1
|
Stewart J, Damania B. Innate Immune Recognition of EBV. Curr Top Microbiol Immunol 2025. [PMID: 40399572 DOI: 10.1007/82_2025_297] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/23/2025]
Abstract
Epstein-Barr virus (EBV) is a very successful human pathogen, with ~95% seroprevalence worldwide (Mentzer et al, Nat Commun 13:1818, 2022). If contracted in early childhood, EBV infection is typically asymptomatic; however, infections in adolescence and adulthood can manifest as infectious mononucleosis (IM). The innate immune response is the first line of defense, and its function is critical for controlling EBV infection. During EBV infection, components of the virus, known as pathogen-associated molecular patterns (PAMPs), are recognized by germline-encoded pattern recognition receptors (PRRs). PRRs are found on both non-immune and immune cells including antigen-presenting cells, such as macrophages, monocytes, dendritic cells, natural killer (NK), and mast cells. PRRs are also found on B cells and epithelial cells, the primary targets of EBV infection. Without immune surveillance, EBV can transform cells inducing various malignancies. Conversely, a prolonged innate immune response can lead to chronic inflammation which increases the likelihood of cancer. This review discusses innate immune recognition of EBV and its associated diseases.
Collapse
Affiliation(s)
- Jessica Stewart
- Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
- Department of Microbiology and Immunology, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Blossom Damania
- Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA.
- Department of Microbiology and Immunology, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA.
| |
Collapse
|
2
|
Acharya D, Sayyad Z, Hoenigsperger H, Hirschenberger M, Zurenski M, Balakrishnan K, Zhu J, Gableske S, Kato J, Zhang SY, Casanova JL, Moss J, Sparrer KMJ, Gack MU. TRIM23 mediates cGAS-induced autophagy in anti-HSV defense. Nat Commun 2025; 16:4418. [PMID: 40360474 PMCID: PMC12075517 DOI: 10.1038/s41467-025-59338-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2024] [Accepted: 04/16/2025] [Indexed: 05/15/2025] Open
Abstract
The cGAS-STING pathway, well-known to elicit interferon (IFN) responses, is also a key inducer of autophagy upon virus infection or other stimuli. Whereas the mediators for cGAS-induced IFN responses are well characterized, much less is known about how cGAS elicits autophagy. Here, we report that TRIM23, a unique TRIM protein harboring both ubiquitin E3 ligase and GTPase activity, is crucial for cGAS-STING-dependent antiviral autophagy. Genetic ablation of TRIM23 impairs autophagic control of HSV-1 infection. HSV-1 infection or cGAS-STING stimulation induces TBK1-mediated TRIM23 phosphorylation at S39, which triggers TRIM23 autoubiquitination and GTPase activity and ultimately elicits autophagy. Fibroblasts from a patient with herpes simplex encephalitis heterozygous for a dominant-negative, kinase-inactivating TBK1 mutation fail to activate autophagy by TRIM23 and cGAS-STING. Our results thus identify the cGAS-STING-TBK1-TRIM23 axis as a key autophagy defense pathway and may stimulate new therapeutic interventions for viral or inflammatory diseases.
Collapse
Affiliation(s)
- Dhiraj Acharya
- Florida Research and Innovation Center, Cleveland Clinic, Port St. Lucie, FL, USA
- Department of Microbiology, The University of Chicago, Chicago, IL, USA
| | - Zuberwasim Sayyad
- Florida Research and Innovation Center, Cleveland Clinic, Port St. Lucie, FL, USA
| | | | | | - Matthew Zurenski
- Department of Microbiology, The University of Chicago, Chicago, IL, USA
| | - Kannan Balakrishnan
- Florida Research and Innovation Center, Cleveland Clinic, Port St. Lucie, FL, USA
| | - Junji Zhu
- Florida Research and Innovation Center, Cleveland Clinic, Port St. Lucie, FL, USA
| | - Sebastian Gableske
- Department of Microbiology, The University of Chicago, Chicago, IL, USA
- Eisai GmbH, Frankfurt am Main, Germany
| | - Jiro Kato
- The Critical Care Medicine and Pulmonary Branch; National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, MD, USA
| | - Shen-Ying Zhang
- St. Giles Laboratory of Human Genetics of Infectious Diseases, Rockefeller Branch, The Rockefeller University, New York, NY, USA
- Laboratory of Human Genetics of Infectious Diseases, Necker Branch, INSERM U1163, Necker Hospital for Sick Children, Paris, France
- Paris Cité University, Imagine Institute, Paris, France
| | - Jean-Laurent Casanova
- St. Giles Laboratory of Human Genetics of Infectious Diseases, Rockefeller Branch, The Rockefeller University, New York, NY, USA
- Laboratory of Human Genetics of Infectious Diseases, Necker Branch, INSERM U1163, Necker Hospital for Sick Children, Paris, France
- Paris Cité University, Imagine Institute, Paris, France
- Howard Hughes Medical Institute, New York, NY, USA
| | - Joel Moss
- The Critical Care Medicine and Pulmonary Branch; National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, MD, USA
| | - Konstantin M J Sparrer
- Institute of Molecular Virology, Ulm University Medical Center, Ulm, Germany
- German Center for Neurodegenerative Diseases (DZNE), Ulm, Germany
| | - Michaela U Gack
- Florida Research and Innovation Center, Cleveland Clinic, Port St. Lucie, FL, USA.
