1
|
Parchwani D, Singh R, Patel D. Biological and translational attributes of mitochondrial DNA copy number: Laboratory perspective to clinical relevance. World J Methodol 2025; 15:102709. [DOI: 10.5662/wjm.v15.i3.102709] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/26/2024] [Revised: 01/21/2025] [Accepted: 02/08/2025] [Indexed: 03/06/2025] Open
Abstract
The mitochondrial DNA copy number (mtDNAcn) plays a vital role in cellular energy metabolism and mitochondrial health. As mitochondria are responsible for adenosine triphosphate production through oxidative phosphorylation, maintaining an appropriate mtDNAcn level is vital for the overall cellular function. Alterations in mtDNAcn have been linked to various diseases, including neurodegenerative disorders, metabolic conditions, and cancers, making it an important biomarker for understanding the disease pathogenesis. The accurate estimation of mtDNAcn is essential for clinical applications. Quantitative polymerase chain reaction and next-generation sequencing are commonly employed techniques with distinct advantages and limitations. Clinically, mtDNAcn serves as a valuable indicator for early diagnosis, disease progression, and treatment response. For instance, in oncology, elevated mtDNAcn levels in blood samples are associated with tumor aggressiveness and can aid in monitoring treatment efficacy. In neurodegenerative diseases such as Alzheimer’s and Parkinson’s, altered mtDNAcn patterns provide insights into disease mechanisms and progression. Understanding and estimating mtDNAcn are critical for advancing diagnostic and therapeutic strategies in various medical fields. As research continues to uncover the implications of mtDNAcn alterations, its potential as a clinical biomarker is likely to expand, thereby enhancing our ability to diagnose and manage complex diseases.
Collapse
Affiliation(s)
- Deepak Parchwani
- Department of Biochemistry, All India Institute of Medical Sciences, Rajkot 360001, India
| | - Ragini Singh
- Department of Biochemistry, All India Institute of Medical Sciences, Rajkot 360001, India
| | - Digisha Patel
- Department of Physiology, Shantabaa Medical College and General Hospital Amreli, Amreli 365601, Gujarāt, India
| |
Collapse
|
2
|
Jiang H, Ye J. The Warburg effect: The hacked mitochondrial-nuclear communication in cancer. Semin Cancer Biol 2025; 112:93-111. [PMID: 40147702 DOI: 10.1016/j.semcancer.2025.03.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2024] [Revised: 02/23/2025] [Accepted: 03/17/2025] [Indexed: 03/29/2025]
Abstract
Mitochondrial-nuclear communication is vital for maintaining cellular homeostasis. This communication begins with mitochondria sensing environmental cues and transmitting signals to the nucleus through the retrograde cascade, involving metabolic signals such as substrates for epigenetic modifications, ATP and AMP levels, calcium flux, etc. These signals inform the nucleus about the cell's metabolic state, remodel epigenome and regulate gene expression, and modulate mitochondrial function and dynamics through the anterograde feedback cascade to control cell fate and physiology. Disruption of this communication can lead to cellular dysfunction and disease progression, particularly in cancer. The Warburg effect is the metabolic hallmark of cancer, characterized by disruption of mitochondrial respiration and increased lactate generation from glycolysis. This metabolic reprogramming rewires retrograde signaling, leading to epigenetic changes and dedifferentiation, further reprogramming mitochondrial function and promoting carcinogenesis. Understanding these processes and their link to tumorigenesis is crucial for uncovering tumorigenesis mechanisms. Therapeutic strategies targeting these disrupted pathways, including metabolic and epigenetic components, provide promising avenues for cancer treatment.
Collapse
Affiliation(s)
- Haowen Jiang
- Department of Radiation Oncology, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Jiangbin Ye
- Department of Radiation Oncology, Stanford University School of Medicine, Stanford, CA 94305, USA; Cancer Biology Program, Stanford University School of Medicine, Stanford, CA 94305, USA; Stanford Cancer Institute, Stanford University School of Medicine, Stanford, CA 94305, USA.
| |
Collapse
|
3
|
Faipan A, Sitthirak S, Wangwiwatsin A, Namwat N, Klanrit P, Titapun A, Jareanrat A, Thanasukarn V, Khuntikeo N, Boulter L, Dokduang H, Loilome W. Mitochondrial genomic alterations in cholangiocarcinoma cell lines. PLoS One 2025; 20:e0323844. [PMID: 40489465 DOI: 10.1371/journal.pone.0323844] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2024] [Accepted: 04/16/2025] [Indexed: 06/11/2025] Open
Abstract
Cholangiocarcinoma (CCA) is a diverse collection of malignant tumors that originate in the bile ducts. Mitochondria, the energy converters in eukaryotic cells, contain circular mitochondrial DNA (mtDNA) which has a greater mutation rate than nuclear DNA. Heteroplasmic variations in mtDNA may suggest an increased risk of cancer-related mortality, serving as a potential prognostic marker. In this study, we investigated the mtDNA variations of five CCA cell lines, including KKU-023, KKU-055, KKU-100, KKU213A, and KKU-452 and compared them to the non-tumor cholangiocyte MMNK-1 cell line. We used Oxford Nanopore Technologies (ONT), a long-read sequencing technology capable of synthesizing the whole mitochondrial genome, which facilitates enhanced identification of complicated rearrangements in mitogenomics. The analysis revealed a high frequency of SNVs and INDELs, particularly in the D-loop, MT-RNR2, MT-CO1, MT-ND4, and MT-ND5 genes. Significant mutations were detected in all CCA cell lines, with particularly notable non-synonymous SNVs such as m.8462T > C in KKU-023, m.9493G > A in KKU-055, m.9172C > A in KKU-100, m.15024G > C in KKU-213A, m.12994G > A in KKU-452, and m.13406G > A in MMNK-1, which demonstrated high pathogenicity scores. The presence of these mutations suggests the potential for mitochondrial dysfunction and CCA progression. Analysis of mtDNA structural variants (SV) revealed significant variability among the cell lines. We identified 208 SVs in KKU-023, 185 SVs in KKU-055, 231 SVs in KKU-100, 69 SVs in KKU-213A, 172 SVs in KKU-452, and 217 SVs in MMNK-1. These SVs included deletions, duplications, and inversions, with the highest variability observed in KKU-100 and the lowest in KKU-213A. Our results underscore the diverse mtDNA mutation landscape in CCA cell lines, highlighting the potential impact of these mutations on mitochondrial function and CCA cell line progression. Future research is required to investigate the functional impacts of these variants, their interactions with nuclear DNA in CCA, and their potential as targets for therapeutic intervention.
Collapse
Affiliation(s)
- Athitaya Faipan
- Department of Biochemistry, Faculty of Medicine, Khon Kaen University, Khon Kaen, Thailand
- Cholangiocarcinoma Research Institute, Khon Kaen University, Khon Kaen, Thailand
| | - Sirinya Sitthirak
- Cholangiocarcinoma Research Institute, Khon Kaen University, Khon Kaen, Thailand
- Department of Systems Biosciences and Computational Medicine, Faculty of Medicine, Khon Kaen University, Khon Kaen, Thailand
| | - Arporn Wangwiwatsin
- Cholangiocarcinoma Research Institute, Khon Kaen University, Khon Kaen, Thailand
- Department of Systems Biosciences and Computational Medicine, Faculty of Medicine, Khon Kaen University, Khon Kaen, Thailand
| | - Nisana Namwat
- Cholangiocarcinoma Research Institute, Khon Kaen University, Khon Kaen, Thailand
- Department of Systems Biosciences and Computational Medicine, Faculty of Medicine, Khon Kaen University, Khon Kaen, Thailand
| | - Poramate Klanrit
- Cholangiocarcinoma Research Institute, Khon Kaen University, Khon Kaen, Thailand
- Department of Systems Biosciences and Computational Medicine, Faculty of Medicine, Khon Kaen University, Khon Kaen, Thailand
| | - Attapol Titapun
- Cholangiocarcinoma Research Institute, Khon Kaen University, Khon Kaen, Thailand
- Department of Surgery, Faculty of Medicine, Khon Kaen University, Khon Kaen, Thailand
| | - Apiwat Jareanrat
- Cholangiocarcinoma Research Institute, Khon Kaen University, Khon Kaen, Thailand
- Department of Surgery, Faculty of Medicine, Khon Kaen University, Khon Kaen, Thailand
| | - Vasin Thanasukarn
- Cholangiocarcinoma Research Institute, Khon Kaen University, Khon Kaen, Thailand
- Department of Surgery, Faculty of Medicine, Khon Kaen University, Khon Kaen, Thailand
| | - Natcha Khuntikeo
- Cholangiocarcinoma Research Institute, Khon Kaen University, Khon Kaen, Thailand
- Department of Surgery, Faculty of Medicine, Khon Kaen University, Khon Kaen, Thailand
| | - Luke Boulter
- MRC Human Genetics Unit, Institute of Genetics and Cancer, The University of Edinburgh, Western General Hospital, Edinburgh, Scotland, United Kingdom
| | - Hasaya Dokduang
- Cholangiocarcinoma Research Institute, Khon Kaen University, Khon Kaen, Thailand
- Faculty of Medicine, Mahasarakham University, Mahasarakham, Thailand
| | - Watcharin Loilome
- Cholangiocarcinoma Research Institute, Khon Kaen University, Khon Kaen, Thailand
- Department of Systems Biosciences and Computational Medicine, Faculty of Medicine, Khon Kaen University, Khon Kaen, Thailand
| |
Collapse
|
4
|
Wang Z, Li Z, Liu H, Yang C, Li X. Mitochondrial clonal mosaicism encodes a biphasic molecular clock of aging. NATURE AGING 2025:10.1038/s43587-025-00890-6. [PMID: 40425806 DOI: 10.1038/s43587-025-00890-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/11/2024] [Accepted: 04/30/2025] [Indexed: 05/29/2025]
Abstract
Mitochondria rapidly accumulate mutations throughout a lifetime, potentially acting as a molecular clock for aging and disease. We profiled mitochondrial RNA across 47 human tissues from 838 individuals, revealing rapid development of clonal mosaicism with two distinct tissue-specific aging signatures. Tissues with constant cellular turnover such as the gastrointestinal tract or skin exhibit accelerated accumulation of sporadic mutations and clonal expansions, implicating increased susceptibility to age-related tumorigenesis and dysfunction. By contrast, post-mitotic tissues, such as the heart and brain, accumulate mutations at deterministic hotspots (tissue-specific, recurrently mutated sites), reflecting the cumulative burden of high energy demand and mitochondrial turnover independent of cell division. These findings support a biphasic model of the mitochondrial clock: stochastic clonal expansion of sporadic replication errors in proliferative tissues, versus age-dependent heteroplasmy increases at hotspots in high-metabolic tissues. This mutational landscape provides a map of tissue-specific vulnerabilities during aging and offers potential therapeutic targets.
Collapse
Affiliation(s)
- Zhenguo Wang
- CAS Key Laboratory of Computational Biology, Shanghai Institute of Nutrition and Health, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai, China
| | - Zhe Li
- CAS Key Laboratory of Computational Biology, Shanghai Institute of Nutrition and Health, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai, China
| | - Hongyu Liu
- CAS Key Laboratory of Computational Biology, Shanghai Institute of Nutrition and Health, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai, China
| | - Chenghua Yang
- Department of Urology, Changhai Hospital, Naval Medical University, Shanghai, China
- Shanghai Key Laboratory of Cell Engineering, Shanghai, China
| | - Xin Li
- CAS Key Laboratory of Computational Biology, Shanghai Institute of Nutrition and Health, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai, China.
| |
Collapse
|
5
|
Zhang Y, Tan Q, Yang F, Huang T, Yu S, Ye J, Zeng J, Feng X, Zhang D. A Dual-Capture and Dual-Output 3D DNA Walker System Integrated with Ligases Enables Ultrasensitive Detection of Single-Nucleotide Polymorphisms. Anal Chem 2025; 97:9316-9325. [PMID: 40281399 DOI: 10.1021/acs.analchem.5c00028] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/29/2025]
Abstract
DNA walkers, as structurally and functionally programmable signal amplification tools, exhibit great potential for application in the field of biosensing. Traditional DNA walkers often rely on enzymes for operation, posing compatibility challenges, while the handful of existing enzyme-free DNA walkers demonstrate limited performance. To address this, we innovatively developed an efficient enzyme-free 3D DNA walker with dual capture and dual output capabilities. Coupled with ligase chain reaction (LCR), this system facilitates highly sensitive and specific detection of single nucleotide polymorphisms (SNPs). Specifically, LCR precisely identifies single-base mutations, effectively transmitting biological information. The 3D DNA walker system is based on entropy-driven circuit cycling reaction technology. In this system, LCR products serve as the driving strands for the DNA walker, independently binding to track strands and walking legs immobilized on gold nanoparticles, forming a unique dual signal capture mechanism. Each track strand carries two signal chains, significantly enhancing signal amplification efficiency. Benefiting from this novel enzyme-free 3D DNA walker strategy, our biosensing system exhibits exceptional sensitivity to mutant targets (MT), detecting MT at concentrations as low as 30.3 aM and distinguishing heterozygous samples with a 0.01% mutation frequency. Furthermore, this system has been successfully applied to genotyping and mutation abundance assessment of genomes from fresh soybean leaves, demonstrating its vast potential for practical applications. In summary, this research pioneers a novel enzyme-free 3D DNA walker with dual capture and dual output capabilities, and develops an ultrasensitive genotyping tool. This provides strong technical support for the advancement of genetic research.
Collapse
Affiliation(s)
- Yunshan Zhang
- Key Laboratory of Soybean Molecular Design Breeding, National Key Laboratory of Black Soils Conservation and Utilization, Northeast Institute of Geography and Agroecology, Chinese Academy of Sciences, Changchun 130102, China
- Research Center for Novel Computing Sensing and Intelligent Processing, Zhejiang Laboratory, Hangzhou, 311121, China
| | - Qianglong Tan
- Key Laboratory of Soybean Molecular Design Breeding, National Key Laboratory of Black Soils Conservation and Utilization, Northeast Institute of Geography and Agroecology, Chinese Academy of Sciences, Changchun 130102, China
- School of Chemistry and Chemical Engineering, Hunan University of Science and Technology, Xiangtan, Hunan 411201, China
| | - Fang Yang
- Key Laboratory of Soybean Molecular Design Breeding, National Key Laboratory of Black Soils Conservation and Utilization, Northeast Institute of Geography and Agroecology, Chinese Academy of Sciences, Changchun 130102, China
| | - Tuo Huang
- Key Laboratory of Soybean Molecular Design Breeding, National Key Laboratory of Black Soils Conservation and Utilization, Northeast Institute of Geography and Agroecology, Chinese Academy of Sciences, Changchun 130102, China
| | - Siyu Yu
- Key Laboratory of Soybean Molecular Design Breeding, National Key Laboratory of Black Soils Conservation and Utilization, Northeast Institute of Geography and Agroecology, Chinese Academy of Sciences, Changchun 130102, China
| | - Jing Ye
- Key Laboratory of Soybean Molecular Design Breeding, National Key Laboratory of Black Soils Conservation and Utilization, Northeast Institute of Geography and Agroecology, Chinese Academy of Sciences, Changchun 130102, China
| | - Jianxian Zeng
- School of Chemistry and Chemical Engineering, Hunan University of Science and Technology, Xiangtan, Hunan 411201, China
| | - Xianzhong Feng
- Key Laboratory of Soybean Molecular Design Breeding, National Key Laboratory of Black Soils Conservation and Utilization, Northeast Institute of Geography and Agroecology, Chinese Academy of Sciences, Changchun 130102, China
| | - Diming Zhang
- Key Laboratory of Soybean Molecular Design Breeding, National Key Laboratory of Black Soils Conservation and Utilization, Northeast Institute of Geography and Agroecology, Chinese Academy of Sciences, Changchun 130102, China
- Research Center for Novel Computing Sensing and Intelligent Processing, Zhejiang Laboratory, Hangzhou, 311121, China
- Hangzhou Institute for Advanced Study, University of Chinese Academy of Sciences, Hangzhou, Zhejiang 310024, China
| |
Collapse
|
6
|
Swarup N, Leung HY, Choi I, Aziz MA, Cheng JC, Wong DTW. Cell-Free DNA: Features and Attributes Shaping the Next Frontier in Liquid Biopsy. Mol Diagn Ther 2025; 29:277-290. [PMID: 40237938 PMCID: PMC12062165 DOI: 10.1007/s40291-025-00773-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 02/16/2025] [Indexed: 04/18/2025]
Abstract
Cell-free DNA (cfDNA) is changing the face of liquid biopsy as a minimally invasive tool for disease detection and monitoring, with its main applications in oncology and prenatal testing, and rising roles in transplant patient monitoring. However, the processes of cfDNA biogenesis, fragmentation, and clearance are complex and require further investigation. Evidence suggests that cfDNA production relates to mechanisms of cell death and DNA repair, both of which further influence fragment size and its applicability as a biomarker. An emerging domain, cfDNA fragmentomics is being explored for advancing the field of diagnostics using non-mutational signatures such as fragment size ratios and methylation patterns. Thus, this review examines structural diversity in cfDNA with various fragment sizes. In examining these cfDNA subsets, we discuss their distinct biological origins and potential clinical utility. Development of sequencing methodologies has broadened the application of cfDNA in diagnosing cancers and organ-specific pathologies, as well as directing personalized therapies. This has been achieved by identifying and uncovering different subsets of cfDNA in biofluids using different methodologies and biofluids. Different cfDNA subsets provide important insights regarding genomic and epigenetic features, enhancing the understanding of gene regulation, tissue-specific functions, and disease progression. Advancement of these key areas further asserts increasing clinical relevance for the use of cfDNA as a biomarker. Continued exploration of cfDNA subsets is expected to drive further innovation in liquid biopsy and its integration into routine clinical practice.
Collapse
Affiliation(s)
- Neeti Swarup
- School of Dentistry, University of California, Los Angeles, Los Angeles, CA, USA
| | - Ho Yeung Leung
- School of Dentistry, University of California, Los Angeles, Los Angeles, CA, USA
- Department of Biomedical Engineering, Georgia Institute of Technology, Atlanta, GA, USA
| | - Irene Choi
- School of Dentistry, University of California, Los Angeles, Los Angeles, CA, USA
| | - Mohammad Arshad Aziz
- School of Dentistry, University of California, Los Angeles, Los Angeles, CA, USA
| | - Jordan C Cheng
- School of Dentistry, University of California, Los Angeles, Los Angeles, CA, USA
- Stanford Cancer Institute, Stanford University, Stanford, CA, USA
| | - David T W Wong
- School of Dentistry, University of California, Los Angeles, Los Angeles, CA, USA.
| |
Collapse
|
7
|
Zhu J, Wen N, Chen W, Yu H. Mitochondrial ribosomal proteins: potential targets for cancer prognosis and therapy. Front Oncol 2025; 15:1586137. [PMID: 40371222 PMCID: PMC12074914 DOI: 10.3389/fonc.2025.1586137] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2025] [Accepted: 04/09/2025] [Indexed: 05/16/2025] Open
Abstract
Mitochondrial ribosomal proteins (MRPs) are essential components of mitochondrial ribosomes, responsible for translating proteins encoded by mitochondrial DNA and maintaining mitochondrial energy metabolism and function. Emerging evidence suggests that MRPs exhibit significant expression changes in multiple cancer types, profoundly affecting tumor biology through modulating oxidative stress levels, inducing metabolic reprogramming, disrupting cell cycle regulation, inhibiting apoptosis, promoting mitophagy, and remodeling the tumor microenvironment. Specifically, MRPs have been implicated in tumor cell proliferation, migration, invasion, and apoptosis, highlighting their potential as therapeutic targets. This review summarizes the multifaceted roles of MRPs in cancer, focusing on their impact on the tumor microenvironment and their potential as prognostic biomarkers and therapeutic targets. We also explore the implications of MRPs in precision oncology, particularly in patient stratification and the design of metabolic targeted therapies, offering new insights and research directions for the precise prevention and treatment of cancer.
Collapse
Affiliation(s)
- Jianqing Zhu
- Postgraduate Department, Hebei North University, Zhangjiakou, China
| | - Na Wen
- Department of Obstetrics and Gynecology, The Eighth Medical Center, Chinese People's Liberation Army (PLA) General Hospital, Beijing, China
| | - Wen Chen
- Department of Pathology, The Eighth Medical Center, Chinese People's Liberation Army (PLA) General Hospital, Beijing, China
| | - Haotian Yu
- Department of Obstetrics and Gynecology, The Eighth Medical Center, Chinese People's Liberation Army (PLA) General Hospital, Beijing, China
| |
Collapse
|
8
|
Bu S, Yang F, Huang T, Tan Q, Yu S, Xiao S, Hu Y, Xie W, Zhou Z, Tian Y, Chen J. A dual-trigger entropy driven circuit based on competitive hybridization for highly specific enzyme-free detection of single nucleotide polymorphisms. Analyst 2025; 150:1837-1845. [PMID: 40131730 DOI: 10.1039/d5an00011d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/27/2025]
Abstract
Single nucleotide polymorphisms (SNPs) play a pivotal role in the detection of major diseases and the breeding of molecular designs. However, current SNP detection methods often rely heavily on expensive proteases, or alternatively, enzyme-free detection methods grapple with limited specificity. Addressing this issue, our study presents an enzyme-free, highly specific, simple, and efficient detection platform. First, we introduced additional base mismatches into the traditional entropy-driven circuit (EDC) reaction to establish a foundational distinction between mutant (MT) and wild-type (WT) sequences. On this basis, we introduced the concept of competitive hybridization and developed a dual-trigger EDC (DEDC) reaction platform, which responded to both wild-type targets (WT) and mutant targets (MT). By strategically leveraging the signals from both WT and MT, we constructed a ratiometric signal output mode, substantially enhancing the discrimination factor between WT and MT and maximizing the specificity of the detection system. Within the DEDC reaction system, the sole driving force is the increase in the system's entropy, with no enzymes involved throughout the entire process, thereby achieving simple and efficient specific detection of SNPs. Notably, MT, previously considered an interference in assays, is repurposed as a trigger signal, making DEDC particularly suitable for the identification of heterozygous samples with low mutational abundances. By analyzing the performance of this platform and using it for genotyping detection of soybean real genome samples, the practical application potential of the CTMSD platform was verified. The CTMSD platform based on EDC reactions has the potential to become a universal biosensing paradigm for future biochemical applications.
