motor and language delay. In summary, by leveraging de novo burden analysis studies, employing a stringent variant filtering pipeline, and engaging in targeted patient recruitment, our study contributes to the identification of novel genes implicated in NDDs.
Collapse
Affiliation(s)
- Noor Smal
- Applied and Translational Neurogenomics Group, VIB Center for Molecular Neurology, VIB, Antwerp, Belgium
- Applied and Translational Neurogenomics Group, Department of Biomedical Sciences, University of Antwerp, Antwerp, Belgium
| | - Fatma Majdoub
- Applied and Translational Neurogenomics Group, VIB Center for Molecular Neurology, VIB, Antwerp, Belgium
- Applied and Translational Neurogenomics Group, Department of Biomedical Sciences, University of Antwerp, Antwerp, Belgium
- Medical Genetics Department, University Hedi Chaker Hospital of Sfax, University of Sfax, Sfax, Tunisia
| | - Katrien Janssens
- Department of Medical Genetics, University of Antwerp, Antwerp, Belgium
- Center of Medical Genetics, University Hospital Antwerp, Drie Eikenstraat 655, Edegem, 2650, Belgium
| | - Edwin Reyniers
- Department of Medical Genetics, University of Antwerp, Antwerp, Belgium
- Center of Medical Genetics, University Hospital Antwerp, Drie Eikenstraat 655, Edegem, 2650, Belgium
| | - Marije E C Meuwissen
- Department of Medical Genetics, University of Antwerp, Antwerp, Belgium
- Center of Medical Genetics, University Hospital Antwerp, Drie Eikenstraat 655, Edegem, 2650, Belgium
| | - Berten Ceulemans
- Translational Neurosciences, Faculty of Medicine and Health Science, University of Antwerp, Antwerp, Belgium
- Department of Pediatric Neurology, Antwerp University Hospital, University of Antwerp, Antwerp, Belgium
| | - Hope Northrup
- Department of Pediatrics, McGovern Medical School at the University of Texas Health Science Center at Houston (UTHealth) and Children's Memorial Hermann Hospital, Houston, TX, USA
| | - Jeremy B Hill
- Department of Pediatrics, McGovern Medical School at the University of Texas Health Science Center at Houston (UTHealth) and Children's Memorial Hermann Hospital, Houston, TX, USA
| | - Lingying Liu
- Department of Pediatrics, McGovern Medical School at the University of Texas Health Science Center at Houston (UTHealth) and Children's Memorial Hermann Hospital, Houston, TX, USA
| | - Edoardo Errichiello
- Department of Molecular Medicine, University of Pavia, Pavia, Italy
- Neurogenetics Research Center, IRCCS Mondino Foundation, Pavia, Italy
| | - Simone Gana
- Neurogenetics Research Center, IRCCS Mondino Foundation, Pavia, Italy
| | - Alanna Strong
- Division of Human Genetics, Children's Hospital of Philadelphia, Philadelphia, PA, USA
- Department of Pediatrics, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA, USA
| | - Luis Rohena
- Division of Medical Genetics, Department of Pediatrics, San Antonio Military Medical Center, San Antonio, TX, USA
- Department of Pediatrics, Long School of Medicine-UT Health San Antonio, San Antonio, TX, USA
| | - Rachel Franciskovich
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX, USA
- Texas Children's Hospital, Houston, TX, USA
| | - Chaya N Murali
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX, USA
- Texas Children's Hospital, Houston, TX, USA
| | - An Huybrechs
- Department of Pediatrics, Heilig Hart Ziekenhuis, Lier, Belgium
| | - Telma Sulem
- deCODE genetics/Amgen Inc., Reykjavik, Iceland
| | | | | | | | - Yan Bai
- GeneDx, Gaithersburg, MD, USA
| | - Jill A Rosenfeld
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX, USA
| | - Seema R Lalani
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX, USA
- Texas Children's Hospital, Houston, TX, USA
| | - Haley Streff
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX, USA
- Texas Children's Hospital, Houston, TX, USA
| | - R Frank Kooy
- Department of Medical Genetics, University of Antwerp, Antwerp, Belgium
| | - Sarah Weckhuysen
- Applied and Translational Neurogenomics Group, VIB Center for Molecular Neurology, VIB, Antwerp, Belgium.
- Translational Neurosciences, Faculty of Medicine and Health Science, University of Antwerp, Antwerp, Belgium.
- Department of Neurology, University Hospital Antwerp, Antwerp, Belgium.
- µNEURO Research Centre of Excellence, University of Antwerp, Antwerp, Belgium.
| |
Collapse
|
6
|
Chong JX, Berger SI, Baxter S, Smith E, Xiao C, Calame DG, Hawley MH, Rivera-Munoz EA, DiTroia S, Bamshad MJ, Rehm HL. Considerations for reporting variants in novel candidate genes identified during clinical genomic testing. Genet Med 2024; 26:101199. [PMID: 38944749 PMCID: PMC11456385 DOI: 10.1016/j.gim.2024.101199] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2024] [Revised: 06/18/2024] [Accepted: 06/21/2024] [Indexed: 07/01/2024] Open
Abstract
Since the first novel gene discovery for a Mendelian condition was made via exome sequencing, the rapid increase in the number of genes known to underlie Mendelian conditions coupled with the adoption of exome (and more recently, genome) sequencing by diagnostic testing labs has changed the landscape of genomic testing for rare diseases. Specifically, many individuals suspected to have a Mendelian condition are now routinely offered clinical ES. This commonly results in a precise genetic diagnosis but frequently overlooks the identification of novel candidate genes. Such candidates are also less likely to be identified in the absence of large-scale gene discovery research programs. Accordingly, clinical laboratories have both the opportunity, and some might argue a responsibility, to contribute to novel gene discovery, which should, in turn, increase the diagnostic yield for many conditions. However, clinical diagnostic laboratories must necessarily balance priorities for throughput, turnaround time, cost efficiency, clinician preferences, and regulatory constraints and often do not have the infrastructure or resources to effectively participate in either clinical translational or basic genome science research efforts. For these and other reasons, many laboratories have historically refrained from broadly sharing potentially pathogenic variants in novel genes via networks such as Matchmaker Exchange, much less reporting such results to ordering providers. Efforts to report such results are further complicated by a lack of guidelines for clinical reporting and interpretation of variants in novel candidate genes. Nevertheless, there are myriad benefits for many stakeholders, including patients/families, clinicians, and researchers, if clinical laboratories systematically and routinely identify, share, and report novel candidate genes. To facilitate this change in practice, we developed criteria for triaging, sharing, and reporting novel candidate genes that are most likely to be promptly validated as underlying a Mendelian condition and translated to use in clinical settings.
Collapse
Affiliation(s)
- Jessica X Chong
- Department of Pediatrics, Division of Genetic Medicine, University of Washington, Seattle, WA; Brotman-Baty Institute for Precision Medicine, Seattle, WA.
| | - Seth I Berger
- Center for Genetic Medicine Research, Children's National Research Institute, Washington, DC
| | - Samantha Baxter
- Program in Medical and Population Genetics, Broad Institute of MIT and Harvard, Cambridge, MA
| | - Erica Smith
- Department of Clinical Diagnostics, Ambry Genetics, Aliso Viejo, CA
| | - Changrui Xiao
- Department of Neurology, University of California Irvine, Orange, CA
| | - Daniel G Calame
- Department of Pediatrics, Division of Pediatric Neurology and Developmental Neurosciences, Baylor College of Medicine, Houston, TX
| | | | | | - Stephanie DiTroia
- Program in Medical and Population Genetics, Broad Institute of MIT and Harvard, Cambridge, MA
| | - Michael J Bamshad
- Department of Pediatrics, Division of Genetic Medicine, University of Washington, Seattle, WA; Brotman-Baty Institute for Precision Medicine, Seattle, WA; Department of Pediatrics, Division of Genetic Medicine, Seattle Children's Hospital, Seattle, WA
| | - Heidi L Rehm
- Program in Medical and Population Genetics, Broad Institute of MIT and Harvard, Cambridge, MA; Center for Genomic Medicine, Massachusetts General Hospital, Boston, MA
| |
Collapse
|
7
|
Abdelrazek I, Knaus A, Javanmardi B, Krawitz P, Horn D, Abdalla E, Kumar S. Acromesomelic Dysplasia With Homozygosity for a Likely Pathogenic BMPR1B Variant: Postaxial Polydactyly as a Novel Clinical Finding. Mol Genet Genomic Med 2024; 12:e70023. [PMID: 39441036 PMCID: PMC11497645 DOI: 10.1002/mgg3.70023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2024] [Revised: 09/05/2024] [Accepted: 09/25/2024] [Indexed: 10/25/2024] Open
Abstract
BACKGROUND Acromesomelic chondrodysplasias are a rare subgroup of the clinically and genetically heterogeneous osteochondrodysplasias that are characterised by abnormalities in the limb development and short stature. Here, we report a 2-year-old boy, offspring of consanguineous parents, with acromesomelic dysplasia and postaxial polydactyly in which exome sequencing identified a novel homozygous missense variant in BMPR1B. The patient showed skeletal malformation of both hands and feet that included complex brachydactyly with the thumbs most severely affected, postaxial polydactyly of both hands, shortened toes as well as a bilateral hypoplasia of the fibula. METHODS Whole trio exome sequencing was conducted to identify potential genetic variants in the patient. RESULTS The analysis identified the biallelic variant NM_001203.3:c.821A > G;p.(Gln274Arg) in BMPR1B, a gene encoding bone morphogenetic protein receptor 1B. CONCLUSION The skeletal phenotype can be brought in line with the phenotypes of previously reported cases of BMPR1B-associated chondrodysplasias. However, the postaxial polydactyly described here is a novel clinical finding in a BMPR1B-related case; notably, it has previously been reported in other acromesomelic dysplasia cases caused by homozygous pathogenic variants in GDF5-a gene which encodes for growth differentiation factor 5, a high-affinity ligand to BMPR1B.
Collapse
Affiliation(s)
- Ibrahim M. Abdelrazek
- Department of Human GeneticsMedical Research Institute, Alexandria UniversityAlexandriaEgypt
| | - Alexej Knaus
- Institute for Genomic Statistics and Bioinformatics, Medical FacultyUniversity of Bonn, University Hospital BonnBonnGermany
| | - Behnam Javanmardi
- Institute for Genomic Statistics and Bioinformatics, Medical FacultyUniversity of Bonn, University Hospital BonnBonnGermany
| | - Peter M. Krawitz
- Institute for Genomic Statistics and Bioinformatics, Medical FacultyUniversity of Bonn, University Hospital BonnBonnGermany
| | - Denise Horn
- Institute of Medical Genetics and Human GeneticsCharité‐Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt‐Universität Zu BerlinBerlinGermany
| | - Ebtesam M. Abdalla
- Department of Human GeneticsMedical Research Institute, Alexandria UniversityAlexandriaEgypt
| | - Sheetal Kumar
- Institute of Human Genetics, Medical FacultyUniversity of Bonn, University Hospital BonnBonnGermany
| |
Collapse
|
8
|
Gomez-Arroyo J, Houweling AC, Bogaard HJ, Aman J, Kitzmiller JA, Porollo A, Dooijes D, Meijboom LJ, Hale P, Pauciulo MW, Hong J, Zhu N, Welch C, Shen Y, Zacharias WJ, McCormack FX, Aldred MA, Weirauch MT, Graf S, Rhodes C, Chung WK, Whitsett JA, Martin LJ, Kalinichenko VV, Nichols WC. Role of Forkhead box F1 in the Pathobiology of Pulmonary Arterial Hypertension. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.09.18.611448. [PMID: 39345371 PMCID: PMC11429893 DOI: 10.1101/2024.09.18.611448] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/01/2024]
Abstract
Rationale Approximately 80% of patients with non-familial pulmonary arterial hypertension (PAH) lack identifiable pathogenic genetic variants. While most genetic studies of PAH have focused on predicted loss-of-function variants, recent approaches have identified ultra-rare missense variants associated with the disease. FOXF1 encodes a highly conserved transcription factor, essential for angiogenesis and vasculogenesis in human and mouse lungs. Objectives We identified a rare FOXF1 missense coding variant in two unrelated probands with PAH. FOXF1 is an evolutionarily conserved transcription factor required for lung vascular development and vascular integrity. Our aims were to determine the frequency of FOXF1 variants in larger PAH cohorts compared to the general population, study FOXF1 expression in explanted lung tissue from PAH patients versus control (failed-donor) lungs, and define potential downstream targets linked to PAH development. Methods Three independent, international, multicenter cohorts were analyzed to evaluate the frequency of FOXF1 rare variants. Various composite prediction models assessed the deleteriousness of individual variants. Bulk RNA sequencing datasets from human explanted lung tissues were compared to failed-donor controls to determine FOXF1 expression. Bioinformatic tools identified putative FOXF1 binding targets, which were orthogonally validated using mouse ChIP-seq datasets. Measurements and Main Results Seven novel or ultra-rare missense coding variants were identified across three patient cohorts in different regions of the FOXF1 gene, including the DNA binding domain. FOXF1 expression was dysregulated in PAH lungs, correlating with disease severity. Histological analysis showed heterogeneous FOXF1 expression, with the lowest levels in phenotypically abnormal endothelial cells within complex vascular lesions in PAH samples. A hybrid bioinformatic approach identified FOXF1 downstream targets potentially involved in PAH pathogenesis, including BMPR2 . Conclusions Large genomic and transcriptomic datasets suggest that decreased FOXF1 expression or predicted dysfunction is associated with PAH.
Collapse
|
9
|
Zhang X, Theotokis PI, Li N, Wright CF, Samocha KE, Whiffin N, Ware JS. Genetic constraint at single amino acid resolution in protein domains improves missense variant prioritisation and gene discovery. Genome Med 2024; 16:88. [PMID: 38992748 PMCID: PMC11238507 DOI: 10.1186/s13073-024-01358-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2023] [Accepted: 06/26/2024] [Indexed: 07/13/2024] Open
Abstract
BACKGROUND One of the major hurdles in clinical genetics is interpreting the clinical consequences associated with germline missense variants in humans. Recent significant advances have leveraged natural variation observed in large-scale human populations to uncover genes or genomic regions that show a depletion of natural variation, indicative of selection pressure. We refer to this as "genetic constraint". Although existing genetic constraint metrics have been demonstrated to be successful in prioritising genes or genomic regions associated with diseases, their spatial resolution is limited in distinguishing pathogenic variants from benign variants within genes. METHODS We aim to identify missense variants that are significantly depleted in the general human population. Given the size of currently available human populations with exome or genome sequencing data, it is not possible to directly detect depletion of individual missense variants, since the average expected number of observations of a variant at most positions is less than one. We instead focus on protein domains, grouping homologous variants with similar functional impacts to examine the depletion of natural variations within these comparable sets. To accomplish this, we develop the Homologous Missense Constraint (HMC) score. We utilise the Genome Aggregation Database (gnomAD) 125 K exome sequencing data and evaluate genetic constraint at quasi amino-acid resolution by combining signals across protein homologues. RESULTS We identify one million possible missense variants under strong negative selection within protein domains. Though our approach annotates only protein domains, it nonetheless allows us to assess 22% of the exome confidently. It precisely distinguishes pathogenic variants from benign variants for both early-onset and adult-onset disorders. It outperforms existing constraint metrics and pathogenicity meta-predictors in prioritising de novo mutations from probands with developmental disorders (DD). It is also methodologically independent of these, adding power to predict variant pathogenicity when used in combination. We demonstrate utility for gene discovery by identifying seven genes newly significantly associated with DD that could act through an altered-function mechanism. CONCLUSIONS Grouping variants of comparable functional impacts is effective in evaluating their genetic constraint. HMC is a novel and accurate predictor of missense consequence for improved variant interpretation.
Collapse
Affiliation(s)
- Xiaolei Zhang
- National Heart & Lung Institute, Imperial College London, London, UK.
- MRC Laboratory of Medical Sciences, Imperial College London, London, UK.
- Royal Brompton & Harefield Hospitals, Guy's and St. Thomas' NHS Foundation Trust, London, UK.
- Present address: European Bioinformatics Institute, Wellcome Genome Campus, Hinxton, UK.
| | - Pantazis I Theotokis
- National Heart & Lung Institute, Imperial College London, London, UK
- MRC Laboratory of Medical Sciences, Imperial College London, London, UK
- Royal Brompton & Harefield Hospitals, Guy's and St. Thomas' NHS Foundation Trust, London, UK
| | - Nicholas Li
- National Heart & Lung Institute, Imperial College London, London, UK
- MRC Laboratory of Medical Sciences, Imperial College London, London, UK
- Royal Brompton & Harefield Hospitals, Guy's and St. Thomas' NHS Foundation Trust, London, UK
| | - Caroline F Wright
- Department of Clinical and Biomedical Sciences, University of Exeter Medical School, Royal Devon & Exeter Hospital, Exeter, UK
| | - Kaitlin E Samocha
- Center for Genomic Medicine, Massachusetts General Hospital, Boston, MA, USA
- Program in Medical and Population Genetics, Broad Institute of MIT and Harvard, Cambridge, MA, USA
| | - Nicola Whiffin
- Program in Medical and Population Genetics, Broad Institute of MIT and Harvard, Cambridge, MA, USA.
- Centre for Human Genetics, University of Oxford, Oxford, UK.
- Big Data Institute, Li Ka Shing Centre for Health Information and Discovery, University of Oxford, Oxford, UK.
| | - James S Ware
- National Heart & Lung Institute, Imperial College London, London, UK.
- MRC Laboratory of Medical Sciences, Imperial College London, London, UK.
- Royal Brompton & Harefield Hospitals, Guy's and St. Thomas' NHS Foundation Trust, London, UK.
- Program in Medical and Population Genetics, Broad Institute of MIT and Harvard, Cambridge, MA, USA.
| |
Collapse
|
10
|
Sun KY, Bai X, Chen S, Bao S, Zhang C, Kapoor M, Backman J, Joseph T, Maxwell E, Mitra G, Gorovits A, Mansfield A, Boutkov B, Gokhale S, Habegger L, Marcketta A, Locke AE, Ganel L, Hawes A, Kessler MD, Sharma D, Staples J, Bovijn J, Gelfman S, Di Gioia A, Rajagopal VM, Lopez A, Varela JR, Alegre-Díaz J, Berumen J, Tapia-Conyer R, Kuri-Morales P, Torres J, Emberson J, Collins R, Cantor M, Thornton T, Kang HM, Overton JD, Shuldiner AR, Cremona ML, Nafde M, Baras A, Abecasis G, Marchini J, Reid JG, Salerno W, Balasubramanian S. A deep catalogue of protein-coding variation in 983,578 individuals. Nature 2024; 631:583-592. [PMID: 38768635 PMCID: PMC11254753 DOI: 10.1038/s41586-024-07556-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2023] [Accepted: 05/10/2024] [Indexed: 05/22/2024]
Abstract
Rare coding variants that substantially affect function provide insights into the biology of a gene1-3. However, ascertaining the frequency of such variants requires large sample sizes4-8. Here we present a catalogue of human protein-coding variation, derived from exome sequencing of 983,578 individuals across diverse populations. In total, 23% of the Regeneron Genetics Center Million Exome (RGC-ME) data come from individuals of African, East Asian, Indigenous American, Middle Eastern and South Asian ancestry. The catalogue includes more than 10.4 million missense and 1.1 million predicted loss-of-function (pLOF) variants. We identify individuals with rare biallelic pLOF variants in 4,848 genes, 1,751 of which have not been previously reported. From precise quantitative estimates of selection against heterozygous loss of function (LOF), we identify 3,988 LOF-intolerant genes, including 86 that were previously assessed as tolerant and 1,153 that lack established disease annotation. We also define regions of missense depletion at high resolution. Notably, 1,482 genes have regions that are depleted of missense variants despite being tolerant of pLOF variants. Finally, we estimate that 3% of individuals have a clinically actionable genetic variant, and that 11,773 variants reported in ClinVar with unknown significance are likely to be deleterious cryptic splice sites. To facilitate variant interpretation and genetics-informed precision medicine, we make this resource of coding variation from the RGC-ME dataset publicly accessible through a variant allele frequency browser.
Collapse
Affiliation(s)
| | | | - Siying Chen
- Regeneron Genetics Center, Tarrytown, NY, USA
| | - Suying Bao
- Regeneron Genetics Center, Tarrytown, NY, USA
| | | | | | | | | | | | | | | | | | | | | | | | | | | | - Liron Ganel
- Regeneron Genetics Center, Tarrytown, NY, USA
| | | | | | | | | | | | | | | | | | | | | | - Jesús Alegre-Díaz
- Faculty of Medicine, National Autonomous University of Mexico (UNAM), Mexico City, Mexico
| | - Jaime Berumen
- Faculty of Medicine, National Autonomous University of Mexico (UNAM), Mexico City, Mexico
| | - Roberto Tapia-Conyer
- Faculty of Medicine, National Autonomous University of Mexico (UNAM), Mexico City, Mexico
| | - Pablo Kuri-Morales
- Faculty of Medicine, National Autonomous University of Mexico (UNAM), Mexico City, Mexico
- Instituto Tecnológico y de Estudios Superiores de Monterrey, Monterrey, Mexico
| | - Jason Torres
- Clinical Trial Service Unit and Epidemiological Studies Unit, Nuffield Department of Population Health, University of Oxford, Oxford, UK
| | - Jonathan Emberson
- Clinical Trial Service Unit and Epidemiological Studies Unit, Nuffield Department of Population Health, University of Oxford, Oxford, UK
| | - Rory Collins
- Clinical Trial Service Unit and Epidemiological Studies Unit, Nuffield Department of Population Health, University of Oxford, Oxford, UK
| | | | | | | | | | | | | | - Mona Nafde
- Regeneron Genetics Center, Tarrytown, NY, USA
| | - Aris Baras
- Regeneron Genetics Center, Tarrytown, NY, USA
| | | | | | | | | | | |
Collapse
|
11
|
Chong JX, Berger SI, Baxter S, Smith E, Xiao C, Calame DG, Hawley MH, Rivera-Munoz EA, DiTroia S, Bamshad MJ, Rehm HL. Considerations for reporting variants in novel candidate genes identified during clinical genomic testing. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.02.05.579012. [PMID: 38370830 PMCID: PMC10871197 DOI: 10.1101/2024.02.05.579012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/20/2024]
Abstract
Since the first novel gene discovery for a Mendelian condition was made via exome sequencing (ES), the rapid increase in the number of genes known to underlie Mendelian conditions coupled with the adoption of exome (and more recently, genome) sequencing by diagnostic testing labs has changed the landscape of genomic testing for rare disease. Specifically, many individuals suspected to have a Mendelian condition are now routinely offered clinical ES. This commonly results in a precise genetic diagnosis but frequently overlooks the identification of novel candidate genes. Such candidates are also less likely to be identified in the absence of large-scale gene discovery research programs. Accordingly, clinical laboratories have both the opportunity, and some might argue a responsibility, to contribute to novel gene discovery which should in turn increase the diagnostic yield for many conditions. However, clinical diagnostic laboratories must necessarily balance priorities for throughput, turnaround time, cost efficiency, clinician preferences, and regulatory constraints, and often do not have the infrastructure or resources to effectively participate in either clinical translational or basic genome science research efforts. For these and other reasons, many laboratories have historically refrained from broadly sharing potentially pathogenic variants in novel genes via networks like Matchmaker Exchange, much less reporting such results to ordering providers. Efforts to report such results are further complicated by a lack of guidelines for clinical reporting and interpretation of variants in novel candidate genes. Nevertheless, there are myriad benefits for many stakeholders, including patients/families, clinicians, researchers, if clinical laboratories systematically and routinely identify, share, and report novel candidate genes. To facilitate this change in practice, we developed criteria for triaging, sharing, and reporting novel candidate genes that are most likely to be promptly validated as underlying a Mendelian condition and translated to use in clinical settings.
