1
|
Aboreden NG, Lam JC, Goel VY, Wang S, Wang X, Midla SC, Quijano A, Keller CA, Giardine BM, Hardison RC, Zhang H, Hansen AS, Blobel GA. LDB1 establishes multi-enhancer networks to regulate gene expression. Mol Cell 2025; 85:376-393.e9. [PMID: 39721581 PMCID: PMC11741933 DOI: 10.1016/j.molcel.2024.11.037] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2024] [Revised: 10/17/2024] [Accepted: 11/26/2024] [Indexed: 12/28/2024]
Abstract
How specific enhancer-promoter pairing is established remains mostly unclear. Besides the CTCF/cohesin machinery, few nuclear factors have been studied for a direct role in physically connecting regulatory elements. Using a murine erythroid cell model, we show via acute degradation experiments that LDB1 directly and broadly promotes connectivity among regulatory elements. Most LDB1-mediated contacts, even those spanning hundreds of kb, can form in the absence of CTCF, cohesin, or YY1 as determined using multiple degron systems. Moreover, an engineered LDB1-driven chromatin loop is cohesin independent. Cohesin-driven loop extrusion does not stall at LDB1-occupied sites but aids the formation of a subset of LDB1-anchored loops. Leveraging the dynamic reorganization of nuclear architecture during the transition from mitosis to G1 phase, we observe that loop formation and de novo LDB1 occupancy correlate and can occur independently of structural loops. Tri-C and Region Capture Micro-C reveal that LDB1 organizes multi-enhancer networks to activate transcription. These findings establish LDB1 as a driver of spatial connectivity.
Collapse
Affiliation(s)
- Nicholas G Aboreden
- Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA; Division of Hematology, The Children's Hospital of Philadelphia, Philadelphia, PA, USA
| | - Jessica C Lam
- Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA; Division of Hematology, The Children's Hospital of Philadelphia, Philadelphia, PA, USA
| | - Viraat Y Goel
- Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, MA, USA; Gene Regulation Observatory, Broad Institute of MIT and Harvard, Cambridge, MA, USA; Koch Institute for Integrative Cancer Research, Cambridge, MA, USA
| | - Siqing Wang
- Division of Hematology, The Children's Hospital of Philadelphia, Philadelphia, PA, USA
| | - Xiaokang Wang
- Division of Hematology, The Children's Hospital of Philadelphia, Philadelphia, PA, USA
| | - Susannah C Midla
- Division of Hematology, The Children's Hospital of Philadelphia, Philadelphia, PA, USA
| | - Alma Quijano
- Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA; Division of Hematology, The Children's Hospital of Philadelphia, Philadelphia, PA, USA
| | - Cheryl A Keller
- Department of Biochemistry and Molecular Biology, Pennsylvania State University, University Park, PA, USA
| | - Belinda M Giardine
- Department of Biochemistry and Molecular Biology, Pennsylvania State University, University Park, PA, USA
| | - Ross C Hardison
- Department of Biochemistry and Molecular Biology, Pennsylvania State University, University Park, PA, USA
| | - Haoyue Zhang
- Institute of Molecular Physiology, Shenzhen Bay Laboratory, Shenzhen, Guangdong, China
| | - Anders S Hansen
- Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, MA, USA; Gene Regulation Observatory, Broad Institute of MIT and Harvard, Cambridge, MA, USA; Koch Institute for Integrative Cancer Research, Cambridge, MA, USA
| | - Gerd A Blobel
- Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA; Division of Hematology, The Children's Hospital of Philadelphia, Philadelphia, PA, USA.
| |
Collapse
|
2
|
Zhou C, Wang M, Zhang C, Zhang Y. The transcription factor GABPA is a master regulator of naive pluripotency. Nat Cell Biol 2025; 27:48-58. [PMID: 39747581 PMCID: PMC11735382 DOI: 10.1038/s41556-024-01554-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2024] [Accepted: 10/04/2024] [Indexed: 01/04/2025]
Abstract
The establishment of naive pluripotency is a continuous process starting with the generation of inner cell mass (ICM) that then differentiates into epiblast (EPI). Recent studies have revealed key transcription factors (TFs) for ICM formation, but which TFs initiate EPI specification remains unknown. Here, using a targeted rapid protein degradation system, we show that GABPA is not only a regulator of major ZGA, but also a master EPI specifier required for naive pluripotency establishment by regulating 47% of EPI genes during E3.5 to E4.5 transition. Chromatin binding dynamics analysis suggests that GABPA controls EPI formation at least partly by binding to the ICM gene promoters occupied by the pluripotency regulators TFAP2C and SOX2 at E3.5 to establish naive pluripotency at E4.5. Our study not only uncovers GABPA as a master pluripotency regulator, but also supports the notion that mammalian pluripotency establishment requires a dynamic and stepwise multi-TF regulatory network.
Collapse
Affiliation(s)
- Chengjie Zhou
- Howard Hughes Medical Institute, Boston Children's Hospital, Boston, MA, USA
- Program in Cellular and Molecular Medicine, Boston Children's Hospital, Boston, MA, USA
| | - Meng Wang
- Howard Hughes Medical Institute, Boston Children's Hospital, Boston, MA, USA
- Program in Cellular and Molecular Medicine, Boston Children's Hospital, Boston, MA, USA
| | - Chunxia Zhang
- Howard Hughes Medical Institute, Boston Children's Hospital, Boston, MA, USA
- Program in Cellular and Molecular Medicine, Boston Children's Hospital, Boston, MA, USA
- State Key Laboratory of Molecular Developmental Biology, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, China
| | - Yi Zhang
- Howard Hughes Medical Institute, Boston Children's Hospital, Boston, MA, USA.
- Program in Cellular and Molecular Medicine, Boston Children's Hospital, Boston, MA, USA.
- Division of Hematology/Oncology, Department of Pediatrics, Boston Children's Hospital, Boston, MA, USA.
- Department of Genetics, Harvard Medical School, Boston, MA, USA.
- Harvard Stem Cell Institute, Boston, MA, USA.
| |
Collapse
|
3
|
Fursova NA, Larson DR. Transcriptional machinery as an architect of genome structure. Curr Opin Struct Biol 2024; 89:102920. [PMID: 39306948 PMCID: PMC11602364 DOI: 10.1016/j.sbi.2024.102920] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2024] [Revised: 08/13/2024] [Accepted: 08/29/2024] [Indexed: 11/29/2024]
Abstract
Chromatin organization, facilitated by compartmentalization and loop extrusion, is crucial for proper gene expression and cell viability. Transcription has long been considered important for shaping genome architecture due to its pervasive activity across the genome and impact on the local chromatin environment. Although earlier studies suggested a minimal contribution of transcription to shaping global genome structure, recent insights from high-resolution chromatin contact mapping, polymer simulations, and acute perturbations have revealed its critical role in dynamic chromatin organization at the level of active genes and enhancer-promoter interactions. In this review, we discuss these latest advances, highlighting the direct interplay between transcriptional machinery and loop extrusion. Finally, we explore how transcription of genes and non-coding regulatory elements may contribute to the specificity of gene regulation, focusing on enhancers as sites of targeted cohesin loading.
Collapse
Affiliation(s)
- Nadezda A Fursova
- Laboratory of Receptor Biology and Gene Expression, Center for Cancer Research, National Cancer Institute, National Institutes of Health, 41 Medlars Drive, Bethesda, MD 20892, USA
| | - Daniel R Larson
- Laboratory of Receptor Biology and Gene Expression, Center for Cancer Research, National Cancer Institute, National Institutes of Health, 41 Medlars Drive, Bethesda, MD 20892, USA.
| |
Collapse
|
4
|
Ryzhkova A, Maltseva E, Battulin N, Kabirova E. Loop Extrusion Machinery Impairments in Models and Disease. Cells 2024; 13:1896. [PMID: 39594644 PMCID: PMC11592926 DOI: 10.3390/cells13221896] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2024] [Revised: 11/15/2024] [Accepted: 11/15/2024] [Indexed: 11/28/2024] Open
Abstract
Structural maintenance of chromosomes (SMC) complexes play a crucial role in organizing the three-dimensional structure of chromatin, facilitating key processes such as gene regulation, DNA repair, and chromosome segregation. This review explores the molecular mechanisms and biological significance of SMC-mediated loop extrusion complexes, including cohesin, condensins, and SMC5/6, focusing on their structure, their dynamic function during the cell cycle, and their impact on chromatin architecture. We discuss the implications of impairments in loop extrusion machinery as observed in experimental models and human diseases. Mutations affecting these complexes are linked to various developmental disorders and cancer, highlighting their importance in genome stability and transcriptional regulation. Advances in model systems and genomic techniques have provided deeper insights into the pathological roles of SMC complex dysfunction, offering potential therapeutic avenues for associated diseases.
Collapse
Affiliation(s)
- Anastasiya Ryzhkova
- Institute of Cytology and Genetics, 630090 Novosibirsk, Russia; (A.R.); (N.B.)
| | - Ekaterina Maltseva
- Department of Genetics and Genetic Technologies, Sirius University of Science and Technology, 354340 Sirius, Russia;
| | - Nariman Battulin
- Institute of Cytology and Genetics, 630090 Novosibirsk, Russia; (A.R.); (N.B.)
- Department of Natural Sciences, Novosibirsk State University, 630090 Novosibirsk, Russia
| | - Evelyn Kabirova
- Institute of Cytology and Genetics, 630090 Novosibirsk, Russia; (A.R.); (N.B.)
- Department of Natural Sciences, Novosibirsk State University, 630090 Novosibirsk, Russia
| |
Collapse
|
5
|
Dekker J, Mirny LA. The chromosome folding problem and how cells solve it. Cell 2024; 187:6424-6450. [PMID: 39547207 PMCID: PMC11569382 DOI: 10.1016/j.cell.2024.10.026] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2024] [Revised: 10/15/2024] [Accepted: 10/15/2024] [Indexed: 11/17/2024]
Abstract
Every cell must solve the problem of how to fold its genome. We describe how the folded state of chromosomes is the result of the combined activity of multiple conserved mechanisms. Homotypic affinity-driven interactions lead to spatial partitioning of active and inactive loci. Molecular motors fold chromosomes through loop extrusion. Topological features such as supercoiling and entanglements contribute to chromosome folding and its dynamics, and tethering loci to sub-nuclear structures adds additional constraints. Dramatically diverse chromosome conformations observed throughout the cell cycle and across the tree of life can be explained through differential regulation and implementation of these basic mechanisms. We propose that the first functions of chromosome folding are to mediate genome replication, compaction, and segregation and that mechanisms of folding have subsequently been co-opted for other roles, including long-range gene regulation, in different conditions, cell types, and species.
Collapse
Affiliation(s)
- Job Dekker
- Department of Systems Biology, University of Massachusetts Chan Medical School, Worcester, MA, USA; Howard Hughes Medical Institute, Chevy Chase, MD, USA.
| | - Leonid A Mirny
- Institute for Medical Engineering and Science and Department of Physics, Massachusetts Institute of Technology, Cambridge, MA, USA.
| |
Collapse
|
6
|
Murre C, Patta I, Mishra S, Hu M. Constructing polymorphonuclear cells: chromatin folding shapes nuclear morphology. Trends Immunol 2024; 45:851-860. [PMID: 39438171 DOI: 10.1016/j.it.2024.09.012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2024] [Revised: 09/23/2024] [Accepted: 09/25/2024] [Indexed: 10/25/2024]
Abstract
Immune cell fate decisions are regulated, at least in part, by nuclear architecture. Here, we outline how nuclear architecture instructs mammalian polymorphonuclear cell differentiation. We discuss how in neutrophils loop extrusion mechanisms regulate the expression of genes involved in phagocytosis and shape nuclear morphology. We propose that diminished loop extrusion programs also orchestrate eosinophil and basophil differentiation. We portray a new model in which competitive physical forces, loop extrusion, and phase separation, instruct mononuclear versus polymorphonuclear cell fate decisions. We posit that loop extrusion programs instruct the spatial organization of cytoplasmic organelles, including neutrophil granules, mitochondria, and endoplasmic reticulum. Finally, we suggest that changing loop extrusion programs might allow the engineering of new nuclear shapes and artificial cytoplasmic architectures.
Collapse
Affiliation(s)
- Cornelis Murre
- Department of Molecular Biology, University of California, San Diego, La Jolla, CA, USA.
| | - Indumathi Patta
- Department of Molecular Biology, University of California, San Diego, La Jolla, CA, USA
| | - Shreya Mishra
- Department of Quantitative Health Sciences, Lerner Research Institute, Cleveland Clinic Foundation, Cleveland, OH, USA
| | - Ming Hu
- Department of Quantitative Health Sciences, Lerner Research Institute, Cleveland Clinic Foundation, Cleveland, OH, USA.
| |
Collapse
|
7
|
Rahmaninejad H, Xiao Y, Tortora MMC, Fudenberg G. Dynamic barriers modulate cohesin positioning and genome folding at fixed occupancy. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.10.08.617113. [PMID: 39416077 PMCID: PMC11482749 DOI: 10.1101/2024.10.08.617113] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/19/2024]
Abstract
In mammalian interphase cells, genomes are folded by cohesin loop extrusion limited by directional CTCF barriers. This interplay leads to the enrichment of cohesin at barriers, isolation between neighboring topologically associating domains, and elevated contact frequency between convergent CTCF barriers across the genome. However, recent in vivo measurements present a puzzle: reported residence times for CTCF on chromatin are in the range of a few minutes, while lifetimes for cohesin are much longer. Can the observed features of genome folding result from the action of relatively transient barriers? To address this question, we developed a dynamic barrier model, where CTCF sites switch between bound and unbound states with rates that can be directly compared with biophysical measurements. Using this model, we investigated how barrier dynamics would impact observables for a range of experimental genomic and imaging datasets, including ChIP-seq, Hi-C, and microscopy. We found the interplay of CTCF and cohesin binding timescales influence the strength of each of these features, leaving a signature of barrier dynamics even in the population-averaged snapshots offered by genomic datasets. First, in addition to barrier occupancy, barrier bound times are crucial for instructing features of genome folding. Second, the ratio of boundary to extruder lifetime greatly alters simulated ChIP-seq and simulated Hi-C. Third, large-scale changes in chromosome morphology observed experimentally after increasing extruder lifetime require dynamic barriers. By integrating multiple sources of experimental data, our biophysical model argues that CTCF barrier bound times effectively approach those of cohesin extruder lifetimes. Together, we demonstrate how models that are informed by biophysically measured protein dynamics broaden our understanding of genome folding.
Collapse
Affiliation(s)
- Hadi Rahmaninejad
- Department of Quantitative and Computational Biology, University of Southern California, Los Angeles, USA
| | - Yao Xiao
- Department of Quantitative and Computational Biology, University of Southern California, Los Angeles, USA
| | - Maxime M C Tortora
- Department of Quantitative and Computational Biology, University of Southern California, Los Angeles, USA
| | - Geoffrey Fudenberg
- Department of Quantitative and Computational Biology, University of Southern California, Los Angeles, USA
| |
Collapse
|
8
|
Chang LH, Noordermeer D. Permeable TAD boundaries and their impact on genome-associated functions. Bioessays 2024; 46:e2400137. [PMID: 39093600 DOI: 10.1002/bies.202400137] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2024] [Revised: 07/12/2024] [Accepted: 07/17/2024] [Indexed: 08/04/2024]
Abstract
TAD boundaries are genomic elements that separate biological processes in neighboring domains by blocking DNA loops that are formed through Cohesin-mediated loop extrusion. Most TAD boundaries consist of arrays of binding sites for the CTCF protein, whose interaction with the Cohesin complex blocks loop extrusion. TAD boundaries are not fully impermeable though and allow a limited amount of inter-TAD loop formation. Based on the reanalysis of Nano-C data, a multicontact Chromosome Conformation Capture assay, we propose a model whereby clustered CTCF binding sites promote the successive stalling of Cohesin and subsequent dissociation from the chromatin. A fraction of Cohesin nonetheless achieves boundary read-through. Due to a constant rate of Cohesin dissociation elsewhere in the genome, the maximum length of inter-TAD loops is restricted though. We speculate that the DNA-encoded organization of stalling sites regulates TAD boundary permeability and discuss implications for enhancer-promoter loop formation and other genomic processes.
Collapse
Affiliation(s)
- Li-Hsin Chang
- MRC Molecular Haematology Unit, MRC Weatherall Institute of Molecular Medicine, Radcliffe Department of Medicine, University of Oxford, Oxford, UK
- Blood and Transplant Research Unit in Precision Cellular Therapeutics, National Institute of Health Research, Oxford, UK
| | - Daan Noordermeer
- CEA, CNRS, Institute for Integrative Biology of the Cell (I2BC), Université Paris-Saclay, Gif-sur-Yvette, France
| |
Collapse
|
9
|
Tsang F, Stolper R, Hanifi M, Cornell L, Francis H, Davies B, Higgs D, Kassouf M. The characteristics of CTCF binding sequences contribute to enhancer blocking activity. Nucleic Acids Res 2024; 52:10180-10193. [PMID: 39106157 PMCID: PMC11417384 DOI: 10.1093/nar/gkae666] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2023] [Revised: 07/11/2024] [Accepted: 07/22/2024] [Indexed: 08/09/2024] Open
Abstract
While the elements encoding enhancers and promoters have been relatively well studied, the full spectrum of insulator elements which bind the CCCTC binding factor (CTCF), is relatively poorly characterized. This is partly due to the genomic context of CTCF sites greatly influencing their roles and activity. Here we have developed an experimental system to determine the ability of minimal, consistently sized, individual CTCF elements to interpose between enhancers and promoters and thereby reduce gene expression during differentiation. Importantly, each element is tested in the identical location thereby minimising the effect of genomic context. We found no correlation between the ability of CTCF elements to block enhancer-promoter activity with the degree of evolutionary conservation; their resemblance to the consensus core sequences; or the number of CTCF core motifs harboured in the element. Nevertheless, we have shown that the strongest enhancer-promoter blockers include a previously described bound element lying upstream of the CTCF core motif. In addition, we found other uncharacterised DNaseI footprints located close to the core motif that may affect function. We have developed an assay of CTCF sequences which will enable researchers to sub-classify individual CTCF elements in a uniform and unbiased way.
