1
|
Sabari BR, Hyman AA, Hnisz D. Functional specificity in biomolecular condensates revealed by genetic complementation. Nat Rev Genet 2024:10.1038/s41576-024-00780-4. [PMID: 39433596 DOI: 10.1038/s41576-024-00780-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/05/2024] [Indexed: 10/23/2024]
Abstract
Biomolecular condensates are thought to create subcellular microenvironments that regulate specific biochemical activities. Extensive in vitro work has helped link condensate formation to a wide range of cellular processes, including gene expression, nuclear transport, signalling and stress responses. However, testing the relationship between condensate formation and function in cells is more challenging. In particular, the extent to which the cellular functions of condensates depend on the nature of the molecular interactions through which the condensates form is a major outstanding question. Here, we review results from recent genetic complementation experiments in cells, and highlight how genetic complementation provides important insights into cellular functions and functional specificity of biomolecular condensates. Combined with observations from human genetic disease, these experiments suggest that diverse condensate-promoting regions within cellular proteins confer different condensate compositions, biophysical properties and functions.
Collapse
Affiliation(s)
- Benjamin R Sabari
- Laboratory of Nuclear Organization, Cecil H. and Ida Green Center for Reproductive Biology Sciences, University of Texas Southwestern Medical Center, Dallas, TX, USA.
- Department of Molecular Biology, University of Texas Southwestern Medical Center, Dallas, TX, USA.
| | - Anthony A Hyman
- Max Planck Institute of Molecular Cell Biology and Genetics, Dresden, Germany.
| | - Denes Hnisz
- Max Planck Institute for Molecular Genetics, Berlin, Germany.
| |
Collapse
|
2
|
Niazi F, Parker KA, Mason SJ, Singh S, Schiemann WP, Valadkhan S. Induction of Invasive Basal Phenotype in Triple-Negative Breast Cancers by Long Noncoding RNA BORG. Cancers (Basel) 2024; 16:3241. [PMID: 39335212 PMCID: PMC11430157 DOI: 10.3390/cancers16183241] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2024] [Revised: 08/30/2024] [Accepted: 09/18/2024] [Indexed: 09/30/2024] Open
Abstract
BACKGROUND/OBJECTIVES Long noncoding RNAs (lncRNAs) are known to play key roles in breast cancers; however, detailed mechanistic studies of lncRNA function have not been conducted in large cohorts of breast cancer tumors, nor has inter-donor and inter-subtype variability been taken into consideration for these analyses. Here we provide the first identification and annotation of the human BORG lncRNA gene. METHODS/RESULTS Using multiple tumor cohorts of human breast cancers, we show that while BORG expression is strongly induced in breast tumors as compared to normal breast tissues, the extent of BORG induction varies widely between breast cancer subtypes and even between different tumors within the same subtype. Elevated levels of BORG in breast tumors are associated with the acquisition of core cancer aggression pathways, including those associated with basal tumor and pluripotency phenotypes and with epithelial-mesenchymal transition (EMT) programs. While a subset of BORG-associated pathways was present in high BORG-expressing tumors across all breast cancer subtypes, many were specific to tumors categorized as triple-negative breast cancers. Finally, we show that genes induced by heterologous expression of BORG in murine models of TNBC both in vitro and in vivo strongly overlap with those associated with high BORG expression levels in human TNBC tumors. CONCLUSION Our findings implicate human BORG as a novel driver of the highly aggressive basal TNBC tumor phenotype.
Collapse
Affiliation(s)
- Farshad Niazi
- Department of Molecular Biology and Microbiology, Case Western Reserve University, Cleveland, OH 44106, USA; (F.N.); (S.J.M.)
| | - Kimberly A. Parker
- Department of Biochemistry, Case Western Reserve University School of Medicine, Cleveland, OH 44106, USA;
| | - Sara J. Mason
- Department of Molecular Biology and Microbiology, Case Western Reserve University, Cleveland, OH 44106, USA; (F.N.); (S.J.M.)
| | - Salendra Singh
- Center for Immunotherapy and Precision Immuno-Oncology (CITI), Lerner Research Institute, Cleveland Clinic, Cleveland, OH 44195, USA;
| | - William P. Schiemann
- Department of Biochemistry, Case Western Reserve University School of Medicine, Cleveland, OH 44106, USA;
| | - Saba Valadkhan
- Department of Molecular Biology and Microbiology, Case Western Reserve University, Cleveland, OH 44106, USA; (F.N.); (S.J.M.)
- Department of Biochemistry, Case Western Reserve University School of Medicine, Cleveland, OH 44106, USA;
| |
Collapse
|
3
|
Lei X, Mao S, Li Y, Huang S, Li J, Du W, Kuang C, Yuan K. ERVcancer: a web resource designed for querying activation of human endogenous retroviruses across major cancer types. J Genet Genomics 2024:S1673-8527(24)00241-8. [PMID: 39265822 DOI: 10.1016/j.jgg.2024.09.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2024] [Revised: 09/04/2024] [Accepted: 09/05/2024] [Indexed: 09/14/2024]
Abstract
Human endogenous retroviruses (HERVs) comprise approximately 8% of the human genome, co-opted into the dynamic regulatory network of cellular potency in early embryonic development. In recent studies, resurgent HERVs' transcriptional activity has been frequently observed in many types of human cancers, suggesting their potential functions in the occurrence and progression of malignancy. However, a dedicated web resource for querying the relationship between activation of HERVs and cancer development is lacking. Here, we have constructed a database to explore the sequence information, expression profiles, survival prognosis, and genetic interactions of HERVs in diverse cancer types. Our database currently contains RNA sequencing data of 580 HERVs across 16246 samples, including that of 6478 tumoral and 634 normal tissues, 932 cancer cell lines, as well as 151 early embryonic and 8051 human adult tissues. The primary goal is to provide an easily accessible and user-friendly database for professionals in the fields of bioinformatics, pathology, pharmacology, and related areas, enabling them to efficiently screen the activity of HERVs of interest in normal and cancerous tissues and evaluate the clinical relevance. The ERVcancer database is available at http://kyuanlab.com/ervcancer/.
Collapse
Affiliation(s)
- Xiaoyun Lei
- Hunan Key Laboratory of Molecular Precision Medicine, Department of Oncology, Xiangya Hospital, Central South University, Changsha, Hunan 410008, China; Guangxi Health Commission Key Laboratory of Medical Genetics and Genomics, the Second Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi 530007, China
| | - Song Mao
- Hunan Key Laboratory of Molecular Precision Medicine, Department of Oncology, Xiangya Hospital, Central South University, Changsha, Hunan 410008, China
| | - Yinshuang Li
- Hunan Key Laboratory of Molecular Precision Medicine, Department of Oncology, Xiangya Hospital, Central South University, Changsha, Hunan 410008, China
| | - Shi Huang
- Hunan Key Laboratory of Medical Genetics, School of Life Sciences, Central South University, Changsha, Hunan 410000, China
| | - Jinchen Li
- Hunan Key Laboratory of Medical Genetics, School of Life Sciences, Central South University, Changsha, Hunan 410000, China
| | - Wei Du
- Department of Pathology, Changde Hospital, Xiangya School of Medicine, Central South University, Changde, Hunan 415000, China
| | - Chunmei Kuang
- Hunan Key Laboratory of Molecular Precision Medicine, Department of Oncology, Xiangya Hospital, Central South University, Changsha, Hunan 410008, China
| | - Kai Yuan
- Hunan Key Laboratory of Molecular Precision Medicine, Department of Oncology, Xiangya Hospital, Central South University, Changsha, Hunan 410008, China; Hunan Key Laboratory of Medical Genetics, School of Life Sciences, Central South University, Changsha, Hunan 410000, China; National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, Hunan 410008, China; Furong Laboratory, Changsha, Hunan 410000, China; The Biobank of Xiangya Hospital, Central South University, Changsha, Hunan 410008, China.
| |
Collapse
|
4
|
Naderi J, Magalhaes AP, Kibar G, Stik G, Zhang Y, Mackowiak SD, Wieler HM, Rossi F, Buschow R, Christou-Kent M, Alcoverro-Bertran M, Graf T, Vingron M, Hnisz D. An activity-specificity trade-off encoded in human transcription factors. Nat Cell Biol 2024; 26:1309-1321. [PMID: 38969762 PMCID: PMC11321997 DOI: 10.1038/s41556-024-01411-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2023] [Accepted: 03/20/2024] [Indexed: 07/07/2024]
Abstract
Transcription factors (TFs) control specificity and activity of gene transcription, but whether a relationship between these two features exists is unclear. Here we provide evidence for an evolutionary trade-off between the activity and specificity in human TFs encoded as submaximal dispersion of aromatic residues in their intrinsically disordered protein regions. We identified approximately 500 human TFs that encode short periodic blocks of aromatic residues in their intrinsically disordered regions, resembling imperfect prion-like sequences. Mutation of periodic aromatic residues reduced transcriptional activity, whereas increasing the aromatic dispersion of multiple human TFs enhanced transcriptional activity and reprogramming efficiency, promoted liquid-liquid phase separation in vitro and more promiscuous DNA binding in cells. Together with recent work on enhancer elements, these results suggest an important evolutionary role of suboptimal features in transcriptional control. We propose that rational engineering of amino acid features that alter phase separation may be a strategy to optimize TF-dependent processes, including cellular reprogramming.
Collapse
Affiliation(s)
- Julian Naderi
- Department of Genome Regulation, Max Planck Institute for Molecular Genetics, Berlin, Germany
- Institute of Chemistry and Biochemistry, Department of Biology, Chemistry and Pharmacy, Freie Universität Berlin, Berlin, Germany
| | - Alexandre P Magalhaes
- Department of Genome Regulation, Max Planck Institute for Molecular Genetics, Berlin, Germany
| | - Gözde Kibar
- Department of Computational Molecular Biology, Max Planck Institute for Molecular Genetics, Berlin, Germany
| | - Gregoire Stik
- Centre for Genomic Regulation, The Barcelona Institute of Science and Technology, Barcelona, Spain
- Josep Carreras Leukaemia Research Institute, Badalona, Spain
| | - Yaotian Zhang
- Department of Genome Regulation, Max Planck Institute for Molecular Genetics, Berlin, Germany
| | - Sebastian D Mackowiak
- Department of Genome Regulation, Max Planck Institute for Molecular Genetics, Berlin, Germany
| | - Hannah M Wieler
- Department of Genome Regulation, Max Planck Institute for Molecular Genetics, Berlin, Germany
| | - Francesca Rossi
- Department of Genome Regulation, Max Planck Institute for Molecular Genetics, Berlin, Germany
| | - Rene Buschow
- Microscopy Core Facility, Max Planck Institute for Molecular Genetics, Berlin, Germany
| | - Marie Christou-Kent
- Centre for Genomic Regulation, The Barcelona Institute of Science and Technology, Barcelona, Spain
| | - Marc Alcoverro-Bertran
- Centre for Genomic Regulation, The Barcelona Institute of Science and Technology, Barcelona, Spain
| | - Thomas Graf
- Centre for Genomic Regulation, The Barcelona Institute of Science and Technology, Barcelona, Spain
- Universitat Pompeu Fabra, Barcelona, Spain
| | - Martin Vingron
- Department of Computational Molecular Biology, Max Planck Institute for Molecular Genetics, Berlin, Germany
| | - Denes Hnisz
- Department of Genome Regulation, Max Planck Institute for Molecular Genetics, Berlin, Germany.
| |
Collapse
|
5
|
Hyder U, Challa A, Thornton M, Nandu T, Kraus WL, D'Orso I. KAP1 negatively regulates RNA polymerase II elongation kinetics to activate signal-induced transcription. Nat Commun 2024; 15:5859. [PMID: 38997286 PMCID: PMC11245487 DOI: 10.1038/s41467-024-49905-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2023] [Accepted: 06/20/2024] [Indexed: 07/14/2024] Open
Abstract
Signal-induced transcriptional programs regulate critical biological processes through the precise spatiotemporal activation of Immediate Early Genes (IEGs); however, the mechanisms of transcription induction remain poorly understood. By combining an acute depletion system with several genomics approaches to interrogate synchronized, temporal transcription, we reveal that KAP1/TRIM28 is a first responder that fulfills the temporal and heightened transcriptional demand of IEGs. Acute KAP1 loss triggers an increase in RNA polymerase II elongation kinetics during early stimulation time points. This elongation defect derails the normal progression through the transcriptional cycle during late stimulation time points, ultimately leading to decreased recruitment of the transcription apparatus for re-initiation thereby dampening IEGs transcriptional output. Collectively, KAP1 plays a counterintuitive role by negatively regulating transcription elongation to support full activation across multiple transcription cycles of genes critical for cell physiology and organismal functions.