Collapse
Affiliation(s)
- Jessica X. Chong
- Department of Pediatrics, Division of Genetic Medicine, University of Washington, 1959 NE Pacific Street, Box 357371, Seattle, WA, 98195, USA
- Brotman-Baty Institute for Precision Medicine, 1959 NE Pacific Street, Box 357657, Seattle, WA, 98195, USA
| | - Seth I. Berger
- Center for Genetic Medicine Research, Children’s National Research Institute, 111 Michigan Ave, NW, Washington, DC, 20010, USA
| | - Samantha Baxter
- Program in Medical and Population Genetics, Broad Institute of MIT and Harvard, 415 Main St, Cambridge, MA, 02141, USA
| | - Erica Smith
- Department of Clinical Diagnostics, Ambry Genetics, 15 Argonaut, Aliso Viejo, CA, 92656, USA
| | - Changrui Xiao
- Department of Neurology, University of California Irvine, 200 South Manchester Ave. St 206E, Orange, CA, 92868, USA
| | - Daniel G. Calame
- Department of Pediatrics, Division of Pediatric Neurology and Developmental Neurosciences, Baylor College of Medicine, One Baylor Plaza, Houston, TX, 77030, USA
| | - Megan H. Hawley
- Clinical Operations, Invitae, 485F US-1 Suite 110, Iselin, NJ, 08830, USA
| | - E. Andres Rivera-Munoz
- Department of Molecular and Human Genetics, Baylor College of Medicine, 1 Baylor Plaza T605, Houston, TX, 77030, USA
| | - Stephanie DiTroia
- Program in Medical and Population Genetics, Broad Institute of MIT and Harvard, 415 Main St, Cambridge, MA, 02141, USA
| | | | - Michael J. Bamshad
- Department of Pediatrics, Division of Genetic Medicine, University of Washington, 1959 NE Pacific Street, Box 357371, Seattle, WA, 98195, USA
- Brotman-Baty Institute for Precision Medicine, 1959 NE Pacific Street, Box 357657, Seattle, WA, 98195, USA
- Department of Pediatrics, Division of Genetic Medicine, Seattle Children’s Hospital, Seattle, WA, 98195, USA
| | - Heidi L. Rehm
- Program in Medical and Population Genetics, Broad Institute of MIT and Harvard, 415 Main St, Cambridge, MA, 02141, USA
- Center for Genomic Medicine, Massachusetts General Hospital, 185 Cambridge St, Boston, MA, 02114, USA
| |
Collapse
|
12
|
Chao KR, Wang L, Panchal R, Liao C, Abderrazzaq H, Ye R, Schultz P, Compitello J, Grant RH, Kosmicki JA, Weisburd B, Phu W, Wilson MW, Laricchia KM, Goodrich JK, Goldstein D, Goldstein JI, Vittal C, Poterba T, Baxter S, Watts NA, Solomonson M, Tiao G, Rehm HL, Neale BM, Talkowski ME, MacArthur DG, O'Donnell-Luria A, Karczewski KJ, Radivojac P, Daly MJ, Samocha KE. The landscape of regional missense mutational intolerance quantified from 125,748 exomes. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.04.11.588920. [PMID: 38645134 PMCID: PMC11030311 DOI: 10.1101/2024.04.11.588920] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/23/2024]
Abstract
Missense variants can have a range of functional impacts depending on factors such as the specific amino acid substitution and location within the gene. To interpret their deleteriousness, studies have sought to identify regions within genes that are specifically intolerant of missense variation 1-12 . Here, we leverage the patterns of rare missense variation in 125,748 individuals in the Genome Aggregation Database (gnomAD) 13 against a null mutational model to identify transcripts that display regional differences in missense constraint. Missense-depleted regions are enriched for ClinVar 14 pathogenic variants, de novo missense variants from individuals with neurodevelopmental disorders (NDDs) 15,16 , and complex trait heritability. Following ClinGen calibration recommendations for the ACMG/AMP guidelines, we establish that regions with less than 20% of their expected missense variation achieve moderate support for pathogenicity. We create a missense deleteriousness metric (MPC) that incorporates regional constraint and outperforms other deleteriousness scores at stratifying case and control de novo missense variation, with a strong enrichment in NDDs. These results provide additional tools to aid in missense variant interpretation.
Collapse
|
13
|
Beaumont RN, Hawkes G, Gunning AC, Wright CF. Clustering of predicted loss-of-function variants in genes linked with monogenic disease can explain incomplete penetrance. Genome Med 2024; 16:64. [PMID: 38671509 PMCID: PMC11046769 DOI: 10.1186/s13073-024-01333-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2023] [Accepted: 03/22/2024] [Indexed: 04/28/2024] Open
Abstract
BACKGROUND Genetic variants that severely alter protein products (e.g. nonsense, frameshift) are often associated with disease. For some genes, these predicted loss-of-function variants (pLoFs) are observed throughout the gene, whilst in others, they occur only at specific locations. We hypothesised that, for genes linked with monogenic diseases that display incomplete penetrance, pLoF variants present in apparently unaffected individuals may be limited to regions where pLoFs are tolerated. To test this, we investigated whether pLoF location could explain instances of incomplete penetrance of variants expected to be pathogenic for Mendelian conditions. METHODS We used exome sequence data in 454,773 individuals in the UK Biobank (UKB) to investigate the locations of pLoFs in a population cohort. We counted numbers of unique pLoF, missense, and synonymous variants in UKB in each quintile of the coding sequence (CDS) of all protein-coding genes and clustered the variants using Gaussian mixture models. We limited the analyses to genes with ≥ 5 variants of each type (16,473 genes). We compared the locations of pLoFs in UKB with all theoretically possible pLoFs in a transcript, and pathogenic pLoFs from ClinVar, and performed simulations to estimate the false-positive rate of non-uniformly distributed variants. RESULTS For most genes, all variant classes fell into clusters representing broadly uniform variant distributions, but genes in which haploinsufficiency causes developmental disorders were less likely to have uniform pLoF distribution than other genes (P < 2.2 × 10-6). We identified a number of genes, including ARID1B and GATA6, where pLoF variants in the first quarter of the CDS were rescued by the presence of an alternative translation start site and should not be reported as pathogenic. For other genes, such as ODC1, pLoFs were located approximately uniformly across the gene, but pathogenic pLoFs were clustered only at the end, consistent with a gain-of-function disease mechanism. CONCLUSIONS Our results suggest the potential benefits of localised constraint metrics and that the location of pLoF variants should be considered when interpreting variants.
Collapse
Affiliation(s)
- Robin N Beaumont
- Department of Clinical and Biomedical Sciences, Faculty of Health and Life Sciences, University of Exeter, Exeter, EX1 2LU, UK.
| | - Gareth Hawkes
- Department of Clinical and Biomedical Sciences, Faculty of Health and Life Sciences, University of Exeter, Exeter, EX1 2LU, UK
| | - Adam C Gunning
- Department of Clinical and Biomedical Sciences, Faculty of Health and Life Sciences, University of Exeter, Exeter, EX1 2LU, UK
- Exeter Genomics Laboratory, Royal Devon University Healthcare NHS Foundation Trust, Exeter, EX2 5DW, UK
| | - Caroline F Wright
- Department of Clinical and Biomedical Sciences, Faculty of Health and Life Sciences, University of Exeter, Exeter, EX1 2LU, UK.
| |
Collapse
|
14
|
MacGowan SA, Madeira F, Britto-Borges T, Barton GJ. A unified analysis of evolutionary and population constraint in protein domains highlights structural features and pathogenic sites. Commun Biol 2024; 7:447. [PMID: 38605212 PMCID: PMC11009406 DOI: 10.1038/s42003-024-06117-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2023] [Accepted: 03/27/2024] [Indexed: 04/13/2024] Open
Abstract
Protein evolution is constrained by structure and function, creating patterns in residue conservation that are routinely exploited to predict structure and other features. Similar constraints should affect variation across individuals, but it is only with the growth of human population sequencing that this has been tested at scale. Now, human population constraint has established applications in pathogenicity prediction, but it has not yet been explored for structural inference. Here, we map 2.4 million population variants to 5885 protein families and quantify residue-level constraint with a new Missense Enrichment Score (MES). Analysis of 61,214 structures from the PDB spanning 3661 families shows that missense depleted sites are enriched in buried residues or those involved in small-molecule or protein binding. MES is complementary to evolutionary conservation and a combined analysis allows a new classification of residues according to a conservation plane. This approach finds functional residues that are evolutionarily diverse, which can be related to specificity, as well as family-wide conserved sites that are critical for folding or function. We also find a possible contrast between lethal and non-lethal pathogenic sites, and a surprising clinical variant hot spot at a subset of missense enriched positions.
Collapse
Affiliation(s)
- Stuart A MacGowan
- Division of Computational Biology School of Life Sciences University of Dundee, Dow Street Dundee, DD1 5EH, Scotland, UK
| | - Fábio Madeira
- Division of Computational Biology School of Life Sciences University of Dundee, Dow Street Dundee, DD1 5EH, Scotland, UK
- European Bioinformatics Institute (EMBL-EBI), Wellcome Trust Genome Campus, Hinxton, Cambridge, CB10 1SD, UK
| | - Thiago Britto-Borges
- Division of Computational Biology School of Life Sciences University of Dundee, Dow Street Dundee, DD1 5EH, Scotland, UK
- Section of Bioinformatics and Systems Cardiology, Department of Internal Medicine III and Klaus Tschira Institute for Integrative Computational Cardiology, Heidelberg University Hospital, Heidelberg, Germany
| | - Geoffrey J Barton
- Division of Computational Biology School of Life Sciences University of Dundee, Dow Street Dundee, DD1 5EH, Scotland, UK.
| |
Collapse
|
15
|
Dohrn MF, Bademci G, Rebelo AP, Jeanne M, Borja NA, Beijer D, Danzi MC, Bivona SA, Gueguen P, Zafeer MF, Tekin M, Züchner S. Recurrent ATP1A1 variant Gly903Arg causes developmental delay, intellectual disability, and autism. Ann Clin Transl Neurol 2024; 11:1075-1079. [PMID: 38504481 PMCID: PMC11021672 DOI: 10.1002/acn3.51963] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2023] [Revised: 11/15/2023] [Accepted: 11/18/2023] [Indexed: 03/21/2024] Open
Abstract
ATP1A1 encodes a sodium-potassium ATPase that has been linked to several neurological diseases. Using exome and genome sequencing, we identified the heterozygous ATP1A1 variant NM_000701.8: c.2707G>A;p.(Gly903Arg) in two unrelated children presenting with delayed motor and speech development and autism. While absent in controls, the variant occurred de novo in one proband and co-segregated in two affected half-siblings, with mosaicism in the healthy mother. Using a specific ouabain resistance assay in mutant transfected HEK cells, we found significantly reduced cell viability. Demonstrating loss of ATPase function, we conclude that this novel variant is pathogenic, expanding the phenotype spectrum of ATP1A1.
Collapse
Affiliation(s)
- Maike F. Dohrn
- Dr. John T. Macdonald Foundation, Department of Human GeneticsJohn P. Hussman Institute for Human Genomics, University of Miami, Miller School of MedicineMiamiFloridaUSA
- Department of NeurologyMedical Faculty of the RWTH Aachen UniversityAachenGermany
| | - Guney Bademci
- Dr. John T. Macdonald Foundation, Department of Human GeneticsJohn P. Hussman Institute for Human Genomics, University of Miami, Miller School of MedicineMiamiFloridaUSA
| | - Adriana P. Rebelo
- Dr. John T. Macdonald Foundation, Department of Human GeneticsJohn P. Hussman Institute for Human Genomics, University of Miami, Miller School of MedicineMiamiFloridaUSA
| | - Médéric Jeanne
- Service de Génétique Médicale, CHRU de ToursToursFrance
- UMR 1253, iBrain, Université de Tours, INSERMToursFrance
- Laboratoire de Biologie Médicale Multi‐Sites SeqOIA (laboratoire‐seqoia.fr/)ParisFrance
| | - Nicholas A. Borja
- Dr. John T. Macdonald Foundation, Department of Human GeneticsJohn P. Hussman Institute for Human Genomics, University of Miami, Miller School of MedicineMiamiFloridaUSA
| | - Danique Beijer
- Dr. John T. Macdonald Foundation, Department of Human GeneticsJohn P. Hussman Institute for Human Genomics, University of Miami, Miller School of MedicineMiamiFloridaUSA
| | - Matt C. Danzi
- Dr. John T. Macdonald Foundation, Department of Human GeneticsJohn P. Hussman Institute for Human Genomics, University of Miami, Miller School of MedicineMiamiFloridaUSA
| | - Stephanie A. Bivona
- Dr. John T. Macdonald Foundation, Department of Human GeneticsJohn P. Hussman Institute for Human Genomics, University of Miami, Miller School of MedicineMiamiFloridaUSA
| | - Paul Gueguen
- Service de Génétique Médicale, CHRU de ToursToursFrance
| | - Mohammad F. Zafeer
- Dr. John T. Macdonald Foundation, Department of Human GeneticsJohn P. Hussman Institute for Human Genomics, University of Miami, Miller School of MedicineMiamiFloridaUSA
| | - Mustafa Tekin
- Dr. John T. Macdonald Foundation, Department of Human GeneticsJohn P. Hussman Institute for Human Genomics, University of Miami, Miller School of MedicineMiamiFloridaUSA
| | - Stephan Züchner
- Dr. John T. Macdonald Foundation, Department of Human GeneticsJohn P. Hussman Institute for Human Genomics, University of Miami, Miller School of MedicineMiamiFloridaUSA
| |
Collapse
|
16
|
Faundes V, Repetto GM, Valdivia LE. Discovery of novel genetic syndromes in Latin America: Opportunities and challenges. Genet Mol Biol 2024; 47Suppl 1:e20230318. [PMID: 38466870 PMCID: PMC10964411 DOI: 10.1590/1678-4685-gmb-2023-0318] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2023] [Accepted: 02/06/2024] [Indexed: 03/13/2024] Open
Abstract
Latin America (LatAm) has a rich and historically significant role in delineating both novel and well-documented genetic disorders. However, the ongoing advancements in the field of human genetics pose challenges to the relatively slow adaption of LatAm in the field. Here, we describe past and present contributions of LatAm to the discovery of novel genetic disorders, often referred as novel gene-disease associations (NGDA). We also describe the current methodologies for discovery of NGDA, taking into account the latest developments in genomics. We provide an overview of opportunities and challenges for NGDA research in LatAm considering the steps currently performed to identify and validate such associations. Given the multiple and diverse needs of populations and countries in LatAm, it is imperative to foster collaborations amongst patients, indigenous people, clinicians and scientists. Such collaborative effort is essential for sustaining and enhancing the LatAm´s contributions to the field of NGDA.
Collapse
Affiliation(s)
- Víctor Faundes
- Universidad de Chile, Instituto de Nutrición y Tecnología de los Alimentos, Laboratorio de Genética y Enfermedades Metabólicas, Santiago, Chile
| | - Gabriela M. Repetto
- Universidad del Desarrollo, Facultad de Medicina, Instituto de Ciencias e Innovación en Medicina, Centro de Genética y Genómica, Programa de Enfermedades Raras, Santiago, Chile
| | - Leonardo E. Valdivia
- Universidad Mayor, Facultad de Ciencias, Centro de Biología Integrativa, Santiago, Chile
- Universidad Mayor, Facultad de Ciencias, Escuela de Biotecnología, Santiago, Chile
| |
Collapse
|
17
|
Parra-Perez AM, Gallego-Martinez A, Lopez-Escamez JA. An overload of missense variants in the OTOG gene may drive a higher prevalence of familial Meniere disease in the European population. Hum Genet 2024; 143:423-435. [PMID: 38519595 PMCID: PMC11043142 DOI: 10.1007/s00439-024-02643-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2023] [Accepted: 01/14/2024] [Indexed: 03/25/2024]
Abstract
Meniere disease is a complex inner ear disorder with significant familial aggregation. A differential prevalence of familial MD (FMD) has been reported, being 9-10% in Europeans compared to 6% in East Asians. A broad genetic heterogeneity in FMD has been described, OTOG being the most common mutated gene, with a compound heterozygous recessive inheritance. We hypothesize that an OTOG-related founder effect may explain the higher prevalence of FMD in the European population. Therefore, the present study aimed to compare the allele frequency (AF) and distribution of OTOG rare variants across different populations. For this purpose, the coding regions with high constraint (low density of rare variants) were retrieved in the OTOG coding sequence in Non-Finnish European (NFE).. Missense variants (AF < 0.01) were selected from a 100 FMD patient cohort, and their population AF was annotated using gnomAD v2.1. A linkage analysis was performed, and odds ratios were calculated to compare AF between NFE and other populations. Thirteen rare missense variants were observed in 13 FMD patients, with 2 variants (rs61978648 and rs61736002) shared by 5 individuals and another variant (rs117315845) shared by two individuals. The results confirm the observed enrichment of OTOG rare missense variants in FMD. Furthermore, eight variants were enriched in the NFE population, and six of them were in constrained regions. Structural modeling predicts five missense variants that could alter the otogelin stability. We conclude that several variants reported in FMD are in constraint regions, and they may have a founder effect and explain the burden of FMD in the European population.
Collapse
Affiliation(s)
- Alberto M Parra-Perez
- Division of Otolaryngology, Department of Surgery, Instituto de Investigación Biosanitaria, Ibs.GRANADA, Universidad de Granada, Granada, Spain
- Sensorineural Pathology Programme, Centro de Investigación Biomédica en Red en Enfermedades Raras (CIBERER),, Madrid, Spain
- Faculty of Medicine and Health, School of Medical Sciences, Meniere's Disease Neuroscience Research Program, The Kolling Institute, The University of Sydney, 10 Westbourne St, Sydney, NSW, Australia
| | - Alvaro Gallego-Martinez
- Division of Otolaryngology, Department of Surgery, Instituto de Investigación Biosanitaria, Ibs.GRANADA, Universidad de Granada, Granada, Spain
- Sensorineural Pathology Programme, Centro de Investigación Biomédica en Red en Enfermedades Raras (CIBERER),, Madrid, Spain
- Faculty of Medicine and Health, School of Medical Sciences, Meniere's Disease Neuroscience Research Program, The Kolling Institute, The University of Sydney, 10 Westbourne St, Sydney, NSW, Australia
| | - Jose A Lopez-Escamez
- Division of Otolaryngology, Department of Surgery, Instituto de Investigación Biosanitaria, Ibs.GRANADA, Universidad de Granada, Granada, Spain.
- Sensorineural Pathology Programme, Centro de Investigación Biomédica en Red en Enfermedades Raras (CIBERER),, Madrid, Spain.
- Faculty of Medicine and Health, School of Medical Sciences, Meniere's Disease Neuroscience Research Program, The Kolling Institute, The University of Sydney, 10 Westbourne St, Sydney, NSW, Australia.
| |
Collapse
|
18
|
Zech M, Winkelmann J. Next-generation sequencing and bioinformatics in rare movement disorders. Nat Rev Neurol 2024; 20:114-126. [PMID: 38172289 DOI: 10.1038/s41582-023-00909-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/29/2023] [Indexed: 01/05/2024]
Abstract
The ability to sequence entire exomes and genomes has revolutionized molecular testing in rare movement disorders, and genomic sequencing is becoming an integral part of routine diagnostic workflows for these heterogeneous conditions. However, interpretation of the extensive genomic variant information that is being generated presents substantial challenges. In this Perspective, we outline multidimensional strategies for genetic diagnosis in patients with rare movement disorders. We examine bioinformatics tools and computational metrics that have been developed to facilitate accurate prioritization of disease-causing variants. Additionally, we highlight community-driven data-sharing and case-matchmaking platforms, which are designed to foster the discovery of new genotype-phenotype relationships. Finally, we consider how multiomic data integration might optimize diagnostic success by combining genomic, epigenetic, transcriptomic and/or proteomic profiling to enable a more holistic evaluation of variant effects. Together, the approaches that we discuss offer pathways to the improved understanding of the genetic basis of rare movement disorders.
Collapse
Affiliation(s)
- Michael Zech
- Institute of Human Genetics, School of Medicine, Technical University of Munich, Munich, Germany
- Institute of Neurogenomics, Helmholtz Zentrum München, Munich, Germany
- Institute for Advanced Study, Technical University of Munich, Garching, Germany
| | - Juliane Winkelmann
- Institute of Human Genetics, School of Medicine, Technical University of Munich, Munich, Germany.