Collapse
Affiliation(s)
- Felice H Tsang
- Chinese Academy of Medical Sciences Oxford Institute, Nuffield Department of Medicine, University of Oxford, Old Road Campus, Oxford OX3 7BN, UK
- MRC Weatherall Institute of Molecular Medicine, Radcliffe Department of Medicine, University of Oxford, John Radcliffe Hospital, Oxford OX3 9DS, UK
| | - Rosa J Stolper
- MRC Weatherall Institute of Molecular Medicine, Radcliffe Department of Medicine, University of Oxford, John Radcliffe Hospital, Oxford OX3 9DS, UK
| | - Muhammad Hanifi
- MRC Weatherall Institute of Molecular Medicine, Radcliffe Department of Medicine, University of Oxford, John Radcliffe Hospital, Oxford OX3 9DS, UK
| | - Lucy J Cornell
- MRC Weatherall Institute of Molecular Medicine, Radcliffe Department of Medicine, University of Oxford, John Radcliffe Hospital, Oxford OX3 9DS, UK
| | - Helena S Francis
- MRC Weatherall Institute of Molecular Medicine, Radcliffe Department of Medicine, University of Oxford, John Radcliffe Hospital, Oxford OX3 9DS, UK
| | - Benjamin Davies
- Wellcome Centre for Human Genetics, Nuffield Department of Medicine, University of Oxford, Old Road Campus, Oxford OX3 7BN, UK
| | - Douglas R Higgs
- MRC Weatherall Institute of Molecular Medicine, Radcliffe Department of Medicine, University of Oxford, John Radcliffe Hospital, Oxford OX3 9DS, UK
- Chinese Academy of Medical Sciences Oxford Institute, Nuffield Department of Medicine, University of Oxford, Old Road Campus, Oxford OX3 7BN, UK
| | - Mira T Kassouf
- MRC Weatherall Institute of Molecular Medicine, Radcliffe Department of Medicine, University of Oxford, John Radcliffe Hospital, Oxford OX3 9DS, UK
| |
Collapse
|
10
|
Kloosterman DJ, Erbani J, Boon M, Farber M, Handgraaf SM, Ando-Kuri M, Sánchez-López E, Fontein B, Mertz M, Nieuwland M, Liu NQ, Forn-Cuni G, van der Wel NN, Grootemaat AE, Reinalda L, van Kasteren SI, de Wit E, Ruffell B, Snaar-Jagalska E, Petrecca K, Brandsma D, Kros A, Giera M, Akkari L. Macrophage-mediated myelin recycling fuels brain cancer malignancy. Cell 2024; 187:5336-5356.e30. [PMID: 39137777 PMCID: PMC11429458 DOI: 10.1016/j.cell.2024.07.030] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2023] [Revised: 04/26/2024] [Accepted: 07/18/2024] [Indexed: 08/15/2024]
Abstract
Tumors growing in metabolically challenged environments, such as glioblastoma in the brain, are particularly reliant on crosstalk with their tumor microenvironment (TME) to satisfy their high energetic needs. To study the intricacies of this metabolic interplay, we interrogated the heterogeneity of the glioblastoma TME using single-cell and multi-omics analyses and identified metabolically rewired tumor-associated macrophage (TAM) subpopulations with pro-tumorigenic properties. These TAM subsets, termed lipid-laden macrophages (LLMs) to reflect their cholesterol accumulation, are epigenetically rewired, display immunosuppressive features, and are enriched in the aggressive mesenchymal glioblastoma subtype. Engulfment of cholesterol-rich myelin debris endows subsets of TAMs to acquire an LLM phenotype. Subsequently, LLMs directly transfer myelin-derived lipids to cancer cells in an LXR/Abca1-dependent manner, thereby fueling the heightened metabolic demands of mesenchymal glioblastoma. Our work provides an in-depth understanding of the immune-metabolic interplay during glioblastoma progression, thereby laying a framework to unveil targetable metabolic vulnerabilities in glioblastoma.
Collapse
Affiliation(s)
- Daan J Kloosterman
- Division of Tumour Biology and Immunology, Oncode Institute, The Netherlands Cancer Institute, 1066CX Amsterdam, the Netherlands
| | - Johanna Erbani
- Division of Tumour Biology and Immunology, Oncode Institute, The Netherlands Cancer Institute, 1066CX Amsterdam, the Netherlands
| | - Menno Boon
- Division of Tumour Biology and Immunology, Oncode Institute, The Netherlands Cancer Institute, 1066CX Amsterdam, the Netherlands
| | - Martina Farber
- Division of Tumour Biology and Immunology, Oncode Institute, The Netherlands Cancer Institute, 1066CX Amsterdam, the Netherlands
| | - Shanna M Handgraaf
- Division of Tumour Biology and Immunology, Oncode Institute, The Netherlands Cancer Institute, 1066CX Amsterdam, the Netherlands
| | - Masami Ando-Kuri
- Division of Tumour Biology and Immunology, Oncode Institute, The Netherlands Cancer Institute, 1066CX Amsterdam, the Netherlands
| | - Elena Sánchez-López
- Center for Proteomics and Metabolomics, Leiden University Medical Center, Leiden, the Netherlands
| | - Bauke Fontein
- Division of Tumour Biology and Immunology, Oncode Institute, The Netherlands Cancer Institute, 1066CX Amsterdam, the Netherlands
| | - Marjolijn Mertz
- Bioimaging Facility, Netherlands Cancer Institute, 1066CX Amsterdam, the Netherlands
| | - Marja Nieuwland
- Genomics Core Facility, Netherlands Cancer Institute, 1066CX Amsterdam, the Netherlands
| | - Ning Qing Liu
- Department of Hematology, Erasmus Medical Center Cancer Institute, Rotterdam, the Netherlands
| | - Gabriel Forn-Cuni
- Institute of Biology Leiden, Leiden University, Leiden, the Netherlands
| | - Nicole N van der Wel
- Electron Microscopy Centre Amsterdam, Medical Biology, Amsterdam University Medical Centre, Amsterdam, the Netherlands
| | - Anita E Grootemaat
- Electron Microscopy Centre Amsterdam, Medical Biology, Amsterdam University Medical Centre, Amsterdam, the Netherlands
| | - Luuk Reinalda
- The Institute of Chemical Immunology, Leiden Institute of Chemistry, Leiden University, Leiden, the Netherlands
| | - Sander I van Kasteren
- The Institute of Chemical Immunology, Leiden Institute of Chemistry, Leiden University, Leiden, the Netherlands
| | - Elzo de Wit
- Division of Gene Regulation, The Netherlands Cancer Institute, 1066CX Amsterdam, the Netherlands
| | - Brian Ruffell
- Department of Immunology, Department of Breast Oncology, H. Lee Moffitt Cancer Center and Research Institute, Tampa, FL, USA
| | | | - Kevin Petrecca
- Montreal Neurological Institute-Hospital, McGill University Health Centre and Department of Neurology and Neurosurgery, Faculty of Medicine, McGill University, Montreal, QC, Canada
| | - Dieta Brandsma
- Department of Neuro-Oncology, Netherlands Cancer Institute-Antoni van Leeuwenhoek, 1066CX Amsterdam, the Netherlands
| | - Alexander Kros
- Leiden Institute of Chemistry, Leiden University, Leiden, the Netherlands
| | - Martin Giera
- Center for Proteomics and Metabolomics, Leiden University Medical Center, Leiden, the Netherlands
| | - Leila Akkari
- Division of Tumour Biology and Immunology, Oncode Institute, The Netherlands Cancer Institute, 1066CX Amsterdam, the Netherlands.
| |
Collapse
|
11
|
Ortabozkoyun H, Huang PY, Gonzalez-Buendia E, Cho H, Kim SY, Tsirigos A, Mazzoni EO, Reinberg D. Members of an array of zinc-finger proteins specify distinct Hox chromatin boundaries. Mol Cell 2024; 84:3406-3422.e6. [PMID: 39173638 DOI: 10.1016/j.molcel.2024.08.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2023] [Revised: 05/06/2024] [Accepted: 08/05/2024] [Indexed: 08/24/2024]
Abstract
Partitioning of repressive from actively transcribed chromatin in mammalian cells fosters cell-type-specific gene expression patterns. While this partitioning is reconstructed during differentiation, the chromatin occupancy of the key insulator, CCCTC-binding factor (CTCF), is unchanged at the developmentally important Hox clusters. Thus, dynamic changes in chromatin boundaries must entail other activities. Given its requirement for chromatin loop formation, we examined cohesin-based chromatin occupancy without known insulators, CTCF and Myc-associated zinc-finger protein (MAZ), and identified a family of zinc-finger proteins (ZNFs), some of which exhibit tissue-specific expression. Two such ZNFs foster chromatin boundaries at the Hox clusters that are distinct from each other and from MAZ. PATZ1 was critical to the thoracolumbar boundary in differentiating motor neurons and mouse skeleton, while ZNF263 contributed to cervicothoracic boundaries. We propose that these insulating activities act with cohesin, alone or combinatorially, with or without CTCF, to implement precise positional identity and cell fate during development.
Collapse
Affiliation(s)
- Havva Ortabozkoyun
- Howard Hughes Medical Institute, Miller School of Medicine, University of Miami, Miami, FL 33136, USA; Department of Human Genetics, Miller School of Medicine, University of Miami, Miami, FL 33136, USA; Sylvester Comprehensive Cancer Center, Miller School of Medicine, University of Miami, Miami, FL 33136, USA; Department of Biochemistry and Molecular Pharmacology, NYU Langone Health, New York, NY 10016, USA; Howard Hughes Medical Institute, NYU Langone Health, New York, NY 10016, USA.
| | - Pin-Yao Huang
- Department of Biochemistry and Molecular Pharmacology, NYU Langone Health, New York, NY 10016, USA; Howard Hughes Medical Institute, NYU Langone Health, New York, NY 10016, USA
| | - Edgar Gonzalez-Buendia
- Howard Hughes Medical Institute, Miller School of Medicine, University of Miami, Miami, FL 33136, USA; Department of Human Genetics, Miller School of Medicine, University of Miami, Miami, FL 33136, USA; Sylvester Comprehensive Cancer Center, Miller School of Medicine, University of Miami, Miami, FL 33136, USA; Department of Biochemistry and Molecular Pharmacology, NYU Langone Health, New York, NY 10016, USA; Howard Hughes Medical Institute, NYU Langone Health, New York, NY 10016, USA
| | - Hyein Cho
- Department of Pathology, NYU Langone Health, New York, NY 10016, USA; Applied Bioinformatics Laboratories, NYU Langone Health, New York, NY 10016, USA; Department of Medicine, Division of Precision Medicine, NYU Langone Health, New York, NY 10016, USA
| | - Sang Y Kim
- Department of Pathology, NYU Langone Health, New York, NY 10016, USA
| | - Aristotelis Tsirigos
- Department of Pathology, NYU Langone Health, New York, NY 10016, USA; Applied Bioinformatics Laboratories, NYU Langone Health, New York, NY 10016, USA; Institute for Computational Medicine, NYU Langone Health, New York, NY 10016, USA
| | - Esteban O Mazzoni
- Department of Cell Biology, NYU Langone Health, New York, NY 10016, USA
| | - Danny Reinberg
- Howard Hughes Medical Institute, Miller School of Medicine, University of Miami, Miami, FL 33136, USA; Department of Human Genetics, Miller School of Medicine, University of Miami, Miami, FL 33136, USA; Sylvester Comprehensive Cancer Center, Miller School of Medicine, University of Miami, Miami, FL 33136, USA; Department of Biochemistry and Molecular Pharmacology, NYU Langone Health, New York, NY 10016, USA; Howard Hughes Medical Institute, NYU Langone Health, New York, NY 10016, USA.
| |
Collapse
|
12
|
Lam JC, Aboreden NG, Midla SC, Wang S, Huang A, Keller CA, Giardine B, Henderson KA, Hardison RC, Zhang H, Blobel GA. YY1-controlled regulatory connectivity and transcription are influenced by the cell cycle. Nat Genet 2024; 56:1938-1952. [PMID: 39210046 PMCID: PMC11687402 DOI: 10.1038/s41588-024-01871-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2023] [Accepted: 07/16/2024] [Indexed: 09/04/2024]
Abstract
Few transcription factors have been examined for their direct roles in physically connecting enhancers and promoters. Here acute degradation of Yin Yang 1 (YY1) in erythroid cells revealed its requirement for the maintenance of numerous enhancer-promoter loops, but not compartments or domains. Despite its reported ability to interact with cohesin, the formation of YY1-dependent enhancer-promoter loops does not involve stalling of cohesin-mediated loop extrusion. Integrating mitosis-to-G1-phase dynamics, we observed partial retention of YY1 on mitotic chromatin, predominantly at gene promoters, followed by rapid rebinding during mitotic exit, coinciding with enhancer-promoter loop establishment. YY1 degradation during the mitosis-to-G1-phase interval revealed a set of enhancer-promoter loops that require YY1 for establishment during G1-phase entry but not for maintenance in interphase, suggesting that cell cycle stage influences YY1's architectural function. Thus, as revealed here for YY1, chromatin architectural functions of transcription factors can vary in their interplay with CTCF and cohesin as well as by cell cycle stage.
Collapse
Affiliation(s)
- Jessica C Lam
- Division of Hematology, The Children's Hospital of Philadelphia, Philadelphia, PA, USA
- Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Nicholas G Aboreden
- Division of Hematology, The Children's Hospital of Philadelphia, Philadelphia, PA, USA
- Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Susannah C Midla
- Division of Hematology, The Children's Hospital of Philadelphia, Philadelphia, PA, USA
| | - Siqing Wang
- Division of Hematology, The Children's Hospital of Philadelphia, Philadelphia, PA, USA
| | - Anran Huang
- Division of Hematology, The Children's Hospital of Philadelphia, Philadelphia, PA, USA
| | - Cheryl A Keller
- Department of Biochemistry and Molecular Biology, Pennsylvania State University, University Park, PA, USA
- Genomics Research Incubator, Pennsylvania State University, University Park, PA, USA
| | - Belinda Giardine
- Department of Biochemistry and Molecular Biology, Pennsylvania State University, University Park, PA, USA
| | - Kate A Henderson
- Division of Hematology, The Children's Hospital of Philadelphia, Philadelphia, PA, USA
| | - Ross C Hardison
- Department of Biochemistry and Molecular Biology, Pennsylvania State University, University Park, PA, USA
| | - Haoyue Zhang
- Institute of Molecular Physiology, Shenzhen Bay Laboratory, Shenzhen, China
| | - Gerd A Blobel
- Division of Hematology, The Children's Hospital of Philadelphia, Philadelphia, PA, USA.
- Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA.
| |
Collapse
|
13
|
Magnitov M, de Wit E. Attraction and disruption: how loop extrusion and compartmentalisation shape the nuclear genome. Curr Opin Genet Dev 2024; 86:102194. [PMID: 38636335 PMCID: PMC11190842 DOI: 10.1016/j.gde.2024.102194] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2023] [Revised: 03/21/2024] [Accepted: 03/31/2024] [Indexed: 04/20/2024]
Abstract
Chromatin loops, which bring two distal loci of the same chromosome into close physical proximity, are the ubiquitous units of the three-dimensional genome. Recent advances in understanding the spatial organisation of chromatin suggest that several distinct mechanisms control chromatin interactions, such as loop extrusion by cohesin complexes, compartmentalisation by phase separation, direct protein-protein interactions and others. Here, we review different types of chromatin loops and highlight the factors and processes involved in their regulation. We discuss how loop extrusion and compartmentalisation shape chromatin interactions and how these two processes can either positively or negatively influence each other.
Collapse
Affiliation(s)
- Mikhail Magnitov
- Division of Gene Regulation, the Netherlands Cancer Institute, Plesmanlaan 121, 1066 CX Amsterdam, the Netherlands. https://twitter.com/@MMagnitov
| | - Elzo de Wit
- Division of Gene Regulation, the Netherlands Cancer Institute, Plesmanlaan 121, 1066 CX Amsterdam, the Netherlands.
| |
Collapse
|
14
|
Chan B, Rubinstein M. Activity-driven chromatin organization during interphase: Compaction, segregation, and entanglement suppression. Proc Natl Acad Sci U S A 2024; 121:e2401494121. [PMID: 38753513 PMCID: PMC11127048 DOI: 10.1073/pnas.2401494121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2024] [Accepted: 04/17/2024] [Indexed: 05/18/2024] Open
Abstract
In mammalian cells, the cohesin protein complex is believed to translocate along chromatin during interphase to form dynamic loops through a process called active loop extrusion. Chromosome conformation capture and imaging experiments have suggested that chromatin adopts a compact structure with limited interpenetration between chromosomes and between chromosomal sections. We developed a theory demonstrating that active loop extrusion causes the apparent fractal dimension of chromatin to cross-over between two and four at contour lengths on the order of 30 kilo-base pairs. The anomalously high fractal dimension [Formula: see text] is due to the inability of extruded loops to fully relax during active extrusion. Compaction on longer contour length scales extends within topologically associated domains (TADs), facilitating gene regulation by distal elements. Extrusion-induced compaction segregates TADs such that overlaps between TADs are reduced to less than 35% and increases the entanglement strand of chromatin by up to a factor of 50 to several Mega-base pairs. Furthermore, active loop extrusion couples cohesin motion to chromatin conformations formed by previously extruding cohesins and causes the mean square displacement of chromatin loci during lag times ([Formula: see text]) longer than tens of minutes to be proportional to [Formula: see text]. We validate our results with hybrid molecular dynamics-Monte Carlo simulations and show that our theory is consistent with experimental data. This work provides a theoretical basis for the compact organization of interphase chromatin, explaining the physical reason for TAD segregation and suppression of chromatin entanglements which contribute to efficient gene regulation.