Collapse
Affiliation(s)
- Usman Hyder
- Department of Microbiology, The University of Texas Southwestern Medical Center, Dallas, TX, 75390, USA
| | - Ashwini Challa
- Department of Microbiology, The University of Texas Southwestern Medical Center, Dallas, TX, 75390, USA
| | - Micah Thornton
- Laboratory of Signaling and Gene Regulation, Cecil H. and Ida Green Center for Reproductive Biology Sciences, The University of Texas Southwestern Medical Center, Dallas, TX, 75390, USA
| | - Tulip Nandu
- Laboratory of Signaling and Gene Regulation, Cecil H. and Ida Green Center for Reproductive Biology Sciences, The University of Texas Southwestern Medical Center, Dallas, TX, 75390, USA
| | - W Lee Kraus
- Laboratory of Signaling and Gene Regulation, Cecil H. and Ida Green Center for Reproductive Biology Sciences, The University of Texas Southwestern Medical Center, Dallas, TX, 75390, USA
| | - Iván D'Orso
- Department of Microbiology, The University of Texas Southwestern Medical Center, Dallas, TX, 75390, USA.
| |
Collapse
|
6
|
Deaville LA, Berrens RV. Technology to the rescue: how to uncover the role of transposable elements in preimplantation development. Biochem Soc Trans 2024; 52:1349-1362. [PMID: 38752836 PMCID: PMC11346443 DOI: 10.1042/bst20231262] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2024] [Revised: 04/23/2024] [Accepted: 04/24/2024] [Indexed: 06/27/2024]
Abstract
Transposable elements (TEs) are highly expressed in preimplantation development. Preimplantation development is the phase when the cells of the early embryo undergo the first cell fate choice and change from being totipotent to pluripotent. A range of studies have advanced our understanding of TEs in preimplantation, as well as their epigenetic regulation and functional roles. However, many questions remain about the implications of TE expression during early development. Challenges originate first due to the abundance of TEs in the genome, and second because of the limited cell numbers in preimplantation. Here we review the most recent technological advancements promising to shed light onto the role of TEs in preimplantation development. We explore novel avenues to identify genomic TE insertions and improve our understanding of the regulatory mechanisms and roles of TEs and their RNA and protein products during early development.
Collapse
Affiliation(s)
- Lauryn A. Deaville
- Institute for Developmental and Regenerative Medicine, Oxford University, IMS-Tetsuya Nakamura Building, Old Road Campus, Roosevelt Dr, Oxford OX3 7TY, U.K
- Department of Paediatrics, Oxford University, Level 2, Children's Hospital, John Radcliffe Headington, Oxford OX3 9DU, U.K
- MRC Weatherall Institute of Molecular Medicine, Oxford University, John Radcliffe Hospital, Oxford OX3 9DS, U.K
| | - Rebecca V. Berrens
- Institute for Developmental and Regenerative Medicine, Oxford University, IMS-Tetsuya Nakamura Building, Old Road Campus, Roosevelt Dr, Oxford OX3 7TY, U.K
- Department of Paediatrics, Oxford University, Level 2, Children's Hospital, John Radcliffe Headington, Oxford OX3 9DU, U.K
| |
Collapse
|
7
|
Lambert GS, Rice BL, Maldonado RJK, Chang J, Parent LJ. Comparative analysis of retroviral Gag-host cell interactions: focus on the nuclear interactome. Retrovirology 2024; 21:13. [PMID: 38898526 PMCID: PMC11186191 DOI: 10.1186/s12977-024-00645-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2024] [Accepted: 05/13/2024] [Indexed: 06/21/2024] Open
Abstract
Retroviruses exploit host proteins to assemble and release virions from infected cells. Previously, most studies focused on interacting partners of retroviral Gag proteins that localize to the cytoplasm or plasma membrane. Given that several full-length Gag proteins have been found in the nucleus, identifying the Gag-nuclear interactome has high potential for novel findings involving previously unknown host processes. Here we systematically compared nuclear factors identified in published HIV-1 proteomic studies and performed our own mass spectrometry analysis using affinity-tagged HIV-1 and RSV Gag proteins mixed with nuclear extracts. We identified 57 nuclear proteins in common between HIV-1 and RSV Gag, and a set of nuclear proteins present in our analysis and ≥ 1 of the published HIV-1 datasets. Many proteins were associated with nuclear processes which could have functional consequences for viral replication, including transcription initiation/elongation/termination, RNA processing, splicing, and chromatin remodeling. Examples include facilitating chromatin remodeling to expose the integrated provirus, promoting expression of viral genes, repressing the transcription of antagonistic cellular genes, preventing splicing of viral RNA, altering splicing of cellular RNAs, or influencing viral or host RNA folding or RNA nuclear export. Many proteins in our pulldowns common to RSV and HIV-1 Gag are critical for transcription, including PolR2B, the second largest subunit of RNA polymerase II (RNAPII), and LEO1, a PAF1C complex member that regulates transcriptional elongation, supporting the possibility that Gag influences the host transcription profile to aid the virus. Through the interaction of RSV and HIV-1 Gag with splicing-related proteins CBLL1, HNRNPH3, TRA2B, PTBP1 and U2AF1, we speculate that Gag could enhance unspliced viral RNA production for translation and packaging. To validate one putative hit, we demonstrated an interaction of RSV Gag with Mediator complex member Med26, required for RNA polymerase II-mediated transcription. Although 57 host proteins interacted with both Gag proteins, unique host proteins belonging to each interactome dataset were identified. These results provide a strong premise for future functional studies to investigate roles for these nuclear host factors that may have shared functions in the biology of both retroviruses, as well as functions specific to RSV and HIV-1, given their distinctive hosts and molecular pathology.
Collapse
Affiliation(s)
- Gregory S Lambert
- Department of Medicine, Penn State College of Medicine, 500 University Drive, Hershey, PA, 17033, USA
| | - Breanna L Rice
- Department of Medicine, Penn State College of Medicine, 500 University Drive, Hershey, PA, 17033, USA
| | - Rebecca J Kaddis Maldonado
- Department of Medicine, Penn State College of Medicine, 500 University Drive, Hershey, PA, 17033, USA
- Department of Microbiology and Immunology, Penn State College of Medicine, 500 University Drive, Hershey, PA, 17033, USA
| | - Jordan Chang
- Department of Medicine, Penn State College of Medicine, 500 University Drive, Hershey, PA, 17033, USA
| | - Leslie J Parent
- Department of Medicine, Penn State College of Medicine, 500 University Drive, Hershey, PA, 17033, USA.
- Department of Microbiology and Immunology, Penn State College of Medicine, 500 University Drive, Hershey, PA, 17033, USA.
| |
Collapse
|
8
|
Mathias KM, Liu Y, Wan L. Dysregulation of transcriptional condensates in human disease: mechanisms, biological functions, and open questions. Curr Opin Genet Dev 2024; 86:102203. [PMID: 38788489 PMCID: PMC11162900 DOI: 10.1016/j.gde.2024.102203] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2023] [Revised: 04/18/2024] [Accepted: 04/22/2024] [Indexed: 05/26/2024]
Abstract
Precise gene expression, crucial for normal development and health, depends on the co-ordinated assembly and function of various factors within the crowded nucleus. Recent evidence suggests that this process is in part regulated by mesoscale compartmentalization and concentration of transcriptional components within condensates, offering a new perspective on gene regulation. Dysregulation of transcriptional condensates is increasingly associated with diseases, indicating a potential role in pathogenesis. In this mini-review, we provide a concise overview of the current understanding of the formation and function of transcriptional condensates, with a specific focus on recent advances in their dysregulation and implications in diseases, notably cancer. We also address limitations in the field and highlight open questions for future research.
Collapse
Affiliation(s)
- Kaeli M Mathias
- Department of Cancer Biology and Abramson Family Cancer Research Institute, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA; Biochemistry Biophysics Chemical Biology Graduate Group, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA; Center for Computational and Genomic Medicine, The Children's Hospital of Philadelphia, Philadelphia, PA 19104, USA
| | - Yiman Liu
- Department of Cancer Biology and Abramson Family Cancer Research Institute, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Liling Wan
- Department of Cancer Biology and Abramson Family Cancer Research Institute, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA; Center for Computational and Genomic Medicine, The Children's Hospital of Philadelphia, Philadelphia, PA 19104, USA; Epigenetics Institute, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA; Institute for Regenerative Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA.
| |
Collapse
|
9
|
Hyder U, Challa A, Thornton M, Nandu T, Kraus WL, D’Orso I. KAP1 negatively regulates RNA polymerase II elongation kinetics to activate signal-induced transcription. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.05.05.592422. [PMID: 38746145 PMCID: PMC11092767 DOI: 10.1101/2024.05.05.592422] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/16/2024]
Abstract
Signal-induced transcriptional programs regulate critical biological processes through the precise spatiotemporal activation of Immediate Early Genes (IEGs); however, the mechanisms of transcription induction remain poorly understood. By combining an acute depletion system with high resolution genomics approaches to interrogate synchronized, temporal transcription, we reveal that KAP1/TRIM28 is a first responder that fulfills the temporal and heightened transcriptional demand of IEGs. Unexpectedly, acute KAP1 loss triggers an increase in RNA polymerase II elongation kinetics during early stimulation time points. This elongation defect derails the normal progression through the transcriptional cycle during late stimulation time points, ultimately leading to decreased recruitment of the transcription apparatus for re-initiation thereby dampening IEGs transcriptional output. Collectively, KAP1 plays a counterintuitive role by negatively regulating transcription elongation to support full activation across multiple transcription cycles of genes critical for cell physiology and organismal functions.
Collapse
Affiliation(s)
- Usman Hyder
- Department of Microbiology, The University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| | - Ashwini Challa
- Department of Microbiology, The University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| | - Micah Thornton
- Laboratory of Signaling and Gene Regulation, Cecil H. and Ida Green Center for Reproductive Biology Sciences, The University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| | - Tulip Nandu
- Laboratory of Signaling and Gene Regulation, Cecil H. and Ida Green Center for Reproductive Biology Sciences, The University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| | - W. Lee Kraus
- Laboratory of Signaling and Gene Regulation, Cecil H. and Ida Green Center for Reproductive Biology Sciences, The University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| | - Iván D’Orso
- Department of Microbiology, The University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| |
Collapse
|
10
|
Wang J, Lu X, Zhang W, Liu GH. Endogenous retroviruses in development and health. Trends Microbiol 2024; 32:342-354. [PMID: 37802660 DOI: 10.1016/j.tim.2023.09.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2023] [Revised: 09/12/2023] [Accepted: 09/13/2023] [Indexed: 10/08/2023]
Abstract
Endogenous retroviruses (ERVs) are evolutionary remnants of retroviral infections in which the viral genome became embedded as a dormant regulatory element within the host germline. When ERVs become activated, they comprehensively rewire genomic regulatory networks of the host and facilitate critical developmental events, such as preimplantation development and placentation, in a manner specific to species, developmental stage, and tissues. However, accumulating evidence suggests that aberrant ERV transcription compromises genome stability and has been implicated in cellular senescence and various pathogenic processes, underscoring the significance of host genomic surveillance mechanisms. Here, we revisit the prominent functions of ERVs in early development and highlight their emerging roles in mammalian post-implantation development and organogenesis. We also discuss their implications for aging and pathological processes such as microbial infection, immune response. Furthermore, we discuss recent advances in stem-cell-based models, single-cell omics, and genome editing technologies, which serve as beacons illuminating the versatile nature of ERVs in mammalian development and health.
Collapse
Affiliation(s)
- Jichang Wang
- Advanced Medical Technology Center, The First Affiliated Hospital, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, 510080, China; Key Laboratory for Stem Cells and Tissue Engineering (Sun Yat-sen University), Ministry of Education, Guangzhou, 510080, China.
| | - Xinyi Lu
- State Key Laboratory of Medicinal Chemical Biology, Nankai University, Tianjin 300350, China.
| | - Weiqi Zhang
- CAS Key Laboratory of Genomic and Precision Medicine, Beijing Institute of Genomics and China National Center for Bioinformation, Chinese Academy of Sciences, Beijing 100101, China.
| | - Guang-Hui Liu
- State Key Laboratory of Membrane Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China; Institute for Stem Cell and Regeneration, Chinese Academy of Sciences, Beijing 100101, China; Beijing Institute for Stem Cell and Regenerative Medicine, Beijing 100101, China; University of Chinese Academy of Sciences, Beijing 100049, China; Advanced Innovation Center for Human Brain Protection, and National Clinical Research Center for Geriatric Disorders, Xuanwu Hospital Capital Medical University, Beijing 100053, China.
| |
Collapse
|
11
|
Vega-Sendino M, Lüttmann FF, Olbrich T, Chen Y, Kuenne C, Stein P, Tillo D, Carey GI, Zhong J, Savy V, Radonova L, Lu T, Saykali B, Kim KP, Domingo CN, Schüler L, Günther S, Bentsen M, Bosnakovski D, Schöler H, Kyba M, Maity TK, Jenkins LM, Looso M, Williams CJ, Kim J, Ruiz S. The homeobox transcription factor DUXBL controls exit from totipotency. Nat Genet 2024; 56:697-709. [PMID: 38509386 PMCID: PMC11149696 DOI: 10.1038/s41588-024-01692-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2022] [Accepted: 02/16/2024] [Indexed: 03/22/2024]
Abstract
In mice, exit from the totipotent two-cell (2C) stage embryo requires silencing of the 2C-associated transcriptional program. However, the molecular mechanisms involved in this process remain poorly understood. Here we demonstrate that the 2C-specific transcription factor double homeobox protein (DUX) mediates an essential negative feedback loop by inducing the expression of DUXBL to promote this silencing. We show that DUXBL gains accessibility to DUX-bound regions specifically upon DUX expression. Furthermore, we determine that DUXBL interacts with TRIM24 and TRIM33, members of the TRIM superfamily involved in gene silencing, and colocalizes with them in nuclear foci upon DUX expression. Importantly, DUXBL overexpression impairs 2C-associated transcription, whereas Duxbl inactivation in mouse embryonic stem cells increases DUX-dependent induction of the 2C-transcriptional program. Consequently, DUXBL deficiency in embryos results in sustained expression of 2C-associated transcripts leading to early developmental arrest. Our study identifies DUXBL as an essential regulator of totipotency exit enabling the first divergence of cell fates.