- Department of Microbiology, The University of Chicago, Chicago, IL, USA.
| |
Collapse
|
3
|
Sarkar L, Liu G, Acharya D, Zhu J, Sayyad Z, Gack MU. MDA5 ISGylation is crucial for immune signaling to control viral replication and pathogenesis. Proc Natl Acad Sci U S A 2025; 122:e2420190122. [PMID: 40184173 PMCID: PMC12002354 DOI: 10.1073/pnas.2420190122] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2024] [Accepted: 03/06/2025] [Indexed: 04/05/2025] Open
Abstract
The posttranslational modification (PTM) of innate immune sensor proteins by ubiquitin or ubiquitin-like proteins is crucial for regulating antiviral host responses. The cytoplasmic dsRNA receptor melanoma differentiation-associated protein 5 (MDA5) undergoes several PTMs including ISGylation within its first caspase activation and recruitment domain (CARD), which promotes MDA5 signaling. However, the relevance of MDA5 ISGylation for antiviral immunity in an infected organism has been elusive. Here, we generated knock-in mice (MDA5K23R/K43R) in which the two major ISGylation sites, K23 and K43, in MDA5, were mutated. Primary cells derived from MDA5K23R/K43R mice exhibited abrogated endogenous MDA5 ISGylation and an impaired ability of MDA5 to form oligomeric assemblies, leading to blunted cytokine responses to MDA5 RNA-agonist stimulation or infection with encephalomyocarditis virus (EMCV) or West Nile virus. Phenocopying MDA5-/- mice, the MDA5K23R/K43R mice infected with EMCV displayed increased myocardial injury and mortality, elevated viral titers, and an ablated induction of cytokines and chemokines compared to WT mice. Molecular studies identified human HERC5 (and its functional murine homolog HERC6) as the primary E3 ligases responsible for MDA5 ISGylation and activation. Taken together, these findings establish the importance of CARD ISGylation for MDA5-mediated RNA virus restriction, promoting potential avenues for immunomodulatory drug design for antiviral or anti-inflammatory applications.
Collapse
Affiliation(s)
- Lucky Sarkar
- Florida Research and Innovation Center, Cleveland Clinic, Port St. Lucie, FL34987
| | - GuanQun Liu
- Florida Research and Innovation Center, Cleveland Clinic, Port St. Lucie, FL34987
| | - Dhiraj Acharya
- Florida Research and Innovation Center, Cleveland Clinic, Port St. Lucie, FL34987
| | - Junji Zhu
- Florida Research and Innovation Center, Cleveland Clinic, Port St. Lucie, FL34987
| | - Zuberwasim Sayyad
- Florida Research and Innovation Center, Cleveland Clinic, Port St. Lucie, FL34987
| | - Michaela U. Gack
- Florida Research and Innovation Center, Cleveland Clinic, Port St. Lucie, FL34987
| |
Collapse
|
4
|
Acchioni M, Acchioni C, Hiscott J, Sgarbanti M. Origin and function of anti-interferon type I viral proteins. Virology 2025; 605:110456. [PMID: 39999585 DOI: 10.1016/j.virol.2025.110456] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2024] [Revised: 02/17/2025] [Accepted: 02/19/2025] [Indexed: 02/27/2025]
Abstract
Type I interferons (IFN-I) are the most important innate immune cytokines produced by vertebrate host cells following, virus infection. Broadly speaking, detection of infecting viral nucleic acids by pattern recognition receptors (PRR) and subsequent downstream signaling triggers synthesis of a large number of IFN-I-stimulated genes (ISGs), endowed with diverse antiviral effector function. The co-evolution of virus-host interactions over million years has resulted in the emergence of viral strategies that target and inhibit host PRR-mediated detection, signal transduction pathways and IFN-I-mediated stimulation of ISGs. In this review, we illustrate the multiple mechanisms of viral immune evasion and discuss the co-evolution of anti-IFN-I viral proteins by summarizing key examples from recent literature. Due to the large number of anti-IFN-I proteins described, we provide here an evaluation of the prominent examples from different virus families. Understanding the unrelenting evolution of viral evasion strategies will provide mechanistic detail concerning these evolving interactions but will further enhance the development of tailored antiviral approaches.
Collapse
Affiliation(s)
- Marta Acchioni
- Department of Infectious Diseases, Istituto Superiore di Sanità, Viale Regina Elena 299, 00161, Rome, Italy.
| | - Chiara Acchioni
- Department of Infectious Diseases, Istituto Superiore di Sanità, Viale Regina Elena 299, 00161, Rome, Italy.
| | - John Hiscott
- Istituto Pasteur Italia, Fondazione Cenci Bolognetti, Viale Regina Elena 291, 00161, Rome, Italy.
| | - Marco Sgarbanti
- Department of Infectious Diseases, Istituto Superiore di Sanità, Viale Regina Elena 299, 00161, Rome, Italy.