Collapse
Affiliation(s)
- Brian Chan
- Department of Biomedical Engineering, Duke University, Durham, NC27708
| | - Michael Rubinstein
- Department of Biomedical Engineering, Duke University, Durham, NC27708
- Thomas Lord Department of Mechanical Engineering and Materials Science, Duke University, Durham, NC27708
- Department of Physics, Duke University, Durham, NC27708
- Department of Chemistry, Duke University, Durham, NC27708
- World Premier International Research Center Initiative–Institute for Chemical Reaction Design and Discovery, Hokkaido University, Sapporo001-0021, Japan
| |
Collapse
|
15
|
Rittenhouse NL, Dowen JM. Cohesin regulation and roles in chromosome structure and function. Curr Opin Genet Dev 2024; 85:102159. [PMID: 38382406 PMCID: PMC10947815 DOI: 10.1016/j.gde.2024.102159] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2023] [Revised: 01/22/2024] [Accepted: 01/27/2024] [Indexed: 02/23/2024]
Abstract
Chromosome structure regulates DNA-templated processes such as transcription of genes. Dynamic changes to chromosome structure occur during development and in disease contexts. The cohesin complex is a molecular motor that regulates chromosome structure by generating DNA loops that bring two distal genomic sites into close spatial proximity. There are many open questions regarding the formation and dissolution of DNA loops, as well as the role(s) of DNA loops in regulating transcription of the interphase genome. This review focuses on recent discoveries that provide molecular insights into the role of cohesin and chromosome structure in gene transcription during development and disease.
Collapse
Affiliation(s)
- Natalie L Rittenhouse
- Curriculum in Genetics & Molecular Biology, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Jill M Dowen
- Department of Biophysics & Biochemistry, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA; Department of Biology, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA; Integrative Program for Biological and Genome Sciences, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA; Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA.
| |
Collapse
|
16
|
Kim M, Wang P, Clow PA, Chien I(E, Wang X, Peng J, Chai H, Liu X, Lee B, Ngan CY, Yue F, Milenkovic O, Chuang JH, Wei CL, Casellas R, Cheng AW, Ruan Y. Multifaceted roles of cohesin in regulating transcriptional loops. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.03.25.586715. [PMID: 38585764 PMCID: PMC10996690 DOI: 10.1101/2024.03.25.586715] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/09/2024]
Abstract
Cohesin is required for chromatin loop formation. However, its precise role in regulating gene transcription remains largely unknown. We investigated the relationship between cohesin and RNA Polymerase II (RNAPII) using single-molecule mapping and live-cell imaging methods in human cells. Cohesin-mediated transcriptional loops were highly correlated with those of RNAPII and followed the direction of gene transcription. Depleting RAD21, a subunit of cohesin, resulted in the loss of long-range (>100 kb) loops between distal (super-)enhancers and promoters of cell-type-specific genes. By contrast, the short-range (<50 kb) loops were insensitive to RAD21 depletion and connected genes that are mostly housekeeping. This result explains why only a small fraction of genes are affected by the loss of long-range chromatin interactions due to cohesin depletion. Remarkably, RAD21 depletion appeared to up-regulate genes located in early initiation zones (EIZ) of DNA replication, and the EIZ signals were amplified drastically without RAD21. Our results revealed new mechanistic insights of cohesin's multifaceted roles in establishing transcriptional loops, preserving long-range chromatin interactions for cell-specific genes, and maintaining timely order of DNA replication.
Collapse
Affiliation(s)
- Minji Kim
- The Jackson Laboratory for Genomic Medicine, Farmington, CT, 06032, USA
- Present address: Department of Computational Medicine and Bioinformatics, University of Michigan, Ann Arbor, MI, 48109, USA
- Equal contributions
| | - Ping Wang
- The Jackson Laboratory for Genomic Medicine, Farmington, CT, 06032, USA
- Department of Biochemistry and Molecular Genetics, Feinberg School of Medicine, Northwestern University, Evanston, IL, 60201, USA
- Equal contributions
| | - Patricia A. Clow
- The Jackson Laboratory for Genomic Medicine, Farmington, CT, 06032, USA
- Equal contributions
| | - I (Eli) Chien
- Department of Electrical and Computer Engineering, University of Illinois at Urbana-Champaign, Urbana, IL, 61820, USA
| | - Xiaotao Wang
- Obstetrics and Gynecology Hospital, Institute of Reproduction and Development, Fudan University, Shanghai, China
- Shanghai Key Laboratory of Reproduction and Development, Shanghai, China
| | - Jianhao Peng
- Department of Electrical and Computer Engineering, University of Illinois at Urbana-Champaign, Urbana, IL, 61820, USA
| | - Haoxi Chai
- The Jackson Laboratory for Genomic Medicine, Farmington, CT, 06032, USA
| | - Xiyuan Liu
- The Jackson Laboratory for Genomic Medicine, Farmington, CT, 06032, USA
- State Key Laboratory of Ophthalmology, Optometry and Vision Science, Eye hospital and School of Ophthalmology and Optometry, Wenzhou Medical University, Wenzhou, Zhejiang, 325027, P.R. China
| | - Byoungkoo Lee
- The Jackson Laboratory for Genomic Medicine, Farmington, CT, 06032, USA
| | - Chew Yee Ngan
- The Jackson Laboratory for Genomic Medicine, Farmington, CT, 06032, USA
| | - Feng Yue
- Department of Biochemistry and Molecular Genetics, Feinberg School of Medicine, Northwestern University, Evanston, IL, 60201, USA
- Robert H. Lurie Comprehensive Cancer Center, Feinberg School of Medicine, Northwestern University, Chicago, IL, 60611, USA
| | - Olgica Milenkovic
- Department of Electrical and Computer Engineering, University of Illinois at Urbana-Champaign, Urbana, IL, 61820, USA
| | - Jeffrey H. Chuang
- The Jackson Laboratory for Genomic Medicine, Farmington, CT, 06032, USA
- Department of Genetics and Genome Sciences, UConn Health, Farmington, CT, 06030, USA
| | - Chia-Lin Wei
- The Jackson Laboratory for Genomic Medicine, Farmington, CT, 06032, USA
| | - Rafael Casellas
- Hematopoietic Biology and Malignancy, MD Anderson Cancer Center, Houston, TX, 77054, USA
| | - Albert W. Cheng
- The Jackson Laboratory for Genomic Medicine, Farmington, CT, 06032, USA
- School of Biological and Health Systems Engineering, Arizona State University, Tempe, AZ, 85281, USA
| | - Yijun Ruan
- The Jackson Laboratory for Genomic Medicine, Farmington, CT, 06032, USA
- Life Sciences Institute, Zhejiang University, Hangzhou, Zhejiang Province, 310058, P.R. China
| |
Collapse
|
17
|
Mandal M, Maienschein-Cline M, Hu Y, Mohsin A, Veselits ML, Wright NE, Okoreeh MK, Yoon YM, Veselits J, Georgopoulos K, Clark MR. BRWD1 orchestrates small pre-B cell chromatin topology by converting static to dynamic cohesin. Nat Immunol 2024; 25:129-141. [PMID: 37985858 PMCID: PMC11542586 DOI: 10.1038/s41590-023-01666-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2023] [Accepted: 09/29/2023] [Indexed: 11/22/2023]
Abstract
Lymphocyte development consists of sequential and mutually exclusive cell states of proliferative selection and antigen receptor gene recombination. Transitions between each state require large, coordinated changes in epigenetic landscapes and transcriptional programs. How this occurs remains unclear. Here we demonstrate that in small pre-B cells, the lineage and stage-specific epigenetic reader bromodomain and WD repeat-containing protein 1 (BRWD1) reorders three-dimensional chromatin topology to affect the transition between proliferative and gene recombination molecular programs. BRWD1 regulated the switch between poised and active enhancers interacting with promoters, and coordinated this switch with Igk locus contraction. BRWD1 did so by converting chromatin-bound static to dynamic cohesin competent to mediate long-range looping. ATP-depletion revealed cohesin conversion to be the main energetic mechanism dictating dynamic chromatin looping. Our findings provide a new mechanism of cohesin regulation and reveal how cohesin function can be dictated by lineage contextual mechanisms to facilitate specific cell fate transitions.
Collapse
Affiliation(s)
- Malay Mandal
- Department of Medicine, Section of Rheumatology and Gwen Knapp Center for Lupus and Immunology Research, University of Chicago, Chicago, IL, USA.
| | | | - Yeguang Hu
- Cutaneous Biology Research Center, Massachusetts General Hospital, Harvard Medical School, Charlestown, MA, USA
| | - Azam Mohsin
- Program in Immunology, Stanford University School of Medicine, Stanford, CA, USA
| | - Margaret L Veselits
- Department of Medicine, Section of Rheumatology and Gwen Knapp Center for Lupus and Immunology Research, University of Chicago, Chicago, IL, USA
| | - Nathaniel E Wright
- Department of Medicine, Section of Rheumatology and Gwen Knapp Center for Lupus and Immunology Research, University of Chicago, Chicago, IL, USA
| | - Michael K Okoreeh
- Department of Medicine, Section of Rheumatology and Gwen Knapp Center for Lupus and Immunology Research, University of Chicago, Chicago, IL, USA
| | - Young Me Yoon
- Department of Medicine, Section of Rheumatology and Gwen Knapp Center for Lupus and Immunology Research, University of Chicago, Chicago, IL, USA
| | - Jacob Veselits
- Department of Medicine, Section of Rheumatology and Gwen Knapp Center for Lupus and Immunology Research, University of Chicago, Chicago, IL, USA
| | - Katia Georgopoulos
- Cutaneous Biology Research Center, Massachusetts General Hospital, Harvard Medical School, Charlestown, MA, USA
| | - Marcus R Clark
- Department of Medicine, Section of Rheumatology and Gwen Knapp Center for Lupus and Immunology Research, University of Chicago, Chicago, IL, USA.
| |
Collapse
|
18
|
Liu NQ, Paassen I, Custers L, Zeller P, Teunissen H, Ayyildiz D, He J, Buhl JL, Hoving EW, van Oudenaarden A, de Wit E, Drost J. SMARCB1 loss activates patient-specific distal oncogenic enhancers in malignant rhabdoid tumors. Nat Commun 2023; 14:7762. [PMID: 38040699 PMCID: PMC10692191 DOI: 10.1038/s41467-023-43498-3] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2023] [Accepted: 11/10/2023] [Indexed: 12/03/2023] Open
Abstract
Malignant rhabdoid tumor (MRT) is a highly malignant and often lethal childhood cancer. MRTs are genetically defined by bi-allelic inactivating mutations in SMARCB1, a member of the BRG1/BRM-associated factors (BAF) chromatin remodeling complex. Mutations in BAF complex members are common in human cancer, yet their contribution to tumorigenesis remains in many cases poorly understood. Here, we study derailed regulatory landscapes as a consequence of SMARCB1 loss in the context of MRT. Our multi-omics approach on patient-derived MRT organoids reveals a dramatic reshaping of the regulatory landscape upon SMARCB1 reconstitution. Chromosome conformation capture experiments subsequently reveal patient-specific looping of distal enhancer regions with the promoter of the MYC oncogene. This intertumoral heterogeneity in MYC enhancer utilization is also present in patient MRT tissues as shown by combined single-cell RNA-seq and ATAC-seq. We show that loss of SMARCB1 activates patient-specific epigenetic reprogramming underlying MRT tumorigenesis.
Collapse
Affiliation(s)
- Ning Qing Liu
- Division of Gene Regulation, Netherlands Cancer Institute, Amsterdam, the Netherlands
- Department of Hematology, Erasmus Medical Center (MC) Cancer Institute, Rotterdam, the Netherlands
| | - Irene Paassen
- Princess Máxima Center for Pediatric Oncology, Utrecht, the Netherlands
- Oncode Institute, Utrecht, the Netherlands
| | - Lars Custers
- Princess Máxima Center for Pediatric Oncology, Utrecht, the Netherlands
- Oncode Institute, Utrecht, the Netherlands
| | - Peter Zeller
- Oncode Institute, Utrecht, the Netherlands
- Hubrecht Institute-KNAW, Utrecht, the Netherlands
- University Medical Center Utrecht, Utrecht, the Netherlands
| | - Hans Teunissen
- Division of Gene Regulation, Netherlands Cancer Institute, Amsterdam, the Netherlands
| | - Dilara Ayyildiz
- Princess Máxima Center for Pediatric Oncology, Utrecht, the Netherlands
- Oncode Institute, Utrecht, the Netherlands
| | - Jiayou He
- Princess Máxima Center for Pediatric Oncology, Utrecht, the Netherlands
- Oncode Institute, Utrecht, the Netherlands
| | - Juliane Laura Buhl
- Princess Máxima Center for Pediatric Oncology, Utrecht, the Netherlands
- Oncode Institute, Utrecht, the Netherlands
| | | | - Alexander van Oudenaarden
- Oncode Institute, Utrecht, the Netherlands
- Hubrecht Institute-KNAW, Utrecht, the Netherlands
- University Medical Center Utrecht, Utrecht, the Netherlands
| | - Elzo de Wit
- Division of Gene Regulation, Netherlands Cancer Institute, Amsterdam, the Netherlands.
| | - Jarno Drost
- Princess Máxima Center for Pediatric Oncology, Utrecht, the Netherlands.
- Oncode Institute, Utrecht, the Netherlands.
| |
Collapse
|
19
|
Hu Y, Salgado Figueroa D, Zhang Z, Veselits M, Bhattacharyya S, Kashiwagi M, Clark MR, Morgan BA, Ay F, Georgopoulos K. Lineage-specific 3D genome organization is assembled at multiple scales by IKAROS. Cell 2023; 186:5269-5289.e22. [PMID: 37995656 PMCID: PMC10895928 DOI: 10.1016/j.cell.2023.10.023] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2023] [Revised: 07/28/2023] [Accepted: 10/25/2023] [Indexed: 11/25/2023]
Abstract
A generic level of chromatin organization generated by the interplay between cohesin and CTCF suffices to limit promiscuous interactions between regulatory elements, but a lineage-specific chromatin assembly that supersedes these constraints is required to configure the genome to guide gene expression changes that drive faithful lineage progression. Loss-of-function approaches in B cell precursors show that IKAROS assembles interactions across megabase distances in preparation for lymphoid development. Interactions emanating from IKAROS-bound enhancers override CTCF-imposed boundaries to assemble lineage-specific regulatory units built on a backbone of smaller invariant topological domains. Gain of function in epithelial cells confirms IKAROS' ability to reconfigure chromatin architecture at multiple scales. Although the compaction of the Igκ locus required for genome editing represents a function of IKAROS unique to lymphocytes, the more general function to preconfigure the genome to support lineage-specific gene expression and suppress activation of extra-lineage genes provides a paradigm for lineage restriction.
Collapse
Affiliation(s)
- Yeguang Hu
- Cutaneous Biology Research Center, Massachusetts General Hospital, Harvard Medical School, Charlestown, MA 02129, USA
| | - Daniela Salgado Figueroa
- Centers for Autoimmunity, Inflammation and Cancer Immunotherapy, La Jolla Institute for Immunology, La Jolla, CA 92037, USA; Bioinformatics and Systems Biology Program, La Jolla, CA, USA
| | - Zhihong Zhang
- Cutaneous Biology Research Center, Massachusetts General Hospital, Harvard Medical School, Charlestown, MA 02129, USA
| | - Margaret Veselits
- Gwen Knapp Center for Lupus and Immunology Research, Section of Rheumatology, Department of Medicine, The University of Chicago, Chicago, IL 60637, USA
| | - Sourya Bhattacharyya
- Centers for Autoimmunity, Inflammation and Cancer Immunotherapy, La Jolla Institute for Immunology, La Jolla, CA 92037, USA
| | - Mariko Kashiwagi
- Cutaneous Biology Research Center, Massachusetts General Hospital, Harvard Medical School, Charlestown, MA 02129, USA
| | - Marcus R Clark
- Gwen Knapp Center for Lupus and Immunology Research, Section of Rheumatology, Department of Medicine, The University of Chicago, Chicago, IL 60637, USA
| | - Bruce A Morgan
- Cutaneous Biology Research Center, Massachusetts General Hospital, Harvard Medical School, Charlestown, MA 02129, USA
| | - Ferhat Ay
- Centers for Autoimmunity, Inflammation and Cancer Immunotherapy, La Jolla Institute for Immunology, La Jolla, CA 92037, USA; Bioinformatics and Systems Biology Program, La Jolla, CA, USA; Department of Pediatrics, University of California, San Diego, La Jolla, CA 92093, USA.
| | - Katia Georgopoulos
- Cutaneous Biology Research Center, Massachusetts General Hospital, Harvard Medical School, Charlestown, MA 02129, USA.
| |
Collapse
|
20
|
Rahman S, Dong P, Apontes P, Fernando M, Kosoy R, Townsley KG, Girdhar K, Bendl J, Shao Z, Misir R, Tsankova N, Kleopoulos S, Brennand K, Fullard J, Roussos P. Lineage specific 3D genome structure in the adult human brain and neurodevelopmental changes in the chromatin interactome. Nucleic Acids Res 2023; 51:11142-11161. [PMID: 37811875 PMCID: PMC10639075 DOI: 10.1093/nar/gkad798] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2023] [Revised: 08/18/2023] [Accepted: 09/19/2023] [Indexed: 10/10/2023] Open
Abstract
The human brain is a complex organ comprised of distinct cell types, and the contribution of the 3D genome to lineage specific gene expression remains poorly understood. To decipher cell type specific genome architecture, and characterize fine scale changes in the chromatin interactome across neural development, we compared the 3D genome of the human fetal cortical plate to that of neurons and glia isolated from the adult prefrontal cortex. We found that neurons have weaker genome compartmentalization compared to glia, but stronger TADs, which emerge during fetal development. Furthermore, relative to glia, the neuronal genome shifts more strongly towards repressive compartments. Neurons have differential TAD boundaries that are proximal to active promoters involved in neurodevelopmental processes. CRISPRi on CNTNAP2 in hIPSC-derived neurons reveals that transcriptional inactivation correlates with loss of insulation at the differential boundary. Finally, re-wiring of chromatin loops during neural development is associated with transcriptional and functional changes. Importantly, differential loops in the fetal cortex are associated with autism GWAS loci, suggesting a neuropsychiatric disease mechanism affecting the chromatin interactome. Furthermore, neural development involves gaining enhancer-promoter loops that upregulate genes that control synaptic activity. Altogether, our study provides multi-scale insights on the 3D genome in the human brain.