Collapse
Affiliation(s)
| | - Felipe F Lüttmann
- Max-Planck-Institute for Heart and Lung Research, Bad Nauheim, Germany
- Cardio-Pulmonary Institute, Frankfurt, Germany
| | - Teresa Olbrich
- Laboratory of Genome Integrity, CCR, NCI, NIH, Bethesda, MD, USA
| | - Yanpu Chen
- Max-Planck-Institute for Heart and Lung Research, Bad Nauheim, Germany
- Cardio-Pulmonary Institute, Frankfurt, Germany
- GMU-GIBH Joint School of Life Sciences, The Guangdong-Hong Kong-Macau Joint Laboratory for Cell Fate Regulation and Diseases, Department of Cardiology, Guangzhou Institute of Cardiovascular Disease, Guangdong Key Laboratory of Vascular Diseases, The Second Affiliated Hospital, Guangzhou Medical University, Guangzhou, China
| | - Carsten Kuenne
- Bioinformatics Core Unit (BCU), Max Planck Institute for Heart and Lung Research, Bad Nauheim, Germany
| | - Paula Stein
- Reproductive and Developmental Biology Laboratory, NIEHS, NIH, Research Triangle Park, NC, USA
| | | | - Grace I Carey
- Laboratory of Genome Integrity, CCR, NCI, NIH, Bethesda, MD, USA
| | - Jiasheng Zhong
- Max-Planck-Institute for Heart and Lung Research, Bad Nauheim, Germany
- German Cancer Research Center, Heidelberg, Germany
| | - Virginia Savy
- Reproductive and Developmental Biology Laboratory, NIEHS, NIH, Research Triangle Park, NC, USA
| | - Lenka Radonova
- Reproductive and Developmental Biology Laboratory, NIEHS, NIH, Research Triangle Park, NC, USA
| | - Tianlin Lu
- Max-Planck-Institute for Heart and Lung Research, Bad Nauheim, Germany
- Cardio-Pulmonary Institute, Frankfurt, Germany
| | - Bechara Saykali
- Laboratory of Genome Integrity, CCR, NCI, NIH, Bethesda, MD, USA
| | - Kee-Pyo Kim
- Department of Cell and Developmental Biology, Max Planck Institute for Molecular Biomedicine, Münster, Germany
- Department of Medical Life Sciences, College of Medicine, The Catholic University of Korea, Seoul, Republic of Korea
| | | | - Leah Schüler
- Max-Planck-Institute for Heart and Lung Research, Bad Nauheim, Germany
| | - Stefan Günther
- Max-Planck-Institute for Heart and Lung Research, Bad Nauheim, Germany
- German Center for Cardiovascular Research (DZHK), Partner Site Rhein/Main, Germany
| | - Mette Bentsen
- Bioinformatics Core Unit (BCU), Max Planck Institute for Heart and Lung Research, Bad Nauheim, Germany
| | - Darko Bosnakovski
- Lillehei Heart Institute, Department of Pediatrics, University of Minnesota, Minneapolis, USA
| | - Hans Schöler
- Department of Cell and Developmental Biology, Max Planck Institute for Molecular Biomedicine, Münster, Germany
| | - Michael Kyba
- Lillehei Heart Institute, Department of Pediatrics, University of Minnesota, Minneapolis, USA
| | - Tapan K Maity
- Laboratory of Cell Biology, CCR, NCI, NIH, Bethesda, MD, USA
| | - Lisa M Jenkins
- Laboratory of Cell Biology, CCR, NCI, NIH, Bethesda, MD, USA
| | - Mario Looso
- Cardio-Pulmonary Institute, Frankfurt, Germany
- German Center for Cardiovascular Research (DZHK), Partner Site Rhein/Main, Germany
| | - Carmen J Williams
- Reproductive and Developmental Biology Laboratory, NIEHS, NIH, Research Triangle Park, NC, USA
| | - Johnny Kim
- Max-Planck-Institute for Heart and Lung Research, Bad Nauheim, Germany.
- Cardio-Pulmonary Institute, Frankfurt, Germany.
- German Center for Cardiovascular Research (DZHK), Partner Site Rhein/Main, Germany.
- German Center for Lung Research (DZL), Partner Site Rhein/Main, Germany.
- Institute of Lung Health (ILH), Justus-Liebig-University Giessen, Giessen, Germany.
- The Center for Cardiovascular Regeneration and Immunology at TRON-Translational Oncology at the University Medical Center of the Johannes Gutenberg-University Mainz gGmbH, Mainz, Germany.
| | - Sergio Ruiz
- Laboratory of Genome Integrity, CCR, NCI, NIH, Bethesda, MD, USA.
| |
Collapse
|
12
|
Lambert GS, Rice BL, Kaddis Maldonado RJ, Chang J, Parent LJ. Comparative analysis of retroviral Gag-host cell interactions: focus on the nuclear interactome. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.01.18.575255. [PMID: 38293010 PMCID: PMC10827203 DOI: 10.1101/2024.01.18.575255] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/01/2024]
Abstract
Retroviruses exploit a variety of host proteins to assemble and release virions from infected cells. To date, most studies that examined possible interacting partners of retroviral Gag proteins focused on host proteins that localize primarily to the cytoplasm or plasma membrane. Given the recent findings that several full-length Gag proteins localize to the nucleus, identifying the Gag-nuclear interactome has high potential for novel findings that reveal previously unknown host processes. In this study, we systematically compared nuclear factors identified in published HIV-1 proteomic studies which had used a variety of experimental approaches. In addition, to contribute to this body of knowledge, we report results from a mass spectrometry approach using affinity-tagged (His6) HIV-1 and RSV Gag proteins mixed with nuclear extracts. Taken together, the previous studies-as well as our own-identified potential binding partners of HIV-1 and RSV Gag involved in several nuclear processes, including transcription, splicing, RNA modification, and chromatin remodeling. Although a subset of host proteins interacted with both Gag proteins, there were also unique host proteins belonging to each interactome dataset. To validate one of the novel findings, we demonstrated the interaction of RSV Gag with a member of the Mediator complex, Med26, which is required for RNA polymerase II-mediated transcription. These results provide a strong premise for future functional studies to investigate roles for these nuclear host factors that may have shared functions in the biology of both retroviruses, as well as functions specific to RSV and HIV-1, given their distinctive hosts and molecular pathology.
Collapse
Affiliation(s)
- Gregory S. Lambert
- Department of Medicine, Penn State College of Medicine, 500 University Drive, Hershey, PA 17033, USA
| | - Breanna L. Rice
- Department of Medicine, Penn State College of Medicine, 500 University Drive, Hershey, PA 17033, USA
| | - Rebecca J. Kaddis Maldonado
- Department of Medicine, Penn State College of Medicine, 500 University Drive, Hershey, PA 17033, USA
- Department of Microbiology and Immunology, Penn State College of Medicine, 500 University Drive, Hershey, PA 17033, USA
| | - Jordan Chang
- Department of Medicine, Penn State College of Medicine, 500 University Drive, Hershey, PA 17033, USA
| | - Leslie J. Parent
- Department of Medicine, Penn State College of Medicine, 500 University Drive, Hershey, PA 17033, USA
- Department of Microbiology and Immunology, Penn State College of Medicine, 500 University Drive, Hershey, PA 17033, USA
| |
Collapse
|
13
|
de la Rosa S, del Mar Rigual M, Vargiu P, Ortega S, Djouder N. Endogenous retroviruses shape pluripotency specification in mouse embryos. SCIENCE ADVANCES 2024; 10:eadk9394. [PMID: 38266080 PMCID: PMC10807815 DOI: 10.1126/sciadv.adk9394] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/20/2023] [Accepted: 12/22/2023] [Indexed: 01/26/2024]
Abstract
The smooth and precise transition from totipotency to pluripotency is a key process in embryonic development, generating pluripotent stem cells capable of forming all cell types. While endogenous retroviruses (ERVs) are essential for early development, their precise roles in this transition remains mysterious. Using cutting-edge genetic and biochemical techniques in mice, we identify MERVL-gag, a retroviral protein, as a crucial modulator of pluripotent factors OCT4 and SOX2 during lineage specification. MERVL-gag tightly operates with URI, a prefoldin protein that concurs with pluripotency bias in mouse blastomeres, and which is indeed required for totipotency-to-pluripotency transition. Accordingly, URI loss promotes a stable totipotent-like state and embryo arrest at 2C stage. Mechanistically, URI binds and shields OCT4 and SOX2 from proteasome degradation, while MERVL-gag displaces URI from pluripotent factor interaction, causing their degradation. Our findings reveal the symbiotic coevolution of ERVs with their host cells to ensure the smooth and timely progression of early embryo development.
Collapse
Affiliation(s)
- Sergio de la Rosa
- Growth Factors, Nutrients and Cancer Group, Molecular Oncology Programme, Spanish National Cancer Research Centre (CNIO), Madrid 28029, Spain
| | - María del Mar Rigual
- Growth Factors, Nutrients and Cancer Group, Molecular Oncology Programme, Spanish National Cancer Research Centre (CNIO), Madrid 28029, Spain
| | - Pierfrancesco Vargiu
- Mouse Genome Editing Core Unit, Biotechnology Programme, Spanish National Cancer Research Centre (CNIO), Madrid 28029, Spain
| | - Sagrario Ortega
- Mouse Genome Editing Core Unit, Biotechnology Programme, Spanish National Cancer Research Centre (CNIO), Madrid 28029, Spain
| | - Nabil Djouder
- Growth Factors, Nutrients and Cancer Group, Molecular Oncology Programme, Spanish National Cancer Research Centre (CNIO), Madrid 28029, Spain
| |
Collapse
|
14
|
Lu X. Regulation of endogenous retroviruses in murine embryonic stem cells and early embryos. J Mol Cell Biol 2024; 15:mjad052. [PMID: 37604781 PMCID: PMC10794949 DOI: 10.1093/jmcb/mjad052] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2022] [Revised: 11/24/2022] [Accepted: 08/19/2023] [Indexed: 08/23/2023] Open
Abstract
Endogenous retroviruses (ERVs) are important components of transposable elements that constitute ∼40% of the mouse genome. ERVs exhibit dynamic expression patterns during early embryonic development and are engaged in numerous biological processes. Therefore, ERV expression must be closely monitored in cells. Most studies have focused on the regulation of ERV expression in mouse embryonic stem cells (ESCs) and during early embryonic development. This review touches on the classification, expression, and functions of ERVs in mouse ESCs and early embryos and mainly discusses ERV modulation strategies from the perspectives of transcription, epigenetic modification, nucleosome/chromatin assembly, and post-transcriptional control.
Collapse
Affiliation(s)
- Xinyi Lu
- State Key Laboratory of Medicinal Chemical Biology, Nankai University, Tianjin 300350, China
| |
Collapse
|
15
|
Randolph K, Hyder U, Challa A, Perez E, D’Orso I. Functional Analysis of KAP1/TRIM28 Requirements for HIV-1 Transcription Activation. Viruses 2024; 16:116. [PMID: 38257816 PMCID: PMC10819576 DOI: 10.3390/v16010116] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2023] [Revised: 12/13/2023] [Accepted: 12/22/2023] [Indexed: 01/24/2024] Open
Abstract
HIV-1 latency maintenance and reactivation are regulated by several viral and host factors. One such factor is Krüppel-associated box (KRAB)-associated protein 1 (KAP1: also named TRIM28 or TIF1β). While initial studies have revealed KAP1 to be a positive regulator of latency reversal in transformed and primary CD4+ T cells, subsequent studies have proposed KAP1 to be a repressor required for latency maintenance. Given this discrepancy, in this study, we re-examine KAP1 transcription regulatory functions using a chemical genetics strategy to acutely deplete KAP1 expression to avoid the accumulation of indirect effects. Notably, KAP1 acute loss partially decreased HIV-1 promoter activity in response to activating signals, a function that can be restored upon complementation with exogenous KAP1, thus revealing that KAP1-mediated activation is on target. By combining comprehensive KAP1 domain deletion and mutagenesis in a cell-based reporter assay, we genetically defined the RING finger domain and an Intrinsically Disordered Region as key activating features. Together, our study solidifies the notion that KAP1 activates HIV-1 transcription by exploiting its multi-domain protein arrangement via previously unknown domains and functions.
Collapse
Affiliation(s)
| | | | | | | | - Iván D’Orso
- Department of Microbiology, The University of Texas Southwestern Medical Center, Dallas, TX 75390, USA; (K.R.); (U.H.)
| |
Collapse
|
16
|
Guo Y, Li TD, Modzelewski AJ, Siomi H. Retrotransposon renaissance in early embryos. Trends Genet 2024; 40:39-51. [PMID: 37949723 DOI: 10.1016/j.tig.2023.10.010] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2023] [Revised: 10/13/2023] [Accepted: 10/16/2023] [Indexed: 11/12/2023]
Abstract
Despite being the predominant genetic elements in mammalian genomes, retrotransposons were often dismissed as genomic parasites with ambiguous biological significance. However, recent studies reveal their functional involvement in early embryogenesis, encompassing crucial processes such as zygotic genome activation (ZGA) and cell fate decision. This review underscores the paradigm shift in our understanding of retrotransposon roles during early preimplantation development, as well as their rich functional reservoir that is exploited by the host to provide cis-regulatory elements, noncoding RNAs, and functional proteins. The rapid advancement in long-read sequencing, low input multiomics profiling, advanced in vitro systems, and precise gene editing techniques encourages further dissection of retrotransposon functions that were once obscured by the intricacies of their genomic footprints.