| |
Collapse
|
5
|
Szymanik KH, Rex EA, Pothireddy VR, Gammon DB, Hancks DC, Sullivan CS. Viral piracy of host RNA phosphatase DUSP11 by avipoxviruses. PLoS Pathog 2025; 21:e1013101. [PMID: 40258008 PMCID: PMC12058148 DOI: 10.1371/journal.ppat.1013101] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2024] [Revised: 05/07/2025] [Accepted: 04/02/2025] [Indexed: 04/23/2025] Open
Abstract
Proper recognition of viral pathogens is an essential part of the innate immune response. A common viral replicative intermediate and chemical signal that cells use to identify pathogens is the presence of a triphosphorylated 5' end (5'ppp) RNA, which activates the cytosolic RNA sensor RIG-I and initiates downstream antiviral signaling. While 5'pppRNA generated by viral RNA-dependent RNA polymerases (RdRps) can be a potent activator of the immune response, endogenous RNA polymerase III (RNAPIII) transcripts can retain the 5'ppp generated during transcription and induce a RIG-I-mediated immune response. We have previously shown that host RNA triphosphatase dual-specificity phosphatase 11 (DUSP11) can act on both host and viral RNAs, altering their levels and reducing their ability to induce RIG-I activation. Our previous work explored how experimentally altered DUSP11 activity can impact immune activation, prompting further exploration into natural contexts of altered DUSP11 activity. Here, we have identified viral DUSP11 homologs (vDUSP11s) present in some avipoxviruses. Consistent with the known functions of host DUSP11, we have shown that expression of vDUSP11s: 1) reduces levels of endogenous RNAPIII transcripts, 2) reduces a cell's sensitivity to 5'pppRNA-mediated immune activation, and 3) restores virus infection defects seen in the absence of DUSP11. Our results identify a context where DUSP11 activity has been co-opted by viruses to alter RNA metabolism and influence the outcome of infection.
Collapse
Affiliation(s)
- Kayla H. Szymanik
- Department of Molecular Biosciences, The University of Texas at Austin, Austin, Texas, United States of America
| | - Emily A. Rex
- Department of Microbiology, UT. Southwestern Medical Center, Dallas, Texas, United States of America
| | - Vamshikrishna R. Pothireddy
- Department of Molecular Biosciences, The University of Texas at Austin, Austin, Texas, United States of America
| | - Don B. Gammon
- Department of Microbiology, UT. Southwestern Medical Center, Dallas, Texas, United States of America
| | - Dustin C. Hancks
- Department of Immunology, UT. Southwestern Medical Center, Dallas, Texas, United States of America
| | - Christopher S. Sullivan
- Department of Molecular Biosciences, LaMontagne Center for Infectious Disease, The University of Texas at Austin, Austin, Texas, United States of America
| |
Collapse
|
6
|
Shen Y, Zhang H, Xue M, Zheng C, Chen Q. HSV-1 as a gene delivery platform for cancer gene therapy. Trends Pharmacol Sci 2025; 46:324-336. [PMID: 40069043 DOI: 10.1016/j.tips.2025.02.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2025] [Revised: 02/18/2025] [Accepted: 02/19/2025] [Indexed: 04/06/2025]
Abstract
Herpes simplex virus type 1 (HSV-1) is a DNA virus with strong replication capabilities, a large genomic payload (≥30 kb), and low toxicity, making it a prominent vector in cancer gene therapy. Clinically approved oncolytic HSV-1 (oHSV-1) variants, such as T-VEC and G47Δ, demonstrate safety and efficacy in localized tumors, but face challenges in treating metastatic disease. To address this issue, next-generation oHSV-1 designs focus on precision targeting and immune remodeling through the delivery of multiple exogenous genes. In this review, we provide an overview of the inherent characteristics of oHSV-1 as a gene delivery platform, focusing on its genetic modification strategies, safety challenges in clinical applications, and future directions to maximize its therapeutic potential.
Collapse
Affiliation(s)
- Yangkun Shen
- Fujian Key Laboratory of Innate Immune Biology, Biomedical Research Center of South China, College of Life Science, Fujian Normal University, Fuzhou, China
| | - Hucheng Zhang
- Fujian Key Laboratory of Innate Immune Biology, Biomedical Research Center of South China, College of Life Science, Fujian Normal University, Fuzhou, China
| | - Mengzhou Xue
- Department of Cerebrovascular Diseases, The Second Affiliated Hospital of Zhengzhou University, Zhengzhou, China.
| | - Chunfu Zheng
- Department of Microbiology, Immunology & Infection Diseases, University of Calgary, Calgary, Alberta, Canada.
| | - Qi Chen
- Fujian Key Laboratory of Innate Immune Biology, Biomedical Research Center of South China, College of Life Science, Fujian Normal University, Fuzhou, China.
