1
|
Pfeifer GP, Jin SG. Methods and applications of genome-wide profiling of DNA damage and rare mutations. Nat Rev Genet 2024; 25:846-863. [PMID: 38918545 PMCID: PMC11563917 DOI: 10.1038/s41576-024-00748-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/21/2024] [Indexed: 06/27/2024]
Abstract
DNA damage is a threat to genome integrity and can be a cause of many human diseases, owing to either changes in the chemical structure of DNA or conversion of the damage into a mutation, that is, a permanent change in DNA sequence. Determining the exact positions of DNA damage and ensuing mutations in the genome are important for identifying mechanisms of disease aetiology when characteristic mutations are prevalent and probably causative in a particular disease. However, this approach is challenging particularly when levels of DNA damage are low, for example, as a result of chronic exposure to environmental agents or certain endogenous processes, such as the generation of reactive oxygen species. Over the past few years, a comprehensive toolbox of genome-wide methods has been developed for the detection of DNA damage and rare mutations at single-nucleotide resolution in mammalian cells. Here, we review and compare these methods, describe their current applications and discuss future research questions that can now be addressed.
Collapse
Affiliation(s)
- Gerd P Pfeifer
- Department of Epigenetics, Van Andel Institute, Grand Rapids, MI, USA.
| | - Seung-Gi Jin
- Department of Epigenetics, Van Andel Institute, Grand Rapids, MI, USA
| |
Collapse
|
2
|
Qiu F, Yu G, Li M, Li Z, Zhang Q, Mu X, Cheng Y, Zhai P, Liu Q. Identification and Verification of a Glycolysis-Related lncRNA Prognostic Signature for Hepatocellular Carcinoma. Horm Metab Res 2024; 56:827-834. [PMID: 38772393 DOI: 10.1055/a-2314-0988] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 05/23/2024]
Abstract
Hepatocellular carcinoma (HCC) is a primary liver cancer with a high mortality rate. The search for a new biomarker could help the prognosis of HCC patients. We identified the glycolytic gene set associated with HCC and the glycolytic lncRNA based on TCGA and MsigDB databases. According to these lncRNAs, K-means clustering, and regression analysis were performed on the patients. Two groups of HCC patients with different lncRNA expression levels were obtained based on K-means clustering results. The results of difference analysis and enrichment analysis showed that DEmRNA in the two HCC populations with significant survival differences was mainly enriched in transmembrane transporter complex, RNA polymerase II specificity, cAMP signaling pathway, and calcium signaling pathway. In addition, a prognostic model of HCC with 4 DElncRNAs was constructed based on regression analysis. ROC curve analysis showed that the model had good predictive performance. Drug predictionresults showed that the efficacy of JQ1, niraparib, and teniposide was higher in the low-risk group than in the high-risk group. In conclusion, this study preliminarily identified glycolytic-related prognostic features of lncRNAs in HCC and constructed a risk assessment model. The results of this study are expected to guide the prognosis assessment of clinical HCC patients.
Collapse
Affiliation(s)
- Fakai Qiu
- Minimally Invasive Interventional Division, Shaanxi Provincial Cancer Hospital, Xi'an, China
| | - Guozheng Yu
- Minimally Invasive Interventional Division, Shaanxi Provincial Cancer Hospital, Xi'an, China
| | - Mei Li
- Minimally Invasive Interventional Division, Shaanxi Provincial Cancer Hospital, Xi'an, China
| | - Zhubin Li
- Minimally Invasive Interventional Division, Shaanxi Provincial Cancer Hospital, Xi'an, China
| | - Qinyang Zhang
- Minimally Invasive Interventional Division, Shaanxi Provincial Cancer Hospital, Xi'an, China
| | - Xudong Mu
- Minimally Invasive Interventional Division, Shaanxi Provincial Cancer Hospital, Xi'an, China
| | - Yuan Cheng
- Minimally Invasive Interventional Division, Shaanxi Provincial Cancer Hospital, Xi'an, China
| | - Pengtao Zhai
- Minimally Invasive Interventional Division, Shaanxi Provincial Cancer Hospital, Xi'an, China
| | - Qunyi Liu
- Minimally Invasive Interventional Division, Shaanxi Provincial Cancer Hospital, Xi'an, China
| |
Collapse
|
3
|
Longo GMC, Sayols S, Stefanova ME, Xie T, Elsayed W, Panagi A, Stavridou AI, Petrosino G, Ing-Simmons E, Melo US, Gothe HJ, Vaquerizas JM, Kotini AG, Papantonis A, Mundlos S, Roukos V. Type II topoisomerases shape multi-scale 3D chromatin folding in regions of positive supercoils. Mol Cell 2024:S1097-2765(24)00830-X. [PMID: 39486417 DOI: 10.1016/j.molcel.2024.10.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2024] [Revised: 08/19/2024] [Accepted: 10/04/2024] [Indexed: 11/04/2024]
Abstract
Type II topoisomerases (TOP2s) resolve torsional stress accumulated during various cellular processes and are enriched at chromatin loop anchors and topologically associated domain (TAD) boundaries, where, when trapped, can lead to genomic instability promoting the formation of oncogenic fusions. Whether TOP2s relieve topological constraints at these positions and/or participate in 3D chromosome folding remains unclear. Here, we combine 3D genomics, imaging, and GapRUN, a method for the genome-wide profiling of positive supercoiling, to assess the role of TOP2s in shaping chromosome organization in human cells. Acute TOP2 depletion led to the emergence of new, large-scale contacts at the boundaries between active, positively supercoiled, and lamina-associated domains. TOP2-dependent changes at the higher-order chromatin folding were accompanied by remodeling of chromatin-nuclear lamina interactions and of gene expression, while at the chromatin loop level, TOP2 depletion predominantly remodeled transcriptionally anchored, positively supercoiled loops. We propose that TOP2s act as a fine regulator of chromosome folding at multiple scales.
Collapse
Affiliation(s)
- Gabriel M C Longo
- Institute of Molecular Biology gGmbH, Ackermannweg 4, 55128 Mainz, Germany
| | - Sergi Sayols
- Institute of Molecular Biology gGmbH, Ackermannweg 4, 55128 Mainz, Germany
| | - Maria E Stefanova
- Charité-Universitätsmedizin Berlin, Lindenberger Weg 80, 13125 Berlin, Germany; Max Planck Institute for Molecular Genetics, Ihnestr. 63-73, 14195 Berlin, Germany
| | - Ting Xie
- Institute of Pathology, University Medical Center Göttingen, Robert-Koch-Str. 40, 37075 Göttingen, Germany
| | - Waheba Elsayed
- Institute of Molecular Biology gGmbH, Ackermannweg 4, 55128 Mainz, Germany
| | - Anastasia Panagi
- Department of General Biology, Medical School, University of Patras, Rio, Patras 26500 Greece
| | - Amalia I Stavridou
- Department of General Biology, Medical School, University of Patras, Rio, Patras 26500 Greece
| | - Giuseppe Petrosino
- Institute of Molecular Biology gGmbH, Ackermannweg 4, 55128 Mainz, Germany
| | - Elizabeth Ing-Simmons
- MRC London Institute of Medical Sciences, Du Cane Rd., London W12 0HS, United Kingdom; Institute of Clinical Sciences, Faculty of Medicine, Imperial College London, Du Cane Road, London, W12 0NN, UK
| | - Uirá Souto Melo
- Max Planck Institute for Molecular Genetics, Ihnestr. 63-73, 14195 Berlin, Germany
| | - Henrike J Gothe
- Institute of Molecular Biology gGmbH, Ackermannweg 4, 55128 Mainz, Germany
| | - Juan M Vaquerizas
- MRC London Institute of Medical Sciences, Du Cane Rd., London W12 0HS, United Kingdom; Institute of Clinical Sciences, Faculty of Medicine, Imperial College London, Du Cane Road, London, W12 0NN, UK
| | - Andriana G Kotini
- Department of General Biology, Medical School, University of Patras, Rio, Patras 26500 Greece
| | - Argyris Papantonis
- Institute of Pathology, University Medical Center Göttingen, Robert-Koch-Str. 40, 37075 Göttingen, Germany.
| | - Stefan Mundlos
- Max Planck Institute for Molecular Genetics, Ihnestr. 63-73, 14195 Berlin, Germany.
| | - Vassilis Roukos
- Institute of Molecular Biology gGmbH, Ackermannweg 4, 55128 Mainz, Germany; Department of General Biology, Medical School, University of Patras, Rio, Patras 26500 Greece.
| |
Collapse
|
4
|
Liang J, Gondane A, Itkonen HM. CDK12-inactivation-induced MYC signaling causes dependency on the splicing kinase SRPK1. Mol Oncol 2024; 18:2510-2523. [PMID: 38775167 PMCID: PMC11459032 DOI: 10.1002/1878-0261.13666] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2023] [Revised: 03/08/2024] [Accepted: 05/08/2024] [Indexed: 10/09/2024] Open
Abstract
Inactivation of cyclin-dependent kinase 12 (CDK12) characterizes an aggressive sub-group of castration-resistant prostate cancer (CRPC). Hyper-activation of MYC transcription factor is sufficient to confer the CRPC phenotype. Here, we show that loss of CDK12 promotes MYC activity, which renders the cells dependent on the otherwise non-essential splicing regulatory kinase SRSF protein kinase 1 (SRPK1). High MYC expression is associated with increased levels of SRPK1 in patient samples, and overexpression of MYC sensitizes prostate cancer cells to SRPK1 inhibition using pharmacological and genetic strategies. We show that Endovion (SCO-101), a compound currently in clinical trials against pancreatic cancer, phenocopies the effects of the well-characterized SRPK1 inhibitor SRPIN340 on nascent transcription. This is the first study to show that Endovion is an SRPK1 inhibitor. Inhibition of SRPK1 with either of the compounds promotes transcription elongation, and transcriptionally activates the unfolded protein response. In brief, here we discover that CDK12 inactivation promotes MYC signaling in an SRPK1-dependent manner, and show that the clinical grade compound Endovion selectively targets the cells with CDK12 inactivation.
Collapse
Affiliation(s)
- Jing Liang
- Department of Biochemistry and Developmental Biology, Faculty of MedicineUniversity of HelsinkiHelsinkiFinland
| | - Aishwarya Gondane
- Department of Biochemistry and Developmental Biology, Faculty of MedicineUniversity of HelsinkiHelsinkiFinland
| | - Harri M. Itkonen
- Department of Biochemistry and Developmental Biology, Faculty of MedicineUniversity of HelsinkiHelsinkiFinland
| |
Collapse
|
5
|
Li L. Transcription reprogramming and endogenous DNA damage. DNA Repair (Amst) 2024; 142:103754. [PMID: 39232366 DOI: 10.1016/j.dnarep.2024.103754] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2024] [Revised: 07/18/2024] [Accepted: 08/16/2024] [Indexed: 09/06/2024]
Abstract
Transcription reprogramming is essential to carry out a variety of cell dynamics such as differentiation and stress response. During reprogramming of transcription, a number of adverse effects occur and potentially compromise genomic stability. Formaldehyde as an obligatory byproduct is generated in the nucleus via oxidative protein demethylation at regulatory regions, leading to the formation of DNA crosslinking damage. Elevated levels of transcription activities can result in the accumulation of unscheduled R-loop. DNA strand breaks can form if processed 5-methylcytosines are exercised by DNA glycosylase during imprint reversal. When cellular differentiation involves a large number of genes undergoing transcription reprogramming, these endogenous DNA lesions and damage-prone structures may pose a significant threat to genome stability. In this review, we discuss how DNA damage is formed during cellular differentiation, cellular mechanisms for their removal, and diseases associated with transcription reprogramming.
Collapse
Affiliation(s)
- Lei Li
- Life Sciences Institute, Zhejiang University, Hangzhou, China; Zhejiang Provincial Key Laboratory of Cancer Molecular Cell Biology, China; Center for Life Sciences, Shaoxing Institute, Zhejiang University, Shaoxing, China.
| |
Collapse
|
6
|
Qiu Y, Kang YM, Korfmann C, Pouyet F, Eckford A, Palazzo AF. The GC-content at the 5' ends of human protein-coding genes is undergoing mutational decay. Genome Biol 2024; 25:219. [PMID: 39138526 PMCID: PMC11323403 DOI: 10.1186/s13059-024-03364-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2024] [Accepted: 07/31/2024] [Indexed: 08/15/2024] Open
Abstract
BACKGROUND In vertebrates, most protein-coding genes have a peak of GC-content near their 5' transcriptional start site (TSS). This feature promotes both the efficient nuclear export and translation of mRNAs. Despite the importance of GC-content for RNA metabolism, its general features, origin, and maintenance remain mysterious. We investigate the evolutionary forces shaping GC-content at the transcriptional start site (TSS) of genes through both comparative genomic analysis of nucleotide substitution rates between different species and by examining human de novo mutations. RESULTS Our data suggests that GC-peaks at TSSs were present in the last common ancestor of amniotes, and likely that of vertebrates. We observe that in apes and rodents, where recombination is directed away from TSSs by PRDM9, GC-content at the 5' end of protein-coding gene is currently undergoing mutational decay. In canids, which lack PRDM9 and perform recombination at TSSs, GC-content at the 5' end of protein-coding is increasing. We show that these patterns extend into the 5' end of the open reading frame, thus impacting synonymous codon position choices. CONCLUSIONS Our results indicate that the dynamics of this GC-peak in amniotes is largely shaped by historic patterns of recombination. Since decay of GC-content towards the mutation rate equilibrium is the default state for non-functional DNA, the observed decrease in GC-content at TSSs in apes and rodents indicates that the GC-peak is not being maintained by selection on most protein-coding genes in those species.
Collapse
Affiliation(s)
- Yi Qiu
- Department of Biochemistry, University of Toronto, Toronto, Ontario, M5G1M1, Canada
| | - Yoon Mo Kang
- Department of Biochemistry, University of Toronto, Toronto, Ontario, M5G1M1, Canada
| | - Christopher Korfmann
- Department of Electrical Engineering and Computer Science, York University, Toronto, Ontario, M3J1P3, Canada
| | - Fanny Pouyet
- Laboratoire Interdisciplinaire des Sciences du Numérique, Université Paris-Saclay, 91190, Gif-sur-Yvette, France
| | - Andrew Eckford
- Department of Electrical Engineering and Computer Science, York University, Toronto, Ontario, M3J1P3, Canada
| | - Alexander F Palazzo
- Department of Biochemistry, University of Toronto, Toronto, Ontario, M5G1M1, Canada.
| |
Collapse
|
7
|
Ng RR, Lin Z, Zhang Y, Ti SC, Javed A, Wong JWH, Fang Q, Leung JWC, Tang AHN, Huen MSY. R-loop resolution by ARIP4 helicase promotes androgen-mediated transcription induction. SCIENCE ADVANCES 2024; 10:eadm9577. [PMID: 39028815 PMCID: PMC11259169 DOI: 10.1126/sciadv.adm9577] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/15/2023] [Accepted: 06/14/2024] [Indexed: 07/21/2024]
Abstract
Pausing of RNA polymerase II (Pol II) at transcription start sites (TSSs) primes target genes for productive elongation. Coincidentally, DNA double-strand breaks (DSBs) enrich at highly transcribed and Pol II-paused genes, although their interplay remains undefined. Using androgen receptor (AR) signaling as a model, we have uncovered AR-interacting protein 4 (ARIP4) helicase as a driver of androgen-dependent transcription induction. Chromatin immunoprecipitation sequencing analysis revealed that ARIP4 preferentially co-occupies TSSs with paused Pol II. Moreover, we found that ARIP4 complexes with topoisomerase II beta and mediates transient DSB formation upon hormone stimulation. Accordingly, ARIP4 deficiency compromised release of paused Pol II and resulted in R-loop accumulation at a panel of highly transcribed AR target genes. Last, we showed that ARIP4 binds and unwinds R-loops in vitro and that its expression positively correlates with prostate cancer progression. We propose that androgen stimulation triggers ARIP4-mediated unwinding of R-loops at TSSs, enforcing Pol II pause release to effectively drive an androgen-dependent expression program.