Collapse
Affiliation(s)
- Samir Rahman
- Center for Disease Neurogenomics, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
- Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
- Icahn Institute for Data Science and Genomic Technology, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
- Department of Psychiatry, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
- Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Pengfei Dong
- Center for Disease Neurogenomics, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
- Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
- Icahn Institute for Data Science and Genomic Technology, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
- Department of Psychiatry, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
- Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Pasha Apontes
- Center for Disease Neurogenomics, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
- Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
- Icahn Institute for Data Science and Genomic Technology, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
- Department of Psychiatry, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
- Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
- Mental Illness Research Education and Clinical Center (MIRECC), James J. Peters VA Medical Center, Bronx, NY 10468, USA
| | - Michael B Fernando
- Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
- Department of Neuroscience, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
- Black Family Stem Cell Institute, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Roman Kosoy
- Center for Disease Neurogenomics, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
- Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
- Icahn Institute for Data Science and Genomic Technology, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
- Department of Psychiatry, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
- Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Kayla G Townsley
- Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
- Department of Neuroscience, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Kiran Girdhar
- Center for Disease Neurogenomics, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
- Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
- Icahn Institute for Data Science and Genomic Technology, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
- Department of Psychiatry, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
- Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Jaroslav Bendl
- Center for Disease Neurogenomics, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
- Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
- Icahn Institute for Data Science and Genomic Technology, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
- Department of Psychiatry, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
- Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Zhiping Shao
- Center for Disease Neurogenomics, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
- Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
- Icahn Institute for Data Science and Genomic Technology, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
- Department of Psychiatry, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
- Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Ruth Misir
- Center for Disease Neurogenomics, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
- Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
- Icahn Institute for Data Science and Genomic Technology, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
- Department of Psychiatry, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
- Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Nadia Tsankova
- Department of Neuroscience, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
- Department of Pathology, Molecular, and Cell-based Medicine, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Steven P Kleopoulos
- Center for Disease Neurogenomics, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
- Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
- Icahn Institute for Data Science and Genomic Technology, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
- Department of Psychiatry, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
- Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Kristen J Brennand
- Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
- Department of Psychiatry, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
- Department of Neuroscience, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
- Black Family Stem Cell Institute, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - John F Fullard
- Center for Disease Neurogenomics, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
- Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
- Icahn Institute for Data Science and Genomic Technology, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
- Department of Psychiatry, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
- Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Panos Roussos
- Center for Disease Neurogenomics, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
- Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
- Icahn Institute for Data Science and Genomic Technology, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
- Department of Psychiatry, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
- Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
- Mental Illness Research Education and Clinical Center (MIRECC), James J. Peters VA Medical Center, Bronx, NY 10468, USA
- Center for Dementia Research, Nathan Kline Institute for Psychiatric Research, Orangeburg, NY 10962, USA
| |
Collapse
|
21
|
van Schie JJM, de Lint K, Molenaar TM, Moronta Gines M, Balk J, Rooimans M, Roohollahi K, Pai G, Borghuis L, Ramadhin A, Corazza F, Dorsman J, Wendt K, Wolthuis RF, de Lange J. CRISPR screens in sister chromatid cohesion defective cells reveal PAXIP1-PAGR1 as regulator of chromatin association of cohesin. Nucleic Acids Res 2023; 51:9594-9609. [PMID: 37702151 PMCID: PMC10570055 DOI: 10.1093/nar/gkad756] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2023] [Revised: 08/22/2023] [Accepted: 09/05/2023] [Indexed: 09/14/2023] Open
Abstract
The cohesin complex regulates higher order chromosome architecture through maintaining sister chromatid cohesion and folding chromatin by DNA loop extrusion. Impaired cohesin function underlies a heterogeneous group of genetic syndromes and is associated with cancer. Here, we mapped the genetic dependencies of human cell lines defective of cohesion regulators DDX11 and ESCO2. The obtained synthetic lethality networks are strongly enriched for genes involved in DNA replication and mitosis and support the existence of parallel sister chromatid cohesion establishment pathways. Among the hits, we identify the chromatin binding, BRCT-domain containing protein PAXIP1 as a novel cohesin regulator. Depletion of PAXIP1 severely aggravates cohesion defects in ESCO2 mutant cells, leading to mitotic cell death. PAXIP1 promotes global chromatin association of cohesin, independent of DNA replication, a function that cannot be explained by indirect effects of PAXIP1 on transcription or DNA repair. Cohesin regulation by PAXIP1 requires its binding partner PAGR1 and a conserved FDF motif in PAGR1. PAXIP1 co-localizes with cohesin on multiple genomic loci, including active gene promoters and enhancers. Possibly, this newly identified role of PAXIP1-PAGR1 in regulating cohesin occupancy on chromatin is also relevant for previously described functions of PAXIP1 in transcription, immune cell maturation and DNA repair.
Collapse
Affiliation(s)
- Janne J M van Schie
- Amsterdam UMC location Vrije Universiteit Amsterdam, Department of Human Genetics, Section Oncogenetics, Amsterdam, The Netherlands
- Cancer Center Amsterdam, Cancer Biology and Immunology, Amsterdam, The Netherlands
| | - Klaas de Lint
- Amsterdam UMC location Vrije Universiteit Amsterdam, Department of Human Genetics, Section Oncogenetics, Amsterdam, The Netherlands
- Cancer Center Amsterdam, Cancer Biology and Immunology, Amsterdam, The Netherlands
| | - Thom M Molenaar
- Amsterdam UMC location Vrije Universiteit Amsterdam, Department of Human Genetics, Section Oncogenetics, Amsterdam, The Netherlands
- Cancer Center Amsterdam, Cancer Biology and Immunology, Amsterdam, The Netherlands
| | | | - Jesper A Balk
- Amsterdam UMC location Vrije Universiteit Amsterdam, Department of Human Genetics, Section Oncogenetics, Amsterdam, The Netherlands
- Cancer Center Amsterdam, Cancer Biology and Immunology, Amsterdam, The Netherlands
| | - Martin A Rooimans
- Amsterdam UMC location Vrije Universiteit Amsterdam, Department of Human Genetics, Section Oncogenetics, Amsterdam, The Netherlands
- Cancer Center Amsterdam, Cancer Biology and Immunology, Amsterdam, The Netherlands
| | - Khashayar Roohollahi
- Amsterdam UMC location Vrije Universiteit Amsterdam, Department of Human Genetics, Section Oncogenetics, Amsterdam, The Netherlands
- Cancer Center Amsterdam, Cancer Biology and Immunology, Amsterdam, The Netherlands
| | - Govind M Pai
- Amsterdam UMC location Vrije Universiteit Amsterdam, Department of Human Genetics, Section Oncogenetics, Amsterdam, The Netherlands
- Cancer Center Amsterdam, Cancer Biology and Immunology, Amsterdam, The Netherlands
| | - Lauri Borghuis
- Amsterdam UMC location Vrije Universiteit Amsterdam, Department of Human Genetics, Section Oncogenetics, Amsterdam, The Netherlands
- Cancer Center Amsterdam, Cancer Biology and Immunology, Amsterdam, The Netherlands
| | - Anisha R Ramadhin
- Amsterdam UMC location Vrije Universiteit Amsterdam, Department of Human Genetics, Section Oncogenetics, Amsterdam, The Netherlands
- Cancer Center Amsterdam, Cancer Biology and Immunology, Amsterdam, The Netherlands
| | - Francesco Corazza
- Erasmus Medical Centre, Department of Cell Biology, Rotterdam, The Netherlands
| | - Josephine C Dorsman
- Amsterdam UMC location Vrije Universiteit Amsterdam, Department of Human Genetics, Section Oncogenetics, Amsterdam, The Netherlands
- Cancer Center Amsterdam, Cancer Biology and Immunology, Amsterdam, The Netherlands
| | - Kerstin S Wendt
- Erasmus Medical Centre, Department of Cell Biology, Rotterdam, The Netherlands
| | - Rob M F Wolthuis
- Amsterdam UMC location Vrije Universiteit Amsterdam, Department of Human Genetics, Section Oncogenetics, Amsterdam, The Netherlands
- Cancer Center Amsterdam, Cancer Biology and Immunology, Amsterdam, The Netherlands
| | - Job de Lange
- Amsterdam UMC location Vrije Universiteit Amsterdam, Department of Human Genetics, Section Oncogenetics, Amsterdam, The Netherlands
- Cancer Center Amsterdam, Cancer Biology and Immunology, Amsterdam, The Netherlands
| |
Collapse
|
22
|
Lyu X, Rowley MJ, Kulik MJ, Dalton S, Corces VG. Regulation of CTCF loop formation during pancreatic cell differentiation. Nat Commun 2023; 14:6314. [PMID: 37813869 PMCID: PMC10562423 DOI: 10.1038/s41467-023-41964-6] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2023] [Accepted: 09/22/2023] [Indexed: 10/11/2023] Open
Abstract
Transcription reprogramming during cell differentiation involves targeting enhancers to genes responsible for establishment of cell fates. To understand the contribution of CTCF-mediated chromatin organization to cell lineage commitment, we analyzed 3D chromatin architecture during the differentiation of human embryonic stem cells into pancreatic islet organoids. We find that CTCF loops are formed and disassembled at different stages of the differentiation process by either recruitment of CTCF to new anchor sites or use of pre-existing sites not previously involved in loop formation. Recruitment of CTCF to new sites in the genome involves demethylation of H3K9me3 to H3K9me2, demethylation of DNA, recruitment of pioneer factors, and positioning of nucleosomes flanking the new CTCF sites. Existing CTCF sites not involved in loop formation become functional loop anchors via the establishment of new cohesin loading sites containing NIPBL and YY1 at sites between the new anchors. In both cases, formation of new CTCF loops leads to strengthening of enhancer promoter interactions and increased transcription of genes adjacent to loop anchors. These results suggest an important role for CTCF and cohesin in controlling gene expression during cell differentiation.
Collapse
Affiliation(s)
- Xiaowen Lyu
- Department of Human Genetics, Emory University School of Medicine, Atlanta, GA, 30322, USA.
- State Key Laboratory of Cellular Stress Biology, Fujian Provincial Key Laboratory of Reproductive Health Research, School of Medicine, Faculty of Medicine and Life Sciences, Xiamen University, 361102, Xiamen, China.
- Fujian Provincial Key Laboratory of Organ and Tissue Regeneration, School of Medicine, Faculty of Medicine and Life Sciences, Xiamen University, 361102, Xiamen, China.
| | - M Jordan Rowley
- Department of Genetics, Cell Biology and Anatomy, University of Nebraska Medical Center, Omaha, NE, 68198, USA
| | - Michael J Kulik
- Department of Biochemistry and Molecular Biology, The University of Georgia, Athens, GA, 30602, USA
- Center for Molecular Medicine, The University of Georgia, Athens, GA, 30602, USA
| | - Stephen Dalton
- Department of Biochemistry and Molecular Biology, The University of Georgia, Athens, GA, 30602, USA
- Center for Molecular Medicine, The University of Georgia, Athens, GA, 30602, USA
- School of Biomedical Sciences, Faculty of Medicine, Chinese University of Hong Kong, Hong Kong, Hong Kong
| | - Victor G Corces
- Department of Human Genetics, Emory University School of Medicine, Atlanta, GA, 30322, USA.
| |
Collapse
|
23
|
Alonso-Gil D, Losada A. NIPBL and cohesin: new take on a classic tale. Trends Cell Biol 2023; 33:860-871. [PMID: 37062615 DOI: 10.1016/j.tcb.2023.03.006] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2022] [Revised: 03/10/2023] [Accepted: 03/13/2023] [Indexed: 04/18/2023]
Abstract
Cohesin folds the genome in dynamic chromatin loops and holds the sister chromatids together. NIPBLScc2 is currently considered the cohesin loader, a role that may need reevaluation. NIPBL activates the cohesin ATPase, which is required for topological entrapment of sister DNAs and to fuel DNA loop extrusion, but is not required for chromatin association. Mechanistic dissection of these processes suggests that both NIPBL and the cohesin STAG subunit bind DNA. NIPBL also regulates conformational switches of the complex. Interactions of NIPBL with chromatin factors, including remodelers, replication proteins, and the transcriptional machinery, affect cohesin loading and distribution. Here, we discuss recent research addressing how NIPBL modulates cohesin activities and how its mutation causes a developmental disorder, Cornelia de Lange Syndrome (CdLS).
Collapse
Affiliation(s)
- Dácil Alonso-Gil
- Chromosome Dynamics Group, Molecular Oncology Programme, Spanish National Cancer Research Centre (CNIO), Madrid, Spain
| | - Ana Losada
- Chromosome Dynamics Group, Molecular Oncology Programme, Spanish National Cancer Research Centre (CNIO), Madrid, Spain.
| |
Collapse
|
24
|
Nakato R, Sakata T, Wang J, Nagai LAE, Nagaoka Y, Oba GM, Bando M, Shirahige K. Context-dependent perturbations in chromatin folding and the transcriptome by cohesin and related factors. Nat Commun 2023; 14:5647. [PMID: 37726281 PMCID: PMC10509244 DOI: 10.1038/s41467-023-41316-4] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2023] [Accepted: 08/29/2023] [Indexed: 09/21/2023] Open
Abstract
Cohesin regulates gene expression through context-specific chromatin folding mechanisms such as enhancer-promoter looping and topologically associating domain (TAD) formation by cooperating with factors such as cohesin loaders and the insulation factor CTCF. We developed a computational workflow to explore how three-dimensional (3D) structure and gene expression are regulated collectively or individually by cohesin and related factors. The main component is CustardPy, by which multi-omics datasets are compared systematically. To validate our methodology, we generated 3D genome, transcriptome, and epigenome data before and after depletion of cohesin and related factors and compared the effects of depletion. We observed diverse effects on the 3D genome and transcriptome, and gene expression changes were correlated with the splitting of TADs caused by cohesin loss. We also observed variations in long-range interactions across TADs, which correlated with their epigenomic states. These computational tools and datasets will be valuable for 3D genome and epigenome studies.
Collapse
Affiliation(s)
- Ryuichiro Nakato
- Laboratory of Computational Genomics, Institute for Quantitative Biosciences, The University of Tokyo, 1-1-1 Yayoi, Bunkyo-Ku, Tokyo, 113-0032, Japan.
| | - Toyonori Sakata
- Laboratory of Genome Structure and Function, Institute for Quantitative Biosciences, The University of Tokyo, 1-1-1 Yayoi, Bunkyo-Ku, Tokyo, 113-0032, Japan
- Karolinska Institutet, Department of Biosciences and Nutrition, Biomedicum, Quarter A6, 171 77, Stockholm, Sweden
- Karolinska Institutet, Department of Cell and Molecular Biology, Biomedicum, Quarter A6, 171 77, Stockholm, Sweden
| | - Jiankang Wang
- School of Biomedical Sciences, Hunan University, Changsha, China
| | - Luis Augusto Eijy Nagai
- Laboratory of Computational Genomics, Institute for Quantitative Biosciences, The University of Tokyo, 1-1-1 Yayoi, Bunkyo-Ku, Tokyo, 113-0032, Japan
| | - Yuya Nagaoka
- Laboratory of Computational Genomics, Institute for Quantitative Biosciences, The University of Tokyo, 1-1-1 Yayoi, Bunkyo-Ku, Tokyo, 113-0032, Japan
| | - Gina Miku Oba
- Laboratory of Computational Genomics, Institute for Quantitative Biosciences, The University of Tokyo, 1-1-1 Yayoi, Bunkyo-Ku, Tokyo, 113-0032, Japan
| | - Masashige Bando
- Laboratory of Genome Structure and Function, Institute for Quantitative Biosciences, The University of Tokyo, 1-1-1 Yayoi, Bunkyo-Ku, Tokyo, 113-0032, Japan
| | - Katsuhiko Shirahige
- Laboratory of Genome Structure and Function, Institute for Quantitative Biosciences, The University of Tokyo, 1-1-1 Yayoi, Bunkyo-Ku, Tokyo, 113-0032, Japan.
- Karolinska Institutet, Department of Biosciences and Nutrition, Biomedicum, Quarter A6, 171 77, Stockholm, Sweden.