- Institute of Neurogenomics, Helmholtz Zentrum München, Munich, Germany.
- Munich Cluster for Systems Neurology, SyNergy, Munich, Germany.
- DZPG, Deutsches Zentrum für Psychische Gesundheit, Munich, Germany.
| |
Collapse
|
19
|
Schubach M, Maass T, Nazaretyan L, Röner S, Kircher M. CADD v1.7: using protein language models, regulatory CNNs and other nucleotide-level scores to improve genome-wide variant predictions. Nucleic Acids Res 2024; 52:D1143-D1154. [PMID: 38183205 PMCID: PMC10767851 DOI: 10.1093/nar/gkad989] [Citation(s) in RCA: 42] [Impact Index Per Article: 42.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2023] [Revised: 10/14/2023] [Accepted: 10/17/2023] [Indexed: 01/07/2024] Open
Abstract
Machine Learning-based scoring and classification of genetic variants aids the assessment of clinical findings and is employed to prioritize variants in diverse genetic studies and analyses. Combined Annotation-Dependent Depletion (CADD) is one of the first methods for the genome-wide prioritization of variants across different molecular functions and has been continuously developed and improved since its original publication. Here, we present our most recent release, CADD v1.7. We explored and integrated new annotation features, among them state-of-the-art protein language model scores (Meta ESM-1v), regulatory variant effect predictions (from sequence-based convolutional neural networks) and sequence conservation scores (Zoonomia). We evaluated the new version on data sets derived from ClinVar, ExAC/gnomAD and 1000 Genomes variants. For coding effects, we tested CADD on 31 Deep Mutational Scanning (DMS) data sets from ProteinGym and, for regulatory effect prediction, we used saturation mutagenesis reporter assay data of promoter and enhancer sequences. The inclusion of new features further improved the overall performance of CADD. As with previous releases, all data sets, genome-wide CADD v1.7 scores, scripts for on-site scoring and an easy-to-use webserver are readily provided via https://cadd.bihealth.org/ or https://cadd.gs.washington.edu/ to the community.
Collapse
Affiliation(s)
- Max Schubach
- Exploratory Diagnostic Sciences, Berlin Institute of Health at Charité – Universitätsmedizin Berlin, Berlin, Germany
| | - Thorben Maass
- Institute of Human Genetics, University Hospital Schleswig-Holstein, University of Lübeck, Lübeck, Germany
| | - Lusiné Nazaretyan
- Exploratory Diagnostic Sciences, Berlin Institute of Health at Charité – Universitätsmedizin Berlin, Berlin, Germany
| | - Sebastian Röner
- Exploratory Diagnostic Sciences, Berlin Institute of Health at Charité – Universitätsmedizin Berlin, Berlin, Germany
| | - Martin Kircher
- Exploratory Diagnostic Sciences, Berlin Institute of Health at Charité – Universitätsmedizin Berlin, Berlin, Germany
- Institute of Human Genetics, University Hospital Schleswig-Holstein, University of Lübeck, Lübeck, Germany
| |
Collapse
|
20
|
Zhao Y, Zhong G, Hagen J, Pan H, Chung WK, Shen Y. A probabilistic graphical model for estimating selection coefficient of missense variants from human population sequence data. MEDRXIV : THE PREPRINT SERVER FOR HEALTH SCIENCES 2023:2023.12.11.23299809. [PMID: 38168397 PMCID: PMC10760286 DOI: 10.1101/2023.12.11.23299809] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/05/2024]
Abstract
Accurately predicting the effect of missense variants is a central problem in interpretation of genomic variation. Commonly used computational methods does not capture the quantitative impact on fitness in populations. We developed MisFit to estimate missense fitness effect using biobank-scale human population genome data. MisFit jointly models the effect at molecular level ( d ) and population level (selection coefficient, s ), assuming that in the same gene, missense variants with similar d have similar s . MisFit is a probabilistic graphical model that integrates deep neural network components and population genetics models efficiently with inductive bias based on biological causality of variant effect. We trained it by maximizing probability of observed allele counts in 236,017 European individuals. We show that s is informative in predicting frequency across ancestries and consistent with the fraction of de novo mutations given s . Finally, MisFit outperforms previous methods in prioritizing missense variants in individuals with neurodevelopmental disorders.
Collapse
Affiliation(s)
- Yige Zhao
- Department of Systems Biology, Columbia University Irving Medical Center, New York, NY 10032
- The Integrated Program in Cellular, Molecular, and Biomedical Studies, Columbia University, New York, NY 10032
| | - Guojie Zhong
- Department of Systems Biology, Columbia University Irving Medical Center, New York, NY 10032
- The Integrated Program in Cellular, Molecular, and Biomedical Studies, Columbia University, New York, NY 10032
| | - Jake Hagen
- Department of Systems Biology, Columbia University Irving Medical Center, New York, NY 10032
- Department of Pediatrics, Columbia University Irving Medical Center, New York, NY 10032
| | - Hongbing Pan
- Department of Biomedical Informatics, Columbia University Irving Medical Center, New York, NY 10032
| | - Wendy K. Chung
- Department of Pediatrics, Boston Children’s Hospital and Harvard Medical School, Boston, MA 02115
| | - Yufeng Shen
- Department of Systems Biology, Columbia University Irving Medical Center, New York, NY 10032
- Department of Biomedical Informatics, Columbia University Irving Medical Center, New York, NY 10032
- JP Sulzberger Columbia Genome Center, Columbia University, New York, NY 10032
| |
Collapse
|
21
|
Cipriani V, Vestito L, Magavern EF, Jacobsen JO, Arno G, Behr ER, Benson KA, Bertoli M, Bockenhauer D, Bowl MR, Burley K, Chan LF, Chinnery P, Conlon P, Costa M, Davidson AE, Dawson SJ, Elhassan E, Flanagan SE, Futema M, Gale DP, García-Ruiz S, Corcia CG, Griffin HR, Hambleton S, Hicks AR, Houlden H, Houlston RS, Howles SA, Kleta R, Lekkerkerker I, Lin S, Liskova P, Mitchison H, Morsy H, Mumford AD, Newman WG, Neatu R, O'Toole EA, Ong AC, Pagnamenta AT, Rahman S, Rajan N, Robinson PN, Ryten M, Sadeghi-Alavijeh O, Sayer JA, Shovlin CL, Taylor JC, Teltsh O, Tomlinson I, Tucci A, Turnbull C, van Eerde AM, Ware JS, Watts LM, Webster AR, Westbury SK, Zheng SL, Caulfield M, Smedley D. Rare disease gene association discovery from burden analysis of the 100,000 Genomes Project data. MEDRXIV : THE PREPRINT SERVER FOR HEALTH SCIENCES 2023:2023.12.20.23300294. [PMID: 38196618 PMCID: PMC10775325 DOI: 10.1101/2023.12.20.23300294] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/11/2024]
Abstract
To discover rare disease-gene associations, we developed a gene burden analytical framework and applied it to rare, protein-coding variants from whole genome sequencing of 35,008 cases with rare diseases and their family members recruited to the 100,000 Genomes Project (100KGP). Following in silico triaging of the results, 88 novel associations were identified including 38 with existing experimental evidence. We have published the confirmation of one of these associations, hereditary ataxia with UCHL1 , and independent confirmatory evidence has recently been published for four more. We highlight a further seven compelling associations: hypertrophic cardiomyopathy with DYSF and SLC4A3 where both genes show high/specific heart expression and existing associations to skeletal dystrophies or short QT syndrome respectively; monogenic diabetes with UNC13A with a known role in the regulation of β cells and a mouse model with impaired glucose tolerance; epilepsy with KCNQ1 where a mouse model shows seizures and the existing long QT syndrome association may be linked; early onset Parkinson's disease with RYR1 with existing links to tremor pathophysiology and a mouse model with neurological phenotypes; anterior segment ocular abnormalities associated with POMK showing expression in corneal cells and with a zebrafish model with developmental ocular abnormalities; and cystic kidney disease with COL4A3 showing high renal expression and prior evidence for a digenic or modifying role in renal disease. Confirmation of all 88 associations would lead to potential diagnoses in 456 molecularly undiagnosed cases within the 100KGP, as well as other rare disease patients worldwide, highlighting the clinical impact of a large-scale statistical approach to rare disease gene discovery.
Collapse
|
22
|
Gunning AC, Wright CF. Evaluating the use of paralogous protein domains to increase data availability for missense variant classification. Genome Med 2023; 15:110. [PMID: 38087376 PMCID: PMC10714540 DOI: 10.1186/s13073-023-01264-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2023] [Accepted: 11/22/2023] [Indexed: 12/18/2023] Open
Abstract
BACKGROUND Classification of rare missense variants remains an ongoing challenge in genomic medicine. Evidence of pathogenicity is often sparse, and decisions about how to weigh different evidence classes may be subjective. We used a Bayesian variant classification framework to investigate the performance of variant co-localisation, missense constraint, and aggregating data across paralogous protein domains ("meta-domains"). METHODS We constructed a database of all possible coding single nucleotide variants in the human genome and used PFam predictions to annotate structurally-equivalent positions across protein domains. We counted the number of pathogenic and benign missense variants at these equivalent positions in the ClinVar database, calculated a regional constraint score for each meta-domain, and assessed this approach versus existing missense constraint metrics for classifying variant pathogenicity and benignity. RESULTS Alternative pathogenic missense variants at the same amino acid position in the same protein provide strong evidence of pathogenicity (positive likelihood ratio, LR+ = 85). Additionally, clinically annotated pathogenic or benign missense variants at equivalent positions in different proteins can provide moderate evidence of pathogenicity (LR+ = 7) or benignity (LR+ = 5), respectively. Applying these approaches sequentially (through PM5) increases sensitivity for classifying pathogenic missense variants from 27 to 41%. Missense constraint can also provide strong evidence of pathogenicity for some variants, but its absence provides no evidence of benignity. CONCLUSIONS We propose using structurally equivalent positions across related protein domains from different genes to augment evidence for variant co-localisation when classifying novel missense variants. Additionally, we advocate adopting a numerical evidence-based approach to integrating diverse data in variant interpretation.
Collapse
Affiliation(s)
- Adam Colin Gunning
- Department of Clinical and Biomedical Sciences (Medical School, Faculty of Health and Life Sciences, University of Exeter, RILD, Barrack Road, Exeter, EX2 5DW, UK.
- Exeter Genomics Laboratory, South West Genomic Laboratory Hub, Royal Devon University Healthcare NHS Foundation Trust, RILD, Barrack Road, Exeter, EX2 5DW, UK.
| | - Caroline Fiona Wright
- Department of Clinical and Biomedical Sciences (Medical School, Faculty of Health and Life Sciences, University of Exeter, RILD, Barrack Road, Exeter, EX2 5DW, UK.
| |
Collapse
|
23
|
Crawford J, Morawski M, Eliason S, Wuebker S, Van Otterloo E, Cao H, Moreno L, Amendt B, Venugopalan SR. Transcriptome analyses of murine right and left maxilla-mandibular complex. Orthod Craniofac Res 2023; 26 Suppl 1:39-47. [PMID: 37073503 PMCID: PMC11292856 DOI: 10.1111/ocr.12660] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2023] [Revised: 03/21/2023] [Accepted: 03/23/2023] [Indexed: 04/20/2023]
Abstract
OBJECTIVE The objective of the study was to investigate differential gene expression between murine right and left maxilla-mandibular (MxMn) complexes. SETTING AND SAMPLE POPULATION Wild-type (WT) C57BL/6 embryonic (E) day 14.5 (n = 3) and 18.5 (n = 3) murine embryos. METHODS The E14.5 and 18.5 embryos were harvested and hemi-sectioned the MxMn complexes into right and left halves in the mid-sagittal plane. We isolated total RNA using Trizol reagent and further purified using the RNA-easy kit (QIAGEN). We confirmed equal expression of house-keeping genes in right and left halves using RT-PCR and then performed paired-end whole mRNA sequencing in LC Sciences (Houston, TX) followed by differential transcript analyses (>1 or <-1 log fold change; p < .05; q < .05; and FPKM >0.5 in 2/3 samples). The Mouse Genome Informatics and Online Mendelian Inheritance in Man databases as well as gnomAD constraint scores were used to prioritize differentially expressed transcripts. RESULTS There were 19 upregulated and 19 downregulated transcripts at E14.5 and 8 upregulated and 17 downregulated transcripts at E18.5 time-points. These differentially expressed transcripts were statistically significant and shown to be associated with craniofacial phenotypes in mouse models. These transcripts also have significant gnomAD constraint scores and are enriched in biological processes critical for embryogenesis. CONCLUSIONS We identified significant differential expression of transcripts between E14.5 and 18.5 murine right and left MxMn complexes. These findings when extrapolated to humans, they may provide a biological basis for facial asymmetry. Further experiments are required to validate these findings in murine models with craniofacial asymmetry.
Collapse
Affiliation(s)
- Jacqueline Crawford
- Department of Orthodontics, College of Dentistry, The University of Iowa, Iowa City, Iowa, USA
| | - Melissa Morawski
- Department of Orthodontics, College of Dentistry, The University of Iowa, Iowa City, Iowa, USA
| | - Steve Eliason
- Department of Anatomy and Cell Biology, The University of Iowa, Iowa City, Iowa, USA
| | - Samantha Wuebker
- Department of Anatomy and Cell Biology, The University of Iowa, Iowa City, Iowa, USA
- Iowa Institute for Oral Health Research, The University of Iowa, Iowa City, Iowa, USA
| | - Eric Van Otterloo
- Department of Anatomy and Cell Biology, The University of Iowa, Iowa City, Iowa, USA
- Iowa Institute for Oral Health Research, The University of Iowa, Iowa City, Iowa, USA
- Craniofacial Anomalies Research Center, The University of Iowa, Iowa City, Iowa, USA
- Department of Periodontics, College of Dentistry, The University of Iowa, Iowa City, Iowa, USA
| | - Huojun Cao
- Iowa Institute for Oral Health Research, The University of Iowa, Iowa City, Iowa, USA
- Craniofacial Anomalies Research Center, The University of Iowa, Iowa City, Iowa, USA
- Department of Endodontics, College of Dentistry, The University of Iowa, Iowa City, Iowa, USA
| | - Lina Moreno
- Department of Orthodontics, College of Dentistry, The University of Iowa, Iowa City, Iowa, USA
- Iowa Institute for Oral Health Research, The University of Iowa, Iowa City, Iowa, USA
| | - Brad Amendt
- Department of Orthodontics, College of Dentistry, The University of Iowa, Iowa City, Iowa, USA
- Department of Anatomy and Cell Biology, The University of Iowa, Iowa City, Iowa, USA
- Iowa Institute for Oral Health Research, The University of Iowa, Iowa City, Iowa, USA
- Craniofacial Anomalies Research Center, The University of Iowa, Iowa City, Iowa, USA
| | - Shankar Rengasamy Venugopalan
- Department of Orthodontics, College of Dentistry, The University of Iowa, Iowa City, Iowa, USA
- Iowa Institute for Oral Health Research, The University of Iowa, Iowa City, Iowa, USA
- Craniofacial Anomalies Research Center, The University of Iowa, Iowa City, Iowa, USA
| |
Collapse
|
24
|
Leduc-Pessah H, White-Brown A, Miller E, McMillan HJ, Boycott KM. Further characterization of CEP85L-associated lissencephaly type 10: Report of a three-generation family and review of the literature. Am J Med Genet A 2023; 191:2878-2883. [PMID: 37621218 DOI: 10.1002/ajmg.a.63380] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2023] [Revised: 08/03/2023] [Accepted: 08/12/2023] [Indexed: 08/26/2023]
Abstract
Lissencephaly type 10 is a recently reported condition characterized by posterior predominant abnormalities in gyration with associated seizures, developmental delays or intellectual disability. We report a boy who presented at 5 years of age with epilepsy and developmental delays. His family history was notable for epilepsy in two prior generations associated with variable developmental and cognitive impact. Exome sequencing identified a novel missense variant in CEP85L [NM_001042475.2; c.196A>G, p.(Thr66Ala)] which segregated in four affected family members across three generations. Brain imaging of the proband demonstrated a posterior lissencephaly pattern with pachygyria, while other affected family members demonstrated a similar subcortical band heterotopia. This report expands the phenotypic spectrum of this rare disorder by describing a novel variant in CEP85L in a family with variable clinical and neuroimaging findings.
Collapse
Affiliation(s)
- Heather Leduc-Pessah
- Division of Neurology, Department of Pediatrics, Children's Hospital of Eastern Ontario, Ottawa, Ontario, Canada
| | - Alexandre White-Brown
- Department of Genetics, Children's Hospital of Eastern Ontario, Ottawa, Ontario, Canada
| | - Elka Miller
- Department of Radiology, The Hospital for Sick Children, University of Toronto, Toronto, Ontario, Canada
- Department of Medical Imaging, Children's Hospital of Eastern Ontario, Ottawa, Ontario, Canada
| | - Hugh J McMillan
- Division of Neurology, Department of Pediatrics, Children's Hospital of Eastern Ontario, Ottawa, Ontario, Canada
- Children's Hospital of Eastern Ontario Research Institute, University of Ottawa, Ottawa, Ontario, Canada
| | - Kym M Boycott
- Department of Genetics, Children's Hospital of Eastern Ontario, Ottawa, Ontario, Canada
- Children's Hospital of Eastern Ontario Research Institute, University of Ottawa, Ottawa, Ontario, Canada
| |
Collapse
|
25
|
Sun KY, Bai X, Chen S, Bao S, Kapoor M, Zhang C, Backman J, Joseph T, Maxwell E, Mitra G, Gorovits A, Mansfield A, Boutkov B, Gokhale S, Habegger L, Marcketta A, Locke A, Kessler MD, Sharma D, Staples J, Bovijn J, Gelfman S, Gioia AD, Rajagopal V, Lopez A, Varela JR, Alegre J, Berumen J, Tapia-Conyer R, Kuri-Morales P, Torres J, Emberson J, Collins R, Cantor M, Thornton T, Kang HM, Overton J, Shuldiner AR, Cremona ML, Nafde M, Baras A, Abecasis G, Marchini J, Reid JG, Salerno W, Balasubramanian S. A deep catalog of protein-coding variation in 985,830 individuals. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.05.09.539329. [PMID: 37214792 PMCID: PMC10197621 DOI: 10.1101/2023.05.09.539329] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/24/2023]
Abstract
Coding variants that have significant impact on function can provide insights into the biology of a gene but are typically rare in the population. Identifying and ascertaining the frequency of such rare variants requires very large sample sizes. Here, we present the largest catalog of human protein-coding variation to date, derived from exome sequencing of 985,830 individuals of diverse ancestry to serve as a rich resource for studying rare coding variants. Individuals of African, Admixed American, East Asian, Middle Eastern, and South Asian ancestry account for 20% of this Exome dataset. Our catalog of variants includes approximately 10.5 million missense (54% novel) and 1.1 million predicted loss-of-function (pLOF) variants (65% novel, 53% observed only once). We identified individuals with rare homozygous pLOF variants in 4,874 genes, and for 1,838 of these this work is the first to document at least one pLOF homozygote. Additional insights from the RGC-ME dataset include 1) improved estimates of selection against heterozygous loss-of-function and identification of 3,459 genes intolerant to loss-of-function, 83 of which were previously assessed as tolerant to loss-of-function and 1,241 that lack disease annotations; 2) identification of regions depleted of missense variation in 457 genes that are tolerant to loss-of-function; 3) functional interpretation for 10,708 variants of unknown or conflicting significance reported in ClinVar as cryptic splice sites using splicing score thresholds based on empirical variant deleteriousness scores derived from RGC-ME; and 4) an observation that approximately 3% of sequenced individuals carry a clinically actionable genetic variant in the ACMG SF 3.1 list of genes. We make this important resource of coding variation available to the public through a variant allele frequency browser. We anticipate that this report and the RGC-ME dataset will serve as a valuable reference for understanding rare coding variation and help advance precision medicine efforts.
Collapse
Affiliation(s)
| | | | - Siying Chen
- Regeneron Genetics Center, Tarrytown, NY, USA
| | - Suying Bao
- Regeneron Genetics Center, Tarrytown, NY, USA
| | | | | | | | | | | | | | | | | | | | | | | | | | - Adam Locke
- Regeneron Genetics Center, Tarrytown, NY, USA
| | | | | | | | | | | | | | | | | | | | - Jesus Alegre
- Experimental Research Unit from the Faculty of Medicine (UIME), National Autonomous University of Mexico (UNAM)
| | - Jaime Berumen
- Experimental Research Unit from the Faculty of Medicine (UIME), National Autonomous University of Mexico (UNAM)
| | - Roberto Tapia-Conyer
- Experimental Research Unit from the Faculty of Medicine (UIME), National Autonomous University of Mexico (UNAM)
| | - Pablo Kuri-Morales
- Experimental Research Unit from the Faculty of Medicine (UIME), National Autonomous University of Mexico (UNAM)
| | - Jason Torres
- Clinical Trial Service Unit & Epidemiological Studies Unit, Nuffield Department of Population Health, University of Oxford, Oxford, UK
| | - Jonathan Emberson
- Clinical Trial Service Unit & Epidemiological Studies Unit, Nuffield Department of Population Health, University of Oxford, Oxford, UK
- MRC Population Health Research Unit, Nuffield Department of Population Health, University of Oxford, Oxford, UK
| | - Rory Collins
- Clinical Trial Service Unit & Epidemiological Studies Unit, Nuffield Department of Population Health, University of Oxford, Oxford, UK
| | | | | | | | | | | | | | | | | | - Mona Nafde
- Regeneron Genetics Center, Tarrytown, NY, USA
| | - Aris Baras
- Regeneron Genetics Center, Tarrytown, NY, USA
| | | | | | | | | | | |
Collapse
|
26
|
Koop K, Yuan W, Tessadori F, Rodriguez-Polanco WR, Grubbs J, Zhang B, Osmond M, Graham G, Sawyer S, Conboy E, Vetrini F, Treat K, Płoski R, Pienkowski VM, Kłosowska A, Fieg E, Krier J, Mallebranche C, Alban Z, Aldinger KA, Ritter D, Macnamara E, Sullivan B, Herriges J, Alaimo JT, Helbig C, Ellis CA, van Eyk C, Gecz J, Farrugia D, Osei-Owusu I, Adès L, van den Boogaard MJ, Fuchs S, Bakker J, Duran K, Dawson ZD, Lindsey A, Huang H, Baldridge D, Silverman GA, Grant BD, Raizen D, van Haaften G, Pak SC, Rehmann H, Schedl T, van Hasselt P. Macrocephaly and developmental delay caused by missense variants in RAB5C. Hum Mol Genet 2023; 32:3063-3077. [PMID: 37552066 PMCID: PMC10586195 DOI: 10.1093/hmg/ddad130] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2023] [Revised: 07/06/2023] [Accepted: 07/29/2023] [Indexed: 08/09/2023] Open
Abstract
Rab GTPases are important regulators of intracellular vesicular trafficking. RAB5C is a member of the Rab GTPase family that plays an important role in the endocytic pathway, membrane protein recycling and signaling. Here we report on 12 individuals with nine different heterozygous de novo variants in RAB5C. All but one patient with missense variants (n = 9) exhibited macrocephaly, combined with mild-to-moderate developmental delay. Patients with loss of function variants (n = 2) had an apparently more severe clinical phenotype with refractory epilepsy and intellectual disability but a normal head circumference. Four missense variants were investigated experimentally. In vitro biochemical studies revealed that all four variants were damaging, resulting in increased nucleotide exchange rate, attenuated responsivity to guanine exchange factors and heterogeneous effects on interactions with effector proteins. Studies in C. elegans confirmed that all four variants were damaging in vivo and showed defects in endocytic pathway function. The variant heterozygotes displayed phenotypes that were not observed in null heterozygotes, with two shown to be through a dominant negative mechanism. Expression of the human RAB5C variants in zebrafish embryos resulted in defective development, further underscoring the damaging effects of the RAB5C variants. Our combined bioinformatic, in vitro and in vivo experimental studies and clinical data support the association of RAB5C missense variants with a neurodevelopmental disorder characterized by macrocephaly and mild-to-moderate developmental delay through disruption of the endocytic pathway.