Collapse
Affiliation(s)
- Sisi Bu
- School of Chemistry and Chemical Engineering, Hunan University of Science and Technology, Xiangtan, Hunan, 411201, China.
| | - Fang Yang
- School of Chemistry and Chemical Engineering, Hunan University of Science and Technology, Xiangtan, Hunan, 411201, China.
| | - Tuo Huang
- School of Chemistry and Chemical Engineering, Hunan University of Science and Technology, Xiangtan, Hunan, 411201, China.
| | - Qianglong Tan
- School of Chemistry and Chemical Engineering, Hunan University of Science and Technology, Xiangtan, Hunan, 411201, China.
| | - Siyu Yu
- School of Chemistry and Chemical Engineering, Hunan University of Science and Technology, Xiangtan, Hunan, 411201, China.
| | - Shufen Xiao
- School of Chemistry and Chemical Engineering, Hunan University of Science and Technology, Xiangtan, Hunan, 411201, China.
| | - Ye Hu
- Nanjing Institute for Food and Drug Control, Nanjing 211198, China
| | - Wenlin Xie
- School of Chemistry and Chemical Engineering, Hunan University of Science and Technology, Xiangtan, Hunan, 411201, China.
| | - Zhihua Zhou
- School of Chemistry and Chemical Engineering, Hunan University of Science and Technology, Xiangtan, Hunan, 411201, China.
| | - Yulan Tian
- Department of Biomedical Engineering, Fourth Military Medical University, Xi'an 710032, PR China.
| | - Jian Chen
- School of Chemistry and Chemical Engineering, Hunan University of Science and Technology, Xiangtan, Hunan, 411201, China.
| |
Collapse
|
9
|
Alsatari ES, Smith KR, Galappaththi SPL, Turbat-Herrera EA, Dasgupta S. The Current Roadmap of Lung Cancer Biology, Genomics and Racial Disparity. Int J Mol Sci 2025; 26:3818. [PMID: 40332491 PMCID: PMC12027673 DOI: 10.3390/ijms26083818] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2025] [Revised: 03/26/2025] [Accepted: 04/11/2025] [Indexed: 05/08/2025] Open
Abstract
Globally, lung cancer is the most prevalent cause of cancer-related death. There are two large histological groups of lung cancer: small-cell lung cancer (SCLC) and non-small-cell lung cancer (NSCLC). Based on histopathological and molecular features, adenocarcinoma (ADC) and squamous cell carcinoma (SCC) are the two major histologic subtypes of NSCLC. Various epidemiological and environmental factors are linked with an increased risk of lung cancer. However, these risk factors show disparities in patients with divergent racial and ethnic backgrounds. Interestingly, different populations were found to harbor distinct molecular features as evidenced by variations in genetic mutation profiles. Moreover, diverse histological and molecular progression patterns are identified in lung cancer, which could be crucial in improving diagnosis, prognosis, and therapeutic planning. In concert with a plethora of nuclear genetic alterations, mitochondrial alteration, epigenetic reprogramming, microbial dysbiosis, and immune alteration signatures have been identified in various lung cancer types. This review article provides a comprehensive overview of screening tests and the treatment strategies for NSCLC and SCLC, including surgery, radiation therapy, chemotherapy, targeted therapies, and immunotherapies. Through the unification of these diverse aspects, this review article aspires to a complete understanding of lung cancer's genomics, biology, microbial landscapes, and racial disparity and seeks to understand the essential role of racial and ethnic factors in lung cancer occurrence and treatment.
Collapse
Affiliation(s)
- Enas S. Alsatari
- Department of Pathology, Frederick P. Whiddon College of Medicine, University of South Alabama, Mobile, AL 36688, USA; (E.S.A.); (K.R.S.); (S.P.L.G.); (E.A.T.-H.)
- Mitchell Cancer Institute, University of South Alabama, Mobile, AL 36604, USA
| | - Kelly R. Smith
- Department of Pathology, Frederick P. Whiddon College of Medicine, University of South Alabama, Mobile, AL 36688, USA; (E.S.A.); (K.R.S.); (S.P.L.G.); (E.A.T.-H.)
- Mitchell Cancer Institute, University of South Alabama, Mobile, AL 36604, USA
| | - Sapthala P. Loku Galappaththi
- Department of Pathology, Frederick P. Whiddon College of Medicine, University of South Alabama, Mobile, AL 36688, USA; (E.S.A.); (K.R.S.); (S.P.L.G.); (E.A.T.-H.)
- Mitchell Cancer Institute, University of South Alabama, Mobile, AL 36604, USA
| | - Elba A. Turbat-Herrera
- Department of Pathology, Frederick P. Whiddon College of Medicine, University of South Alabama, Mobile, AL 36688, USA; (E.S.A.); (K.R.S.); (S.P.L.G.); (E.A.T.-H.)
- Mitchell Cancer Institute, University of South Alabama, Mobile, AL 36604, USA
| | - Santanu Dasgupta
- Department of Pathology, Frederick P. Whiddon College of Medicine, University of South Alabama, Mobile, AL 36688, USA; (E.S.A.); (K.R.S.); (S.P.L.G.); (E.A.T.-H.)
- Mitchell Cancer Institute, University of South Alabama, Mobile, AL 36604, USA
- Department of Biochemistry and Molecular Biology, Frederick P. Whiddon College of Medicine, University of South Alabama, Mobile, AL 36688, USA
| |
Collapse
|
10
|
Kato M, Nishino J, Nagai M, Rokutan H, Narushima D, Ono H, Hasegawa T, Imoto S, Matsui S, Tsunoda T, Shibata T. Comprehensive analysis of prognosis markers with molecular features derived from pan-cancer whole-genome sequences. Hum Genomics 2025; 19:39. [PMID: 40221813 PMCID: PMC11993945 DOI: 10.1186/s40246-025-00744-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2024] [Accepted: 03/19/2025] [Indexed: 04/14/2025] Open
Abstract
Cancer prognosis markers are useful for treatment decisions; however, the omics-level landscape is not well understood across multiple cancer types. Pan-Cancer Analysis of Whole Genomes (PCAWG) provides unprecedented access to various types of molecular data, ranging from typical DNA mutations and RNA expressions to more deeply analyzed or whole-genomic features, such as HLA haplotypes and structural variations. We analyzed the PCAWG data of 13 cancer types from 1,514 patients to identify prognosis markers belonging to 17 molecular features in the survival analysis based on the Cox and Lasso regression methods. We found that germline features including HLA haplotypes, neoantigens, and the number of structural variations were associated with overall survival; however, mutational signatures were not. Measuring a few markers provided a sufficient prognostic performance evaluated by c-index for each cancer type. DNA markers demonstrated better or comparable prognostic performance compared to RNA markers in some cancer types. "Universal" markers strongly associated with overall survival across cancer types were not identified. These findings will give insights into the clinical implementation of prognosis markers.
Collapse
Affiliation(s)
- Mamoru Kato
- Division of Bioinformatics, Research Institute, National Cancer Center Japan, Tokyo, Japan.
- CREST, JST, Tokyo, Japan.
| | - Jo Nishino
- Division of Bioinformatics, Research Institute, National Cancer Center Japan, Tokyo, Japan
- CREST, JST, Tokyo, Japan
| | - Momoko Nagai
- Division of Bioinformatics, Research Institute, National Cancer Center Japan, Tokyo, Japan
- CREST, JST, Tokyo, Japan
| | - Hirofumi Rokutan
- Division of Cancer Genomics, Research Institute, National Cancer Center Japan, Tokyo, Japan
| | - Daichi Narushima
- Division of Bioinformatics, Research Institute, National Cancer Center Japan, Tokyo, Japan
| | - Hanako Ono
- Division of Bioinformatics, Research Institute, National Cancer Center Japan, Tokyo, Japan
| | - Takanori Hasegawa
- Division of Health Medical Intelligence, Human Genome Center, The Institute of Medical Science, The University of Tokyo, Tokyo, Japan
| | - Seiya Imoto
- Division of Health Medical Intelligence, Human Genome Center, The Institute of Medical Science, The University of Tokyo, Tokyo, Japan
| | - Shigeyuki Matsui
- CREST, JST, Tokyo, Japan
- Department of Biostatistics, Nagoya University Graduate School of Medicine, Nagoya, Japan
| | - Tatsuhiko Tsunoda
- CREST, JST, Tokyo, Japan
- Laboratory for Medical Science Mathematics, Department of Biological Sciences, School of Science, The University of Tokyo, Tokyo, Japan
- Laboratory for Medical Science Mathematics, RIKEN Center for Integrative Medical Sciences, Yokohama, Japan
| | - Tatsuhiro Shibata
- Division of Cancer Genomics, Research Institute, National Cancer Center Japan, Tokyo, Japan
- Laboratory of Molecular Medicine, Human Genome Center, The Institute of Medical Science, The University of Tokyo, Tokyo, Japan
| |
Collapse
|
11
|
Yates J, Kraft A, Boeva V. Filtering cells with high mitochondrial content depletes viable metabolically altered malignant cell populations in cancer single-cell studies. Genome Biol 2025; 26:91. [PMID: 40205439 PMCID: PMC11983838 DOI: 10.1186/s13059-025-03559-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2024] [Accepted: 03/25/2025] [Indexed: 04/11/2025] Open
Abstract
BACKGROUND Single-cell transcriptomics has transformed our understanding of cellular diversity, yet noise from technical artifacts and low-quality cells can obscure key biological signals. A common practice is filtering out cells with a high percentage of mitochondrial RNA counts (pctMT), typically indicative of cell death. However, commonly used filtering thresholds, primarily derived from studies on healthy tissues, may be overly stringent for malignant cells, which often naturally exhibit higher baseline mitochondrial gene expression. RESULTS We examine nine public single-cell RNA-seq datasets from various cancers, including 441,445 cells from 134 patients, and public spatial transcriptomics data, assessing the viability of malignant cells with high pctMT. Our analysis reveals that malignant cells exhibit significantly higher pctMT than nonmalignant cells, without a notable increase in dissociation-induced stress scores. Malignant cells with high pctMT show metabolic dysregulation, including increased xenobiotic metabolism, relevant to therapeutic response. Analysis of pctMT in cancer cell lines further reveals links to drug resistance. We also observe associations between pctMT and malignant cell transcriptional heterogeneity, as well as patient clinical features. CONCLUSIONS This study provides insights into the functional characteristics of malignant cells with elevated pctMT, challenging current quality control practices in tumor single-cell RNA-seq analyses and offering potential improvements in data interpretation for future cancer studies.
Collapse
Affiliation(s)
- Josephine Yates
- Department of Computer Science, Institute for Machine Learning, ETH Zürich, Zurich, CH-8092, Switzerland
- ETH AI Center, Zurich, Switzerland
- Swiss Institute for Bioinformatics (SIB), Lausanne, Switzerland
| | - Agnieszka Kraft
- Department of Computer Science, Institute for Machine Learning, ETH Zürich, Zurich, CH-8092, Switzerland
- Swiss Institute for Bioinformatics (SIB), Lausanne, Switzerland
- Department of Thoracic Surgery, University Hospital Zurich, Zurich, Switzerland
| | - Valentina Boeva
- Department of Computer Science, Institute for Machine Learning, ETH Zürich, Zurich, CH-8092, Switzerland.
- ETH AI Center, Zurich, Switzerland.
- Swiss Institute for Bioinformatics (SIB), Lausanne, Switzerland.
- Cochin Institute, Inserm U1016, CNRS UMR 8104, Paris Descartes University UMR-S1016, Paris, 75014, France.
| |
Collapse
|
12
|
Piergentili R, Sechi S. Targeting Regulatory Noncoding RNAs in Human Cancer: The State of the Art in Clinical Trials. Pharmaceutics 2025; 17:471. [PMID: 40284466 PMCID: PMC12030637 DOI: 10.3390/pharmaceutics17040471] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2025] [Revised: 03/29/2025] [Accepted: 03/31/2025] [Indexed: 04/29/2025] Open
Abstract
Noncoding RNAs (ncRNAs) are a heterogeneous group of RNA molecules whose classification is mainly based on arbitrary criteria such as the molecule length, secondary structures, and cellular functions. A large fraction of these ncRNAs play a regulatory role regarding messenger RNAs (mRNAs) or other ncRNAs, creating an intracellular network of cross-interactions that allow the fine and complex regulation of gene expression. Altering the balance between these interactions may be sufficient to cause a transition from health to disease and vice versa. This leads to the possibility of intervening in these mechanisms to re-establish health in patients. The regulatory role of ncRNAs is associated with all cancer hallmarks, such as proliferation, apoptosis, invasion, metastasis, and genomic instability. Based on the function performed in carcinogenesis, ncRNAs may behave either as oncogenes or tumor suppressors. However, this distinction is not rigid; some ncRNAs can fall into both classes depending on the tissue considered or the target molecule. Furthermore, some of them are also involved in regulating the response to traditional cancer-therapeutic approaches. In general, the regulation of molecular mechanisms by ncRNAs is very complex and still largely unclear, but it has enormous potential both for the development of new therapies, especially in cases where traditional methods fail, and for their use as novel and more efficient biomarkers. Overall, this review will provide a brief overview of ncRNAs in human cancer biology, with a specific focus on describing the most recent ongoing clinical trials (CT) in which ncRNAs have been tested for their potential as therapeutic agents or evaluated as biomarkers.
Collapse
|
13
|
Good JD, Safina KR, Miller TE, van Galen P. Protocol for mitochondrial variant enrichment from single-cell RNA sequencing using MAESTER. STAR Protoc 2025; 6:103564. [PMID: 39817913 PMCID: PMC11786739 DOI: 10.1016/j.xpro.2024.103564] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2024] [Revised: 10/31/2024] [Accepted: 12/16/2024] [Indexed: 01/18/2025] Open
Abstract
Single-cell RNA sequencing (scRNA-seq) enables detailed characterization of cell states but often lacks insights into tissue clonal structures. Here, we present a protocol to probe cell states and clonal information simultaneously by enriching mitochondrial DNA (mtDNA) variants from 3'-barcoded full-length cDNA. We describe steps for input library preparation, mtDNA enrichment, PCR product cleanup, and paired-end sequencing. We then detail computational steps for running maegatk, variant calling, and data integration to illuminate cell states and clonal dynamics in primary human tissues. For complete details on the use and execution of this protocol, please refer to Miller et al.1.
Collapse
Affiliation(s)
- Jonathan D Good
- Division of Hematology, Brigham and Women's Hospital, Boston, MA, USA; Broad Institute of MIT and Harvard, Cambridge, MA, USA; Department of Medicine, Harvard Medical School, Boston, MA, USA; Ludwig Center at Harvard, Harvard Medical School, Boston, MA, USA
| | - Ksenia R Safina
- Division of Hematology, Brigham and Women's Hospital, Boston, MA, USA; Broad Institute of MIT and Harvard, Cambridge, MA, USA; Department of Medicine, Harvard Medical School, Boston, MA, USA; Ludwig Center at Harvard, Harvard Medical School, Boston, MA, USA
| | - Tyler E Miller
- Department of Pathology, Case Western Reserve University School of Medicine, Case Comprehensive Cancer Center, Cleveland, OH, USA
| | - Peter van Galen
- Division of Hematology, Brigham and Women's Hospital, Boston, MA, USA; Broad Institute of MIT and Harvard, Cambridge, MA, USA; Department of Medicine, Harvard Medical School, Boston, MA, USA; Ludwig Center at Harvard, Harvard Medical School, Boston, MA, USA.
| |
Collapse
|
14
|
Zhang Y, Huang T, Yang F, Tan Q, Ye J, Feng X, Zhang D. Entropy-Driven Circuit Integrated with Ligases to Regulate DNA-AuNP Network Disintegration for Colorimetric Detection of Single Nucleotide Polymorphisms. Anal Chem 2025; 97:4524-4532. [PMID: 39973570 DOI: 10.1021/acs.analchem.4c06146] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/21/2025]
Abstract
In recent years, entropy-driven circuit (EDC) dynamic DNA networks have garnered significant attention in nucleic acid detection owing to their simplicity, efficiency, and flexible design. Nevertheless, conventional EDC reactions face a constraint in achieving optimal signal amplification due to a solitary and feeble driving force. To overcome this limitation, we innovatively devised a gold nanoparticle (AuNP) dispersion-enhanced EDC (Au-EDC) approach, pioneering a novel colorimetric signal amplification and output system. The system was harmoniously integrated with the ligase chain reaction (LCR) for precise single nucleotide polymorphism (SNP) genotyping. Specifically, LCR was selectively executed solely on the positive strand of the mutant target (MT), facilitating precise point-to-strand information transduction. Subsequently, the LCR product triggered the Au-EDC cycling reaction, causing the DNA-AuNPs network to progressively disintegrate and release a pronounced colorimetric signal. This strategic design ingeniously harnessed the entropy increase that occurs as AuNPs undergo a transition from aggregated to dispersed states, offering a supplemental impetus for the EDC cycle. The integrated LCR-Au-EDC system excelled in detecting MT at concentrations as low as 320 fM and differentiating pooled samples with mutation frequencies as low as 0.1%. Moreover, the system accurately performed SNP genotyping on the real genomes derived from soybean leaves. Consequently, this study not only develops a colorimetric signal amplification and output sensing system based on EDC reactions but also provides a cost-effective and efficient SNP genotyping tool.
Collapse
Affiliation(s)
- Yunshan Zhang
- Key Laboratory of Soybean Molecular Design Breeding, National Key Laboratory of Black Soils Conservation and Utilization, Northeast Institute of Geography and Agroecology, Chinese Academy of Sciences, Changchun 130102, China
- Research Center for Novel Computing Sensing and Intelligent Processing, Zhejiang Laboratory, Hangzhou 311121, China
- Hangzhou Institute for Advanced Study, University of Chinese Academy of Sciences, Hangzhou, Zhejiang 310024, China
| | - Tuo Huang
- Key Laboratory of Soybean Molecular Design Breeding, National Key Laboratory of Black Soils Conservation and Utilization, Northeast Institute of Geography and Agroecology, Chinese Academy of Sciences, Changchun 130102, China
- School of Chemistry and Chemical Engineering, Hunan University of Science and Technology, Xiangtan, Hunan 411201, China
| | - Fang Yang
- Key Laboratory of Soybean Molecular Design Breeding, National Key Laboratory of Black Soils Conservation and Utilization, Northeast Institute of Geography and Agroecology, Chinese Academy of Sciences, Changchun 130102, China
| | - Qianglong Tan
- Key Laboratory of Soybean Molecular Design Breeding, National Key Laboratory of Black Soils Conservation and Utilization, Northeast Institute of Geography and Agroecology, Chinese Academy of Sciences, Changchun 130102, China
| | - Jing Ye
- Key Laboratory of Soybean Molecular Design Breeding, National Key Laboratory of Black Soils Conservation and Utilization, Northeast Institute of Geography and Agroecology, Chinese Academy of Sciences, Changchun 130102, China
| | - Xianzhong Feng
- Key Laboratory of Soybean Molecular Design Breeding, National Key Laboratory of Black Soils Conservation and Utilization, Northeast Institute of Geography and Agroecology, Chinese Academy of Sciences, Changchun 130102, China
| | - Diming Zhang
- Key Laboratory of Soybean Molecular Design Breeding, National Key Laboratory of Black Soils Conservation and Utilization, Northeast Institute of Geography and Agroecology, Chinese Academy of Sciences, Changchun 130102, China
- Research Center for Novel Computing Sensing and Intelligent Processing, Zhejiang Laboratory, Hangzhou 311121, China
- Hangzhou Institute for Advanced Study, University of Chinese Academy of Sciences, Hangzhou, Zhejiang 310024, China
| |
Collapse
|
15
|
Ali-El-Dein B, Abdelgawad M, Tarek M, Abdel-Rahim M, Elkady ME, Saleh HH, Zakaria MM, Tarabay HH, Laymon M, Mosbah A, Stenzl A. Bladder cancer associated with elevated heavy metals: Investigation of probable carcinogenic pathways through mitochondrial dysfunction, oxidative stress and mitogen-activated protein kinase. Urol Oncol 2025; 43:190.e11-190.e20. [PMID: 39379209 DOI: 10.1016/j.urolonc.2024.09.009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2024] [Revised: 09/01/2024] [Accepted: 09/11/2024] [Indexed: 10/10/2024]
Abstract
OBJECTIVE Carcinogenic mechanisms of heavy metals/ trace elements (HMTE) in bladder cancer (BC) are exactly unknown. Mitochondrial dysfunction (MD), oxidative stress (OS), and mitogen-activated protein kinases (MAPK) are probable carcinogenic mechanisms. The purpose is to investigate probable carcinogenic pathways of HMTE in BC using six MD genes, seven OS markers, and p38-MAPK. METHODS Study included 125 BC/radical cystectomy (RC) patients between October 2020 and October 2022, and 72 controls. Exclusion criteria included previous neoplasm, chemo- or radiotherapy. Two samples (cancer/noncancer) were taken from RC specimens. Tissues/plasma/urine cadmium (Cd), lead (Pb), cobalt (Co), nickel (Ni), strontium (Sr), aluminium (Al), zinc (Zn), boron (B) were measured by ICP-OES. Tissue MD genes (mt-CO3, mt-CYB, mt-ATP 6, mt-ATP8, mt-CO1, mt-ND1), and serum OS markers (8-OHdG, MDA, 3-NT, AGEs, AOPP, ROS, SOD2), p38-MAPK were assessed by RT-PCR, and ELISA, respectively. RESULTS BC and adjacent tissue showed higher (Al, Co, Pb, Ni, Zn, Cd,Sr), lower B concentrations, compared to controls. High tissue concentrations (Cd, Co, Pb, Ni, Sr) were associated with higher MD genes, OS, MAPK and lower SOD2 levels. The same differences were greater in 41 patients with concomitant elevation of two or more HMTE. Noninclusion of BC-related oncogenes (e.g. RAS) is a limitation. CONCLUSIONS Evidence suggests that high BC tissue (Cd, Co, Pb, Ni, Si) concentrations are associated with over-expressed MD genes, OS, p38-MAPK and low SOD2. These findings provide important understanding keys of probable carcinogenic pathways in BC associated with HMTE. So, efforts should be performed to minimize and counteract exposure to toxic HMTE.
Collapse
Affiliation(s)
- Bedeir Ali-El-Dein
- Urology and Nephrology Center, Faculty of Medicine, Mansoura University, Mansoura, Egypt.
| | | | - Mohamed Tarek
- Urology and Nephrology Center, Faculty of Medicine, Mansoura University, Mansoura, Egypt
| | - Mona Abdel-Rahim
- Urology and Nephrology Center, Faculty of Medicine, Mansoura University, Mansoura, Egypt
| | - Manar E Elkady
- Urology and Nephrology Center, Faculty of Medicine, Mansoura University, Mansoura, Egypt
| | - Hazem H Saleh
- Urology and Nephrology Center, Faculty of Medicine, Mansoura University, Mansoura, Egypt
| | - Mahmoud M Zakaria
- Urology and Nephrology Center, Faculty of Medicine, Mansoura University, Mansoura, Egypt
| | - Heba H Tarabay
- Urology and Nephrology Center, Faculty of Medicine, Mansoura University, Mansoura, Egypt
| | - Mahmoud Laymon
- Urology and Nephrology Center, Faculty of Medicine, Mansoura University, Mansoura, Egypt
| | - Ahmed Mosbah
- Urology and Nephrology Center, Faculty of Medicine, Mansoura University, Mansoura, Egypt
| | - Arnolf Stenzl
- Department of Urology, University of Tuebingen Medical School, Tuebingen, Germany
| |
Collapse
|
16
|
Lyu X, Yu Y, Jiang Y, Li Z, Qiao Q. The role of mitochondria transfer in cancer biological behavior, the immune system and therapeutic resistance. J Pharm Anal 2025; 15:101141. [PMID: 40115812 PMCID: PMC11925581 DOI: 10.1016/j.jpha.2024.101141] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2024] [Revised: 10/14/2024] [Accepted: 11/03/2024] [Indexed: 03/23/2025] Open
Abstract
Mitochondria play a crucial role as organelles, managing several physiological processes such as redox balance, cell metabolism, and energy synthesis. Initially, the assumption was that mitochondria primarily resided in the host cells and could exclusively transmit from oocytes to offspring by a mechanism known as vertical inheritance of mitochondria. Recent scholarly works, however, suggest that certain cell types transmit their mitochondria to other developmental cell types via a mechanism referred to as intercellular or horizontal mitochondrial transfer. This review details the process of which mitochondria are transferred across cells and explains the impact of mitochondrial transfer between cells on the efficacy and functionality of cancer cells in various cancer forms. Specifically, we review the role of mitochondria transfer in regulating cellular metabolism restoration, excess reactive oxygen species (ROS) generation, proliferation, invasion, metastasis, mitophagy activation, mitochondrial DNA (mtDNA) inheritance, immune system modulation and therapeutic resistance in cancer. Additionally, we highlight the possibility of using intercellular mitochondria transfer as a therapeutic approach to treat cancer and enhance the efficacy of cancer treatments.