| |
Collapse
|
7
|
Parchure A, Cesarec M, Braut A, Kolman R, Ivanišević V, Čunko M, Bursać S, de Reuver R, Begonja AJ, Rosani U, Volarević S, Maelfait J, Jurak I. ADAR1 p150 prevents HSV-1 from triggering PKR/eIF2α-mediated translational arrest and is required for efficient viral replication. PLoS Pathog 2025; 21:e1012452. [PMID: 40198737 PMCID: PMC12011305 DOI: 10.1371/journal.ppat.1012452] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2024] [Revised: 04/21/2025] [Accepted: 03/14/2025] [Indexed: 04/10/2025] Open
Abstract
Adenosine deaminase acting on dsRNA 1 (ADAR1) catalyzes the deamination of adenosines to inosines in double-stranded RNAs (dsRNA) and regulates innate immunity by preventing the hyperactivation of cytosolic dsRNA sensors such as MDA5, PKR or ZBP1. ADAR1 has been shown to exert pro- and antiviral, editing-dependent and editing-independent functions in viral infections, but little is known about its function in herpesvirus replication. We now demonstrate that herpes simplex virus 1 (HSV-1) hyperactivates PKR in the absence of ADAR1, resulting in eIF2α mediated translational arrest and reduced viral replication. Silencing of PKR or inhibition of its downstream effectors by viral (ICP34.5) or pharmacological (ISRIB) inhibitors rescues viral replication in ADAR1-deficient cells. Upon infection, ADAR1 p150 interacts with PKR and prevents its hyperactivation. Our findings demonstrate that ADAR1 is an important proviral factor that raises the activation threshold for sensors of innate immunity.
Collapse
Affiliation(s)
- Adwait Parchure
- Faculty of Biotechnology and Drug Development, University of Rijeka, Rijeka, Croatia
| | - Mia Cesarec
- Faculty of Biotechnology and Drug Development, University of Rijeka, Rijeka, Croatia
| | - Antonija Braut
- Faculty of Biotechnology and Drug Development, University of Rijeka, Rijeka, Croatia
| | - Robert Kolman
- Faculty of Biotechnology and Drug Development, University of Rijeka, Rijeka, Croatia
| | - Vlatka Ivanišević
- Faculty of Biotechnology and Drug Development, University of Rijeka, Rijeka, Croatia
| | - Marina Čunko
- Faculty of Biotechnology and Drug Development, University of Rijeka, Rijeka, Croatia
| | - Slađana Bursać
- Department of Molecular Medicine and Biotechnology, Faculty of Medicine in Rijeka, University of Rijeka, Rijeka, Croatia
| | - Richard de Reuver
- VIB-UGent Center for Inflammation Research, Ghent, Belgium
- Department of Biomedical Molecular Biology, Ghent University, Ghent, Belgium
| | - Antonija J. Begonja
- Faculty of Biotechnology and Drug Development, University of Rijeka, Rijeka, Croatia
| | - Umberto Rosani
- Department of Biology, University of Padova, Padova, Italy
| | - Siniša Volarević
- Department of Molecular Medicine and Biotechnology, Faculty of Medicine in Rijeka, University of Rijeka, Rijeka, Croatia
| | - Jonathan Maelfait
- VIB-UGent Center for Inflammation Research, Ghent, Belgium
- Department of Biomedical Molecular Biology, Ghent University, Ghent, Belgium
| | - Igor Jurak
- Faculty of Biotechnology and Drug Development, University of Rijeka, Rijeka, Croatia
| |
Collapse
|
8
|
Chen H, Yu Q, Gao X, Huang T, Bao C, Guo J, Wang Z, Lv J, Dai J, Babiuk LA, Zou X, Jung YS, Qian Y. ASFV pS183L protein negatively regulates RLR-mediated antiviral signalling by blocking MDA5 oligomerisation. Vet Res 2025; 56:70. [PMID: 40165208 PMCID: PMC11959855 DOI: 10.1186/s13567-025-01488-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2024] [Accepted: 11/19/2024] [Indexed: 04/02/2025] Open
Abstract
The retinoic acid-inducible gene I (RIG-I)-like receptors (RLRs) are major sensors against viral infection, but their roles in DNA virus infection largely remain unknown. This study found that a previously uncharacterised protein, pS183L, negatively regulates RLR signalling by suppressing MDA5 oligomerisation. Specifically, we showed that the overexpression of pS183L suppresses MDA5 but not cGAS-STING or RIG-I-induced IFN-β activation. Consistently, pS183L inhibited high molecular weight poly (I:C) activated IFN-β production. Furthermore, we demonstrated that pS183L interacts with CARDs and the MDA5 Helicase domain, consequently blocking MDA5 oligomerisation and the MDA5-MAVS interaction. Taken together, we concluded that pS183L blocks MDA5 oligomerisation through protein-protein interaction and thus disrupts MDA5-mediated IFN-β signalling.
Collapse
Affiliation(s)
- Huan Chen
- Laboratory of Emerging Infectious Diseases and One Health, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, Jiangsu Province, China
- MOE Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, Jiangsu Province, China
| | - Qun Yu
- Laboratory of Emerging Infectious Diseases and One Health, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, Jiangsu Province, China
- MOE Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, Jiangsu Province, China
| | - Xiaoyu Gao
- Laboratory of Emerging Infectious Diseases and One Health, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, Jiangsu Province, China
- MOE Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, Jiangsu Province, China
| | - Tao Huang
- Laboratory of Emerging Infectious Diseases and One Health, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, Jiangsu Province, China
- MOE Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, Jiangsu Province, China
- China/WOAH Reference Laboratory for Classical Swine Fever, China Institute of Veterinary Drug Control, Beijing, China
| | - Chenyi Bao
- Laboratory of Emerging Infectious Diseases and One Health, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, Jiangsu Province, China
- MOE Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, Jiangsu Province, China
| | - Jiaona Guo
- Laboratory of Emerging Infectious Diseases and One Health, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, Jiangsu Province, China
- MOE Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, Jiangsu Province, China
| | - Zhenzhong Wang
- Laboratory of Emerging Infectious Diseases and One Health, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, Jiangsu Province, China
- MOE Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, Jiangsu Province, China
| | - Jiaxuan Lv
- Laboratory of Emerging Infectious Diseases and One Health, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, Jiangsu Province, China
- MOE Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, Jiangsu Province, China
| | - Jianjun Dai
- Laboratory of Emerging Infectious Diseases and One Health, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, Jiangsu Province, China
- School of Life Science and Technology, China Pharmaceutical University, Nanjing, China
| | | | - Xingqi Zou
- China/WOAH Reference Laboratory for Classical Swine Fever, China Institute of Veterinary Drug Control, Beijing, China.