Collapse
Affiliation(s)
- Klaas Koop
- Department of Pediatrics, University Medical Center Utrecht, Utrecht, 3584 EA, The Netherlands
| | - Weimin Yuan
- Departments of Pediatrics and Genetics, C. elegans Model Organism Screening Center, Washington University in St Louis School of Medicine, St Louis, MO 63110, USA
| | - Federico Tessadori
- Hubrecht Institute-KNAW and University Medical Center Utrecht, Utrecht, 3584 CT, The Netherlands
| | - Wilmer R Rodriguez-Polanco
- Department of Molecular Biology and Biochemistry, Rutgers, The State University of New Jersey, Piscataway, NJ, 08854, USA
| | - Jeremy Grubbs
- Department of Neurology and the Chronobiology and Sleep Institute, University of Pennsylvania, Philadelphia, PA, 19104, USA
| | - Bo Zhang
- Departments of Pediatrics and Genetics, C. elegans Model Organism Screening Center, Washington University in St Louis School of Medicine, St Louis, MO 63110, USA
| | - Matt Osmond
- Children's Hospital of Eastern Ontario Research Institute, University of Ottawa, Ottawa, Ontario, K1H 8L1, Canada
| | - Gail Graham
- Children's Hospital of Eastern Ontario Research Institute, University of Ottawa, Ottawa, Ontario, K1H 8L1, Canada
| | - Sarah Sawyer
- Department of Pediatrics, Children's Hospital of Eastern Ontario, University of Ottawa, Ottawa, Ontario, K1H 8L1, Canada
| | - Erin Conboy
- Department of Medical and Molecular Genetics, Indiana University School of Medicine, Indianapolis, IN, 46202, USA
| | - Francesco Vetrini
- Department of Medical and Molecular Genetics, Indiana University School of Medicine, Indianapolis, IN, 46202, USA
| | - Kayla Treat
- Department of Medical and Molecular Genetics, Indiana University School of Medicine, Indianapolis, IN, 46202, USA
| | - Rafal Płoski
- Department of Medical Genetics, Medical University of Warsaw, Warsaw, 02-106, Poland
| | - Victor Murcia Pienkowski
- Department of Medical Genetics, Medical University of Warsaw, Warsaw, 02-106, Poland
- Marseille Medical Genetics U1251, Aix Marseille University, Marseille, 13005, France
| | - Anna Kłosowska
- Department of Pediatrics, Hematology and Oncology, Medical University of Gdańsk, Gdańsk, 80-210, Poland
| | - Elizabeth Fieg
- Brigham and Women's Hospital, Boston, MA, 02115, USA
- Harvard Medical School, Boston, MA, 02115, USA
| | - Joel Krier
- Brigham and Women's Hospital, Boston, MA, 02115, USA
- Harvard Medical School, Boston, MA, 02115, USA
| | - Coralie Mallebranche
- Unité d'Onco-Hémato-Immunologie pédiatrique, CHU d’Angers, Angers, 49933, France
| | - Ziegler Alban
- Service de génétique, CHU d’Angers, Angers, 49933, France
| | - Kimberly A Aldinger
- Center for Integrative Brain Research, Seattle Children's Research Institute, Seattle, WA, 98195, USA
- Division of Genetic Medicine, Department of Pediatrics, University of Washington, Seattle, WA, 98195, USA
| | - Deborah Ritter
- Department of Pediatrics, Oncology Section, Baylor College of Medicine, Houston, TX, 77030, USA
| | - Ellen Macnamara
- Undiagnosed Diseases Program Translational Laboratory, NHGRI, National Institutes of Health, Bethesda, MD, 20892, USA
| | - Bonnie Sullivan
- Division of Clinical Genetics, Department of Pediatrics, Children's Mercy-Kansas City, Kansas City, MO, 64108, USA
| | - John Herriges
- Department of Pathology and Laboratory Medicine, Children's Mercy-Kansas City, Kansas City, MO, 64108, USA
| | - Joseph T Alaimo
- Department of Pathology and Laboratory Medicine, Children's Mercy-Kansas City, Kansas City, MO, 64108, USA
| | - Catherine Helbig
- The Epilepsy Neurogenetics Initiative, Division of Neurology, Department of Pediatrics, The Children's Hospital of Philadelphia, Philadelphia, PA, 19104, USA
| | - Colin A Ellis
- Department of Neurology, University of Pennsylvania Perelman School of Medicine, Philadelphia PA, 19104, USA
| | - Clare van Eyk
- Robinson Research Institute, Faculty of Health and Medical Sciences, University of Adelaide, Adelaide, SA, 5006, Australia
| | - Jozef Gecz
- Robinson Research Institute, Faculty of Health and Medical Sciences, University of Adelaide, Adelaide, SA, 5006, Australia
| | | | - Ikeoluwa Osei-Owusu
- Program in Medical and Population Genetics, Broad Institute of MIT and Harvard, Cambridge, MA, 02142, USA
| | - Lesley Adès
- Department of Clinical Genetics, The Children’s Hospital at Westmead Clinical School, Faculty of Medicine and Health, University of Sydney, Sydney, 2145, Australia
| | - Marie-Jose van den Boogaard
- Department of Genetics, Center for Molecular Medicine, University Medical Center Utrecht, Utrecht University, Utrecht, 3584EA, The Netherlands
| | - Sabine Fuchs
- Department of Pediatrics, University Medical Center Utrecht, Utrecht, 3584 EA, The Netherlands
| | - Jeroen Bakker
- Hubrecht Institute-KNAW and University Medical Center Utrecht, Utrecht, 3584 CT, The Netherlands
| | - Karen Duran
- Hubrecht Institute-KNAW and University Medical Center Utrecht, Utrecht, 3584 CT, The Netherlands
| | - Zachary D Dawson
- Departments of Pediatrics and Genetics, C. elegans Model Organism Screening Center, Washington University in St Louis School of Medicine, St Louis, MO 63110, USA
| | - Anika Lindsey
- Departments of Pediatrics and Genetics, C. elegans Model Organism Screening Center, Washington University in St Louis School of Medicine, St Louis, MO 63110, USA
| | - Huiyan Huang
- Departments of Pediatrics and Genetics, C. elegans Model Organism Screening Center, Washington University in St Louis School of Medicine, St Louis, MO 63110, USA
| | - Dustin Baldridge
- Departments of Pediatrics and Genetics, C. elegans Model Organism Screening Center, Washington University in St Louis School of Medicine, St Louis, MO 63110, USA
| | - Gary A Silverman
- Departments of Pediatrics and Genetics, C. elegans Model Organism Screening Center, Washington University in St Louis School of Medicine, St Louis, MO 63110, USA
| | - Barth D Grant
- Department of Molecular Biology and Biochemistry, Rutgers, The State University of New Jersey, Piscataway, NJ, 08854, USA
| | - David Raizen
- Department of Neurology and the Chronobiology and Sleep Institute, University of Pennsylvania, Philadelphia, PA, 19104, USA
| | - Gijs van Haaften
- Department of Genetics, Center for Molecular Medicine, University Medical Center Utrecht, Utrecht University, Utrecht, 3584EA, The Netherlands
| | - Stephen C Pak
- Departments of Pediatrics and Genetics, C. elegans Model Organism Screening Center, Washington University in St Louis School of Medicine, St Louis, MO 63110, USA
| | - Holger Rehmann
- Department of Energy and Biotechnology, Flensburg University of Applied Sciences, 24943, Flensburg, Germany
| | - Tim Schedl
- Departments of Pediatrics and Genetics, C. elegans Model Organism Screening Center, Washington University in St Louis School of Medicine, St Louis, MO 63110, USA
| | - Peter van Hasselt
- Department of Pediatrics, University Medical Center Utrecht, Utrecht, 3584 EA, The Netherlands
| |
Collapse
|
27
|
Record CJ, Skorupinska M, Laura M, Rossor AM, Pareyson D, Pisciotta C, Feely SME, Lloyd TE, Horvath R, Sadjadi R, Herrmann DN, Li J, Walk D, Yum SW, Lewis RA, Day J, Burns J, Finkel RS, Saporta MA, Ramchandren S, Weiss MD, Acsadi G, Fridman V, Muntoni F, Poh R, Polke JM, Zuchner S, Shy ME, Scherer SS, Reilly MM. Genetic analysis and natural history of Charcot-Marie-Tooth disease CMTX1 due to GJB1 variants. Brain 2023; 146:4336-4349. [PMID: 37284795 PMCID: PMC10545504 DOI: 10.1093/brain/awad187] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2023] [Revised: 05/05/2023] [Accepted: 05/20/2023] [Indexed: 06/08/2023] Open
Abstract
Charcot-Marie-Tooth disease (CMT) due to GJB1 variants (CMTX1) is the second most common form of CMT. It is an X-linked disorder characterized by progressive sensory and motor neuropathy with males affected more severely than females. Many reported GJB1 variants remain classified as variants of uncertain significance (VUS). In this large, international, multicentre study we prospectively collected demographic, clinical and genetic data on patients with CMT associated with GJB1 variants. Pathogenicity for each variant was defined using adapted American College of Medical Genetics criteria. Baseline and longitudinal analyses were conducted to study genotype-phenotype correlations, to calculate longitudinal change using the CMT Examination Score (CMTES), to compare males versus females, and pathogenic/likely pathogenic (P/LP) variants versus VUS. We present 387 patients from 295 families harbouring 154 variants in GJB1. Of these, 319 patients (82.4%) were deemed to have P/LP variants, 65 had VUS (16.8%) and three benign variants (0.8%; excluded from analysis); an increased proportion of patients with P/LP variants compared with using ClinVar's classification (74.6%). Male patients (166/319, 52.0%, P/LP only) were more severely affected at baseline. Baseline measures in patients with P/LP variants and VUS showed no significant differences, and regression analysis suggested the disease groups were near identical at baseline. Genotype-phenotype analysis suggested c.-17G>A produces the most severe phenotype of the five most common variants, and missense variants in the intracellular domain are less severe than other domains. Progression of disease was seen with increasing CMTES over time up to 8 years follow-up. Standard response mean (SRM), a measure of outcome responsiveness, peaked at 3 years with moderate responsiveness [change in CMTES (ΔCMTES) = 1.3 ± 2.6, P = 0.00016, SRM = 0.50]. Males and females progressed similarly up to 8 years, but baseline regression analysis suggested that over a longer period, females progress more slowly. Progression was most pronounced for mild phenotypes (CMTES = 0-7; 3-year ΔCMTES = 2.3 ± 2.5, P = 0.001, SRM = 0.90). Enhanced variant interpretation has yielded an increased proportion of GJB1 variants classified as P/LP and will aid future variant interpretation in this gene. Baseline and longitudinal analysis of this large cohort of CMTX1 patients describes the natural history of the disease including the rate of progression; CMTES showed moderate responsiveness for the whole group at 3 years and higher responsiveness for the mild group at 3, 4 and 5 years. These results have implications for patient selection for upcoming clinical trials.
Collapse
Affiliation(s)
- Christopher J Record
- Department of Neuromuscular Diseases, UCL Queen Square Institute of Neurology, London, WC1N 3BG, UK
| | - Mariola Skorupinska
- Department of Neuromuscular Diseases, UCL Queen Square Institute of Neurology, London, WC1N 3BG, UK
| | - Matilde Laura
- Department of Neuromuscular Diseases, UCL Queen Square Institute of Neurology, London, WC1N 3BG, UK
| | - Alexander M Rossor
- Department of Neuromuscular Diseases, UCL Queen Square Institute of Neurology, London, WC1N 3BG, UK
| | - Davide Pareyson
- Department of Clinical Neurosciences, Fondazione IRCCS Istituto Neurologico Carlo Besta, 20133 Milan, Italy
| | - Chiara Pisciotta
- Department of Clinical Neurosciences, Fondazione IRCCS Istituto Neurologico Carlo Besta, 20133 Milan, Italy
| | - Shawna M E Feely
- Department of Neurology, University of Iowa Carver College of Medicine, Iowa City, IA 52242, USA
| | - Thomas E Lloyd
- Departments of Neurology and Neuroscience, John Hopkins University School of Medicine, Baltimore, MD 21205, USA
| | - Rita Horvath
- Department of Clinical Neurosciences, University of Cambridge, Cambridge, CB2 0PY, UK
| | - Reza Sadjadi
- Department of Neurology, Massachusetts General Hospital, Boston, MA 02114, USA
| | - David N Herrmann
- Department of Neurology, University of Rochester, Rochester, NY 14618, USA
| | - Jun Li
- Department of Neurology, Houston Methodist Hospital, Houston, TX 77030, USA
| | - David Walk
- Department of Neurology, University of Minnesota, Minneapolis, MN 55455, USA
| | - Sabrina W Yum
- Department of Neurology, The Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA 19104, USA
- Department of Neurology, Children’s Hospital of Philadelphia, Philadelphia, PA 19104, USA
| | - Richard A Lewis
- Department of Neurology, Cedars-Sinai Medical Center, Los Angeles, CA 90048, USA
| | - John Day
- Department of Neurology, Stanford University, Stanford, CA 94304, USA
| | - Joshua Burns
- University of Sydney School of Health Sciences, Faculty of Medicine and Health; Paediatric Gait Analysis Service of New South Wales, Sydney Children’s Hospitals Network, Sydney, 2145Australia
| | - Richard S Finkel
- Department of Neurology, Nemours Children’s Hospital, Orlando, FL 32827, USA
| | - Mario A Saporta
- Department of Neurology, University of Miami Miller School of Medicine, Miami, FL 33136, USA
| | - Sindhu Ramchandren
- Department of Neurology, Wayne State University, Detroit, MI 48201, USA
- The Janssen Pharmaceutical Companies of Johnson & Johnson, Titusville, NJ 08560, USA
| | - Michael D Weiss
- Department of Neurology, University of Washington, Seattle, WA, 98195USA
| | - Gyula Acsadi
- Connecticut Children’s Medical Center, Hartford, CT 06106, USA
| | - Vera Fridman
- Department of Neurology, University of Colorado Denver School of Medicine, Aurora, CO 80045, USA
| | - Francesco Muntoni
- The Dubowitz Neuromuscular Centre, NIHR Great Ormond Street Hospital Biomedical Research Centre, Great Ormond Street Institute of Child Health University College London, and Great Ormond Street Hospital Trust, London, WC1N 1EH, UK
| | - Roy Poh
- Neurogenetics Laboratory, National Hospital for Neurology and Neurosurgery, London, WC1N 3BG, UK
| | - James M Polke
- Neurogenetics Laboratory, National Hospital for Neurology and Neurosurgery, London, WC1N 3BG, UK
| | - Stephan Zuchner
- Dr. John T. Macdonald Foundation Department of Human Genetics and John P. Hussman Institute for Human Genomics, University of Miami Miller School of Medicine, Miami, FL 33136, USA
| | - Michael E Shy
- Department of Neurology, University of Iowa Carver College of Medicine, Iowa City, IA 52242, USA
| | - Steven S Scherer
- Department of Neurology, The Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Mary M Reilly
- Department of Neuromuscular Diseases, UCL Queen Square Institute of Neurology, London, WC1N 3BG, UK
| |
Collapse
|
28
|
Diaz Perez KK, Curtis SW, Sanchis-Juan A, Zhao X, Head T, Ho S, Carter B, McHenry T, Bishop MR, Valencia-Ramirez LC, Restrepo C, Hecht JT, Uribe LM, Wehby G, Weinberg SM, Beaty TH, Murray JC, Feingold E, Marazita ML, Cutler DJ, Epstein MP, Brand H, Leslie EJ. Rare variants found in clinical gene panels illuminate the genetic and allelic architecture of orofacial clefting. Genet Med 2023; 25:100918. [PMID: 37330696 PMCID: PMC10592535 DOI: 10.1016/j.gim.2023.100918] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2023] [Revised: 05/12/2023] [Accepted: 06/10/2023] [Indexed: 06/19/2023] Open
Abstract
PURPOSE Orofacial clefts (OFCs) are common birth defects including cleft lip, cleft lip and palate, and cleft palate. OFCs have heterogeneous etiologies, complicating clinical diagnostics because it is not always apparent if the cause is Mendelian, environmental, or multifactorial. Sequencing is not currently performed for isolated or sporadic OFCs; therefore, we estimated the diagnostic yield for 418 genes in 841 cases and 294 controls. METHODS We evaluated 418 genes using genome sequencing and curated variants to assess their pathogenicity using American College of Medical Genetics criteria. RESULTS 9.04% of cases and 1.02% of controls had "likely pathogenic" variants (P < .0001), which was almost exclusively driven by heterozygous variants in autosomal genes. Cleft palate (17.6%) and cleft lip and palate (9.09%) cases had the highest yield, whereas cleft lip cases had a 2.80% yield. Out of 39 genes with likely pathogenic variants, 9 genes, including CTNND1 and IRF6, accounted for more than half of the yield (4.64% of cases). Most variants (61.8%) were "variants of uncertain significance", occurring more frequently in cases (P = .004), but no individual gene showed a significant excess of variants of uncertain significance. CONCLUSION These results underscore the etiological heterogeneity of OFCs and suggest sequencing could reduce the diagnostic gap in OFCs.
Collapse
Affiliation(s)
| | - Sarah W Curtis
- Department of Human Genetics, Emory University School of Medicine, Atlanta, GA
| | - Alba Sanchis-Juan
- Center for Genomic Medicine, Massachusetts General Hospital, Boston, MA, Program in Medical and Population Genetics, Broad Institute, Cambridge, MA, Department of Neurology and Surgery, Massachusetts General Hospital and Harvard Medical School, Boston, MA
| | - Xuefang Zhao
- Center for Genomic Medicine, Massachusetts General Hospital, Boston, MA, Program in Medical and Population Genetics, Broad Institute, Cambridge, MA, Department of Neurology and Surgery, Massachusetts General Hospital and Harvard Medical School, Boston, MA
| | - Taylor Head
- Department of Biostatistics and Bioinformatics, Rollins School of Public Health, Emory University, Atlanta, GA
| | - Samantha Ho
- Department of Human Genetics, Emory University School of Medicine, Atlanta, GA
| | - Bridget Carter
- Department of Human Genetics, Emory University School of Medicine, Atlanta, GA; Agnes Scott College, Decatur, GA
| | - Toby McHenry
- Center for Craniofacial and Dental Genetics, Department of Oral and Craniofacial Sciences, University of Pittsburgh School of Dental Medicine, Pittsburgh, PA
| | - Madison R Bishop
- Department of Human Genetics, Emory University School of Medicine, Atlanta, GA
| | | | | | - Jacqueline T Hecht
- Department of Pediatrics, McGovern Medical, School and School of Dentistry, UT Health at Houston, Houston, TX
| | - Lina M Uribe
- Department of Orthodontics, University of Iowa, Iowa City, IA
| | - George Wehby
- Department of Health Management and Policy, University of Iowa, Iowa City, IA
| | - Seth M Weinberg
- Center for Craniofacial and Dental Genetics, Department of Oral and Craniofacial Sciences, University of Pittsburgh School of Dental Medicine, Pittsburgh, PA
| | - Terri H Beaty
- Department of Epidemiology, Johns Hopkins Bloomberg School of Public Health, Baltimore, MD
| | | | - Eleanor Feingold
- Department of Human Genetics, University of Pittsburgh School of Public Health, Pittsburgh, PA
| | - Mary L Marazita
- Center for Craniofacial and Dental Genetics, Department of Oral and Craniofacial Sciences, University of Pittsburgh School of Dental Medicine, Pittsburgh, PA; Department of Human Genetics, University of Pittsburgh School of Public Health, Pittsburgh, PA
| | - David J Cutler
- Department of Human Genetics, Emory University School of Medicine, Atlanta, GA
| | - Michael P Epstein
- Department of Human Genetics, Emory University School of Medicine, Atlanta, GA
| | - Harrison Brand
- Center for Genomic Medicine, Massachusetts General Hospital, Boston, MA, Program in Medical and Population Genetics, Broad Institute, Cambridge, MA, Department of Neurology and Surgery, Massachusetts General Hospital and Harvard Medical School, Boston, MA
| | - Elizabeth J Leslie
- Department of Human Genetics, Emory University School of Medicine, Atlanta, GA.
| |
Collapse
|
29
|
Powell G, Simon MM, Pulit S, Mallon AM, Lindgren CM. Genic constraint against nonsynonymous variation across the mouse genome. BMC Genomics 2023; 24:562. [PMID: 37736706 PMCID: PMC10514939 DOI: 10.1186/s12864-023-09637-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2023] [Accepted: 08/30/2023] [Indexed: 09/23/2023] Open
Abstract
BACKGROUND Selective constraint, the depletion of variation due to negative selection, provides insights into the functional impact of variants and disease mechanisms. However, its characterization in mice, the most commonly used mammalian model, remains limited. This study aims to quantify mouse gene constraint using a new metric called the nonsynonymous observed expected ratio (NOER) and investigate its relationship with gene function. RESULTS NOER was calculated using whole-genome sequencing data from wild mouse populations (Mus musculus sp and Mus spretus). Positive correlations were observed between mouse gene constraint and the number of associated knockout phenotypes, indicating stronger constraint on pleiotropic genes. Furthermore, mouse gene constraint showed a positive correlation with the number of pathogenic variant sites in their human orthologues, supporting the relevance of mouse models in studying human disease variants. CONCLUSIONS NOER provides a resource for assessing the fitness consequences of genetic variants in mouse genes and understanding the relationship between gene constraint and function. The study's findings highlight the importance of pleiotropy in selective constraint and support the utility of mouse models in investigating human disease variants. Further research with larger sample sizes can refine constraint estimates in mice and enable more comprehensive comparisons of constraint between mouse and human orthologues.