Collapse
Affiliation(s)
- Xintong Lyu
- Department of Radiation Oncology, First Hospital of China Medical University, Shenyang, 110001, China
| | - Yangyang Yu
- Department of Radiation Oncology, First Hospital of China Medical University, Shenyang, 110001, China
| | - Yuanjun Jiang
- Department of Urology, First Hospital of China Medical University, Shenyang, 110001, China
| | - Zhiyuan Li
- Department of Urology, Shengjing Hospital of China Medical University, Shenyang, 110001, China
| | - Qiao Qiao
- Department of Radiation Oncology, First Hospital of China Medical University, Shenyang, 110001, China
| |
Collapse
|
17
|
Mohamed Yusoff AA, Mohd Khair SZN, Abd Radzak SM. Mitochondrial DNA copy number alterations: Key players in the complexity of glioblastoma (Review). Mol Med Rep 2025; 31:78. [PMID: 39886971 PMCID: PMC11795256 DOI: 10.3892/mmr.2025.13443] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2024] [Accepted: 01/09/2025] [Indexed: 02/01/2025] Open
Abstract
Renowned as a highly invasive and lethal tumor derived from neural stem cells in the central nervous system, glioblastoma (GBM) exhibits substantial histopathological variation and genomic complexity, which drive its rapid progression and therapeutic resistance. Alterations in mitochondrial DNA (mtDNA) copy number (CN) serve a crucial role in GBM development and progression, affecting various aspects of tumor biology, including energy production, oxidative stress regulation and cellular adaptability. Fluctuations in mtDNA levels, whether elevated or diminished, can impair mitochondrial function, potentially disrupting oxidative phosphorylation and amplifying reactive oxygen species generation, thereby fueling tumor growth and influencing treatment responses. Understanding the mechanisms of mtDNA‑CN variations, and their interplay with genetic and environmental elements in the tumor microenvironment, is essential for advancing diagnostic and therapeutic strategies. Targeting mtDNA alterations could strengthen treatment efficacy, mitigate resistance and ultimately enhance the prognosis of patients with this aggressive brain tumor. The present review summarizes the existing literature on mtDNA alterations, specifically emphasizing variations in mtDNA‑CN and their association with GBM by surveying articles published between 1996 and 2024, sourced from databases such as Scopus, PubMed and Google Scholar. In addition, the review provides a brief overview of mitochondrial genome architecture, knowledge regarding the regulation of mtDNA integrity and CN, and how mitochondria significantly impact GBM tumorigenesis. This review further presents information on therapeutic approaches for restoring mtDNA‑CN that contribute to optimized mitochondrial function and improved health outcomes.
Collapse
Affiliation(s)
- Abdul Aziz Mohamed Yusoff
- Department of Neurosciences, School of Medical Sciences, Universiti Sains Malaysia, Kubang Kerian, Kelantan 16150, Malaysia
| | | | - Siti Muslihah Abd Radzak
- Department of Neurosciences, School of Medical Sciences, Universiti Sains Malaysia, Kubang Kerian, Kelantan 16150, Malaysia
| |
Collapse
|
18
|
Liu YJ, Sulc J, Auwerx J. Mitochondrial genetics, signalling and stress responses. Nat Cell Biol 2025; 27:393-407. [PMID: 40065146 DOI: 10.1038/s41556-025-01625-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2023] [Accepted: 01/22/2025] [Indexed: 03/15/2025]
Abstract
Mitochondria are multifaceted organelles with crucial roles in energy generation, cellular signalling and a range of synthesis pathways. The study of mitochondrial biology is complicated by its own small genome, which is matrilineally inherited and not subject to recombination, and present in multiple, possibly different, copies. Recent methodological developments have enabled the analysis of mitochondrial DNA (mtDNA) in large-scale cohorts and highlight the far-reaching impact of mitochondrial genetic variation. Genome-editing techniques have been adapted to target mtDNA, further propelling the functional analysis of mitochondrial genes. Mitochondria are finely tuned signalling hubs, a concept that has been expanded by advances in methodologies for studying the function of mitochondrial proteins and protein complexes. Mitochondrial respiratory complexes are of dual genetic origin, requiring close coordination between mitochondrial and nuclear gene-expression systems (transcription and translation) for proper assembly and function, and recent findings highlight the importance of the mitochondria in this bidirectional signalling.
Collapse
Affiliation(s)
- Yasmine J Liu
- Laboratory of Integrative Systems Physiology, École Polytechnique Fédérale de Lausanne (EPFL), Lausanne, Switzerland
| | - Jonathan Sulc
- Laboratory of Integrative Systems Physiology, École Polytechnique Fédérale de Lausanne (EPFL), Lausanne, Switzerland
| | - Johan Auwerx
- Laboratory of Integrative Systems Physiology, École Polytechnique Fédérale de Lausanne (EPFL), Lausanne, Switzerland.
| |
Collapse
|
19
|
Kuras M, Betancourt LH, Hong R, Szadai L, Rodriguez J, Horvatovich P, Pla I, Eriksson J, Szeitz B, Deszcz B, Welinder C, Sugihara Y, Ekedahl H, Baldetorp B, Ingvar C, Lundgren L, Lindberg H, Oskolas H, Horvath Z, Rezeli M, Gil J, Appelqvist R, Kemény LV, Malm J, Sanchez A, Szasz AM, Pawłowski K, Wieslander E, Fenyö D, Nemeth IB, Marko-Varga G. Proteogenomic Profiling of Treatment-Naïve Metastatic Malignant Melanoma. Cancers (Basel) 2025; 17:832. [PMID: 40075679 PMCID: PMC11899103 DOI: 10.3390/cancers17050832] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2025] [Accepted: 02/12/2025] [Indexed: 03/14/2025] Open
Abstract
BACKGROUND Melanoma is a highly heterogeneous disease, and a deeper molecular classification is essential for improving patient stratification and treatment approaches. Here, we describe the histopathology-driven proteogenomic landscape of 142 treatment-naïve metastatic melanoma samples to uncover molecular subtypes and clinically relevant biomarkers. METHODS We performed an integrative proteogenomic analysis to identify proteomic subtypes, assess the impact of BRAF V600 mutations, and study the molecular profiles and cellular composition of the tumor microenvironment. Clinical and histopathological data were used to support findings related to tissue morphology, disease progression, and patient outcomes. RESULTS Our analysis revealed five distinct proteomic subtypes that integrate immune and stromal microenvironment components and correlate with clinical and histopathological parameters. We demonstrated that BRAF V600-mutated melanomas exhibit biological heterogeneity, where an oncogene-induced senescence-like phenotype is associated with improved survival. This led to a proposed mortality risk-based stratification that may contribute to more personalized treatment strategies. Furthermore, tumor microenvironment composition strongly correlated with disease progression and patient outcomes, highlighting a histopathological connective tissue-to-tumor ratio assessment as a potential decision-making tool. We identified a melanoma-associated SAAV signature linked to extracellular matrix remodeling and SAAV-derived neoantigens as potential targets for anti-tumor immune responses. CONCLUSIONS This study provides a comprehensive stratification of metastatic melanoma, integrating proteogenomic insights with histopathological features. The findings may aid in the development of tailored diagnostic and therapeutic strategies, improving patient management and outcomes.
Collapse
Affiliation(s)
- Magdalena Kuras
- Department of Translational Medicine, Lund University, Skåne University Hospital Malmö, 214 28 Malmö, Sweden; (M.K.); (J.G.); (J.M.); (A.S.); (K.P.)
- Department of Biomedical Engineering, Lund University, 221 00 Lund, Sweden; (P.H.); (I.P.); (J.E.); (Y.S.); (H.L.); (M.R.); (R.A.); (G.M.-V.)
| | - Lazaro Hiram Betancourt
- Department of Translational Medicine, Lund University, Skåne University Hospital Malmö, 214 28 Malmö, Sweden; (M.K.); (J.G.); (J.M.); (A.S.); (K.P.)
- Department of Clinical Sciences Lund, Division of Oncology, Lund University, 221 00 Lund, Sweden; (C.W.); (B.B.); (L.L.); (H.O.)
| | - Runyu Hong
- Institute for Systems Genetics, NYU Grossman School of Medicine, New York, NY 10016, USA; (R.H.); (D.F.)
- Department of Biochemistry and Molecular Pharmacology, NYU Grossman School of Medicine, New York, NY 10016, USA
| | - Leticia Szadai
- Department of Dermatology and Allergology, University of Szeged, 6720 Szeged, Hungary; (L.S.); (I.B.N.)
| | - Jimmy Rodriguez
- Department of Biochemistry and Biophysics, Karolinska Institute, 171 77 Stockholm, Sweden;
| | - Peter Horvatovich
- Department of Biomedical Engineering, Lund University, 221 00 Lund, Sweden; (P.H.); (I.P.); (J.E.); (Y.S.); (H.L.); (M.R.); (R.A.); (G.M.-V.)
- Department of Analytical Biochemistry, Faculty of Science and Engineering, University of Groningen, 9712 CP Groningen, The Netherlands
| | - Indira Pla
- Department of Biomedical Engineering, Lund University, 221 00 Lund, Sweden; (P.H.); (I.P.); (J.E.); (Y.S.); (H.L.); (M.R.); (R.A.); (G.M.-V.)
| | - Jonatan Eriksson
- Department of Biomedical Engineering, Lund University, 221 00 Lund, Sweden; (P.H.); (I.P.); (J.E.); (Y.S.); (H.L.); (M.R.); (R.A.); (G.M.-V.)
| | - Beáta Szeitz
- Division of Oncology, Department of Internal Medicine and Oncology, Semmelweis University, 1085 Budapest, Hungary
| | - Bartłomiej Deszcz
- Department of Biochemistry and Microbiology, Warsaw University of Life Sciences, 02-787 Warsaw, Poland;
| | - Charlotte Welinder
- Department of Clinical Sciences Lund, Division of Oncology, Lund University, 221 00 Lund, Sweden; (C.W.); (B.B.); (L.L.); (H.O.)
| | - Yutaka Sugihara
- Department of Biomedical Engineering, Lund University, 221 00 Lund, Sweden; (P.H.); (I.P.); (J.E.); (Y.S.); (H.L.); (M.R.); (R.A.); (G.M.-V.)
| | - Henrik Ekedahl
- Department of Clinical Sciences Lund, Division of Oncology, Lund University, 221 00 Lund, Sweden; (C.W.); (B.B.); (L.L.); (H.O.)
- SUS University Hospital Lund, 222 42 Lund, Sweden;
| | - Bo Baldetorp
- Department of Clinical Sciences Lund, Division of Oncology, Lund University, 221 00 Lund, Sweden; (C.W.); (B.B.); (L.L.); (H.O.)
| | - Christian Ingvar
- SUS University Hospital Lund, 222 42 Lund, Sweden;
- Department of Surgery, Clinical Sciences, Lund University, SUS, 221 00 Lund, Sweden
| | - Lotta Lundgren
- Department of Clinical Sciences Lund, Division of Oncology, Lund University, 221 00 Lund, Sweden; (C.W.); (B.B.); (L.L.); (H.O.)
- SUS University Hospital Lund, 222 42 Lund, Sweden;
| | - Henrik Lindberg
- Department of Biomedical Engineering, Lund University, 221 00 Lund, Sweden; (P.H.); (I.P.); (J.E.); (Y.S.); (H.L.); (M.R.); (R.A.); (G.M.-V.)
| | - Henriett Oskolas
- Department of Clinical Sciences Lund, Division of Oncology, Lund University, 221 00 Lund, Sweden; (C.W.); (B.B.); (L.L.); (H.O.)
| | - Zsolt Horvath
- Department of Biomedical Engineering, Lund University, 221 00 Lund, Sweden; (P.H.); (I.P.); (J.E.); (Y.S.); (H.L.); (M.R.); (R.A.); (G.M.-V.)
| | - Melinda Rezeli
- Department of Biomedical Engineering, Lund University, 221 00 Lund, Sweden; (P.H.); (I.P.); (J.E.); (Y.S.); (H.L.); (M.R.); (R.A.); (G.M.-V.)
| | - Jeovanis Gil
- Department of Translational Medicine, Lund University, Skåne University Hospital Malmö, 214 28 Malmö, Sweden; (M.K.); (J.G.); (J.M.); (A.S.); (K.P.)
| | - Roger Appelqvist
- Department of Biomedical Engineering, Lund University, 221 00 Lund, Sweden; (P.H.); (I.P.); (J.E.); (Y.S.); (H.L.); (M.R.); (R.A.); (G.M.-V.)
| | - Lajos V. Kemény
- HCEMM-SU Translational Dermatology Research Group, Semmelweis University, 1085 Budapest, Hungary;
- Department of Dermatology, Venereology and Dermatooncology, Faculty of Medicine, Semmelweis University, 1085 Budapest, Hungary
- Department of Physiology, Faculty of Medicine, Semmelweis University, 1085 Budapest, Hungary
- MTA-SE Lendület “Momentum” Dermatology Research Group, Hungarian Academy of Sciences and Semmelweis University, 1085 Budapest, Hungary
| | - Johan Malm
- Department of Translational Medicine, Lund University, Skåne University Hospital Malmö, 214 28 Malmö, Sweden; (M.K.); (J.G.); (J.M.); (A.S.); (K.P.)
| | - Aniel Sanchez
- Department of Translational Medicine, Lund University, Skåne University Hospital Malmö, 214 28 Malmö, Sweden; (M.K.); (J.G.); (J.M.); (A.S.); (K.P.)
| | | | - Krzysztof Pawłowski
- Department of Translational Medicine, Lund University, Skåne University Hospital Malmö, 214 28 Malmö, Sweden; (M.K.); (J.G.); (J.M.); (A.S.); (K.P.)
- Department of Biochemistry and Microbiology, Warsaw University of Life Sciences, 02-787 Warsaw, Poland;
- Department of Molecular Biology, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| | - Elisabet Wieslander
- Department of Translational Medicine, Lund University, Skåne University Hospital Malmö, 214 28 Malmö, Sweden; (M.K.); (J.G.); (J.M.); (A.S.); (K.P.)
| | - David Fenyö
- Institute for Systems Genetics, NYU Grossman School of Medicine, New York, NY 10016, USA; (R.H.); (D.F.)
- Department of Biochemistry and Molecular Pharmacology, NYU Grossman School of Medicine, New York, NY 10016, USA
| | - Istvan Balazs Nemeth
- Department of Dermatology and Allergology, University of Szeged, 6720 Szeged, Hungary; (L.S.); (I.B.N.)
| | - György Marko-Varga
- Department of Biomedical Engineering, Lund University, 221 00 Lund, Sweden; (P.H.); (I.P.); (J.E.); (Y.S.); (H.L.); (M.R.); (R.A.); (G.M.-V.)
- Chemical Genomics Global Research Lab, Department of Biotechnology, College of Life Science and Biotechnology, Yonsei University, Seoul 03722, Republic of Korea
- 1st Department of Surgery, Tokyo Medical University, Tokyo 160-8402, Japan
| |
Collapse
|
20
|
Bayraktar R, Tang Y, Dragomir MP, Ivan C, Peng X, Fabris L, Zhang J, Carugo A, Aneli S, Liu J, Chen MJM, Srinivasan S, Sahnoune I, Bayraktar E, Akdemir KC, Chen M, Narayanan P, Huang W, Ott LF, Eterovic AK, Villarreal OE, Mohammad MM, Peoples MD, Walsh DM, Hernandez JA, Morgan MB, Shaw KR, Davis JS, Menter D, Tam CS, Yeh P, Dawson SJ, Rassenti LZ, Kipps TJ, Kunej T, Estrov Z, Joosse SA, Pagani L, Alix-Panabières C, Pantel K, Ferajoli A, Futreal A, Wistuba II, Radovich M, Kopetz S, Keating MJ, Draetta GF, Mattick JS, Liang H, Calin GA. The mutational landscape and functional effects of noncoding ultraconserved elements in human cancers. SCIENCE ADVANCES 2025; 11:eado2830. [PMID: 39970212 PMCID: PMC11837999 DOI: 10.1126/sciadv.ado2830] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/25/2024] [Accepted: 01/15/2025] [Indexed: 02/21/2025]
Abstract
The mutational landscape of phylogenetically ultraconserved elements (UCEs), especially those in noncoding DNAs (ncUCEs), and their functional relevance in cancers remain poorly characterized. Here, we perform a systematic analysis of whole-genome and in-house targeted UCE sequencing datasets from more than 3000 patients with cancer of 13,736 UCEs and demonstrate that ncUCE somatic alterations are common. Using a multiplexed CRISPR knockout screen in colorectal cancer cells, we show that the loss of several altered ncUCEs significantly affects cell proliferation. In-depth functional studies in vitro and in vivo further reveal that specific ncUCEs can be enhancers of tumor suppressors (such as ARID1B) and silencers of oncogenic proteins (such as RPS13). Moreover, several miRNAs located in ncUCEs are recurrently mutated. Mutations in miR-142 locus can affect the Drosha-mediated processing of precursor miRNAs, resulting in the down-regulation of the mature transcript. These results provide systematic evidence that specific ncUCEs play diverse regulatory roles in cancer.
Collapse
Affiliation(s)
- Recep Bayraktar
- Department of Translational Molecular Pathology, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
- MD Anderson Cancer Center UTHealth Graduate School of Biomedical Sciences Houston, Houston, TX 77030, USA
| | - Yitao Tang
- MD Anderson Cancer Center UTHealth Graduate School of Biomedical Sciences Houston, Houston, TX 77030, USA
- Department of Bioinformatics and Computational Biology, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Mihnea P. Dragomir
- Department of Experimental Therapeutics, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
- Institute of Pathology, Charité Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt Universität Zu Berlin, CCM, Charitéplatz 1, 10117 Berlin, Germany
- Berlin Institute of Health at Charité, Charitéplatz 1, 10117 Berlin, Germany
- German Cancer Research Center (DKFZ), German Cancer Consortium (DKTK), Partner Site Berlin, 69210 Heidelberg, Germany
| | - Cristina Ivan
- Department of Experimental Therapeutics, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
- Center for RNA Interference and Non-coding RNAs, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
- Caris Life Science, Irving, TX 75039, USA
| | - Xinxin Peng
- Department of Bioinformatics and Computational Biology, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Linda Fabris
- Department of Translational Molecular Pathology, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Jianhua Zhang
- Department of Genomic Medicine, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Alessandro Carugo
- TRACTION Platform, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Serena Aneli
- Department of Biology, University of Padova, Padova, Italy
- Department of Public Health Sciences and Pediatrics, University of Turin, 10126, Turin, Italy
| | - Jintan Liu
- MD Anderson Cancer Center UTHealth Graduate School of Biomedical Sciences Houston, Houston, TX 77030, USA
- Department of Genomic Medicine, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Mei-Ju M. Chen
- Department of Bioinformatics and Computational Biology, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Sanjana Srinivasan
- Department of Genomic Medicine, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Iman Sahnoune
- Department of Translational Molecular Pathology, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Emine Bayraktar
- MD Anderson Cancer Center UTHealth Graduate School of Biomedical Sciences Houston, Houston, TX 77030, USA
- Center for RNA Interference and Non-coding RNAs, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
- Department of Gynecologic Oncology and Reproductive Medicine, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Kadir C. Akdemir
- Department of Genomic Medicine, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
- Department of Neurosurgery, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Meng Chen
- Department of Translational Molecular Pathology, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Pranav Narayanan
- Department of Translational Molecular Pathology, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
- Department of BioSciences, Rice University, Houston, TX 77005, USA
| | - Wilson Huang
- Department of Translational Molecular Pathology, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
- Johns Hopkins Physical Science– Oncology Center and Institute for NanoBioTechnology, Johns Hopkins University, 3400 N Charles St, Baltimore, MD 21218, USA
| | - Leonie Florence Ott
- Department of Experimental Therapeutics, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
- Department of Tumor Biology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Agda Karina Eterovic
- Institute for Personalized Cancer Therapy, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
- Viracor Eurofins, Oncology Diagnostics, Lee's Summit, MO 64086, USA
| | - Oscar Eduardo Villarreal
- Department of Gastrointestinal Medical Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Mohammad Moustaf Mohammad
- Institute for Personalized Cancer Therapy, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Michael D. Peoples
- Department of Genomic Medicine, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
- TRACTION Platform, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Danielle M. Walsh
- Department of Leukemia, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Jon Andrew Hernandez
- Department of Leukemia, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Margaret B. Morgan
- Institute for Personalized Cancer Therapy, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Kenna R. Shaw
- Institute for Personalized Cancer Therapy, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Jennifer S. Davis
- Department of Epidemiology, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - David Menter
- Department of Gastrointestinal Medical Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Constantine S. Tam
- Peter MacCallum Cancer Centre and University of Melbourne, Melbourne, Victoria, Australia
| | - Paul Yeh
- Peter MacCallum Cancer Centre and University of Melbourne, Melbourne, Victoria, Australia
| | - Sarah-Jane Dawson
- Peter MacCallum Cancer Centre and University of Melbourne, Melbourne, Victoria, Australia
| | - Laura Z. Rassenti
- Center for Novel Therapeutics, Moores Cancer Center, University of California San Diego, La Jolla, CA 92037, USA
| | - Thomas J. Kipps
- Center for Novel Therapeutics, Moores Cancer Center, University of California San Diego, La Jolla, CA 92037, USA
| | - Tanja Kunej
- Department of Animal Science, Biotechnical Faculty, University of Ljubljana, Groblje 3, SI-1230 Domzale, Slovenia
| | - Zeev Estrov
- Department of Leukemia, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Simon A. Joosse
- Department of Tumor Biology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
- Mildred Scheel Cancer Career Center HaTriCS4, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Luca Pagani
- Department of Biology, University of Padova, Padova, Italy
| | - Catherine Alix-Panabières
- The Laboratory Rare Human Circulating Cells and Liquid Biopsy, The University Medical Center of Montpellier, Montpellier, France
| | - Klaus Pantel
- Department of Tumor Biology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Alessandra Ferajoli
- Department of Leukemia, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Andrew Futreal
- Department of Genomic Medicine, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Ignacio I. Wistuba
- Department of Translational Molecular Pathology, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Milan Radovich
- Caris Life Science, Irving, TX 75039, USA
- Department of Surgery, Division of General Surgery, Indiana University School of Medicine, Indianapolis, IN 46202, USA
| | - Scott Kopetz
- Department of Gastrointestinal Medical Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Michael J. Keating
- Department of Leukemia, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Giulio F. Draetta
- Department of Genomic Medicine, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - John S. Mattick
- School of Biotechnology and Biomolecular Sciences, UNSW Sydney, Kensington, New South Wales 2052, Australia
| | - Han Liang
- Department of Bioinformatics and Computational Biology, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
- Department of Systems Biology, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - George A. Calin
- Department of Translational Molecular Pathology, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
- Department of Experimental Therapeutics, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
- Center for RNA Interference and Non-coding RNAs, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| |
Collapse
|
21
|
Gonzalez Bosquet J, Wagner V, Polio A, Linder KE, Bender DP, Goodheart MJ, Schickling BM. Identification of Ovarian High-Grade Serous Carcinoma with Mitochondrial Gene Variation. Int J Mol Sci 2025; 26:1347. [PMID: 39941116 PMCID: PMC11818617 DOI: 10.3390/ijms26031347] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2024] [Revised: 02/02/2025] [Accepted: 02/03/2025] [Indexed: 02/16/2025] Open
Abstract
Women diagnosed with advanced-stage ovarian cancer have a much worse survival rate than women diagnosed with early-stage ovarian cancer, but the early detection of this disease remains a clinical challenge. Some recent reports indicate that genetic variations could be useful for the early detection of several malignancies. In this pilot observational retrospective study, we aimed to assess whether mitochondrial DNA (mtDNA) variations could discriminate the most frequent type of ovarian cancer, high-grade serous carcinoma (HGSC), from normal tissue. We identified mtDNA variations from 20 whole-exome sequenced (WES) HGSC samples and 14 controls (normal tubes) using the best practices of genome sequencing. We built prediction models of cancer with these variants, with good performance measured by the area under the curve (AUC) of 0.88 (CI: 0.74-1.00). The variants included in the best model were correlated with gene expression to assess the potentially affected processes. These analyses were validated with the Cancer Genome Atlas (TCGA) dataset, (including over 420 samples), with a fair performance in AUC terms (0.63-0.71). In summary, we identified a set of mtDNA variations that can discriminate HGSC with good performance. Specifically, variations in the MT-CYB gene increased the risk for HGSC by over 30%, and MT-CYB expression was significantly decreased in HGSC patients. Robust models of ovarian cancer detection with mtDNA variations could be applied to liquid biopsy technology, like those which have been applied to other cancers, with a special focus on the early detection of this lethal disease.