| | - Yong-Sam Jung
- Laboratory of Emerging Infectious Diseases and One Health, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, Jiangsu Province, China.
- MOE Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, Jiangsu Province, China.
| | - Yingjuan Qian
- Laboratory of Emerging Infectious Diseases and One Health, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, Jiangsu Province, China.
- MOE Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, Jiangsu Province, China.
- Veterinary Bio-Pharmaceutical, Jiangsu Key Laboratory for High-Tech Research and Development of Veterinary Biopharmaceuticals, Jiangsu Agri-Animal Husbandry Vocational College, Taizhou, Jiangsu, China.
| |
Collapse
|
9
|
Chen Z, Behrendt R, Wild L, Schlee M, Bode C. Cytosolic nucleic acid sensing as driver of critical illness: mechanisms and advances in therapy. Signal Transduct Target Ther 2025; 10:90. [PMID: 40102400 PMCID: PMC11920230 DOI: 10.1038/s41392-025-02174-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2024] [Revised: 01/14/2025] [Accepted: 02/11/2025] [Indexed: 03/20/2025] Open
Abstract
Nucleic acids from both self- and non-self-sources act as vital danger signals that trigger immune responses. Critical illnesses such as acute respiratory distress syndrome, sepsis, trauma and ischemia lead to the aberrant cytosolic accumulation and massive release of nucleic acids that are detected by antiviral innate immune receptors in the endosome or cytosol. Activation of receptors for deoxyribonucleic acids and ribonucleic acids triggers inflammation, a major contributor to morbidity and mortality in critically ill patients. In the past decade, there has been growing recognition of the therapeutic potential of targeting nucleic acid sensing in critical care. This review summarizes current knowledge of nucleic acid sensing in acute respiratory distress syndrome, sepsis, trauma and ischemia. Given the extensive research on nucleic acid sensing in common pathological conditions like cancer, autoimmune disorders, metabolic disorders and aging, we provide a comprehensive summary of nucleic acid sensing beyond critical illness to offer insights that may inform its role in critical conditions. Additionally, we discuss potential therapeutic strategies that specifically target nucleic acid sensing. By examining nucleic acid sources, sensor activation and function, as well as the impact of regulating these pathways across various acute diseases, we highlight the driving role of nucleic acid sensing in critical illness.
Collapse
Affiliation(s)
- Zhaorong Chen
- Department of Anesthesiology and Intensive Care Medicine, University Hospital Bonn, 53127, Bonn, Germany
| | - Rayk Behrendt
- Institute of Clinical Chemistry and Clinical Pharmacology, University Hospital Bonn, 53127, Bonn, Germany
| | - Lennart Wild
- Department of Anesthesiology and Intensive Care Medicine, University Hospital Bonn, 53127, Bonn, Germany
| | - Martin Schlee
- Institute of Clinical Chemistry and Clinical Pharmacology, University Hospital Bonn, 53127, Bonn, Germany
| | - Christian Bode
- Department of Anesthesiology and Intensive Care Medicine, University Hospital Bonn, 53127, Bonn, Germany.
| |
Collapse
|
10
|
Ledwith MP, Nipper T, Davis KA, Uresin D, Komarova AV, Mehle A. Influenza virus antagonizes self sensing by RIG-I to enhance viral replication. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2025:2025.03.12.642847. [PMID: 40161615 PMCID: PMC11952396 DOI: 10.1101/2025.03.12.642847] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 04/02/2025]
Abstract
Innate immune sensors must finely distinguish pathogens from the host to mount a response only during infection. RIG-I is cytoplasmic sensor that surveils for foreign RNAs. When activated, RIG-I triggers a broad antiviral response that is a major regulator of RNA virus infection. Here were show that RIG-I not only bound viral RNAs, but was activated by host RNAs to amplify the antiviral state. These were primarily non-coding RNAs transcribed by RNA polymerase III. They were benign under normal conditions but became immunogenic during influenza virus infection where they signaled via RIG-I to suppress viral replication. This same class of RNAs was bound by influenza virus nucleoprotein (NP), which normally functions to encapsidate the viral genome. NP interacted with RIG-I and antagonized sensing of self RNAs to counter innate immune responses. Overall, these results demonstrate that self sensing is strategically deployed by the cell to amplify the antiviral response and reveal a newly identified viral countermeasure that disrupts RIG-I activation by host RNAs.