Collapse
Affiliation(s)
- George Powell
- Li Ka Shing Centre for Health Information and Discovery, Big Data Institute, University of Oxford, Oxford, UK.
- Mammalian Genetics Unit, MRC Harwell Institute, Oxfordshire, OX11 0RD, UK.
| | - Michelle M Simon
- Mammalian Genetics Unit, MRC Harwell Institute, Oxfordshire, OX11 0RD, UK
| | - Sara Pulit
- Li Ka Shing Centre for Health Information and Discovery, Big Data Institute, University of Oxford, Oxford, UK
| | - Ann-Marie Mallon
- Mammalian Genetics Unit, MRC Harwell Institute, Oxfordshire, OX11 0RD, UK
| | - Cecilia M Lindgren
- Li Ka Shing Centre for Health Information and Discovery, Big Data Institute, University of Oxford, Oxford, UK
- Wellcome Centre for Human Genetics, University of Oxford, Oxford, UK
- Medical and Population Genetics Program, Broad Institute of MIT and Harvard, Cambridge, MA, USA
| |
Collapse
|
30
|
Cheng J, Novati G, Pan J, Bycroft C, Žemgulytė A, Applebaum T, Pritzel A, Wong LH, Zielinski M, Sargeant T, Schneider RG, Senior AW, Jumper J, Hassabis D, Kohli P, Avsec Ž. Accurate proteome-wide missense variant effect prediction with AlphaMissense. Science 2023; 381:eadg7492. [PMID: 37733863 DOI: 10.1126/science.adg7492] [Citation(s) in RCA: 483] [Impact Index Per Article: 241.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2023] [Accepted: 08/23/2023] [Indexed: 09/23/2023]
Abstract
The vast majority of missense variants observed in the human genome are of unknown clinical significance. We present AlphaMissense, an adaptation of AlphaFold fine-tuned on human and primate variant population frequency databases to predict missense variant pathogenicity. By combining structural context and evolutionary conservation, our model achieves state-of-the-art results across a wide range of genetic and experimental benchmarks, all without explicitly training on such data. The average pathogenicity score of genes is also predictive for their cell essentiality, capable of identifying short essential genes that existing statistical approaches are underpowered to detect. As a resource to the community, we provide a database of predictions for all possible human single amino acid substitutions and classify 89% of missense variants as either likely benign or likely pathogenic.
Collapse
|
31
|
Schlüter A, Vélez-Santamaría V, Verdura E, Rodríguez-Palmero A, Ruiz M, Fourcade S, Planas-Serra L, Launay N, Guilera C, Martínez JJ, Homedes-Pedret C, Albertí-Aguiló MA, Zulaika M, Martí I, Troncoso M, Tomás-Vila M, Bullich G, García-Pérez MA, Sobrido-Gómez MJ, López-Laso E, Fons C, Del Toro M, Macaya A, Beltran S, Gutiérrez-Solana LG, Pérez-Jurado LA, Aguilera-Albesa S, de Munain AL, Casasnovas C, Pujol A. ClinPrior: an algorithm for diagnosis and novel gene discovery by network-based prioritization. Genome Med 2023; 15:68. [PMID: 37679823 PMCID: PMC10486091 DOI: 10.1186/s13073-023-01214-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2023] [Accepted: 07/24/2023] [Indexed: 09/09/2023] Open
Abstract
BACKGROUND Whole-exome sequencing (WES) and whole-genome sequencing (WGS) have become indispensable tools to solve rare Mendelian genetic conditions. Nevertheless, there is still an urgent need for sensitive, fast algorithms to maximise WES/WGS diagnostic yield in rare disease patients. Most tools devoted to this aim take advantage of patient phenotype information for prioritization of genomic data, although are often limited by incomplete gene-phenotype knowledge stored in biomedical databases and a lack of proper benchmarking on real-world patient cohorts. METHODS We developed ClinPrior, a novel method for the analysis of WES/WGS data that ranks candidate causal variants based on the patient's standardized phenotypic features (in Human Phenotype Ontology (HPO) terms). The algorithm propagates the data through an interactome network-based prioritization approach. This algorithm was thoroughly benchmarked using a synthetic patient cohort and was subsequently tested on a heterogeneous prospective, real-world series of 135 families affected by hereditary spastic paraplegia (HSP) and/or cerebellar ataxia (CA). RESULTS ClinPrior successfully identified causative variants achieving a final positive diagnostic yield of 70% in our real-world cohort. This includes 10 novel candidate genes not previously associated with disease, 7 of which were functionally validated within this project. We used the knowledge generated by ClinPrior to create a specific interactome for HSP/CA disorders thus enabling future diagnoses as well as the discovery of novel disease genes. CONCLUSIONS ClinPrior is an algorithm that uses standardized phenotype information and interactome data to improve clinical genomic diagnosis. It helps in identifying atypical cases and efficiently predicts novel disease-causing genes. This leads to increasing diagnostic yield, shortening of the diagnostic Odysseys and advancing our understanding of human illnesses.
Collapse
Affiliation(s)
- Agatha Schlüter
- Neurometabolic Diseases Laboratory, Bellvitge Biomedical Research Institute (IDIBELL), Hospital Duran i Reynals, Gran Via 199, L'Hospitalet de Llobregat, Barcelona, 08908, Spain
- Centro de Investigación Biomédica en Red de Enfermedades Raras (CIBERER), ISCIII, Madrid, Spain
| | - Valentina Vélez-Santamaría
- Neurometabolic Diseases Laboratory, Bellvitge Biomedical Research Institute (IDIBELL), Hospital Duran i Reynals, Gran Via 199, L'Hospitalet de Llobregat, Barcelona, 08908, Spain
- Centro de Investigación Biomédica en Red de Enfermedades Raras (CIBERER), ISCIII, Madrid, Spain
- Neurology Department, Neuromuscular Unit, Bellvitge University Hospital, Universitat de Barcelona, Barcelona, Spain
| | - Edgard Verdura
- Neurometabolic Diseases Laboratory, Bellvitge Biomedical Research Institute (IDIBELL), Hospital Duran i Reynals, Gran Via 199, L'Hospitalet de Llobregat, Barcelona, 08908, Spain
- Centro de Investigación Biomédica en Red de Enfermedades Raras (CIBERER), ISCIII, Madrid, Spain
| | - Agustí Rodríguez-Palmero
- Neurometabolic Diseases Laboratory, Bellvitge Biomedical Research Institute (IDIBELL), Hospital Duran i Reynals, Gran Via 199, L'Hospitalet de Llobregat, Barcelona, 08908, Spain
- Centro de Investigación Biomédica en Red de Enfermedades Raras (CIBERER), ISCIII, Madrid, Spain
- Pediatric Neurology Unit, Pediatrics Department, Hospital Universitari Germans Trias i Pujol, Universitat Autònoma de Barcelona, Barcelona, Spain
| | - Montserrat Ruiz
- Neurometabolic Diseases Laboratory, Bellvitge Biomedical Research Institute (IDIBELL), Hospital Duran i Reynals, Gran Via 199, L'Hospitalet de Llobregat, Barcelona, 08908, Spain
- Centro de Investigación Biomédica en Red de Enfermedades Raras (CIBERER), ISCIII, Madrid, Spain
| | - Stéphane Fourcade
- Neurometabolic Diseases Laboratory, Bellvitge Biomedical Research Institute (IDIBELL), Hospital Duran i Reynals, Gran Via 199, L'Hospitalet de Llobregat, Barcelona, 08908, Spain
- Centro de Investigación Biomédica en Red de Enfermedades Raras (CIBERER), ISCIII, Madrid, Spain
| | - Laura Planas-Serra
- Neurometabolic Diseases Laboratory, Bellvitge Biomedical Research Institute (IDIBELL), Hospital Duran i Reynals, Gran Via 199, L'Hospitalet de Llobregat, Barcelona, 08908, Spain
- Centro de Investigación Biomédica en Red de Enfermedades Raras (CIBERER), ISCIII, Madrid, Spain
| | - Nathalie Launay
- Neurometabolic Diseases Laboratory, Bellvitge Biomedical Research Institute (IDIBELL), Hospital Duran i Reynals, Gran Via 199, L'Hospitalet de Llobregat, Barcelona, 08908, Spain
- Centro de Investigación Biomédica en Red de Enfermedades Raras (CIBERER), ISCIII, Madrid, Spain
| | - Cristina Guilera
- Neurometabolic Diseases Laboratory, Bellvitge Biomedical Research Institute (IDIBELL), Hospital Duran i Reynals, Gran Via 199, L'Hospitalet de Llobregat, Barcelona, 08908, Spain
- Centro de Investigación Biomédica en Red de Enfermedades Raras (CIBERER), ISCIII, Madrid, Spain
| | - Juan José Martínez
- Neurometabolic Diseases Laboratory, Bellvitge Biomedical Research Institute (IDIBELL), Hospital Duran i Reynals, Gran Via 199, L'Hospitalet de Llobregat, Barcelona, 08908, Spain
- Centro de Investigación Biomédica en Red de Enfermedades Raras (CIBERER), ISCIII, Madrid, Spain
| | - Christian Homedes-Pedret
- Neurology Department, Neuromuscular Unit, Bellvitge University Hospital, Universitat de Barcelona, Barcelona, Spain
- Neurology Department, Hospital Universitari General de Catalunya, Barcelona, Spain
| | - M Antonia Albertí-Aguiló
- Neurology Department, Neuromuscular Unit, Bellvitge University Hospital, Universitat de Barcelona, Barcelona, Spain
| | - Miren Zulaika
- Neuromuscular Area, Group of Neurodegenerative Diseases, Biodonostia Health Research Institute (Biodonostia HRI), San Sebastian, Spain
- Network Center for Biomedical Research in Neurodegenerative Diseases (CIBERNED), ISCIII, Madrid, Spain
| | - Itxaso Martí
- Neuromuscular Area, Group of Neurodegenerative Diseases, Biodonostia Health Research Institute (Biodonostia HRI), San Sebastian, Spain
- Network Center for Biomedical Research in Neurodegenerative Diseases (CIBERNED), ISCIII, Madrid, Spain
- Pediatric Neurology Department, Donostia University Hospital, University of the Basque Country (UPV-EHU), San Sebastian, Spain
| | - Mónica Troncoso
- Pediatric Neurology Department, Central Campus, Hospital Clínico San Borja Arriarán, Universidad de Chile, Santiago, Chile
| | - Miguel Tomás-Vila
- Neuropediatrics Department, Hospital Universitari i Politècnic La Fe, Valencia, Spain
| | - Gemma Bullich
- Centro Nacional Análisis Genómico (CNAG) - Centre for Genomic Regulation (CRG), The Barcelona Institute of Science and Technology, Baldiri Reixac 4, Barcelona, Spain
| | - M Asunción García-Pérez
- Pediatric Neurology Unit, Pediatrics Department, Hospital Universitario Fundación Alcorcón, Madrid, Spain
| | - María-Jesús Sobrido-Gómez
- Centro de Investigación Biomédica en Red de Enfermedades Raras (CIBERER), ISCIII, Madrid, Spain
- Coruña Institute of Biomedical Research (INIBIC), A Coruña, Spain
- Hospital Clínico Universitario, A Coruña, Spain
| | - Eduardo López-Laso
- Centro de Investigación Biomédica en Red de Enfermedades Raras (CIBERER), ISCIII, Madrid, Spain
- Pediatric Neurology Unit, Pediatrics Department, Reina Sofía University Hospital, Córdoba, Spain
- Maimonides Institute For Biomedical Research of Cordoba (IMIBIC), Córdoba, Spain
| | - Carme Fons
- Centro de Investigación Biomédica en Red de Enfermedades Raras (CIBERER), ISCIII, Madrid, Spain
- Pediatric Neurology Department, Sant Joan de Déu University Hospital, Member of the ERN EpiCARE, Barcelona, Spain
- Sant Joan de Déu Research Institute, (IRSJD), Barcelona, Spain
| | - Mireia Del Toro
- Centro de Investigación Biomédica en Red de Enfermedades Raras (CIBERER), ISCIII, Madrid, Spain
- Pediatric Neurology Department, Vall d'Hebron University Hospital, Universitat Autònoma de Barcelona, Barcelona, Spain
- Pediatric Neurology Research Group, Vall d'Hebron Research Institute (VHIR), Universitat Autònoma de Barcelona, Barcelona, Spain
| | - Alfons Macaya
- Centro de Investigación Biomédica en Red de Enfermedades Raras (CIBERER), ISCIII, Madrid, Spain
- Pediatric Neurology Department, Vall d'Hebron University Hospital, Universitat Autònoma de Barcelona, Barcelona, Spain
- Pediatric Neurology Research Group, Vall d'Hebron Research Institute (VHIR), Universitat Autònoma de Barcelona, Barcelona, Spain
| | - Sergi Beltran
- Centro Nacional Análisis Genómico (CNAG) - Centre for Genomic Regulation (CRG), The Barcelona Institute of Science and Technology, Baldiri Reixac 4, Barcelona, Spain
- Universitat Pompeu Fabra (UPF), Barcelona, Spain
- Departament de Genètica, Facultat de Biologia, Microbiologia i Estadística, Universitat de Barcelona (UB), Barcelona, 08028, Spain
| | - Luis G Gutiérrez-Solana
- Centro de Investigación Biomédica en Red de Enfermedades Raras (CIBERER), ISCIII, Madrid, Spain
- Pediatric Neurology Department, Children's University Hospital Niño Jesús, Madrid, Spain
| | - Luis A Pérez-Jurado
- Centro de Investigación Biomédica en Red de Enfermedades Raras (CIBERER), ISCIII, Madrid, Spain
- Genetics Service, Hospital del Mar Research Institute (IMIM), Barcelona, Spain
- Department of Experimental and Health Sciences, Universitat Pompeu Fabra, Barcelona, Spain
| | - Sergio Aguilera-Albesa
- Pediatric Neurology Unit, Pediatrics Department, Navarra Health Service, Pamplona, Spain
- Navarrabiomed, Biomedical Research Center, Pamplona, Spain
| | - Adolfo López de Munain
- Neuromuscular Area, Group of Neurodegenerative Diseases, Biodonostia Health Research Institute (Biodonostia HRI), San Sebastian, Spain
- Network Center for Biomedical Research in Neurodegenerative Diseases (CIBERNED), ISCIII, Madrid, Spain
- Neurology Department, Donostia University Hospital, San Sebastian, Spain
| | - Carlos Casasnovas
- Neurometabolic Diseases Laboratory, Bellvitge Biomedical Research Institute (IDIBELL), Hospital Duran i Reynals, Gran Via 199, L'Hospitalet de Llobregat, Barcelona, 08908, Spain.
- Centro de Investigación Biomédica en Red de Enfermedades Raras (CIBERER), ISCIII, Madrid, Spain.
- Neurology Department, Neuromuscular Unit, Bellvitge University Hospital, Universitat de Barcelona, Barcelona, Spain.
| | - Aurora Pujol
- Neurometabolic Diseases Laboratory, Bellvitge Biomedical Research Institute (IDIBELL), Hospital Duran i Reynals, Gran Via 199, L'Hospitalet de Llobregat, Barcelona, 08908, Spain.
- Centro de Investigación Biomédica en Red de Enfermedades Raras (CIBERER), ISCIII, Madrid, Spain.
- Catalan Institution of Research and Advanced Studies (ICREA), Barcelona, Catalonia, Spain.
| |
Collapse
|
32
|
Maryami F, Rismani E, Davoudi-Dehaghani E, Khalesi N, Talebi S, Mahdian R, Zeinali S. In silico Analysis of Two Novel Variants in the Pyruvate Carboxylase (PC) Gene Associated with the Severe Form of PC Deficiency. IRANIAN BIOMEDICAL JOURNAL 2023; 27:307-19. [PMID: 37873728 PMCID: PMC10707810 DOI: 10.61186/ibj.27.5.307] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 04/08/2023] [Accepted: 06/17/2023] [Indexed: 12/17/2023]
Abstract
Background Inborne errors of metabolism are a common cause of neonatal death. This study evaluated the acute early-onset metabolic derangement and death in two unrelated neonates. Methods Whole-exome sequencing (WES), Sanger sequencing, homology modeling, and in silico bioinformatics analysis were employed to assess the effects of variants on protein structure and function. Results WES revealed a novel homozygous variant, p.G303Afs*40 and p.R156P, in the pyruvate carboxylase (PC) gene of each neonate, which both were confirmed by Sanger sequencing. Based on the American College of Medical Genetics and Genomics guidelines, the p.G303Afs*40 was likely pathogenic, and the p.R156P was a variant of uncertain significance (VUS). Nevertheless, a known variant at position 156, the p.R156Q, was also a VUS. Protein secondary structure prediction showed changes in p.R156P and p.R156Q variants compared to the wild-type protein. However, p.G303Afs*40 depicted significant changes at C-terminal. Furthermore, comparing the interaction of wild-type and variant proteins with the ATP ligand during simulations, revealed a decreased affinity to the ATP in all the variants. Moreover, analysis of Single nucleotide polymorphism impacts on PC protein using Polyphen-2, SNAP2, FATHMM, and SNPs&GO servers predicted both R156P and R156Q as damaging variants. Likewise, free energy calculations demonstrated the destabilizing effect of both variants on PC. Conclusion This study confirmed the pathogenicity of both variants and suggested them as a cause of type B Pyruvate carboxylase deficiency. The results of this study would provide the family with prenatal diagnosis and expand the variant spectrum in the PC gene,which is beneficial for geneticists and endocrinologists.
Collapse
Affiliation(s)
- Fereshteh Maryami
- Department of Molecular Medicine, Biotechnology Research Center, Pasteur Institute of Iran, Pasteur St., Tehran, Iran
| | - Elham Rismani
- Department of Molecular Medicine, Biotechnology Research Center, Pasteur Institute of Iran, Pasteur St., Tehran, Iran
| | - Elham Davoudi-Dehaghani
- Department of Molecular Medicine, Biotechnology Research Center, Pasteur Institute of Iran, Pasteur St., Tehran, Iran
| | - Nasrin Khalesi
- Department of Pediatrics and Neonatal Intensive Care Unit, Ali-Asghar Children’s Hospital, Iran University of Medical Sciences, Tehran, Iran
| | - Saeed Talebi
- Department of Medical Genetics and Molecular Biology, Faculty of Medicine, Iran University of Medical Sciences (IUMS), Tehran, Iran
| | - Reza Mahdian
- Department of Molecular Medicine, Biotechnology Research Center, Pasteur Institute of Iran, Pasteur St., Tehran, Iran
| | - Sirous Zeinali
- Department of Molecular Medicine, Biotechnology Research Center, Pasteur Institute of Iran, Pasteur St., Tehran, Iran
- Kawsar Human Genetics Research Center, Tehran, Iran
| |
Collapse
|
33
|
Leggatt GP, Seaby EG, Veighey K, Gast C, Gilbert RD, Ennis S. A Role for Genetic Modifiers in Tubulointerstitial Kidney Diseases. Genes (Basel) 2023; 14:1582. [PMID: 37628633 PMCID: PMC10454709 DOI: 10.3390/genes14081582] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2023] [Revised: 07/31/2023] [Accepted: 08/01/2023] [Indexed: 08/27/2023] Open
Abstract
With the increased availability of genomic sequencing technologies, the molecular bases for kidney diseases such as nephronophthisis and mitochondrially inherited and autosomal-dominant tubulointerstitial kidney diseases (ADTKD) has become increasingly apparent. These tubulointerstitial kidney diseases (TKD) are monogenic diseases of the tubulointerstitium and result in interstitial fibrosis and tubular atrophy (IF/TA). However, monogenic inheritance alone does not adequately explain the highly variable onset of kidney failure and extra-renal manifestations. Phenotypes vary considerably between individuals harbouring the same pathogenic variant in the same putative monogenic gene, even within families sharing common environmental factors. While the extreme end of the disease spectrum may have dramatic syndromic manifestations typically diagnosed in childhood, many patients present a more subtle phenotype with little to differentiate them from many other common forms of non-proteinuric chronic kidney disease (CKD). This review summarises the expanding repertoire of genes underpinning TKD and their known phenotypic manifestations. Furthermore, we collate the growing evidence for a role of modifier genes and discuss the extent to which these data bridge the historical gap between apparently rare monogenic TKD and polygenic non-proteinuric CKD (excluding polycystic kidney disease).
Collapse
Affiliation(s)
- Gary P. Leggatt
- Human Genetics & Genomic Medicine, University of Southampton, Southampton SO16 6YD, UK; (E.G.S.); (K.V.); (C.G.); (R.D.G.); (S.E.)