Collapse
Affiliation(s)
- Jesus Gonzalez Bosquet
- Department of Obstetrics and Gynecology, University of Iowa, Iowa City, IA 52242, USA (A.P.); (K.E.L.); (D.P.B.); (B.M.S.)
- Holden Comprehensive Cancer Center, University of Iowa Hospitals and Clinics, Iowa City, IA 52242, USA
| | - Vincent Wagner
- Department of Obstetrics and Gynecology, University of Iowa, Iowa City, IA 52242, USA (A.P.); (K.E.L.); (D.P.B.); (B.M.S.)
| | - Andrew Polio
- Department of Obstetrics and Gynecology, University of Iowa, Iowa City, IA 52242, USA (A.P.); (K.E.L.); (D.P.B.); (B.M.S.)
| | - Katharine E. Linder
- Department of Obstetrics and Gynecology, University of Iowa, Iowa City, IA 52242, USA (A.P.); (K.E.L.); (D.P.B.); (B.M.S.)
| | - David P. Bender
- Department of Obstetrics and Gynecology, University of Iowa, Iowa City, IA 52242, USA (A.P.); (K.E.L.); (D.P.B.); (B.M.S.)
- Holden Comprehensive Cancer Center, University of Iowa Hospitals and Clinics, Iowa City, IA 52242, USA
| | - Michael J. Goodheart
- Department of Obstetrics and Gynecology, University of Iowa, Iowa City, IA 52242, USA (A.P.); (K.E.L.); (D.P.B.); (B.M.S.)
- Holden Comprehensive Cancer Center, University of Iowa Hospitals and Clinics, Iowa City, IA 52242, USA
| | - Brandon M. Schickling
- Department of Obstetrics and Gynecology, University of Iowa, Iowa City, IA 52242, USA (A.P.); (K.E.L.); (D.P.B.); (B.M.S.)
| |
Collapse
|
22
|
Iliushchenko D, Efimenko B, Mikhailova AG, Shamanskiy V, Saparbaev MK, Matkarimov BT, Mazunin I, Voronka A, Knorre D, Kunz WS, Kapranov P, Denisov S, Fellay J, Khrapko K, Gunbin K, Popadin K. Deciphering the Foundations of Mitochondrial Mutational Spectra: Replication-Driven and Damage-Induced Signatures Across Chordate Classes. Mol Biol Evol 2025; 42:msae261. [PMID: 39903101 PMCID: PMC11792237 DOI: 10.1093/molbev/msae261] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2024] [Revised: 11/08/2024] [Accepted: 12/04/2024] [Indexed: 02/06/2025] Open
Abstract
Mitochondrial DNA (mtDNA) mutagenesis remains poorly understood despite its crucial role in disease, aging, and evolutionary tracing. In this study, we reconstructed a comprehensive 192-component mtDNA mutational spectrum for chordates by analyzing 118,397 synonymous mutations in the CytB gene across 1,697 species and five classes. This analysis revealed three primary forces shaping mtDNA mutagenesis: (i) symmetrical, replication-driven errors by mitochondrial polymerase (POLG), resulting in C > T and A > G mutations that are highly conserved across classes; (ii) asymmetrical, damage-driven C > T mutations on the single-stranded heavy strand with clock-like dynamics; and (iii) asymmetrical A > G mutations on the heavy strand, with dynamics suggesting sensitivity to oxidative damage. The third component, sensitive to oxidative damage, positions mtDNA mutagenesis as a promising marker for metabolic and physiological processes across various classes, species, organisms, tissues, and cells. The deconvolution of the mutational spectra into mutational signatures uncovered deficiencies in both base excision repair (BER) and mismatch repair (MMR) pathways. Further analysis of mutation hotspots, abasic sites, and mutational asymmetries underscores the critical role of single-stranded DNA damage (components ii and iii), which, uncorrected due to BER and MMR deficiencies, contributes roughly as many mutations as POLG-induced errors (component i).
Collapse
Affiliation(s)
- Dmitrii Iliushchenko
- Center for Mitochondrial Functional Genomics, Immanuel Kant Baltic Federal University, Kaliningrad, Russian Federation
| | - Bogdan Efimenko
- Center for Mitochondrial Functional Genomics, Immanuel Kant Baltic Federal University, Kaliningrad, Russian Federation
| | - Alina G Mikhailova
- Center for Mitochondrial Functional Genomics, Immanuel Kant Baltic Federal University, Kaliningrad, Russian Federation
| | - Victor Shamanskiy
- Center for Mitochondrial Functional Genomics, Immanuel Kant Baltic Federal University, Kaliningrad, Russian Federation
| | - Murat K Saparbaev
- Groupe “Mechanisms of DNA Repair and Carcinogenesis”, CNRS UMR9019, Gustave Roussy Cancer Campus, Université Paris-Saclay, Villejuif, France
| | - Bakhyt T Matkarimov
- National Laboratory Astana, Nazarbayev University, Astana, Kazakhstan
- Faculty of Information Technologies, L.N. Gumilyov Eurasian National University, Astana, Kazakhstan
| | - Ilya Mazunin
- Department of Biology and Genetics, Petrovsky Medical University, Moscow, Russian Federation
- Research Centre for Medical Genetics, Moscow, Russian Federation
| | - Alexandr Voronka
- Center for Mitochondrial Functional Genomics, Immanuel Kant Baltic Federal University, Kaliningrad, Russian Federation
| | - Dmitry Knorre
- Belozersky Institute of Physico-Chemical Biology, Lomonosov Moscow State University, Moscow, Russian Federation
| | - Wolfram S Kunz
- Department of Epileptology and Institute of Experimental Epileptology and Cognition Research, University Bonn Medical Center, Bonn, Germany
| | | | - Stepan Denisov
- Faculty of Biology, Medicine and Health, School of Biological Sciences, The University of Manchester, Manchester, UK
| | - Jacques Fellay
- School of Life Sciences, Ecole Polytechnique Fédérale de Lausanne, Lausanne, Switzerland
| | | | - Konstantin Gunbin
- Center for Mitochondrial Functional Genomics, Immanuel Kant Baltic Federal University, Kaliningrad, Russian Federation
- Institute of Molecular and Cellular Biology SB RAS, Novosibirsk, Russian Federation
| | - Konstantin Popadin
- Center for Mitochondrial Functional Genomics, Immanuel Kant Baltic Federal University, Kaliningrad, Russian Federation
- School of Life Sciences, Ecole Polytechnique Fédérale de Lausanne, Lausanne, Switzerland
| |
Collapse
|
23
|
Ikeda H, Kawase K, Nishi T, Watanabe T, Takenaga K, Inozume T, Ishino T, Aki S, Lin J, Kawashima S, Nagasaki J, Ueda Y, Suzuki S, Makinoshima H, Itami M, Nakamura Y, Tatsumi Y, Suenaga Y, Morinaga T, Honobe-Tabuchi A, Ohnuma T, Kawamura T, Umeda Y, Nakamura Y, Kiniwa Y, Ichihara E, Hayashi H, Ikeda JI, Hanazawa T, Toyooka S, Mano H, Suzuki T, Osawa T, Kawazu M, Togashi Y. Immune evasion through mitochondrial transfer in the tumour microenvironment. Nature 2025; 638:225-236. [PMID: 39843734 PMCID: PMC11798832 DOI: 10.1038/s41586-024-08439-0] [Citation(s) in RCA: 20] [Impact Index Per Article: 20.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2023] [Accepted: 11/21/2024] [Indexed: 01/24/2025]
Abstract
Cancer cells in the tumour microenvironment use various mechanisms to evade the immune system, particularly T cell attack1. For example, metabolic reprogramming in the tumour microenvironment and mitochondrial dysfunction in tumour-infiltrating lymphocytes (TILs) impair antitumour immune responses2-4. However, detailed mechanisms of such processes remain unclear. Here we analyse clinical specimens and identify mitochondrial DNA (mtDNA) mutations in TILs that are shared with cancer cells. Moreover, mitochondria with mtDNA mutations from cancer cells are able to transfer to TILs. Typically, mitochondria in TILs readily undergo mitophagy through reactive oxygen species. However, mitochondria transferred from cancer cells do not undergo mitophagy, which we find is due to mitophagy-inhibitory molecules. These molecules attach to mitochondria and together are transferred to TILs, which results in homoplasmic replacement. T cells that acquire mtDNA mutations from cancer cells exhibit metabolic abnormalities and senescence, with defects in effector functions and memory formation. This in turn leads to impaired antitumour immunity both in vitro and in vivo. Accordingly, the presence of an mtDNA mutation in tumour tissue is a poor prognostic factor for immune checkpoint inhibitors in patients with melanoma or non-small-cell lung cancer. These findings reveal a previously unknown mechanism of cancer immune evasion through mitochondrial transfer and can contribute to the development of future cancer immunotherapies.
Collapse
Affiliation(s)
- Hideki Ikeda
- Division of Cell Therapy, Chiba Cancer Center Research Institute, Chiba, Japan
- Department of Respirology, Graduate School of Medicine, Chiba University, Chiba, Japan
| | - Katsushige Kawase
- Division of Cell Therapy, Chiba Cancer Center Research Institute, Chiba, Japan
- Department of Otorhinolaryngology/Head and Neck Surgery, Chiba University Graduate School of Medicine, Chiba, Japan
| | - Tatsuya Nishi
- Department of Tumor Microenvironment, Faculty of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University, Okayama, Japan
- Department of Allergy and Respiratory Medicine, Okayama University Hospital, Okayama, Japan
| | - Tomofumi Watanabe
- Department of Tumor Microenvironment, Faculty of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University, Okayama, Japan
- Department of Urology, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama, Japan
| | - Keizo Takenaga
- Division of Innovative Cancer Therapeutics, Chiba Cancer Center Research Institute, Chiba, Japan
| | - Takashi Inozume
- Division of Cell Therapy, Chiba Cancer Center Research Institute, Chiba, Japan
- Department of Dermatology, Graduate School of Medicine, Chiba University, Chiba, Japan
- Department of Dermatology, Faculty of Medicine, University of Yamanashi, Yamanashi, Japan
| | - Takamasa Ishino
- Division of Cell Therapy, Chiba Cancer Center Research Institute, Chiba, Japan
- Department of Tumor Microenvironment, Faculty of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University, Okayama, Japan
- Department of Gastroenterology, Graduate School of Medicine, Chiba University, Chiba, Japan
| | - Sho Aki
- Division of Nutriomics and Oncology, RCAST, The University of Tokyo, Tokyo, Japan
- Department of Chemistry and Biotechnology, Graduate School of Engineering, The University of Tokyo, Tokyo, Japan
| | - Jason Lin
- Division of Cell Therapy, Chiba Cancer Center Research Institute, Chiba, Japan
| | - Shusuke Kawashima
- Division of Cell Therapy, Chiba Cancer Center Research Institute, Chiba, Japan
- Department of Dermatology, Graduate School of Medicine, Chiba University, Chiba, Japan
| | - Joji Nagasaki
- Division of Cell Therapy, Chiba Cancer Center Research Institute, Chiba, Japan
- Department of Tumor Microenvironment, Faculty of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University, Okayama, Japan
| | - Youki Ueda
- Department of Tumor Microenvironment, Faculty of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University, Okayama, Japan
| | - Shinichiro Suzuki
- Department of Medical Oncology, Kindai University Faculty of Medicine, Osaka, Japan
| | - Hideki Makinoshima
- Tsuruoka Metabolomics Laboratory, National Cancer Center, Yamagata, Japan
| | - Makiko Itami
- Department of Surgical Pathology, Chiba Cancer Center, Chiba, Japan
| | - Yuki Nakamura
- Division of Cell Therapy, Chiba Cancer Center Research Institute, Chiba, Japan
| | - Yasutoshi Tatsumi
- Division of Cell Therapy, Chiba Cancer Center Research Institute, Chiba, Japan
- Laboratory of Pediatric and Refractory Cancer, Chiba Cancer Center Research Institute, Chiba, Japan
| | - Yusuke Suenaga
- Laboratory of Evolutionary Oncology, Chiba Cancer Center Research Institute, Chiba, Japan
| | - Takao Morinaga
- Division of Cell Therapy, Chiba Cancer Center Research Institute, Chiba, Japan
| | - Akiko Honobe-Tabuchi
- Department of Dermatology, Faculty of Medicine, University of Yamanashi, Yamanashi, Japan
| | - Takehiro Ohnuma
- Department of Dermatology, Faculty of Medicine, University of Yamanashi, Yamanashi, Japan
- Department of Dermatology and Plastic Surgery, Faculty of Life Sciences, Kumamoto University, Kumamoto, Japan
| | - Tatsuyoshi Kawamura
- Department of Dermatology, Faculty of Medicine, University of Yamanashi, Yamanashi, Japan
| | - Yoshiyasu Umeda
- Department of Skin Oncology/Dermatology, Saitama Medical University International Medical Center, Saitama, Japan
| | - Yasuhiro Nakamura
- Department of Skin Oncology/Dermatology, Saitama Medical University International Medical Center, Saitama, Japan
| | - Yukiko Kiniwa
- Department of Dermatology, Shinshu University School of Medicine, Nagano, Japan
| | - Eiki Ichihara
- Department of Allergy and Respiratory Medicine, Okayama University Hospital, Okayama, Japan
| | - Hidetoshi Hayashi
- Department of Medical Oncology, Kindai University Faculty of Medicine, Osaka, Japan
| | - Jun-Ichiro Ikeda
- Department of Diagnostic Pathology, Graduate School of Medicine, Chiba University, Chiba, Japan
| | - Toyoyuki Hanazawa
- Department of Otorhinolaryngology/Head and Neck Surgery, Chiba University Graduate School of Medicine, Chiba, Japan
| | - Shinichi Toyooka
- Department of General Thoracic Surgery and Endocrinological Surgery, Faculty of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University, Okayama, Japan
| | - Hiroyuki Mano
- Division of Cellular Signalling, National Cancer Center Research Institute, Tokyo, Japan
| | - Takuji Suzuki
- Department of Respirology, Graduate School of Medicine, Chiba University, Chiba, Japan
- Synergy Institute for Futuristic Mucosal Vaccine Research and Development, Chiba University, Chiba, Japan
| | - Tsuyoshi Osawa
- Division of Nutriomics and Oncology, RCAST, The University of Tokyo, Tokyo, Japan
- Department of Chemistry and Biotechnology, Graduate School of Engineering, The University of Tokyo, Tokyo, Japan
- Department of Biological Sciences, Graduate School of Science, The University of Tokyo, Tokyo, Japan
| | - Masahito Kawazu
- Division of Cell Therapy, Chiba Cancer Center Research Institute, Chiba, Japan
- Division of Cellular Signalling, National Cancer Center Research Institute, Tokyo, Japan
| | - Yosuke Togashi
- Division of Cell Therapy, Chiba Cancer Center Research Institute, Chiba, Japan.
- Department of Tumor Microenvironment, Faculty of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University, Okayama, Japan.
- Department of Allergy and Respiratory Medicine, Okayama University Hospital, Okayama, Japan.
- Faculty of Medicine, Kindai University, Osaka, Japan.
| |
Collapse
|
24
|
Murillo Carrasco AG, Chammas R, Furuya TK. Mitochondrial DNA alterations in precision oncology: Emerging roles in diagnostics and therapeutics. Clinics (Sao Paulo) 2025; 80:100570. [PMID: 39884256 PMCID: PMC11830334 DOI: 10.1016/j.clinsp.2024.100570] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/12/2024] [Accepted: 12/25/2024] [Indexed: 02/01/2025] Open
Abstract
Mitochondria are dynamic organelles essential for vital cellular functions, including ATP production, apoptosis regulation, and calcium homeostasis. Increasing research has highlighted the significance of mitochondrial DNA (mtDNA) content and alterations in the development and progression of various diseases, including cancer. The high mutation rate and vulnerability of mtDNA to damage make these alterations valuable biomarkers for cancer diagnosis, monitoring disease progression, detecting metastasis, and predicting treatment resistance across different tumor types. This review explores the emerging roles of mtDNA alterations in precision oncology, emphasizing their potential in theranostics. The authors explore the mechanisms by which mtDNA mutations contribute to tumorigenesis and therapy resistance, the impact of heteroplasmy in cancer biology, and the integration of mtDNA-based diagnostics with current therapeutic strategies. Additionally, the authors highlight the experimental tools and models currently used to investigate mtDNA alterations in cancer, including advanced sequencing technologies and animal models.
Collapse
Affiliation(s)
- Alexis Germán Murillo Carrasco
- Centro de Investigação Translacional em Oncologia (LIM24), Instituto do Câncer do Estado de São Paulo (ICESP), Faculdade de Medicina da Universidade de São Paulo (FMUSP), São Paulo, Brazil; Comprehensive Center for Precision Oncology, Universidade de São Paulo, São Paulo, Brazil.
| | - Roger Chammas
- Centro de Investigação Translacional em Oncologia (LIM24), Instituto do Câncer do Estado de São Paulo (ICESP), Faculdade de Medicina da Universidade de São Paulo (FMUSP), São Paulo, Brazil; Comprehensive Center for Precision Oncology, Universidade de São Paulo, São Paulo, Brazil.
| | - Tatiane Katsue Furuya
- Centro de Investigação Translacional em Oncologia (LIM24), Instituto do Câncer do Estado de São Paulo (ICESP), Faculdade de Medicina da Universidade de São Paulo (FMUSP), São Paulo, Brazil; Comprehensive Center for Precision Oncology, Universidade de São Paulo, São Paulo, Brazil.
| |
Collapse
|
25
|
Li-Harms X, Lu J, Fukuda Y, Lynch J, Sheth A, Pareek G, Kaminski MM, Ross HS, Wright CW, Smith AL, Wu H, Wang YD, Valentine M, Neale G, Vogel P, Pounds S, Schuetz JD, Ni M, Kundu M. Somatic mtDNA mutation burden shapes metabolic plasticity in leukemogenesis. SCIENCE ADVANCES 2025; 11:eads8489. [PMID: 39742470 PMCID: PMC11691655 DOI: 10.1126/sciadv.ads8489] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/01/2024] [Accepted: 11/20/2024] [Indexed: 01/03/2025]
Abstract
The role of somatic mitochondrial DNA (mtDNA) mutations in leukemogenesis remains poorly characterized. To determine the impact of somatic mtDNA mutations on this process, we assessed the leukemogenic potential of hematopoietic progenitor cells (HPCs) from mtDNA mutator mice (Polg D257A) with or without NMyc overexpression. We observed a higher incidence of spontaneous leukemogenesis in recipients transplanted with heterozygous Polg HPCs and a lower incidence of NMyc-driven leukemia in those with homozygous Polg HPCs compared to controls. Although mtDNA mutations in heterozygous and homozygous HPCs caused similar baseline impairments in mitochondrial function, only heterozygous HPCs responded to and supported altered metabolic demands associated with NMyc overexpression. Homozygous HPCs showed altered glucose utilization with pyruvate dehydrogenase inhibition due to increased phosphorylation, exacerbated by NMyc overexpression. The impaired growth of NMyc-expressing homozygous HPCs was partially rescued by inhibiting pyruvate dehydrogenase kinase, highlighting a relationship between mtDNA mutation burden and metabolic plasticity in leukemogenesis.
Collapse
Affiliation(s)
- Xiujie Li-Harms
- Department of Cell and Molecular Biology, St. Jude Children’s Research Hospital, Memphis, TN, USA
| | - Jingjun Lu
- Department of Cell and Molecular Biology, St. Jude Children’s Research Hospital, Memphis, TN, USA
| | - Yu Fukuda
- Department of Pharmacy and Pharmaceutical Sciences, St. Jude Children’s Research Hospital, Memphis, TN, USA
| | - John Lynch
- Department of Pharmacy and Pharmaceutical Sciences, St. Jude Children’s Research Hospital, Memphis, TN, USA
| | - Aditya Sheth
- Department of Pathology, Center of Excellence for Leukemia Studies, St. Jude Children’s Research Hospital, Memphis, TN, USA
| | - Gautam Pareek
- Department of Cell and Molecular Biology, St. Jude Children’s Research Hospital, Memphis, TN, USA
| | - Marcin M. Kaminski
- Department of Immunology, St. Jude Children’s Research Hospital, Memphis, TN, USA
| | - Hailey S. Ross
- Department of Cell and Molecular Biology, St. Jude Children’s Research Hospital, Memphis, TN, USA
| | - Christopher W. Wright
- Department of Cell and Molecular Biology, St. Jude Children’s Research Hospital, Memphis, TN, USA
| | - Amber L. Smith
- Department of Cell and Molecular Biology, St. Jude Children’s Research Hospital, Memphis, TN, USA
| | - Huiyun Wu
- Department of Biostatistics, St. Jude Children’s Research Hospital, Memphis, TN, USA
| | - Yong-Dong Wang
- Department of Cell and Molecular Biology, St. Jude Children’s Research Hospital, Memphis, TN, USA
| | - Marc Valentine
- Cytogenetics Shared Resource, St. Jude Children’s Research Hospital, Memphis, TN, USA
| | - Geoffrey Neale
- Hartwell Center for Bioinformatics and Biotechnology, St. Jude Children’s Research Hospital, Memphis, TN, USA
| | - Peter Vogel
- Veterinary Pathology Core, St. Jude Children’s Research Hospital, Memphis, TN, USA
| | - Stanley Pounds
- Department of Biostatistics, St. Jude Children’s Research Hospital, Memphis, TN, USA
| | - John D. Schuetz
- Department of Pharmacy and Pharmaceutical Sciences, St. Jude Children’s Research Hospital, Memphis, TN, USA
| | - Min Ni
- Department of Oncology, St. Jude Children’s Research Hospital, Memphis, TN, USA
| | - Mondira Kundu
- Department of Cell and Molecular Biology, St. Jude Children’s Research Hospital, Memphis, TN, USA
| |
Collapse
|
26
|
Keerthiga R, Xie Y, Pei DS, Fu A. The multifaceted modulation of mitochondrial metabolism in tumorigenesis. Mitochondrion 2025; 80:101977. [PMID: 39505244 DOI: 10.1016/j.mito.2024.101977] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2023] [Revised: 11/01/2024] [Accepted: 11/02/2024] [Indexed: 11/08/2024]
Abstract
Changes in mitochondrial metabolism produce a malignant transformation from normal cells to tumor cells. Mitochondrial metabolism, comprising bioenergetic metabolism, biosynthetic process, biomolecular decomposition, and metabolic signal conversion, obviously forms a unique sign in the process of tumorigenesis. Several oncometabolites produced by mitochondrial metabolism maintain tumor phenotype, which are recognized as tumor indicators. The mitochondrial metabolism synchronizes the metabolic and genetic outcome to the potent tumor microenvironmental signals, thereby further promoting tumor initiation. Moreover, the bioenergetic and biosynthetic metabolism within tumor mitochondria orchestrates dynamic contributions toward cancer progression and invasion. In this review, we describe the contribution of mitochondrial metabolism in tumorigenesis through shaping several hallmarks such as microenvironment modulation, plasticity, mitochondrial calcium, mitochondrial dynamics, and epithelial-mesenchymal transition. The review will provide a new insight into the abnormal mitochondrial metabolism in tumorigenesis, which will be conducive to tumor prevention and therapy through targeting tumor mitochondria.