Collapse
Affiliation(s)
- Raissa Regina Ng
- School of Biomedical Sciences, LKS Faculty of Medicine, The University of Hong Kong, Pokfulam, Hong Kong S.A.R
| | - Zhongyang Lin
- Department of Biology, Shantou University, Shantou, Guangdong, China
| | - Yanmin Zhang
- School of Biomedical Sciences, LKS Faculty of Medicine, The University of Hong Kong, Pokfulam, Hong Kong S.A.R
| | - Shih Chieh Ti
- School of Biomedical Sciences, LKS Faculty of Medicine, The University of Hong Kong, Pokfulam, Hong Kong S.A.R
| | - Asif Javed
- School of Biomedical Sciences, LKS Faculty of Medicine, The University of Hong Kong, Pokfulam, Hong Kong S.A.R
| | - Jason Wing Hon Wong
- School of Biomedical Sciences, LKS Faculty of Medicine, The University of Hong Kong, Pokfulam, Hong Kong S.A.R
| | - Qingming Fang
- Department of Biochemistry and Structural Biology and Greehey Children’s Cancer Research Institute, University of Texas Health Science Center at San Antonio, San Antonio, TX, USA
| | - Justin Wai Chung Leung
- Department of Radiation Oncology, University of Texas Health Science Center at San Antonio, San Antonio, TX, USA
| | - Alex Hin Ning Tang
- Department of Pathology, School of Clinical Medicine LKS Faculty of Medicine, The University of Hong Kong, Pokfulam, Hong Kong S.A.R
| | - Michael Shing Yan Huen
- School of Biomedical Sciences, LKS Faculty of Medicine, The University of Hong Kong, Pokfulam, Hong Kong S.A.R
- State Key Laboratory of Brain and Cognitive Sciences, The University of Hong Kong, Pokfulam, Hong Kong S.A.R
| |
Collapse
|
8
|
Scheuren M, Möhner J, Müller M, Zischler H. DSB profiles in human spermatozoa highlight the role of TMEJ in the male germline. Front Genet 2024; 15:1423674. [PMID: 39040993 PMCID: PMC11260735 DOI: 10.3389/fgene.2024.1423674] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2024] [Accepted: 06/13/2024] [Indexed: 07/24/2024] Open
Abstract
The male mammalian germline is characterized by substantial chromatin remodeling associated with the transition from histones to protamines during spermatogenesis, followed by the reversal to nucleohistones in the male pronucleus preceding the zygotic genome activation. Both transitions are associated with the extensive formation of DNA double-strand breaks (DSBs), requiring an estimated 5 to 10 million transient DSBs per spermatozoa. Additionally, the high transcription rate in early stages of spermatogenesis leads to transcription-coupled damage preceding meiotic homologous recombination, potentially further contributing to the DSB landscape in mature spermatozoa. Once meiosis is completed, spermatozoa remain haploid and therefore cannot rely on error-free homologous recombination, but instead depend on error-prone classical non-homologous end joining (cNHEJ). This DNA damage/repair-scenario is proposed to be one of the main causes of the observed paternal mutation propensity in human evolution. Recent studies have shown that DSBs in the male pronucleus are repaired by maternally provided Polθ in Caenorhabditis elegans through Polθ-mediated end joining (TMEJ). Additionally, population genetic datasets have revealed a preponderance of TMEJ signatures associated with human variation. Since these signatures are the result of the combined effect of TMEJ and DSB formation in spermatozoa and male pronuclei, we used a BLISS-based protocol to analyze recurrent DSBs in mature human sperm heads as a proxy of the male pronucleus before zygotic chromatin remodeling. The DSBs were found to be enriched in (YR)n short tandem repeats and in evolutionarily young SINEs, reminiscent to patterns observed in murine spermatids, indicating evolutionary hotspots of recurrent DSB formation in mammalian spermatozoa. Additionally, we detected a similar DSB pattern in diploid human IMR90 cells when cNHEJ was selectively inhibited, indicating the significant impact of absent cNHEJ on the sperm DSB landscape. Strikingly, regions associated with most retained histones, and therefore less condensed chromatin, were not strongly enriched with recurrent DSBs. In contrast, the fraction of retained H3K27me3 in the mature spermatozoa displayed a strong association with recurrent DSBs. DSBs in H3K27me3 are associated with a preference for TMEJ over cNHEJ during repair. We hypothesize that the retained H3K27me3 may trigger transgenerational DNA repair by priming maternal Polθ to these regions.
Collapse
Affiliation(s)
- Maurice Scheuren
- Division of Anthropology, Faculty of Biology, Institute of Organismic and Molecular Evolution, Johannes Gutenberg University Mainz, Mainz, Germany
| | - Jonas Möhner
- Division of Anthropology, Faculty of Biology, Institute of Organismic and Molecular Evolution, Johannes Gutenberg University Mainz, Mainz, Germany
| | - Max Müller
- Institute for Pharmaceutical and Biomedical Sciences, Johannes Gutenberg-University Mainz, Mainz, Germany
| | - Hans Zischler
- Division of Anthropology, Faculty of Biology, Institute of Organismic and Molecular Evolution, Johannes Gutenberg University Mainz, Mainz, Germany
| |
Collapse
|
9
|
Zhu M, Li H, Zheng Y, Yang J. Targeting TOP2B as a vulnerability in aging and aging-related diseases. Biochim Biophys Acta Mol Basis Dis 2024; 1870:167044. [PMID: 38296114 DOI: 10.1016/j.bbadis.2024.167044] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2023] [Revised: 12/17/2023] [Accepted: 01/25/2024] [Indexed: 02/04/2024]
Abstract
The ongoing trend of rapid aging of the global population has unavoidably resulted in an increase in aging-related diseases. There is an immense amount of interest in the scientific community for the identification of molecular targets that may effectively mitigate the process of aging and aging-related diseases. The enzyme Topoisomerase IIβ (TOP2B) plays a crucial role in resolving the topological challenges that occur during DNA-related processes. It is believed that the disruption of TOP2B function contributes to the aging of cells and tissues, as well as the development of age-related diseases. Consequently, targeting TOP2B appears to be a promising approach for interventions aimed at mitigating the effects of aging. This review focuses on recent advancements in the understanding of the role of TOP2B in the processing of aging and aging-related disorders, thus providing a novel avenue for the development of anti-aging strategies.
Collapse
Affiliation(s)
- Man Zhu
- Laboratory of Aging Research, School of Medicine, University of Electronic Science and Technology of China, Chengdu, China
| | - Hao Li
- Department of Biochemistry and Biophysics, University of California San Francisco, San Francisco, USA.
| | - Yi Zheng
- Laboratory of Aging Research, School of Medicine, University of Electronic Science and Technology of China, Chengdu, China.
| | - Jing Yang
- Laboratory of Aging Research, School of Medicine, University of Electronic Science and Technology of China, Chengdu, China.
| |
Collapse
|
10
|
Mazzarella L, Falvo P, Adinolfi M, Tini G, Gatti E, Piccioni R, Bonetti E, Gavilán E, Valli D, Gruszka A, Bodini M, Gallo B, Orecchioni S, de Michele G, Migliaccio E, Duso BA, Roerink S, Stratton M, Bertolini F, Alcalay M, Dellino GI, Pelicci PG. High-Fat Diet Promotes Acute Promyelocytic Leukemia through PPARδ-Enhanced Self-renewal of Preleukemic Progenitors. Cancer Prev Res (Phila) 2024; 17:59-75. [PMID: 37956420 DOI: 10.1158/1940-6207.capr-23-0246] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2023] [Revised: 09/04/2023] [Accepted: 11/09/2023] [Indexed: 11/15/2023]
Abstract
Risk and outcome of acute promyelocytic leukemia (APL) are particularly worsened in obese-overweight individuals, but the underlying molecular mechanism is unknown. In established mouse APL models (Ctsg-PML::RARA), we confirmed that obesity induced by high-fat diet (HFD) enhances leukemogenesis by increasing penetrance and shortening latency, providing an ideal model to investigate obesity-induced molecular events in the preleukemic phase. Surprisingly, despite increasing DNA damage in hematopoietic stem cells (HSC), HFD only minimally increased mutational load, with no relevant impact on known cancer-driving genes. HFD expanded and enhanced self-renewal of hematopoietic progenitor cells (HPC), with concomitant reduction in long-term HSCs. Importantly, linoleic acid, abundant in HFD, fully recapitulates the effect of HFD on the self-renewal of PML::RARA HPCs through activation of peroxisome proliferator-activated receptor delta, a central regulator of fatty acid metabolism. Our findings inform dietary/pharmacologic interventions to counteract obesity-associated cancers and suggest that nongenetic factors play a key role. PREVENTION RELEVANCE Our work informs interventions aimed at counteracting the cancer-promoting effect of obesity. On the basis of our study, individuals with a history of chronic obesity may still significantly reduce their risk by switching to a healthier lifestyle, a concept supported by evidence in solid tumors but not yet in hematologic malignancies. See related Spotlight, p. 47.
Collapse
Affiliation(s)
| | - Paolo Falvo
- IRCCS European Institute of Oncology, Milan, Italy
| | | | - Giulia Tini
- IRCCS European Institute of Oncology, Milan, Italy
| | - Elena Gatti
- IRCCS European Institute of Oncology, Milan, Italy
| | | | | | | | - Debora Valli
- IRCCS European Institute of Oncology, Milan, Italy
| | | | | | | | | | | | | | - Bruno A Duso
- IRCCS European Institute of Oncology, Milan, Italy
| | - Sophie Roerink
- Wellcome Trust Sanger Institute, Cambridge, United Kingdom
| | - Mike Stratton
- Wellcome Trust Sanger Institute, Cambridge, United Kingdom
| | | | - Myriam Alcalay
- IRCCS European Institute of Oncology, Milan, Italy
- Department of Oncology and Hemato-Oncology, University of Milan
| | - Gaetano Ivan Dellino
- IRCCS European Institute of Oncology, Milan, Italy
- Department of Oncology and Hemato-Oncology, University of Milan
| | - Pier Giuseppe Pelicci
- IRCCS European Institute of Oncology, Milan, Italy
- Department of Oncology and Hemato-Oncology, University of Milan
| |
Collapse
|
11
|
Xing M, Xiong Y, Zhang Y. Ku80 is indispensable for repairing DNA double-strand breaks at highly methylated sites in human HCT116 cells. DNA Repair (Amst) 2024; 134:103627. [PMID: 38219597 DOI: 10.1016/j.dnarep.2024.103627] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2023] [Revised: 01/01/2024] [Accepted: 01/03/2024] [Indexed: 01/16/2024]
Abstract
DNA double-strand breaks (DSBs) are harmful to mammalian cells and a few of them can cause cell death. Accumulating DSBs in these cells to analyze their genomic distribution and their potential impact on chromatin structure is difficult. In this study, we used CRISPR to generate Ku80-/- human cells and arrested the cells in G1 phase to accumulate DSBs before conducting END-seq and Nanopore analysis. Our analysis revealed that DNA with high methylation level accumulates DSB hotspots in Ku80-/- human cells. Furthermore, we identified chromosome structural variants (SVs) using Nanopore sequencing and observed a higher number of SVs in Ku80-/- human cells. Based on our findings, we suggest that the high efficiency of Ku80 knockout in human HCT116 cells makes it a promising model for characterizing SVs in the context of 3D chromatin structure and studying the alternative-end joining (Alt-EJ) DSB repair pathway.
Collapse
Affiliation(s)
- Mengtan Xing
- Institute for Regenerative Medicine, Department of Neurosurgery, Shanghai East Hospital, Shanghai Key Laboratory of Signaling and Disease Research, Frontier Science Center for Stem Cell Research, School of Life Sciences and Technology, Tongji University, Shanghai 200092, China
| | - Yanhong Xiong
- Institute for Regenerative Medicine, Department of Neurosurgery, Shanghai East Hospital, Shanghai Key Laboratory of Signaling and Disease Research, Frontier Science Center for Stem Cell Research, School of Life Sciences and Technology, Tongji University, Shanghai 200092, China
| | - Yong Zhang
- Institute for Regenerative Medicine, Department of Neurosurgery, Shanghai East Hospital, Shanghai Key Laboratory of Signaling and Disease Research, Frontier Science Center for Stem Cell Research, School of Life Sciences and Technology, Tongji University, Shanghai 200092, China.
| |
Collapse
|
12
|
Liu H, Fu H, Yu C, Zhang N, Huang C, Lv L, Hu C, Chen F, Xiao Z, Zhang Z, Lu H, Yuan K. Transcriptional pausing induced by ionizing radiation enables the acquisition of radioresistance in nasopharyngeal carcinoma. J Mol Cell Biol 2024; 15:mjad044. [PMID: 37407287 PMCID: PMC10960568 DOI: 10.1093/jmcb/mjad044] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2022] [Revised: 03/24/2023] [Accepted: 07/04/2023] [Indexed: 07/07/2023] Open
Abstract
Lesions on the DNA template can impact transcription via distinct regulatory pathways. Ionizing radiation (IR) as the mainstay modality for many malignancies elicits most of the cytotoxicity by inducing a variety of DNA damages in the genome. How the IR treatment alters the transcription cycle and whether it contributes to the development of radioresistance remain poorly understood. Here, we report an increase in the paused RNA polymerase II (RNAPII), as indicated by the phosphorylation at serine 5 residue of its C-terminal domain, in recurrent nasopharyngeal carcinoma (NPC) patient samples after IR treatment and cultured NPC cells developing IR resistance. Reducing the pool of paused RNAPII by either inhibiting TFIIH-associated CDK7 or stimulating the positive transcription elongation factor b, a CDK9-CycT1 heterodimer, attenuates IR resistance of NPC cells. Interestingly, the poly(ADP-ribosyl)ation of CycT1, which disrupts its phase separation, is elevated in the IR-resistant cells. Mutation of the major poly(ADP-ribosyl)ation sites of CycT1 decreases RNAPII pausing and restores IR sensitivity. Genome-wide chromatin immunoprecipitation followed by sequencing analyses reveal that several genes involved in radiation response and cell cycle control are subject to the regulation imposed by the paused RNAPII. Particularly, we identify the NIMA-related kinase NEK7 under such regulation as a new radioresistance factor, whose downregulation results in the increased chromosome instability, enabling the development of IR resistance. Overall, our results highlight a novel link between the alteration in the transcription cycle and the acquisition of IR resistance, opening up new opportunities to increase the efficacy of radiotherapy and thwart radioresistance in NPC.
Collapse
Affiliation(s)
- Honglu Liu
- Hunan Key Laboratory of Molecular Precision Medicine, Department of Oncology, Xiangya Hospital, Central South University, Changsha 410008, China
| | - Huanyi Fu
- Zhejiang Provincial Key Laboratory for Cancer Molecular Cell Biology, Life Sciences Institute, Zhejiang University, Hangzhou 310058, China
| | - Chunhong Yu
- Hunan Key Laboratory of Molecular Precision Medicine, Department of Oncology, Xiangya Hospital, Central South University, Changsha 410008, China
| | - Na Zhang
- Hunan Key Laboratory of Molecular Precision Medicine, Department of Oncology, Xiangya Hospital, Central South University, Changsha 410008, China
| | - Canhua Huang
- Hunan Key Laboratory of Molecular Precision Medicine, Department of Oncology, Xiangya Hospital, Central South University, Changsha 410008, China
| | - Lu Lv
- Hunan Key Laboratory of Molecular Precision Medicine, Department of Oncology, Xiangya Hospital, Central South University, Changsha 410008, China
- Hunan Key Laboratory of Medical Genetics, School of Life Sciences, Central South University, Changsha 410008, China
| | - Chunhong Hu
- Department of Oncology, The Second Xiangya Hospital, Central South University, Changsha 410011, China
| | - Fang Chen
- Hunan Key Laboratory of Molecular Precision Medicine, Department of Oncology, Xiangya Hospital, Central South University, Changsha 410008, China
- Hunan Key Laboratory of Medical Genetics, School of Life Sciences, Central South University, Changsha 410008, China
| | - Zhiqiang Xiao
- Research Center of Carcinogenesis and Targeted Therapy, Xiangya Hospital, Central South University, Changsha 410008, China
| | - Zhuohua Zhang
- Hunan Key Laboratory of Molecular Precision Medicine, Department of Oncology, Xiangya Hospital, Central South University, Changsha 410008, China
- Hunan Key Laboratory of Medical Genetics, School of Life Sciences, Central South University, Changsha 410008, China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha 410008, China
| | - Huasong Lu
- Zhejiang Provincial Key Laboratory for Cancer Molecular Cell Biology, Life Sciences Institute, Zhejiang University, Hangzhou 310058, China
| | - Kai Yuan
- Hunan Key Laboratory of Molecular Precision Medicine, Department of Oncology, Xiangya Hospital, Central South University, Changsha 410008, China
- Hunan Key Laboratory of Medical Genetics, School of Life Sciences, Central South University, Changsha 410008, China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha 410008, China
- The Biobank of Xiangya Hospital, Central South University, Changsha 410008, China
| |
Collapse
|
13
|
Milano L, Gautam A, Caldecott KW. DNA damage and transcription stress. Mol Cell 2024; 84:70-79. [PMID: 38103560 DOI: 10.1016/j.molcel.2023.11.014] [Citation(s) in RCA: 18] [Impact Index Per Article: 18.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2023] [Revised: 11/10/2023] [Accepted: 11/15/2023] [Indexed: 12/19/2023]
Abstract
Genome damage and transcription are intimately linked. Tens to hundreds of thousands of DNA lesions arise in each cell each day, many of which can directly or indirectly impede transcription. Conversely, the process of gene expression is itself a source of endogenous DNA lesions as a result of the susceptibility of single-stranded DNA to damage, conflicts with the DNA replication machinery, and engagement by cells of topoisomerases and base excision repair enzymes to regulate the initiation and progression of gene transcription. Although such processes are tightly regulated and normally accurate, on occasion, they can become abortive and leave behind DNA breaks that can drive genome rearrangements, instability, or cell death.
Collapse
Affiliation(s)
- Larissa Milano
- Genome Damage and Stability Centre, University of Sussex, Falmer, Brighton BN1 9RQ, UK.
| | - Amit Gautam
- Genome Damage and Stability Centre, University of Sussex, Falmer, Brighton BN1 9RQ, UK.
| | - Keith W Caldecott
- Genome Damage and Stability Centre, University of Sussex, Falmer, Brighton BN1 9RQ, UK.
| |
Collapse
|
14
|
Cowell IG, Casement JW, Austin CA. To Break or Not to Break: The Role of TOP2B in Transcription. Int J Mol Sci 2023; 24:14806. [PMID: 37834253 PMCID: PMC10573011 DOI: 10.3390/ijms241914806] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2023] [Revised: 09/28/2023] [Accepted: 09/29/2023] [Indexed: 10/15/2023] Open
Abstract
Transcription and its regulation pose challenges related to DNA torsion and supercoiling of the DNA template. RNA polymerase tracking the helical groove of the DNA introduces positive helical torsion and supercoiling upstream and negative torsion and supercoiling behind its direction of travel. This can inhibit transcriptional elongation and other processes essential to transcription. In addition, chromatin remodeling associated with gene activation can generate or be hindered by excess DNA torsional stress in gene regulatory regions. These topological challenges are solved by DNA topoisomerases via a strand-passage reaction which involves transiently breaking and re-joining of one (type I topoisomerases) or both (type II topoisomerases) strands of the phosphodiester backbone. This review will focus on one of the two mammalian type II DNA topoisomerase enzymes, DNA topoisomerase II beta (TOP2B), that have been implicated in correct execution of developmental transcriptional programs and in signal-induced transcription, including transcriptional activation by nuclear hormone ligands. Surprisingly, several lines of evidence indicate that TOP2B-mediated protein-free DNA double-strand breaks are involved in signal-induced transcription. We discuss the possible significance and origins of these DSBs along with a network of protein interaction data supporting a variety of roles for TOP2B in transcriptional regulation.