Collapse
Affiliation(s)
- Youjia Guo
- Department of Molecular Biology, Keio University School of Medicine, Shinjuku, Tokyo 160-8582, Japan
| | - Ten D Li
- Department of Biomedical Sciences, School of Veterinary Medicine, University of Pennsylvania, Philadelphia, PA 19104-4539, USA
| | - Andrew J Modzelewski
- Department of Biomedical Sciences, School of Veterinary Medicine, University of Pennsylvania, Philadelphia, PA 19104-4539, USA.
| | - Haruhiko Siomi
- Department of Molecular Biology, Keio University School of Medicine, Shinjuku, Tokyo 160-8582, Japan; Human Biology Microbiome Quantum Research Center (WPI-Bio2Q), Keio University, Tokyo 160-8582, Japan.
| |
Collapse
|
17
|
Demmerle J, Hao S, Cai D. Transcriptional condensates and phase separation: condensing information across scales and mechanisms. Nucleus 2023; 14:2213551. [PMID: 37218279 PMCID: PMC10208215 DOI: 10.1080/19491034.2023.2213551] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2023] [Revised: 04/26/2023] [Accepted: 05/10/2023] [Indexed: 05/24/2023] Open
Abstract
Transcription is the fundamental process of gene expression, which in eukaryotes occurs within the complex physicochemical environment of the nucleus. Decades of research have provided extreme detail in the molecular and functional mechanisms of transcription, but the spatial and genomic organization of transcription remains mysterious. Recent discoveries show that transcriptional components can undergo phase separation and create distinct compartments inside the nucleus, providing new models through which to view the transcription process in eukaryotes. In this review, we focus on transcriptional condensates and their phase separation-like behaviors. We suggest differentiation between physical descriptions of phase separation and the complex and dynamic biomolecular assemblies required for productive gene expression, and we discuss how transcriptional condensates are central to organizing the three-dimensional genome across spatial and temporal scales. Finally, we map approaches for therapeutic manipulation of transcriptional condensates and ask what technical advances are needed to understand transcriptional condensates more completely.
Collapse
Affiliation(s)
- Justin Demmerle
- Department of Biochemistry and Molecular Biology, Johns Hopkins Bloomberg School of Public Health, Baltimore, MD, USA
| | - Siyuan Hao
- Department of Biochemistry and Molecular Biology, Johns Hopkins Bloomberg School of Public Health, Baltimore, MD, USA
| | - Danfeng Cai
- Department of Biochemistry and Molecular Biology, Johns Hopkins Bloomberg School of Public Health, Baltimore, MD, USA
- Department of Biophysics and Biophysical Chemistry, Johns Hopkins School of Medicine, Baltimore, MD, USA
- Department of Oncology, Johns Hopkins School of Medicine, Baltimore, MD, USA
| |
Collapse
|
18
|
Murphy PJ, Berger F. The chromatin source-sink hypothesis: a shared mode of chromatin-mediated regulations. Development 2023; 150:dev201989. [PMID: 38771301 PMCID: PMC10629678 DOI: 10.1242/dev.201989] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2023] [Accepted: 09/12/2023] [Indexed: 11/05/2023]
Abstract
We propose that several chromatin-mediated regulatory processes are dominated by source-sink relationships in which factors operate as 'sources' to produce or provide a resource and compete with each other to occupy separate 'sinks'. In this model, large portions of genomic DNA operate as 'sinks', which are filled by 'sources', such as available histone variants, covalent modifications to histones, the readers of these modifications and non-coding RNAs. Competing occupation for the sinks by different sources leads to distinct states of genomic equilibrium in differentiated cells. During dynamic developmental events, such as sexual reproduction, we propose that dramatic and rapid reconfiguration of source-sink relationships modifies chromatin states. We envision that re-routing of sources could occur by altering the dimensions of the sink, by reconfiguration of existing sink occupation or by varying the size of the source, providing a central mechanism to explain a plethora of epigenetic phenomena, which contribute to phenotypic variegation, zygotic genome activation and nucleolar dominance.
Collapse
Affiliation(s)
- Patrick J. Murphy
- University of Rochester, Department of Biomedical Genetics and Department of Biology, 601 Elmwood Ave., Rochester NY 14620, USA
| | - Frédéric Berger
- Gregor Mendel Institute, Austrian Academy of Sciences, Vienna BioCenter; Dr. Bohr-Gasse 3, 1030 Vienna, Austria
| |
Collapse
|
19
|
Meng FW, Murphy KE, Makowski CE, Delatte B, Murphy PJ. Competition for H2A.Z underlies the developmental impacts of repetitive element de-repression. Development 2023; 150:dev202338. [PMID: 37938830 PMCID: PMC10651094 DOI: 10.1242/dev.202338] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2023] [Accepted: 10/10/2023] [Indexed: 11/10/2023]
Abstract
The histone variant H2A.Z is central to early embryonic development, determining transcriptional competency through chromatin regulation of gene promoters and enhancers. In addition to genic loci, we find that H2A.Z resides at a subset of evolutionarily young repetitive elements, including DNA transposons, long interspersed nuclear elements and long terminal repeats, during early zebrafish development. Moreover, increases in H2A.Z occur when repetitive elements become transcriptionally active. Acquisition of H2A.Z corresponds with a reduction in the levels of the repressive histone modification H3K9me3 and a moderate increase in chromatin accessibility. Notably, however, de-repression of repetitive elements also leads to a significant reduction in H2A.Z over non-repetitive genic loci. Genic loss of H2A.Z is accompanied by transcriptional silencing at adjacent coding sequences, but remarkably, these impacts are mitigated by augmentation of total H2A.Z protein via transgenic overexpression. Our study reveals that levels of H2A.Z protein determine embryonic sensitivity to de-repression of repetitive elements, that repetitive elements can function as a nuclear sink for epigenetic factors and that competition for H2A.Z greatly influences overall transcriptional output during development. These findings uncover general mechanisms in which counteractive biological processes underlie phenotypic outcomes.
Collapse
Affiliation(s)
- Fanju W. Meng
- University of Rochester Medical Center, Rochester, NY 14642, USA
| | | | | | - Benjamin Delatte
- Advanced Research Laboratory, Active Motif, 1914 Palomar Oaks Way STE 150, Carlsbad, CA 92008, USA
| | | |
Collapse
|
20
|
Gureghian V, Herbst H, Kozar I, Mihajlovic K, Malod-Dognin N, Ceddia G, Angeli C, Margue C, Randic T, Philippidou D, Nomigni MT, Hemedan A, Tranchevent LC, Longworth J, Bauer M, Badkas A, Gaigneaux A, Muller A, Ostaszewski M, Tolle F, Pržulj N, Kreis S. A multi-omics integrative approach unravels novel genes and pathways associated with senescence escape after targeted therapy in NRAS mutant melanoma. Cancer Gene Ther 2023; 30:1330-1345. [PMID: 37420093 PMCID: PMC10581906 DOI: 10.1038/s41417-023-00640-z] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2023] [Revised: 05/19/2023] [Accepted: 06/21/2023] [Indexed: 07/09/2023]
Abstract
Therapy Induced Senescence (TIS) leads to sustained growth arrest of cancer cells. The associated cytostasis has been shown to be reversible and cells escaping senescence further enhance the aggressiveness of cancers. Chemicals specifically targeting senescent cells, so-called senolytics, constitute a promising avenue for improved cancer treatment in combination with targeted therapies. Understanding how cancer cells evade senescence is needed to optimise the clinical benefits of this therapeutic approach. Here we characterised the response of three different NRAS mutant melanoma cell lines to a combination of CDK4/6 and MEK inhibitors over 33 days. Transcriptomic data show that all cell lines trigger a senescence programme coupled with strong induction of interferons. Kinome profiling revealed the activation of Receptor Tyrosine Kinases (RTKs) and enriched downstream signaling of neurotrophin, ErbB and insulin pathways. Characterisation of the miRNA interactome associates miR-211-5p with resistant phenotypes. Finally, iCell-based integration of bulk and single-cell RNA-seq data identifies biological processes perturbed during senescence and predicts 90 new genes involved in its escape. Overall, our data associate insulin signaling with persistence of a senescent phenotype and suggest a new role for interferon gamma in senescence escape through the induction of EMT and the activation of ERK5 signaling.
Collapse
Affiliation(s)
- Vincent Gureghian
- Department of Life Sciences and Medicine, University of Luxembourg, 6, Avenue du Swing, L-4367, Belvaux, Luxembourg
| | - Hailee Herbst
- Department of Life Sciences and Medicine, University of Luxembourg, 6, Avenue du Swing, L-4367, Belvaux, Luxembourg
| | - Ines Kozar
- Laboratoire National de Santé, Dudelange, Luxembourg
| | | | | | - Gaia Ceddia
- Barcelona Supercomputing Center, 08034, Barcelona, Spain
| | - Cristian Angeli
- Department of Life Sciences and Medicine, University of Luxembourg, 6, Avenue du Swing, L-4367, Belvaux, Luxembourg
| | - Christiane Margue
- Department of Life Sciences and Medicine, University of Luxembourg, 6, Avenue du Swing, L-4367, Belvaux, Luxembourg
| | - Tijana Randic
- Department of Life Sciences and Medicine, University of Luxembourg, 6, Avenue du Swing, L-4367, Belvaux, Luxembourg
| | - Demetra Philippidou
- Department of Life Sciences and Medicine, University of Luxembourg, 6, Avenue du Swing, L-4367, Belvaux, Luxembourg
| | - Milène Tetsi Nomigni
- Department of Life Sciences and Medicine, University of Luxembourg, 6, Avenue du Swing, L-4367, Belvaux, Luxembourg
| | - Ahmed Hemedan
- Luxembourg Centre for Systems Biomedicine, University of Luxembourg, Esch-sur-Alzette, Luxembourg
| | - Leon-Charles Tranchevent
- Luxembourg Centre for Systems Biomedicine, University of Luxembourg, Esch-sur-Alzette, Luxembourg
| | - Joseph Longworth
- Experimental and Molecular Immunology, Department of Infection and Immunity, Luxembourg Institute of Health, Esch-sur-Alzette, Luxembourg
| | - Mark Bauer
- Department of Life Sciences and Medicine, University of Luxembourg, 6, Avenue du Swing, L-4367, Belvaux, Luxembourg
| | - Apurva Badkas
- Department of Life Sciences and Medicine, University of Luxembourg, 6, Avenue du Swing, L-4367, Belvaux, Luxembourg
| | - Anthoula Gaigneaux
- Department of Life Sciences and Medicine, University of Luxembourg, 6, Avenue du Swing, L-4367, Belvaux, Luxembourg
| | - Arnaud Muller
- LuxGen, TMOH and Bioinformatics platform, Data Integration and Analysis unit, Luxembourg Institute of Health, Esch-sur-Alzette, Luxembourg
| | - Marek Ostaszewski
- Luxembourg Centre for Systems Biomedicine, University of Luxembourg, Esch-sur-Alzette, Luxembourg
| | - Fabrice Tolle
- Department of Life Sciences and Medicine, University of Luxembourg, 6, Avenue du Swing, L-4367, Belvaux, Luxembourg
| | - Nataša Pržulj
- Barcelona Supercomputing Center, 08034, Barcelona, Spain
- Department of Computer Science, University College London, London, WC1E 6BT, UK
- ICREA, Pg. Lluís Companys 23, 08010, Barcelona, Spain
| | - Stephanie Kreis
- Department of Life Sciences and Medicine, University of Luxembourg, 6, Avenue du Swing, L-4367, Belvaux, Luxembourg.
| |
Collapse
|
21
|
Hörberg J, Reymer A. Decoding the dual recognition mechanism of the glucocorticoid receptor for DNA and RNA: sequence versus shape. Sci Rep 2023; 13:16125. [PMID: 37752333 PMCID: PMC10522765 DOI: 10.1038/s41598-023-43244-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2023] [Accepted: 09/21/2023] [Indexed: 09/28/2023] Open
Abstract
Transcription factors (TFs) regulate eukaryotic transcription through selective DNA-binding, can also specifically interact with RNA, which may present another layer of transcriptional control. The mechanisms of the TFs-DNA recognition are often well-characterised, while the details of TFs-RNA complexation are less understood. Here we investigate the dual recognition mechanism of the glucocorticoid receptor (GR), which interacts with similar affinities with consensus DNA and diverse RNA hairpin motifs but discriminates against uniform dsRNA. Using atomic molecular dynamics simulations, we demonstrate that the GR binding to nucleic acids requires a wide and shallow groove pocket. The protein effectively moulds its binding site within DNA major groove, which enables base-specific interactions. Contrary, the GR binding has little effect on the grooves geometry of RNA systems, most notably in uniform dsRNA. Instead, a hairpin motif in RNA yields a wide and shallow major groove pocket, allowing the protein to anchor itself through nonspecific electrostatic contacts with RNA backbone. Addition of a bulge increases RNA hairpin flexibility, which leads to a greater number of GR-RNA contacts and, thus, higher affinity. Thus, the combination of structural motifs defines the GR-RNA selective binding: a recognition mechanism, which may be shared by other zinc finger TFs.