Collapse
Affiliation(s)
- Rajendiran Keerthiga
- College of Pharmaceutical Science, Southwest University, Chongqing, 400716, China; Department of Computational Biology, Saveetha School of Engineering, Saveetha Institute of Medical and Technical Sciences, Saveetha University, Thandalam, Chennai 602105, Tamil Nadu, India
| | - Yafang Xie
- College of Pharmaceutical Science, Southwest University, Chongqing, 400716, China
| | - De-Sheng Pei
- School of Public Health, Chongqing Medical University, Chongqing, 400016, China.
| | - Ailing Fu
- College of Pharmaceutical Science, Southwest University, Chongqing, 400716, China.
| |
Collapse
|
27
|
Zhu S, Chen C, Wang M, Liu Y, Li B, Qi X, Song M, Liu X, Feng J, Liu J. Pan-cancer association of a mitochondrial function score with genomic alterations and clinical outcome. Sci Rep 2024; 14:31430. [PMID: 39733076 PMCID: PMC11682264 DOI: 10.1038/s41598-024-83022-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2024] [Accepted: 12/11/2024] [Indexed: 12/30/2024] Open
Abstract
Mitochondria are pivotal in cellular energy metabolism and have garnered significant attention for their roles in cancer progression and therapy resistance. Despite this, the functional diversity of mitochondria across various cancer types remains inadequately characterized. This study seeks to fill this knowledge gap by introducing and validating MitoScore-a novel metric designed to quantitatively assess mitochondrial function across a wide array of cancers. Our investigation evaluates the capacity of MitoScore not only to distinguish between tumor and adjacent normal tissues but also to serve as a predictive marker for clinical outcomes. We analyzed gene expression data from 24 cancer types and corresponding normal tissues using the TCGA database. MitoScore was calculated by summing the normalized expression levels of six mitochondrial genes known to be consistently altered across multiple cancers. Differential gene expression was assessed using DESeq2, with a focus on identifying significant changes in mitochondrial function. MitoScore's associations with tumor proliferation, hypoxia, aneuploidy, and clinical outcomes were evaluated using Spearman's correlation, linear regression, and Kaplan-Meier survival analyses. MitoScore was significantly higher in tumor tissues compared to normal tissues across most cancer types (p < 0.001). It positively correlated with tumor proliferation rates (r = 0.46), hypoxia scores (r = 0.61), and aneuploidy (r = 0.44), indicating its potential as a marker of aggressive tumor behavior. High MitoScore was also associated with poorer prognosis in several cancer types, suggesting its utility as a predictive biomarker for clinical outcomes. This study introduces MitoScore, a metric for mitochondrial activity often elevated in tumors and linked to poor prognosis. It correlates positively with hypoxia and negatively with stromal and immune infiltration, highlighting mitochondria's role in the tumor microenvironment. MitoScore's association with genomic instability, such as aneuploidy, suggests mitochondrial dysfunction contributes to cancer progression. Despite challenges in mitochondrial-targeted therapies, MitoScore may identify tumors responsive to such treatments, warranting further research for clinical application.
Collapse
Affiliation(s)
- Shikun Zhu
- Department of Laboratory Medicine, The Affiliated Hospital of Southwest Medical University, Sichuan Province Engineering Technology Research Center of Molecular Diagnosis of Clinical Diseases, Molecular Diagnosis of Clinical Diseases Key Laboratory of Luzhou, Luzhou, Sichuan, China
| | - Chen Chen
- Department of Laboratory Medicine, The Affiliated Hospital of Southwest Medical University, Sichuan Province Engineering Technology Research Center of Molecular Diagnosis of Clinical Diseases, Molecular Diagnosis of Clinical Diseases Key Laboratory of Luzhou, Luzhou, Sichuan, China
| | - Min Wang
- Department of Laboratory Medicine, The Affiliated Hospital of Southwest Medical University, Sichuan Province Engineering Technology Research Center of Molecular Diagnosis of Clinical Diseases, Molecular Diagnosis of Clinical Diseases Key Laboratory of Luzhou, Luzhou, Sichuan, China
| | - Yue Liu
- Department of Laboratory Medicine, The Affiliated Hospital of Southwest Medical University, Sichuan Province Engineering Technology Research Center of Molecular Diagnosis of Clinical Diseases, Molecular Diagnosis of Clinical Diseases Key Laboratory of Luzhou, Luzhou, Sichuan, China
| | - Baolin Li
- Department of Laboratory Medicine, The Affiliated Hospital of Southwest Medical University, Sichuan Province Engineering Technology Research Center of Molecular Diagnosis of Clinical Diseases, Molecular Diagnosis of Clinical Diseases Key Laboratory of Luzhou, Luzhou, Sichuan, China
| | - Xing Qi
- Department of Laboratory Medicine, The Affiliated Hospital of Southwest Medical University, Sichuan Province Engineering Technology Research Center of Molecular Diagnosis of Clinical Diseases, Molecular Diagnosis of Clinical Diseases Key Laboratory of Luzhou, Luzhou, Sichuan, China
- Ziyang People's Hospital, Ziyang, Sichaun, China
| | - Miao Song
- Department of Laboratory Medicine, The Affiliated Hospital of Southwest Medical University, Sichuan Province Engineering Technology Research Center of Molecular Diagnosis of Clinical Diseases, Molecular Diagnosis of Clinical Diseases Key Laboratory of Luzhou, Luzhou, Sichuan, China
| | - Xuexue Liu
- Department of Laboratory Medicine, The Affiliated Hospital of Southwest Medical University, Sichuan Province Engineering Technology Research Center of Molecular Diagnosis of Clinical Diseases, Molecular Diagnosis of Clinical Diseases Key Laboratory of Luzhou, Luzhou, Sichuan, China
| | - Jia Feng
- Department of Laboratory Medicine, The Affiliated Hospital of Southwest Medical University, Sichuan Province Engineering Technology Research Center of Molecular Diagnosis of Clinical Diseases, Molecular Diagnosis of Clinical Diseases Key Laboratory of Luzhou, Luzhou, Sichuan, China.
| | - Jinbo Liu
- Department of Laboratory Medicine, The Affiliated Hospital of Southwest Medical University, Sichuan Province Engineering Technology Research Center of Molecular Diagnosis of Clinical Diseases, Molecular Diagnosis of Clinical Diseases Key Laboratory of Luzhou, Luzhou, Sichuan, China.
| |
Collapse
|
28
|
Mance Kristan R, Jurgec S, Potočnik U, Marhl M, Gašperšič R. The Association Between Periodontal Inflamed Surface Area (PISA), Inflammatory Biomarkers, and Mitochondrial DNA Copy Number. J Clin Med 2024; 14:24. [PMID: 39797107 PMCID: PMC11721330 DOI: 10.3390/jcm14010024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2024] [Revised: 12/17/2024] [Accepted: 12/19/2024] [Indexed: 01/13/2025] Open
Abstract
Background/Objectives: Periodontitis is an inflammatory disease induced by bacteria in dental plaque that can activate the host's immune-inflammatory response and invade the bloodstream. We hypothesized that a higher periodontal inflamed surface area (PISA) is associated with higher levels of inflammatory biomarkers, lower levels of antioxidants, and mitochondrial DNA copy number (mtDNAcn). Methods: Using periodontal parameters, we calculated the PISA score, measured the levels of inflammatory biomarkers and antioxidants in the serum, and took buccal swabs for mtDNA and nuclear DNA (nDNA) extraction. Results: Higher PISA was associated with higher CRP levels, higher leukocyte, neutrophil, and erythrocyte counts, and lower magnesium-to-calcium ratio, but not with mtDNAcn. A higher number of deep pockets was associated with higher leukocytes and neutrophil counts and higher uric acid levels. Conclusions: The PISA score might be an appropriate parameter to assess the inflammatory burden of periodontitis, but not to assess mitochondrial dysfunction after mtDNA isolation from buccal swabs.
Collapse
Affiliation(s)
- Romana Mance Kristan
- Community Health Centre dr. Adolf Drolc Maribor, Ulica talcev 9, 2000 Maribor, Slovenia
- Department of Periodontology, Faculty of Medicine, University of Maribor, Taborska ulica 8, 2000 Maribor, Slovenia
| | - Staša Jurgec
- Centre for Human Genetics & Pharmacogenomics, Faculty of Medicine, University of Maribor, Taborska ulica 8, 2000 Maribor, Slovenia
- Laboratory for Biochemistry, Molecular Biology & Genomics, Faculty of Chemistry and Chemical Engineering, University of Maribor, Smetanova ulica 17, 2000 Maribor, Slovenia
| | - Uroš Potočnik
- Centre for Human Genetics & Pharmacogenomics, Faculty of Medicine, University of Maribor, Taborska ulica 8, 2000 Maribor, Slovenia
- Laboratory for Biochemistry, Molecular Biology & Genomics, Faculty of Chemistry and Chemical Engineering, University of Maribor, Smetanova ulica 17, 2000 Maribor, Slovenia
- Department for Science and Research, University Medical Centre Maribor, Ljubljanska ulica 5, 2000 Maribor, Slovenia
| | - Marko Marhl
- Department of Biophysics, Faculty of Medicine, University of Maribor, Taborska ulica 8, 2000 Maribor, Slovenia
- Faculty of Education, University of Maribor, Koroška cesta 160, 2000 Maribor, Slovenia
- Faculty of Natural Sciences and Mathematics, University of Maribor, Koroška cesta 160, 2000 Maribor, Slovenia
| | - Rok Gašperšič
- Department of Oral Medicine and Periodontology, Faculty of Medicine, University of Ljubljana, Hrvatski trg 6, 1000 Ljubljana, Slovenia
| |
Collapse
|
29
|
Boso D, Piga I, Trento C, Minuzzo S, Angi E, Iommarini L, Lazzarini E, Caporali L, Fiorini C, D'Angelo L, De Luise M, Kurelac I, Fassan M, Porcelli AM, Navaglia F, Billato I, Esposito G, Gasparre G, Romualdi C, Indraccolo S. Pathogenic mitochondrial DNA variants are associated with response to anti-VEGF therapy in ovarian cancer PDX models. J Exp Clin Cancer Res 2024; 43:325. [PMID: 39702370 PMCID: PMC11657443 DOI: 10.1186/s13046-024-03239-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2024] [Accepted: 11/25/2024] [Indexed: 12/21/2024] Open
Abstract
BACKGROUND Mitochondrial DNA (mtDNA) pathogenic variants have been reported in several solid tumors including ovarian cancer (OC), the most lethal gynecologic malignancy, and raised interest as they potentially induce mitochondrial dysfunction and rewiring of cellular metabolism. Despite advances in recent years, functional characterization of mtDNA variants in cancer and their possible modulation of drug response remain largely uncharted. METHODS Here, we characterized mtDNA variants in OC patient derived xenografts (PDX) and investigated their impact on cancer cells at multiple levels. RESULTS Genetic analysis revealed that mtDNA variants predicted as pathogenic, mainly involving complex I and IV genes, were present in all but one PDX (n = 20) at different levels of heteroplasmy, including 7 PDXs with homoplasmic variants. Functional analyses demonstrated that pathogenic mtDNA variants impacted on respiratory complexes activity and subunits abundance as well as on mitochondrial morphology. Moreover, PDX cells bearing homoplasmic mtDNA variants behaved as glucose-addicted and could barely survive glucose starvation in vitro. RNA-seq analysis indicated that mtDNA mutated (heteroplasmy > 50%) PDXs were endowed with upregulated glycolysis and other pathways connected with cancer metabolism. These findings led us to investigate whether pathogenic mtDNA variants correlated with response to anti-VEGF therapy, since the latter was shown to reduce glucose availability in tumors. Strikingly, PDXs bearing homoplasmic pathogenic mtDNA variants associated with improved survival upon anti-VEGF treatment in mice, compared with mtDNA wild type or low heteroplasmy PDXs. CONCLUSIONS These results hint at mtDNA variants as potential biomarkers of response to antiangiogenic drugs.
Collapse
Affiliation(s)
- Daniele Boso
- Basic and Translational Oncology Unit, Veneto Institute of Oncology IOV-IRCCS, Padua, Italy
| | - Ilaria Piga
- Department of Surgery, Oncology and Gastroenterology, University of Padova, Via Gattamelata, 64 - 35128, Padua, Italy
| | - Chiara Trento
- Department of Surgery, Oncology and Gastroenterology, University of Padova, Via Gattamelata, 64 - 35128, Padua, Italy
| | - Sonia Minuzzo
- Department of Surgery, Oncology and Gastroenterology, University of Padova, Via Gattamelata, 64 - 35128, Padua, Italy
| | - Eleonora Angi
- Basic and Translational Oncology Unit, Veneto Institute of Oncology IOV-IRCCS, Padua, Italy
| | - Luisa Iommarini
- Department of Pharmacy and Biotechnology (FABIT), University of Bologna, Bologna, Italy
| | - Elisabetta Lazzarini
- Basic and Translational Oncology Unit, Veneto Institute of Oncology IOV-IRCCS, Padua, Italy
| | - Leonardo Caporali
- IRCCS Istituto Delle Scienze Neurologiche Di Bologna, Bologna, Italy
| | - Claudio Fiorini
- IRCCS Istituto Delle Scienze Neurologiche Di Bologna, Bologna, Italy
| | - Luigi D'Angelo
- Department of Pharmacy and Biotechnology (FABIT), University of Bologna, Bologna, Italy
| | - Monica De Luise
- Department of Medical and Surgical Sciences (DIMEC), University of Bologna, Bologna, Italy
- Center for Applied Biomedical Research (CRBA), University of Bologna, Bologna, Italy
| | - Ivana Kurelac
- Department of Medical and Surgical Sciences (DIMEC), University of Bologna, Bologna, Italy
- Center for Applied Biomedical Research (CRBA), University of Bologna, Bologna, Italy
| | - Matteo Fassan
- Department of Medicine (DIMED), University of Padua, Padua, Italy
- Veneto Institute of Oncology, IOV-IRCCS, Padua, Italy
| | - Anna Maria Porcelli
- IRCCS Azienda Ospedaliero-Universitaria Di Bologna, Bologna, Italy
- Department of Pharmacy and Biotechnology (FABIT) and Interdepartmental Center for Industrial Research On Health Sciences and Technologies, University of Bologna, Bologna, Italy
| | - Filippo Navaglia
- Laboratory Medicine, Department of Medicine-DIMED, University Hospital of Padova, Padua, Italy
| | - Ilaria Billato
- Department of Biology, University of Padova, Padua, Italy
| | - Giovanni Esposito
- Immunology and Molecular Oncology Unit, Istituto Oncologico Veneto, IOV - IRCCS, Padua, Italy
| | - Giuseppe Gasparre
- Department of Medical and Surgical Sciences (DIMEC), University of Bologna, Bologna, Italy
- Center for Applied Biomedical Research (CRBA), University of Bologna, Bologna, Italy
- Centro Studi E Ricerca Sulle Neoplasie Ginecologiche (CSR), University of Bologna, Bologna, Italy
| | | | - Stefano Indraccolo
- Basic and Translational Oncology Unit, Veneto Institute of Oncology IOV-IRCCS, Padua, Italy.
- Department of Surgery, Oncology and Gastroenterology, University of Padova, Via Gattamelata, 64 - 35128, Padua, Italy.
| |
Collapse
|
30
|
Kenny TC, Birsoy K. Mitochondria and Cancer. Cold Spring Harb Perspect Med 2024; 14:a041534. [PMID: 38692736 PMCID: PMC11610758 DOI: 10.1101/cshperspect.a041534] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/03/2024]
Abstract
Mitochondria are semiautonomous organelles with diverse metabolic and cellular functions including anabolism and energy production through oxidative phosphorylation. Following the pioneering observations of Otto Warburg nearly a century ago, an immense body of work has examined the role of mitochondria in cancer pathogenesis and progression. Here, we summarize the current state of the field, which has coalesced around the position that functional mitochondria are required for cancer cell proliferation. In this review, we discuss how mitochondria influence tumorigenesis by impacting anabolism, intracellular signaling, and the tumor microenvironment. Consistent with their critical functions in tumor formation, mitochondria have become an attractive target for cancer therapy. We provide a comprehensive update on the numerous therapeutic modalities targeting the mitochondria of cancer cells making their way through clinical trials.
Collapse
Affiliation(s)
- Timothy C Kenny
- Laboratory of Metabolic Regulation and Genetics, The Rockefeller University, New York, New York 10065, USA
| | - Kıvanç Birsoy
- Laboratory of Metabolic Regulation and Genetics, The Rockefeller University, New York, New York 10065, USA
| |
Collapse
|
31
|
Chen F, Xue Y, Zhang W, Zhou H, Zhou Z, Chen T, YinWang E, Li H, Ye Z, Gao J, Wang S. The role of mitochondria in tumor metastasis and advances in mitochondria-targeted cancer therapy. Cancer Metastasis Rev 2024; 43:1419-1443. [PMID: 39307891 PMCID: PMC11554835 DOI: 10.1007/s10555-024-10211-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/26/2024] [Accepted: 09/08/2024] [Indexed: 11/05/2024]
Abstract
Mitochondria are central actors in diverse physiological phenomena ranging from energy metabolism to stress signaling and immune modulation. Accumulating scientific evidence points to the critical involvement of specific mitochondrial-associated events, including mitochondrial quality control, intercellular mitochondrial transfer, and mitochondrial genetics, in potentiating the metastatic cascade of neoplastic cells. Furthermore, numerous recent studies have consistently emphasized the highly significant role mitochondria play in coordinating the regulation of tumor-infiltrating immune cells and immunotherapeutic interventions. This review provides a comprehensive and rigorous scholarly investigation of this subject matter, exploring the intricate mechanisms by which mitochondria contribute to tumor metastasis and examining the progress of mitochondria-targeted cancer therapies.
Collapse
Affiliation(s)
- Fanglu Chen
- Department of Orthopedics, Musculoskeletal Tumor Center, The Second Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou, 310009, P.R. China
- Institute of Orthopedic Research, Zhejiang University, Hangzhou, 310009, P.R. China
- Key Laboratory of Motor System Disease Research and Precision Therapy of Zhejiang Province, Hangzhou, Zhejiang, China
| | - Yucheng Xue
- Department of Orthopedics, Musculoskeletal Tumor Center, The Second Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou, 310009, P.R. China
- Institute of Orthopedic Research, Zhejiang University, Hangzhou, 310009, P.R. China
- Key Laboratory of Motor System Disease Research and Precision Therapy of Zhejiang Province, Hangzhou, Zhejiang, China
| | - Wenkan Zhang
- Department of Orthopedics, Musculoskeletal Tumor Center, The Second Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou, 310009, P.R. China
- Institute of Orthopedic Research, Zhejiang University, Hangzhou, 310009, P.R. China
- Key Laboratory of Motor System Disease Research and Precision Therapy of Zhejiang Province, Hangzhou, Zhejiang, China
| | - Hao Zhou
- Department of Orthopedics, Musculoskeletal Tumor Center, The Second Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou, 310009, P.R. China
- Institute of Orthopedic Research, Zhejiang University, Hangzhou, 310009, P.R. China
- Key Laboratory of Motor System Disease Research and Precision Therapy of Zhejiang Province, Hangzhou, Zhejiang, China
| | - Zhiyi Zhou
- The First People's Hospital of Yuhang District, Hangzhou, Zhejiang, China
| | - Tao Chen
- Department of Orthopedics, Musculoskeletal Tumor Center, The Second Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou, 310009, P.R. China
- Institute of Orthopedic Research, Zhejiang University, Hangzhou, 310009, P.R. China
- Key Laboratory of Motor System Disease Research and Precision Therapy of Zhejiang Province, Hangzhou, Zhejiang, China
| | - Eloy YinWang
- Department of Orthopedics, Musculoskeletal Tumor Center, The Second Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou, 310009, P.R. China
- Institute of Orthopedic Research, Zhejiang University, Hangzhou, 310009, P.R. China
- Key Laboratory of Motor System Disease Research and Precision Therapy of Zhejiang Province, Hangzhou, Zhejiang, China
| | - Hengyuan Li
- Department of Orthopedics, Musculoskeletal Tumor Center, The Second Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou, 310009, P.R. China
- Institute of Orthopedic Research, Zhejiang University, Hangzhou, 310009, P.R. China
- Key Laboratory of Motor System Disease Research and Precision Therapy of Zhejiang Province, Hangzhou, Zhejiang, China
| | - Zhaoming Ye
- Department of Orthopedics, Musculoskeletal Tumor Center, The Second Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou, 310009, P.R. China.
- Institute of Orthopedic Research, Zhejiang University, Hangzhou, 310009, P.R. China.
- Key Laboratory of Motor System Disease Research and Precision Therapy of Zhejiang Province, Hangzhou, Zhejiang, China.
| | - Junjie Gao
- Department of Orthopaedics, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, 200233, China.
| | - Shengdong Wang
- Department of Orthopedics, Musculoskeletal Tumor Center, The Second Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou, 310009, P.R. China.
- Institute of Orthopedic Research, Zhejiang University, Hangzhou, 310009, P.R. China.