Collapse
Affiliation(s)
- Ian G. Cowell
- Biosciences Institute, The Faculty of Medical Sciences, Newcastle University, Newcastle upon Tyne NE2 4HH, UK
| | - John W. Casement
- Bioinformatics Support Unit, The Faculty of Medical Sciences, Newcastle University, Newcastle upon Tyne NE2 4HH, UK
| | - Caroline A. Austin
- Biosciences Institute, The Faculty of Medical Sciences, Newcastle University, Newcastle upon Tyne NE2 4HH, UK
| |
Collapse
|
15
|
Conn VM, Gabryelska M, Toubia J, Kirk K, Gantley L, Powell JA, Cildir G, Marri S, Liu R, Stringer BW, Townley S, Webb ST, Lin H, Samaraweera SE, Bailey S, Moore AS, Maybury M, Liu D, Colella AD, Chataway T, Wallington-Gates CT, Walters L, Sibbons J, Selth LA, Tergaonkar V, D'Andrea RJ, Pitson SM, Goodall GJ, Conn SJ. Circular RNAs drive oncogenic chromosomal translocations within the MLL recombinome in leukemia. Cancer Cell 2023; 41:1309-1326.e10. [PMID: 37295428 DOI: 10.1016/j.ccell.2023.05.002] [Citation(s) in RCA: 27] [Impact Index Per Article: 27.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/11/2023] [Revised: 03/03/2023] [Accepted: 05/03/2023] [Indexed: 06/12/2023]
Abstract
The first step of oncogenesis is the acquisition of a repertoire of genetic mutations to initiate and sustain the malignancy. An important example of this initiation phase in acute leukemias is the formation of a potent oncogene by chromosomal translocations between the mixed lineage leukemia (MLL) gene and one of 100 translocation partners, known as the MLL recombinome. Here, we show that circular RNAs (circRNAs)-a family of covalently closed, alternatively spliced RNA molecules-are enriched within the MLL recombinome and can bind DNA, forming circRNA:DNA hybrids (circR loops) at their cognate loci. These circR loops promote transcriptional pausing, proteasome inhibition, chromatin re-organization, and DNA breakage. Importantly, overexpressing circRNAs in mouse leukemia xenograft models results in co-localization of genomic loci, de novo generation of clinically relevant chromosomal translocations mimicking the MLL recombinome, and hastening of disease onset. Our findings provide fundamental insight into the acquisition of chromosomal translocations by endogenous RNA carcinogens in leukemia.
Collapse
Affiliation(s)
- Vanessa M Conn
- Flinders Health and Medical Research Institute, College of Medicine & Public Health, Flinders University, Bedford Park, SA 5042, Australia; Centre for Cancer Biology, SA Pathology & University of South Australia, Adelaide, SA 5000, Australia
| | - Marta Gabryelska
- Flinders Health and Medical Research Institute, College of Medicine & Public Health, Flinders University, Bedford Park, SA 5042, Australia
| | - John Toubia
- Centre for Cancer Biology, SA Pathology & University of South Australia, Adelaide, SA 5000, Australia; ACRF Cancer Genomics Facility, SA Pathology, Adelaide, SA 5000, Australia
| | - Kirsty Kirk
- Flinders Health and Medical Research Institute, College of Medicine & Public Health, Flinders University, Bedford Park, SA 5042, Australia
| | - Laura Gantley
- Flinders Health and Medical Research Institute, College of Medicine & Public Health, Flinders University, Bedford Park, SA 5042, Australia
| | - Jason A Powell
- Centre for Cancer Biology, SA Pathology & University of South Australia, Adelaide, SA 5000, Australia; Adelaide Medical School, Faculty of Health and Medical Sciences, the University of Adelaide, Adelaide, SA 5000, Australia
| | - Gökhan Cildir
- Centre for Cancer Biology, SA Pathology & University of South Australia, Adelaide, SA 5000, Australia
| | - Shashikanth Marri
- Flinders Health and Medical Research Institute, College of Medicine & Public Health, Flinders University, Bedford Park, SA 5042, Australia
| | - Ryan Liu
- Flinders Health and Medical Research Institute, College of Medicine & Public Health, Flinders University, Bedford Park, SA 5042, Australia
| | - Brett W Stringer
- Flinders Health and Medical Research Institute, College of Medicine & Public Health, Flinders University, Bedford Park, SA 5042, Australia
| | - Scott Townley
- Flinders Health and Medical Research Institute, College of Medicine & Public Health, Flinders University, Bedford Park, SA 5042, Australia
| | - Stuart T Webb
- Flinders Health and Medical Research Institute, College of Medicine & Public Health, Flinders University, Bedford Park, SA 5042, Australia
| | - He Lin
- Flinders Health and Medical Research Institute, College of Medicine & Public Health, Flinders University, Bedford Park, SA 5042, Australia
| | - Saumya E Samaraweera
- Centre for Cancer Biology, SA Pathology & University of South Australia, Adelaide, SA 5000, Australia
| | - Sheree Bailey
- Health and Biomedical Innovation, Clinical and Health Sciences, University of South Australia, Adelaide, SA 5000, Australia
| | - Andrew S Moore
- Child Health Research Centre, the University of Queensland, Brisbane, QLD 4101, Australia; Oncology Service, Children's Health Queensland Hospital and Health Service, Brisbane, QLD 4101, Australia
| | - Mellissa Maybury
- Child Health Research Centre, the University of Queensland, Brisbane, QLD 4101, Australia
| | - Dawei Liu
- Centre for Cancer Biology, SA Pathology & University of South Australia, Adelaide, SA 5000, Australia
| | - Alex D Colella
- Flinders Health and Medical Research Institute, College of Medicine & Public Health, Flinders University, Bedford Park, SA 5042, Australia; Flinders Omics Facility, College of Medicine & Public Health, Flinders University, Bedford Park, SA 5042, Australia
| | - Timothy Chataway
- Flinders Health and Medical Research Institute, College of Medicine & Public Health, Flinders University, Bedford Park, SA 5042, Australia; Flinders Omics Facility, College of Medicine & Public Health, Flinders University, Bedford Park, SA 5042, Australia
| | - Craig T Wallington-Gates
- Flinders Health and Medical Research Institute, College of Medicine & Public Health, Flinders University, Bedford Park, SA 5042, Australia; Centre for Cancer Biology, SA Pathology & University of South Australia, Adelaide, SA 5000, Australia; Adelaide Medical School, Faculty of Health and Medical Sciences, the University of Adelaide, Adelaide, SA 5000, Australia; Flinders Medical Centre, Bedford Park, SA 5042, Australia
| | - Lucie Walters
- Adelaide Rural Clinical School, Faculty of Health and Medical Sciences, the University of Adelaide, Adelaide, SA 5000, Australia
| | - Jane Sibbons
- Adelaide Microscopy, Division of Research and Innovation, University of Adelaide, Adelaide, SA 5000, Australia
| | - Luke A Selth
- Flinders Health and Medical Research Institute, College of Medicine & Public Health, Flinders University, Bedford Park, SA 5042, Australia; Freemasons Centre for Male Health and Wellbeing, Flinders University, Bedford Park, SA 5042, Australia
| | - Vinay Tergaonkar
- Laboratory of NFκB Signalling, Institute of Molecular and Cell Biology (IMCB), Agency for Science, Technology and Research (A(∗)STAR), 61 Biopolis Drive, Proteos, Singapore 138673, Republic of Singapore
| | - Richard J D'Andrea
- Centre for Cancer Biology, SA Pathology & University of South Australia, Adelaide, SA 5000, Australia
| | - Stuart M Pitson
- Centre for Cancer Biology, SA Pathology & University of South Australia, Adelaide, SA 5000, Australia; Adelaide Medical School, Faculty of Health and Medical Sciences, the University of Adelaide, Adelaide, SA 5000, Australia
| | - Gregory J Goodall
- Centre for Cancer Biology, SA Pathology & University of South Australia, Adelaide, SA 5000, Australia; Adelaide Medical School, Faculty of Health and Medical Sciences, the University of Adelaide, Adelaide, SA 5000, Australia
| | - Simon J Conn
- Flinders Health and Medical Research Institute, College of Medicine & Public Health, Flinders University, Bedford Park, SA 5042, Australia; Centre for Cancer Biology, SA Pathology & University of South Australia, Adelaide, SA 5000, Australia.
| |
Collapse
|
16
|
Sun Y, Xu X, Lin L, Xu K, Zheng Y, Ren C, Tao H, Wang X, Zhao H, Tu W, Bai X, Wang J, Huang Q, Li Y, Chen H, Li H, Bo X. A graph neural network-based interpretable framework reveals a novel DNA fragility-associated chromatin structural unit. Genome Biol 2023; 24:90. [PMID: 37095580 PMCID: PMC10124043 DOI: 10.1186/s13059-023-02916-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2022] [Accepted: 03/22/2023] [Indexed: 04/26/2023] Open
Abstract
BACKGROUND DNA double-strand breaks (DSBs) are among the most deleterious DNA lesions, and they can cause cancer if improperly repaired. Recent chromosome conformation capture techniques, such as Hi-C, have enabled the identification of relationships between the 3D chromatin structure and DSBs, but little is known about how to explain these relationships, especially from global contact maps, or their contributions to DSB formation. RESULTS Here, we propose a framework that integrates graph neural network (GNN) to unravel the relationship between 3D chromatin structure and DSBs using an advanced interpretable technique GNNExplainer. We identify a new chromatin structural unit named the DNA fragility-associated chromatin interaction network (FaCIN). FaCIN is a bottleneck-like structure, and it helps to reveal a universal form of how the fragility of a piece of DNA might be affected by the whole genome through chromatin interactions. Moreover, we demonstrate that neck interactions in FaCIN can serve as chromatin structural determinants of DSB formation. CONCLUSIONS Our study provides a more systematic and refined view enabling a better understanding of the mechanisms of DSB formation under the context of the 3D genome.
Collapse
Affiliation(s)
- Yu Sun
- Institute of Health Service and Transfusion Medicine, Beijing, 100850, China
| | - Xiang Xu
- Institute of Health Service and Transfusion Medicine, Beijing, 100850, China
| | - Lin Lin
- Institute of Health Service and Transfusion Medicine, Beijing, 100850, China
| | - Kang Xu
- Institute of Health Service and Transfusion Medicine, Beijing, 100850, China
| | - Yang Zheng
- Institute of Health Service and Transfusion Medicine, Beijing, 100850, China
| | - Chao Ren
- Institute of Health Service and Transfusion Medicine, Beijing, 100850, China
| | - Huan Tao
- Institute of Health Service and Transfusion Medicine, Beijing, 100850, China
| | - Xu Wang
- 4Paradigm Inc, Beijing, China
| | | | | | - Xuemei Bai
- The First Affiliated Hospital of Harbin Medical University, Harbin, 150001, China
| | - Junting Wang
- The First Affiliated Hospital of Harbin Medical University, Harbin, 150001, China
| | - Qiya Huang
- State Key Laboratory of Cardiovascular Disease, Fuwai Hospital, National Center for Cardiovascular Diseases, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Yaru Li
- Institute of Health Service and Transfusion Medicine, Beijing, 100850, China
| | - Hebing Chen
- Institute of Health Service and Transfusion Medicine, Beijing, 100850, China.
| | - Hao Li
- Institute of Health Service and Transfusion Medicine, Beijing, 100850, China.
| | - Xiaochen Bo
- Institute of Health Service and Transfusion Medicine, Beijing, 100850, China.
| |
Collapse
|
17
|
Yang JH, Brandão HB, Hansen AS. DNA double-strand break end synapsis by DNA loop extrusion. Nat Commun 2023; 14:1913. [PMID: 37024496 PMCID: PMC10079674 DOI: 10.1038/s41467-023-37583-w] [Citation(s) in RCA: 9] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2021] [Accepted: 03/23/2023] [Indexed: 04/08/2023] Open
Abstract
DNA double-strand breaks (DSBs) occur every cell cycle and must be efficiently repaired. Non-homologous end joining (NHEJ) is the dominant pathway for DSB repair in G1-phase. The first step of NHEJ is to bring the two DSB ends back into proximity (synapsis). Although synapsis is generally assumed to occur through passive diffusion, we show that passive diffusion is unlikely to produce the synapsis speed observed in cells. Instead, we hypothesize that DNA loop extrusion facilitates synapsis. By combining experimentally constrained simulations and theory, we show that a simple loop extrusion model constrained by previous live-cell imaging data only modestly accelerates synapsis. Instead, an expanded loop extrusion model with targeted loading of loop extruding factors (LEFs), a small portion of long-lived LEFs, and LEF stabilization by boundary elements and DSB ends achieves fast synapsis with near 100% efficiency. We propose that loop extrusion contributes to DSB repair by mediating fast synapsis.
Collapse
Affiliation(s)
- Jin H Yang
- Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, MA, 02139, USA
- The Broad Institute of MIT and Harvard, Cambridge, MA, 02142, USA
- Koch Institute for Integrative Cancer Research, Cambridge, MA, 02142, USA
| | - Hugo B Brandão
- Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, MA, 02139, USA.
- The Broad Institute of MIT and Harvard, Cambridge, MA, 02142, USA.
- Koch Institute for Integrative Cancer Research, Cambridge, MA, 02142, USA.
- Illumina Inc., San Diego, CA, 92122, USA.
| | - Anders S Hansen
- Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, MA, 02139, USA.
- The Broad Institute of MIT and Harvard, Cambridge, MA, 02142, USA.
- Koch Institute for Integrative Cancer Research, Cambridge, MA, 02142, USA.
| |
Collapse
|
18
|
Pollina EA, Gilliam DT, Landau AT, Lin C, Pajarillo N, Davis CP, Harmin DA, Yap EL, Vogel IR, Griffith EC, Nagy MA, Ling E, Duffy EE, Sabatini BL, Weitz CJ, Greenberg ME. A NPAS4-NuA4 complex couples synaptic activity to DNA repair. Nature 2023; 614:732-741. [PMID: 36792830 PMCID: PMC9946837 DOI: 10.1038/s41586-023-05711-7] [Citation(s) in RCA: 31] [Impact Index Per Article: 31.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2021] [Accepted: 01/05/2023] [Indexed: 02/17/2023]
Abstract
Neuronal activity is crucial for adaptive circuit remodelling but poses an inherent risk to the stability of the genome across the long lifespan of postmitotic neurons1-5. Whether neurons have acquired specialized genome protection mechanisms that enable them to withstand decades of potentially damaging stimuli during periods of heightened activity is unknown. Here we identify an activity-dependent DNA repair mechanism in which a new form of the NuA4-TIP60 chromatin modifier assembles in activated neurons around the inducible, neuronal-specific transcription factor NPAS4. We purify this complex from the brain and demonstrate its functions in eliciting activity-dependent changes to neuronal transcriptomes and circuitry. By characterizing the landscape of activity-induced DNA double-strand breaks in the brain, we show that NPAS4-NuA4 binds to recurrently damaged regulatory elements and recruits additional DNA repair machinery to stimulate their repair. Gene regulatory elements bound by NPAS4-NuA4 are partially protected against age-dependent accumulation of somatic mutations. Impaired NPAS4-NuA4 signalling leads to a cascade of cellular defects, including dysregulated activity-dependent transcriptional responses, loss of control over neuronal inhibition and genome instability, which all culminate to reduce organismal lifespan. In addition, mutations in several components of the NuA4 complex are reported to lead to neurodevelopmental and autism spectrum disorders. Together, these findings identify a neuronal-specific complex that couples neuronal activity directly to genome preservation, the disruption of which may contribute to developmental disorders, neurodegeneration and ageing.
Collapse
Affiliation(s)
- Elizabeth A Pollina
- Department of Neurobiology, Harvard Medical School, Boston, MA, USA
- Department of Developmental Biology, Washington University School of Medicine, St Louis, MO, USA
| | - Daniel T Gilliam
- Department of Neurobiology, Harvard Medical School, Boston, MA, USA
| | - Andrew T Landau
- Department of Neurobiology, Howard Hughes Medical Institute, Harvard Medical School, Boston, MA, USA
| | - Cindy Lin
- Department of Neurobiology, Harvard Medical School, Boston, MA, USA
| | - Naomi Pajarillo
- Department of Neurobiology, Harvard Medical School, Boston, MA, USA
| | | | - David A Harmin
- Department of Neurobiology, Harvard Medical School, Boston, MA, USA
| | - Ee-Lynn Yap
- Department of Neurobiology, Harvard Medical School, Boston, MA, USA
| | - Ian R Vogel
- Department of Neurobiology, Harvard Medical School, Boston, MA, USA
| | - Eric C Griffith
- Department of Neurobiology, Harvard Medical School, Boston, MA, USA
| | - M Aurel Nagy
- Department of Neurobiology, Harvard Medical School, Boston, MA, USA
| | - Emi Ling
- Department of Neurobiology, Harvard Medical School, Boston, MA, USA
| | - Erin E Duffy
- Department of Neurobiology, Harvard Medical School, Boston, MA, USA
| | - Bernardo L Sabatini
- Department of Neurobiology, Howard Hughes Medical Institute, Harvard Medical School, Boston, MA, USA
| | - Charles J Weitz
- Department of Neurobiology, Harvard Medical School, Boston, MA, USA
| | | |
Collapse
|
19
|
Najnin RA, Al Mahmud MR, Rahman MM, Takeda S, Sasanuma H, Tanaka H, Murakawa Y, Shimizu N, Akter S, Takagi M, Sunada T, Akamatsu S, He G, Itou J, Toi M, Miyaji M, Tsutsui KM, Keeney S, Yamada S. ATM suppresses c-Myc overexpression in the mammary epithelium in response to estrogen. Cell Rep 2023; 42:111909. [PMID: 36640339 PMCID: PMC10023214 DOI: 10.1016/j.celrep.2022.111909] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2022] [Revised: 10/27/2022] [Accepted: 12/12/2022] [Indexed: 12/31/2022] Open
Abstract
ATM gene mutation carriers are predisposed to estrogen-receptor-positive breast cancer (BC). ATM prevents BC oncogenesis by activating p53 in every cell; however, much remains unknown about tissue-specific oncogenesis after ATM loss. Here, we report that ATM controls the early transcriptional response to estrogens. This response depends on topoisomerase II (TOP2), which generates TOP2-DNA double-strand break (DSB) complexes and rejoins the breaks. When TOP2-mediated ligation fails, ATM facilitates DSB repair. After estrogen exposure, TOP2-dependent DSBs arise at the c-MYC enhancer in human BC cells, and their defective repair changes the activation profile of enhancers and induces the overexpression of many genes, including the c-MYC oncogene. CRISPR/Cas9 cleavage at the enhancer also causes c-MYC overexpression, indicating that this DSB causes c-MYC overexpression. Estrogen treatment induced c-Myc protein overexpression in mammary epithelial cells of ATM-deficient mice. In conclusion, ATM suppresses the c-Myc-driven proliferative effects of estrogens, possibly explaining such tissue-specific oncogenesis.