Collapse
Affiliation(s)
- Johanna Hörberg
- Department of Chemistry and Molecular Biology, University of Gothenburg, 405 30, Göteborg, Sweden
| | - Anna Reymer
- Department of Chemistry and Molecular Biology, University of Gothenburg, 405 30, Göteborg, Sweden.
| |
Collapse
|
22
|
Chen S, Wang J, Zhang K, Ma B, Li X, Wei R, Nian H. LncRNA Neat1 targets NonO and miR-128-3p to promote antigen-specific Th17 cell responses and autoimmune inflammation. Cell Death Dis 2023; 14:610. [PMID: 37716986 PMCID: PMC10505237 DOI: 10.1038/s41419-023-06132-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2023] [Revised: 09/01/2023] [Accepted: 09/06/2023] [Indexed: 09/18/2023]
Abstract
Long non-coding RNAs (lncRNAs) interaction with RNA-Binding proteins (RBPs) plays an important role in immunological processes. The generation of antigen-specific Th17 cells is closely associated with autoimmune pathogenesis. However, the function of lncRNA-RBP interactions in the regulation of pathogenic Th17 cell responses during autoimmunity remains poorly understood. Here, we found that lncRNA Neat1, highly expressed in Th17 cells, promoted antigen-specific Th17 cell responses. Both global and CD4+ T cell-specific knockdown of Neat1 protected mice against the development of experimental autoimmune uveitis (EAU). Mechanistically, Neat1 regulated RNA-Binding protein NonO, thus relieving IL-17 and IL-23R from NonO-mediated transcriptional repression and supporting antigen-specific Th17 cell responses. In addition, Neat1 also modulated miR-128-3p/NFAT5 axis to increase the expression of IL-17 and IL-23R, leading to augmented Th17 cell responses. Our findings elucidate a previously unrecognized mechanistic insight into the action of Neat1 in promoting antigen-specific Th17 responses and autoimmunity, and may facilitate the development of therapeutic targets for T cell-mediated autoimmune diseases.
Collapse
Affiliation(s)
- Sisi Chen
- Tianjin Key Laboratory of Retinal Functions and Diseases, Tianjin Branch of National Clinical Research Center for Ocular Disease, Eye Institute and School of Optometry, Tianjin Medical University Eye Hospital, Tianjin, 300384, China
| | - Jiali Wang
- Tianjin Key Laboratory of Retinal Functions and Diseases, Tianjin Branch of National Clinical Research Center for Ocular Disease, Eye Institute and School of Optometry, Tianjin Medical University Eye Hospital, Tianjin, 300384, China
| | - Kailang Zhang
- Tianjin Key Laboratory of Retinal Functions and Diseases, Tianjin Branch of National Clinical Research Center for Ocular Disease, Eye Institute and School of Optometry, Tianjin Medical University Eye Hospital, Tianjin, 300384, China
| | - Binyun Ma
- Department of Medicine/Hematology, Keck School of Medicine of the University of Southern California, Los Angeles, CA, 90033, USA
| | - Xiaorong Li
- Tianjin Key Laboratory of Retinal Functions and Diseases, Tianjin Branch of National Clinical Research Center for Ocular Disease, Eye Institute and School of Optometry, Tianjin Medical University Eye Hospital, Tianjin, 300384, China
| | - Ruihua Wei
- Tianjin Key Laboratory of Retinal Functions and Diseases, Tianjin Branch of National Clinical Research Center for Ocular Disease, Eye Institute and School of Optometry, Tianjin Medical University Eye Hospital, Tianjin, 300384, China
| | - Hong Nian
- Tianjin Key Laboratory of Retinal Functions and Diseases, Tianjin Branch of National Clinical Research Center for Ocular Disease, Eye Institute and School of Optometry, Tianjin Medical University Eye Hospital, Tianjin, 300384, China.
| |
Collapse
|
23
|
Sun X, Zhang T, Tong B, Cheng L, Jiang W, Sun Y. POGZ suppresses 2C transcriptional program and retrotransposable elements. Cell Rep 2023; 42:112867. [PMID: 37494184 DOI: 10.1016/j.celrep.2023.112867] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2022] [Revised: 03/23/2023] [Accepted: 07/11/2023] [Indexed: 07/28/2023] Open
Abstract
The POGZ gene has been found frequently mutated in neurodevelopmental disorders (NDDs) such as autism spectrum disorder (ASD) and intellectual disability (ID). We have recently shown that POGZ maintains mouse embryonic stem cells (ESCs). However, the exact mechanisms remain unclear. Here, we show that POGZ plays an important role in the maintenance of ESCs by silencing Dux and endogenous retroviruses (ERVs). POGZ maintains a silent chromatin state at Dux and ERVs by associating with and recruiting TRIM28 and SETDB1, and its loss leads to decreased levels of H3K9me3/H4K20me3, resulting in up-regulation of 2C transcripts and ESC transition to a 2C-like state. POGZ suppresses different classes of ERVs through direct (IAPEy, the intracisternal A-type particle elements) and indirect regulation (MERVL). Activation of POGZ-bound ERVs is associated with up-regulation of nearby neural disease genes such as Serpina3m. Our findings provide important insights into understanding the disease mechanism caused by POGZ dysfunction.
Collapse
Affiliation(s)
- Xiaoyun Sun
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan 430072, P.R. China
| | - Tianzhe Zhang
- Department of Biological Repositories, Frontier Science Center for Immunology and Metabolism, Medical Research Institute, Wuhan University, Wuhan 430071, China
| | - Bei Tong
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan 430072, P.R. China
| | - Linxi Cheng
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan 430072, P.R. China
| | - Wei Jiang
- Department of Biological Repositories, Frontier Science Center for Immunology and Metabolism, Medical Research Institute, Wuhan University, Wuhan 430071, China
| | - Yuhua Sun
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan 430072, P.R. China; The Innovation of Seed Design, Chinese Academy of Sciences, Wuhan 430072, P.R. China; Hubei Hongshan Laboratory, Wuhan 430070, P.R. China.
| |
Collapse
|
24
|
Lushpinskaia IP, Flores-Solis D, Zweckstetter M. Structure and phase separation of the C-terminal domain of RNA polymerase II. Biol Chem 2023; 404:839-844. [PMID: 37331973 DOI: 10.1515/hsz-2023-0136] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2023] [Accepted: 06/01/2023] [Indexed: 06/20/2023]
Abstract
The repetitive heptads in the C-terminal domain (CTD) of RPB1, the largest subunit of RNA Polymerase II (Pol II), play a critical role in the regulation of Pol II-based transcription. Recent findings on the structure of the CTD in the pre-initiation complex determined by cryo-EM and the novel phase separation properties of key transcription components offers an expanded mechanistic interpretation of the spatiotemporal distribution of Pol II during transcription. Current experimental evidence further suggests an exquisite balance between CTD's local structure and an array of multivalent interactions that drive phase separation of Pol II and thus shape its transcriptional activity.
Collapse
Affiliation(s)
- Irina P Lushpinskaia
- German Center for Neurodegenerative Diseases (DZNE), Von-Siebold Straße 3A, D-35075 Göttingen, Germany
| | - David Flores-Solis
- German Center for Neurodegenerative Diseases (DZNE), Von-Siebold Straße 3A, D-35075 Göttingen, Germany
| | - Markus Zweckstetter
- German Center for Neurodegenerative Diseases (DZNE), Von-Siebold Straße 3A, D-35075 Göttingen, Germany
- Department of NMR-based Structural Biology, Max Planck Institute for Multidisciplinary Sciences, Am Faßberg 11, D-37077 Göttingen, Germany
| |
Collapse
|
25
|
Oksuz O, Henninger JE, Warneford-Thomson R, Zheng MM, Erb H, Vancura A, Overholt KJ, Hawken SW, Banani SF, Lauman R, Reich LN, Robertson AL, Hannett NM, Lee TI, Zon LI, Bonasio R, Young RA. Transcription factors interact with RNA to regulate genes. Mol Cell 2023; 83:2449-2463.e13. [PMID: 37402367 PMCID: PMC10529847 DOI: 10.1016/j.molcel.2023.06.012] [Citation(s) in RCA: 59] [Impact Index Per Article: 59.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2022] [Revised: 03/16/2023] [Accepted: 06/06/2023] [Indexed: 07/06/2023]
Abstract
Transcription factors (TFs) orchestrate the gene expression programs that define each cell's identity. The canonical TF accomplishes this with two domains, one that binds specific DNA sequences and the other that binds protein coactivators or corepressors. We find that at least half of TFs also bind RNA, doing so through a previously unrecognized domain with sequence and functional features analogous to the arginine-rich motif of the HIV transcriptional activator Tat. RNA binding contributes to TF function by promoting the dynamic association between DNA, RNA, and TF on chromatin. TF-RNA interactions are a conserved feature important for vertebrate development and disrupted in disease. We propose that the ability to bind DNA, RNA, and protein is a general property of many TFs and is fundamental to their gene regulatory function.
Collapse
Affiliation(s)
- Ozgur Oksuz
- Whitehead Institute for Biomedical Research, Cambridge, MA 02142, USA
| | | | - Robert Warneford-Thomson
- Epigenetics Institute, University of Pennsylvania, Perelman School of Medicine, Philadelphia, PA 19104, USA; Department of Cell and Developmental Biology, University of Pennsylvania, Perelman School of Medicine, Philadelphia, PA 19104, USA
| | - Ming M Zheng
- Whitehead Institute for Biomedical Research, Cambridge, MA 02142, USA; Department of Physics, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| | - Hailey Erb
- Whitehead Institute for Biomedical Research, Cambridge, MA 02142, USA
| | - Adrienne Vancura
- Whitehead Institute for Biomedical Research, Cambridge, MA 02142, USA
| | - Kalon J Overholt
- Whitehead Institute for Biomedical Research, Cambridge, MA 02142, USA; Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| | - Susana Wilson Hawken
- Whitehead Institute for Biomedical Research, Cambridge, MA 02142, USA; Program of Computational & Systems Biology, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| | - Salman F Banani
- Whitehead Institute for Biomedical Research, Cambridge, MA 02142, USA; Department of Pathology, Brigham and Women's Hospital, Harvard Medical School, Boston, MA 02115, USA
| | - Richard Lauman
- Epigenetics Institute, University of Pennsylvania, Perelman School of Medicine, Philadelphia, PA 19104, USA; Department of Cell and Developmental Biology, University of Pennsylvania, Perelman School of Medicine, Philadelphia, PA 19104, USA
| | - Lauren N Reich
- Epigenetics Institute, University of Pennsylvania, Perelman School of Medicine, Philadelphia, PA 19104, USA; Department of Cell and Developmental Biology, University of Pennsylvania, Perelman School of Medicine, Philadelphia, PA 19104, USA
| | - Anne L Robertson
- Stem Cell Program, Division of Hematology/Oncology, Boston Children's Hospital and Dana Farber Cancer Institute, Boston, MA 02115, USA; Howard Hughes Medical Institute, Boston, MA 02115, USA
| | - Nancy M Hannett
- Whitehead Institute for Biomedical Research, Cambridge, MA 02142, USA
| | - Tong I Lee
- Whitehead Institute for Biomedical Research, Cambridge, MA 02142, USA
| | - Leonard I Zon
- Stem Cell Program, Division of Hematology/Oncology, Boston Children's Hospital and Dana Farber Cancer Institute, Boston, MA 02115, USA; Harvard Medical School, Boston, MA 02115, USA; Howard Hughes Medical Institute, Boston, MA 02115, USA; Stem Cell and Regenerative Biology Department, Harvard University, Cambridge, MA 02138, USA
| | - Roberto Bonasio
- Epigenetics Institute, University of Pennsylvania, Perelman School of Medicine, Philadelphia, PA 19104, USA; Department of Cell and Developmental Biology, University of Pennsylvania, Perelman School of Medicine, Philadelphia, PA 19104, USA
| | - Richard A Young
- Whitehead Institute for Biomedical Research, Cambridge, MA 02142, USA; Department of Biology, Massachusetts Institute of Technology, Cambridge, MA 02139, USA.
| |
Collapse
|
26
|
Schede HH, Natarajan P, Chakraborty AK, Shrinivas K. A model for organization and regulation of nuclear condensates by gene activity. Nat Commun 2023; 14:4152. [PMID: 37438363 DOI: 10.1038/s41467-023-39878-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2022] [Accepted: 07/03/2023] [Indexed: 07/14/2023] Open
Abstract
Condensation by phase separation has recently emerged as a mechanism underlying many nuclear compartments essential for cellular functions. Nuclear condensates enrich nucleic acids and proteins, localize to specific genomic regions, and often promote gene expression. How diverse properties of nuclear condensates are shaped by gene organization and activity is poorly understood. Here, we develop a physics-based model to interrogate how spatially-varying transcription activity impacts condensate properties and dynamics. Our model predicts that spatial clustering of active genes can enable precise localization and de novo nucleation of condensates. Strong clustering and high activity results in aspherical condensate morphologies. Condensates can flow towards distant gene clusters and competition between multiple clusters lead to stretched morphologies and activity-dependent repositioning. Overall, our model predicts and recapitulates morphological and dynamical features of diverse nuclear condensates and offers a unified mechanistic framework to study the interplay between non-equilibrium processes, spatially-varying transcription, and multicomponent condensates in cell biology.