- Key Laboratory of Motor System Disease Research and Precision Therapy of Zhejiang Province, Hangzhou, Zhejiang, China.
| |
Collapse
|
32
|
Yang F, Zhang Y, Huang T, Qin Z, Xu S, Weng L, Huang H, Li S, Zhang D. G-quadruplex embedded in semi-CHA reaction combined with invasive reaction for label-free detection of single nucleotide polymorphisms. Talanta 2024; 280:126686. [PMID: 39128314 DOI: 10.1016/j.talanta.2024.126686] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2024] [Revised: 07/31/2024] [Accepted: 08/06/2024] [Indexed: 08/13/2024]
Abstract
G-quadruplex/thioflavin T (G4/THT) is one of the ideal label-free fluorescent light-emitting elements in the field of biosensors due to its good programmability and adaptability. However, the unsatisfactory luminous efficiency of single-molecule G4/THT limits its more practical applications. Here, we developed a G4 embedded semi-catalytic hairpin assembly (G4-SCHA) reaction by rationally modifying the traditional CHA reaction, and combined with the invasive reaction, supplemented by magnetic separation technology, for label-free sensitive detection of single nucleotide polymorphisms (SNPs). The invasive reaction enabled specific recognition of single-base mutations in DNA sequences as well as preliminary signal cycle amplification. Then, magnetic separation was used to shield the false positive signals. Finally, the G4-SCHA was created for secondary amplification and label-free output of the signal. This dual-signal amplified label-free biosensor has been shown to detect mutant targets as low as 78.54 fM. What's more, this biosensor could distinguish 0.01 % of the mutant targets from a mixed sample containing a large number of wild-type targets. In addition, the detection of real and complex biological samples also verified the practical application value of this biosensor in the field of molecular design breeding. Therefore, this study improves a label-free fluorescent light-emitting element, and then proposes a simple, efficient and universal label-free SNP biosensing strategy, which also provides an important reference for the development of other G4/THT based biosensors.
Collapse
Affiliation(s)
- Fang Yang
- Key Laboratory of Theoretical Organic Chemistry and Function Molecule, Ministry of Education, School of Chemistry and Chemical Engineering, Hunan University of Science and Technology, Xiangtan, 411201, China; Research Center for Novel Computational Sensing and Intelligent Processing, Zhejiang Lab, Hangzhou, 311121, China
| | - Yunshan Zhang
- Research Center for Novel Computational Sensing and Intelligent Processing, Zhejiang Lab, Hangzhou, 311121, China
| | - Tuo Huang
- Key Laboratory of Theoretical Organic Chemistry and Function Molecule, Ministry of Education, School of Chemistry and Chemical Engineering, Hunan University of Science and Technology, Xiangtan, 411201, China; Research Center for Novel Computational Sensing and Intelligent Processing, Zhejiang Lab, Hangzhou, 311121, China
| | - Ziyue Qin
- Academy of Medical Engineering and Translational Medicine, Tianjin University, Tianjin, 300072, China
| | - Shijie Xu
- Research Center for Novel Computational Sensing and Intelligent Processing, Zhejiang Lab, Hangzhou, 311121, China
| | - Lin Weng
- Research Center for Intelligent Computing Platforms, Research Institute of Intelligent Computing, Zhejiang Lab, Hangzhou, 311121, China
| | - Haowen Huang
- Key Laboratory of Theoretical Organic Chemistry and Function Molecule, Ministry of Education, School of Chemistry and Chemical Engineering, Hunan University of Science and Technology, Xiangtan, 411201, China.
| | - Shuang Li
- Academy of Medical Engineering and Translational Medicine, Tianjin University, Tianjin, 300072, China.
| | - Diming Zhang
- Research Center for Novel Computational Sensing and Intelligent Processing, Zhejiang Lab, Hangzhou, 311121, China.
| |
Collapse
|
33
|
Wang R, Chen C, Liu Y, Luo M, Yang J, Chen Y, Ma L, Yang L, Lin C, Diao L, Han L. The pharmacogenomic and immune landscape of snoRNAs in human cancers. Cancer Lett 2024; 605:217304. [PMID: 39426663 PMCID: PMC11898246 DOI: 10.1016/j.canlet.2024.217304] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2024] [Revised: 10/04/2024] [Accepted: 10/13/2024] [Indexed: 10/21/2024]
Abstract
Small nucleolar RNAs (snoRNAs) are a class of non-coding RNAs primarily known for their role in the chemical modification of other RNAs. Recent studies suggested that snoRNAs may play a broader role in anti-cancer treatments such as targeted therapies and immunotherapies. Despite these insights, the comprehensive landscape of snoRNA associations with drug response and immunotherapy outcomes remains unexplored. In this study, we identified 79,448 and 75,185 associations between snoRNAs and drug response using data from VAEN and CancerRxTissue, respectively. Additionally, we discovered 29,199 associations between snoRNAs and immune checkpoint genes and 47,194 associations between snoRNAs and immune cell infiltrations. Sixteen snoRNAs were significantly correlated with immunotherapy objective response rate (ORR), and 92 snoRNAs showed significantly differential expression between cancers with high and low ORR. Furthermore, we identified 17 snoRNAs with significantly differential expression between cancer types with high and low immune-related adverse event (irAE) reporting odds ratio (ROR). Several snoRNAs, such as SNORD92, and SNORD83B, may represent promising biomarkers or therapeutic targets that needs further investigation. To facilitate further research, we developed a user-friendly portal, Pharmacogenomic and Immune Landscape of SnoRNA (PISNO, https://hanlaboratory.com/PISNO/), enabling researchers to visualize, browse, and download multi-dimensional data. This study highlights the potential of snoRNAs as biomarkers or therapeutic targets, paving the way for more effective and personalized anti-cancer treatments.
Collapse
Affiliation(s)
- Runhao Wang
- Brown Center for Immunotherapy, School of Medicine, Indiana University, Indianapolis, IN, USA; Department of Biostatistics and Health Data Science, School of Medicine, Indiana University, Indianapolis, IN, USA; Center for Computational Biology and Bioinformatics, Indiana University School of Medicine, Indianapolis, IN 46202, USA
| | - Chengxuan Chen
- Brown Center for Immunotherapy, School of Medicine, Indiana University, Indianapolis, IN, USA; Department of Biostatistics and Health Data Science, School of Medicine, Indiana University, Indianapolis, IN, USA; Center for Computational Biology and Bioinformatics, Indiana University School of Medicine, Indianapolis, IN 46202, USA
| | - Yuan Liu
- Brown Center for Immunotherapy, School of Medicine, Indiana University, Indianapolis, IN, USA; Department of Biostatistics and Health Data Science, School of Medicine, Indiana University, Indianapolis, IN, USA; Center for Computational Biology and Bioinformatics, Indiana University School of Medicine, Indianapolis, IN 46202, USA
| | - Mei Luo
- Brown Center for Immunotherapy, School of Medicine, Indiana University, Indianapolis, IN, USA; Department of Biostatistics and Health Data Science, School of Medicine, Indiana University, Indianapolis, IN, USA; Center for Computational Biology and Bioinformatics, Indiana University School of Medicine, Indianapolis, IN 46202, USA
| | - Jingwen Yang
- Brown Center for Immunotherapy, School of Medicine, Indiana University, Indianapolis, IN, USA; Department of Biostatistics and Health Data Science, School of Medicine, Indiana University, Indianapolis, IN, USA; Center for Computational Biology and Bioinformatics, Indiana University School of Medicine, Indianapolis, IN 46202, USA
| | - Yamei Chen
- Brown Center for Immunotherapy, School of Medicine, Indiana University, Indianapolis, IN, USA; Department of Biostatistics and Health Data Science, School of Medicine, Indiana University, Indianapolis, IN, USA; Center for Computational Biology and Bioinformatics, Indiana University School of Medicine, Indianapolis, IN 46202, USA
| | - Lifei Ma
- Brown Center for Immunotherapy, School of Medicine, Indiana University, Indianapolis, IN, USA; Department of Biostatistics and Health Data Science, School of Medicine, Indiana University, Indianapolis, IN, USA; Center for Computational Biology and Bioinformatics, Indiana University School of Medicine, Indianapolis, IN 46202, USA
| | - Liuqing Yang
- Department of Molecular and Cellular Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Chunru Lin
- Department of Molecular and Cellular Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Lixia Diao
- Department of Bioinformatics and Computational Biology, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA.
| | - Leng Han
- Brown Center for Immunotherapy, School of Medicine, Indiana University, Indianapolis, IN, USA; Department of Biostatistics and Health Data Science, School of Medicine, Indiana University, Indianapolis, IN, USA; Center for Computational Biology and Bioinformatics, Indiana University School of Medicine, Indianapolis, IN 46202, USA.
| |
Collapse
|
34
|
Dong J, Arsang-Jang S, Zhang T, Chen Z, Bolon YT, Spellman S, Urrutia R, Auer P, Saber W. Prognostic impact of donor mitochondrial genomic variants in myelodysplastic neoplasms after stem-cell transplantation. J Hematol Oncol 2024; 17:104. [PMID: 39497145 PMCID: PMC11533675 DOI: 10.1186/s13045-024-01622-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2024] [Accepted: 10/15/2024] [Indexed: 11/06/2024] Open
Abstract
Mitochondrial DNA (mtDNA) variants in patients with myelodysplastic neoplasms (MDS) are shown to be prognostic of outcomes after allogeneic hematopoietic cell transplantation (allo-HCT). However, the prognostic impact of donor mtDNA variants is unknown. Here, we performed whole-genome sequencing on 494 donors who were matched to MDS patients enrolled in the Center for International Blood and Marrow Transplant Research (CIBMTR). We evaluated the impact of donor mtDNA variants on recipients' transplantation outcomes, including overall survival, relapse, relapse-free survival, and transplant-related mortality. The optimism-adjusted bootstrap method was employed to evaluate the prognostic performance of models that include donor mtDNA variants alone and combined with MDS- and HCT-related clinical factors. In the entire donor cohort, we identified 1,825 mtDNA variants, including 67 potential pathogenic variants. Genetic variants on MT-CYB and MT-ND5 genes were identified as independent predictors of posttransplant outcomes. Integration of donor mtDNA variants into the models based on the International Prognostic Scoring System-Revised (IPSS-R) could capture more prognostic information for MDS patients. Sensitivity analysis in 397 unrelated donors obtained similar results. More importantly, we found that incorporating donor mtDNA variants with donor age and the degree of HLA-matching could help to identify "suboptimal" younger HLA-well-matched unrelated donors and "optimal" older HLA-partially/mismatched unrelated donors. Our study shows that mtDNA variants in donors, including those from unrelated donors, hold prognostic value for MDS patients undergoing allo-HCT and augment the prognostic stratification of current scoring systems. These findings present an opportunity to refine donor selection strategies and improve posttransplant outcomes for MDS patients.
Collapse
Affiliation(s)
- Jing Dong
- Division of Hematology Oncology, Department of Medicine, Medical College of Wisconsin, 8701 Watertown Plank Road, HRC 5860, Milwaukee, WI, 53226, USA.
- Medical College of Wisconsin Cancer Center, Milwaukee, WI, USA.
- Linda T. and John A. Mellowes Center for Genomic Sciences and Precision Medicine, Medical College of Wisconsin, Milwaukee, WI, USA.
| | - Shahram Arsang-Jang
- Division of Hematology Oncology, Department of Medicine, Medical College of Wisconsin, 8701 Watertown Plank Road, HRC 5860, Milwaukee, WI, 53226, USA
| | - Tao Zhang
- CIBMTR ® (Center for International Blood and Marrow Transplant Research), NMDP, Minneapolis, MN, USA
| | - Zhongyuan Chen
- Division of Biostatistics, Institute for Health & Equity, and Cancer Center, Medical College of Wisconsin, Milwaukee, WI, USA
| | - Yung-Tsi Bolon
- CIBMTR ® (Center for International Blood and Marrow Transplant Research), NMDP, Minneapolis, MN, USA
| | - Stephen Spellman
- CIBMTR ® (Center for International Blood and Marrow Transplant Research), NMDP, Minneapolis, MN, USA
| | - Raul Urrutia
- Linda T. and John A. Mellowes Center for Genomic Sciences and Precision Medicine, Medical College of Wisconsin, Milwaukee, WI, USA
| | - Paul Auer
- Division of Biostatistics, Institute for Health & Equity, and Cancer Center, Medical College of Wisconsin, Milwaukee, WI, USA
- Cancer Center Biostatistics Shared Resource, Medical College of Wisconsin, Milwaukee, WI, USA
| | - Wael Saber
- Division of Hematology Oncology, Department of Medicine, Medical College of Wisconsin, 8701 Watertown Plank Road, HRC 5860, Milwaukee, WI, 53226, USA
- Department of Medicine, CIBMTR® (Center for International Blood and Marrow Transplant Research), Medical College of Wisconsin, Milwaukee, WI, USA
| |
Collapse
|
35
|
Lake NJ, Ma K, Liu W, Battle SL, Laricchia KM, Tiao G, Puiu D, Ng KK, Cohen J, Compton AG, Cowie S, Christodoulou J, Thorburn DR, Zhao H, Arking DE, Sunyaev SR, Lek M. Quantifying constraint in the human mitochondrial genome. Nature 2024; 635:390-397. [PMID: 39415008 PMCID: PMC11646341 DOI: 10.1038/s41586-024-08048-x] [Citation(s) in RCA: 13] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2023] [Accepted: 09/13/2024] [Indexed: 10/18/2024]
Abstract
Mitochondrial DNA (mtDNA) has an important yet often overlooked role in health and disease. Constraint models quantify the removal of deleterious variation from the population by selection and represent powerful tools for identifying genetic variation that underlies human phenotypes1-4. However, nuclear constraint models are not applicable to mtDNA, owing to its distinct features. Here we describe the development of a mitochondrial genome constraint model and its application to the Genome Aggregation Database (gnomAD), a large-scale population dataset that reports mtDNA variation across 56,434 human participants5. Specifically, we analyse constraint by comparing the observed variation in gnomAD to that expected under neutrality, which was calculated using a mtDNA mutational model and observed maximum heteroplasmy-level data. Our results highlight strong depletion of expected variation, which suggests that many deleterious mtDNA variants remain undetected. To aid their discovery, we compute constraint metrics for every mitochondrial protein, tRNA and rRNA gene, which revealed a range of intolerance to variation. We further characterize the most constrained regions within genes through regional constraint and identify the most constrained sites within the entire mitochondrial genome through local constraint, which showed enrichment of pathogenic variation. Constraint also clustered in three-dimensional structures, which provided insight into functionally important domains and their disease relevance. Notably, we identify constraint at often overlooked sites, including in rRNA and noncoding regions. Last, we demonstrate that these metrics can improve the discovery of deleterious variation that underlies rare and common phenotypes.
Collapse
Affiliation(s)
- Nicole J Lake
- Department of Genetics, Yale School of Medicine, New Haven, CT, USA.
- Murdoch Children's Research Institute, Royal Children's Hospital, Melbourne, Victoria, Australia.
| | - Kaiyue Ma
- Department of Genetics, Yale School of Medicine, New Haven, CT, USA
| | - Wei Liu
- Program of Computational Biology and Bioinformatics, Yale University, New Haven, CT, USA
| | - Stephanie L Battle
- McKusick-Nathans Institute, Department of Genetic Medicine, Johns Hopkins University School of Medicine, Baltimore, MD, USA
- Department of Natural Sciences, Bowie State University, Bowie, MD, USA
| | - Kristen M Laricchia
- Broad Institute of MIT and Harvard, Cambridge, MA, USA
- Massachusetts General Hospital, Boston, MA, USA
| | - Grace Tiao
- Broad Institute of MIT and Harvard, Cambridge, MA, USA
- Massachusetts General Hospital, Boston, MA, USA
| | - Daniela Puiu
- Department of Biomedical Engineering, Johns Hopkins University, Baltimore, MD, USA
| | - Kenneth K Ng
- Department of Genetics, Yale School of Medicine, New Haven, CT, USA
| | - Justin Cohen
- Department of Genetics, Yale School of Medicine, New Haven, CT, USA
| | - Alison G Compton
- Murdoch Children's Research Institute, Royal Children's Hospital, Melbourne, Victoria, Australia
- Department of Paediatrics, University of Melbourne, Melbourne, Victoria, Australia
- Victorian Clinical Genetics Services, Royal Children's Hospital, Melbourne, Victoria, Australia
| | - Shannon Cowie
- Victorian Clinical Genetics Services, Royal Children's Hospital, Melbourne, Victoria, Australia
| | - John Christodoulou
- Murdoch Children's Research Institute, Royal Children's Hospital, Melbourne, Victoria, Australia
- Department of Paediatrics, University of Melbourne, Melbourne, Victoria, Australia
- Victorian Clinical Genetics Services, Royal Children's Hospital, Melbourne, Victoria, Australia
| | - David R Thorburn
- Murdoch Children's Research Institute, Royal Children's Hospital, Melbourne, Victoria, Australia
- Department of Paediatrics, University of Melbourne, Melbourne, Victoria, Australia
- Victorian Clinical Genetics Services, Royal Children's Hospital, Melbourne, Victoria, Australia
| | - Hongyu Zhao
- Department of Genetics, Yale School of Medicine, New Haven, CT, USA
- Program of Computational Biology and Bioinformatics, Yale University, New Haven, CT, USA
- Department of Biostatistics, Yale School of Public Health, New Haven, CT, USA
| | - Dan E Arking
- McKusick-Nathans Institute, Department of Genetic Medicine, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Shamil R Sunyaev
- Broad Institute of MIT and Harvard, Cambridge, MA, USA
- Department of Biomedical Informatics, Harvard Medical School, Boston, MA, USA
- Division of Genetics, Department of Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, MA, USA
| | - Monkol Lek
- Department of Genetics, Yale School of Medicine, New Haven, CT, USA.
| |
Collapse
|
36
|
Wu J, Liu Y, Ou L, Gan T, Zhangding Z, Yuan S, Liu X, Liu M, Li J, Yin J, Xin C, Tian Y, Hu J. Transfer of mitochondrial DNA into the nuclear genome during induced DNA breaks. Nat Commun 2024; 15:9438. [PMID: 39487167 PMCID: PMC11530683 DOI: 10.1038/s41467-024-53806-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2024] [Accepted: 10/22/2024] [Indexed: 11/04/2024] Open
Abstract
Mitochondria serve as the cellular powerhouse, and their distinct DNA makes them a prospective target for gene editing to treat genetic disorders. However, the impact of genome editing on mitochondrial DNA (mtDNA) stability remains a mystery. Our study reveals previously unknown risks of genome editing that both nuclear and mitochondrial editing cause discernible transfer of mitochondrial DNA segments into the nuclear genome in various cell types including human cell lines, primary T cells, and mouse embryos. Furthermore, drug-induced mitochondrial stresses and mtDNA breaks exacerbate this transfer of mtDNA into the nuclear genome. Notably, we observe that mitochondrial editors, including mitoTALEN and recently developed base editor DdCBE, can also enhance crosstalk between mtDNA and the nuclear genome. Moreover, we provide a practical solution by co-expressing TREX1 or TREX2 exonucleases during DdCBE editing. These findings imply genome instability of mitochondria during induced DNA breaks and explain the origins of mitochondrial-nuclear DNA segments.
Collapse
Affiliation(s)
- Jinchun Wu
- State Key Laboratory of Protein and Plant Gene Research, Genome Editing Research Center, School of Life Sciences, PKU-THU Center for Life Sciences, Peking University, Beijing, China
| | - Yang Liu
- State Key Laboratory of Protein and Plant Gene Research, Genome Editing Research Center, School of Life Sciences, PKU-THU Center for Life Sciences, Peking University, Beijing, China
| | - Liqiong Ou
- State Key Laboratory of Protein and Plant Gene Research, Genome Editing Research Center, School of Life Sciences, PKU-THU Center for Life Sciences, Peking University, Beijing, China
| | - Tingting Gan
- State Key Laboratory of Protein and Plant Gene Research, Genome Editing Research Center, School of Life Sciences, PKU-THU Center for Life Sciences, Peking University, Beijing, China
- Peking University Chengdu Academy for Advanced Interdisciplinary Biotechnologies, Chengdu, Sichuan, China
| | - Zhengrong Zhangding
- State Key Laboratory of Protein and Plant Gene Research, Genome Editing Research Center, School of Life Sciences, PKU-THU Center for Life Sciences, Peking University, Beijing, China
| | - Shaopeng Yuan
- State Key Laboratory of Protein and Plant Gene Research, Genome Editing Research Center, School of Life Sciences, PKU-THU Center for Life Sciences, Peking University, Beijing, China
| | - Xinyi Liu
- State Key Laboratory of Protein and Plant Gene Research, Genome Editing Research Center, School of Life Sciences, PKU-THU Center for Life Sciences, Peking University, Beijing, China
| | - Mengzhu Liu
- State Key Laboratory of Protein and Plant Gene Research, Genome Editing Research Center, School of Life Sciences, PKU-THU Center for Life Sciences, Peking University, Beijing, China
| | - Jiasheng Li
- State Key Laboratory of Molecular Developmental Biology, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Jianhang Yin
- State Key Laboratory of Protein and Plant Gene Research, Genome Editing Research Center, School of Life Sciences, PKU-THU Center for Life Sciences, Peking University, Beijing, China
| | - Changchang Xin
- State Key Laboratory of Protein and Plant Gene Research, Genome Editing Research Center, School of Life Sciences, PKU-THU Center for Life Sciences, Peking University, Beijing, China
| | - Ye Tian
- State Key Laboratory of Molecular Developmental Biology, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Jiazhi Hu
- State Key Laboratory of Protein and Plant Gene Research, Genome Editing Research Center, School of Life Sciences, PKU-THU Center for Life Sciences, Peking University, Beijing, China.
- Peking University Chengdu Academy for Advanced Interdisciplinary Biotechnologies, Chengdu, Sichuan, China.
| |
Collapse
|
37
|
Mennuni M, Wilkie SE, Michon P, Alsina D, Filograna R, Lindberg M, Sanin DE, Rosenberger F, Schaaf A, Larsson E, Pearce EL, Larsson NG. High mitochondrial DNA levels accelerate lung adenocarcinoma progression. SCIENCE ADVANCES 2024; 10:eadp3481. [PMID: 39485842 PMCID: PMC11529711 DOI: 10.1126/sciadv.adp3481] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/26/2024] [Accepted: 09/27/2024] [Indexed: 11/03/2024]
Abstract
Lung adenocarcinoma is a common aggressive cancer and a leading cause of mortality worldwide. Here, we report an important in vivo role for mitochondrial DNA (mtDNA) copy number during lung adenocarcinoma progression in the mouse. We found that lung tumors induced by KRASG12D expression have increased mtDNA levels and enhanced mitochondrial respiration. To experimentally assess a possible causative role in tumor progression, we induced lung cancer in transgenic mice with a general increase in mtDNA copy number and found that they developed a larger tumor burden, whereas mtDNA depletion in tumor cells reduced tumor growth. Immune cell populations in the lung and cytokine levels in plasma were not affected by increased mtDNA levels. Analyses of large cancer databases indicate that mtDNA copy number is also important in human lung cancer. Our study thus reports experimental evidence for a tumor-intrinsic causative role for mtDNA in lung cancer progression, which could be exploited for development of future cancer therapies.