Collapse
Affiliation(s)
- Rifat Ara Najnin
- Department of Radiation Genetics, Graduate School of Medicine, Kyoto University, Yoshida Konoe, Kyoto 606-8501, Japan
| | - Md Rasel Al Mahmud
- Department of Radiation Genetics, Graduate School of Medicine, Kyoto University, Yoshida Konoe, Kyoto 606-8501, Japan
| | - Md Maminur Rahman
- Department of Radiation Genetics, Graduate School of Medicine, Kyoto University, Yoshida Konoe, Kyoto 606-8501, Japan
| | - Shunichi Takeda
- Shenzhen University School of Medicine, Shenzhen, Guangdong 518060, China
| | - Hiroyuki Sasanuma
- Department of Radiation Genetics, Graduate School of Medicine, Kyoto University, Yoshida Konoe, Kyoto 606-8501, Japan
| | - Hisashi Tanaka
- Department of Surgery, Cedars-Sinai Medical Center, Los Angeles, CA 90048, USA
| | - Yasuhiro Murakawa
- RIKEN Center for Integrative Medical Sciences, Yokohama, Japan; IFOM-the FIRC Institute of Molecular Oncology, Milan, Italy; Department of Medical Systems Genomics, Graduate School of Medicine, Kyoto University, Kyoto, Japan; Institute for Advanced Study of Human Biology (ASHBi), Kyoto University, Kyoto, Japan
| | - Naoto Shimizu
- Department of Radiation Genetics, Graduate School of Medicine, Kyoto University, Yoshida Konoe, Kyoto 606-8501, Japan
| | - Salma Akter
- Department of Radiation Genetics, Graduate School of Medicine, Kyoto University, Yoshida Konoe, Kyoto 606-8501, Japan
| | - Masatoshi Takagi
- Department of Pediatrics and Developmental Biology, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University, Bunkyo-ku, Tokyo, Japan
| | - Takuro Sunada
- Department of Urology, Graduate School of Medicine, Kyoto University, 54 Shougoin Kawahara-cho, Kyoto 606-8507, Japan
| | - Shusuke Akamatsu
- Department of Urology, Graduate School of Medicine, Kyoto University, 54 Shougoin Kawahara-cho, Kyoto 606-8507, Japan
| | - Gang He
- Shenzhen University School of Medicine, Shenzhen, Guangdong 518060, China
| | - Junji Itou
- Breast Cancer Unit, Kyoto University Hospital, Graduate School of Medicine, Kyoto University, Kyoto 606-8507, Japan
| | - Masakazu Toi
- Breast Cancer Unit, Kyoto University Hospital, Graduate School of Medicine, Kyoto University, Kyoto 606-8507, Japan
| | - Mary Miyaji
- Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University, Okayama, Japan
| | - Kimiko M Tsutsui
- Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University, Okayama, Japan
| | - Scott Keeney
- Molecular Biology Program, Memorial Sloan Kettering Cancer Center, New York, NY, USA; Howard Hughes Medical Institute, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Shintaro Yamada
- Department of Radiation Genetics, Graduate School of Medicine, Kyoto University, Yoshida Konoe, Kyoto 606-8501, Japan; Molecular Biology Program, Memorial Sloan Kettering Cancer Center, New York, NY, USA.
| |
Collapse
|
20
|
Murat P, Perez C, Crisp A, van Eijk P, Reed SH, Guilbaud G, Sale JE. DNA replication initiation shapes the mutational landscape and expression of the human genome. SCIENCE ADVANCES 2022; 8:eadd3686. [PMID: 36351018 PMCID: PMC9645720 DOI: 10.1126/sciadv.add3686] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 06/07/2022] [Accepted: 09/21/2022] [Indexed: 06/16/2023]
Abstract
The interplay between active biological processes and DNA repair is central to mutagenesis. Here, we show that the ubiquitous process of replication initiation is mutagenic, leaving a specific mutational footprint at thousands of early and efficient replication origins. The observed mutational pattern is consistent with two distinct mechanisms, reflecting the two-step process of origin activation, triggering the formation of DNA breaks at the center of origins and local error-prone DNA synthesis in their immediate vicinity. We demonstrate that these replication initiation-dependent mutational processes exert an influence on phenotypic diversity in humans that is disproportionate to the origins' genomic size: By increasing mutational loads at gene promoters and splice junctions, the presence of an origin significantly influences both gene expression and mRNA isoform usage. Last, we show that mutagenesis at origins not only drives the evolution of origin sequences but also contributes to sculpting regulatory domains of the human genome.
Collapse
Affiliation(s)
- Pierre Murat
- Division of Protein & Nucleic Acid Chemistry, MRC Laboratory of Molecular Biology, Francis Crick Avenue, Cambridge, CB2 0QH, UK
| | - Consuelo Perez
- Division of Protein & Nucleic Acid Chemistry, MRC Laboratory of Molecular Biology, Francis Crick Avenue, Cambridge, CB2 0QH, UK
| | - Alastair Crisp
- Division of Protein & Nucleic Acid Chemistry, MRC Laboratory of Molecular Biology, Francis Crick Avenue, Cambridge, CB2 0QH, UK
| | - Patrick van Eijk
- Broken String Biosciences Ltd., BioData Innovation Centre, Unit AB3-03, Level 3, Wellcome Genome Campus, Hinxton, Cambridge CB10 1DR, UK
- Division of Cancer & Genetics School of Medicine, Cardiff University, Heath Park, Cardiff CF14 4XN, UK
| | - Simon H. Reed
- Broken String Biosciences Ltd., BioData Innovation Centre, Unit AB3-03, Level 3, Wellcome Genome Campus, Hinxton, Cambridge CB10 1DR, UK
- Division of Cancer & Genetics School of Medicine, Cardiff University, Heath Park, Cardiff CF14 4XN, UK
| | - Guillaume Guilbaud
- Division of Protein & Nucleic Acid Chemistry, MRC Laboratory of Molecular Biology, Francis Crick Avenue, Cambridge, CB2 0QH, UK
| | - Julian E. Sale
- Division of Protein & Nucleic Acid Chemistry, MRC Laboratory of Molecular Biology, Francis Crick Avenue, Cambridge, CB2 0QH, UK
| |
Collapse
|
21
|
Uusküla-Reimand L, Wilson MD. Untangling the roles of TOP2A and TOP2B in transcription and cancer. SCIENCE ADVANCES 2022; 8:eadd4920. [PMID: 36322662 PMCID: PMC9629710 DOI: 10.1126/sciadv.add4920] [Citation(s) in RCA: 52] [Impact Index Per Article: 26.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/15/2022] [Accepted: 09/12/2022] [Indexed: 06/09/2023]
Abstract
Type II topoisomerases (TOP2) are conserved regulators of chromatin topology that catalyze reversible DNA double-strand breaks (DSBs) and are essential for maintaining genomic integrity in diverse dynamic processes such as transcription, replication, and cell division. While controlled TOP2-mediated DSBs are an elegant solution to topological constraints of DNA, DSBs also contribute to the emergence of chromosomal translocations and mutations that drive cancer. The central importance of TOP2 enzymes as frontline chemotherapeutic targets is well known; however, their precise biological functions and impact in cancer development are still poorly understood. In this review, we provide an updated overview of TOP2A and TOP2B in the regulation of chromatin topology and transcription, and discuss the recent discoveries linking TOP2 activities with cancer pathogenesis.
Collapse
Affiliation(s)
- Liis Uusküla-Reimand
- Genetics and Genome Biology Program, The Hospital for Sick Children, Toronto, ON, Canada
| | - Michael D. Wilson
- Genetics and Genome Biology Program, The Hospital for Sick Children, Toronto, ON, Canada
- Department of Molecular Genetics, University of Toronto, Toronto, ON, Canada
| |
Collapse
|
22
|
Furia L, Pelicci S, Perillo F, Bolognesi MM, Pelicci PG, Facciotti F, Cattoretti G, Faretta M. Automated multimodal fluorescence microscopy for hyperplex spatial-proteomics: Coupling microfluidic-based immunofluorescence to high resolution, high sensitivity, three-dimensional analysis of histological slides. Front Oncol 2022; 12:960734. [PMCID: PMC9606676 DOI: 10.3389/fonc.2022.960734] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2022] [Accepted: 09/27/2022] [Indexed: 11/13/2022] Open
Abstract
In situ multiplexing analysis and in situ transcriptomics are now providing revolutionary tools to achieve the comprehension of the molecular basis of cancer and to progress towards personalized medicine to fight the disease. The complexity of these tasks requires a continuous interplay among different technologies during all the phases of the experimental procedures. New tools are thus needed and their characterization in terms of performances and limits is mandatory to reach the best resolution and sensitivity. We propose here a new experimental pipeline to obtain an optimized costs-to-benefits ratio thanks to the alternate employment of automated and manual procedures during all the phases of a multiplexing experiment from sample preparation to image collection and analysis. A comparison between ultra-fast and automated immunofluorescence staining and standard staining protocols has been carried out to compare the performances in terms of antigen saturation, background, signal-to-noise ratio and total duration. We then developed specific computational tools to collect data by automated analysis-driven fluorescence microscopy. Computer assisted selection of targeted areas with variable magnification and resolution allows employing confocal microscopy for a 3D high resolution analysis. Spatial resolution and sensitivity were thus maximized in a framework where the amount of stored data and the total requested time for the procedure were optimized and reduced with respect to a standard experimental approach.
Collapse
Affiliation(s)
- Laura Furia
- Department of Experimental Oncology, European Institute of Oncology IRCCS, Milan, Italy
| | - Simone Pelicci
- Department of Experimental Oncology, European Institute of Oncology IRCCS, Milan, Italy
| | - Federica Perillo
- Department of Experimental Oncology, European Institute of Oncology IRCCS, Milan, Italy
- Department of Oncology and Hemato-Oncology, University of Milan, Milan, Italy
| | | | - Pier Giuseppe Pelicci
- Department of Experimental Oncology, European Institute of Oncology IRCCS, Milan, Italy
- Department of Oncology and Hemato-Oncology, University of Milan, Milan, Italy
| | - Federica Facciotti
- Department of Experimental Oncology, European Institute of Oncology IRCCS, Milan, Italy
- Department of Biotechnology and Biosciences, University of Milan-Bicocca, Milan, Italy
| | - Giorgio Cattoretti
- Department of Medicine and Surgery, Università di Milano-Bicocca, Monza, Italy
| | - Mario Faretta
- Department of Experimental Oncology, European Institute of Oncology IRCCS, Milan, Italy
- *Correspondence: Mario Faretta,
| |
Collapse
|
23
|
Furia L, Pelicci S, Scanarini M, Pelicci PG, Faretta M. From Double-Strand Break Recognition to Cell-Cycle Checkpoint Activation: High Content and Resolution Image Cytometry Unmasks 53BP1 Multiple Roles in DNA Damage Response and p53 Action. Int J Mol Sci 2022; 23:10193. [PMID: 36077590 PMCID: PMC9456172 DOI: 10.3390/ijms231710193] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2022] [Revised: 08/25/2022] [Accepted: 09/02/2022] [Indexed: 11/29/2022] Open
Abstract
53BP1 protein has been isolated in-vitro as a putative p53 interactor. From the discovery of its engagement in the DNA-Damage Response (DDR), its role in sustaining the activity of the p53-regulated transcriptional program has been frequently under-evaluated, even in the case of a specific response to numerous DNA Double-Strand Breaks (DSBs), i.e., exposure to ionizing radiation. The localization of 53BP1 protein constitutes a key to decipher the network of activities exerted in response to stress. We present here an automated-microscopy for image cytometry protocol to analyze the evolution of the DDR, and to demonstrate how 53BP1 moved from damaged sites, where the well-known interaction with the DSB marker γH2A.X takes place, to nucleoplasm, interacting with p53, and enhancing the transcriptional regulation of the guardian of the genome protein. Molecular interactions have been quantitatively described and spatiotemporally localized at the highest spatial resolution by a simultaneous analysis of the impairment of the cell-cycle progression. Thanks to the high statistical sampling of the presented protocol, we provide a detailed quantitative description of the molecular events following the DSBs formation. Single-Molecule Localization Microscopy (SMLM) Analysis finally confirmed the p53-53BP1 interaction on the tens of nanometers scale during the distinct phases of the response.
Collapse
Affiliation(s)
- Laura Furia
- Department of Experimental Oncology, European Institute of Oncology IRCCS, 20139 Milan, Italy
| | - Simone Pelicci
- Department of Experimental Oncology, European Institute of Oncology IRCCS, 20139 Milan, Italy
| | - Mirco Scanarini
- Department of Experimental Oncology, European Institute of Oncology IRCCS, 20139 Milan, Italy
| | - Pier Giuseppe Pelicci
- Department of Experimental Oncology, European Institute of Oncology IRCCS, 20139 Milan, Italy
- Department of Oncology and Hemato-Oncology, University of Milan, 20122 Milan, Italy
| | - Mario Faretta
- Department of Experimental Oncology, European Institute of Oncology IRCCS, 20139 Milan, Italy
| |
Collapse
|
24
|
Ray S, Abugable AA, Parker J, Liversidge K, Palminha NM, Liao C, Acosta-Martin AE, Souza CDS, Jurga M, Sudbery I, El-Khamisy SF. A mechanism for oxidative damage repair at gene regulatory elements. Nature 2022; 609:1038-1047. [PMID: 36171374 DOI: 10.1038/s41586-022-05217-8] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2020] [Accepted: 08/09/2022] [Indexed: 11/09/2022]
Abstract
Oxidative genome damage is an unavoidable consequence of cellular metabolism. It arises at gene regulatory elements by epigenetic demethylation during transcriptional activation1,2. Here we show that promoters are protected from oxidative damage via a process mediated by the nuclear mitotic apparatus protein NuMA (also known as NUMA1). NuMA exhibits genomic occupancy approximately 100 bp around transcription start sites. It binds the initiating form of RNA polymerase II, pause-release factors and single-strand break repair (SSBR) components such as TDP1. The binding is increased on chromatin following oxidative damage, and TDP1 enrichment at damaged chromatin is facilitated by NuMA. Depletion of NuMA increases oxidative damage at promoters. NuMA promotes transcription by limiting the polyADP-ribosylation of RNA polymerase II, increasing its availability and release from pausing at promoters. Metabolic labelling of nascent RNA identifies genes that depend on NuMA for transcription including immediate-early response genes. Complementation of NuMA-deficient cells with a mutant that mediates binding to SSBR, or a mitotic separation-of-function mutant, restores SSBR defects. These findings underscore the importance of oxidative DNA damage repair at gene regulatory elements and describe a process that fulfils this function.
Collapse
Affiliation(s)
- Swagat Ray
- School of Biosciences, University of Sheffield, Sheffield, UK.,The Healthy Lifespan and Neuroscience Institutes, University of Sheffield, Sheffield, UK.,School of Life and Environmental Sciences, Department of Life Sciences, University of Lincoln, Lincoln, UK
| | - Arwa A Abugable
- School of Biosciences, University of Sheffield, Sheffield, UK.,The Healthy Lifespan and Neuroscience Institutes, University of Sheffield, Sheffield, UK
| | - Jacob Parker
- School of Biosciences, University of Sheffield, Sheffield, UK.,Center for Advanced Parkinson Research, Harvard Medical School, Boston, MA, USA
| | | | - Nelma M Palminha
- School of Biosciences, University of Sheffield, Sheffield, UK.,The Healthy Lifespan and Neuroscience Institutes, University of Sheffield, Sheffield, UK
| | - Chunyan Liao
- School of Biosciences, University of Sheffield, Sheffield, UK.,The Healthy Lifespan and Neuroscience Institutes, University of Sheffield, Sheffield, UK
| | - Adelina E Acosta-Martin
- biOMICS Facility, Faculty of Science Mass Spectrometry Centre, University of Sheffield, Sheffield, UK
| | - Cleide D S Souza
- School of Biosciences, University of Sheffield, Sheffield, UK.,Sheffield Institute of Translational Neuroscience, University of Sheffield, Sheffield, UK
| | - Mateusz Jurga
- Institute of Cancer Therapeutics, School of Pharmacy and Medical Sciences, University of Bradford, Bradford, UK
| | - Ian Sudbery
- School of Biosciences, University of Sheffield, Sheffield, UK
| | - Sherif F El-Khamisy
- School of Biosciences, University of Sheffield, Sheffield, UK. .,The Healthy Lifespan and Neuroscience Institutes, University of Sheffield, Sheffield, UK. .,Institute of Cancer Therapeutics, School of Pharmacy and Medical Sciences, University of Bradford, Bradford, UK.
| |
Collapse
|
25
|
Dotolo S, Esposito Abate R, Roma C, Guido D, Preziosi A, Tropea B, Palluzzi F, Giacò L, Normanno N. Bioinformatics: From NGS Data to Biological Complexity in Variant Detection and Oncological Clinical Practice. Biomedicines 2022; 10:biomedicines10092074. [PMID: 36140175 PMCID: PMC9495893 DOI: 10.3390/biomedicines10092074] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2022] [Revised: 08/12/2022] [Accepted: 08/22/2022] [Indexed: 11/22/2022] Open
Abstract
The use of next-generation sequencing (NGS) techniques for variant detection has become increasingly important in clinical research and in clinical practice in oncology. Many cancer patients are currently being treated in clinical practice or in clinical trials with drugs directed against specific genomic alterations. In this scenario, the development of reliable and reproducible bioinformatics tools is essential to derive information on the molecular characteristics of each patient’s tumor from the NGS data. The development of bioinformatics pipelines based on the use of machine learning and statistical methods is even more relevant for the determination of complex biomarkers. In this review, we describe some important technologies, computational algorithms and models that can be applied to NGS data from Whole Genome to Targeted Sequencing, to address the problem of finding complex cancer-associated biomarkers. In addition, we explore the future perspectives and challenges faced by bioinformatics for precision medicine both at a molecular and clinical level, with a focus on an emerging complex biomarker such as homologous recombination deficiency (HRD).