- Wessex Kidney Centre, Queen Alexandra Hospital, Portsmouth Hospitals NHS Trust, Portsmouth PO6 3LY, UK
- Renal Department, University Hospital Southampton, Southampton SO16 6YD, UK
| | - Eleanor G. Seaby
- Human Genetics & Genomic Medicine, University of Southampton, Southampton SO16 6YD, UK; (E.G.S.); (K.V.); (C.G.); (R.D.G.); (S.E.)
| | - Kristin Veighey
- Human Genetics & Genomic Medicine, University of Southampton, Southampton SO16 6YD, UK; (E.G.S.); (K.V.); (C.G.); (R.D.G.); (S.E.)
- Renal Department, University Hospital Southampton, Southampton SO16 6YD, UK
| | - Christine Gast
- Human Genetics & Genomic Medicine, University of Southampton, Southampton SO16 6YD, UK; (E.G.S.); (K.V.); (C.G.); (R.D.G.); (S.E.)
- Wessex Kidney Centre, Queen Alexandra Hospital, Portsmouth Hospitals NHS Trust, Portsmouth PO6 3LY, UK
| | - Rodney D. Gilbert
- Human Genetics & Genomic Medicine, University of Southampton, Southampton SO16 6YD, UK; (E.G.S.); (K.V.); (C.G.); (R.D.G.); (S.E.)
- Department of Paediatric Nephrology, Southampton Children’s Hospital, University Hospital Southampton NHS Foundation Trust, Southampton SO16 6YD, UK
| | - Sarah Ennis
- Human Genetics & Genomic Medicine, University of Southampton, Southampton SO16 6YD, UK; (E.G.S.); (K.V.); (C.G.); (R.D.G.); (S.E.)
| |
Collapse
|
34
|
Soto DC, Uribe-Salazar JM, Shew CJ, Sekar A, McGinty S, Dennis MY. Genomic structural variation: A complex but important driver of human evolution. AMERICAN JOURNAL OF BIOLOGICAL ANTHROPOLOGY 2023; 181 Suppl 76:118-144. [PMID: 36794631 PMCID: PMC10329998 DOI: 10.1002/ajpa.24713] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/02/2022] [Revised: 01/21/2023] [Accepted: 02/05/2023] [Indexed: 02/17/2023]
Abstract
Structural variants (SVs)-including duplications, deletions, and inversions of DNA-can have significant genomic and functional impacts but are technically difficult to identify and assay compared with single-nucleotide variants. With the aid of new genomic technologies, it has become clear that SVs account for significant differences across and within species. This phenomenon is particularly well-documented for humans and other primates due to the wealth of sequence data available. In great apes, SVs affect a larger number of nucleotides than single-nucleotide variants, with many identified SVs exhibiting population and species specificity. In this review, we highlight the importance of SVs in human evolution by (1) how they have shaped great ape genomes resulting in sensitized regions associated with traits and diseases, (2) their impact on gene functions and regulation, which subsequently has played a role in natural selection, and (3) the role of gene duplications in human brain evolution. We further discuss how to incorporate SVs in research, including the strengths and limitations of various genomic approaches. Finally, we propose future considerations in integrating existing data and biospecimens with the ever-expanding SV compendium propelled by biotechnology advancements.
Collapse
Affiliation(s)
- Daniela C. Soto
- Genome Center, MIND Institute, and Department of Biochemistry & Molecular Medicine, University of California, Davis, CA, USA
- Integrative Genetics and Genomics Graduate Group, University of California, Davis, CA, USA
| | - José M. Uribe-Salazar
- Genome Center, MIND Institute, and Department of Biochemistry & Molecular Medicine, University of California, Davis, CA, USA
- Integrative Genetics and Genomics Graduate Group, University of California, Davis, CA, USA
| | - Colin J. Shew
- Genome Center, MIND Institute, and Department of Biochemistry & Molecular Medicine, University of California, Davis, CA, USA
- Integrative Genetics and Genomics Graduate Group, University of California, Davis, CA, USA
| | - Aarthi Sekar
- Genome Center, MIND Institute, and Department of Biochemistry & Molecular Medicine, University of California, Davis, CA, USA
- Integrative Genetics and Genomics Graduate Group, University of California, Davis, CA, USA
| | - Sean McGinty
- Genome Center, MIND Institute, and Department of Biochemistry & Molecular Medicine, University of California, Davis, CA, USA
- Integrative Genetics and Genomics Graduate Group, University of California, Davis, CA, USA
| | - Megan Y. Dennis
- Genome Center, MIND Institute, and Department of Biochemistry & Molecular Medicine, University of California, Davis, CA, USA
- Integrative Genetics and Genomics Graduate Group, University of California, Davis, CA, USA
| |
Collapse
|
35
|
Zhao Y, Wang Y, Shi L, McDonald-McGinn DM, Crowley TB, McGinn DE, Tran OT, Miller D, Lin JR, Zackai E, Johnston HR, Chow EWC, Vorstman JAS, Vingerhoets C, van Amelsvoort T, Gothelf D, Swillen A, Breckpot J, Vermeesch JR, Eliez S, Schneider M, van den Bree MBM, Owen MJ, Kates WR, Repetto GM, Shashi V, Schoch K, Bearden CE, Digilio MC, Unolt M, Putotto C, Marino B, Pontillo M, Armando M, Vicari S, Angkustsiri K, Campbell L, Busa T, Heine-Suñer D, Murphy KC, Murphy D, García-Miñaúr S, Fernández L, Zhang ZD, Goldmuntz E, Gur RE, Emanuel BS, Zheng D, Marshall CR, Bassett AS, Wang T, Morrow BE. Chromatin regulators in the TBX1 network confer risk for conotruncal heart defects in 22q11.2DS. NPJ Genom Med 2023; 8:17. [PMID: 37463940 PMCID: PMC10354062 DOI: 10.1038/s41525-023-00363-y] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2023] [Accepted: 06/29/2023] [Indexed: 07/20/2023] Open
Abstract
Congenital heart disease (CHD) affecting the conotruncal region of the heart, occurs in 40-50% of patients with 22q11.2 deletion syndrome (22q11.2DS). This syndrome is a rare disorder with relative genetic homogeneity that can facilitate identification of genetic modifiers. Haploinsufficiency of TBX1, encoding a T-box transcription factor, is one of the main genes responsible for the etiology of the syndrome. We suggest that genetic modifiers of conotruncal defects in patients with 22q11.2DS may be in the TBX1 gene network. To identify genetic modifiers, we analyzed rare, predicted damaging variants in whole genome sequence of 456 cases with conotruncal defects and 537 controls, with 22q11.2DS. We then performed gene set approaches and identified chromatin regulatory genes as modifiers. Chromatin genes with recurrent damaging variants include EP400, KAT6A, KMT2C, KMT2D, NSD1, CHD7 and PHF21A. In total, we identified 37 chromatin regulatory genes, that may increase risk for conotruncal heart defects in 8.5% of 22q11.2DS cases. Many of these genes were identified as risk factors for sporadic CHD in the general population. These genes are co-expressed in cardiac progenitor cells with TBX1, suggesting that they may be in the same genetic network. The genes KAT6A, KMT2C, CHD7 and EZH2, have been previously shown to genetically interact with TBX1 in mouse models. Our findings indicate that disturbance of chromatin regulatory genes impact the TBX1 gene network serving as genetic modifiers of 22q11.2DS and sporadic CHD, suggesting that there are some shared mechanisms involving the TBX1 gene network in the etiology of CHD.
Collapse
Affiliation(s)
- Yingjie Zhao
- Department of Genetics, Albert Einstein College of Medicine, Bronx, NY, 10461, USA
| | - Yujue Wang
- Department of Genetics, Albert Einstein College of Medicine, Bronx, NY, 10461, USA
| | - Lijie Shi
- Department of Genetics, Albert Einstein College of Medicine, Bronx, NY, 10461, USA
| | - Donna M McDonald-McGinn
- Division of Human Genetics, Children's Hospital of Philadelphia, Philadelphia, 19104, USA
- Department of Pediatrics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, 19104, USA
| | - T Blaine Crowley
- Division of Human Genetics, Children's Hospital of Philadelphia, Philadelphia, 19104, USA
- Department of Pediatrics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, 19104, USA
| | - Daniel E McGinn
- Division of Human Genetics, Children's Hospital of Philadelphia, Philadelphia, 19104, USA
- Department of Pediatrics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, 19104, USA
| | - Oanh T Tran
- Division of Human Genetics, Children's Hospital of Philadelphia, Philadelphia, 19104, USA
- Department of Pediatrics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, 19104, USA
| | - Daniella Miller
- Department of Genetics, Albert Einstein College of Medicine, Bronx, NY, 10461, USA
| | - Jhih-Rong Lin
- Department of Genetics, Albert Einstein College of Medicine, Bronx, NY, 10461, USA
| | - Elaine Zackai
- Division of Human Genetics, Children's Hospital of Philadelphia, Philadelphia, 19104, USA
- Department of Pediatrics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, 19104, USA
| | - H Richard Johnston
- Department of Human Genetics, Emory University School of Medicine, Atlanta, GA, 30322, USA
| | - Eva W C Chow
- Department of Psychiatry, University of Toronto, Ontario, M5G 0A4, Canada
| | - Jacob A S Vorstman
- Program in Genetics and Genome Biology, Research Institute and Autism Research Unit, The Hospital for Sick Children, Toronto, ON, M5G 0A4, Canada
| | - Claudia Vingerhoets
- Department of Psychiatry and Psychology, Maastricht University, Maastricht, 6200, MD, the Netherlands
| | - Therese van Amelsvoort
- Department of Psychiatry and Psychology, Maastricht University, Maastricht, 6200, MD, the Netherlands
| | - Doron Gothelf
- The Division of Child & Adolescent Psychiatry, Edmond and Lily Sapfra Children's Hospital, Sheba Medical Center and Sackler Faculty of Medicine and Sagol School of Neuroscience, Tel Aviv University, Ramat Gan, 5262000, Israel
| | - Ann Swillen
- Center for Human Genetics, University Hospital Leuven, Department of Human Genetics, University of Leuven (KU Leuven), Leuven, 3000, Belgium
| | - Jeroen Breckpot
- Center for Human Genetics, University Hospital Leuven, Department of Human Genetics, University of Leuven (KU Leuven), Leuven, 3000, Belgium
| | - Joris R Vermeesch
- Center for Human Genetics, University Hospital Leuven, Department of Human Genetics, University of Leuven (KU Leuven), Leuven, 3000, Belgium
| | - Stephan Eliez
- Developmental Imaging and Psychopathology Laboratory, Department of Psychiatry, Faculty of Medicine, University of Geneva, Geneva, 1211, Switzerland
| | - Maude Schneider
- Developmental Imaging and Psychopathology Laboratory, Department of Psychiatry, Faculty of Medicine, University of Geneva, Geneva, 1211, Switzerland
| | - Marianne B M van den Bree
- Medical Research Council Centre for Neuropsychiatric Genetics and Genomics, Division of Psychological Medicine and Clinical Neurosciences, Cardiff University, Wales, CF24 4HQ, UK
| | - Michael J Owen
- Medical Research Council Centre for Neuropsychiatric Genetics and Genomics, Division of Psychological Medicine and Clinical Neurosciences, Cardiff University, Wales, CF24 4HQ, UK
| | - Wendy R Kates
- Department of Psychiatry and Behavioral Sciences, SUNY Upstate Medical University, Syracuse, NY, 13202, USA
- Program in Neuroscience, SUNY Upstate Medical University, Syracuse, NY, 13202, USA
| | - Gabriela M Repetto
- Center for Genetics and Genomics, Facultad de Medicina Clinica Alemana-Universidad del Desarrollo, Santiago, 7710162, Chile
| | - Vandana Shashi
- Department of Pediatrics, Duke University, Durham, NC, 27710, USA
| | - Kelly Schoch
- Department of Pediatrics, Duke University, Durham, NC, 27710, USA
| | - Carrie E Bearden
- Department of Psychiatry and Biobehavioral Sciences, Semel Institute for Neuroscience and Human Behavior, University of California at Los Angeles, Los Angeles, CA, 90095, USA
| | - M Cristina Digilio
- Department of Medical Genetics, Bambino Gesù Hospital, Rome, 00165, Italy
| | - Marta Unolt
- Department of Medical Genetics, Bambino Gesù Hospital, Rome, 00165, Italy
- Department of Pediatrics, Gynecology, and Obstetrics, La Sapienza University of Rome, Rome, 00185, Italy
| | - Carolina Putotto
- Department of Pediatrics, Gynecology, and Obstetrics, La Sapienza University of Rome, Rome, 00185, Italy
| | - Bruno Marino
- Department of Pediatrics, Gynecology, and Obstetrics, La Sapienza University of Rome, Rome, 00185, Italy
| | - Maria Pontillo
- Department of Neuroscience, Bambino Gesù Hospital, Rome, 00165, Italy
| | - Marco Armando
- Department of Neuroscience, Bambino Gesù Hospital, Rome, 00165, Italy
- Developmental Imaging and Psychopathology Lab, University of Geneva, Geneva, 1211, Switzerland
| | - Stefano Vicari
- Department of Life Sciences and Public Health, Catholic University and Child & Adolescent Psychiatry Unit at Bambino Gesù Hospital, Rome, 00165, Italy
| | - Kathleen Angkustsiri
- Developmental Behavioral Pediatrics, MIND Institute, University of California, Davis, CA, 95817, USA
| | - Linda Campbell
- School of Psychology, University of Newcastle, Newcastle, 2258, Australia
| | - Tiffany Busa
- Department of Medical Genetics, Aix-Marseille University, Marseille, 13284, France
| | - Damian Heine-Suñer
- Genomics of Health and Unit of Molecular Diagnosis and Clinical Genetics, Son Espases University Hospital, Balearic Islands Health Research Institute, Palma de Mallorca, 07120, Spain
| | - Kieran C Murphy
- Department of Psychiatry, Royal College of Surgeons in Ireland, Dublin, 505095, Ireland
| | - Declan Murphy
- Department of Forensic and Neurodevelopmental Sciences, King's College London, Institute of Psychiatry, Psychology, and Neuroscience, London, SE5 8AF, UK
- Behavioral and Developmental Psychiatry Clinical Academic Group, Behavioral Genetics Clinic, National Adult Autism and ADHD Service, South London and Maudsley Foundation National Health Service Trust, London, SE5 8AZ, UK
| | - Sixto García-Miñaúr
- Institute of Medical and Molecular Genetics, University Hospital La Paz, Madrid, 28046, Spain
| | - Luis Fernández
- Institute of Medical and Molecular Genetics, University Hospital La Paz, Madrid, 28046, Spain
| | - Zhengdong D Zhang
- Department of Genetics, Albert Einstein College of Medicine, Bronx, NY, 10461, USA
| | - Elizabeth Goldmuntz
- Division of Cardiology, Children's Hospital of Philadelphia, Philadelphia, PA, 19104, USA
| | - Raquel E Gur
- Department of Psychiatry, Perelman School of Medicine of the University of Pennsylvania Philadelphia, Philadelphia, PA, 19104, USA
- Children's Hospital of Philadelphia, Philadelphia, PA, 19104, USA
| | - Beverly S Emanuel
- Division of Human Genetics, Children's Hospital of Philadelphia, Philadelphia, 19104, USA
- Department of Pediatrics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, 19104, USA
| | - Deyou Zheng
- Department of Genetics, Department of Neurology, Department of Neuroscience, Albert Einstein College of Medicine, Bronx, NY, 10461, USA
| | - Christian R Marshall
- Division of Genome Diagnostics, The Hospital for Sick Children and Department of Laboratory Medicine and Pathobiology, University of Toronto, Toronto, ON, M5T 1R8, Canada
| | - Anne S Bassett
- Clinical Genetics Research Program and Campbell Family Mental Health Research Institute, Centre for Addiction and Mental Health, Toronto, ON, Canada
- Dalglish Family 22q Clinic, Toronto General Hospital, and Toronto General Hospital Research Institute, University Health Network, Toronto, ON, Canada
- Department of Psychiatry, University of Toronto, Toronto, Ontario, M5T 1R8, Canada
| | - Tao Wang
- Department of Epidemiology & Population Health, Albert Einstein College of Medicine, Bronx, NY, 10461, USA
| | - Bernice E Morrow
- Department of Genetics, Albert Einstein College of Medicine, Bronx, NY, 10461, USA.
| |
Collapse
|
36
|
Danzi MC, Dohrn MF, Fazal S, Beijer D, Rebelo AP, Cintra V, Züchner S. Deep structured learning for variant prioritization in Mendelian diseases. Nat Commun 2023; 14:4167. [PMID: 37443090 PMCID: PMC10345112 DOI: 10.1038/s41467-023-39306-7] [Citation(s) in RCA: 18] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2022] [Accepted: 06/07/2023] [Indexed: 07/15/2023] Open
Abstract
Effective computer-aided or automated variant evaluations for monogenic diseases will expedite clinical diagnostic and research efforts of known and novel disease-causing genes. Here we introduce MAVERICK: a Mendelian Approach to Variant Effect pRedICtion built in Keras. MAVERICK is an ensemble of transformer-based neural networks that can classify a wide range of protein-altering single nucleotide variants (SNVs) and indels and assesses whether a variant would be pathogenic in the context of dominant or recessive inheritance. We demonstrate that MAVERICK outperforms all other major programs that assess pathogenicity in a Mendelian context. In a cohort of 644 previously solved patients with Mendelian diseases, MAVERICK ranks the causative pathogenic variant within the top five variants in over 95% of cases. Seventy-six percent of cases were solved by the top-ranked variant. MAVERICK ranks the causative pathogenic variant in hitherto novel disease genes within the first five candidate variants in 70% of cases. MAVERICK has already facilitated the identification of a novel disease gene causing a degenerative motor neuron disease. These results represent a significant step towards automated identification of causal variants in patients with Mendelian diseases.
Collapse
Affiliation(s)
- Matt C Danzi
- Dr. John T. Macdonald Foundation Department of Human Genetics and John P. Hussman Institute for Human Genomics, University of Miami Miller School of Medicine, Miami, FL, USA
| | - Maike F Dohrn
- Dr. John T. Macdonald Foundation Department of Human Genetics and John P. Hussman Institute for Human Genomics, University of Miami Miller School of Medicine, Miami, FL, USA
- Department of Neurology, Medical Faculty of the RWTH Aachen University, Aachen, Germany
| | - Sarah Fazal
- Dr. John T. Macdonald Foundation Department of Human Genetics and John P. Hussman Institute for Human Genomics, University of Miami Miller School of Medicine, Miami, FL, USA
| | - Danique Beijer
- Dr. John T. Macdonald Foundation Department of Human Genetics and John P. Hussman Institute for Human Genomics, University of Miami Miller School of Medicine, Miami, FL, USA
| | - Adriana P Rebelo
- Dr. John T. Macdonald Foundation Department of Human Genetics and John P. Hussman Institute for Human Genomics, University of Miami Miller School of Medicine, Miami, FL, USA
| | - Vivian Cintra
- Dr. John T. Macdonald Foundation Department of Human Genetics and John P. Hussman Institute for Human Genomics, University of Miami Miller School of Medicine, Miami, FL, USA
| | - Stephan Züchner
- Dr. John T. Macdonald Foundation Department of Human Genetics and John P. Hussman Institute for Human Genomics, University of Miami Miller School of Medicine, Miami, FL, USA.
| |
Collapse
|
37
|
Macken WL, Falabella M, Pizzamiglio C, Woodward CE, Scotchman E, Chitty LS, Polke JM, Bugiardini E, Hanna MG, Vandrovcova J, Chandler N, Labrum R, Pitceathly RDS. Enhanced mitochondrial genome analysis: bioinformatic and long-read sequencing advances and their diagnostic implications. Expert Rev Mol Diagn 2023; 23:797-814. [PMID: 37642407 DOI: 10.1080/14737159.2023.2241365] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2023] [Accepted: 07/24/2023] [Indexed: 08/31/2023]
Abstract
INTRODUCTION Primary mitochondrial diseases (PMDs) comprise a large and heterogeneous group of genetic diseases that result from pathogenic variants in either nuclear DNA (nDNA) or mitochondrial DNA (mtDNA). Widespread adoption of next-generation sequencing (NGS) has improved the efficiency and accuracy of mtDNA diagnoses; however, several challenges remain. AREAS COVERED In this review, we briefly summarize the current state of the art in molecular diagnostics for mtDNA and consider the implications of improved whole genome sequencing (WGS), bioinformatic techniques, and the adoption of long-read sequencing, for PMD diagnostics. EXPERT OPINION We anticipate that the application of PCR-free WGS from blood DNA will increase in diagnostic laboratories, while for adults with myopathic presentations, WGS from muscle DNA may become more widespread. Improved bioinformatic strategies will enhance WGS data interrogation, with more accurate delineation of mtDNA and NUMTs (nuclear mitochondrial DNA segments) in WGS data, superior coverage uniformity, indirect measurement of mtDNA copy number, and more accurate interpretation of heteroplasmic large-scale rearrangements (LSRs). Separately, the adoption of diagnostic long-read sequencing could offer greater resolution of complex LSRs and the opportunity to phase heteroplasmic variants.