Collapse
Affiliation(s)
- Mara Mennuni
- Division of Molecular Metabolism, Department of Medical Biochemistry and Biophysics, Karolinska Institutet, Stockholm, Sweden
| | - Stephen E. Wilkie
- Division of Molecular Metabolism, Department of Medical Biochemistry and Biophysics, Karolinska Institutet, Stockholm, Sweden
| | - Pauline Michon
- Division of Molecular Metabolism, Department of Medical Biochemistry and Biophysics, Karolinska Institutet, Stockholm, Sweden
| | - David Alsina
- Division of Molecular Metabolism, Department of Medical Biochemistry and Biophysics, Karolinska Institutet, Stockholm, Sweden
| | - Roberta Filograna
- Division of Molecular Metabolism, Department of Medical Biochemistry and Biophysics, Karolinska Institutet, Stockholm, Sweden
| | - Markus Lindberg
- Department of Medical Biochemistry and Cell Biology, Institute of Biomedicine, Sahlgrenska Academy at University of Gothenburg, Gothenburg, Sweden
| | - David E. Sanin
- Bloomberg-Kimmel Institute of Immunotherapy, Department of Oncology, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Florian Rosenberger
- Max Planck Institute of Biochemistry, Department of Proteomics and Signal Transduction, Munich, Germany
| | - Alina Schaaf
- Division of Molecular Metabolism, Department of Medical Biochemistry and Biophysics, Karolinska Institutet, Stockholm, Sweden
| | - Erik Larsson
- Department of Medical Biochemistry and Cell Biology, Institute of Biomedicine, Sahlgrenska Academy at University of Gothenburg, Gothenburg, Sweden
| | - Erika L. Pearce
- Bloomberg-Kimmel Institute of Immunotherapy, Department of Oncology, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Nils-Göran Larsson
- Division of Molecular Metabolism, Department of Medical Biochemistry and Biophysics, Karolinska Institutet, Stockholm, Sweden
| |
Collapse
|
38
|
Shelton SD, House S, Martins Nascentes Melo L, Ramesh V, Chen Z, Wei T, Wang X, Llamas CB, Venigalla SSK, Menezes CJ, Allies G, Krystkiewicz J, Rösler J, Meckelmann SW, Zhao P, Rambow F, Schadendorf D, Zhao Z, Gill JG, DeBerardinis RJ, Morrison SJ, Tasdogan A, Mishra P. Pathogenic mitochondrial DNA mutations inhibit melanoma metastasis. SCIENCE ADVANCES 2024; 10:eadk8801. [PMID: 39485847 PMCID: PMC11529715 DOI: 10.1126/sciadv.adk8801] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/15/2023] [Accepted: 09/27/2024] [Indexed: 11/03/2024]
Abstract
Mitochondrial DNA (mtDNA) mutations are frequent in cancer, yet their precise role in cancer progression remains debated. To functionally evaluate the impact of mtDNA variants on tumor growth and metastasis, we developed an enhanced cytoplasmic hybrid (cybrid) generation protocol and established isogenic human melanoma cybrid lines with wild-type mtDNA or pathogenic mtDNA mutations with partial or complete loss of mitochondrial oxidative function. Cybrids with homoplasmic levels of pathogenic mtDNA reliably established tumors despite dysfunctional oxidative phosphorylation. However, these mtDNA variants disrupted spontaneous metastasis from primary tumors and reduced the abundance of circulating tumor cells. Migration and invasion of tumor cells were reduced, indicating that entry into circulation is a bottleneck for metastasis amid mtDNA dysfunction. Pathogenic mtDNA did not inhibit organ colonization following intravenous injection. In heteroplasmic cybrid tumors, single-cell analyses revealed selection against pathogenic mtDNA during melanoma growth. Collectively, these findings experimentally demonstrate that functional mtDNA is favored during melanoma growth and supports metastatic entry into the blood.
Collapse
Affiliation(s)
- Spencer D. Shelton
- Children’s Medical Center Research Institute, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| | - Sara House
- Children’s Medical Center Research Institute, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| | - Luiza Martins Nascentes Melo
- Department of Dermatology, University Hospital Essen and German Cancer Consortium (DKTK), Partner Site, Essen, Germany
| | - Vijayashree Ramesh
- Children’s Medical Center Research Institute, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| | - Zhenkang Chen
- Children’s Medical Center Research Institute, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| | - Tao Wei
- Children’s Medical Center Research Institute, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| | - Xun Wang
- Children’s Medical Center Research Institute, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| | - Claire B. Llamas
- Children’s Medical Center Research Institute, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| | - Siva Sai Krishna Venigalla
- Children’s Medical Center Research Institute, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| | - Cameron J. Menezes
- Children’s Medical Center Research Institute, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| | - Gabriele Allies
- Department of Dermatology, University Hospital Essen and German Cancer Consortium (DKTK), Partner Site, Essen, Germany
| | - Jonathan Krystkiewicz
- Department of Dermatology, University Hospital Essen and German Cancer Consortium (DKTK), Partner Site, Essen, Germany
| | - Jonas Rösler
- Department of Dermatology, University Hospital Essen and German Cancer Consortium (DKTK), Partner Site, Essen, Germany
- Applied Analytical Chemistry, University of Duisburg-Essen, Essen, Germany
| | - Sven W. Meckelmann
- Applied Analytical Chemistry, University of Duisburg-Essen, Essen, Germany
| | - Peihua Zhao
- Department of Applied Computational Cancer Research, Institute for AI in Medicine (IKIM), University Hospital Essen, University Duisburg-Essen, Essen, Germany
| | - Florian Rambow
- Department of Applied Computational Cancer Research, Institute for AI in Medicine (IKIM), University Hospital Essen, University Duisburg-Essen, Essen, Germany
| | - Dirk Schadendorf
- Department of Dermatology, University Hospital Essen and German Cancer Consortium (DKTK), Partner Site, Essen, Germany
- National Center for Tumor Diseases (NCT)-West, Campus Essen, and Research Alliance Ruhr, Research Center One Health, University Duisburg-Essen, Essen, Germany
| | - Zhiyu Zhao
- Children’s Medical Center Research Institute, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| | - Jennifer G. Gill
- Department of Dermatology, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| | - Ralph J. DeBerardinis
- Children’s Medical Center Research Institute, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
- Howard Hughes Medical Institute, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
- Department of Pediatrics, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
- Harold C. Simmons Comprehensive Cancer Center, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| | - Sean J. Morrison
- Children’s Medical Center Research Institute, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
- Howard Hughes Medical Institute, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
- Department of Pediatrics, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
- Harold C. Simmons Comprehensive Cancer Center, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| | - Alpaslan Tasdogan
- Department of Dermatology, University Hospital Essen and German Cancer Consortium (DKTK), Partner Site, Essen, Germany
| | - Prashant Mishra
- Children’s Medical Center Research Institute, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
- Department of Pediatrics, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
- Harold C. Simmons Comprehensive Cancer Center, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| |
Collapse
|
39
|
Cui X, Xu J, Jia X. Targeting mitochondria: a novel approach for treating platinum-resistant ovarian cancer. J Transl Med 2024; 22:968. [PMID: 39456101 PMCID: PMC11515418 DOI: 10.1186/s12967-024-05770-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2024] [Accepted: 10/16/2024] [Indexed: 10/28/2024] Open
Abstract
Ovarian cancer is a prevalent gynecologic malignancy with the second-highest mortality rate among gynecologic malignancies. Platinum-based chemotherapy is the first-line treatment for ovarian cancer; however, a majority of patients with ovarian cancer experience relapse and develop platinum resistance following initial treatment. Despite extensive research on the mechanisms of platinum resistance at the nuclear level, the issue of platinum resistance in ovarian cancer remains largely unresolved. It is noteworthy that mitochondrial DNA (mtDNA) exhibits higher affinity for platinum compared to nuclear DNA (nDNA). Mutations in mtDNA can modulate tumor chemosensitivity through various mechanisms, including DNA damage responses, shifts in energy metabolism, maintenance of Reactive Oxygen Species (ROS) homeostasis, and alterations in mitochondrial dynamics. Concurrently, retrograde signals produced by mtDNA mutations and their subsequent cascades establish communication with the nucleus, leading to the reorganization of the nuclear transcriptome and governing the transcription of genes and signaling pathways associated with chemoresistance. Furthermore, mitochondrial translocation among cells emerges as a crucial factor influencing the effectiveness of chemotherapy in ovarian cancer. This review aims to explore the role and mechanism of mitochondria in platinum resistance, with a specific focus on mtDNA mutations and the resulting metabolic reprogramming, ROS regulation, changes in mitochondrial dynamics, mitochondria-nucleus communication, and mitochondrial transfer.
Collapse
Affiliation(s)
- Xin Cui
- Nanjing Women and Children's Healthcare Hospital, Women's Hospital of Nanjing Medical University, 123 Mochou Rd, Nanjing, 210004, China
| | - Juan Xu
- Nanjing Women and Children's Healthcare Hospital, Women's Hospital of Nanjing Medical University, 123 Mochou Rd, Nanjing, 210004, China.
- Nanjing Medical Key Laboratory of Female Fertility Preservation and Restoration, Nanjing, 210004, China.
| | - Xuemei Jia
- Nanjing Women and Children's Healthcare Hospital, Women's Hospital of Nanjing Medical University, 123 Mochou Rd, Nanjing, 210004, China.
- Nanjing Medical Key Laboratory of Female Fertility Preservation and Restoration, Nanjing, 210004, China.
| |
Collapse
|
40
|
Tang GX, Li ML, Zhou C, Huang ZS, Chen SB, Chen XC, Tan JH. Mitochondrial RelA empowers mtDNA G-quadruplex formation for hypoxia adaptation in cancer cells. Cell Chem Biol 2024; 31:1800-1814.e7. [PMID: 38821064 DOI: 10.1016/j.chembiol.2024.05.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2023] [Revised: 03/04/2024] [Accepted: 05/07/2024] [Indexed: 06/02/2024]
Abstract
Mitochondrial DNA (mtDNA) G-quadruplexes (G4s) have important regulatory roles in energy metabolism, yet their specific functions and underlying regulatory mechanisms have not been delineated. Using a chemical-genetic screening strategy, we demonstrated that the JAK/STAT3 pathway is the primary regulatory mechanism governing mtDNA G4 dynamics in hypoxic cancer cells. Further proteomic analysis showed that activation of the JAK/STAT3 pathway facilitates the translocation of RelA, a member of the NF-κB family, to the mitochondria, where RelA binds to mtDNA G4s and promotes their folding, resulting in increased mtDNA instability, inhibited mtDNA transcription, and subsequent mitochondrial dysfunction. This binding event disrupts the equilibrium of energy metabolism, catalyzing a metabolic shift favoring glycolysis. Collectively, the results provide insights into a strategy employed by cancer cells to adapt to hypoxia through metabolic reprogramming.
Collapse
Affiliation(s)
- Gui-Xue Tang
- Guangdong Provincial Key Laboratory of New Drug Design and Evaluation, School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou, China
| | - Mao-Lin Li
- Guangdong Provincial Key Laboratory of New Drug Design and Evaluation, School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou, China
| | - Cui Zhou
- Guangdong Provincial Key Laboratory of New Drug Design and Evaluation, School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou, China
| | - Zhi-Shu Huang
- State Key Laboratory of Oncology in South China, Sun Yat-sen University Cancer Center, Guangzhou, China; Guangdong Provincial Key Laboratory of New Drug Design and Evaluation, School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou, China
| | - Shuo-Bin Chen
- Guangdong Provincial Key Laboratory of New Drug Design and Evaluation, School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou, China
| | - Xiu-Cai Chen
- School of Biomedical and Pharmaceutical Sciences, Guangdong University of Technology, Guangzhou, China.
| | - Jia-Heng Tan
- State Key Laboratory of Oncology in South China, Sun Yat-sen University Cancer Center, Guangzhou, China; Guangdong Provincial Key Laboratory of New Drug Design and Evaluation, School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou, China.
| |
Collapse
|
41
|
Zhang Y, Yang F, Huang T, Xu S, Ye J, Weng L, Hu Y, Huang H, Li S, Zhang D. Entropy-Driven Catalytic G-Quadruple Cycle Amplification Integrated with Ligases for Label-Free Detection of Single Nucleotide Polymorphisms. Anal Chem 2024; 96:14971-14979. [PMID: 39213531 DOI: 10.1021/acs.analchem.4c03057] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/04/2024]
Abstract
G-Quadruplex/thioflavin (G4/THT) has become a very promising label-free fluorescent luminescent element for nucleic acid detection due to its good programmability and compatibility. However, the weak fluorescence efficiency of single-molecule G4/THT limits its potential applications. Here, we developed an entropy-driven catalytic (EDC) G4 (EDC-G4) cycle amplification technology as a universal label-free signal amplification and output system by properly programming classical EDC and G4 backbone sequences, preintegrated ligase chain reaction (LCR) for label-free sensitive detection of single nucleotide polymorphisms (SNPs). First, the positive strand LCR enabled specific transduction and preliminary signal amplification from single-base mutation information to single-strand information. Subsequently, the EDC-G4 cycle amplification reaction was activated, accompanied by the production of a large number of G4/THT luminophores to output fluorescent signals. The EDC-G4 system was proposed to address the weak fluorescence of G4/THT and obtain a label-free fluorescence signal amplification. The dual-signal amplification effect enabled the LCR-EDC-G4 detection system to accurately detect mutant target (MT) at concentrations as low as 22.39 fM and specifically identify 0.01% MT in a mixed detection pool. Moreover, the LCR-EDC-G4 system was further demonstrated for its potential application in real biological samples. Therefore, this study not only contributes ideas for the development of label-free fluorescent biosensing strategies but also provides a high-performance and practical SNP detection tool in parallel.
Collapse
Affiliation(s)
- Yunshan Zhang
- Research Center for Novel Computational Sensing and Intelligent Processing, Zhejiang Lab, Hangzhou 311121, China
| | - Fang Yang
- Research Center for Novel Computational Sensing and Intelligent Processing, Zhejiang Lab, Hangzhou 311121, China
- Key Laboratory of Theoretical Organic Chemistry and Function Molecule, Ministry of Education, School of Chemistry and Chemical Engineering, Hunan University of Science and Technology, Xiangtan 411201, China
| | - Tuo Huang
- Research Center for Novel Computational Sensing and Intelligent Processing, Zhejiang Lab, Hangzhou 311121, China
- Key Laboratory of Theoretical Organic Chemistry and Function Molecule, Ministry of Education, School of Chemistry and Chemical Engineering, Hunan University of Science and Technology, Xiangtan 411201, China
| | - Shijie Xu
- Research Center for Novel Computational Sensing and Intelligent Processing, Zhejiang Lab, Hangzhou 311121, China
| | - Jing Ye
- Research Center for Novel Computational Sensing and Intelligent Processing, Zhejiang Lab, Hangzhou 311121, China
| | - Lin Weng
- Research Center for Intelligent Computing Platforms, Research Institute of Intelligent Computing, Zhejiang Lab, Hangzhou 311121, China
| | - Ye Hu
- Nanjing Institute for Food and Drug Control, Nanjing, Jiangsu 211198, China
| | - Haowen Huang
- Key Laboratory of Theoretical Organic Chemistry and Function Molecule, Ministry of Education, School of Chemistry and Chemical Engineering, Hunan University of Science and Technology, Xiangtan 411201, China
| | - Shuang Li
- Academy of Medical Engineering and Translational Medicine, Tianjin University, Tianjin 300072, China
| | - Diming Zhang
- Research Center for Novel Computational Sensing and Intelligent Processing, Zhejiang Lab, Hangzhou 311121, China
| |
Collapse
|
42
|
Yang X, Gan Y, Zhang Y, Liu Z, Geng J, Wang W. Microbial genotoxin-elicited host DNA mutations related to mitochondrial dysfunction, a momentous contributor for colorectal carcinogenesis. mSystems 2024; 9:e0088724. [PMID: 39189772 PMCID: PMC11406885 DOI: 10.1128/msystems.00887-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/28/2024] Open
Abstract
Gut microbe dysbiosis increases repetitive inflammatory responses, leading to an increase in the incidence of colorectal cancer. Recent studies have revealed that specific microbial species directly instigate mutations in the host nucleus DNA, thereby accelerating the progression of colorectal cancer. Given the well-established role of mitochondrial dysfunction in promoting colorectal cancer, it is reasonable to postulate that gut microbes may induce mitochondrial gene mutations, thereby inducing mitochondrial dysfunction. In this review, we focus on gut microbial genotoxins and their known and potential targets in mitochondrial genes. Consequently, we propose that targeted disruption of genotoxin transport pathways may effectively reduce the rate of mitochondrial gene mutations and yield substantial benefits for the prevention of colorectal carcinogenesis.
Collapse
Affiliation(s)
- Xue Yang
- Department of Infectious Disease and Hepatic Disease, The Affiliated Hospital of Kunming University of Science and Technology, The First People's Hospital of Yunnan Province, Kunming, Yunnan, China
- School of Medicine, Kunming University of Science and Technology, Kunming, Yunnan, China
| | - Yumeng Gan
- Department of Infectious Disease and Hepatic Disease, The Affiliated Hospital of Kunming University of Science and Technology, The First People's Hospital of Yunnan Province, Kunming, Yunnan, China
- School of Medicine, Kunming University of Science and Technology, Kunming, Yunnan, China
| | - Yuting Zhang
- Department of Infectious Disease and Hepatic Disease, The Affiliated Hospital of Kunming University of Science and Technology, The First People's Hospital of Yunnan Province, Kunming, Yunnan, China
| | - Zhongjian Liu
- Institute of Basic and Clinical Medicine, First People's Hospital of Yunnan Province, Affiliated Hospital of Kunming University of Science and Technology, Kunming, Yunnan, China
| | - Jiawei Geng
- Department of Infectious Disease and Hepatic Disease, The Affiliated Hospital of Kunming University of Science and Technology, The First People's Hospital of Yunnan Province, Kunming, Yunnan, China
- School of Medicine, Kunming University of Science and Technology, Kunming, Yunnan, China
- Faculty of Life Science and Technology, Kunming University of Science and Technology, Kunming, Yunnan, China
| | - Wenxue Wang
- Department of Infectious Disease and Hepatic Disease, The Affiliated Hospital of Kunming University of Science and Technology, The First People's Hospital of Yunnan Province, Kunming, Yunnan, China
- School of Medicine, Kunming University of Science and Technology, Kunming, Yunnan, China
- Faculty of Life Science and Technology, Kunming University of Science and Technology, Kunming, Yunnan, China
| |
Collapse
|
43
|
Yu Y, Wang X, Fox J, Yu R, Thakre P, McCauley B, Nikoloutsos N, Yu Y, Li Q, Hastings PJ, Dang W, Chen K, Ira G. Yeast EndoG prevents genome instability by degrading extranuclear DNA species. Nat Commun 2024; 15:7653. [PMID: 39227600 PMCID: PMC11372161 DOI: 10.1038/s41467-024-52147-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2023] [Accepted: 08/28/2024] [Indexed: 09/05/2024] Open
Abstract
In metazoans mitochondrial DNA (mtDNA) or retrotransposon cDNA released to cytoplasm are degraded by nucleases to prevent sterile inflammation. It remains unknown whether degradation of these DNA also prevents nuclear genome instability. We used an amplicon sequencing-based method in yeast enabling analysis of millions of DSB repair products. In non-dividing stationary phase cells, Pol4-mediated non-homologous end-joining increases, resulting in frequent insertions of 1-3 nucleotides, and insertions of mtDNA (NUMTs) or retrotransposon cDNA. Yeast EndoG (Nuc1) nuclease limits insertion of cDNA and transfer of very long mtDNA ( >10 kb) to the nucleus, where it forms unstable circles, while promoting the formation of short NUMTs (~45-200 bp). Nuc1 also regulates transfer of extranuclear DNA to nucleus in aging or meiosis. We propose that Nuc1 preserves genome stability by degrading retrotransposon cDNA and long mtDNA, while short NUMTs originate from incompletely degraded mtDNA. This work suggests that nucleases eliminating extranuclear DNA preserve genome stability.
Collapse
Affiliation(s)
- Yang Yu
- Department of Molecular and Human Genetics, Baylor College of Medicine, One Baylor Plaza, Houston, TX, USA
| | - Xin Wang
- Department of Cardiology, Boston Children's Hospital, 300 Longwood Avenue, Boston, MA, USA
- Department of Pediatrics, Harvard Medical School, 25 Shattuck Street, Boston, MA, USA
| | - Jordan Fox
- Department of Molecular and Human Genetics, Baylor College of Medicine, One Baylor Plaza, Houston, TX, USA
| | - Ruofan Yu
- Department of Molecular and Human Genetics, Baylor College of Medicine, One Baylor Plaza, Houston, TX, USA
- Huffington Center on Aging, Baylor College of Medicine, One Baylor Plaza, Houston, TX, USA
| | - Pilendra Thakre
- Department of Molecular and Human Genetics, Baylor College of Medicine, One Baylor Plaza, Houston, TX, USA
| | - Brenna McCauley
- Huffington Center on Aging, Baylor College of Medicine, One Baylor Plaza, Houston, TX, USA
| | - Nicolas Nikoloutsos
- Huffington Center on Aging, Baylor College of Medicine, One Baylor Plaza, Houston, TX, USA
- Department of Bioengineering, Rice University, 6500 Main Street, Houston, TX, USA
| | - Yang Yu
- Department of Cardiology, Boston Children's Hospital, 300 Longwood Avenue, Boston, MA, USA
- Department of Pediatrics, Harvard Medical School, 25 Shattuck Street, Boston, MA, USA
| | - Qian Li
- Department of Molecular and Human Genetics, Baylor College of Medicine, One Baylor Plaza, Houston, TX, USA
| | - P J Hastings
- Department of Molecular and Human Genetics, Baylor College of Medicine, One Baylor Plaza, Houston, TX, USA
| | - Weiwei Dang
- Department of Molecular and Human Genetics, Baylor College of Medicine, One Baylor Plaza, Houston, TX, USA
- Huffington Center on Aging, Baylor College of Medicine, One Baylor Plaza, Houston, TX, USA
| | - Kaifu Chen
- Department of Cardiology, Boston Children's Hospital, 300 Longwood Avenue, Boston, MA, USA.
- Department of Pediatrics, Harvard Medical School, 25 Shattuck Street, Boston, MA, USA.
| | - Grzegorz Ira
- Department of Molecular and Human Genetics, Baylor College of Medicine, One Baylor Plaza, Houston, TX, USA.
| |
Collapse
|
44
|
Nunes L, Li F, Wu M, Luo T, Hammarström K, Torell E, Ljuslinder I, Mezheyeuski A, Edqvist PH, Löfgren-Burström A, Zingmark C, Edin S, Larsson C, Mathot L, Osterman E, Osterlund E, Ljungström V, Neves I, Yacoub N, Guðnadóttir U, Birgisson H, Enblad M, Ponten F, Palmqvist R, Xu X, Uhlén M, Wu K, Glimelius B, Lin C, Sjöblom T. Prognostic genome and transcriptome signatures in colorectal cancers. Nature 2024; 633:137-146. [PMID: 39112715 PMCID: PMC11374687 DOI: 10.1038/s41586-024-07769-3] [Citation(s) in RCA: 28] [Impact Index Per Article: 28.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2023] [Accepted: 07/01/2024] [Indexed: 08/17/2024]
Abstract
Colorectal cancer is caused by a sequence of somatic genomic alterations affecting driver genes in core cancer pathways1. Here, to understand the functional and prognostic impact of cancer-causing somatic mutations, we analysed the whole genomes and transcriptomes of 1,063 primary colorectal cancers in a population-based cohort with long-term follow-up. From the 96 mutated driver genes, 9 were not previously implicated in colorectal cancer and 24 had not been linked to any cancer. Two distinct patterns of pathway co-mutations were observed, timing analyses identified nine early and three late driver gene mutations, and several signatures of colorectal-cancer-specific mutational processes were identified. Mutations in WNT, EGFR and TGFβ pathway genes, the mitochondrial CYB gene and 3 regulatory elements along with 21 copy-number variations and the COSMIC SBS44 signature correlated with survival. Gene expression classification yielded five prognostic subtypes with distinct molecular features, in part explained by underlying genomic alterations. Microsatellite-instable tumours divided into two classes with different levels of hypoxia and infiltration of immune and stromal cells. To our knowledge, this study constitutes the largest integrated genome and transcriptome analysis of colorectal cancer, and interlinks mutations, gene expression and patient outcomes. The identification of prognostic mutations and expression subtypes can guide future efforts to individualize colorectal cancer therapy.