Collapse
Affiliation(s)
- Serena Dotolo
- Cell Biology and Biotherapy Unit, Istituto Nazionale Tumori—IRCCS—Fondazione G. Pascale, 80131 Naples, Italy
| | - Riziero Esposito Abate
- Cell Biology and Biotherapy Unit, Istituto Nazionale Tumori—IRCCS—Fondazione G. Pascale, 80131 Naples, Italy
| | - Cristin Roma
- Cell Biology and Biotherapy Unit, Istituto Nazionale Tumori—IRCCS—Fondazione G. Pascale, 80131 Naples, Italy
| | - Davide Guido
- Bioinformatics Research Core Facility, Gemelli Science and Technology Park (GSTeP), Fondazione Policlinico Universitario Agostino Gemelli IRCCS, Largo A. Gemelli, 8, 00168 Rome, Italy
| | - Alessia Preziosi
- Bioinformatics Research Core Facility, Gemelli Science and Technology Park (GSTeP), Fondazione Policlinico Universitario Agostino Gemelli IRCCS, Largo A. Gemelli, 8, 00168 Rome, Italy
| | - Beatrice Tropea
- Bioinformatics Research Core Facility, Gemelli Science and Technology Park (GSTeP), Fondazione Policlinico Universitario Agostino Gemelli IRCCS, Largo A. Gemelli, 8, 00168 Rome, Italy
| | - Fernando Palluzzi
- Bioinformatics Research Core Facility, Gemelli Science and Technology Park (GSTeP), Fondazione Policlinico Universitario Agostino Gemelli IRCCS, Largo A. Gemelli, 8, 00168 Rome, Italy
| | - Luciano Giacò
- Bioinformatics Research Core Facility, Gemelli Science and Technology Park (GSTeP), Fondazione Policlinico Universitario Agostino Gemelli IRCCS, Largo A. Gemelli, 8, 00168 Rome, Italy
| | - Nicola Normanno
- Cell Biology and Biotherapy Unit, Istituto Nazionale Tumori—IRCCS—Fondazione G. Pascale, 80131 Naples, Italy
- Correspondence:
| |
Collapse
|
26
|
Papapietro O, Nejentsev S. Topoisomerase 2β and DNA topology during B cell development. Front Immunol 2022; 13:982870. [PMID: 36045673 PMCID: PMC9423374 DOI: 10.3389/fimmu.2022.982870] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2022] [Accepted: 07/25/2022] [Indexed: 11/13/2022] Open
Abstract
Topoisomerase 2β (TOP2B) introduces transient double strand breaks in the DNA helix to remove supercoiling structures and unwind entangled DNA strains. Advances in genomic technologies have enabled the discovery of novel functions for TOP2B in processes such as releasing of the paused RNA polymerase II and maintaining the genome organization through DNA loop domains. Thus, TOP2B can regulate transcription directly by acting on transcription elongation and indirectly by controlling interactions between enhancer and promoter regions through genome folding. The identification of TOP2B mutations in humans unexpectedly revealed a unique role of TOP2B in B-cell progenitors. Here we discuss the functions of TOP2B and the mechanisms leading to the B-cell development defect in patients with TOP2B deficiency.
Collapse
Affiliation(s)
- Olivier Papapietro
- Molecular Cell Biology and Immunology, Amsterdam University Medical Centers (UMC), Vrije Universiteit Amsterdam, Amsterdam, Netherlands
- Amsterdam Infection and Immunity, Infectious Diseases, Amsterdam, Netherlands
- *Correspondence: Sergey Nejentsev, ; Olivier Papapietro,
| | - Sergey Nejentsev
- Molecular Cell Biology and Immunology, Amsterdam University Medical Centers (UMC), Vrije Universiteit Amsterdam, Amsterdam, Netherlands
- Amsterdam Infection and Immunity, Infectious Diseases, Amsterdam, Netherlands
- Department of Medicine, University of Cambridge, Cambridge, United Kingdom
- *Correspondence: Sergey Nejentsev, ; Olivier Papapietro,
| |
Collapse
|
27
|
Ballarino R, Bouwman BAM, Agostini F, Harbers L, Diekmann C, Wernersson E, Bienko M, Crosetto N. An atlas of endogenous DNA double-strand breaks arising during human neural cell fate determination. Sci Data 2022; 9:400. [PMID: 35821502 PMCID: PMC9276747 DOI: 10.1038/s41597-022-01508-x] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2022] [Accepted: 06/22/2022] [Indexed: 11/25/2022] Open
Abstract
Endogenous DNA double-strand breaks (DSBs) occurring in neural cells have been implicated in the pathogenesis of neurodevelopmental disorders (NDDs). Currently, a genomic map of endogenous DSBs arising during human neurogenesis is missing. Here, we applied in-suspension Breaks Labeling In Situ and Sequencing (sBLISS), RNA-Seq, and Hi-C to chart the genomic landscape of DSBs and relate it to gene expression and genome architecture in 2D cultures of human neuroepithelial stem cells (NES), neural progenitor cells (NPC), and post-mitotic neural cells (NEU). Endogenous DSBs were enriched at the promoter and along the gene body of transcriptionally active genes, at the borders of topologically associating domains (TADs), and around chromatin loop anchors. NDD risk genes harbored significantly more DSBs in comparison to other protein-coding genes, especially in NEU cells. We provide sBLISS, RNA-Seq, and Hi-C datasets for each differentiation stage, and all the scripts needed to reproduce our analyses. Our datasets and tools represent a unique resource that can be harnessed to investigate the role of genome fragility in the pathogenesis of NDDs.
Collapse
Affiliation(s)
- Roberto Ballarino
- Department of Microbiology, Tumor and Cell Biology, Karolinska Institutet, Stockholm, SE-17165, Sweden
- Science for Life Laboratory, Tomtebodavägen 23 A, Solna, SE-17165, Sweden
- Department of Medical Biochemistry and Biophysics, Karolinska Institutet, Stockholm, SE-17165, Sweden
| | - Britta A M Bouwman
- Department of Microbiology, Tumor and Cell Biology, Karolinska Institutet, Stockholm, SE-17165, Sweden
- Science for Life Laboratory, Tomtebodavägen 23 A, Solna, SE-17165, Sweden
| | - Federico Agostini
- Department of Microbiology, Tumor and Cell Biology, Karolinska Institutet, Stockholm, SE-17165, Sweden
- Science for Life Laboratory, Tomtebodavägen 23 A, Solna, SE-17165, Sweden
| | - Luuk Harbers
- Department of Microbiology, Tumor and Cell Biology, Karolinska Institutet, Stockholm, SE-17165, Sweden
- Science for Life Laboratory, Tomtebodavägen 23 A, Solna, SE-17165, Sweden
| | - Constantin Diekmann
- Department of Microbiology, Tumor and Cell Biology, Karolinska Institutet, Stockholm, SE-17165, Sweden
- Science for Life Laboratory, Tomtebodavägen 23 A, Solna, SE-17165, Sweden
| | - Erik Wernersson
- Department of Microbiology, Tumor and Cell Biology, Karolinska Institutet, Stockholm, SE-17165, Sweden
- Science for Life Laboratory, Tomtebodavägen 23 A, Solna, SE-17165, Sweden
| | - Magda Bienko
- Department of Microbiology, Tumor and Cell Biology, Karolinska Institutet, Stockholm, SE-17165, Sweden.
- Science for Life Laboratory, Tomtebodavägen 23 A, Solna, SE-17165, Sweden.
- Human Technopole, Viale Rita Levi-Montalcini 1, 20157, Milan, Italy.
| | - Nicola Crosetto
- Department of Microbiology, Tumor and Cell Biology, Karolinska Institutet, Stockholm, SE-17165, Sweden.
- Science for Life Laboratory, Tomtebodavägen 23 A, Solna, SE-17165, Sweden.
- Human Technopole, Viale Rita Levi-Montalcini 1, 20157, Milan, Italy.
| |
Collapse
|
28
|
Translin facilitates RNA polymerase II dissociation and suppresses genome instability during RNase H2- and Dicer-deficiency. PLoS Genet 2022; 18:e1010267. [PMID: 35714159 PMCID: PMC9246224 DOI: 10.1371/journal.pgen.1010267] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2022] [Revised: 06/30/2022] [Accepted: 05/19/2022] [Indexed: 11/25/2022] Open
Abstract
The conserved nucleic acid binding protein Translin contributes to numerous facets of mammalian biology and genetic diseases. It was first identified as a binder of cancer-associated chromosomal translocation breakpoint junctions leading to the suggestion that it was involved in genetic recombination. With a paralogous partner protein, Trax, Translin has subsequently been found to form a hetero-octomeric RNase complex that drives some of its functions, including passenger strand removal in RNA interference (RNAi). The Translin-Trax complex also degrades the precursors to tumour suppressing microRNAs in cancers deficient for the RNase III Dicer. This oncogenic activity has resulted in the Translin-Trax complex being explored as a therapeutic target. Additionally, Translin and Trax have been implicated in a wider range of biological functions ranging from sleep regulation to telomere transcript control. Here we reveal a Trax- and RNAi-independent function for Translin in dissociating RNA polymerase II from its genomic template, with loss of Translin function resulting in increased transcription-associated recombination and elevated genome instability. This provides genetic insight into the longstanding question of how Translin might influence chromosomal rearrangements in human genetic diseases and provides important functional understanding of an oncological therapeutic target. Human genetic diseases, including cancers, are frequently driven by substantial changes to chromosomes, including translocations, where one arm of a chromosome is exchanged for another. The human nucleic acid binding protein Translin was first identified by its ability to bind to the chromosomal sites at which some of these translocations occur. This resulted in Translin being implicated in the mechanism that generated the translocation and thus the associated disease state. However, since its discovery there has been little evidence to directly indicate Translin does contribute to this process. It is, however, known to contribute to a number of biological functions including, amongst others, neurological regulation, sleep control, vascular stiffening, cancer immunomodulation and it has been recently identified as a potential therapeutic target in some cancers. Here we demonstrate that Translin has conserved function in genome stability maintenance when other primary pathways are defective, a function independent of a key binding partner protein, Trax. Specifically, we demonstrate that Translin contributes to minimizing the deleterious genome destabilizing effects of retaining gene expression machineries on chromosomes. This offers the first evidence for how Translin might contribute to genetic disease-causing chromosomal changes and offers insight to inform therapeutic design.
Collapse
|
29
|
Yasuhara T, Xing YH, Bauer NC, Lee L, Dong R, Yadav T, Soberman RJ, Rivera MN, Zou L. Condensates induced by transcription inhibition localize active chromatin to nucleoli. Mol Cell 2022; 82:2738-2753.e6. [PMID: 35662392 PMCID: PMC9357099 DOI: 10.1016/j.molcel.2022.05.010] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2021] [Revised: 03/25/2022] [Accepted: 05/05/2022] [Indexed: 12/12/2022]
Abstract
The proper function of the genome relies on spatial organization of DNA, RNA, and proteins, but how transcription contributes to the organization is unclear. Here, we show that condensates induced by transcription inhibition (CITIs) drastically alter genome spatial organization. CITIs are formed by SFPQ, NONO, FUS, and TAF15 in nucleoli upon inhibition of RNA polymerase II (RNAPII). Mechanistically, RNAPII inhibition perturbs ribosomal RNA (rRNA) processing, releases rRNA-processing factors from nucleoli, and enables SFPQ to bind rRNA. While accumulating in CITIs, SFPQ/TAF15 remain associated with active genes and tether active chromatin to nucleoli. In the presence of DNA double-strand breaks (DSBs), the altered chromatin compartmentalization induced by RNAPII inhibition increases gene fusions in CITIs and stimulates the formation of fusion oncogenes. Thus, proper RNAPII transcription and rRNA processing prevent the altered compartmentalization of active chromatin in CITIs, suppressing the generation of gene fusions from DSBs.
Collapse
Affiliation(s)
- Takaaki Yasuhara
- Massachusetts General Hospital Cancer Center, Harvard Medical School, Charlestown, MA 02129, USA; Laboratory of Molecular Radiology, Center for Disease Biology and Integrative Medicine, Graduate School of Medicine, the University of Tokyo, Bunkyo-ku, Tokyo 113-8655, Japan
| | - Yu-Hang Xing
- Massachusetts General Hospital Cancer Center, Harvard Medical School, Charlestown, MA 02129, USA; Department of Pathology, Massachusetts General Hospital, Harvard Medical School, Boston, MA 02114, USA
| | - Nicholas C Bauer
- Nephrology Division, Department of Medicine, Massachusetts General Hospital, Harvard Medical School, Boston, MA 02114, USA
| | - Lukuo Lee
- Massachusetts General Hospital Cancer Center, Harvard Medical School, Charlestown, MA 02129, USA; Department of Pathology, Massachusetts General Hospital, Harvard Medical School, Boston, MA 02114, USA
| | - Rui Dong
- Massachusetts General Hospital Cancer Center, Harvard Medical School, Charlestown, MA 02129, USA; Department of Pathology, Massachusetts General Hospital, Harvard Medical School, Boston, MA 02114, USA
| | - Tribhuwan Yadav
- Massachusetts General Hospital Cancer Center, Harvard Medical School, Charlestown, MA 02129, USA
| | - Roy J Soberman
- Nephrology Division, Department of Medicine, Massachusetts General Hospital, Harvard Medical School, Boston, MA 02114, USA
| | - Miguel N Rivera
- Massachusetts General Hospital Cancer Center, Harvard Medical School, Charlestown, MA 02129, USA; Broad Institute of Harvard and MIT, Cambridge, MA 02142, USA; Department of Pathology, Massachusetts General Hospital, Harvard Medical School, Boston, MA 02114, USA
| | - Lee Zou
- Massachusetts General Hospital Cancer Center, Harvard Medical School, Charlestown, MA 02129, USA; Department of Pathology, Massachusetts General Hospital, Harvard Medical School, Boston, MA 02114, USA.
| |
Collapse
|
30
|
Li M, Zhang J, Bai Q, Fang L, Song H, Cao Y. Non-homologous End Joining-Mediated Insertional Mutagenesis Reveals a Novel Target for Enhancing Fatty Alcohols Production in Yarrowia lipolytica. Front Microbiol 2022; 13:898884. [PMID: 35547152 PMCID: PMC9082995 DOI: 10.3389/fmicb.2022.898884] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2022] [Accepted: 04/06/2022] [Indexed: 11/13/2022] Open
Abstract
Non-homologous end joining (NHEJ)-mediated integration is effective in generating random mutagenesis to identify beneficial gene targets in the whole genome, which can significantly promote the performance of the strains. Here, a novel target leading to higher protein synthesis was identified by NHEJ-mediated integration that seriously improved fatty alcohols biosynthesis in Yarrowia lipolytica. One batch of strains transformed with fatty acyl-CoA reductase gene (FAR) showed significant differences (up to 70.53-fold) in fatty alcohol production. Whole-genome sequencing of the high-yield strain demonstrated that a new target YALI0_A00913g ("A1 gene") was disrupted by NHEJ-mediated integration of partial carrier DNA, and reverse engineering of the A1 gene disruption (YlΔA1-FAR) recovered the fatty alcohol overproduction phenotype. Transcriptome analysis of YlΔA1-FAR strain revealed A1 disruption led to strengthened protein synthesis process that was confirmed by sfGFP gene expression, which may account for enhanced cell viability and improved biosynthesis of fatty alcohols. This study identified a novel target that facilitated synthesis capacity and provided new insights into unlocking biosynthetic potential for future genetic engineering in Y. lipolytica.