Collapse
Affiliation(s)
- William L Macken
- Department of Neuromuscular Diseases, UCL Queen Square Institute of Neurology, London, UK
- NHS Highly Specialised Service for Rare Mitochondrial Disorders, Queen Square Centre for Neuromuscular Diseases, The National Hospital for Neurology and Neurosurgery, London, UK
| | - Micol Falabella
- Department of Neuromuscular Diseases, UCL Queen Square Institute of Neurology, London, UK
| | - Chiara Pizzamiglio
- Department of Neuromuscular Diseases, UCL Queen Square Institute of Neurology, London, UK
- NHS Highly Specialised Service for Rare Mitochondrial Disorders, Queen Square Centre for Neuromuscular Diseases, The National Hospital for Neurology and Neurosurgery, London, UK
| | - Cathy E Woodward
- NHS Highly Specialised Service for Rare Mitochondrial Disorders, Queen Square Centre for Neuromuscular Diseases, The National Hospital for Neurology and Neurosurgery, London, UK
- Rare and Inherited Disease Laboratory, North Thames Genomic Laboratory Hub, Great Ormond Street Hospital for Children NHS Foundation Trust, London, UK
| | - Elizabeth Scotchman
- Rare and Inherited Disease Laboratory, North Thames Genomic Laboratory Hub, Great Ormond Street Hospital for Children NHS Foundation Trust, London, UK
| | - Lyn S Chitty
- Rare and Inherited Disease Laboratory, North Thames Genomic Laboratory Hub, Great Ormond Street Hospital for Children NHS Foundation Trust, London, UK
| | - James M Polke
- NHS Highly Specialised Service for Rare Mitochondrial Disorders, Queen Square Centre for Neuromuscular Diseases, The National Hospital for Neurology and Neurosurgery, London, UK
- Rare and Inherited Disease Laboratory, North Thames Genomic Laboratory Hub, Great Ormond Street Hospital for Children NHS Foundation Trust, London, UK
| | - Enrico Bugiardini
- Department of Neuromuscular Diseases, UCL Queen Square Institute of Neurology, London, UK
- NHS Highly Specialised Service for Rare Mitochondrial Disorders, Queen Square Centre for Neuromuscular Diseases, The National Hospital for Neurology and Neurosurgery, London, UK
| | - Michael G Hanna
- Department of Neuromuscular Diseases, UCL Queen Square Institute of Neurology, London, UK
- NHS Highly Specialised Service for Rare Mitochondrial Disorders, Queen Square Centre for Neuromuscular Diseases, The National Hospital for Neurology and Neurosurgery, London, UK
| | - Jana Vandrovcova
- Department of Neuromuscular Diseases, UCL Queen Square Institute of Neurology, London, UK
| | - Natalie Chandler
- Rare and Inherited Disease Laboratory, North Thames Genomic Laboratory Hub, Great Ormond Street Hospital for Children NHS Foundation Trust, London, UK
| | - Robyn Labrum
- NHS Highly Specialised Service for Rare Mitochondrial Disorders, Queen Square Centre for Neuromuscular Diseases, The National Hospital for Neurology and Neurosurgery, London, UK
- Rare and Inherited Disease Laboratory, North Thames Genomic Laboratory Hub, Great Ormond Street Hospital for Children NHS Foundation Trust, London, UK
| | - Robert D S Pitceathly
- Department of Neuromuscular Diseases, UCL Queen Square Institute of Neurology, London, UK
- NHS Highly Specialised Service for Rare Mitochondrial Disorders, Queen Square Centre for Neuromuscular Diseases, The National Hospital for Neurology and Neurosurgery, London, UK
| |
Collapse
|
38
|
Fife JD, Cassa CA. Estimating clinical risk in gene regions from population sequencing cohort data. Am J Hum Genet 2023; 110:940-949. [PMID: 37236177 PMCID: PMC10257006 DOI: 10.1016/j.ajhg.2023.05.003] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2023] [Revised: 05/04/2023] [Accepted: 05/05/2023] [Indexed: 05/28/2023] Open
Abstract
While pathogenic variants can significantly increase disease risk, it is still challenging to estimate the clinical impact of rare missense variants more generally. Even in genes such as BRCA2 or PALB2, large cohort studies find no significant association between breast cancer and rare missense variants collectively. Here, we introduce REGatta, a method to estimate clinical risk from variants in smaller segments of individual genes. We first define these regions by using the density of pathogenic diagnostic reports and then calculate the relative risk in each region by using over 200,000 exome sequences in the UK Biobank. We apply this method in 13 genes with established roles across several monogenic disorders. In genes with no significant difference at the gene level, this approach significantly separates disease risk for individuals with rare missense variants at higher or lower risk (BRCA2 regional model OR = 1.46 [1.12, 1.79], p = 0.0036 vs. BRCA2 gene model OR = 0.96 [0.85, 1.07] p = 0.4171). We find high concordance between these regional risk estimates and high-throughput functional assays of variant impact. We compare our method with existing methods and the use of protein domains (Pfam) as regions and find REGatta better identifies individuals at elevated or reduced risk. These regions provide useful priors and are potentially useful for improving risk assessment for genes associated with monogenic diseases.
Collapse
Affiliation(s)
- James D Fife
- Division of Genetics, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
| | - Christopher A Cassa
- Division of Genetics, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA; Harvard Medical School, Boston, MA, USA.
| |
Collapse
|
39
|
Maryami F, Rismani E, Davoudi-Dehaghani E, Khalesi N, Motlagh FZ, Kordafshari A, Talebi S, Rahimi H, Zeinali S. Identifying and predicting the pathogenic effects of a novel variant inducing severe early onset MMA: a bioinformatics approach. Hereditas 2023; 160:25. [PMID: 37248539 DOI: 10.1186/s41065-023-00281-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2022] [Accepted: 04/11/2023] [Indexed: 05/31/2023] Open
Abstract
BACKGROUND Methylmalonic acidemia (MMA) is a rare metabolic disorder resulting from functional defects in methylmalonyl-CoA mutase. Mutations in the MMAB gene are responsible for the cblB type of vitamin B12-responsive MMA. RESULTS This study used Whole-exome sequencing (WES), Sanger sequencing, linkage analysis, and in-silico evaluation of the variants' effect on protein structure and function to confirm their pathogenicity in a 2-day-old neonate presenting an early-onset metabolic crisis and death. WES revealed a homozygous missense variant on chromosome 12, the NM_052845.4 (MMAB):c.557G > A, p.Arg186Gln, in exon 7, a highly conserved and hot spot region for pathogenic variants. After being confirmed by Sanger sequencing, the wild-type and mutant proteins' structure and function were modeled and examined using in-silico bioinformatics tools and compared to the variant NM_052845.4 (MMAB):c.556C > T, p.Arg186Trp, a known pathogenic variant at the same position. Comprehensive bioinformatics analysis showed a significant reduction in the stability of variants and changes in protein-protein and ligand-protein interactions. Interestingly, the variant c.557G > A, p.Arg186Gln depicted more variations in the secondary structure and less binding to the ATP and B12 ligands compared to the c.556C > T, p.Arg186Trp, the known pathogenic variant. CONCLUSION This study succeeded in expanding the variant spectra of the MMAB, forasmuch as the variant c.557G > A, p.Arg186Gln is suggested as a pathogenic variant and the cause of severe MMA and neonatal death. These results benefit the prenatal diagnosis of MMA in the subsequent pregnancies and carrier screening of the family members. Furthermore, as an auxiliary technique, homology modeling and protein structure and function evaluations could provide geneticists with a more accurate interpretation of variants' pathogenicity.
Collapse
Affiliation(s)
- Fereshteh Maryami
- Department of Molecular Medicine, Biotechnology Research Center, Pasteur Institute of Iran, Pasteur St., Tehran, Iran
| | - Elham Rismani
- Department of Molecular Medicine, Biotechnology Research Center, Pasteur Institute of Iran, Pasteur St., Tehran, Iran
| | - Elham Davoudi-Dehaghani
- Department of Molecular Medicine, Biotechnology Research Center, Pasteur Institute of Iran, Pasteur St., Tehran, Iran
| | - Nasrin Khalesi
- Department of Pediatrics and Neonatal Intensive Care Unit, Ali-Asghar Children's Hospital, Iran University of Medical Sciences, Vahid Dastgerdi Street, Modarres Highway, Tehran, Iran.
| | | | - Alireza Kordafshari
- Department of Molecular Medicine, Biotechnology Research Center, Pasteur Institute of Iran, Pasteur St., Tehran, Iran
| | - Saeed Talebi
- Department of Medical Genetics and Molecular Biology, Faculty of Medicine, Iran University of Medical Sciences (IUMS), Tehran, Iran
- Department of Medical Genetics, Ali-Asghar Children's Hospital, Iran University of Medical Sciences, Tehran, Iran
| | - Hamzeh Rahimi
- Department of Molecular Medicine, Biotechnology Research Center, Pasteur Institute of Iran, Pasteur St., Tehran, Iran
- Present address: Texas Biomedical Research Center, San Antonio, USA
| | - Sirous Zeinali
- Department of Molecular Medicine, Biotechnology Research Center, Pasteur Institute of Iran, Pasteur St., Tehran, Iran.
- Medical Genetics Lab, Kawsar Human Genetics Research Center, No. 41 Majlesi St., ValiAsr St., Tehran, Iran.
| |
Collapse
|
40
|
Ravnik Glavač M, Mezzavilla M, Dolinar A, Koritnik B, Glavač D. Aberrantly Expressed Hsa_circ_0060762 and CSE1L as Potential Peripheral Blood Biomarkers for ALS. Biomedicines 2023; 11:biomedicines11051316. [PMID: 37238987 DOI: 10.3390/biomedicines11051316] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2023] [Revised: 04/25/2023] [Accepted: 04/26/2023] [Indexed: 05/28/2023] Open
Abstract
Amyotrophic lateral sclerosis (ALS) is a rapidly progressive adult-onset neurodegenerative disease that is often diagnosed with a delay due to initial non-specific symptoms. Therefore, reliable and easy-to-obtain biomarkers are an absolute necessity for earlier and more accurate diagnostics. Circular RNAs (circRNAs) have already been proposed as potential biomarkers for several neurodegenerative diseases. In this study, we further investigated the usefulness of circRNAs as potential biomarkers for ALS. We first performed a microarray analysis of circRNAs on peripheral blood mononuclear cells of a subset of ALS patients and controls. Among the differently expressed circRNA by microarray analysis, we selected only the ones with a host gene that harbors the highest level of conservation and genetic constraints. This selection was based on the hypothesis that genes under selective pressure and genetic constraints could have a major role in determining a trait or disease. Then we performed a linear regression between ALS cases and controls using each circRNA as a predictor variable. With a False Discovery Rate (FDR) threshold of 0.1, only six circRNAs passed the filtering and only one of them remained statistically significant after Bonferroni correction: hsa_circ_0060762 and its host gene CSE1L. Finally, we observed a significant difference in expression levels between larger sets of patients and healthy controls for both hsa_circ_0060762 and CSE1L. CSE1L is a member of the importin β family and mediates inhibition of TDP-43 aggregation; the central pathogenicity in ALS and hsa_circ_0060762 has binding sites for several miRNAs that have been already proposed as biomarkers for ALS. In addition, receiver operating characteristics curve analysis showed diagnostic potential for CSE1L and hsa_circ_0060762. Hsa_circ_0060762 and CSE1L thus represent novel potential peripheral blood biomarkers and therapeutic targets for ALS.
Collapse
Affiliation(s)
- Metka Ravnik Glavač
- Institute of Biochemistry and Molecular Genetics, Faculty of Medicine, University of Ljubljana, 1000 Ljubljana, Slovenia
| | | | - Ana Dolinar
- Department of Molecular Genetics, Institute of Pathology, Faculty of Medicine, University of Ljubljana, 1000 Ljubljana, Slovenia
| | - Blaž Koritnik
- Institute of Clinical Neurophysiology, Division of Neurology, University Medical Centre Ljubljana, 1000 Ljubljana, Slovenia
- Department of Neurology, Faculty of Medicine, University of Ljubljana, 1000 Ljubljana, Slovenia
| | - Damjan Glavač
- Department of Molecular Genetics, Institute of Pathology, Faculty of Medicine, University of Ljubljana, 1000 Ljubljana, Slovenia
- Center for Human Genetics & Pharmacogenomics, Faculty of Medicine, University of Maribor, 2000 Maribor, Slovenia
| |
Collapse
|
41
|
Chen LL, Naesström M, Halvorsen M, Fytagoridis A, Mataix-Cols D, Rück C, Crowley JJ, Pascal D. Genomics of severe and treatment-resistant obsessive-compulsive disorder treated with deep brain stimulation: a preliminary investigation. MEDRXIV : THE PREPRINT SERVER FOR HEALTH SCIENCES 2023:2023.04.15.23288623. [PMID: 37131580 PMCID: PMC10153313 DOI: 10.1101/2023.04.15.23288623] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/04/2023]
Abstract
Individuals with severe and treatment-resistant obsessive-compulsive disorder (trOCD) represent a small but severely disabled group of patients. Since trOCD cases eligible for deep brain stimulation (DBS) probably comprise the most severe end of the OCD spectrum, we hypothesize that they may be more likely to have a strong genetic contribution to their disorder. Therefore, while the worldwide population of DBS-treated cases may be small (~300), screening these individuals with modern genomic methods may accelerate gene discovery in OCD. As such, we have begun to collect DNA from trOCD cases who qualify for DBS, and here we report results from whole exome sequencing and microarray genotyping of our first five cases. All participants had previously received DBS in the bed nucleus of stria terminalis (BNST), with two patients responding to the surgery and one showing a partial response. Our analyses focused on gene-disruptive rare variants (GDRVs; rare, predicted-deleterious single-nucleotide variants or copy number variants overlapping protein-coding genes). Three of the five cases carried a GDRV, including a missense variant in the ion transporter domain of KCNB1, a deletion at 15q11.2, and a duplication at 15q26.1. The KCNB1 variant (hg19 chr20-47991077-C-T, NM_004975.3:c.1020G>A, p.Met340Ile) causes substitution of methionine for isoleucine in the trans-membrane region of neuronal potassium voltage-gated ion channel KV2.1. This KCNB1 substitution (Met340Ile) is located in a highly constrained region of the protein where other rare missense variants have previously been associated with neurodevelopmental disorders. The patient carrying the Met340Ile variant responded to DBS, which suggests that genetic factors could potentially be predictors of treatment response in DBS for OCD. In sum, we have established a protocol for recruiting and genomically characterizing trOCD cases. Preliminary results suggest that this will be an informative strategy for finding risk genes in OCD.
Collapse
Affiliation(s)
- Long Long Chen
- Department of Clinical Neuroscience, Centre for Psychiatry Research Karolinska Institutet, & Stockholm Health Care Services, Stockholm, Sweden
| | - Matilda Naesström
- Department of Clinical Sciences/Psychiatry, Umeå University, Umeå, Sweden
| | - Matthew Halvorsen
- Department of Clinical Neuroscience, Centre for Psychiatry Research Karolinska Institutet, & Stockholm Health Care Services, Stockholm, Sweden
- Department of Genetics, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Anders Fytagoridis
- Department of Neurosurgery, Karolinska Institutet and University Hospital, Stockholm, Sweden
| | - David Mataix-Cols
- Department of Clinical Neuroscience, Centre for Psychiatry Research Karolinska Institutet, & Stockholm Health Care Services, Stockholm, Sweden
| | - Christian Rück
- Department of Clinical Neuroscience, Centre for Psychiatry Research Karolinska Institutet, & Stockholm Health Care Services, Stockholm, Sweden
| | - James J. Crowley
- Department of Clinical Neuroscience, Centre for Psychiatry Research Karolinska Institutet, & Stockholm Health Care Services, Stockholm, Sweden
- Department of Genetics, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
- Department of Psychiatry, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Diana Pascal
- Department of Clinical Neuroscience, Centre for Psychiatry Research Karolinska Institutet, & Stockholm Health Care Services, Stockholm, Sweden
| |
Collapse
|
42
|
Fevga C, Tesson C, Carreras Mascaro A, Courtin T, van Coller R, Sakka S, Ferraro F, Farhat N, Bardien S, Damak M, Carr J, Ferrien M, Boumeester V, Hundscheid J, Grillenzoni N, Kessissoglou IA, Kuipers DJS, Quadri M, Corvol JC, Mhiri C, Hassan BA, Breedveld GJ, Lesage S, Mandemakers W, Brice A, Bonifati V. PTPA variants and impaired PP2A activity in early-onset parkinsonism with intellectual disability. Brain 2023; 146:1496-1510. [PMID: 36073231 PMCID: PMC10115167 DOI: 10.1093/brain/awac326] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2022] [Revised: 06/24/2022] [Accepted: 08/22/2022] [Indexed: 11/13/2022] Open
Abstract
The protein phosphatase 2A complex (PP2A), the major Ser/Thr phosphatase in the brain, is involved in a number of signalling pathways and functions, including the regulation of crucial proteins for neurodegeneration, such as alpha-synuclein, tau and LRRK2. Here, we report the identification of variants in the PTPA/PPP2R4 gene, encoding a major PP2A activator, in two families with early-onset parkinsonism and intellectual disability. We carried out clinical studies and genetic analyses, including genome-wide linkage analysis, whole-exome sequencing, and Sanger sequencing of candidate variants. We next performed functional studies on the disease-associated variants in cultured cells and knock-down of ptpa in Drosophila melanogaster. We first identified a homozygous PTPA variant, c.893T>G (p.Met298Arg), in patients from a South African family with early-onset parkinsonism and intellectual disability. Screening of a large series of additional families yielded a second homozygous variant, c.512C>A (p.Ala171Asp), in a Libyan family with a similar phenotype. Both variants co-segregate with disease in the respective families. The affected subjects display juvenile-onset parkinsonism and intellectual disability. The motor symptoms were responsive to treatment with levodopa and deep brain stimulation of the subthalamic nucleus. In overexpression studies, both the PTPA p.Ala171Asp and p.Met298Arg variants were associated with decreased PTPA RNA stability and decreased PTPA protein levels; the p.Ala171Asp variant additionally displayed decreased PTPA protein stability. Crucially, expression of both variants was associated with decreased PP2A complex levels and impaired PP2A phosphatase activation. PTPA orthologue knock-down in Drosophila neurons induced a significant impairment of locomotion in the climbing test. This defect was age-dependent and fully reversed by L-DOPA treatment. We conclude that bi-allelic missense PTPA variants associated with impaired activation of the PP2A phosphatase cause autosomal recessive early-onset parkinsonism with intellectual disability. Our findings might also provide new insights for understanding the role of the PP2A complex in the pathogenesis of more common forms of neurodegeneration.
Collapse
Affiliation(s)
- Christina Fevga
- Department of Clinical Genetics, Erasmus University Medical Center Rotterdam, Erasmus MC, 3015 GD Rotterdam, The Netherlands
| | - Christelle Tesson
- Institut du Cerveau - Paris Brain Institute - ICM, Inserm, CNRS, Sorbonne Université, Paris, France
| | - Ana Carreras Mascaro
- Department of Clinical Genetics, Erasmus University Medical Center Rotterdam, Erasmus MC, 3015 GD Rotterdam, The Netherlands
| | - Thomas Courtin
- Institut du Cerveau - Paris Brain Institute - ICM, Inserm, CNRS, Sorbonne Université, Paris, France
- Assistance Publique Hôpitaux de Paris, Hôpital Pitié-Salpêtrière, Département de Génétique, DMU BioGeM, Paris, France
| | - Riaan van Coller
- Department of Neurology, Faculty of Health Sciences, University of Pretoria, Pretoria, South Africa
| | - Salma Sakka
- Research Unit in Neurogenetics, Clinical Investigation Center (CIC) at the CHU Habib Bourguiba, Sfax, Tunisia
| | - Federico Ferraro
- Department of Clinical Genetics, Erasmus University Medical Center Rotterdam, Erasmus MC, 3015 GD Rotterdam, The Netherlands
| | - Nouha Farhat
- Research Unit in Neurogenetics, Clinical Investigation Center (CIC) at the CHU Habib Bourguiba, Sfax, Tunisia
| | - Soraya Bardien
- Division of Molecular Biology and Human Genetics, Faculty of Medicine and Health Sciences, Stellenbosch University, Cape Town, South Africa
- South African Medical Research Council/Stellenbosch University Genomics of Brain Disorders Research Unit, Stellenbosch University, Cape Town, South Africa
| | - Mariem Damak
- Research Unit in Neurogenetics, Clinical Investigation Center (CIC) at the CHU Habib Bourguiba, Sfax, Tunisia
| | - Jonathan Carr
- Division of Neurology, Department of Medicine, Faculty of Medicine and Health Sciences, Stellenbosch University, Cape Town, South Africa
| | - Mélanie Ferrien
- Institut du Cerveau - Paris Brain Institute - ICM, Inserm, CNRS, Sorbonne Université, Paris, France
| | - Valerie Boumeester
- Department of Clinical Genetics, Erasmus University Medical Center Rotterdam, Erasmus MC, 3015 GD Rotterdam, The Netherlands
| | - Jasmijn Hundscheid
- Department of Clinical Genetics, Erasmus University Medical Center Rotterdam, Erasmus MC, 3015 GD Rotterdam, The Netherlands
| | - Nicola Grillenzoni
- Institut du Cerveau - Paris Brain Institute - ICM, Inserm, CNRS, Sorbonne Université, Paris, France
| | - Irini A Kessissoglou
- Institut du Cerveau - Paris Brain Institute - ICM, Inserm, CNRS, Sorbonne Université, Paris, France
| | - Demy J S Kuipers
- Department of Clinical Genetics, Erasmus University Medical Center Rotterdam, Erasmus MC, 3015 GD Rotterdam, The Netherlands
| | - Marialuisa Quadri
- Department of Clinical Genetics, Erasmus University Medical Center Rotterdam, Erasmus MC, 3015 GD Rotterdam, The Netherlands
| | - Jean-Christophe Corvol
- Institut du Cerveau - Paris Brain Institute - ICM, Inserm, CNRS, Sorbonne Université, Paris, France
- Assistance Publique Hôpitaux de Paris, Hôpital Pitié-Salpêtrière, Département de Neurologie, Centre d'Investigation Clinique Neurosciences, DMU Neuroscience, Paris, France
| | - Chokri Mhiri
- Research Unit in Neurogenetics, Clinical Investigation Center (CIC) at the CHU Habib Bourguiba, Sfax, Tunisia
| | - Bassem A Hassan
- Institut du Cerveau - Paris Brain Institute - ICM, Inserm, CNRS, Sorbonne Université, Paris, France
| | - Guido J Breedveld
- Department of Clinical Genetics, Erasmus University Medical Center Rotterdam, Erasmus MC, 3015 GD Rotterdam, The Netherlands
| | - Suzanne Lesage
- Institut du Cerveau - Paris Brain Institute - ICM, Inserm, CNRS, Sorbonne Université, Paris, France
| | - Wim Mandemakers
- Department of Clinical Genetics, Erasmus University Medical Center Rotterdam, Erasmus MC, 3015 GD Rotterdam, The Netherlands
| | - Alexis Brice
- Institut du Cerveau - Paris Brain Institute - ICM, Inserm, CNRS, Sorbonne Université, Paris, France
- Assistance Publique Hôpitaux de Paris, Hôpital Pitié-Salpêtrière, Département de Génétique, DMU BioGeM, Paris, France
| | - Vincenzo Bonifati
- Department of Clinical Genetics, Erasmus University Medical Center Rotterdam, Erasmus MC, 3015 GD Rotterdam, The Netherlands
| |
Collapse
|
43
|
Tong SY, Fan K, Zhou ZW, Liu LY, Zhang SQ, Fu Y, Wang GZ, Zhu Y, Yu YC. mvPPT: A Highly Efficient and Sensitive Pathogenicity Prediction Tool for Missense Variants. GENOMICS, PROTEOMICS & BIOINFORMATICS 2023; 21:414-426. [PMID: 35940520 PMCID: PMC10626173 DOI: 10.1016/j.gpb.2022.07.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/14/2021] [Revised: 05/19/2022] [Accepted: 07/29/2022] [Indexed: 06/15/2023]
Abstract
Next-generation sequencing technologies both boost the discovery of variants in the human genome and exacerbate the challenges of pathogenic variant identification. In this study, we developed Pathogenicity Prediction Tool for missense variants (mvPPT), a highly sensitive and accurate missense variant classifier based on gradient boosting. mvPPT adopts high-confidence training sets with a wide spectrum of variant profiles, and extracts three categories of features, including scores from existing prediction tools, frequencies (allele frequencies, amino acid frequencies, and genotype frequencies), and genomic context. Compared with established predictors, mvPPT achieves superior performance in all test sets, regardless of data source. In addition, our study also provides guidance for training set and feature selection strategies, as well as reveals highly relevant features, which may further provide biological insights into variant pathogenicity. mvPPT is freely available at http://www.mvppt.club/.