Collapse
Affiliation(s)
- Mitchell P. Ledwith
- Medical Microbiology and Immunology, University of Wisconsin Madison, Madison, WI, USA
| | - Thomas Nipper
- Medical Microbiology and Immunology, University of Wisconsin Madison, Madison, WI, USA
| | - Kaitlin A. Davis
- Medical Microbiology and Immunology, University of Wisconsin Madison, Madison, WI, USA
| | - Deniz Uresin
- Institut Pasteur, Université Paris Cité, Interactomics, RNA and Immunity laboratory, F- 75015 Paris, France
| | - Anastassia V. Komarova
- Institut Pasteur, Université Paris Cité, Interactomics, RNA and Immunity laboratory, F- 75015 Paris, France
- Institut Pasteur, Université Paris Cité, Molecular Genetics of RNA Viruses, CNRS UMR- 3569, F-75015 Paris, France
- Institut Pasteur, Pasteur-Oncovita Joint Laboratory, F-75015 Paris, France
| | - Andrew Mehle
- Medical Microbiology and Immunology, University of Wisconsin Madison, Madison, WI, USA
- Lead contact
| |
Collapse
|
11
|
Xu J, Ren Y, Lu J, Qin F, Yang D, Tang C, Yang Y, Xu J, Liu T, Yi P. Genome-wide profiling of N6-methyladenosine-modified pseudogene-derived long noncoding RNAs reveals the tumour-promoting and innate immune-restraining function of RPS15AP12 in ovarian cancer. Clin Transl Med 2025; 15:e70249. [PMID: 40000433 PMCID: PMC11859666 DOI: 10.1002/ctm2.70249] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2024] [Revised: 02/07/2025] [Accepted: 02/13/2025] [Indexed: 02/27/2025] Open
Abstract
BACKGROUND Pseudogene-derived lncRNAs are widely dysregulated in cancer. Technological advancements have facilitated the functional characterization of increasing pseudogenes in cancer progression. However, the association between pseudogenes and RNA N6-methyladenosine (m6A) modification in cancer, as well as the underlying mechanisms, remains largely unexplored. METHODS We analyzed the expression of 12 146 pseudogenes and comprehensively examined the m6A modification of RNAs derived from them and their paralogs. Through integrative analysis of multi-omics data, we explored the associations between pseudogene dysregulation and m6A, identifying critical pseudogenes involved in HGSOC progression. Tumour promotion role of RPS15AP12 and its cognate parent gene was characterized by cell proliferation, transwell assays, and scratch assays in ovarian cells and xenograft nude mice. RNA decay assays were used to reveal the participation of m6A in decreasement of RPS15AP12 lncRNA stability. Luciferase reporter assays were performed to verify that RPS15AP12 enhances RPS15A expression by competitively binding to miR-96-3p. Western blot and phosphorylation assays were performed to investigate the impairment of RPS15AP12 towards the sensors of MAVS (RIG-I and MDA5), and downstream p-TBK1 and p-IRF3. Finally, ELISA assays were performed to explore the regulatory role of RPS15AP12 in IFN-β expression. RESULTS M6A is distributed across over a thousand pseudogenes, and hypomethylation leads to their upregulation in HGSOC. We identified a processed pseudogene, RPS15AP12, upregulated by FTO-mediated m6A demethylation. RPS15AP12 enhances the growth ability and metastatic capabilities of ovarian cancer (OC) cells via functioning as a competitive endogenous RNA (ceRNA) for its host gene, RPS15A, through the sequestration of miR-96-3p. Importantly, the deletion of RPS15AP12 diminishes the expression of RPS15A, leading to the upregulation of anti-tumour immune responses by activating RIG-I and MDA5 and downstream p-TBK1 and p-IRF3 as well as IFN-β levels. CONCLUSION Our findings expand the understanding of m6A-modulated pseudogenes in tumour growth and anti-tumour innate immunity in OC. KEY POINTS Genome-wide profiling reveals the redistribution of m6A modification on pseudogene-derived lncRNAs and m6A redistribution-relevant dysregulation of pseudogenes in HGSOC. RPS15AP12, as a representative processed pseudogene, is up-regulated by FTO-mediated demethylation and acts as a miRNA sponge to promote RPS15A expression via competitively binding to miR-96-3p. RPS15AP12/RPS15A axis inhibits MAVS sensors (RIG-I and MDA5) and downstream IFN-β levels in ovarian cancer.