Collapse
Affiliation(s)
- Mengxu Li
- Frontier Science Center for Synthetic Biology and Key Laboratory of Systems Bioengineering (Ministry of Education), School of Chemical Engineering and Technology, Tianjin University, Tianjin, China.,Key Laboratory of Systems Bioengineering (Ministry of Education), Tianjin University, Tianjin, China
| | - Jinlai Zhang
- Frontier Science Center for Synthetic Biology and Key Laboratory of Systems Bioengineering (Ministry of Education), School of Chemical Engineering and Technology, Tianjin University, Tianjin, China.,Key Laboratory of Systems Bioengineering (Ministry of Education), Tianjin University, Tianjin, China
| | - Qiuyan Bai
- Frontier Science Center for Synthetic Biology and Key Laboratory of Systems Bioengineering (Ministry of Education), School of Chemical Engineering and Technology, Tianjin University, Tianjin, China.,Key Laboratory of Systems Bioengineering (Ministry of Education), Tianjin University, Tianjin, China
| | - Lixia Fang
- Frontier Science Center for Synthetic Biology and Key Laboratory of Systems Bioengineering (Ministry of Education), School of Chemical Engineering and Technology, Tianjin University, Tianjin, China.,Key Laboratory of Systems Bioengineering (Ministry of Education), Tianjin University, Tianjin, China
| | - Hao Song
- Frontier Science Center for Synthetic Biology and Key Laboratory of Systems Bioengineering (Ministry of Education), School of Chemical Engineering and Technology, Tianjin University, Tianjin, China.,Key Laboratory of Systems Bioengineering (Ministry of Education), Tianjin University, Tianjin, China
| | - Yingxiu Cao
- Frontier Science Center for Synthetic Biology and Key Laboratory of Systems Bioengineering (Ministry of Education), School of Chemical Engineering and Technology, Tianjin University, Tianjin, China.,Key Laboratory of Systems Bioengineering (Ministry of Education), Tianjin University, Tianjin, China
| |
Collapse
|
31
|
A POLD3/BLM dependent pathway handles DSBs in transcribed chromatin upon excessive RNA:DNA hybrid accumulation. Nat Commun 2022; 13:2012. [PMID: 35440629 PMCID: PMC9019021 DOI: 10.1038/s41467-022-29629-2] [Citation(s) in RCA: 19] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2021] [Accepted: 03/25/2022] [Indexed: 12/03/2022] Open
Abstract
Transcriptionally active loci are particularly prone to breakage and mounting evidence suggests that DNA Double-Strand Breaks arising in active genes are handled by a dedicated repair pathway, Transcription-Coupled DSB Repair (TC-DSBR), that entails R-loop accumulation and dissolution. Here, we uncover a function for the Bloom RecQ DNA helicase (BLM) in TC-DSBR in human cells. BLM is recruited in a transcription dependent-manner at DSBs where it fosters resection, RAD51 binding and accurate Homologous Recombination repair. However, in an R-loop dissolution-deficient background, we find that BLM promotes cell death. We report that upon excessive RNA:DNA hybrid accumulation, DNA synthesis is enhanced at DSBs, in a manner that depends on BLM and POLD3. Altogether our work unveils a role for BLM at DSBs in active chromatin, and highlights the toxic potential of RNA:DNA hybrids that accumulate at transcription-associated DSBs. DNA Double Strand breaks in transcriptionally active loci (TC-DSBs) undergo a dedicated repair pathway. Here, the authors show that excessive RNA:DNA hybrid accumulation at TC-DSBs elicits POLD3/BLM-dependent DNA synthesis that induces cell toxicity.
Collapse
|
32
|
Scala G, Gorini F, Ambrosio S, Chiariello AM, Nicodemi M, Lania L, Majello B, Amente S. 8-oxodG accumulation within super-enhancers marks fragile CTCF-mediated chromatin loops. Nucleic Acids Res 2022; 50:3292-3306. [PMID: 35234932 PMCID: PMC8989568 DOI: 10.1093/nar/gkac143] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2021] [Revised: 02/12/2022] [Accepted: 02/15/2022] [Indexed: 11/25/2022] Open
Abstract
8-Oxo-7,8-dihydro-2'-deoxyguanosine (8-oxodG), a major product of the DNA oxidization process, has been proposed to have an epigenetic function in gene regulation and has been associated with genome instability. NGS-based methodologies are contributing to the characterization of the 8-oxodG function in the genome. However, the 8-oxodG epigenetic role at a genomic level and the mechanisms controlling the genomic 8-oxodG accumulation/maintenance have not yet been fully characterized. In this study, we report the identification and characterization of a set of enhancer regions accumulating 8-oxodG in human epithelial cells. We found that these oxidized enhancers are mainly super-enhancers and are associated with bidirectional-transcribed enhancer RNAs and DNA Damage Response activation. Moreover, using ChIA-PET and HiC data, we identified specific CTCF-mediated chromatin loops in which the oxidized enhancer and promoter regions physically associate. Oxidized enhancers and their associated chromatin loops accumulate endogenous double-strand breaks which are in turn repaired by NHEJ pathway through a transcription-dependent mechanism. Our work suggests that 8-oxodG accumulation in enhancers-promoters pairs occurs in a transcription-dependent manner and provides novel mechanistic insights on the intrinsic fragility of chromatin loops containing oxidized enhancers-promoters interactions.
Collapse
Affiliation(s)
- Giovanni Scala
- Department of Biology, University of Naples ‘Federico II’, Naples, Italy
| | - Francesca Gorini
- Department of Molecular Medicine and Medical Biotechnologies, University of Naples ‘Federico II’, Naples, Italy
| | - Susanna Ambrosio
- Department of Biology, University of Naples ‘Federico II’, Naples, Italy
| | - Andrea M Chiariello
- Department of Physics, University of Naples Federico II, and INFN, Naples, Italy
| | - Mario Nicodemi
- Department of Physics, University of Naples Federico II, and INFN, Naples, Italy
| | - Luigi Lania
- Department of Molecular Medicine and Medical Biotechnologies, University of Naples ‘Federico II’, Naples, Italy
| | - Barbara Majello
- Department of Biology, University of Naples ‘Federico II’, Naples, Italy
| | - Stefano Amente
- Department of Molecular Medicine and Medical Biotechnologies, University of Naples ‘Federico II’, Naples, Italy
| |
Collapse
|
33
|
Gondane A, Girmay S, Helevä A, Pallasaho S, Loda M, Itkonen HM. O-GlcNAc transferase couples MRE11 to transcriptionally active chromatin to suppress DNA damage. J Biomed Sci 2022; 29:13. [PMID: 35164752 PMCID: PMC8842528 DOI: 10.1186/s12929-022-00795-1] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2021] [Accepted: 02/04/2022] [Indexed: 11/24/2022] Open
Abstract
Background Transcription, metabolism and DNA damage response are tightly regulated to preserve the genomic integrity, and O-GlcNAc transferase (OGT) is positioned to connect the three. Prostate cancer is the most common cancer in men, and androgen-ablation therapy halts disease progression. However, a significant number of prostate cancer patients develop resistance against anti-androgens, and this incurable disease is termed castration-resistant prostate cancer (CRPC). We have shown that combined inhibition of OGT and the transcription elongation kinase CDK9 induce CRPC-selective anti-proliferative effects. Here, we explain the functional basis for these combinatorial effects. Methods We used comprehensive mass spectrometry profiling of short-term CDK9 inhibitor effects on O-GlcNAcylated proteins in an isogenic cell line system that models transition from PC to CRPC. In addition, we used both ChIP-seq and RNA-seq profiling, and pulldown experiments in multiple CRPC models. Finally, we validated our findings in prostate cancer patient samples. Results Inhibition of CDK9 results in an OGT-dependent remodeling of the proteome in prostate cancer cells. More specifically, the activity of the DNA damage repair protein MRE11 is regulated in response to CDK9 inhibition in an OGT-dependent manner. MRE11 is enriched at the O-GlcNAc-marked loci. CDK9 inhibition does not decrease the expression of mRNAs whose genes are bound by both O-GlcNAc and MRE11. Combined inhibition of CDK9 and OGT or MRE11 further decreases RNA polymerase II activity, induces DNA damage signaling, and blocks the survival of prostate cancer cells. These effects are seen in CRPC cells but not in normal prostate cells. Mechanistically, OGT activity is required for MRE11 chromatin-loading in cells treated with CDK9 inhibitor. Finally, we show that MRE11 and O-GlcNAc are enriched at the prostate cancer-specific small nucleotide polymorphic sites, and the loss of MRE11 activity results in a hyper-mutator phenotype in patient tumors. Conclusions Both OGT and MRE11 are essential for the repair of CDK9 inhibitor-induced DNA damage. Our study raises the possibility of targeting CDK9 to elicit DNA damage in CRPC setting as an adjuvant to other treatments. Graphical Abstract ![]()
Supplementary Information The online version contains supplementary material available at 10.1186/s12929-022-00795-1.
Collapse
|
34
|
Liu X, Liu M, Zhang J, Chang Y, Cui Z, Ji B, Nielsen J, Qi Q, Hou J. Mapping of Nonhomologous End Joining-Mediated Integration Facilitates Genome-Scale Trackable Mutagenesis in Yarrowia lipolytica. ACS Synth Biol 2022; 11:216-227. [PMID: 34958561 DOI: 10.1021/acssynbio.1c00390] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Genome-scale mutagenesis, phenotypic screening, and tracking the causal mutations is a powerful approach for genetic analysis. However, classic mutagenesis approaches require extensive effort to identify causal mutations. It is desirable to demonstrate a powerful approach for rapid trackable mutagenesis. Here, we mapped the distribution of nonhomologous end joining (NHEJ)-mediated integration for the first time and demonstrated that it can be used for constructing the genome-scale trackable mutagenesis library in Yarrowia lipolytica. The sequencing of 9.15 × 105 insertions showed that NHEJ-mediated integration inserted DNA randomly across the chromosomes, and the transcriptional regulatory regions exhibited integration preference. The insertions were located in both nucleosome-occupancy regions and nucleosome-free regions. Using NHEJ-mediated integration to construct the genome-scale mutagenesis library, the new targets that improved β-carotene biosynthesis and acetic acid tolerance were identified rapidly. This mutagenesis approach is readily applicable to other organisms with strong NHEJ preference and will contribute to cell factory construction.
Collapse
Affiliation(s)
- Xiaoqin Liu
- State Key Laboratory of Microbial Technology, Shandong University, 266237 Qingdao, People’s Republic of China
| | - Mengmeng Liu
- State Key Laboratory of Microbial Technology, Shandong University, 266237 Qingdao, People’s Republic of China
| | - Jin Zhang
- State Key Laboratory of Microbial Technology, Shandong University, 266237 Qingdao, People’s Republic of China
| | - Yizhao Chang
- State Key Laboratory of Microbial Technology, Shandong University, 266237 Qingdao, People’s Republic of China
| | - Zhiyong Cui
- State Key Laboratory of Microbial Technology, Shandong University, 266237 Qingdao, People’s Republic of China
| | - Boyang Ji
- Department of Biology and Biological Engineering, Chalmers University of Technology, 41296 Gothenburg, Sweden
| | - Jens Nielsen
- Department of Biology and Biological Engineering, Chalmers University of Technology, 41296 Gothenburg, Sweden
- BioInnovation Institute, 2200 Copenhagen N, Denmark
| | - Qingsheng Qi
- State Key Laboratory of Microbial Technology, Shandong University, 266237 Qingdao, People’s Republic of China
| | - Jin Hou
- State Key Laboratory of Microbial Technology, Shandong University, 266237 Qingdao, People’s Republic of China
| |
Collapse
|
35
|
Bunch H, Jeong J, Kang K, Jo DS, Cong ATQ, Kim D, Kim D, Cho DH, Lee YM, Chen BPC, Schellenberg MJ, Calderwood SK. BRCA1-BARD1 regulates transcription through modulating topoisomerase IIβ. Open Biol 2021; 11:210221. [PMID: 34610268 PMCID: PMC8492178 DOI: 10.1098/rsob.210221] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023] Open
Abstract
RNA polymerase II (Pol II)-dependent transcription in stimulus-inducible genes requires topoisomerase IIβ (TOP2B)-mediated DNA strand break and the activation of DNA damage response signalling in humans. Here, we report a novel function of the breast cancer 1 (BRCA1)-BRCA1-associated ring domain 1 (BARD1) complex in this process. We found that BRCA1 is phosphorylated at S1524 by the kinases ataxia-telangiectasia mutated and ATR during gene activation, and that this event is important for productive transcription. Our biochemical and genomic analyses showed that the BRCA1-BARD1 complex interacts with TOP2B in the EGR1 transcription start site and in a large number of protein-coding genes. Intriguingly, the BRCA1-BARD1 complex ubiquitinates TOP2B, which stabilizes TOP2B binding to DNA while BRCA1 phosphorylation at S1524 controls the TOP2B ubiquitination by the complex. Together, these findings suggest the novel function of the BRCA1-BARD1 complex in the regulation of TOP2B and Pol II-mediated gene expression.
Collapse
Affiliation(s)
- Heeyoun Bunch
- Department of Applied Biosciences, College of Agriculture and Life Sciences, College of Pharmacy, Kyungpook National University, Daegu 41566, Republic of Korea,School of Applied Biosciences, College of Agriculture and Life Sciences, College of Pharmacy, Kyungpook National University, Daegu 41566, Republic of Korea
| | - Jaehyeon Jeong
- Department of Applied Biosciences, College of Agriculture and Life Sciences, College of Pharmacy, Kyungpook National University, Daegu 41566, Republic of Korea
| | - Keunsoo Kang
- Department of Microbiology, College of Natural Sciences, Dankook University, Cheonan 31116, Republic of Korea
| | - Doo Sin Jo
- School of Life Sciences, BK21 Four KNU Creative Bioresearch Group, College of Pharmacy, Kyungpook National University, Daegu 41566, Republic of Korea
| | - Anh T. Q. Cong
- Department of Biochemistry and Molecular Biology, Mayo Clinic, Rochester, MN 55905, USA
| | - Deukyeong Kim
- School of Applied Biosciences, College of Agriculture and Life Sciences, College of Pharmacy, Kyungpook National University, Daegu 41566, Republic of Korea
| | - Donguk Kim
- School of Applied Biosciences, College of Agriculture and Life Sciences, College of Pharmacy, Kyungpook National University, Daegu 41566, Republic of Korea
| | - Dong-Hyung Cho
- School of Life Sciences, BK21 Four KNU Creative Bioresearch Group, College of Pharmacy, Kyungpook National University, Daegu 41566, Republic of Korea
| | - You Mie Lee
- Vessel-Organ Interaction Research Center, VOICE (MRC), Department of Molecular Pathophysiology, College of Pharmacy, Kyungpook National University, Daegu 41566, Republic of Korea
| | - Benjamin P. C. Chen
- Department of Radiation Oncology, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| | | | - Stuart K. Calderwood
- Department of Radiation Oncology, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA 02115, USA
| |
Collapse
|
36
|
Genome-wide mapping of genomic DNA damage: methods and implications. Cell Mol Life Sci 2021; 78:6745-6762. [PMID: 34463773 PMCID: PMC8558167 DOI: 10.1007/s00018-021-03923-6] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2021] [Revised: 08/02/2021] [Accepted: 08/11/2021] [Indexed: 12/19/2022]
Abstract
Exposures from the external and internal environments lead to the modification of genomic DNA, which is implicated in the cause of numerous diseases, including cancer, cardiovascular, pulmonary and neurodegenerative diseases, together with ageing. However, the precise mechanism(s) linking the presence of damage, to impact upon cellular function and pathogenesis, is far from clear. Genomic location of specific forms of damage is likely to be highly informative in understanding this process, as the impact of downstream events (e.g. mutation, microsatellite instability, altered methylation and gene expression) on cellular function will be positional—events at key locations will have the greatest impact. However, until recently, methods for assessing DNA damage determined the totality of damage in the genomic location, with no positional information. The technique of “mapping DNA adductomics” describes the molecular approaches that map a variety of forms of DNA damage, to specific locations across the nuclear and mitochondrial genomes. We propose that integrated comparison of this information with other genome-wide data, such as mutational hotspots for specific genotoxins, tumour-specific mutation patterns and chromatin organisation and transcriptional activity in non-cancerous lesions (such as nevi), pre-cancerous conditions (such as polyps) and tumours, will improve our understanding of how environmental toxins lead to cancer. Adopting an analogous approach for non-cancer diseases, including the development of genome-wide assays for other cellular outcomes of DNA damage, will improve our understanding of the role of DNA damage in pathogenesis more generally.
Collapse
|
37
|
Bowry A, Kelly RDW, Petermann E. Hypertranscription and replication stress in cancer. Trends Cancer 2021; 7:863-877. [PMID: 34052137 DOI: 10.1016/j.trecan.2021.04.006] [Citation(s) in RCA: 34] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2021] [Revised: 04/23/2021] [Accepted: 04/30/2021] [Indexed: 12/18/2022]
Abstract
Replication stress results from obstacles to replication fork progression, including ongoing transcription, which can cause transcription-replication conflicts. Oncogenic signaling can promote global increases in transcription activity, also termed hypertranscription. Despite the widely accepted importance of oncogene-induced hypertranscription, its study remains neglected compared with other causes of replication stress and genomic instability in cancer. A growing number of recent studies are reporting that oncogenes, such as RAS, and targeted cancer treatments, such as bromodomain and extraterminal motif (BET) bromodomain inhibitors, increase global transcription, leading to R-loop accumulation, transcription-replication conflicts, and the activation of replication stress responses. Here we discuss our mechanistic understanding of hypertranscription-induced replication stress and the resulting cellular responses, in the context of oncogenes and targeted cancer therapies.
Collapse
Affiliation(s)
- Akhil Bowry
- Institute of Cancer and Genomic Sciences, College of Medical and Dental Sciences, University of Birmingham, Birmingham B15 2TT, UK
| | - Richard D W Kelly
- Institute of Cancer and Genomic Sciences, College of Medical and Dental Sciences, University of Birmingham, Birmingham B15 2TT, UK.
| | - Eva Petermann
- Institute of Cancer and Genomic Sciences, College of Medical and Dental Sciences, University of Birmingham, Birmingham B15 2TT, UK.
| |
Collapse
|
38
|
St Germain C, Zhao H, Barlow JH. Transcription-Replication Collisions-A Series of Unfortunate Events. Biomolecules 2021; 11:1249. [PMID: 34439915 PMCID: PMC8391903 DOI: 10.3390/biom11081249] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2021] [Revised: 08/12/2021] [Accepted: 08/17/2021] [Indexed: 02/07/2023] Open
Abstract
Transcription-replication interactions occur when DNA replication encounters genomic regions undergoing transcription. Both replication and transcription are essential for life and use the same DNA template making conflicts unavoidable. R-loops, DNA supercoiling, DNA secondary structure, and chromatin-binding proteins are all potential obstacles for processive replication or transcription and pose an even more potent threat to genome integrity when these processes co-occur. It is critical to maintaining high fidelity and processivity of transcription and replication while navigating through a complex chromatin environment, highlighting the importance of defining cellular pathways regulating transcription-replication interaction formation, evasion, and resolution. Here we discuss how transcription influences replication fork stability, and the safeguards that have evolved to navigate transcription-replication interactions and maintain genome integrity in mammalian cells.