- Karolinska Institutet, Department of Cell and Molecular Biology, Biomedicum, Quarter A6, 171 77, Stockholm, Sweden.
| |
Collapse
|
25
|
Chang LH, Ghosh S, Papale A, Luppino JM, Miranda M, Piras V, Degrouard J, Edouard J, Poncelet M, Lecouvreur N, Bloyer S, Leforestier A, Joyce EF, Holcman D, Noordermeer D. Multi-feature clustering of CTCF binding creates robustness for loop extrusion blocking and Topologically Associating Domain boundaries. Nat Commun 2023; 14:5615. [PMID: 37699887 PMCID: PMC10497529 DOI: 10.1038/s41467-023-41265-y] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2023] [Accepted: 08/28/2023] [Indexed: 09/14/2023] Open
Abstract
Topologically Associating Domains (TADs) separate vertebrate genomes into insulated regulatory neighborhoods that focus genome-associated processes. TADs are formed by Cohesin-mediated loop extrusion, with many TAD boundaries consisting of clustered binding sites of the CTCF insulator protein. Here we determine how this clustering of CTCF binding contributes to the blocking of loop extrusion and the insulation between TADs. We identify enrichment of three features of CTCF binding at strong TAD boundaries, consisting of strongly bound and closely spaced CTCF binding peaks, with a further enrichment of DNA-binding motifs within these peaks. Using multi-contact Nano-C analysis in cells with normal and perturbed CTCF binding, we establish that individual CTCF binding sites contribute to the blocking of loop extrusion, but in an incomplete manner. When clustered, individual CTCF binding sites thus create a stepwise insulation between neighboring TADs. Based on these results, we propose a model whereby multiple instances of temporal loop extrusion blocking create strong insulation between TADs.
Collapse
Affiliation(s)
- Li-Hsin Chang
- Université Paris-Saclay, CEA, CNRS, Institute for Integrative Biology of the Cell (I2BC), 91198, Gif-sur-Yvette, France
- MRC Molecular Haematology Unit, MRC Weatherall Institute of Molecular Medicine, Radcliffe Department of Medicine, University of Oxford, and National Institute of Health Research, Blood and Transplant Research Unit in Precision Cellular Therapeutics, OX3 9DS, Oxford, UK
| | - Sourav Ghosh
- Université Paris-Saclay, CEA, CNRS, Institute for Integrative Biology of the Cell (I2BC), 91198, Gif-sur-Yvette, France
- Department of Pathology and Laboratory Medicine, Western University, N6A3K7, London, ON, Canada
| | - Andrea Papale
- École Normale Supérieure, IBENS, Université PSL, 75005, Paris, France
| | - Jennifer M Luppino
- Department of Genetics, Penn Epigenetics Institute, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Mélanie Miranda
- Université Paris-Saclay, CEA, CNRS, Institute for Integrative Biology of the Cell (I2BC), 91198, Gif-sur-Yvette, France
| | - Vincent Piras
- Université Paris-Saclay, CEA, CNRS, Institute for Integrative Biology of the Cell (I2BC), 91198, Gif-sur-Yvette, France
| | - Jéril Degrouard
- Université Paris-Saclay, CNRS, Laboratoire de Physique des Solides (LPS), 91405, Orsay, France
| | - Joanne Edouard
- Université Paris-Saclay, CEA, CNRS, Institute for Integrative Biology of the Cell (I2BC), 91198, Gif-sur-Yvette, France
| | - Mallory Poncelet
- Université Paris-Saclay, CEA, CNRS, Institute for Integrative Biology of the Cell (I2BC), 91198, Gif-sur-Yvette, France
| | - Nathan Lecouvreur
- Université Paris-Saclay, CEA, CNRS, Institute for Integrative Biology of the Cell (I2BC), 91198, Gif-sur-Yvette, France
| | - Sébastien Bloyer
- Université Paris-Saclay, CEA, CNRS, Institute for Integrative Biology of the Cell (I2BC), 91198, Gif-sur-Yvette, France
| | - Amélie Leforestier
- Université Paris-Saclay, CNRS, Laboratoire de Physique des Solides (LPS), 91405, Orsay, France
| | - Eric F Joyce
- Department of Genetics, Penn Epigenetics Institute, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - David Holcman
- École Normale Supérieure, IBENS, Université PSL, 75005, Paris, France
- Churchill College, University of Cambridge, CB3 0DS, Cambridge, UK
| | - Daan Noordermeer
- Université Paris-Saclay, CEA, CNRS, Institute for Integrative Biology of the Cell (I2BC), 91198, Gif-sur-Yvette, France.
| |
Collapse
|
26
|
Kim S, Kim N, Kang HM, Jang HJ, Lee AC, Na KJ. Canine Somatic Mutations from Whole-Exome Sequencing of B-Cell Lymphomas in Six Canine Breeds-A Preliminary Study. Animals (Basel) 2023; 13:2846. [PMID: 37760246 PMCID: PMC10525272 DOI: 10.3390/ani13182846] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2023] [Revised: 08/05/2023] [Accepted: 09/05/2023] [Indexed: 09/29/2023] Open
Abstract
Canine lymphoma (CL) is one of the most common malignant tumors in dogs. The cause of CL remains unclear. Genetic mutations that have been suggested as possible causes of CL are not fully understood. Whole-exome sequencing (WES) is a time- and cost-effective method for detecting genetic variants targeting only the protein-coding regions (exons) that are part of the entire genome region. A total of eight patients with B-cell lymphomas were recruited, and WES analysis was performed on whole blood and lymph node aspirate samples from each patient. A total of 17 somatic variants (GOLIM4, ITM2B, STN1, UNC79, PLEKHG4, BRF1, ENSCAFG00845007156, SEMA6B, DSC1, TNFAIP1, MYLK3, WAPL, ADORA2B, LOXHD1, GP6, AZIN1, and NCSTN) with moderate to high impact were identified by WES analysis. Through a Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway analysis of 17 genes with somatic mutations, a total of 16 pathways were identified. Overall, the somatic mutations identified in this study suggest novel candidate mutations for CL, and further studies are needed to confirm the role of these mutations.
Collapse
Affiliation(s)
- Sungryong Kim
- Laboratory of Veterinary Laboratory Medicine, College of Veterinary Medicine, Chungbuk National University, Cheongju 28644, Republic of Korea; (S.K.); (H.-M.K.)
| | - Namphil Kim
- Biophotonics and Nano Engineering Laboratory, Department of Electrical and Computer Engineering, Seoul National University, Seoul 08826, Republic of Korea;
| | - Hyo-Min Kang
- Laboratory of Veterinary Laboratory Medicine, College of Veterinary Medicine, Chungbuk National University, Cheongju 28644, Republic of Korea; (S.K.); (H.-M.K.)
| | - Hye-Jin Jang
- Department of Biomedical Laboratory Science, Daegu Health College, Daegu 41453, Republic of Korea;
| | | | - Ki-Jeong Na
- Laboratory of Veterinary Laboratory Medicine, College of Veterinary Medicine, Chungbuk National University, Cheongju 28644, Republic of Korea; (S.K.); (H.-M.K.)
| |
Collapse
|
27
|
Abstract
Many cellular processes require large-scale rearrangements of chromatin structure. Structural maintenance of chromosomes (SMC) protein complexes are molecular machines that can provide structure to chromatin. These complexes can connect DNA elements in cis, walk along DNA, build and processively enlarge DNA loops and connect DNA molecules in trans to hold together the sister chromatids. These DNA-shaping abilities place SMC complexes at the heart of many DNA-based processes, including chromosome segregation in mitosis, transcription control and DNA replication, repair and recombination. In this Review, we discuss the latest insights into how SMC complexes such as cohesin, condensin and the SMC5-SMC6 complex shape DNA to direct these fundamental chromosomal processes. We also consider how SMC complexes, by building chromatin loops, can counteract the natural tendency of alike chromatin regions to cluster. SMC complexes thus control nuclear organization by participating in a molecular tug of war that determines the architecture of our genome.
Collapse
Affiliation(s)
- Claire Hoencamp
- Division of Cell Biology, The Netherlands Cancer Institute, Amsterdam, The Netherlands
| | - Benjamin D Rowland
- Division of Cell Biology, The Netherlands Cancer Institute, Amsterdam, The Netherlands.
| |
Collapse
|
28
|
Wright NE, Mandal M, Clark MR. Molecular mechanisms insulating proliferation from genotoxic stress in B lymphocytes. Trends Immunol 2023; 44:668-677. [PMID: 37573227 PMCID: PMC10530527 DOI: 10.1016/j.it.2023.06.010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2023] [Revised: 06/25/2023] [Accepted: 06/30/2023] [Indexed: 08/14/2023]
Abstract
In mammals, B cells strictly segregate proliferation from somatic mutation as they develop within the bone marrow and then mature through germinal centers (GCs) in the periphery. Failure to do so risks autoimmunity and neoplastic transformation. Recent work has described how B cell progenitors transition between proliferation and mutation via cytokine signaling pathways, epigenetic chromatin regulation, and remodeling of 3D chromatin conformation. We propose a three-zone model of the GC that describes how proliferation and mutation are regulated. Using this model, we consider how recent mechanistic discoveries in B cell progenitors inform models of GC B cell function and reveal fundamental mechanisms underpinning humoral immunity, autoimmunity, and lymphomagenesis.
Collapse
Affiliation(s)
- Nathaniel E Wright
- Department of Medicine, Section of Rheumatology, and Gwen Knapp Center for Lupus and Immunology Research, University of Chicago, Chicago, IL, USA
| | - Malay Mandal
- Department of Medicine, Section of Rheumatology, and Gwen Knapp Center for Lupus and Immunology Research, University of Chicago, Chicago, IL, USA
| | - Marcus R Clark
- Department of Medicine, Section of Rheumatology, and Gwen Knapp Center for Lupus and Immunology Research, University of Chicago, Chicago, IL, USA.
| |
Collapse
|
29
|
Wang R, Xu Q, Wang C, Tian K, Wang H, Ji X. Multiomic analysis of cohesin reveals that ZBTB transcription factors contribute to chromatin interactions. Nucleic Acids Res 2023; 51:6784-6805. [PMID: 37264934 PMCID: PMC10359638 DOI: 10.1093/nar/gkad401] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2022] [Accepted: 05/23/2023] [Indexed: 06/03/2023] Open
Abstract
One bottleneck in understanding the principles of 3D chromatin structures is caused by the paucity of known regulators. Cohesin is essential for 3D chromatin organization, and its interacting partners are candidate regulators. Here, we performed proteomic profiling of the cohesin in chromatin and identified transcription factors, RNA-binding proteins and chromatin regulators associated with cohesin. Acute protein degradation followed by time-series genomic binding quantitation and BAT Hi-C analysis were conducted, and the results showed that the transcription factor ZBTB21 contributes to cohesin chromatin binding, 3D chromatin interactions and transcriptional repression. Strikingly, multiomic analyses revealed that the other four ZBTB factors interacted with cohesin, and double degradation of ZBTB21 and ZBTB7B led to a further decrease in cohesin chromatin occupancy. We propose that multiple ZBTB transcription factors orchestrate the chromatin binding of cohesin to regulate chromatin interactions, and we provide a catalog of many additional proteins associated with cohesin that warrant further investigation.
Collapse
Affiliation(s)
- Rui Wang
- Key Laboratory of Cell Proliferation and Differentiation of the Ministry of Education, School of Life Sciences, Peking-Tsinghua Center for Life Sciences, Peking University, Beijing 100871, China
| | - Qiqin Xu
- Key Laboratory of Cell Proliferation and Differentiation of the Ministry of Education, School of Life Sciences, Peking-Tsinghua Center for Life Sciences, Peking University, Beijing 100871, China
| | - Chenlu Wang
- Key Laboratory of Cell Proliferation and Differentiation of the Ministry of Education, School of Life Sciences, Peking-Tsinghua Center for Life Sciences, Peking University, Beijing 100871, China
| | - Kai Tian
- Key Laboratory of Cell Proliferation and Differentiation of the Ministry of Education, School of Life Sciences, Peking-Tsinghua Center for Life Sciences, Peking University, Beijing 100871, China
| | - Hui Wang
- Key Laboratory of Cell Proliferation and Differentiation of the Ministry of Education, School of Life Sciences, Peking-Tsinghua Center for Life Sciences, Peking University, Beijing 100871, China
| | - Xiong Ji
- Key Laboratory of Cell Proliferation and Differentiation of the Ministry of Education, School of Life Sciences, Peking-Tsinghua Center for Life Sciences, Peking University, Beijing 100871, China
| |
Collapse
|
30
|
Ramasamy S, Aljahani A, Karpinska MA, Cao TBN, Velychko T, Cruz JN, Lidschreiber M, Oudelaar AM. The Mediator complex regulates enhancer-promoter interactions. Nat Struct Mol Biol 2023:10.1038/s41594-023-01027-2. [PMID: 37430065 DOI: 10.1038/s41594-023-01027-2] [Citation(s) in RCA: 24] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2022] [Accepted: 05/30/2023] [Indexed: 07/12/2023]
Abstract
Enhancer-mediated gene activation generally requires physical proximity between enhancers and their target gene promoters. However, the molecular mechanisms by which interactions between enhancers and promoters are formed are not well understood. Here, we investigate the function of the Mediator complex in the regulation of enhancer-promoter interactions, by combining rapid protein depletion and high-resolution MNase-based chromosome conformation capture approaches. We show that depletion of Mediator leads to reduced enhancer-promoter interaction frequencies, which are associated with a strong decrease in gene expression. In addition, we find increased interactions between CTCF-binding sites upon Mediator depletion. These changes in chromatin architecture are associated with a redistribution of the Cohesin complex on chromatin and a reduction in Cohesin occupancy at enhancers. Together, our results indicate that the Mediator and Cohesin complexes contribute to enhancer-promoter interactions and provide insights into the molecular mechanisms by which communication between enhancers and promoters is regulated.
Collapse
Affiliation(s)
- Shyam Ramasamy
- Genome Organization and Regulation, Max Planck Institute for Multidisciplinary Sciences, Göttingen, Germany
| | - Abrar Aljahani
- Genome Organization and Regulation, Max Planck Institute for Multidisciplinary Sciences, Göttingen, Germany
| | - Magdalena A Karpinska
- Genome Organization and Regulation, Max Planck Institute for Multidisciplinary Sciences, Göttingen, Germany
| | - T B Ngoc Cao
- Genome Organization and Regulation, Max Planck Institute for Multidisciplinary Sciences, Göttingen, Germany
| | - Taras Velychko
- Department of Molecular Biology, Max Planck Institute for Multidisciplinary Sciences, Göttingen, Germany
| | - J Neos Cruz
- Genome Organization and Regulation, Max Planck Institute for Multidisciplinary Sciences, Göttingen, Germany
| | - Michael Lidschreiber
- Department of Molecular Biology, Max Planck Institute for Multidisciplinary Sciences, Göttingen, Germany
| | - A Marieke Oudelaar
- Genome Organization and Regulation, Max Planck Institute for Multidisciplinary Sciences, Göttingen, Germany.
| |
Collapse
|
31
|
Sun Y, Xu X, Zhao W, Zhang Y, Chen K, Li Y, Wang X, Zhang M, Xue B, Yu W, Hou Y, Wang C, Xie W, Li C, Kong D, Wang S, Sun Y. RAD21 is the core subunit of the cohesin complex involved in directing genome organization. Genome Biol 2023; 24:155. [PMID: 37381036 DOI: 10.1186/s13059-023-02982-1] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2022] [Accepted: 06/07/2023] [Indexed: 06/30/2023] Open
Abstract
BACKGROUND The ring-shaped cohesin complex is an important factor for the formation of chromatin loops and topologically associating domains (TADs) by loop extrusion. However, the regulation of association between cohesin and chromatin is poorly understood. In this study, we use super-resolution imaging to reveal the unique role of cohesin subunit RAD21 in cohesin loading and chromatin structure regulation. RESULTS We directly visualize that up-regulation of RAD21 leads to excessive chromatin loop extrusion into a vermicelli-like morphology with RAD21 clustered into foci and excessively loaded cohesin bow-tying a TAD to form a beads-on-a-string-type pattern. In contrast, up-regulation of the other four cohesin subunits results in even distributions. Mechanistically, we identify that the essential role of RAD21 is attributed to the RAD21-loader interaction, which facilitates the cohesin loading process rather than increasing the abundance of cohesin complex upon up-regulation of RAD21. Furthermore, Hi-C and genomic analysis reveal how RAD21 up-regulation affects genome-wide higher-order chromatin structure. Accumulated contacts are shown at TAD corners while inter-TAD interactions increase after vermicelli formation. Importantly, we find that in breast cancer cells, the expression of RAD21 is aberrantly high with poor patient survival and RAD21 forms beads in the nucleus. Up-regulated RAD21 in HeLa cells leads to compartment switching and up-regulation of cancer-related genes. CONCLUSIONS Our results provide key insights into the molecular mechanism by which RAD21 facilitates the cohesin loading process and provide an explanation to how cohesin and loader work cooperatively to promote chromatin extrusion, which has important implications in construction of three-dimensional genome organization.