Collapse
Affiliation(s)
- Halima H Schede
- School of Life Sciences, École Polytechnique Fédérale Lausanne, CH-1015, Lausanne, Switzerland
- Department of Chemical Engineering, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Pradeep Natarajan
- Department of Chemical Engineering, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Arup K Chakraborty
- Department of Chemical Engineering, Massachusetts Institute of Technology, Cambridge, MA, USA
- Institute for Medical Engineering and Science, Massachusetts Institute of Technology, Cambridge, MA, USA
- Department of Physics, Massachusetts Institute of Technology, Cambridge, MA, USA
- Department of Chemistry, Massachusetts Institute of Technology, Cambridge, MA, 02139, USA
| | - Krishna Shrinivas
- NSF-Simons Center for Mathematical & Statistical Analysis of Biology, Harvard University, Cambridge, MA, USA.
| |
Collapse
|
27
|
Sampath Kumar A, Tian L, Bolondi A, Hernández AA, Stickels R, Kretzmer H, Murray E, Wittler L, Walther M, Barakat G, Haut L, Elkabetz Y, Macosko EZ, Guignard L, Chen F, Meissner A. Spatiotemporal transcriptomic maps of whole mouse embryos at the onset of organogenesis. Nat Genet 2023; 55:1176-1185. [PMID: 37414952 PMCID: PMC10335937 DOI: 10.1038/s41588-023-01435-6] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2023] [Accepted: 05/25/2023] [Indexed: 07/08/2023]
Abstract
Spatiotemporal orchestration of gene expression is required for proper embryonic development. The use of single-cell technologies has begun to provide improved resolution of early regulatory dynamics, including detailed molecular definitions of most cell states during mouse embryogenesis. Here we used Slide-seq to build spatial transcriptomic maps of complete embryonic day (E) 8.5 and E9.0, and partial E9.5 embryos. To support their utility, we developed sc3D, a tool for reconstructing and exploring three-dimensional 'virtual embryos', which enables the quantitative investigation of regionalized gene expression patterns. Our measurements along the main embryonic axes of the developing neural tube revealed several previously unannotated genes with distinct spatial patterns. We also characterized the conflicting transcriptional identity of 'ectopic' neural tubes that emerge in Tbx6 mutant embryos. Taken together, we present an experimental and computational framework for the spatiotemporal investigation of whole embryonic structures and mutant phenotypes.
Collapse
Affiliation(s)
- Abhishek Sampath Kumar
- Department of Genome Regulation, Max Planck Institute for Molecular Genetics, Berlin, Germany
- Institute of Biotechnology, Technische Universität Berlin, Berlin, Germany
| | - Luyi Tian
- Broad Institute of MIT and Harvard, Cambridge, MA, USA
| | - Adriano Bolondi
- Department of Genome Regulation, Max Planck Institute for Molecular Genetics, Berlin, Germany
| | - Amèlia Aragonés Hernández
- Department of Genome Regulation, Max Planck Institute for Molecular Genetics, Berlin, Germany
- Institute of Chemistry and Biochemistry, Freie Universität Berlin, Berlin, Germany
| | - Robert Stickels
- Broad Institute of MIT and Harvard, Cambridge, MA, USA
- Graduate School of Arts and Sciences, Harvard University, Cambridge, MA, USA
| | - Helene Kretzmer
- Department of Genome Regulation, Max Planck Institute for Molecular Genetics, Berlin, Germany
| | - Evan Murray
- Broad Institute of MIT and Harvard, Cambridge, MA, USA
| | - Lars Wittler
- Department of Developmental Genetics, Max Planck Institute for Molecular Genetics, Berlin, Germany
| | - Maria Walther
- Department of Genome Regulation, Max Planck Institute for Molecular Genetics, Berlin, Germany
| | - Gabriel Barakat
- Department of Genome Regulation, Max Planck Institute for Molecular Genetics, Berlin, Germany
| | - Leah Haut
- Department of Genome Regulation, Max Planck Institute for Molecular Genetics, Berlin, Germany
- Institute of Chemistry and Biochemistry, Freie Universität Berlin, Berlin, Germany
| | - Yechiel Elkabetz
- Department of Genome Regulation, Max Planck Institute for Molecular Genetics, Berlin, Germany
| | - Evan Z Macosko
- Broad Institute of MIT and Harvard, Cambridge, MA, USA
- Department of Psychiatry, Massachusetts General Hospital, Boston, MA, USA
| | - Léo Guignard
- Aix Marseille University, Toulon University, Centre National de la Recherche Scientifique, Laboratoire d'Informatique et Systèmes 7020, Turing Centre for Living Systems, Marseille, France
| | - Fei Chen
- Broad Institute of MIT and Harvard, Cambridge, MA, USA
- Department of Stem Cell and Regenerative Biology, Harvard University, Cambridge, MA, USA
| | - Alexander Meissner
- Department of Genome Regulation, Max Planck Institute for Molecular Genetics, Berlin, Germany.
- Broad Institute of MIT and Harvard, Cambridge, MA, USA.
- Institute of Chemistry and Biochemistry, Freie Universität Berlin, Berlin, Germany.
- Department of Stem Cell and Regenerative Biology, Harvard University, Cambridge, MA, USA.
| |
Collapse
|
28
|
McCarthy RL, Zhang J, Zaret KS. Diverse heterochromatin states restricting cell identity and reprogramming. Trends Biochem Sci 2023; 48:513-526. [PMID: 36990958 PMCID: PMC10182259 DOI: 10.1016/j.tibs.2023.02.007] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2022] [Revised: 02/16/2023] [Accepted: 02/24/2023] [Indexed: 03/29/2023]
Abstract
Heterochromatin is defined as a chromosomal domain harboring repressive H3K9me2/3 or H3K27me3 histone modifications and relevant factors that physically compact the chromatin. Heterochromatin can restrict where transcription factors bind, providing a barrier to gene activation and changes in cell identity. While heterochromatin thus helps maintain cell differentiation, it presents a barrier to overcome during efforts to reprogram cells for biomedical purposes. Recent findings have revealed complexity in the composition and regulation of heterochromatin, and shown that transiently disrupting the machinery of heterochromatin can enhance reprogramming. Here, we discuss how heterochromatin is established and maintained during development, and how our growing understanding of the mechanisms regulating H3K9me3 heterochromatin can be leveraged to improve our ability to direct changes in cell identity.
Collapse
Affiliation(s)
- Ryan L McCarthy
- Institute for Regenerative Medicine, Penn Epigenetics Institute, Department of Cell and Developmental Biology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Jingchao Zhang
- Institute for Regenerative Medicine, Penn Epigenetics Institute, Department of Cell and Developmental Biology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Kenneth S Zaret
- Institute for Regenerative Medicine, Penn Epigenetics Institute, Department of Cell and Developmental Biology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA.
| |
Collapse
|
29
|
Zhao N, Yin G, Liu C, Zhang W, Shen Y, Wang D, Lin Z, Yang J, Mao J, Guo R, Zhang Y, Wang F, Liu Z, Lu X, Liu L. Critically short telomeres derepress retrotransposons to promote genome instability in embryonic stem cells. Cell Discov 2023; 9:45. [PMID: 37130870 PMCID: PMC10154409 DOI: 10.1038/s41421-023-00538-y] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2022] [Accepted: 03/08/2023] [Indexed: 05/04/2023] Open
Abstract
Telomeres, at the ends of chromosomes, protect chromosomes from fusion and preserve genomic stability. However, the molecular mechanisms underlying telomere attrition-induced genome instability remain to be understood. We systematically analyzed the expression of retrotransposons and performed genomic sequencing of different cell and tissue types with telomeres of varying lengths due to telomerase deficiency. We found that critically short telomeres altered retrotransposon activity to promote genomic instability in mouse embryonic stem cells, as evidenced by elevated numbers of single nucleotide variants, indels and copy number variations (CNVs). Transpositions of retrotransposons such as LINE1 resulting from the short telomeres can also be found in these genomes with elevated number of mutations and CNVs. Retrotransposon activation is linked to increased chromatin accessibility, and reduced heterochromatin abundance correlates with short telomeres. Re-elongation of telomeres upon recovery of telomerase partly represses retrotransposons and heterochromatin accumulation. Together, our findings suggest a potential mechanism by which telomeres maintain genomic stability by suppressing chromatin accessibility and retrotransposon activity.
Collapse
Affiliation(s)
- Nannan Zhao
- State Key Laboratory of Medicinal Chemical Biology, Nankai University, Tianjin, China
- Frontiers Science Center for Cell Responses, College of Life Sciences, Nankai University, Tianjin, China
| | - Guoxing Yin
- State Key Laboratory of Medicinal Chemical Biology, Nankai University, Tianjin, China
- Frontiers Science Center for Cell Responses, College of Life Sciences, Nankai University, Tianjin, China
| | - Chun Liu
- State Key Laboratory of Medicinal Chemical Biology, Nankai University, Tianjin, China
- Frontiers Science Center for Cell Responses, College of Life Sciences, Nankai University, Tianjin, China
| | - Weiyu Zhang
- State Key Laboratory of Medicinal Chemical Biology, Nankai University, Tianjin, China
- College of Pharmacy, Nankai University, Tianjin, China
| | - Yang Shen
- Genome Institute of Singapore, Singapore, Singapore
| | - Dan Wang
- 2011 Collaborative Innovation Center of Tianjin for Medical Epigenetics, Tianjin Key Laboratory of Medical Epigenetics, Department of Immunology, Biochemistry and Molecular Biology, School of Basic Medical Sciences, Tianjin Medical University, Tianjin, China
| | - Zhenzhen Lin
- 2011 Collaborative Innovation Center of Tianjin for Medical Epigenetics, Tianjin Key Laboratory of Medical Epigenetics, Department of Immunology, Biochemistry and Molecular Biology, School of Basic Medical Sciences, Tianjin Medical University, Tianjin, China
| | - Jiao Yang
- State Key Laboratory of Medicinal Chemical Biology, Nankai University, Tianjin, China
- Frontiers Science Center for Cell Responses, College of Life Sciences, Nankai University, Tianjin, China
| | - Jian Mao
- State Key Laboratory of Medicinal Chemical Biology, Nankai University, Tianjin, China
- Frontiers Science Center for Cell Responses, College of Life Sciences, Nankai University, Tianjin, China
| | - Renpeng Guo
- State Key Laboratory of Medicinal Chemical Biology, Nankai University, Tianjin, China
- Frontiers Science Center for Cell Responses, College of Life Sciences, Nankai University, Tianjin, China
| | - Yongwang Zhang
- State Key Laboratory of Medicinal Chemical Biology, Nankai University, Tianjin, China
- College of Pharmacy, Nankai University, Tianjin, China
| | - Feng Wang
- Department of Genetics, School of Basic Medical Sciences, Tianjin Medical University, Tianjin, China
| | - Zhe Liu
- 2011 Collaborative Innovation Center of Tianjin for Medical Epigenetics, Tianjin Key Laboratory of Medical Epigenetics, Department of Immunology, Biochemistry and Molecular Biology, School of Basic Medical Sciences, Tianjin Medical University, Tianjin, China.
| | - Xinyi Lu
- State Key Laboratory of Medicinal Chemical Biology, Nankai University, Tianjin, China.
- College of Pharmacy, Nankai University, Tianjin, China.
| | - Lin Liu
- State Key Laboratory of Medicinal Chemical Biology, Nankai University, Tianjin, China.
- Frontiers Science Center for Cell Responses, College of Life Sciences, Nankai University, Tianjin, China.
- Haihe Laboratory of Cell Ecosystem, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin, China.
- Institute of Translational Medicine, Tianjin Union Medical Center, Nankai University, Tianjin, China.
| |
Collapse
|
30
|
Di Nunzio F, Uversky VN, Mouland AJ. Biomolecular condensates: insights into early and late steps of the HIV-1 replication cycle. Retrovirology 2023; 20:4. [PMID: 37029379 PMCID: PMC10081342 DOI: 10.1186/s12977-023-00619-6] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2022] [Accepted: 03/16/2023] [Indexed: 04/09/2023] Open
Abstract
A rapidly evolving understanding of phase separation in the biological and physical sciences has led to the redefining of virus-engineered replication compartments in many viruses with RNA genomes. Condensation of viral, host and genomic and subgenomic RNAs can take place to evade the innate immunity response and to help viral replication. Divergent viruses prompt liquid-liquid phase separation (LLPS) to invade the host cell. During HIV replication there are several steps involving LLPS. In this review, we characterize the ability of individual viral and host partners that assemble into biomolecular condensates (BMCs). Of note, bioinformatic analyses predict models of phase separation in line with several published observations. Importantly, viral BMCs contribute to function in key steps retroviral replication. For example, reverse transcription takes place within nuclear BMCs, called HIV-MLOs while during late replication steps, retroviral nucleocapsid acts as a driver or scaffold to recruit client viral components to aid the assembly of progeny virions. Overall, LLPS during viral infections represents a newly described biological event now appreciated in the virology field, that can also be considered as an alternative pharmacological target to current drug therapies especially when viruses become resistant to antiviral treatment.
Collapse
Affiliation(s)
- Francesca Di Nunzio
- Advanced Molecular Virology Unit, Department of Virology, Institut Pasteur, Université Paris Cité, 75015, Paris, France
| | - Vladimir N Uversky
- Department of Molecular Medicine and USF Health Byrd Alzheimer's Research Institute, Morsani College of Medicine, University of South Florida, Tampa, FL, 33612, USA
| | - Andrew J Mouland
- Lady Davis Institute at the Jewish General Hospital, Montréal, QC, H3T 1E2, Canada.
- Department of Microbiology and Immunology, McGill University, Montréal, QC, H3A 2B4, Canada.