Collapse
Affiliation(s)
- Commodore St Germain
- School of Mathematics and Science, Solano Community College, 4000 Suisun Valley Road, Fairfield, CA 94534, USA
- Department of Microbiology and Molecular Genetics, University of California Davis, One Shields Avenue, Davis, CA 95616, USA;
| | - Hongchang Zhao
- Department of Microbiology and Molecular Genetics, University of California Davis, One Shields Avenue, Davis, CA 95616, USA;
| | - Jacqueline H. Barlow
- Department of Microbiology and Molecular Genetics, University of California Davis, One Shields Avenue, Davis, CA 95616, USA;
| |
Collapse
|
39
|
Bulut-Karslioglu A, Jin H, Kim YK, Cho B, Guzman-Ayala M, Williamson AJK, Hejna M, Stötzel M, Whetton AD, Song JS, Ramalho-Santos M. Chd1 protects genome integrity at promoters to sustain hypertranscription in embryonic stem cells. Nat Commun 2021; 12:4859. [PMID: 34381042 PMCID: PMC8357957 DOI: 10.1038/s41467-021-25088-3] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2019] [Accepted: 07/20/2021] [Indexed: 11/09/2022] Open
Abstract
Stem and progenitor cells undergo a global elevation of nascent transcription, or hypertranscription, during key developmental transitions involving rapid cell proliferation. The chromatin remodeler Chd1 mediates hypertranscription in pluripotent cells but its mechanism of action remains poorly understood. Here we report a novel role for Chd1 in protecting genome integrity at promoter regions by preventing DNA double-stranded break (DSB) accumulation in ES cells. Chd1 interacts with several DNA repair factors including Atm, Parp1, Kap1 and Topoisomerase 2β and its absence leads to an accumulation of DSBs at Chd1-bound Pol II-transcribed genes and rDNA. Genes prone to DNA breaks in Chd1 KO ES cells are longer genes with GC-rich promoters, a more labile nucleosomal structure and roles in chromatin regulation, transcription and signaling. These results reveal a vulnerability of hypertranscribing stem cells to accumulation of endogenous DNA breaks, with important implications for developmental and cancer biology.
Collapse
Affiliation(s)
- Aydan Bulut-Karslioglu
- Eli and Edythe Broad Center of Regeneration Medicine and Stem Cell Research, Center for Reproductive Sciences and Diabetes Center, University of California, San Francisco, San Francisco, CA, USA.
- Max Planck Institute for Molecular Genetics, Berlin, Germany.
| | - Hu Jin
- Carl R. Woese Institute for Genomic Biology, Urbana, IL, USA
- Department of Physics, University of Illinois, Urbana-Champaign, Urbana, IL, USA
- Department of Biomedical Informatics, Harvard Medical School, Boston, MA, USA
| | - Yun-Kyo Kim
- Lunenfeld-Tanenbaum Research Institute and Department of Molecular Genetics, University of Toronto, Toronto, ON, Canada
| | - Brandon Cho
- Lunenfeld-Tanenbaum Research Institute and Department of Molecular Genetics, University of Toronto, Toronto, ON, Canada
| | - Marcela Guzman-Ayala
- Eli and Edythe Broad Center of Regeneration Medicine and Stem Cell Research, Center for Reproductive Sciences and Diabetes Center, University of California, San Francisco, San Francisco, CA, USA
- Senti Biosciences, South San Francisco, CA, USA
| | - Andrew J K Williamson
- Stoller Biomarker Discovery Centre, The University of Manchester, Manchester, UK
- Thermo Fisher Scientific, Stafford House, UK
| | - Miroslav Hejna
- Carl R. Woese Institute for Genomic Biology, Urbana, IL, USA
- Department of Physics, University of Illinois, Urbana-Champaign, Urbana, IL, USA
| | | | - Anthony D Whetton
- Stoller Biomarker Discovery Centre, The University of Manchester, Manchester, UK
| | - Jun S Song
- Carl R. Woese Institute for Genomic Biology, Urbana, IL, USA
- Department of Physics, University of Illinois, Urbana-Champaign, Urbana, IL, USA
| | - Miguel Ramalho-Santos
- Eli and Edythe Broad Center of Regeneration Medicine and Stem Cell Research, Center for Reproductive Sciences and Diabetes Center, University of California, San Francisco, San Francisco, CA, USA.
- Lunenfeld-Tanenbaum Research Institute and Department of Molecular Genetics, University of Toronto, Toronto, ON, Canada.
| |
Collapse
|
40
|
Liang S, Chaplin AK, Stavridi AK, Appleby R, Hnizda A, Blundell TL. Stages, scaffolds and strings in the spatial organisation of non-homologous end joining: Insights from X-ray diffraction and Cryo-EM. PROGRESS IN BIOPHYSICS AND MOLECULAR BIOLOGY 2021; 163:60-73. [PMID: 33285184 PMCID: PMC8224183 DOI: 10.1016/j.pbiomolbio.2020.11.008] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/26/2020] [Accepted: 11/26/2020] [Indexed: 01/10/2023]
Abstract
Non-homologous end joining (NHEJ) is the preferred pathway for the repair of DNA double-strand breaks in humans. Here we describe three structural aspects of the repair pathway: stages, scaffolds and strings. We discuss the orchestration of DNA repair to guarantee robust and efficient NHEJ. We focus on structural studies over the past two decades, not only using X-ray diffraction, but also increasingly exploiting cryo-EM to investigate the macromolecular assemblies.
Collapse
Affiliation(s)
- Shikang Liang
- Department of Biochemistry, University of Cambridge, Tennis Court Road, Cambridge, CB2 1GA, Cambridgeshire, UK
| | - Amanda K Chaplin
- Department of Biochemistry, University of Cambridge, Tennis Court Road, Cambridge, CB2 1GA, Cambridgeshire, UK
| | - Antonia Kefala Stavridi
- Department of Biochemistry, University of Cambridge, Tennis Court Road, Cambridge, CB2 1GA, Cambridgeshire, UK
| | - Robert Appleby
- Department of Biochemistry, University of Cambridge, Tennis Court Road, Cambridge, CB2 1GA, Cambridgeshire, UK
| | - Ales Hnizda
- Department of Biochemistry, University of Cambridge, Tennis Court Road, Cambridge, CB2 1GA, Cambridgeshire, UK
| | - Tom L Blundell
- Department of Biochemistry, University of Cambridge, Tennis Court Road, Cambridge, CB2 1GA, Cambridgeshire, UK.
| |
Collapse
|
41
|
Harbers L, Agostini F, Nicos M, Poddighe D, Bienko M, Crosetto N. Somatic Copy Number Alterations in Human Cancers: An Analysis of Publicly Available Data From The Cancer Genome Atlas. Front Oncol 2021; 11:700568. [PMID: 34395272 PMCID: PMC8355892 DOI: 10.3389/fonc.2021.700568] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2021] [Accepted: 07/06/2021] [Indexed: 12/24/2022] Open
Abstract
Somatic copy number alterations (SCNAs) are a pervasive trait of human cancers that contributes to tumorigenesis by affecting the dosage of multiple genes at the same time. In the past decade, The Cancer Genome Atlas (TCGA) and the International Cancer Genome Consortium (ICGC) initiatives have generated and made publicly available SCNA genomic profiles from thousands of tumor samples across multiple cancer types. Here, we present a comprehensive analysis of 853,218 SCNAs across 10,729 tumor samples belonging to 32 cancer types using TCGA data. We then discuss current models for how SCNAs likely arise during carcinogenesis and how genomic SCNA profiles can inform clinical practice. Lastly, we highlight open questions in the field of cancer-associated SCNAs.
Collapse
Affiliation(s)
- Luuk Harbers
- Division of Genome Biology, Department of Medical Biochemistry and Biophysics, Karolinska Institutet, Stockholm, Sweden
- Bienko-Crosetto Lab, Science for Life Laboratory, Stockholm, Sweden
| | - Federico Agostini
- Division of Genome Biology, Department of Medical Biochemistry and Biophysics, Karolinska Institutet, Stockholm, Sweden
- Bienko-Crosetto Lab, Science for Life Laboratory, Stockholm, Sweden
| | - Marcin Nicos
- Department of Pneumonology, Oncology and Allergology, Medical University of Lublin, Lublin, Poland
| | - Dimitri Poddighe
- Department of Medicine, Nazarbayev University School of Medicine, Nur-Sultan, Kazakhstan
- Clinical Academic Department of Pediatrics, National Research Center for Maternal and Child Health, University Medical Center, Nur-Sultan, Kazakhstan
| | - Magda Bienko
- Division of Genome Biology, Department of Medical Biochemistry and Biophysics, Karolinska Institutet, Stockholm, Sweden
- Bienko-Crosetto Lab, Science for Life Laboratory, Stockholm, Sweden
| | - Nicola Crosetto
- Division of Genome Biology, Department of Medical Biochemistry and Biophysics, Karolinska Institutet, Stockholm, Sweden
- Bienko-Crosetto Lab, Science for Life Laboratory, Stockholm, Sweden
| |
Collapse
|
42
|
Xiao K, Liu S, Xiao Y, Wang Y, Zhu Z, Wang Y, Tong D, Jiang J. Bioinformatics prediction of differential miRNAs in non-small cell lung cancer. PLoS One 2021; 16:e0254854. [PMID: 34288959 PMCID: PMC8294502 DOI: 10.1371/journal.pone.0254854] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2021] [Accepted: 07/03/2021] [Indexed: 12/26/2022] Open
Abstract
Background Non-small cell lung cancer (NSCLC) accounts for 85% of all lung cancers. The drug resistance of NSCLC has clinically increased. This study aimed to screen miRNAs associated with NSCLC using bioinformatics analysis. We hope that the screened miRNA can provide a research direction for the subsequent treatment of NSCLC. Methods We screened out the common miRNAs after compared the NSCLC-related genes in the TCGA database and GEO database. Selected miRNA was performed ROC analysis, survival analysis, and enrichment analysis (GO term and KEGG pathway). Results A total of 21 miRNAs were screened in the two databases. And they were all highly expressed in normal and low in cancerous tissues. Hsa-mir-30a was selected by ROC analysis and survival analysis. Enrichment analysis showed that the function of hsa-mir-30a is mainly related to cell cycle regulation and drug metabolism. Conclusion Our study found that hsa-mir-30a was differentially expressed in NSCLC, and it mainly affected NSCLC by regulating the cell cycle and drug metabolism.
Collapse
Affiliation(s)
- Kui Xiao
- Department of Respiratory and Critical Care Medicine, The Second Xiangya Hospital of Central South University, Changsha, Hunan, China
- Research Unit of Respiratory Disease, Central South University, Changsha, Hunan, China
- The Respiratory Disease Diagnosis and Treatment Center of Hunan Province, Changsha, Hunan, China
| | - Shenggang Liu
- Department of Pulmonary and Critical Care Medicine, University of South China Affiliated Changsha Central Hospital, Changsha City, Hunan Province, China
| | - Yijia Xiao
- Department of Pulmonary and Critical Care Medicine, University of South China Affiliated Changsha Central Hospital, Changsha City, Hunan Province, China
| | - Yang Wang
- Department of Pathology, The Second Xiangya Hospital of Central South University, Changsha, Hunan, China
| | - Zhiruo Zhu
- Department of Respiratory and Critical Care Medicine, The Second Xiangya Hospital of Central South University, Changsha, Hunan, China
- Research Unit of Respiratory Disease, Central South University, Changsha, Hunan, China
- The Respiratory Disease Diagnosis and Treatment Center of Hunan Province, Changsha, Hunan, China
| | - Yaohui Wang
- Department of Respiratory and Critical Care Medicine, The Second Xiangya Hospital of Central South University, Changsha, Hunan, China
- Research Unit of Respiratory Disease, Central South University, Changsha, Hunan, China
- The Respiratory Disease Diagnosis and Treatment Center of Hunan Province, Changsha, Hunan, China
| | - De Tong
- Department of Respiratory and Critical Care Medicine, The Second Xiangya Hospital of Central South University, Changsha, Hunan, China
- Research Unit of Respiratory Disease, Central South University, Changsha, Hunan, China
- The Respiratory Disease Diagnosis and Treatment Center of Hunan Province, Changsha, Hunan, China
| | - Jiehan Jiang
- Department of Pulmonary and Critical Care Medicine, University of South China Affiliated Changsha Central Hospital, Changsha City, Hunan Province, China
- * E-mail:
| |
Collapse
|
43
|
Cristini A, Géraud M, Sordet O. Transcription-associated DNA breaks and cancer: A matter of DNA topology. INTERNATIONAL REVIEW OF CELL AND MOLECULAR BIOLOGY 2021; 364:195-240. [PMID: 34507784 DOI: 10.1016/bs.ircmb.2021.05.001] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Transcription is an essential cellular process but also a major threat to genome integrity. Transcription-associated DNA breaks are particularly detrimental as their defective repair can induce gene mutations and oncogenic chromosomal translocations, which are hallmarks of cancer. The past few years have revealed that transcriptional breaks mainly originate from DNA topological problems generated by the transcribing RNA polymerases. Defective removal of transcription-induced DNA torsional stress impacts on transcription itself and promotes secondary DNA structures, such as R-loops, which can induce DNA breaks and genome instability. Paradoxically, as they relax DNA during transcription, topoisomerase enzymes introduce DNA breaks that can also endanger genome integrity. Stabilization of topoisomerases on chromatin by various anticancer drugs or by DNA alterations, can interfere with transcription machinery and cause permanent DNA breaks and R-loops. Here, we review the role of transcription in mediating DNA breaks, and discuss how deregulation of topoisomerase activity can impact on transcription and DNA break formation, and its connection with cancer.
Collapse
Affiliation(s)
- Agnese Cristini
- Cancer Research Center of Toulouse, INSERM, Université de Toulouse, Université Toulouse III Paul Sabatier, CNRS, Toulouse, France.
| | - Mathéa Géraud
- Cancer Research Center of Toulouse, INSERM, Université de Toulouse, Université Toulouse III Paul Sabatier, CNRS, Toulouse, France
| | - Olivier Sordet
- Cancer Research Center of Toulouse, INSERM, Université de Toulouse, Université Toulouse III Paul Sabatier, CNRS, Toulouse, France.
| |
Collapse
|
44
|
Ashour ME, Allam W, Elsayed W, Atteya R, Elserafy M, Magdeldin S, Hassan MK, El-Khamisy SF. High Temperature Drives Topoisomerase Mediated Chromosomal Break Repair Pathway Choice. Cancers (Basel) 2021; 13:cancers13102315. [PMID: 34065967 PMCID: PMC8151962 DOI: 10.3390/cancers13102315] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2021] [Revised: 05/05/2021] [Accepted: 05/07/2021] [Indexed: 02/08/2023] Open
Abstract
Simple Summary Targeting topoisomerases has been widely used as anticancer therapeutics. Exposure to high temperature (hyperthermia) protects cells from the cytotoxic effect of topoisomerase-targeting therapeutics, yet the mechanism remains unknown. Here, we report that hyperthermia inhibits the nucleolytic processing of topoisomerase-induced DNA damage and drives repair to a more faithful pathway mediated by TDP1 and TDP2. We further show that hyperthermia suppresses topoisomerase-induced chromosomal translocation and hallmarks of inflammation, which has broad implications in cancer development and therapy. Abstract Cancer-causing mutations often arise from inappropriate DNA repair, yet acute exposure to DNA damage is widely used to treat cancer. The challenge remains in how to specifically induce excessive DNA damage in cancer cells while minimizing the undesirable effects of genomic instability in noncancerous cells. One approach is the acute exposure to hyperthermia, which suppresses DNA repair and synergizes with radiotherapy and chemotherapy. An exception, however, is the protective effect of hyperthermia on topoisomerase targeting therapeutics. The molecular explanation for this conundrum remains unclear. Here, we show that hyperthermia suppresses the level of topoisomerase mediated single- and double-strand breaks induced by exposure to topoisomerase poisons. We further uncover that, hyperthermia suppresses hallmarks of genomic instability induced by topoisomerase targeting therapeutics by inhibiting nuclease activities, thereby channeling repair to error-free pathways driven by tyrosyl-DNA phosphodiesterases. These findings provide an explanation for the protective effect of hyperthermia from topoisomerase-induced DNA damage and may help to explain the inverse relationship between cancer incidence and temperature. They also pave the way for the use of controlled heat as a therapeutic adjunct to topoisomerase targeting therapeutics.