Collapse
Affiliation(s)
- Jie Xu
- Department of Obstetrics and GynecologyThe Third Affiliated Hospital of Chongqing Medical UniversityChongqingChina
| | - Yifei Ren
- Department of Obstetrics and GynecologyThe Third Affiliated Hospital of Chongqing Medical UniversityChongqingChina
- Department of Obstetrics and GynecologyDaping HospitalArmy Medical UniversityChongqingChina
| | - Jiayi Lu
- Department of Obstetrics and GynecologyThe Third Affiliated Hospital of Chongqing Medical UniversityChongqingChina
| | - Fengjiang Qin
- Department of Obstetrics and GynecologyThe Third Affiliated Hospital of Chongqing Medical UniversityChongqingChina
- Department of Obstetrics and GynecologyChongqing University Fuling HospitalChongqingChina
| | - Dan Yang
- Department of Obstetrics and GynecologyThe Third Affiliated Hospital of Chongqing Medical UniversityChongqingChina
| | - Chunyan Tang
- Department of Obstetrics and GynecologyThe Third Affiliated Hospital of Chongqing Medical UniversityChongqingChina
- Department of Obstetrics and GynecologyWomen and Children's Hospital of Chongqing Medical UniversityChongqingChina
| | - Yu Yang
- Department of Obstetrics and GynecologyThe Third Affiliated Hospital of Chongqing Medical UniversityChongqingChina
| | - Jing Xu
- Department of Obstetrics and GynecologyThe Third Affiliated Hospital of Chongqing Medical UniversityChongqingChina
| | - Tao Liu
- Department of Obstetrics and GynecologyThe Third Affiliated Hospital of Chongqing Medical UniversityChongqingChina
| | - Ping Yi
- Department of Obstetrics and GynecologyThe Third Affiliated Hospital of Chongqing Medical UniversityChongqingChina
| |
Collapse
|
12
|
Williams SG, Sim S, Wolin SL. RNA sensing at the crossroads of autoimmunity and autoinflammation. RNA (NEW YORK, N.Y.) 2025; 31:369-381. [PMID: 39779213 PMCID: PMC11874990 DOI: 10.1261/rna.080304.124] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/28/2024] [Accepted: 12/31/2024] [Indexed: 01/11/2025]
Abstract
Immune-mediated diseases are common in humans. The immune system is a complex host defense system that evolved to protect us from pathogens, but also plays an important role in homeostatic processes, removing dead or senescent cells, and participating in tumor surveillance. The human immune system has two arms: the older innate immune system and the newer adaptive immune system. Sensing of foreign RNA is critical to the innate immune system's ability to recognize pathogens, especially viral infections. However, RNA sensors are also strongly implicated in autoimmune and autoinflammatory diseases, highlighting the importance of balancing pathogen recognition with tolerance to host RNAs that can resemble their viral counterparts. We describe how RNA sensors bind their ligands, how this binding is coupled to upregulation of type I interferon-stimulated genes, and the ways in which mutations in RNA sensors and genes that play important roles in RNA homeostasis have been linked to autoimmune and autoinflammatory diseases.
Collapse
Affiliation(s)
- Sandra G Williams
- National Institute of Arthritis and Musculoskeletal and Skin Diseases (NIAMS), National Institutes of Health (NIH), Bethesda, Maryland 20892, USA
- RNA Biology Laboratory, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Frederick, Maryland 21702, USA
| | - Soyeong Sim
- RNA Biology Laboratory, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Frederick, Maryland 21702, USA
| | - Sandra L Wolin
- RNA Biology Laboratory, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Frederick, Maryland 21702, USA
| |
Collapse
|
13
|
Carroll KA, Sawden M, Sharma S. DAMPs, PAMPs, NLRs, RIGs, CLRs and TLRs - Understanding the Alphabet Soup in the Context of Bone Biology. Curr Osteoporos Rep 2025; 23:6. [PMID: 39808398 DOI: 10.1007/s11914-024-00900-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 12/09/2024] [Indexed: 01/16/2025]
Abstract
PURPOSE OF REVIEW The purpose of this review is to summarize the current understanding of cell-autonomous innate immune pathways that contribute to bone homeostasis and disease. RECENT FINDINGS Germ-line encoded pattern recognition receptors (PRRs) are the first line of defense against danger and infections. In the bone microenvironment, PRRs and downstream signaling pathways, that mount immune defense, interface intimately with the core cellular processes in bone cells to alter bone formation and resorption. The role of PRR engagement on bone remodeling has been best described as a result of activated macrophages secreting effector molecules that reshape the characteristics of bone-resident cells. However, it is being increasingly recognized that local bone resident-cells like osteoclasts and osteoblasts possess an arsenal of PRRs. The engagement of these PRRs by stimuli in the bone niche can drive cell-autonomous (aka cell-intrinsic) responses that, in turn, impact bone-remodeling dramatically, irrespective of immune cell effectors. Indeed, this vital role for cell-autonomous innate immune responses is evident in how reduced PRR activity within osteoclast progenitors correlates with their reduced differentiation and abnormal bone remodeling. Further, cell-intrinsic PRR activity has now been shown to influence the behavior of osteoblasts, osteocytes and other local immune/non-immune cell populations. However, distinct PRR families have varying impact on bone homeostasis and inflammation, emphasizing the importance of investigating these different nodes of innate immune signaling in bone cells to better identify how they synergistically and/or antagonistically regulate bone remodeling in the course of an immune response. Innate immune sensing within bone resident cells is a critical determinant for bone remodeling in health and disease.
Collapse
Affiliation(s)
- K A Carroll
- Department of Immunology, Tufts University, Boston, MA, 02111, USA
- Graduate School of Biomedical Sciences, Tufts University, Boston, MA, 02111, USA
| | - M Sawden
- Department of Immunology, Tufts University, Boston, MA, 02111, USA
- Graduate School of Biomedical Sciences, Tufts University, Boston, MA, 02111, USA
| | - S Sharma
- Department of Immunology, Tufts University, Boston, MA, 02111, USA.
| |
Collapse
|
14
|
Li J, Zhu J, Yang H, Hou F. Sterile activation of RNA-sensing pathways in autoimmunity. J Mol Cell Biol 2024; 16:mjae029. [PMID: 39143032 PMCID: PMC11659683 DOI: 10.1093/jmcb/mjae029] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2024] [Revised: 06/27/2024] [Accepted: 08/13/2024] [Indexed: 08/16/2024] Open
Abstract
RNA-sensing pathways play a pivotal role in host defense against pathogenic infections to maintain cellular homeostasis. However, in the absence of infection, certain endogenous RNAs can serve as the activators of RNA-sensing pathways as well. The inappropriate activation of RNA-sensing pathways by self-ligands leads to systemic inflammation and autoimmune diseases. In this review, we summarize current findings on the sterile activation of RNA sensors, as well as its implications in autoimmunity, inflammatory diseases, and therapeutics.