Collapse
Affiliation(s)
- Shi-Yuan Tong
- Jing'an District Central Hospital of Shanghai, State Key Laboratory of Medical Neurobiology, MOE Frontiers Center for Brain Science, Institutes of Brain Science, Fudan University, Shanghai 200032, China
| | - Ke Fan
- Jing'an District Central Hospital of Shanghai, State Key Laboratory of Medical Neurobiology, MOE Frontiers Center for Brain Science, Institutes of Brain Science, Fudan University, Shanghai 200032, China
| | - Zai-Wei Zhou
- Shanghai Xunyin Biotechnology Co., Ltd., Shanghai 201802, China
| | - Lin-Yun Liu
- Jing'an District Central Hospital of Shanghai, State Key Laboratory of Medical Neurobiology, MOE Frontiers Center for Brain Science, Institutes of Brain Science, Fudan University, Shanghai 200032, China
| | - Shu-Qing Zhang
- Jing'an District Central Hospital of Shanghai, State Key Laboratory of Medical Neurobiology, MOE Frontiers Center for Brain Science, Institutes of Brain Science, Fudan University, Shanghai 200032, China
| | - Yinghui Fu
- Jing'an District Central Hospital of Shanghai, State Key Laboratory of Medical Neurobiology, MOE Frontiers Center for Brain Science, Institutes of Brain Science, Fudan University, Shanghai 200032, China
| | - Guang-Zhong Wang
- CAS Key Laboratory of Computational Biology, Shanghai Institute of Nutrition and Health, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai 200031, China
| | - Ying Zhu
- Huashan Hospital, State Key Laboratory of Medical Neurobiology, MOE Frontiers Center for Brain Science, Institutes of Brain Science, Fudan University, Shanghai 200032, China.
| | - Yong-Chun Yu
- Jing'an District Central Hospital of Shanghai, State Key Laboratory of Medical Neurobiology, MOE Frontiers Center for Brain Science, Institutes of Brain Science, Fudan University, Shanghai 200032, China.
| |
Collapse
|
44
|
Dubey AA, Krygier M, Szulc NA, Rutkowska K, Kosińska J, Pollak A, Rydzanicz M, Kmieć T, Mazurkiewicz-Bełdzińska M, Pokrzywa W, Płoski R. A novel de novo FEM1C variant is linked to neurodevelopmental disorder with absent speech, pyramidal signs and limb ataxia. Hum Mol Genet 2023; 32:1152-1161. [PMID: 36336956 PMCID: PMC10026218 DOI: 10.1093/hmg/ddac276] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2022] [Revised: 10/26/2022] [Accepted: 10/29/2022] [Indexed: 11/09/2022] Open
Abstract
The principal component of the protein homeostasis network is the ubiquitin-proteasome system. Ubiquitination is mediated by an enzymatic cascade involving, i.e. E3 ubiquitin ligases, many of which belong to the cullin-RING ligases family. Genetic defects in the ubiquitin-proteasome system components, including cullin-RING ligases, are known causes of neurodevelopmental disorders. Using exome sequencing to diagnose a pediatric patient with developmental delay, pyramidal signs and limb ataxia, we identified a de novo missense variant c.376G>C; p.(Asp126His) in the FEM1C gene encoding a cullin-RING ligase substrate receptor. This variant alters a conserved amino acid located within a highly constrained coding region and is predicted as pathogenic by most in silico tools. In addition, a de novo FEM1C mutation of the same residue p.(Asp126Val) was associated with an undiagnosed developmental disorder, and the relevant variant (FEM1CAsp126Ala) was found to be functionally compromised in vitro. Our computational analysis showed that FEM1CAsp126His hampers protein substrate binding. To further assess its pathogenicity, we used the nematode Caenorhabditis elegans. We found that the FEM-1Asp133His animals (expressing variant homologous to the FEM1C p.(Asp126Val)) had normal muscle architecture yet impaired mobility. Mutant worms were sensitive to the acetylcholinesterase inhibitor aldicarb but not levamisole (acetylcholine receptor agonist), showing that their disabled locomotion is caused by synaptic abnormalities and not muscle dysfunction. In conclusion, we provide the first evidence from an animal model suggesting that a mutation in the evolutionarily conserved FEM1C Asp126 position causes a neurodevelopmental disorder in humans.
Collapse
Affiliation(s)
- Abhishek Anil Dubey
- Laboratory of Protein Metabolism, International Institute of Molecular and Cell Biology in Warsaw, 02-109 Warsaw, Poland
| | - Magdalena Krygier
- Department of Developmental Neurology, Medical University of Gdańsk, 80-952 Gdańsk, Poland
| | - Natalia A Szulc
- Laboratory of Protein Metabolism, International Institute of Molecular and Cell Biology in Warsaw, 02-109 Warsaw, Poland
| | - Karolina Rutkowska
- Department of Medical Genetics, Medical University of Warsaw, 02-106 Warsaw, Poland
| | - Joanna Kosińska
- Department of Medical Genetics, Medical University of Warsaw, 02-106 Warsaw, Poland
| | - Agnieszka Pollak
- Department of Medical Genetics, Medical University of Warsaw, 02-106 Warsaw, Poland
| | - Małgorzata Rydzanicz
- Department of Medical Genetics, Medical University of Warsaw, 02-106 Warsaw, Poland
| | - Tomasz Kmieć
- Department of Neurology and Epileptology, The Children's Memorial Health Institute, 04-730 Warsaw, Poland
| | | | - Wojciech Pokrzywa
- Laboratory of Protein Metabolism, International Institute of Molecular and Cell Biology in Warsaw, 02-109 Warsaw, Poland
| | - Rafał Płoski
- Department of Medical Genetics, Medical University of Warsaw, 02-106 Warsaw, Poland
| |
Collapse
|
45
|
Lv K, Chen D, Xiong D, Tang H, Ou T, Kan L, Zhang X. dbCNV: deleteriousness-based model to predict pathogenicity of copy number variations. BMC Genomics 2023; 24:131. [PMID: 36941551 PMCID: PMC10029177 DOI: 10.1186/s12864-023-09225-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2022] [Accepted: 03/06/2023] [Indexed: 03/23/2023] Open
Abstract
BACKGROUND Copy number variation (CNV) is a type of structural variation, which is a gain or loss event with abnormal changes in copy number. Methods to predict the pathogenicity of CNVs are required to realize the relationship between these variants and clinical phenotypes. ClassifyCNV, X-CNV, StrVCTVRE, etc. have been trained to predict the pathogenicity of CNVs, but few studies have been reported based on the deleterious significance of features. RESULTS From single nucleotide polymorphism (SNP), gene and region dimensions, we collected 79 informative features that quantitatively describe the characteristics of CNV, such as CNV length, the number of protein genes, the number of three prime untranslated region. Then, according to the deleterious significance, we formulated quantitative methods for features, which fall into two categories: the first is variable type, including maximum, minimum and mean; the second is attribute type, which is measured by numerical sum. We used Gradient Boosted Trees (GBT) algorithm to construct dbCNV, which can be used to predict pathogenicity for five-tier classification and binary classification of CNVs. We demonstrated that the distribution of most feature values was consistent with the deleterious significance. The five-tier classification model accuracy for 0.85 and 0.79 in loss and gain CNVs, which proved that it has high discrimination power in predicting the pathogenicity of five-tier classification CNVs. The binary model achieved area under curve (AUC) values of 0.96 and 0.81 in the validation set, respectively, in gain and loss CNVs. CONCLUSION The performance of the dbCNV suggest that functional deleteriousness-based model of CNV is a promising approach to support the classification prediction and to further understand the pathogenic mechanism.
Collapse
Affiliation(s)
- Kangqi Lv
- Xinxiang Medical University, 453003, Xinxiang, China
- Medical Laboratory of the Third Affiliated Hospital of Shenzhen University, No. 47 of Youyi Road, 518001, Shenzhen City, Guangdong Province, China
| | - Dayang Chen
- Medical Laboratory of the Third Affiliated Hospital of Shenzhen University, No. 47 of Youyi Road, 518001, Shenzhen City, Guangdong Province, China
| | - Dan Xiong
- Medical Laboratory of the Third Affiliated Hospital of Shenzhen University, No. 47 of Youyi Road, 518001, Shenzhen City, Guangdong Province, China
| | - Huamei Tang
- Medical Laboratory of the Third Affiliated Hospital of Shenzhen University, No. 47 of Youyi Road, 518001, Shenzhen City, Guangdong Province, China
| | - Tong Ou
- Medical Laboratory of the Third Affiliated Hospital of Shenzhen University, No. 47 of Youyi Road, 518001, Shenzhen City, Guangdong Province, China
| | - Lijuan Kan
- Medical Laboratory of the Third Affiliated Hospital of Shenzhen University, No. 47 of Youyi Road, 518001, Shenzhen City, Guangdong Province, China.
| | - Xiuming Zhang
- Xinxiang Medical University, 453003, Xinxiang, China
- Medical Laboratory of the Third Affiliated Hospital of Shenzhen University, No. 47 of Youyi Road, 518001, Shenzhen City, Guangdong Province, China
| |
Collapse
|
46
|
Mezzavilla M, Cocca M. Insights into gene tissue specificity and protein-protein interactions in the context of purifying selection in humans. Ann Hum Genet 2023; 87:75-79. [PMID: 36704895 DOI: 10.1111/ahg.12497] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2022] [Revised: 01/10/2023] [Accepted: 01/11/2023] [Indexed: 01/28/2023]
Abstract
BACKGROUND How much are natural selection and gene characteristics, such as the number of protein-protein interactions (PPIs), tissue specificity (𝞽), and expression level, connected? METHODS In order to investigate these relationships, we combined different metrics linked to genetic constraints and analyzed their distribution concerning PPIs, 𝞽 and expression levels. RESULTS We discovered a positive correlation between genetic constraints, PPIs, and expression levels in all tissues. On the other hand, we obtained a negative correlation between genetic constraints and 𝞽. Furthermore, the fraction of variance in PPI and 𝞽 explained by the constraints metrics is around 6% and 10%, respectively. CONCLUSIONS We observed that the variance of expression of tissue-specific genes seems not related to their level of selection constraints, which is the opposite of what is found on non-tissue-specific genes. Overall these observations would help to elucidate the relationship between natural selection and gene features.
Collapse
Affiliation(s)
- Massimo Mezzavilla
- Department of Biology, University of Padua, Padua, Italy.,Institute for Maternal and Child Health IRCCS Burlo Garofolo, Trieste, Italy
| | - Massimiliano Cocca
- Institute for Maternal and Child Health IRCCS Burlo Garofolo, Trieste, Italy
| |
Collapse
|
47
|
Mendelian inheritance revisited: dominance and recessiveness in medical genetics. Nat Rev Genet 2023:10.1038/s41576-023-00574-0. [PMID: 36806206 DOI: 10.1038/s41576-023-00574-0] [Citation(s) in RCA: 28] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 12/14/2022] [Indexed: 02/22/2023]
Abstract
Understanding the consequences of genotype for phenotype (which ranges from molecule-level effects to whole-organism traits) is at the core of genetic diagnostics in medicine. Many measures of the deleteriousness of individual alleles exist, but these have limitations for predicting the clinical consequences. Various mechanisms can protect the organism from the adverse effects of functional variants, especially when the variant is paired with a wild type allele. Understanding why some alleles are harmful in the heterozygous state - representing dominant inheritance - but others only with the biallelic presence of pathogenic variants - representing recessive inheritance - is particularly important when faced with the deluge of rare genetic alterations identified by high throughput DNA sequencing. Both awareness of the specific quantitative and/or qualitative effects of individual variants and the elucidation of allelic and non-allelic interactions are essential to optimize genetic diagnosis and counselling.
Collapse
|
48
|
Cinarli Yuksel F, Nicolaou P, Spontarelli K, Dohrn MF, Rebelo AP, Koutsou P, Georghiou A, Artigas P, Züchner SL, Kleopa KA, Christodoulou K. The phenotypic spectrum of pathogenic ATP1A1 variants expands: the novel p.P600R substitution causes demyelinating Charcot-Marie-Tooth disease. J Neurol 2023; 270:2576-2590. [PMID: 36738336 PMCID: PMC10130110 DOI: 10.1007/s00415-023-11581-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2022] [Revised: 01/17/2023] [Accepted: 01/18/2023] [Indexed: 02/05/2023]
Abstract
BACKGROUND Charcot-Marie-Tooth disease (CMT) is a genetically and clinically heterogeneous group of inherited neuropathies. Monoallelic pathogenic variants in ATP1A1 were associated with axonal and intermediate CMT. ATP1A1 encodes for the catalytic α1 subunit of the Na+/ K+ ATPase. Besides neuropathy, other associated phenotypes are spastic paraplegia, intellectual disability, and renal hypomagnesemia. We hereby report the first demyelinating CMT case due to a novel ATP1A1 variant. METHODS Whole-exome sequencing on the patient's genomic DNA and Sanger sequencing to validate and confirm the segregation of the identified p.P600R ATP1A1 variation were performed. To evaluate functional effects, blood-derived mRNA and protein levels of ATP1A1 and the auxiliary β1 subunit encoded by ATP1B1 were investigated. The ouabain-survival assay was performed in transfected HEK cells to assess cell viability, and two-electrode voltage clamp studies were performed in Xenopus oocytes. RESULTS The variant was absent in the local and global control datasets, falls within a highly conserved protein position, and is in a missense-constrained region. The expression levels of ATP1A1 and ATP1B1 were significantly reduced in the patient compared to healthy controls. Electrophysiology indicated that ATP1A1p.P600R injected Xenopus oocytes have reduced Na+/ K+ ATPase function. Moreover, HEK cells transfected with a construct encoding ATP1A1p.P600R harbouring variants that confers ouabain insensitivity displayed a significant decrease in cell viability after ouabain treatment compared to the wild type, further supporting the pathogenicity of this variant. CONCLUSION Our results further confirm the causative role of ATP1A1 in peripheral neuropathy and broaden the mutational and phenotypic spectrum of ATP1A1-associated CMT.
Collapse
Affiliation(s)
- Feride Cinarli Yuksel
- Neurogenetics Department, The Cyprus Institute of Neurology and Genetics, 1683, Nicosia, Cyprus
| | - Paschalis Nicolaou
- Neurogenetics Department, The Cyprus Institute of Neurology and Genetics, 1683, Nicosia, Cyprus
| | - Kerri Spontarelli
- Department of Cell Physiology and Molecular Biophysics, Center for Membrane Protein Research, Texas Tech University Health Sciences Center, Lubbock, TX, USA
| | - Maike F Dohrn
- Dr. John T. Macdonald Foundation, Department of Human Genetics and John P. Hussman Institute for Human Genomics, University of Miami, Miller School of Medicine, Miami, FL, USA.,Department of Neurology, RWTH Aachen University Hospital, Aachen, Germany
| | - Adriana P Rebelo
- Dr. John T. Macdonald Foundation, Department of Human Genetics and John P. Hussman Institute for Human Genomics, University of Miami, Miller School of Medicine, Miami, FL, USA
| | - Pantelitsa Koutsou
- Neurogenetics Department, The Cyprus Institute of Neurology and Genetics, 1683, Nicosia, Cyprus
| | - Anthi Georghiou
- Neurogenetics Department, The Cyprus Institute of Neurology and Genetics, 1683, Nicosia, Cyprus
| | - Pablo Artigas
- Department of Cell Physiology and Molecular Biophysics, Center for Membrane Protein Research, Texas Tech University Health Sciences Center, Lubbock, TX, USA
| | - Stephan L Züchner
- Dr. John T. Macdonald Foundation, Department of Human Genetics and John P. Hussman Institute for Human Genomics, University of Miami, Miller School of Medicine, Miami, FL, USA
| | - Kleopas A Kleopa
- Neuroscience Department and the Centre for Neuromuscular Disorders, The Cyprus Institute of Neurology and Genetics, 1683, Nicosia, Cyprus
| | - Kyproula Christodoulou
- Neurogenetics Department, The Cyprus Institute of Neurology and Genetics, 1683, Nicosia, Cyprus.
| |
Collapse
|
49
|
Faundes V. Letter to the Editor: How Spermidine and Targeting Eukaryotic Initiator Factor 5A Might Help to Both a Novel Congenital Disorder and Brain Aging. J Med Food 2023; 26:162-163. [PMID: 36637892 DOI: 10.1089/jmf.2022.0078] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023] Open
Affiliation(s)
- Víctor Faundes
- Laboratory of Genetics and Inborn Errors of Metabolism, Institute of Nutrition and Food Technology, University of Chile, Santiago, Chile
| |
Collapse
|
50
|
Hasenahuer MA, Sanchis-Juan A, Laskowski RA, Baker JA, Stephenson JD, Orengo CA, Raymond FL, Thornton JM. Mapping the Constrained Coding Regions in the Human Genome to Their Corresponding Proteins. J Mol Biol 2023; 435:167892. [PMID: 36410474 PMCID: PMC9875310 DOI: 10.1016/j.jmb.2022.167892] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2022] [Revised: 11/08/2022] [Accepted: 11/14/2022] [Indexed: 11/23/2022]
Abstract
Constrained Coding Regions (CCRs) in the human genome have been derived from DNA sequencing data of large cohorts of healthy control populations, available in the Genome Aggregation Database (gnomAD) [1]. They identify regions depleted of protein-changing variants and thus identify segments of the genome that have been constrained during human evolution. By mapping these DNA-defined regions from genomic coordinates onto the corresponding protein positions and combining this information with protein annotations, we have explored the distribution of CCRs and compared their co-occurrence with different protein functional features, previously annotated at the amino acid level in public databases. As expected, our results reveal that functional amino acids involved in interactions with DNA/RNA, protein-protein contacts and catalytic sites are the protein features most likely to be highly constrained for variation in the control population. More surprisingly, we also found that linear motifs, linear interacting peptides (LIPs), disorder-order transitions upon binding with other protein partners and liquid-liquid phase separating (LLPS) regions are also strongly associated with high constraint for variability. We also compared intra-species constraints in the human CCRs with inter-species conservation and functional residues to explore how such CCRs may contribute to the analysis of protein variants. As has been previously observed, CCRs are only weakly correlated with conservation, suggesting that intraspecies constraints complement interspecies conservation and can provide more information to interpret variant effects.
Collapse
Affiliation(s)
- Marcia A. Hasenahuer
- European Molecular Biology Laboratory – European Bioinformatics Institute (EMBL-EBI), Wellcome Trust Genome Campus, Hinxton, Cambridgeshire CB10 1SD, UK,Cambridge Institute for Medical Research, University of Cambridge, Cambridge CB2 0XY, UK,Institute of Structural and Molecular Biology, University College London, London WC1E 6BT, UK,Corresponding author at: European Molecular Biology Laboratory – European Bioinformatics Institute (EMBL-EBI), Wellcome Trust Genome Campus, Hinxton, Cambridgeshire CB10 1SD, UK. @MarHasenahuer
| | - Alba Sanchis-Juan
- Department of Haematology, NHS Blood and Transplant Centre, University of Cambridge, Cambridge CB2 0XY, UK,NIHR BioResource, Cambridge University Hospitals NHS Foundation Trust, Cambridge Biomedical Campus, Cambridge CB2 0QQ, UK
| | - Roman A. Laskowski
- European Molecular Biology Laboratory – European Bioinformatics Institute (EMBL-EBI), Wellcome Trust Genome Campus, Hinxton, Cambridgeshire CB10 1SD, UK
| | - James A. Baker
- European Molecular Biology Laboratory – European Bioinformatics Institute (EMBL-EBI), Wellcome Trust Genome Campus, Hinxton, Cambridgeshire CB10 1SD, UK
| | - James D. Stephenson
- European Molecular Biology Laboratory – European Bioinformatics Institute (EMBL-EBI), Wellcome Trust Genome Campus, Hinxton, Cambridgeshire CB10 1SD, UK
| | - Christine A. Orengo
- Institute of Structural and Molecular Biology, University College London, London WC1E 6BT, UK
| | - F. Lucy Raymond
- Cambridge Institute for Medical Research, University of Cambridge, Cambridge CB2 0XY, UK,NIHR BioResource, Cambridge University Hospitals NHS Foundation Trust, Cambridge Biomedical Campus, Cambridge CB2 0QQ, UK
| | - Janet M. Thornton
- European Molecular Biology Laboratory – European Bioinformatics Institute (EMBL-EBI), Wellcome Trust Genome Campus, Hinxton, Cambridgeshire CB10 1SD, UK
| |
Collapse
|