Collapse
Affiliation(s)
- Mohamed E. Ashour
- Center for Genomics, Helmy Institute for Medical Science, Zewail City of Science and Technology, Giza 12578, Egypt; (M.E.A.); (W.A.); (W.E.); (R.A.); (M.E.)
| | - Walaa Allam
- Center for Genomics, Helmy Institute for Medical Science, Zewail City of Science and Technology, Giza 12578, Egypt; (M.E.A.); (W.A.); (W.E.); (R.A.); (M.E.)
| | - Waheba Elsayed
- Center for Genomics, Helmy Institute for Medical Science, Zewail City of Science and Technology, Giza 12578, Egypt; (M.E.A.); (W.A.); (W.E.); (R.A.); (M.E.)
| | - Reham Atteya
- Center for Genomics, Helmy Institute for Medical Science, Zewail City of Science and Technology, Giza 12578, Egypt; (M.E.A.); (W.A.); (W.E.); (R.A.); (M.E.)
| | - Menattallah Elserafy
- Center for Genomics, Helmy Institute for Medical Science, Zewail City of Science and Technology, Giza 12578, Egypt; (M.E.A.); (W.A.); (W.E.); (R.A.); (M.E.)
| | - Sameh Magdeldin
- Proteomics and Metabolomics Research Program, Children Cancer Hospital (CCHE 57357), Cairo 11441, Egypt;
- Physiology Department, Faculty of Veterinary Medicine, Suez Canal University, Ismailia 41522, Egypt
| | - Mohamed K. Hassan
- Center for Genomics, Helmy Institute for Medical Science, Zewail City of Science and Technology, Giza 12578, Egypt; (M.E.A.); (W.A.); (W.E.); (R.A.); (M.E.)
- Biotechnology Program, Biology Department, Faculty of Science, Port Said University, Port Said 42522, Egypt
- Correspondence: (M.K.H.); (S.F.E.-K.); Tel.: +44-114-2222791 (S.F.E.-K.)
| | - Sherif F. El-Khamisy
- The Healthy Lifespan and the Neuroscience Institutes, University of Sheffield, South Yorkshire, Sheffield S10 2TN, UK
- The Institute of Cancer Therapeutics, University of Bradford, West Yorkshire BD7 1DP, UK
- Correspondence: (M.K.H.); (S.F.E.-K.); Tel.: +44-114-2222791 (S.F.E.-K.)
| |
Collapse
|
45
|
Lee CA, Abd-Rabbo D, Reimand J. Functional and genetic determinants of mutation rate variability in regulatory elements of cancer genomes. Genome Biol 2021; 22:133. [PMID: 33941236 PMCID: PMC8091793 DOI: 10.1186/s13059-021-02318-x] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2020] [Accepted: 03/19/2021] [Indexed: 02/06/2023] Open
Abstract
Background Cancer genomes are shaped by mutational processes with complex spatial variation at multiple scales. Entire classes of regulatory elements are affected by local variations in mutation frequency. However, the underlying mechanisms with functional and genetic determinants remain poorly understood. Results We characterise the mutational landscape of 1.3 million gene-regulatory and chromatin architectural elements in 2419 whole cancer genomes with transcriptional and pathway activity, functional conservation and recurrent driver events. We develop RM2, a statistical model that quantifies mutational enrichment or depletion in classes of genomic elements through genetic, trinucleotide and megabase-scale effects. We report a map of localised mutational processes affecting CTCF binding sites, transcription start sites (TSS) and tissue-specific open-chromatin regions. Increased mutation frequency in TSSs associates with mRNA abundance in most cancer types, while open-chromatin regions are generally enriched in mutations. We identify ~ 10,000 CTCF binding sites with core DNA motifs and constitutive binding in 66 cell types that represent focal points of mutagenesis. We detect site-specific mutational signature enrichments, such as SBS40 in open-chromatin regions in prostate cancer and SBS17b in CTCF binding sites in gastrointestinal cancers. Candidate drivers of localised mutagenesis are also apparent: BRAF mutations associate with mutational enrichments at CTCF binding sites in melanoma, and ARID1A mutations with TSS-specific mutagenesis in pancreatic cancer. Conclusions Our method and catalogue of localised mutational processes provide novel perspectives to cancer genome evolution, mutagenesis, DNA repair and driver gene discovery. The functional and genetic correlates of mutational processes suggest mechanistic hypotheses for future studies.
Collapse
Affiliation(s)
- Christian A Lee
- Computational Biology Program, Ontario Institute for Cancer Research, Toronto, ON, Canada.,Department of Medical Biophysics, University of Toronto, Toronto, ON, Canada
| | - Diala Abd-Rabbo
- Computational Biology Program, Ontario Institute for Cancer Research, Toronto, ON, Canada
| | - Jüri Reimand
- Computational Biology Program, Ontario Institute for Cancer Research, Toronto, ON, Canada. .,Department of Medical Biophysics, University of Toronto, Toronto, ON, Canada. .,Department of Molecular Genetics, University of Toronto, Toronto, ON, Canada.
| |
Collapse
|
46
|
Herrero-Ruiz A, Martínez-García PM, Terrón-Bautista J, Millán-Zambrano G, Lieberman JA, Jimeno-González S, Cortés-Ledesma F. Topoisomerase IIα represses transcription by enforcing promoter-proximal pausing. Cell Rep 2021; 35:108977. [PMID: 33852840 PMCID: PMC8052185 DOI: 10.1016/j.celrep.2021.108977] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2020] [Revised: 02/05/2021] [Accepted: 03/19/2021] [Indexed: 12/19/2022] Open
Abstract
Accumulation of topological stress in the form of DNA supercoiling is inherent to the advance of RNA polymerase II (Pol II) and needs to be resolved by DNA topoisomerases to sustain productive transcriptional elongation. Topoisomerases are therefore considered positive facilitators of transcription. Here, we show that, in contrast to this general assumption, human topoisomerase IIα (TOP2A) activity at promoters represses transcription of immediate early genes such as c-FOS, maintaining them under basal repressed conditions. Thus, TOP2A inhibition creates a particular topological context that results in rapid release from promoter-proximal pausing and transcriptional upregulation, which mimics the typical bursting behavior of these genes in response to physiological stimulus. We therefore describe the control of promoter-proximal pausing by TOP2A as a layer for the regulation of gene expression, which can act as a molecular switch to rapidly activate transcription, possibly by regulating the accumulation of DNA supercoiling at promoter regions.
Collapse
Affiliation(s)
- Andrés Herrero-Ruiz
- Centro Andaluz de Biología Molecular y Medicina Regenerativa-CABIMER, Universidad de Sevilla-CSIC-Universidad Pablo de Olavide, Sevilla 41092, Spain; Topology and DNA Breaks Group, Spanish National Cancer Centre (CNIO), Madrid 28029, Spain
| | - Pedro Manuel Martínez-García
- Centro Andaluz de Biología Molecular y Medicina Regenerativa-CABIMER, Universidad de Sevilla-CSIC-Universidad Pablo de Olavide, Sevilla 41092, Spain
| | - José Terrón-Bautista
- Centro Andaluz de Biología Molecular y Medicina Regenerativa-CABIMER, Universidad de Sevilla-CSIC-Universidad Pablo de Olavide, Sevilla 41092, Spain
| | - Gonzalo Millán-Zambrano
- Centro Andaluz de Biología Molecular y Medicina Regenerativa-CABIMER, Universidad de Sevilla-CSIC-Universidad Pablo de Olavide, Sevilla 41092, Spain
| | | | - Silvia Jimeno-González
- Centro Andaluz de Biología Molecular y Medicina Regenerativa-CABIMER, Universidad de Sevilla-CSIC-Universidad Pablo de Olavide, Sevilla 41092, Spain; Departamento de Genética, Universidad de Sevilla, Sevilla 41080, Spain.
| | - Felipe Cortés-Ledesma
- Centro Andaluz de Biología Molecular y Medicina Regenerativa-CABIMER, Universidad de Sevilla-CSIC-Universidad Pablo de Olavide, Sevilla 41092, Spain; Topology and DNA Breaks Group, Spanish National Cancer Centre (CNIO), Madrid 28029, Spain.
| |
Collapse
|
47
|
Liddiard K, Grimstead JW, Cleal K, Evans A, Baird DM. Tracking telomere fusions through crisis reveals conflict between DNA transcription and the DNA damage response. NAR Cancer 2021; 3:zcaa044. [PMID: 33447828 PMCID: PMC7787266 DOI: 10.1093/narcan/zcaa044] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2020] [Revised: 12/02/2020] [Accepted: 12/17/2020] [Indexed: 12/20/2022] Open
Abstract
Identifying attributes that distinguish pre-malignant from senescent cells provides opportunities for targeted disease eradication and revival of anti-tumour immunity. We modelled a telomere-driven crisis in four human fibroblast lines, sampling at multiple time points to delineate genomic rearrangements and transcriptome developments that characterize the transition from dynamic proliferation into replicative crisis. Progression through crisis was associated with abundant intra-chromosomal telomere fusions with increasing asymmetry and reduced microhomology usage, suggesting shifts in DNA repair capacity. Eroded telomeres also fused with genomic loci actively engaged in transcription, with particular enrichment in long genes. Both gross copy number alterations and transcriptional responses to crisis likely underpin the elevated frequencies of telomere fusion with chromosomes 9, 16, 17, 19 and most exceptionally, chromosome 12. Juxtaposition of crisis-regulated genes with loci undergoing de novo recombination exposes the collusive contributions of cellular stress responses to the evolving cancer genome.
Collapse
Affiliation(s)
- Kate Liddiard
- Division of Cancer and Genetics, Cardiff University School of Medicine, Heath Park, Cardiff, CF14 4XN, UK
| | - Julia W Grimstead
- Division of Cancer and Genetics, Cardiff University School of Medicine, Heath Park, Cardiff, CF14 4XN, UK
| | - Kez Cleal
- Division of Cancer and Genetics, Cardiff University School of Medicine, Heath Park, Cardiff, CF14 4XN, UK
| | - Anna Evans
- Wales Gene Park, Institute of Medical Genetics, Cardiff University School of Medicine, Heath Park, Cardiff, CF14 4XN, UK
| | - Duncan M Baird
- Division of Cancer and Genetics, Cardiff University School of Medicine, Heath Park, Cardiff, CF14 4XN, UK
| |
Collapse
|
48
|
Chiariello AM, Bianco S, Esposito A, Fiorillo L, Conte M, Irani E, Musella F, Abraham A, Prisco A, Nicodemi M. Physical mechanisms of chromatin spatial organization. FEBS J 2021; 289:1180-1190. [PMID: 33583147 DOI: 10.1111/febs.15762] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2020] [Revised: 01/22/2021] [Accepted: 02/11/2021] [Indexed: 12/11/2022]
Affiliation(s)
- Andrea M. Chiariello
- Dipartimento di Fisica Università di Napoli Federico II, and INFN Napoli Complesso Universitario di Monte Sant’Angelo Naples Italy
| | - Simona Bianco
- Dipartimento di Fisica Università di Napoli Federico II, and INFN Napoli Complesso Universitario di Monte Sant’Angelo Naples Italy
| | - Andrea Esposito
- Dipartimento di Fisica Università di Napoli Federico II, and INFN Napoli Complesso Universitario di Monte Sant’Angelo Naples Italy
| | - Luca Fiorillo
- Dipartimento di Fisica Università di Napoli Federico II, and INFN Napoli Complesso Universitario di Monte Sant’Angelo Naples Italy
| | - Mattia Conte
- Dipartimento di Fisica Università di Napoli Federico II, and INFN Napoli Complesso Universitario di Monte Sant’Angelo Naples Italy
| | - Ehsan Irani
- Berlin Institute for Medical Systems BiologyMax‐Delbrück Centre (MDC) for Molecular Medicine Berlin Germany
| | - Francesco Musella
- Dipartimento di Fisica Università di Napoli Federico II, and INFN Napoli Complesso Universitario di Monte Sant’Angelo Naples Italy
| | - Alex Abraham
- Dipartimento di Fisica Università di Napoli Federico II, and INFN Napoli Complesso Universitario di Monte Sant’Angelo Naples Italy
| | | | - Mario Nicodemi
- Dipartimento di Fisica Università di Napoli Federico II, and INFN Napoli Complesso Universitario di Monte Sant’Angelo Naples Italy
- Berlin Institute for Medical Systems BiologyMax‐Delbrück Centre (MDC) for Molecular Medicine Berlin Germany
- Berlin Institute of Health (BIH)MDC‐Berlin Germany
| |
Collapse
|
49
|
Hnízda A, Tesina P, Nguyen TB, Kukačka Z, Kater L, Chaplin AK, Beckmann R, Ascher DB, Novák P, Blundell TL. SAP domain forms a flexible part of DNA aperture in Ku70/80. FEBS J 2021; 288:4382-4393. [PMID: 33511782 PMCID: PMC8653891 DOI: 10.1111/febs.15732] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2020] [Revised: 01/19/2021] [Accepted: 01/26/2021] [Indexed: 12/26/2022]
Abstract
Nonhomologous end joining (NHEJ) is a DNA repair mechanism that religates double-strand DNA breaks to maintain genomic integrity during the entire cell cycle. The Ku70/80 complex recognizes DNA breaks and serves as an essential hub for recruitment of NHEJ components. Here, we describe intramolecular interactions of the Ku70 C-terminal domain, known as the SAP domain. Using single-particle cryo-electron microscopy, mass spectrometric analysis of intermolecular cross-linking and molecular modelling simulations, we captured variable positions of the SAP domain depending on DNA binding. The first position was localized at the DNA aperture in the Ku70/80 apo form but was not observed in the DNA-bound state. The second position, which was observed in both apo and DNA-bound states, was found below the DNA aperture, close to the helical arm of Ku70. The localization of the SAP domain in the DNA aperture suggests a function as a flexible entry gate for broken DNA. DATABASES: EM maps have been deposited in EMDB (EMD-11933). Coordinates have been deposited in Protein Data Bank (PDB 7AXZ). Other data are available from corresponding authors upon a request.
Collapse
Affiliation(s)
- Aleš Hnízda
- Department of Biochemistry, University of Cambridge, Cambridge, UK
| | - Petr Tesina
- Gene Center and Department of Biochemistry, University of Munich, Germany
| | - Thanh-Binh Nguyen
- Computational and Systems Biology, Bio21 Institute, University of Melbourne, Parkville, VIC, Australia.,Computational Biology and Clinical Informatics, Baker Heart and Diabetes Institute, Melbourne, VIC, Australia
| | - Zdeněk Kukačka
- Institute of Microbiology, Academy of Sciences of the Czech Republic, Prague, Czech Republic
| | - Lukas Kater
- Gene Center and Department of Biochemistry, University of Munich, Germany
| | - Amanda K Chaplin
- Department of Biochemistry, University of Cambridge, Cambridge, UK
| | - Roland Beckmann
- Gene Center and Department of Biochemistry, University of Munich, Germany
| | - David B Ascher
- Department of Biochemistry, University of Cambridge, Cambridge, UK.,Computational and Systems Biology, Bio21 Institute, University of Melbourne, Parkville, VIC, Australia.,Computational Biology and Clinical Informatics, Baker Heart and Diabetes Institute, Melbourne, VIC, Australia.,Department of Biochemistry and Molecular Biology, University of Melbourne, Parkville, VIC, Australia
| | - Petr Novák
- Institute of Microbiology, Academy of Sciences of the Czech Republic, Prague, Czech Republic
| | - Tom L Blundell
- Department of Biochemistry, University of Cambridge, Cambridge, UK
| |
Collapse
|
50
|
Martínez-García PM, García-Torres M, Divina F, Terrón-Bautista J, Delgado-Sainz I, Gómez-Vela F, Cortés-Ledesma F. Genome-wide prediction of topoisomerase IIβ binding by architectural factors and chromatin accessibility. PLoS Comput Biol 2021; 17:e1007814. [PMID: 33465072 PMCID: PMC7845959 DOI: 10.1371/journal.pcbi.1007814] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2020] [Revised: 01/29/2021] [Accepted: 11/13/2020] [Indexed: 12/28/2022] Open
Abstract
DNA topoisomerase II-β (TOP2B) is fundamental to remove topological problems linked to DNA metabolism and 3D chromatin architecture, but its cut-and-reseal catalytic mechanism can accidentally cause DNA double-strand breaks (DSBs) that can seriously compromise genome integrity. Understanding the factors that determine the genome-wide distribution of TOP2B is therefore not only essential for a complete knowledge of genome dynamics and organization, but also for the implications of TOP2-induced DSBs in the origin of oncogenic translocations and other types of chromosomal rearrangements. Here, we conduct a machine-learning approach for the prediction of TOP2B binding using publicly available sequencing data. We achieve highly accurate predictions, with accessible chromatin and architectural factors being the most informative features. Strikingly, TOP2B is sufficiently explained by only three features: DNase I hypersensitivity, CTCF and cohesin binding, for which genome-wide data are widely available. Based on this, we develop a predictive model for TOP2B genome-wide binding that can be used across cell lines and species, and generate virtual probability tracks that accurately mirror experimental ChIP-seq data. Our results deepen our knowledge on how the accessibility and 3D organization of chromatin determine TOP2B function, and constitute a proof of principle regarding the in silico prediction of sequence-independent chromatin-binding factors.
Collapse
Affiliation(s)
- Pedro Manuel Martínez-García
- Centro Andaluz de Biología Molecular y Medicina Regenerativa (CABIMER), CSIC-Universidad de Sevilla-Universidad Pablo de Olavide, Seville, Spain
- * E-mail: (PMMG); (FCL)
| | | | - Federico Divina
- Division of Computer Science, Universidad Pablo de Olavide, Seville, Spain
| | - José Terrón-Bautista
- Centro Andaluz de Biología Molecular y Medicina Regenerativa (CABIMER), CSIC-Universidad de Sevilla-Universidad Pablo de Olavide, Seville, Spain
| | - Irene Delgado-Sainz
- Centro Andaluz de Biología Molecular y Medicina Regenerativa (CABIMER), CSIC-Universidad de Sevilla-Universidad Pablo de Olavide, Seville, Spain
| | | | - Felipe Cortés-Ledesma
- Centro Andaluz de Biología Molecular y Medicina Regenerativa (CABIMER), CSIC-Universidad de Sevilla-Universidad Pablo de Olavide, Seville, Spain
- Topology and DNA breaks Group, Spanish National Cancer Centre (CNIO), Madrid, Spain
- * E-mail: (PMMG); (FCL)
| |
Collapse
|