- Department of Medicine, McGill University, Montréal, QC, H4A 3J1, Canada.
| |
Collapse
|
31
|
Weigert R, Hetzel S, Bailly N, Haggerty C, Ilik IA, Yung PYK, Navarro C, Bolondi A, Kumar AS, Anania C, Brändl B, Meierhofer D, Lupiáñez DG, Müller FJ, Aktas T, Elsässer SJ, Kretzmer H, Smith ZD, Meissner A. Dynamic antagonism between key repressive pathways maintains the placental epigenome. Nat Cell Biol 2023; 25:579-591. [PMID: 37024684 PMCID: PMC10104784 DOI: 10.1038/s41556-023-01114-y] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2022] [Accepted: 02/21/2023] [Indexed: 04/08/2023]
Abstract
DNA and Histone 3 Lysine 27 methylation typically function as repressive modifications and operate within distinct genomic compartments. In mammals, the majority of the genome is kept in a DNA methylated state, whereas the Polycomb repressive complexes regulate the unmethylated CpG-rich promoters of developmental genes. In contrast to this general framework, the extra-embryonic lineages display non-canonical, globally intermediate DNA methylation levels, including disruption of local Polycomb domains. Here, to better understand this unusual landscape's molecular properties, we genetically and chemically perturbed major epigenetic pathways in mouse trophoblast stem cells. We find that the extra-embryonic epigenome reflects ongoing and dynamic de novo methyltransferase recruitment, which is continuously antagonized by Polycomb to maintain intermediate, locally disordered methylation. Despite its disorganized molecular appearance, our data point to a highly controlled equilibrium between counteracting repressors within extra-embryonic cells, one that can seemingly persist indefinitely without bistable features typically seen for embryonic forms of epigenetic regulation.
Collapse
Affiliation(s)
- Raha Weigert
- Department of Genome Regulation, Max Planck Institute for Molecular Genetics, Berlin, Germany
- Department of Medical Biotechnology, Technische Universität Berlin, Berlin, Germany
| | - Sara Hetzel
- Department of Genome Regulation, Max Planck Institute for Molecular Genetics, Berlin, Germany
| | - Nina Bailly
- Department of Genome Regulation, Max Planck Institute for Molecular Genetics, Berlin, Germany
- Department of Biology, Chemistry and Pharmacy, Freie Universität Berlin, Berlin, Germany
| | - Chuck Haggerty
- Department of Genome Regulation, Max Planck Institute for Molecular Genetics, Berlin, Germany
- Department of Biology, Chemistry and Pharmacy, Freie Universität Berlin, Berlin, Germany
| | - Ibrahim A Ilik
- Otto Warburg Laboratories, Max Planck Institute for Molecular Genetics, Berlin, Germany
| | - Philip Yuk Kwong Yung
- Science for Life Laboratory, Department of Medical Biochemistry and Biophysics, Karolinska Institutet, Stockholm, Sweden
- Ming Wai Lau Centre for Reparative Medicine, Stockholm node, Karolinska Institutet, Stockholm, Sweden
| | - Carmen Navarro
- Science for Life Laboratory, Department of Medical Biochemistry and Biophysics, Karolinska Institutet, Stockholm, Sweden
- Ming Wai Lau Centre for Reparative Medicine, Stockholm node, Karolinska Institutet, Stockholm, Sweden
| | - Adriano Bolondi
- Department of Genome Regulation, Max Planck Institute for Molecular Genetics, Berlin, Germany
- Department of Biology, Chemistry and Pharmacy, Freie Universität Berlin, Berlin, Germany
| | - Abhishek Sampath Kumar
- Department of Genome Regulation, Max Planck Institute for Molecular Genetics, Berlin, Germany
| | - Chiara Anania
- Epigenetics and Sex Development Group, Berlin Institute for Medical Systems Biology, Max-Delbrück Center for Molecular Medicine, Berlin-Buch, Germany
| | - Björn Brändl
- Department of Genome Regulation, Max Planck Institute for Molecular Genetics, Berlin, Germany
- Universitätsklinikum Schleswig-Holstein Campus Kiel, Zentrum für Integrative Psychiatrie gGmbH, Kiel, Germany
| | - David Meierhofer
- Mass Spectrometry Joint Facilities Scientific Service, Max Planck Institute for Molecular Genetics, Berlin, Germany
| | - Darío G Lupiáñez
- Epigenetics and Sex Development Group, Berlin Institute for Medical Systems Biology, Max-Delbrück Center for Molecular Medicine, Berlin-Buch, Germany
| | - Franz-Josef Müller
- Department of Genome Regulation, Max Planck Institute for Molecular Genetics, Berlin, Germany
- Universitätsklinikum Schleswig-Holstein Campus Kiel, Zentrum für Integrative Psychiatrie gGmbH, Kiel, Germany
| | - Tugce Aktas
- Otto Warburg Laboratories, Max Planck Institute for Molecular Genetics, Berlin, Germany
| | - Simon J Elsässer
- Science for Life Laboratory, Department of Medical Biochemistry and Biophysics, Karolinska Institutet, Stockholm, Sweden
- Ming Wai Lau Centre for Reparative Medicine, Stockholm node, Karolinska Institutet, Stockholm, Sweden
| | - Helene Kretzmer
- Department of Genome Regulation, Max Planck Institute for Molecular Genetics, Berlin, Germany
| | - Zachary D Smith
- Department of Genetics, Yale Stem Cell Center, Yale School of Medicine, New Haven, CT, USA.
| | - Alexander Meissner
- Department of Genome Regulation, Max Planck Institute for Molecular Genetics, Berlin, Germany.
- Department of Biology, Chemistry and Pharmacy, Freie Universität Berlin, Berlin, Germany.
- Broad Institute of MIT and Harvard, Cambridge, MA, USA.
- Department of Stem Cell and Regenerative Biology, Harvard University, Cambridge, MA, US.
| |
Collapse
|
32
|
Farag M, Holehouse AS, Zeng X, Pappu RV. FIREBALL: A tool to fit protein phase diagrams based on mean-field theories for polymer solutions. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.03.19.533322. [PMID: 36993371 PMCID: PMC10055191 DOI: 10.1101/2023.03.19.533322] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/31/2023]
Abstract
Biomolecular condensates form via phase transitions of condensate-specific biomacromolecules. Intrinsically disordered regions (IDRs) featuring the appropriate sequence grammar can contribute homotypic and heterotypic interactions to the driving forces for phase separation of multivalent proteins. At this juncture, experiments and computations have matured to the point where the concentrations of coexisting dense and dilute phases can be quantified for individual IDRs in complex milieus both in vitro and in vivo . For a macromolecule such as a disordered protein in a solvent, the locus of points that connects concentrations of the two coexisting phases defines a phase boundary or binodal. Often, only a few points along the binodal, especially in the dense phase, are accessible for measurement. In such cases and for quantitative and comparative analysis of parameters that describe the driving forces for phase separation, it is useful to fit measured or computed binodals to well-known mean-field free energies for polymer solutions. Unfortunately, the non-linearity of the underlying free energy functions makes it challenging to put mean-field theories into practice. Here, we present FIREBALL, a suite of computational tools designed to enable efficient construction, analysis, and fitting to experimental or computed data of binodals. We show that depending on the theory being used, one can also extract information regarding coil-to-globule transitions of individual macromolecules. Here, we emphasize the ease-of-use and utility of FIREBALL using examples based on data for two different IDRs. Statement of Significance Macromolecular phase separation drives the assembly of membraneless bodies known as biomolecular condensates. Measurements and computer simulations can now be brought to bear to quantify how the concentrations of macromolecules in coexisting dilute and dense phases vary with changes to solution conditions. These mappings can be fit to analytical expressions for free energies of solution to extract information regarding parameters that enable comparative assessments of the balance of macromolecule-solvent interactions across different systems. However, the underlying free energies are non-linear and fitting them to actual data is non-trivial. To enable comparative numerical analyses, we introduce FIREBALL, a user-friendly suite of computational tools that allows one to generate, analyze, and fit phase diagrams and coil-to-globule transitions using well-known theories.
Collapse
|
33
|
Sakashita A, Kitano T, Ishizu H, Guo Y, Masuda H, Ariura M, Murano K, Siomi H. Transcription of MERVL retrotransposons is required for preimplantation embryo development. Nat Genet 2023; 55:484-495. [PMID: 36864102 PMCID: PMC10011141 DOI: 10.1038/s41588-023-01324-y] [Citation(s) in RCA: 40] [Impact Index Per Article: 40.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2022] [Accepted: 01/26/2023] [Indexed: 03/04/2023]
Abstract
Zygotic genome activation (ZGA) is a critical postfertilization step that promotes totipotency and allows different cell fates to emerge in the developing embryo. MERVL (murine endogenous retrovirus-L) is transiently upregulated at the two-cell stage during ZGA. Although MERVL expression is widely used as a marker of totipotency, the role of this retrotransposon in mouse embryogenesis remains elusive. Here, we show that full-length MERVL transcripts, but not encoded retroviral proteins, are essential for accurate regulation of the host transcriptome and chromatin state during preimplantation development. Both knockdown and CRISPRi-based repression of MERVL result in embryonic lethality due to defects in differentiation and genomic stability. Furthermore, transcriptome and epigenome analysis revealed that loss of MERVL transcripts led to retention of an accessible chromatin state at, and aberrant expression of, a subset of two-cell-specific genes. Taken together, our results suggest a model in which an endogenous retrovirus plays a key role in regulating host cell fate potential.
Collapse
Affiliation(s)
- Akihiko Sakashita
- Department of Molecular Biology, Keio University School of Medicine, Tokyo, Japan
| | - Tomohiro Kitano
- Department of Molecular Biology, Keio University School of Medicine, Tokyo, Japan
| | - Hirotsugu Ishizu
- Department of Molecular Biology, Keio University School of Medicine, Tokyo, Japan
| | - Youjia Guo
- Department of Molecular Biology, Keio University School of Medicine, Tokyo, Japan
| | - Harumi Masuda
- Department of Molecular Biology, Keio University School of Medicine, Tokyo, Japan
| | - Masaru Ariura
- Department of Molecular Biology, Keio University School of Medicine, Tokyo, Japan
| | - Kensaku Murano
- Department of Molecular Biology, Keio University School of Medicine, Tokyo, Japan
| | - Haruhiko Siomi
- Department of Molecular Biology, Keio University School of Medicine, Tokyo, Japan.
- Human Biology Microbiome Quantum Research Center (WPI-Bio2Q), Keio University, Tokyo, Japan.
| |
Collapse
|
34
|
Gasparotto E, Burattin FV, Di Gioia V, Panepuccia M, Ranzani V, Marasca F, Bodega B. Transposable Elements Co-Option in Genome Evolution and Gene Regulation. Int J Mol Sci 2023; 24:ijms24032610. [PMID: 36768929 PMCID: PMC9917352 DOI: 10.3390/ijms24032610] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2022] [Revised: 01/26/2023] [Accepted: 01/28/2023] [Indexed: 01/31/2023] Open
Abstract
The genome is no longer deemed as a fixed and inert item but rather as a moldable matter that is continuously evolving and adapting. Within this frame, Transposable Elements (TEs), ubiquitous, mobile, repetitive elements, are considered an alive portion of the genomes to date, whose functions, although long considered "dark", are now coming to light. Here we will review that, besides the detrimental effects that TE mobilization can induce, TEs have shaped genomes in their current form, promoting genome sizing, genomic rearrangements and shuffling of DNA sequences. Although TEs are mostly represented in the genomes by evolutionarily old, short, degenerated, and sedentary fossils, they have been thoroughly co-opted by the hosts as a prolific and original source of regulatory instruments for the control of gene transcription and genome organization in the nuclear space. For these reasons, the deregulation of TE expression and/or activity is implicated in the onset and progression of several diseases. It is likely that we have just revealed the outermost layers of TE functions. Further studies on this portion of the genome are required to unlock novel regulatory functions that could also be exploited for diagnostic and therapeutic approaches.