Collapse
Affiliation(s)
- Yuao Sun
- State Key Laboratory of Membrane Biology, School of Life Sciences, and Biomedical Pioneering Innovation Center (BIOPIC), Peking University, Beijing, 100871, China
| | - Xin Xu
- Peking-Tsinghua Center for Life Sciences, The National Laboratory of Protein and Plant Gene Research, College of Life Sciences, Peking University, Beijing, China
| | - Wenxue Zhao
- Center for Bioinformatics, School of Life Sciences, Center for Statistical Science, Peking University, Beijing, 100871, China
| | - Yu Zhang
- Center for Stem Cell Biology and Regenerative Medicine, MOE Key Laboratory of Bioinformatics, School of Life Sciences, THU-PKU Center for Life Science, Tsinghua University, Beijing, 100084, China
| | - Keyang Chen
- Yuanpei College, Peking University, Beijing, 100871, China
| | - Yongzheng Li
- State Key Laboratory of Membrane Biology, School of Life Sciences, and Biomedical Pioneering Innovation Center (BIOPIC), Peking University, Beijing, 100871, China
| | - Xiaotian Wang
- State Key Laboratory of Membrane Biology, School of Life Sciences, and Biomedical Pioneering Innovation Center (BIOPIC), Peking University, Beijing, 100871, China
| | - Mengling Zhang
- State Key Laboratory of Membrane Biology, School of Life Sciences, and Biomedical Pioneering Innovation Center (BIOPIC), Peking University, Beijing, 100871, China
| | - Boxin Xue
- State Key Laboratory of Membrane Biology, School of Life Sciences, and Biomedical Pioneering Innovation Center (BIOPIC), Peking University, Beijing, 100871, China
- College of Chemistry and Molecular Engineering, Peking University, Beijing, 100871, China
| | - Wanting Yu
- State Key Laboratory of Membrane Biology, School of Life Sciences, and Biomedical Pioneering Innovation Center (BIOPIC), Peking University, Beijing, 100871, China
| | - Yingping Hou
- Peking-Tsinghua Center for Life Sciences, Academy for Advanced Interdisciplinary Studies, Peking University, Beijing, 100871, China
| | - Chaobin Wang
- Breast Center, Peking University People's Hospital, Beijing, 100044, China
| | - Wei Xie
- Center for Stem Cell Biology and Regenerative Medicine, MOE Key Laboratory of Bioinformatics, School of Life Sciences, THU-PKU Center for Life Science, Tsinghua University, Beijing, 100084, China
| | - Cheng Li
- Center for Bioinformatics, School of Life Sciences, Center for Statistical Science, Peking University, Beijing, 100871, China
| | - Daochun Kong
- Peking-Tsinghua Center for Life Sciences, The National Laboratory of Protein and Plant Gene Research, College of Life Sciences, Peking University, Beijing, China
| | - Shu Wang
- Breast Center, Peking University People's Hospital, Beijing, 100044, China
| | - Yujie Sun
- State Key Laboratory of Membrane Biology, School of Life Sciences, and Biomedical Pioneering Innovation Center (BIOPIC), Peking University, Beijing, 100871, China.
- Breast Center, Peking University People's Hospital, Beijing, 100044, China.
- National Biomedical Imaging Center, College of Future Technology, Peking University, Beijing, 100871, China.
| |
Collapse
|
32
|
Chan B, Rubinstein M. Theory of chromatin organization maintained by active loop extrusion. Proc Natl Acad Sci U S A 2023; 120:e2222078120. [PMID: 37253009 PMCID: PMC10266055 DOI: 10.1073/pnas.2222078120] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2023] [Accepted: 04/13/2023] [Indexed: 06/01/2023] Open
Abstract
The active loop extrusion hypothesis proposes that chromatin threads through the cohesin protein complex into progressively larger loops until reaching specific boundary elements. We build upon this hypothesis and develop an analytical theory for active loop extrusion which predicts that loop formation probability is a nonmonotonic function of loop length and describes chromatin contact probabilities. We validate our model with Monte Carlo and hybrid Molecular Dynamics-Monte Carlo simulations and demonstrate that our theory recapitulates experimental chromatin conformation capture data. Our results support active loop extrusion as a mechanism for chromatin organization and provide an analytical description of chromatin organization that may be used to specifically modify chromatin contact probabilities.
Collapse
Affiliation(s)
- Brian Chan
- Department of Biomedical Engineering, Duke University, Durham, NC27708
| | - Michael Rubinstein
- Department of Biomedical Engineering, Duke University, Durham, NC27708
- Department of Mechanical Engineering and Materials Science, Duke University, Durham, NC27708
- Department of Chemistry, Duke University, Durham, NC27708
- Department of Physics, Duke University, Durham, NC27708
- Institute for Chemical Reaction Design and Discovery (World Premier International Research Center Initiative-ICReDD), Hokkaido University, Sapporo001-0021, Japan
| |
Collapse
|
33
|
Qiu Y, Feng D, Jiang W, Zhang T, Lu Q, Zhao M. 3D genome organization and epigenetic regulation in autoimmune diseases. Front Immunol 2023; 14:1196123. [PMID: 37346038 PMCID: PMC10279977 DOI: 10.3389/fimmu.2023.1196123] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2023] [Accepted: 05/17/2023] [Indexed: 06/23/2023] Open
Abstract
Three-dimensional (3D) genomics is an emerging field of research that investigates the relationship between gene regulatory function and the spatial structure of chromatin. Chromatin folding can be studied using chromosome conformation capture (3C) technology and 3C-based derivative sequencing technologies, including chromosome conformation capture-on-chip (4C), chromosome conformation capture carbon copy (5C), and high-throughput chromosome conformation capture (Hi-C), which allow scientists to capture 3D conformations from a single site to the entire genome. A comprehensive analysis of the relationships between various regulatory components and gene function also requires the integration of multi-omics data such as genomics, transcriptomics, and epigenomics. 3D genome folding is involved in immune cell differentiation, activation, and dysfunction and participates in a wide range of diseases, including autoimmune diseases. We describe hierarchical 3D chromatin organization in this review and conclude with characteristics of C-techniques and multi-omics applications of the 3D genome. In addition, we describe the relationship between 3D genome structure and the differentiation and maturation of immune cells and address how changes in chromosome folding contribute to autoimmune diseases.
Collapse
Affiliation(s)
- Yueqi Qiu
- Institute of Dermatology, Chinese Academy of Medical Sciences and Peking Union Medical College, Nanjing, China
- Key Laboratory of Basic and Translational Research on Immune-Mediated Skin Diseases, Institute of Dermatology, Chinese Academy of Medical Sciences, Nanjing, China
| | - Delong Feng
- Department of Dermatology, The Second Xiangya Hospital of Central South University, Changsha, China
| | - Wenjuan Jiang
- Institute of Dermatology, Chinese Academy of Medical Sciences and Peking Union Medical College, Nanjing, China
- Key Laboratory of Basic and Translational Research on Immune-Mediated Skin Diseases, Institute of Dermatology, Chinese Academy of Medical Sciences, Nanjing, China
| | - Tingting Zhang
- Institute of Dermatology, Chinese Academy of Medical Sciences and Peking Union Medical College, Nanjing, China
- Key Laboratory of Basic and Translational Research on Immune-Mediated Skin Diseases, Institute of Dermatology, Chinese Academy of Medical Sciences, Nanjing, China
- State Key Laboratory of Natural Medicines, School of Basic Medicine and Clinical Pharmacy, China Pharmaceutical University, Nanjing, China
| | - Qianjin Lu
- Institute of Dermatology, Chinese Academy of Medical Sciences and Peking Union Medical College, Nanjing, China
- Key Laboratory of Basic and Translational Research on Immune-Mediated Skin Diseases, Institute of Dermatology, Chinese Academy of Medical Sciences, Nanjing, China
- Department of Dermatology, The Second Xiangya Hospital of Central South University, Changsha, China
| | - Ming Zhao
- Institute of Dermatology, Chinese Academy of Medical Sciences and Peking Union Medical College, Nanjing, China
- Key Laboratory of Basic and Translational Research on Immune-Mediated Skin Diseases, Institute of Dermatology, Chinese Academy of Medical Sciences, Nanjing, China
- Department of Dermatology, The Second Xiangya Hospital of Central South University, Changsha, China
| |
Collapse
|
34
|
Hafner A, Park M, Berger SE, Murphy SE, Nora EP, Boettiger AN. Loop stacking organizes genome folding from TADs to chromosomes. Mol Cell 2023; 83:1377-1392.e6. [PMID: 37146570 PMCID: PMC10167645 DOI: 10.1016/j.molcel.2023.04.008] [Citation(s) in RCA: 42] [Impact Index Per Article: 21.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2022] [Revised: 02/17/2023] [Accepted: 04/06/2023] [Indexed: 05/07/2023]
Abstract
Although population-level analyses revealed significant roles for CTCF and cohesin in mammalian genome organization, their contributions at the single-cell level remain incompletely understood. Here, we used a super-resolution microscopy approach to measure the effects of removal of CTCF or cohesin in mouse embryonic stem cells. Single-chromosome traces revealed cohesin-dependent loops, frequently stacked at their loop anchors forming multi-way contacts (hubs), bridging across TAD boundaries. Despite these bridging interactions, chromatin in intervening TADs was not intermixed, remaining separated in distinct loops around the hub. At the multi-TAD scale, steric effects from loop stacking insulated local chromatin from ultra-long range (>4 Mb) contacts. Upon cohesin removal, the chromosomes were more disordered and increased cell-cell variability in gene expression. Our data revise the TAD-centric understanding of CTCF and cohesin and provide a multi-scale, structural picture of how they organize the genome on the single-cell level through distinct contributions to loop stacking.
Collapse
Affiliation(s)
- Antonina Hafner
- Department of Developmental Biology, Stanford University, Stanford, CA, USA
| | - Minhee Park
- Department of Developmental Biology, Stanford University, Stanford, CA, USA
| | - Scott E Berger
- Biophysics Program, Stanford University, Stanford, CA, USA
| | - Sedona E Murphy
- Department of Developmental Biology, Stanford University, Stanford, CA, USA; Department of Genetics, Stanford University, Stanford, CA, USA
| | - Elphège P Nora
- Cardiovascular Research Institute, University of California, San Francisco, San Francisco, CA, USA; Department of Biochemistry and Biophysics, University of California, San Francisco, San Francisco, CA, USA
| | | |
Collapse
|
35
|
Zhang S, Übelmesser N, Barbieri M, Papantonis A. Enhancer-promoter contact formation requires RNAPII and antagonizes loop extrusion. Nat Genet 2023; 55:832-840. [PMID: 37012454 DOI: 10.1038/s41588-023-01364-4] [Citation(s) in RCA: 57] [Impact Index Per Article: 28.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2022] [Accepted: 03/06/2023] [Indexed: 04/05/2023]
Abstract
Homotypic chromatin interactions and loop extrusion are thought to be the two main drivers of mammalian chromosome folding. Here we tested the role of RNA polymerase II (RNAPII) across different scales of interphase chromatin organization in a cellular system allowing for its rapid, auxin-mediated degradation. We combined Micro-C and computational modeling to characterize subsets of loops differentially gained or lost upon RNAPII depletion. Gained loops, extrusion of which was antagonized by RNAPII, almost invariably formed by engaging new or rewired CTCF anchors. Lost loops selectively affected contacts between enhancers and promoters anchored by RNAPII, explaining the repression of most genes. Surprisingly, promoter-promoter interactions remained essentially unaffected by polymerase depletion, and cohesin occupancy was sustained. Together, our findings reconcile the role of RNAPII in transcription with its direct involvement in setting-up regulatory three-dimensional chromatin contacts genome wide, while also revealing an impact on cohesin loop extrusion.
Collapse
Affiliation(s)
- Shu Zhang
- Institute of Pathology, University Medical Center Göttingen, Göttingen, Germany
| | - Nadine Übelmesser
- Institute of Pathology, University Medical Center Göttingen, Göttingen, Germany
| | - Mariano Barbieri
- Institute of Pathology, University Medical Center Göttingen, Göttingen, Germany
| | - Argyris Papantonis
- Institute of Pathology, University Medical Center Göttingen, Göttingen, Germany.
| |
Collapse
|
36
|
Di Giorgio E, Benetti R, Kerschbamer E, Xodo L, Brancolini C. Super-enhancer landscape rewiring in cancer: The epigenetic control at distal sites. INTERNATIONAL REVIEW OF CELL AND MOLECULAR BIOLOGY 2023; 380:97-148. [PMID: 37657861 DOI: 10.1016/bs.ircmb.2023.03.013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/03/2023]
Abstract
Super-enhancers evolve as elements at the top of the hierarchical control of gene expression. They are important end-gatherers of signaling pathways that control stemness, differentiation or adaptive responses. Many epigenetic regulations focus on these regions, and not surprisingly, during the process of tumorigenesis, various alterations can account for their dysfunction. Super-enhancers are emerging as key drivers of the aberrant gene expression landscape that sustain the aggressiveness of cancer cells. In this review, we will describe and discuss about the structure of super-enhancers, their epigenetic regulation, and the major changes affecting their functionality in cancer.
Collapse
Affiliation(s)
- Eros Di Giorgio
- Laboratory of Biochemistry, Department of Medicine, Università degli Studi di Udine, Udine, Italy
| | - Roberta Benetti
- Laboratory of Epigenomics, Department of Medicine, Università degli Studi di Udine, Udine, Italy
| | - Emanuela Kerschbamer
- Laboratory of Epigenomics, Department of Medicine, Università degli Studi di Udine, Udine, Italy
| | - Luigi Xodo
- Laboratory of Biochemistry, Department of Medicine, Università degli Studi di Udine, Udine, Italy
| | - Claudio Brancolini
- Laboratory of Epigenomics, Department of Medicine, Università degli Studi di Udine, Udine, Italy.
| |
Collapse
|
37
|
Karpinska MA, Oudelaar AM. The role of loop extrusion in enhancer-mediated gene activation. Curr Opin Genet Dev 2023; 79:102022. [PMID: 36842325 DOI: 10.1016/j.gde.2023.102022] [Citation(s) in RCA: 22] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2022] [Revised: 01/13/2023] [Accepted: 01/25/2023] [Indexed: 02/28/2023]
Abstract
Gene expression patterns in complex multicellular organisms are regulated by enhancers, which communicate with their target gene promoters in three-dimensional (3D) chromatin structures. Despite advances in our understanding of the mechanisms that organize mammalian genomes into compartments and topologically associating domains (TADs), it is not well understood how specific interactions between enhancers and promoters are controlled in this 3D context. In this review, we give an overview of recent evidence that shows that a process of loop extrusion plays an important role in the regulation of enhancer-promoter communication and discuss recent insights into the molecular mechanism by which loop extrusion contributes to enhancer-mediated gene activation.
Collapse
Affiliation(s)
- Magdalena A Karpinska
- Max Planck Institute for Multidisciplinary Sciences, Göttingen, Germany. https://twitter.com/@MagdalenaKarp
| | | |
Collapse
|
38
|
Wang R, Lee JH, Kim J, Xiong F, Hasani LA, Shi Y, Simpson EN, Zhu X, Chen YT, Shivshankar P, Krakowiak J, Wang Y, Gilbert DM, Yuan X, Eltzschig HK, Li W. SARS-CoV-2 restructures host chromatin architecture. Nat Microbiol 2023; 8:679-694. [PMID: 36959507 PMCID: PMC10116496 DOI: 10.1038/s41564-023-01344-8] [Citation(s) in RCA: 31] [Impact Index Per Article: 15.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2022] [Accepted: 02/14/2023] [Indexed: 03/25/2023]
Abstract
Some viruses restructure host chromatin, influencing gene expression, with implications for disease outcome. Whether this occurs for SARS-CoV-2, the virus causing COVID-19, is largely unknown. Here we characterized the 3D genome and epigenome of human cells after SARS-CoV-2 infection, finding widespread host chromatin restructuring that features widespread compartment A weakening, A-B mixing, reduced intra-TAD contacts and decreased H3K27ac euchromatin modification levels. Such changes were not found following common-cold-virus HCoV-OC43 infection. Intriguingly, the cohesin complex was notably depleted from intra-TAD regions, indicating that SARS-CoV-2 disrupts cohesin loop extrusion. These altered 3D genome/epigenome structures correlated with transcriptional suppression of interferon response genes by the virus, while increased H3K4me3 was found in the promoters of pro-inflammatory genes highly induced during severe COVID-19. These findings show that SARS-CoV-2 acutely rewires host chromatin, facilitating future studies of the long-term epigenomic impacts of its infection.
Collapse
Affiliation(s)
- Ruoyu Wang
- Department of Biochemistry and Molecular Biology, McGovern Medical School, The University of Texas Health Science Center at Houston, Houston, TX, USA
- The University of Texas MD Anderson Cancer Center UTHealth Houston Graduate School of Biomedical Sciences, The University of Texas Health Science Center at Houston, Houston, TX, USA
| | - Joo-Hyung Lee
- Department of Biochemistry and Molecular Biology, McGovern Medical School, The University of Texas Health Science Center at Houston, Houston, TX, USA
| | - Jieun Kim
- Department of Anesthesiology, Critical Care and Pain Medicine, McGovern Medical School, The University of Texas Health Science Center at Houston, Houston, TX, USA
- Center for Perioperative Medicine, McGovern Medical School, The University of Texas Health Science Center at Houston, Houston, TX, USA
| | - Feng Xiong
- Department of Biochemistry and Molecular Biology, McGovern Medical School, The University of Texas Health Science Center at Houston, Houston, TX, USA
| | - Lana Al Hasani
- Department of Biochemistry and Molecular Biology, McGovern Medical School, The University of Texas Health Science Center at Houston, Houston, TX, USA
- The University of Texas MD Anderson Cancer Center UTHealth Houston Graduate School of Biomedical Sciences, The University of Texas Health Science Center at Houston, Houston, TX, USA
| | - Yuqiang Shi
- Department of Biochemistry and Molecular Biology, McGovern Medical School, The University of Texas Health Science Center at Houston, Houston, TX, USA
| | - Erin N Simpson
- Department of Biochemistry and Molecular Biology, McGovern Medical School, The University of Texas Health Science Center at Houston, Houston, TX, USA
- The University of Texas MD Anderson Cancer Center UTHealth Houston Graduate School of Biomedical Sciences, The University of Texas Health Science Center at Houston, Houston, TX, USA
| | - Xiaoyu Zhu
- Department of Biochemistry and Molecular Biology, McGovern Medical School, The University of Texas Health Science Center at Houston, Houston, TX, USA
| | - Yi-Ting Chen
- Department of Biochemistry and Molecular Biology, McGovern Medical School, The University of Texas Health Science Center at Houston, Houston, TX, USA
- The University of Texas MD Anderson Cancer Center UTHealth Houston Graduate School of Biomedical Sciences, The University of Texas Health Science Center at Houston, Houston, TX, USA
| | - Pooja Shivshankar
- Department of Biochemistry and Molecular Biology, McGovern Medical School, The University of Texas Health Science Center at Houston, Houston, TX, USA
- Department of Anesthesiology, Critical Care and Pain Medicine, McGovern Medical School, The University of Texas Health Science Center at Houston, Houston, TX, USA
- Center for Perioperative Medicine, McGovern Medical School, The University of Texas Health Science Center at Houston, Houston, TX, USA
| | - Joanna Krakowiak
- Department of Biochemistry and Molecular Biology, McGovern Medical School, The University of Texas Health Science Center at Houston, Houston, TX, USA
| | - Yanyu Wang
- Department of Anesthesiology, Critical Care and Pain Medicine, McGovern Medical School, The University of Texas Health Science Center at Houston, Houston, TX, USA
- Center for Perioperative Medicine, McGovern Medical School, The University of Texas Health Science Center at Houston, Houston, TX, USA
| | - David M Gilbert
- Laboratory of Chromosome Replication and Epigenome Regulation, San Diego Biomedical Research Institute, San Diego, CA, USA
| | - Xiaoyi Yuan
- Department of Anesthesiology, Critical Care and Pain Medicine, McGovern Medical School, The University of Texas Health Science Center at Houston, Houston, TX, USA
- Center for Perioperative Medicine, McGovern Medical School, The University of Texas Health Science Center at Houston, Houston, TX, USA
| | - Holger K Eltzschig
- The University of Texas MD Anderson Cancer Center UTHealth Houston Graduate School of Biomedical Sciences, The University of Texas Health Science Center at Houston, Houston, TX, USA
- Department of Anesthesiology, Critical Care and Pain Medicine, McGovern Medical School, The University of Texas Health Science Center at Houston, Houston, TX, USA
- Center for Perioperative Medicine, McGovern Medical School, The University of Texas Health Science Center at Houston, Houston, TX, USA
| | - Wenbo Li
- Department of Biochemistry and Molecular Biology, McGovern Medical School, The University of Texas Health Science Center at Houston, Houston, TX, USA.