Collapse
Affiliation(s)
- Luís Nunes
- Department of Immunology, Genetics and Pathology, Science for Life Laboratory, Uppsala University, Uppsala, Sweden
- Department of Molecular Oncology, Institute for Cancer Research, Oslo University Hospital, Oslo, Norway
| | - Fuqiang Li
- HIM-BGI Omics Center, Hangzhou Institute of Medicine (HIM), Chinese Academy of Sciences (CAS), BGI Research, Hangzhou, China
- Guangdong Provincial Key Laboratory of Human Disease Genomics, Shenzhen Key Laboratory of Genomics, BGI Research, Shenzhen, China
- Institute of Intelligent Medical Research (IIMR), BGI Genomics, Shenzhen, China
| | - Meizhen Wu
- HIM-BGI Omics Center, Hangzhou Institute of Medicine (HIM), Chinese Academy of Sciences (CAS), BGI Research, Hangzhou, China
- Guangdong Provincial Key Laboratory of Human Disease Genomics, Shenzhen Key Laboratory of Genomics, BGI Research, Shenzhen, China
- Institute of Intelligent Medical Research (IIMR), BGI Genomics, Shenzhen, China
| | - Tian Luo
- HIM-BGI Omics Center, Hangzhou Institute of Medicine (HIM), Chinese Academy of Sciences (CAS), BGI Research, Hangzhou, China
- Guangdong Provincial Key Laboratory of Human Disease Genomics, Shenzhen Key Laboratory of Genomics, BGI Research, Shenzhen, China
- Institute of Intelligent Medical Research (IIMR), BGI Genomics, Shenzhen, China
| | - Klara Hammarström
- Department of Immunology, Genetics and Pathology, Science for Life Laboratory, Uppsala University, Uppsala, Sweden
| | - Emma Torell
- Department of Immunology, Genetics and Pathology, Science for Life Laboratory, Uppsala University, Uppsala, Sweden
| | - Ingrid Ljuslinder
- Department of Radiation Sciences, Oncology, Umeå University, Umeå, Sweden
| | - Artur Mezheyeuski
- Department of Immunology, Genetics and Pathology, Science for Life Laboratory, Uppsala University, Uppsala, Sweden
| | - Per-Henrik Edqvist
- Department of Immunology, Genetics and Pathology, Science for Life Laboratory, Uppsala University, Uppsala, Sweden
| | | | - Carl Zingmark
- Department of Medical Biosciences, Pathology, Umeå University, Umeå, Sweden
| | - Sofia Edin
- Department of Medical Biosciences, Pathology, Umeå University, Umeå, Sweden
| | - Chatarina Larsson
- Department of Immunology, Genetics and Pathology, Science for Life Laboratory, Uppsala University, Uppsala, Sweden
| | - Lucy Mathot
- Department of Immunology, Genetics and Pathology, Science for Life Laboratory, Uppsala University, Uppsala, Sweden
| | - Erik Osterman
- Department of Immunology, Genetics and Pathology, Science for Life Laboratory, Uppsala University, Uppsala, Sweden
| | - Emerik Osterlund
- Department of Immunology, Genetics and Pathology, Science for Life Laboratory, Uppsala University, Uppsala, Sweden
| | - Viktor Ljungström
- Department of Immunology, Genetics and Pathology, Science for Life Laboratory, Uppsala University, Uppsala, Sweden
| | - Inês Neves
- Department of Immunology, Genetics and Pathology, Science for Life Laboratory, Uppsala University, Uppsala, Sweden
| | - Nicole Yacoub
- Department of Immunology, Genetics and Pathology, Science for Life Laboratory, Uppsala University, Uppsala, Sweden
| | - Unnur Guðnadóttir
- Department of Immunology, Genetics and Pathology, Science for Life Laboratory, Uppsala University, Uppsala, Sweden
| | - Helgi Birgisson
- Department of Surgical Sciences, Uppsala University, Akademiska sjukhuset, Uppsala, Sweden
| | - Malin Enblad
- Department of Surgical Sciences, Uppsala University, Akademiska sjukhuset, Uppsala, Sweden
| | - Fredrik Ponten
- Department of Immunology, Genetics and Pathology, Science for Life Laboratory, Uppsala University, Uppsala, Sweden
| | - Richard Palmqvist
- Department of Medical Biosciences, Pathology, Umeå University, Umeå, Sweden
| | - Xun Xu
- HIM-BGI Omics Center, Hangzhou Institute of Medicine (HIM), Chinese Academy of Sciences (CAS), BGI Research, Hangzhou, China
| | - Mathias Uhlén
- Department of Neuroscience, Karolinska Institutet, Stockholm, Sweden
- Science for Life Laboratory, Department of Protein Science, KTH-Royal Institute of Technology, Stockholm, Sweden
| | - Kui Wu
- HIM-BGI Omics Center, Hangzhou Institute of Medicine (HIM), Chinese Academy of Sciences (CAS), BGI Research, Hangzhou, China.
- Guangdong Provincial Key Laboratory of Human Disease Genomics, Shenzhen Key Laboratory of Genomics, BGI Research, Shenzhen, China.
- Institute of Intelligent Medical Research (IIMR), BGI Genomics, Shenzhen, China.
| | - Bengt Glimelius
- Department of Immunology, Genetics and Pathology, Science for Life Laboratory, Uppsala University, Uppsala, Sweden.
| | - Cong Lin
- HIM-BGI Omics Center, Hangzhou Institute of Medicine (HIM), Chinese Academy of Sciences (CAS), BGI Research, Hangzhou, China.
- Guangdong Provincial Key Laboratory of Human Disease Genomics, Shenzhen Key Laboratory of Genomics, BGI Research, Shenzhen, China.
- Institute of Intelligent Medical Research (IIMR), BGI Genomics, Shenzhen, China.
| | - Tobias Sjöblom
- Department of Immunology, Genetics and Pathology, Science for Life Laboratory, Uppsala University, Uppsala, Sweden.
| |
Collapse
|
45
|
Zhou Q, Cao T, Li F, Zhang M, Li X, Zhao H, Zhou Y. Mitochondria: a new intervention target for tumor invasion and metastasis. Mol Med 2024; 30:129. [PMID: 39179991 PMCID: PMC11344364 DOI: 10.1186/s10020-024-00899-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2024] [Accepted: 08/14/2024] [Indexed: 08/26/2024] Open
Abstract
Mitochondria, responsible for cellular energy synthesis and signal transduction, intricately regulate diverse metabolic processes, mediating fundamental biological phenomena such as cell growth, aging, and apoptosis. Tumor invasion and metastasis, key characteristics of malignancies, significantly impact patient prognosis. Tumor cells frequently exhibit metabolic abnormalities in mitochondria, including alterations in metabolic dynamics and changes in the expression of relevant metabolic genes and associated signal transduction pathways. Recent investigations unveil further insights into mitochondrial metabolic abnormalities, revealing their active involvement in tumor cell proliferation, resistance to chemotherapy, and a crucial role in tumor cell invasion and metastasis. This paper comprehensively outlines the latest research advancements in mitochondrial structure and metabolic function. Emphasis is placed on summarizing the role of mitochondrial metabolic abnormalities in tumor invasion and metastasis, including alterations in the mitochondrial genome (mutations), activation of mitochondrial-to-nuclear signaling, and dynamics within the mitochondria, all intricately linked to the processes of tumor invasion and metastasis. In conclusion, the paper discusses unresolved scientific questions in this field, aiming to provide a theoretical foundation and novel perspectives for developing innovative strategies targeting tumor invasion and metastasis based on mitochondrial biology.
Collapse
Affiliation(s)
- Quanling Zhou
- Department of Pathophysiology, Zunyi Medical University, Zunyi Guizhou, 563000, China
- Department of Physics, Zunyi Medical University, Zunyi Guizhou, 563000, China
| | - Tingping Cao
- Department of Pathophysiology, Zunyi Medical University, Zunyi Guizhou, 563000, China
- Department of Physics, Zunyi Medical University, Zunyi Guizhou, 563000, China
| | - Fujun Li
- Department of Pathophysiology, Zunyi Medical University, Zunyi Guizhou, 563000, China
- Department of Physics, Zunyi Medical University, Zunyi Guizhou, 563000, China
| | - Ming Zhang
- Department of Physics, Zunyi Medical University, Zunyi Guizhou, 563000, China
| | - Xiaohui Li
- Department of Physics, Zunyi Medical University, Zunyi Guizhou, 563000, China
| | - Hailong Zhao
- Department of Pathophysiology, Zunyi Medical University, Zunyi Guizhou, 563000, China
| | - Ya Zhou
- Department of Pathophysiology, Zunyi Medical University, Zunyi Guizhou, 563000, China.
- Department of Physics, Zunyi Medical University, Zunyi Guizhou, 563000, China.
- Key Laboratory of Gene Detection and Therapy of Guizhou Province, Zunyi Guizhou, 563000, China.
| |
Collapse
|
46
|
Hong WL, Huang H, Zeng X, Duan CY. Targeting mitochondrial quality control: new therapeutic strategies for major diseases. Mil Med Res 2024; 11:59. [PMID: 39164792 PMCID: PMC11337860 DOI: 10.1186/s40779-024-00556-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/09/2023] [Accepted: 07/13/2024] [Indexed: 08/22/2024] Open
Abstract
Mitochondria play a crucial role in maintaining the normal physiological state of cells. Hence, ensuring mitochondrial quality control is imperative for the prevention and treatment of numerous diseases. Previous reviews on this topic have however been inconsistencies and lack of systematic organization. Therefore, this review aims to provide a comprehensive and systematic overview of mitochondrial quality control and explore the possibility of targeting the same for the treatment of major diseases. This review systematically summarizes three fundamental characteristics of mitochondrial quality control, including mitochondrial morphology and dynamics, function and metabolism, and protein expression and regulation. It also extensively examines how imbalances in mitochondrial quality are linked to major diseases, such as ischemia-hypoxia, inflammatory disorders, viral infections, metabolic dysregulations, degenerative conditions, and tumors. Additionally, the review explores innovative approaches to target mitochondrial quality control, including using small molecule drugs that regulate critical steps in maintaining mitochondrial quality, nanomolecular materials designed for precise targeting of mitochondria, and novel cellular therapies, such as vesicle therapy and mitochondrial transplantation. This review offers a novel perspective on comprehending the shared mechanisms underlying the occurrence and progression of major diseases and provides theoretical support and practical guidance for the clinical implementation of innovative therapeutic strategies that target mitochondrial quality control for treating major diseases.
Collapse
Affiliation(s)
- Wei-Long Hong
- Department of Anesthesiology, the Second Affiliated Hospital of Chongqing Medical University, Chongqing, 400010, China
| | - He Huang
- Department of Anesthesiology, the Second Affiliated Hospital of Chongqing Medical University, Chongqing, 400010, China
| | - Xue Zeng
- Department of Anesthesiology, the Second Affiliated Hospital of Chongqing Medical University, Chongqing, 400010, China
| | - Chen-Yang Duan
- Department of Anesthesiology, the Second Affiliated Hospital of Chongqing Medical University, Chongqing, 400010, China.
| |
Collapse
|
47
|
O’Halloran K, Hakimjavadi H, Bootwalla M, Ostrow D, Kerawala R, Cotter JA, Yellapantula V, Kaneva K, Wadhwani NR, Treece A, Foreman NK, Alexandrescu S, Vega JV, Biegel JA, Gai X. Pediatric Chordoma: A Tale of Two Genomes. Mol Cancer Res 2024; 22:721-729. [PMID: 38691518 PMCID: PMC11296893 DOI: 10.1158/1541-7786.mcr-23-0741] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2023] [Revised: 02/23/2024] [Accepted: 04/26/2024] [Indexed: 05/03/2024]
Abstract
Little is known about the genomic alterations in chordoma, with the exception of loss of SMARCB1, a core member of the SWI/SNF complex, in poorly differentiated chordomas. A TBXT duplication and rs2305089 polymorphism, located at 6q27, are known genetic susceptibility loci. A comprehensive genomic analysis of the nuclear and mitochondrial genomes in pediatric chordoma has not yet been reported. In this study, we performed WES and mtDNA genome sequencing on 29 chordomas from 23 pediatric patients. Findings were compared with that from whole-genome sequencing datasets of 80 adult patients with skull base chordoma. In the pediatric chordoma cohort, 81% of the somatic mtDNA mutations were observed in NADH complex genes, which is significantly enriched compared with the rest of the mtDNA genes (P = 0.001). In adult chordomas, mtDNA mutations were also enriched in the NADH complex genes (P < 0.0001). Furthermore, a progressive increase in heteroplasmy of nonsynonymous mtDNA mutations was noted in patients with multiple tumors (P = 0.0007). In the nuclear genome, rare likely germline in-frame indels in ARID1B, a member of the SWI/SNF complex located at 6q25.3, were observed in five pediatric patients (22%) and four patients in the adult cohort (5%). The frequency of rare ARID1B indels in the pediatric cohort is significantly higher than that in the adult cohort (P = 0.0236, Fisher's exact test), but they were both significantly higher than that in the ethnicity-matched populations (P < 5.9e-07 and P < 0.0001174, respectively). Implications: germline ARID1B indels and mtDNA aberrations seem important for chordoma genesis, especially in pediatric chordoma.
Collapse
Affiliation(s)
- Katrina O’Halloran
- Department of Hematology, Oncology and Blood & Marrow Transplantation, Children’s Hospital Los Angeles, Los Angeles, CA, USA
| | - Hesamedin Hakimjavadi
- Department of Pathology and Laboratory Medicine, Children’s Hospital Los Angeles, Los Angeles, CA, USA
| | - Moiz Bootwalla
- Department of Pathology and Laboratory Medicine, Children’s Hospital Los Angeles, Los Angeles, CA, USA
| | - Dejerianne Ostrow
- Department of Pathology and Laboratory Medicine, Children’s Hospital Los Angeles, Los Angeles, CA, USA
| | - Rhea Kerawala
- Department of Pathology and Laboratory Medicine, Children’s Hospital Los Angeles, Los Angeles, CA, USA
| | - Jennifer A. Cotter
- Department of Pathology and Laboratory Medicine, Children’s Hospital Los Angeles, Los Angeles, CA, USA
- Department of Pathology, Keck School of Medicine, University of Southern California, Los Angeles, CA, USA
| | - Venkata Yellapantula
- Department of Pathology and Laboratory Medicine, Children’s Hospital Los Angeles, Los Angeles, CA, USA
- Department of Pathology, Keck School of Medicine, University of Southern California, Los Angeles, CA, USA
| | | | - Nitin R Wadhwani
- Department of Pathology and Laboratory Medicine, Ann & Robert H. Lurie Children’s Hospital of Chicago, Chicago, IL, USA
| | - Amy Treece
- Division of Pathology, Children’s Hospital Colorado, Denver, CO, USA
| | - Nicholas K. Foreman
- Division of Hematology, Oncology, Children’s Hospital Colorado, Denver, CO, USA
| | | | | | - Jaclyn A. Biegel
- Department of Pathology and Laboratory Medicine, Children’s Hospital Los Angeles, Los Angeles, CA, USA
- Department of Pathology, Keck School of Medicine, University of Southern California, Los Angeles, CA, USA
| | - Xiaowu Gai
- Department of Pathology and Laboratory Medicine, Children’s Hospital Los Angeles, Los Angeles, CA, USA
- Department of Pathology, Keck School of Medicine, University of Southern California, Los Angeles, CA, USA
| |
Collapse
|
48
|
An J, Nam CH, Kim R, Lee Y, Won H, Park S, Lee WH, Park H, Yoon CJ, An Y, Kim JH, Jun JK, Bae JM, Shin EC, Kim B, Cha YJ, Kwon HW, Oh JW, Park JY, Kim MJ, Ju YS. Mitochondrial DNA mosaicism in normal human somatic cells. Nat Genet 2024; 56:1665-1677. [PMID: 39039280 PMCID: PMC11319206 DOI: 10.1038/s41588-024-01838-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2023] [Accepted: 06/21/2024] [Indexed: 07/24/2024]
Abstract
Somatic cells accumulate genomic alterations with age; however, our understanding of mitochondrial DNA (mtDNA) mosaicism remains limited. Here we investigated the genomes of 2,096 clones derived from three cell types across 31 donors, identifying 6,451 mtDNA variants with heteroplasmy levels of ≳0.3%. While the majority of these variants were unique to individual clones, suggesting stochastic acquisition with age, 409 variants (6%) were shared across multiple embryonic lineages, indicating their origin from heteroplasmy in fertilized eggs. The mutational spectrum exhibited replication-strand bias, implicating mtDNA replication as a major mutational process. We evaluated the mtDNA mutation rate (5.0 × 10-8 per base pair) and a turnover frequency of 10-20 per year, which are fundamental components shaping the landscape of mtDNA mosaicism over a lifetime. The expansion of mtDNA-truncating mutations toward homoplasmy was substantially suppressed. Our findings provide comprehensive insights into the origins, dynamics and functional consequences of mtDNA mosaicism in human somatic cells.
Collapse
Affiliation(s)
- Jisong An
- Graduate School of Medical Science and Engineering, Korea Advanced Institute of Science and Technology (KAIST), Daejeon, Republic of Korea
| | - Chang Hyun Nam
- Graduate School of Medical Science and Engineering, Korea Advanced Institute of Science and Technology (KAIST), Daejeon, Republic of Korea
| | - Ryul Kim
- Graduate School of Medical Science and Engineering, Korea Advanced Institute of Science and Technology (KAIST), Daejeon, Republic of Korea
- Inocras Inc, Daejeon, Republic of Korea
| | - Yunah Lee
- Graduate School of Medical Science and Engineering, Korea Advanced Institute of Science and Technology (KAIST), Daejeon, Republic of Korea
| | - Hyein Won
- Graduate School of Medical Science and Engineering, Korea Advanced Institute of Science and Technology (KAIST), Daejeon, Republic of Korea
| | - Seongyeol Park
- Graduate School of Medical Science and Engineering, Korea Advanced Institute of Science and Technology (KAIST), Daejeon, Republic of Korea
- Inocras Inc, Daejeon, Republic of Korea
| | - Won Hee Lee
- Graduate School of Medical Science and Engineering, Korea Advanced Institute of Science and Technology (KAIST), Daejeon, Republic of Korea
| | - Hansol Park
- Graduate School of Medical Science and Engineering, Korea Advanced Institute of Science and Technology (KAIST), Daejeon, Republic of Korea
- Inocras Inc, Daejeon, Republic of Korea
| | - Christopher J Yoon
- Graduate School of Medical Science and Engineering, Korea Advanced Institute of Science and Technology (KAIST), Daejeon, Republic of Korea
- Department of Medicine, Washington University School of Medicine, St. Louis, MO, USA
| | - Yohan An
- Graduate School of Medical Science and Engineering, Korea Advanced Institute of Science and Technology (KAIST), Daejeon, Republic of Korea
| | - Jie-Hyun Kim
- Department of Internal Medicine, Gangnam Severance Hospital, Yonsei University College of Medicine, Seoul, Republic of Korea
| | - Jong Kwan Jun
- Department of Obstetrics and Gynecology, Seoul National University Hospital, Seoul, Republic of Korea
| | - Jeong Mo Bae
- Department of Pathology, Seoul National University Hospital, Seoul, Republic of Korea
| | - Eui-Cheol Shin
- Graduate School of Medical Science and Engineering, Korea Advanced Institute of Science and Technology (KAIST), Daejeon, Republic of Korea
| | - Bun Kim
- Center for Colorectal Cancer, Research Institute and Hospital, National Cancer Center, Goyang, Republic of Korea
| | - Yong Jun Cha
- Center for Colorectal Cancer, Research Institute and Hospital, National Cancer Center, Goyang, Republic of Korea
| | - Hyun Woo Kwon
- Department of Nuclear Medicine, Korea University College of Medicine, Seoul, Republic of Korea
| | - Ji Won Oh
- Department of Anatomy, Yonsei University College of Medicine, Seoul, Republic of Korea
| | - Jee Yoon Park
- Department of Obstetrics and Gynecology, Seoul National University Bundang Hospital, Seongnam, Republic of Korea
- Department of Obstetrics and Gynecology, Seoul National University College of Medicine, Seoul, Republic of Korea
| | - Min Jung Kim
- Department of Surgery, Seoul National University College of Medicine, Seoul, Republic of Korea
| | - Young Seok Ju
- Graduate School of Medical Science and Engineering, Korea Advanced Institute of Science and Technology (KAIST), Daejeon, Republic of Korea.
- Inocras Inc, Daejeon, Republic of Korea.
| |
Collapse
|
49
|
Unravelling the origins and forces that shape mtDNA mutations in human cells. Nat Genet 2024; 56:1554-1555. [PMID: 39060502 DOI: 10.1038/s41588-024-01837-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/28/2024]
|
50
|
Zunica ERM, Axelrod CL, Gilmore LA, Gnaiger E, Kirwan JP. The bioenergetic landscape of cancer. Mol Metab 2024; 86:101966. [PMID: 38876266 PMCID: PMC11259816 DOI: 10.1016/j.molmet.2024.101966] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/21/2024] [Revised: 06/08/2024] [Accepted: 06/09/2024] [Indexed: 06/16/2024] Open
Abstract
BACKGROUND Bioenergetic remodeling of core energy metabolism is essential to the initiation, survival, and progression of cancer cells through exergonic supply of adenosine triphosphate (ATP) and metabolic intermediates, as well as control of redox homeostasis. Mitochondria are evolutionarily conserved organelles that mediate cell survival by conferring energetic plasticity and adaptive potential. Mitochondrial ATP synthesis is coupled to the oxidation of a variety of substrates generated through diverse metabolic pathways. As such, inhibition of the mitochondrial bioenergetic system by restricting metabolite availability, direct inhibition of the respiratory Complexes, altering organelle structure, or coupling efficiency may restrict carcinogenic potential and cancer progression. SCOPE OF REVIEW Here, we review the role of bioenergetics as the principal conductor of energetic functions and carcinogenesis while highlighting the therapeutic potential of targeting mitochondrial functions. MAJOR CONCLUSIONS Mitochondrial bioenergetics significantly contribute to cancer initiation and survival. As a result, therapies designed to limit oxidative efficiency may reduce tumor burden and enhance the efficacy of currently available antineoplastic agents.
Collapse
Affiliation(s)
- Elizabeth R M Zunica
- Integrated Physiology and Molecular Medicine Laboratory, Pennington Biomedical Research Center, Baton Rouge, LA, 70808, USA
| | - Christopher L Axelrod
- Integrated Physiology and Molecular Medicine Laboratory, Pennington Biomedical Research Center, Baton Rouge, LA, 70808, USA
| | - L Anne Gilmore
- Department of Clinical Nutrition, University of Texas Southwestern Medical Center, Dallas, TX, 75390, USA
| | | | - John P Kirwan
- Integrated Physiology and Molecular Medicine Laboratory, Pennington Biomedical Research Center, Baton Rouge, LA, 70808, USA.
| |
Collapse
|