Collapse
Affiliation(s)
- Erica Gasparotto
- Fondazione INGM, Istituto Nazionale di Genetica Molecolare “Enrica e Romeo Invernizzi”, 20122 Milan, Italy
- SEMM, European School of Molecular Medicine, 20139 Milan, Italy
| | - Filippo Vittorio Burattin
- Fondazione INGM, Istituto Nazionale di Genetica Molecolare “Enrica e Romeo Invernizzi”, 20122 Milan, Italy
- Department of Biosciences, University of Milan, 20133 Milan, Italy
| | - Valeria Di Gioia
- Fondazione INGM, Istituto Nazionale di Genetica Molecolare “Enrica e Romeo Invernizzi”, 20122 Milan, Italy
- SEMM, European School of Molecular Medicine, 20139 Milan, Italy
| | - Michele Panepuccia
- Fondazione INGM, Istituto Nazionale di Genetica Molecolare “Enrica e Romeo Invernizzi”, 20122 Milan, Italy
| | - Valeria Ranzani
- Fondazione INGM, Istituto Nazionale di Genetica Molecolare “Enrica e Romeo Invernizzi”, 20122 Milan, Italy
| | - Federica Marasca
- Fondazione INGM, Istituto Nazionale di Genetica Molecolare “Enrica e Romeo Invernizzi”, 20122 Milan, Italy
- Department of Clinical Sciences and Community Health, University of Milan, 20122 Milan, Italy
| | - Beatrice Bodega
- Fondazione INGM, Istituto Nazionale di Genetica Molecolare “Enrica e Romeo Invernizzi”, 20122 Milan, Italy
- Department of Biosciences, University of Milan, 20133 Milan, Italy
- Correspondence:
| |
Collapse
|
35
|
Mensah MA, Niskanen H, Magalhaes AP, Basu S, Kircher M, Sczakiel HL, Reiter AMV, Elsner J, Meinecke P, Biskup S, Chung BHY, Dombrowsky G, Eckmann-Scholz C, Hitz MP, Hoischen A, Holterhus PM, Hülsemann W, Kahrizi K, Kalscheuer VM, Kan A, Krumbiegel M, Kurth I, Leubner J, Longardt AC, Moritz JD, Najmabadi H, Skipalova K, Snijders Blok L, Tzschach A, Wiedersberg E, Zenker M, Garcia-Cabau C, Buschow R, Salvatella X, Kraushar ML, Mundlos S, Caliebe A, Spielmann M, Horn D, Hnisz D. Aberrant phase separation and nucleolar dysfunction in rare genetic diseases. Nature 2023; 614:564-571. [PMID: 36755093 PMCID: PMC9931588 DOI: 10.1038/s41586-022-05682-1] [Citation(s) in RCA: 20] [Impact Index Per Article: 20.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2021] [Accepted: 12/22/2022] [Indexed: 02/10/2023]
Abstract
Thousands of genetic variants in protein-coding genes have been linked to disease. However, the functional impact of most variants is unknown as they occur within intrinsically disordered protein regions that have poorly defined functions1-3. Intrinsically disordered regions can mediate phase separation and the formation of biomolecular condensates, such as the nucleolus4,5. This suggests that mutations in disordered proteins may alter condensate properties and function6-8. Here we show that a subset of disease-associated variants in disordered regions alter phase separation, cause mispartitioning into the nucleolus and disrupt nucleolar function. We discover de novo frameshift variants in HMGB1 that cause brachyphalangy, polydactyly and tibial aplasia syndrome, a rare complex malformation syndrome. The frameshifts replace the intrinsically disordered acidic tail of HMGB1 with an arginine-rich basic tail. The mutant tail alters HMGB1 phase separation, enhances its partitioning into the nucleolus and causes nucleolar dysfunction. We built a catalogue of more than 200,000 variants in disordered carboxy-terminal tails and identified more than 600 frameshifts that create arginine-rich basic tails in transcription factors and other proteins. For 12 out of the 13 disease-associated variants tested, the mutation enhanced partitioning into the nucleolus, and several variants altered rRNA biogenesis. These data identify the cause of a rare complex syndrome and suggest that a large number of genetic variants may dysregulate nucleoli and other biomolecular condensates in humans.
Collapse
Affiliation(s)
- Martin A. Mensah
- grid.6363.00000 0001 2218 4662Institute of Medical Genetics and Human Genetics, Charité–Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Berlin, Germany ,grid.484013.a0000 0004 6879 971XBIH Biomedical Innovation Academy, Berlin Institute of Health at Charité–Universitätsmedizin Berlin, Berlin, Germany ,grid.419538.20000 0000 9071 0620RG Development and Disease, Max Planck Institute for Molecular Genetics, Berlin, Germany
| | - Henri Niskanen
- grid.419538.20000 0000 9071 0620Department of Genome Regulation, Max Planck Institute for Molecular Genetics, Berlin, Germany
| | - Alexandre P. Magalhaes
- grid.419538.20000 0000 9071 0620Department of Genome Regulation, Max Planck Institute for Molecular Genetics, Berlin, Germany
| | - Shaon Basu
- grid.419538.20000 0000 9071 0620Department of Genome Regulation, Max Planck Institute for Molecular Genetics, Berlin, Germany
| | - Martin Kircher
- grid.484013.a0000 0004 6879 971XExploratory Diagnostic Sciences, Berlin Institute of Health at Charité–Universitätsmedizin Berlin, Berlin, Germany ,grid.4562.50000 0001 0057 2672Institute of Human Genetics, University Hospitals Schleswig-Holstein, University of Lübeck and Kiel University, Lübeck, Kiel Germany
| | - Henrike L. Sczakiel
- grid.6363.00000 0001 2218 4662Institute of Medical Genetics and Human Genetics, Charité–Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Berlin, Germany ,grid.484013.a0000 0004 6879 971XBIH Biomedical Innovation Academy, Berlin Institute of Health at Charité–Universitätsmedizin Berlin, Berlin, Germany ,grid.419538.20000 0000 9071 0620RG Development and Disease, Max Planck Institute for Molecular Genetics, Berlin, Germany
| | - Alisa M. V. Reiter
- grid.6363.00000 0001 2218 4662Institute of Medical Genetics and Human Genetics, Charité–Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Berlin, Germany
| | - Jonas Elsner
- grid.6363.00000 0001 2218 4662Institute of Medical Genetics and Human Genetics, Charité–Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Berlin, Germany
| | - Peter Meinecke
- grid.13648.380000 0001 2180 3484Institute of Human Genetics, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Saskia Biskup
- grid.498061.20000 0004 6008 5552Center for Genomics and Transcriptomics (CeGaT), Tübingen, Germany
| | - Brian H. Y. Chung
- grid.194645.b0000000121742757Department of Pediatrics and Adolescent Medicine, School of Clinical Medicine, LKS Faculty of Medicine, The University of Hong Kong, Pok Fu Lam, Hong Kong
| | - Gregor Dombrowsky
- grid.412468.d0000 0004 0646 2097Department of Congenital Heart Disease and Pediatric Cardiology, University Hospital Schleswig-Holstein, Kiel, Germany ,grid.5560.60000 0001 1009 3608Department of Medical Genetics, Carl von Ossietzky University, Oldenburg, Germany
| | - Christel Eckmann-Scholz
- grid.412468.d0000 0004 0646 2097Department of Obstetrics and Gynecology, University Hospital Schleswig-Holstein, Kiel, Germany
| | - Marc Phillip Hitz
- grid.412468.d0000 0004 0646 2097Department of Congenital Heart Disease and Pediatric Cardiology, University Hospital Schleswig-Holstein, Kiel, Germany ,grid.5560.60000 0001 1009 3608Department of Medical Genetics, Carl von Ossietzky University, Oldenburg, Germany
| | - Alexander Hoischen
- grid.10417.330000 0004 0444 9382Department of Internal Medicine, Radboud Institute for Molecular Life Sciences, Radboud Expertise Center for Immunodeficiency and Autoinflammation and Radboud Center for Infectious Disease (RCI), Radboud University Medical Center, Nijmegen, The Netherlands ,grid.10417.330000 0004 0444 9382Department of Human Genetics, Radboud University Medical Center, Nijmegen, The Netherlands
| | - Paul-Martin Holterhus
- grid.412468.d0000 0004 0646 2097Department of Pediatrics, Pediatric Endocrinology and Diabetes, University Hospital Schleswig-Holstein, Schleswig-Holstein, Germany
| | - Wiebke Hülsemann
- grid.440182.b0000 0004 0580 3398Handchirurgie, Katholisches Kinderkrankenhaus Wilhelmstift, Hamburg, Germany
| | - Kimia Kahrizi
- grid.472458.80000 0004 0612 774XGenetics Research Center, University of Social Welfare and Rehabilitation Sciences, Tehran, Iran
| | - Vera M. Kalscheuer
- grid.419538.20000 0000 9071 0620RG Development and Disease, Max Planck Institute for Molecular Genetics, Berlin, Germany
| | - Anita Kan
- grid.415550.00000 0004 1764 4144Department of Obstetrics and Gynaecology, Queen Mary Hospital, Pok Fu Lam, Hong Kong
| | - Mandy Krumbiegel
- grid.5330.50000 0001 2107 3311Institute of Human Genetics, Universitätsklinikum Erlangen, Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU), Erlangen, Germany
| | - Ingo Kurth
- grid.412301.50000 0000 8653 1507Institute for Human Genetics and Genomic Medicine, Medical Faculty, RWTH Aachen University Hospital, Aachen, Germany
| | - Jonas Leubner
- grid.6363.00000 0001 2218 4662Department of Pediatric Neurology, Charité–Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Berlin, Germany
| | - Ann Carolin Longardt
- grid.412468.d0000 0004 0646 2097Department of Pediatrics, University Hospital Center Schleswig‐Holstein, Kiel, Germany
| | - Jörg D. Moritz
- grid.412468.d0000 0004 0646 2097Department of Radiology and Neuroradiology, Pediatric Radiology, University Hospital Schleswig-Holstein, Kiel, Germany
| | - Hossein Najmabadi
- grid.472458.80000 0004 0612 774XGenetics Research Center, University of Social Welfare and Rehabilitation Sciences, Tehran, Iran
| | - Karolina Skipalova
- grid.6363.00000 0001 2218 4662Institute of Medical Genetics and Human Genetics, Charité–Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Berlin, Germany
| | - Lot Snijders Blok
- grid.10417.330000 0004 0444 9382Department of Human Genetics, Radboud University Medical Center, Nijmegen, The Netherlands
| | - Andreas Tzschach
- grid.5963.9Institute of Human Genetics, Medical Center, University of Freiburg, Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - Eberhard Wiedersberg
- grid.491868.a0000 0000 9601 2399Zentrum für Kinder-und Jugendmedizin, Helios Kliniken Schwerin, Schwerin, Germany
| | - Martin Zenker
- grid.5807.a0000 0001 1018 4307Institute of Human Genetics, University Hospital, Otto-von-Guericke University, Magdeburg, Germany
| | - Carla Garcia-Cabau
- grid.473715.30000 0004 6475 7299Institute for Research in Biomedicine (IRB Barcelona), The Barcelona Institute of Science and Technology, Barcelona, Spain
| | - René Buschow
- grid.419538.20000 0000 9071 0620Microscopy Core Facility, Max Planck Institute for Molecular Genetics, Berlin, Germany
| | - Xavier Salvatella
- grid.473715.30000 0004 6475 7299Institute for Research in Biomedicine (IRB Barcelona), The Barcelona Institute of Science and Technology, Barcelona, Spain ,grid.425902.80000 0000 9601 989XICREA, Passeig Lluís Companys 23, Barcelona, Spain
| | - Matthew L. Kraushar
- grid.419538.20000 0000 9071 0620Department of Genome Regulation, Max Planck Institute for Molecular Genetics, Berlin, Germany
| | - Stefan Mundlos
- grid.6363.00000 0001 2218 4662Institute of Medical Genetics and Human Genetics, Charité–Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Berlin, Germany ,grid.484013.a0000 0004 6879 971XBIH Biomedical Innovation Academy, Berlin Institute of Health at Charité–Universitätsmedizin Berlin, Berlin, Germany ,grid.419538.20000 0000 9071 0620RG Development and Disease, Max Planck Institute for Molecular Genetics, Berlin, Germany ,grid.506128.8BCRT-Berlin Institute of Health Center for Regenerative Therapies, Berlin, Germany
| | - Almuth Caliebe
- grid.4562.50000 0001 0057 2672Institute of Human Genetics, University Hospitals Schleswig-Holstein, University of Lübeck and Kiel University, Lübeck, Kiel Germany
| | - Malte Spielmann
- RG Development and Disease, Max Planck Institute for Molecular Genetics, Berlin, Germany. .,Institute of Human Genetics, University Hospitals Schleswig-Holstein, University of Lübeck and Kiel University, Lübeck, Kiel, Germany. .,DZHK (German Centre for Cardiovascular Research), partner site Hamburg, Lübeck, Kiel, Lübeck, Germany.
| | - Denise Horn
- Institute of Medical Genetics and Human Genetics, Charité-Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Berlin, Germany.
| | - Denes Hnisz
- Department of Genome Regulation, Max Planck Institute for Molecular Genetics, Berlin, Germany.
| |
Collapse
|
36
|
Human Endogenous Retroviruses: Friends and Foes in Urology Clinics. Int Neurourol J 2022; 26:275-287. [PMID: 36599336 PMCID: PMC9816444 DOI: 10.5213/inj.2244284.142] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2022] [Accepted: 12/26/2022] [Indexed: 12/31/2022] Open
Abstract
Human endogenous retroviruses (HERVs) are originated from ancient exogenous retroviruses, which infected human germ line cells millions of years ago. HERVs have generally lost their replication and retrotransposition abilities, but adopted physiological roles in human biology. Though mostly inactive, HERVs can be reactivated by internal and external factors such as inflammations and environmental conditions. Their aberrant expression can participate in various human malignancies with complex etiology. This review describes the features and functions of HERVs in urological subjects, such as urological cancers and human reproduction. It provides the current knowledge of the HERVs and useful insights helping practice in urology clinics.
Collapse
|
37
|
Li L, Li Y, Lv L, Yuan K. Rewiring the transcriptional circuitries in cancer by endogenous retroviruses. J Mol Cell Biol 2022; 14:6693712. [PMID: 36069989 PMCID: PMC9791539 DOI: 10.1093/jmcb/mjac053] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2022] [Revised: 08/27/2022] [Accepted: 09/05/2022] [Indexed: 01/20/2023] Open
Affiliation(s)
| | | | - Lu Lv
- Hunan Key Laboratory of Molecular Precision Medicine, Department of Oncology, Xiangya Hospital, Central South University, Changsha 410000, China
| | - Kai Yuan
- Correspondence to: Kai Yuan, E-mail:
| |
Collapse
|
38
|
Grow EJ. Endogenous retroviruses steer transcriptional condensates away from pluripotency. Nat Genet 2022; 54:1068-1069. [PMID: 35864191 DOI: 10.1038/s41588-022-01111-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Affiliation(s)
- Edward J Grow
- Cecil H. and Ida Green Center for Reproductive Biology Sciences and the Division of Basic Research, Department of Obstetrics and Gynecology, University of Texas Southwestern Medical Center, Dallas, TX, USA.
| |
Collapse
|