- The University of Texas MD Anderson Cancer Center UTHealth Houston Graduate School of Biomedical Sciences, The University of Texas Health Science Center at Houston, Houston, TX, USA.
| |
Collapse
|
39
|
Shin H, Kim Y. Regulation of loop extrusion on the interphase genome. Crit Rev Biochem Mol Biol 2023; 58:1-18. [PMID: 36921088 DOI: 10.1080/10409238.2023.2182273] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/17/2023]
Abstract
In the human cell nucleus, dynamically organized chromatin is the substrate for gene regulation, DNA replication, and repair. A central mechanism of DNA loop formation is an ATPase motor cohesin-mediated loop extrusion. The cohesin complexes load and unload onto the chromosome under the control of other regulators that physically interact and affect motor activity. Regulation of the dynamic loading cycle of cohesin influences not only the chromatin structure but also genome-associated human disorders and aging. This review focuses on the recently spotlighted genome organizing factors and the mechanism by which their dynamic interactions shape the genome architecture in interphase.
Collapse
Affiliation(s)
- Hyogyung Shin
- Department of New Biology, Daegu Gyeongbuk Institute of Science and Technology (DGIST), Daegu, South Korea
| | - Yoori Kim
- Department of New Biology, Daegu Gyeongbuk Institute of Science and Technology (DGIST), Daegu, South Korea.,New Biology Research Center, Daegu Gyeongbuk Institute of Science and Technology (DGIST), Daegu, South Korea
| |
Collapse
|
40
|
Kenter AL, Priyadarshi S, Drake EB. Locus architecture and RAG scanning determine antibody diversity. Trends Immunol 2023; 44:119-128. [PMID: 36706738 PMCID: PMC10128066 DOI: 10.1016/j.it.2022.12.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2022] [Revised: 12/07/2022] [Accepted: 12/08/2022] [Indexed: 01/27/2023]
Abstract
Diverse mammalian antibody repertoires are produced via distant genomic contacts involving immunoglobulin Igh variable (V), diversity (D), and joining (J) gene segments and result in V(D)J recombination. How such interactions determine V gene usage remains unclear. The recombination-activating gene (RAG) chromatin scanning model posits that RAG recombinase bound to the recombination center (RC) linearly tracks along chromatin by means of cohesin-mediated loop extrusion; a proposition supported by cohesin depletion studies. A mechanistic role for chromatin loop extrusion has also been implicated for Igh locus contraction. In this opinion, we provide perspective on how loop extrusion interfaces with the 3D conformation of the Igh locus and newly identified enhancers that regionally regulate VH gene usage during V(D)J recombination, shaping the preselected repertoire.
Collapse
Affiliation(s)
- Amy L Kenter
- Department of Microbiology and Immunology, University of Illinois College of Medicine, Chicago, IL 60612-7344, USA.
| | - Saurabh Priyadarshi
- Department of Microbiology and Immunology, University of Illinois College of Medicine, Chicago, IL 60612-7344, USA
| | - Ellen B Drake
- Department of Microbiology and Immunology, University of Illinois College of Medicine, Chicago, IL 60612-7344, USA
| |
Collapse
|
41
|
Barajas-Mora EM, Lee L, Lu H, Valderrama JA, Bjanes E, Nizet V, Feeney AJ, Hu M, Murre C. Enhancer-instructed epigenetic landscape and chromatin compartmentalization dictate a primary antibody repertoire protective against specific bacterial pathogens. Nat Immunol 2023; 24:320-336. [PMID: 36717722 PMCID: PMC10917333 DOI: 10.1038/s41590-022-01402-z] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2022] [Accepted: 12/06/2022] [Indexed: 01/31/2023]
Abstract
Antigen receptor loci are organized into variable (V), diversity (D) and joining (J) gene segments that rearrange to generate antigen receptor repertoires. Here, we identified an enhancer (E34) in the murine immunoglobulin kappa (Igk) locus that instructed rearrangement of Vκ genes located in a sub-topologically associating domain, including a Vκ gene encoding for antibodies targeting bacterial phosphorylcholine. We show that E34 instructs the nuclear repositioning of the E34 sub-topologically associating domain from a recombination-repressive compartment to a recombination-permissive compartment that is marked by equivalent activating histone modifications. Finally, we found that E34-instructed Vκ-Jκ rearrangement was essential to combat Streptococcus pneumoniae but not methicillin-resistant Staphylococcus aureus or influenza infections. We propose that the merging of Vκ genes with Jκ elements is instructed by one-dimensional epigenetic information imposed by enhancers across Vκ and Jκ genomic regions. The data also reveal how enhancers generate distinct antibody repertoires that provide protection against lethal bacterial infection.
Collapse
Affiliation(s)
| | - Lindsay Lee
- Department of Quantitative Health Sciences, Lerner Research Institute, Cleveland Clinic Foundation, Cleveland, OH, USA
| | - Hanbin Lu
- Department of Molecular Biology, University of California, San Diego, La Jolla, CA, USA
| | - J Andrés Valderrama
- Department of Pediatrics, University of California, San Diego, La Jolla, CA, USA
| | - Elisabet Bjanes
- Department of Pediatrics, University of California, San Diego, La Jolla, CA, USA
| | - Victor Nizet
- Department of Pediatrics, University of California, San Diego, La Jolla, CA, USA
- Skaggs School of Pharmacy and Pharmaceutical Sciences, University of California, San Diego, La Jolla, USA
| | - Ann J Feeney
- Department of Immunology and Microbiology, Scripps Research, La Jolla, CA, USA
| | - Ming Hu
- Department of Quantitative Health Sciences, Lerner Research Institute, Cleveland Clinic Foundation, Cleveland, OH, USA.
| | - Cornelis Murre
- Department of Molecular Biology, University of California, San Diego, La Jolla, CA, USA.
| |
Collapse
|
42
|
de Wit E, Nora EP. New insights into genome folding by loop extrusion from inducible degron technologies. Nat Rev Genet 2023; 24:73-85. [PMID: 36180596 DOI: 10.1038/s41576-022-00530-4] [Citation(s) in RCA: 39] [Impact Index Per Article: 19.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/24/2022] [Indexed: 01/24/2023]
Abstract
Chromatin folds into dynamic loops that often span hundreds of kilobases and physically wire distant loci together for gene regulation. These loops are continuously created, extended and positioned by structural maintenance of chromosomes (SMC) protein complexes, such as condensin and cohesin, and their regulators, including CTCF, in a highly dynamic process known as loop extrusion. Genetic loss of extrusion factors is lethal, complicating their study. Inducible protein degradation technologies enable the depletion of loop extrusion factors within hours, leading to the rapid reconfiguration of chromatin folding. Here, we review how these technologies have changed our understanding of genome organization, upsetting long-held beliefs on its role in transcription. Finally, we examine recent models that attempt to reconcile observations after chronic versus acute perturbations, and discuss future developments in this rapidly developing field of research.
Collapse
Affiliation(s)
- Elzo de Wit
- Division of Gene Regulation, Oncode Institute, Amsterdam, the Netherlands.
- Division of Gene Regulation, Netherlands Cancer Institute, Amsterdam, the Netherlands.
| | - Elphège P Nora
- Cardiovascular Research Institute, University of California, San Francisco, San Francisco, CA, USA.
- Department of Biochemistry and Biophysics, University of California, San Francisco, San Francisco, CA, USA.
| |
Collapse
|
43
|
Kean CM, Tracy CJ, Mitra A, Rahat B, Van Winkle MT, Gebert CM, Noeker JA, Calof AL, Lander AD, Kassis JA, Pfeifer K. Decreasing Wapl dosage partially corrects embryonic growth and brain transcriptome phenotypes in Nipbl+/- embryos. SCIENCE ADVANCES 2022; 8:eadd4136. [PMID: 36449618 DOI: 10.1101/2022.05.31.493745] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/26/2023]
Abstract
Cohesin rings interact with DNA and modulate the expression of thousands of genes. NIPBL loads cohesin onto chromosomes, and WAPL takes it off. Haploinsufficiency for NIPBL causes a developmental disorder, Cornelia de Lange syndrome (CdLS), that is modeled by Nipbl+/- mice. Mutations in WAPL have not been shown to cause disease or gene expression changes in mammals. Here, we show dysregulation of >1000 genes in WaplΔ/+ embryonic mouse brain. The patterns of dysregulation are highly similar in Wapl and Nipbl heterozygotes, suggesting that Wapl mutations may also cause human disease. Since WAPL and NIPBL have opposite effects on cohesin's association with DNA, we asked whether decreasing Wapl dosage could correct phenotypes seen in Nipbl+/- mice. Gene expression and embryonic growth are partially corrected, but perinatal lethality is not. Our data are consistent with the view that cohesin dynamics play a key role in regulating gene expression.
Collapse
Affiliation(s)
- Connor M Kean
- Division of Intramural Research, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, MD, USA
| | - Christopher J Tracy
- Division of Intramural Research, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, MD, USA
| | - Apratim Mitra
- Division of Intramural Research, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, MD, USA
| | - Beenish Rahat
- Division of Intramural Research, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, MD, USA
| | - Matthew T Van Winkle
- Division of Intramural Research, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, MD, USA
| | - Claudia M Gebert
- Division of Intramural Research, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, MD, USA
| | - Jacob A Noeker
- Division of Intramural Research, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, MD, USA
| | - Anne L Calof
- Department of Anatomy and Neurobiology, University of California School of Medicine, Irvine, CA, USA
- Department of Developmental and Cell Biology, University of California, Irvine, Irvine, CA, USA
| | - Arthur D Lander
- Department of Developmental and Cell Biology, University of California, Irvine, Irvine, CA, USA
| | - Judith A Kassis
- Division of Intramural Research, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, MD, USA
| | - Karl Pfeifer
- Division of Intramural Research, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, MD, USA
| |
Collapse
|
44
|
Kean CM, Tracy CJ, Mitra A, Rahat B, Van Winkle MT, Gebert CM, Noeker JA, Calof AL, Lander AD, Kassis JA, Pfeifer K. Decreasing Wapl dosage partially corrects embryonic growth and brain transcriptome phenotypes in Nipbl+/- embryos. SCIENCE ADVANCES 2022; 8:eadd4136. [PMID: 36449618 PMCID: PMC9710879 DOI: 10.1126/sciadv.add4136] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/09/2022] [Accepted: 10/12/2022] [Indexed: 06/17/2023]
Abstract
Cohesin rings interact with DNA and modulate the expression of thousands of genes. NIPBL loads cohesin onto chromosomes, and WAPL takes it off. Haploinsufficiency for NIPBL causes a developmental disorder, Cornelia de Lange syndrome (CdLS), that is modeled by Nipbl+/- mice. Mutations in WAPL have not been shown to cause disease or gene expression changes in mammals. Here, we show dysregulation of >1000 genes in WaplΔ/+ embryonic mouse brain. The patterns of dysregulation are highly similar in Wapl and Nipbl heterozygotes, suggesting that Wapl mutations may also cause human disease. Since WAPL and NIPBL have opposite effects on cohesin's association with DNA, we asked whether decreasing Wapl dosage could correct phenotypes seen in Nipbl+/- mice. Gene expression and embryonic growth are partially corrected, but perinatal lethality is not. Our data are consistent with the view that cohesin dynamics play a key role in regulating gene expression.
Collapse
Affiliation(s)
- Connor M. Kean
- Division of Intramural Research, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, MD, USA
| | - Christopher J. Tracy
- Division of Intramural Research, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, MD, USA
| | - Apratim Mitra
- Division of Intramural Research, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, MD, USA
| | - Beenish Rahat
- Division of Intramural Research, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, MD, USA
| | - Matthew T. Van Winkle
- Division of Intramural Research, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, MD, USA
| | - Claudia M. Gebert
- Division of Intramural Research, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, MD, USA
| | - Jacob A. Noeker
- Division of Intramural Research, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, MD, USA
| | - Anne L. Calof
- Department of Anatomy and Neurobiology, University of California School of Medicine, Irvine, CA, USA
- Department of Developmental and Cell Biology, University of California, Irvine, Irvine, CA, USA
| | - Arthur D. Lander
- Department of Developmental and Cell Biology, University of California, Irvine, Irvine, CA, USA
| | - Judith A. Kassis
- Division of Intramural Research, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, MD, USA
| | - Karl Pfeifer
- Division of Intramural Research, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, MD, USA
| |
Collapse
|
45
|
Kyrchanova OV, Bylino OV, Georgiev PG. Mechanisms of enhancer-promoter communication and chromosomal architecture in mammals and Drosophila. Front Genet 2022; 13:1081088. [PMID: 36531247 PMCID: PMC9751008 DOI: 10.3389/fgene.2022.1081088] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2022] [Accepted: 11/18/2022] [Indexed: 12/03/2022] Open
Abstract
The spatial organization of chromosomes is involved in regulating the majority of intranuclear processes in higher eukaryotes, including gene expression. Drosophila was used as a model to discover many transcription factors whose homologs play a key role in regulation of gene expression in mammals. According to modern views, a cohesin complex mostly determines the architecture of mammalian chromosomes by forming chromatin loops on anchors created by the CTCF DNA-binding architectural protein. The role of the cohesin complex in chromosome architecture is poorly understood in Drosophila, and CTCF is merely one of many Drosophila architectural proteins with a proven potential to organize specific long-range interactions between regulatory elements in the genome. The review compares the mechanisms responsible for long-range interactions and chromosome architecture between mammals and Drosophila.
Collapse
|
46
|
Valton AL, Venev SV, Mair B, Khokhar ES, Tong AHY, Usaj M, Chan K, Pai AA, Moffat J, Dekker J. A cohesin traffic pattern genetically linked to gene regulation. Nat Struct Mol Biol 2022; 29:1239-1251. [PMID: 36482254 PMCID: PMC10228515 DOI: 10.1038/s41594-022-00890-9] [Citation(s) in RCA: 26] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2021] [Accepted: 11/01/2022] [Indexed: 12/13/2022]
Abstract
Cohesin-mediated loop extrusion has been shown to be blocked at specific cis-elements, including CTCF sites, producing patterns of loops and domain boundaries along chromosomes. Here we explore such cis-elements, and their role in gene regulation. We find that transcription termination sites of active genes form cohesin- and RNA polymerase II-dependent domain boundaries that do not accumulate cohesin. At these sites, cohesin is first stalled and then rapidly unloaded. Start sites of transcriptionally active genes form cohesin-bound boundaries, as shown before, but are cohesin-independent. Together with cohesin loading, possibly at enhancers, these sites create a pattern of cohesin traffic that guides enhancer-promoter interactions. Disrupting this traffic pattern, by removing CTCF, renders cells sensitive to knockout of genes involved in transcription initiation, such as the SAGA complexes, and RNA processing such DEAD/H-Box RNA helicases. Without CTCF, these factors are less efficiently recruited to active promoters.
Collapse
Affiliation(s)
- Anne-Laure Valton
- Department of Systems Biology, University of Massachusetts Chan Medical School, Worcester, MA, USA
- Howard Hughes Medical Institute, Chevy Chase, MD, USA
| | - Sergey V Venev
- Department of Systems Biology, University of Massachusetts Chan Medical School, Worcester, MA, USA
| | - Barbara Mair
- Donnelly Centre, University of Toronto, Toronto, Ontario, Canada
| | - Eraj Shafiq Khokhar
- RNA Therapeutics Institute, University of Massachusetts Chan Medical School, Worcester, MA, USA
| | - Amy H Y Tong
- Donnelly Centre, University of Toronto, Toronto, Ontario, Canada
| | - Matej Usaj
- Donnelly Centre, University of Toronto, Toronto, Ontario, Canada
| | - Katherine Chan
- Donnelly Centre, University of Toronto, Toronto, Ontario, Canada
| | - Athma A Pai
- RNA Therapeutics Institute, University of Massachusetts Chan Medical School, Worcester, MA, USA
| | - Jason Moffat
- Donnelly Centre, University of Toronto, Toronto, Ontario, Canada
| | - Job Dekker
- Department of Systems Biology, University of Massachusetts Chan Medical School, Worcester, MA, USA.
- Howard Hughes Medical Institute, Chevy Chase, MD, USA.
| |
Collapse
|
47
|
Mach P, Kos PI, Zhan Y, Cramard J, Gaudin S, Tünnermann J, Marchi E, Eglinger J, Zuin J, Kryzhanovska M, Smallwood S, Gelman L, Roth G, Nora EP, Tiana G, Giorgetti L. Cohesin and CTCF control the dynamics of chromosome folding. Nat Genet 2022; 54:1907-1918. [PMID: 36471076 PMCID: PMC9729113 DOI: 10.1038/s41588-022-01232-7] [Citation(s) in RCA: 85] [Impact Index Per Article: 28.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2022] [Accepted: 10/19/2022] [Indexed: 12/12/2022]
Abstract
In mammals, interactions between sequences within topologically associating domains enable control of gene expression across large genomic distances. Yet it is unknown how frequently such contacts occur, how long they last and how they depend on the dynamics of chromosome folding and loop extrusion activity of cohesin. By imaging chromosomal locations at high spatial and temporal resolution in living cells, we show that interactions within topologically associating domains are transient and occur frequently during the course of a cell cycle. Interactions become more frequent and longer in the presence of convergent CTCF sites, resulting in suppression of variability in chromosome folding across time. Supported by physical models of chromosome dynamics, our data suggest that CTCF-anchored loops last around 10 min. Our results show that long-range transcriptional regulation might rely on transient physical proximity, and that cohesin and CTCF stabilize highly dynamic chromosome structures, facilitating selected subsets of chromosomal interactions.
Collapse
Affiliation(s)
- Pia Mach
- Friedrich Miescher Institute for Biomedical Research, Basel, Switzerland
- University of Basel, Basel, Switzerland
| | - Pavel I Kos
- Friedrich Miescher Institute for Biomedical Research, Basel, Switzerland
| | - Yinxiu Zhan
- Friedrich Miescher Institute for Biomedical Research, Basel, Switzerland
| | - Julie Cramard
- Friedrich Miescher Institute for Biomedical Research, Basel, Switzerland
| | - Simon Gaudin
- Friedrich Miescher Institute for Biomedical Research, Basel, Switzerland
- École Normale Supérieure de Lyon, Lyon, France
- Université Claude Bernard Lyon I, Lyon, France
| | - Jana Tünnermann
- Friedrich Miescher Institute for Biomedical Research, Basel, Switzerland
- University of Basel, Basel, Switzerland
| | - Edoardo Marchi
- Università degli Studi di Milano, Milan, Italy
- INFN, Milan, Italy
| | - Jan Eglinger
- Friedrich Miescher Institute for Biomedical Research, Basel, Switzerland
| | - Jessica Zuin
- Friedrich Miescher Institute for Biomedical Research, Basel, Switzerland
| | | | | | - Laurent Gelman
- Friedrich Miescher Institute for Biomedical Research, Basel, Switzerland
| | - Gregory Roth
- Friedrich Miescher Institute for Biomedical Research, Basel, Switzerland
| | - Elphège P Nora
- Cardiovascular Research Institute, University of California San Francisco, San Francisco, CA, USA
- Department of Biochemistry and Biophysics, University of California San Francisco, San Francisco, CA, USA
| | - Guido Tiana
- Università degli Studi di Milano, Milan, Italy
- INFN, Milan, Italy
| | - Luca Giorgetti
- Friedrich Miescher Institute for Biomedical Research, Basel, Switzerland.
| |
Collapse
|
48
|
Schmidt J, Dreha-Kulaczewski S, Zafeiriou MP, Schreiber MK, Wilken B, Funke R, Neuhofer CM, Altmüller J, Thiele H, Nürnberg P, Biskup S, Li Y, Zimmermann WH, Kaulfuß S, Yigit G, Wollnik B. Somatic mosaicism in STAG2-associated cohesinopathies: Expansion of the genotypic and phenotypic spectrum. Front Cell Dev Biol 2022; 10:1025332. [PMID: 36467423 PMCID: PMC9710855 DOI: 10.3389/fcell.2022.1025332] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2022] [Accepted: 10/26/2022] [Indexed: 08/25/2024] Open
Abstract
STAG2 is a component of the large, evolutionarily highly conserved cohesin complex, which has been linked to various cellular processes like genome organization, DNA replication, gene expression, heterochromatin formation, sister chromatid cohesion, and DNA repair. A wide spectrum of germline variants in genes encoding subunits or regulators of the cohesin complex have previously been identified to cause distinct but phenotypically overlapping multisystem developmental disorders belonging to the group of cohesinopathies. Pathogenic variants in STAG2 have rarely been implicated in an X-linked cohesinopathy associated with undergrowth, developmental delay, and dysmorphic features. Here, we describe for the first time a mosaic STAG2 variant in an individual with developmental delay, microcephaly, and hemihypotrophy of the right side. We characterized the grade of mosaicism by deep sequencing analysis on DNA extracted from EDTA blood, urine and buccal swabs. Furthermore, we report an additional female with a novel de novo splice variant in STAG2. Interestingly, both individuals show supernumerary nipples, a feature that has not been reported associated to STAG2 before. Remarkably, additional analysis of STAG2 transcripts in both individuals showed only wildtype transcripts, even after blockage of nonsense-mediated decay using puromycin in blood lymphocytes. As the phenotype of STAG2-associated cohesinopathies is dominated by global developmental delay, severe microcephaly, and brain abnormalities, we investigated the expression of STAG2 and other related components of the cohesin complex during Bioengineered Neuronal Organoids (BENOs) generation by RNA sequencing. Interestingly, we observed a prominent expression of STAG2, especially between culture days 0 and 15, indicating an essential function of STAG2 in early brain development. In summary, we expand the genotypic and phenotypic spectrum of STAG2-associated cohesinopathies and show that BENOs represent a promising model to gain further insights into the critical role of STAG2 in the complex process of nervous system development.
Collapse
Affiliation(s)
- Julia Schmidt
- Institute of Human Genetics, University Medical Center Göttingen, Göttingen, Germany
| | - Steffi Dreha-Kulaczewski
- Department of Pediatics and Adolescent Medicine, University Medical Center Göttingen, Göttingen, Germany
| | - Maria-Patapia Zafeiriou
- Institute of Pharmacology and Toxicology, University Medical Center Göttingen, Göttingen, Germany
- DZHK (German Center for Cardiovascular Research), Partner Site Göttingen, Göttingen, Germany
- Cluster of Excellence “Multiscale Bioimaging: from Molecular Machines to Networks of Excitable Cells” (MBExC), University of Göttingen, Göttingen, Germany
| | - Marie-Kristin Schreiber
- Institute of Pharmacology and Toxicology, University Medical Center Göttingen, Göttingen, Germany
- Cluster of Excellence “Multiscale Bioimaging: from Molecular Machines to Networks of Excitable Cells” (MBExC), University of Göttingen, Göttingen, Germany
| | - Bernd Wilken
- Department of Pediatric Neurology, Klinikum Kassel, Kassel, Germany
| | - Rudolf Funke
- Department of Pediatric Neurology, Klinikum Kassel, Kassel, Germany
| | - Christiane M Neuhofer
- Institute of Human Genetics, University Medical Center Göttingen, Göttingen, Germany
- Institute of Neurogenomics, Helmholtz Zentrum Munich, Munich, Germany
- Department of Neurology, Friedrich-Baur-Institute, LMU Hospital, Ludwig Maximilians University, Munich, Germany
| | - Janine Altmüller
- Cologne Center for Genomics (CCG), University of Cologne, Faculty of Medicine, University Hospital Cologne, Cologne, Germany
- Berlin Institute of Health at Charité, Core Facility Genomics, Berlin, Germany
- Max Delbrück Center for Molecular Medicine in the Helmholtz Association, Berlin, Germany
| | - Holger Thiele
- Cologne Center for Genomics (CCG), University of Cologne, Faculty of Medicine, University Hospital Cologne, Cologne, Germany
| | - Peter Nürnberg
- Cologne Center for Genomics (CCG), University of Cologne, Faculty of Medicine, University Hospital Cologne, Cologne, Germany
| | - Saskia Biskup
- CeGaT GmbH, Center for Genomics and Transcriptomics, Tübingen, Germany
| | - Yun Li
- Institute of Human Genetics, University Medical Center Göttingen, Göttingen, Germany
| | - Wolfram Hubertus Zimmermann
- Institute of Pharmacology and Toxicology, University Medical Center Göttingen, Göttingen, Germany
- DZHK (German Center for Cardiovascular Research), Partner Site Göttingen, Göttingen, Germany
- Cluster of Excellence “Multiscale Bioimaging: from Molecular Machines to Networks of Excitable Cells” (MBExC), University of Göttingen, Göttingen, Germany
| | - Silke Kaulfuß
- Institute of Human Genetics, University Medical Center Göttingen, Göttingen, Germany
| | - Gökhan Yigit
- Institute of Human Genetics, University Medical Center Göttingen, Göttingen, Germany
- DZHK (German Center for Cardiovascular Research), Partner Site Göttingen, Göttingen, Germany
| | - Bernd Wollnik
- Institute of Human Genetics, University Medical Center Göttingen, Göttingen, Germany
- DZHK (German Center for Cardiovascular Research), Partner Site Göttingen, Göttingen, Germany
- Cluster of Excellence “Multiscale Bioimaging: from Molecular Machines to Networks of Excitable Cells” (MBExC), University of Göttingen, Göttingen, Germany
| |
Collapse
|
49
|
Luppino JM, Field A, Nguyen SC, Park DS, Shah PP, Abdill RJ, Lan Y, Yunker R, Jain R, Adelman K, Joyce EF. Co-depletion of NIPBL and WAPL balance cohesin activity to correct gene misexpression. PLoS Genet 2022; 18:e1010528. [PMID: 36449519 PMCID: PMC9744307 DOI: 10.1371/journal.pgen.1010528] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2022] [Revised: 12/12/2022] [Accepted: 11/15/2022] [Indexed: 12/03/2022] Open
Abstract
The relationship between cohesin-mediated chromatin looping and gene expression remains unclear. NIPBL and WAPL are two opposing regulators of cohesin activity; depletion of either is associated with changes in both chromatin folding and transcription across a wide range of cell types. However, a direct comparison of their individual and combined effects on gene expression in the same cell type is lacking. We find that NIPBL or WAPL depletion in human HCT116 cells each alter the expression of ~2,000 genes, with only ~30% of the genes shared between the conditions. We find that clusters of differentially expressed genes within the same topologically associated domain (TAD) show coordinated misexpression, suggesting some genomic domains are especially sensitive to both more or less cohesin. Finally, co-depletion of NIPBL and WAPL restores the majority of gene misexpression as compared to either knockdown alone. A similar set of NIPBL-sensitive genes are rescued following CTCF co-depletion. Together, this indicates that altered transcription due to reduced cohesin activity can be functionally offset by removal of either its negative regulator (WAPL) or the physical barriers (CTCF) that restrict loop-extrusion events.
Collapse
Affiliation(s)
- Jennifer M. Luppino
- Department of Genetics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, United States of America
- Penn Epigenetics Institute, University of Pennsylvania, Philadelphia, Pennsylvania, United States of America
| | - Andrew Field
- Department of Biological Chemistry and Molecular Pharmacology, Blavatnik Institute, Harvard Medical School, Boston, Massachusetts, United States of America
- Ludwig Center at Harvard, Boston, Massachusetts, United States of America
| | - Son C. Nguyen
- Department of Genetics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, United States of America
- Penn Epigenetics Institute, University of Pennsylvania, Philadelphia, Pennsylvania, United States of America
| | - Daniel S. Park
- Department of Genetics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, United States of America
- Penn Epigenetics Institute, University of Pennsylvania, Philadelphia, Pennsylvania, United States of America
| | - Parisha P. Shah
- Penn Epigenetics Institute, University of Pennsylvania, Philadelphia, Pennsylvania, United States of America
- Department of Cell and Developmental Biology, Department of Medicine, Institute of Regenerative Medicine, Penn Cardiovascular Institute, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, United States of America
| | - Richard J. Abdill
- Department of Genetics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, United States of America
- Penn Epigenetics Institute, University of Pennsylvania, Philadelphia, Pennsylvania, United States of America
- Department of Cell and Developmental Biology, Department of Medicine, Institute of Regenerative Medicine, Penn Cardiovascular Institute, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, United States of America
| | - Yemin Lan
- Penn Epigenetics Institute, University of Pennsylvania, Philadelphia, Pennsylvania, United States of America
| | - Rebecca Yunker
- Department of Genetics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, United States of America
- Penn Epigenetics Institute, University of Pennsylvania, Philadelphia, Pennsylvania, United States of America
| | - Rajan Jain
- Penn Epigenetics Institute, University of Pennsylvania, Philadelphia, Pennsylvania, United States of America
- Department of Cell and Developmental Biology, Department of Medicine, Institute of Regenerative Medicine, Penn Cardiovascular Institute, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, United States of America
| | - Karen Adelman
- Department of Biological Chemistry and Molecular Pharmacology, Blavatnik Institute, Harvard Medical School, Boston, Massachusetts, United States of America
- Ludwig Center at Harvard, Boston, Massachusetts, United States of America
- The Eli and Edythe L. Broad Institute, Cambridge, Massachusetts, United States of America
| | - Eric F. Joyce
- Department of Genetics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, United States of America
- Penn Epigenetics Institute, University of Pennsylvania, Philadelphia, Pennsylvania, United States of America
| |
Collapse
|
50
|
Luppino JM, Field A, Nguyen SC, Park DS, Shah PP, Abdill RJ, Lan Y, Yunker R, Jain R, Adelman K, Joyce EF. Co-depletion of NIPBL and WAPL balance cohesin activity to correct gene misexpression. PLoS Genet 2022. [PMID: 36449519 DOI: 10.1101/2022.04.19.488785] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/12/2023] Open
Abstract
The relationship between cohesin-mediated chromatin looping and gene expression remains unclear. NIPBL and WAPL are two opposing regulators of cohesin activity; depletion of either is associated with changes in both chromatin folding and transcription across a wide range of cell types. However, a direct comparison of their individual and combined effects on gene expression in the same cell type is lacking. We find that NIPBL or WAPL depletion in human HCT116 cells each alter the expression of ~2,000 genes, with only ~30% of the genes shared between the conditions. We find that clusters of differentially expressed genes within the same topologically associated domain (TAD) show coordinated misexpression, suggesting some genomic domains are especially sensitive to both more or less cohesin. Finally, co-depletion of NIPBL and WAPL restores the majority of gene misexpression as compared to either knockdown alone. A similar set of NIPBL-sensitive genes are rescued following CTCF co-depletion. Together, this indicates that altered transcription due to reduced cohesin activity can be functionally offset by removal of either its negative regulator (WAPL) or the physical barriers (CTCF) that restrict loop-extrusion events.
Collapse
Affiliation(s)
- Jennifer M Luppino
- Department of Genetics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, United States of America
- Penn Epigenetics Institute, University of Pennsylvania, Philadelphia, Pennsylvania, United States of America
| | - Andrew Field
- Department of Biological Chemistry and Molecular Pharmacology, Blavatnik Institute, Harvard Medical School, Boston, Massachusetts, United States of America
- Ludwig Center at Harvard, Boston, Massachusetts, United States of America
| | - Son C Nguyen
- Department of Genetics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, United States of America
- Penn Epigenetics Institute, University of Pennsylvania, Philadelphia, Pennsylvania, United States of America
| | - Daniel S Park
- Department of Genetics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, United States of America
- Penn Epigenetics Institute, University of Pennsylvania, Philadelphia, Pennsylvania, United States of America
| | - Parisha P Shah
- Penn Epigenetics Institute, University of Pennsylvania, Philadelphia, Pennsylvania, United States of America
- Department of Cell and Developmental Biology, Department of Medicine, Institute of Regenerative Medicine, Penn Cardiovascular Institute, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, United States of America
| | - Richard J Abdill
- Department of Genetics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, United States of America
- Penn Epigenetics Institute, University of Pennsylvania, Philadelphia, Pennsylvania, United States of America
- Department of Cell and Developmental Biology, Department of Medicine, Institute of Regenerative Medicine, Penn Cardiovascular Institute, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, United States of America
| | - Yemin Lan
- Penn Epigenetics Institute, University of Pennsylvania, Philadelphia, Pennsylvania, United States of America
| | - Rebecca Yunker
- Department of Genetics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, United States of America
- Penn Epigenetics Institute, University of Pennsylvania, Philadelphia, Pennsylvania, United States of America
| | - Rajan Jain
- Penn Epigenetics Institute, University of Pennsylvania, Philadelphia, Pennsylvania, United States of America
- Department of Cell and Developmental Biology, Department of Medicine, Institute of Regenerative Medicine, Penn Cardiovascular Institute, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, United States of America
| | - Karen Adelman
- Department of Biological Chemistry and Molecular Pharmacology, Blavatnik Institute, Harvard Medical School, Boston, Massachusetts, United States of America
- Ludwig Center at Harvard, Boston, Massachusetts, United States of America
- The Eli and Edythe L. Broad Institute, Cambridge, Massachusetts, United States of America
| | - Eric F Joyce
- Department of Genetics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, United States of America
- Penn Epigenetics Institute, University of Pennsylvania, Philadelphia, Pennsylvania, United States of America
| |
Collapse
|