Collapse
Affiliation(s)
- Jiaxin Li
- Key Laboratory of RNA Science and Engineering, Shanghai Institute of Biochemistry and Cell Biology, Center for Excellence in Molecular Cell Science, Chinese Academy of Sciences, University of Chinese Academy of Sciences, Shanghai 200031, China
| | - Junyan Zhu
- Key Laboratory of RNA Science and Engineering, Shanghai Institute of Biochemistry and Cell Biology, Center for Excellence in Molecular Cell Science, Chinese Academy of Sciences, University of Chinese Academy of Sciences, Shanghai 200031, China
| | - Hui Yang
- Department of Neurosurgery, Huashan Hospital, Institute for Translational Brain Research, MOE Frontiers Center for Brain Science, Shanghai Medical College, Fudan University, Shanghai 200032, China
- Shanghai Key Laboratory of Brain Function Restoration and Neural Regeneration, Huashan Hospital, Shanghai Medical College, Fudan University, Shanghai 200032, China
| | - Fajian Hou
- Key Laboratory of RNA Science and Engineering, Shanghai Institute of Biochemistry and Cell Biology, Center for Excellence in Molecular Cell Science, Chinese Academy of Sciences, University of Chinese Academy of Sciences, Shanghai 200031, China
- Key Laboratory of Systems Health Science of Zhejiang Province, School of Life Science, Hangzhou Institute for Advanced Study, University of Chinese Academy of Sciences, Hangzhou 310024, China
| |
Collapse
|
15
|
Sun S, You E, Hong J, Hoyos D, Del Priore I, Tsanov KM, Mattagajasingh O, Di Gioacchino A, Marhon SA, Chacon-Barahona J, Li H, Jiang H, Hozeifi S, Rosas-Bringas O, Xu KH, Song Y, Lang ER, Rojas AS, Nieman LT, Patel BK, Murali R, Chanda P, Karacay A, Vabret N, De Carvalho DD, Zenklusen D, LaCava J, Lowe SW, Ting DT, Iacobuzio-Donahue CA, Solovyov A, Greenbaum BD. Cancer cells restrict immunogenicity of retrotransposon expression via distinct mechanisms. Immunity 2024; 57:2879-2894.e11. [PMID: 39577413 PMCID: PMC12022969 DOI: 10.1016/j.immuni.2024.10.015] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2023] [Revised: 06/28/2024] [Accepted: 10/29/2024] [Indexed: 11/24/2024]
Abstract
To thrive, cancer cells must navigate acute inflammatory signaling accompanying oncogenic transformation, such as via overexpression of repeat elements. We examined the relationship between immunostimulatory repeat expression, tumor evolution, and the tumor-immune microenvironment. Integration of multimodal data from a cohort of pancreatic ductal adenocarcinoma (PDAC) patients revealed expression of specific Alu repeats predicted to form double-stranded RNAs (dsRNAs) and trigger retinoic-acid-inducible gene I (RIG-I)-like-receptor (RLR)-associated type-I interferon (IFN) signaling. Such Alu-derived dsRNAs also anti-correlated with pro-tumorigenic macrophage infiltration in late stage tumors. We defined two complementary pathways whereby PDAC may adapt to such anti-tumorigenic signaling. In mutant TP53 tumors, ORF1p from long interspersed nuclear element (LINE)-1 preferentially binds Alus and decreases their expression, whereas adenosine deaminases acting on RNA 1 (ADAR1) editing primarily reduces dsRNA formation in wild-type TP53 tumors. Depletion of either LINE-1 ORF1p or ADAR1 reduced tumor growth in vitro. The fact that tumors utilize multiple pathways to mitigate immunostimulatory repeats implies the stress from their expression is a fundamental phenomenon to which PDAC, and likely other tumors, adapt.
Collapse
Affiliation(s)
- Siyu Sun
- Halvorsen Center for Computational Oncology, Department of Epidemiology and Biostatistics, Memorial Sloan Kettering Cancer Center, New York, NY, USA.
| | - Eunae You
- Massachusetts General Cancer Center, Harvard Medical School, Charlestown, MA, USA
| | - Jungeui Hong
- David M. Rubenstein Center for Pancreatic Cancer Research, Memorial Sloan Kettering Cancer Center, New York, NY, USA; Human Oncology and Pathogenesis Program, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - David Hoyos
- Tri-Institutional Program in Computational Biology and Medicine, Weill Cornell Medicine, New York, NY, USA
| | - Isabella Del Priore
- Louis V. Gerstner Jr. Graduate School of Biomedical Sciences, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Kaloyan M Tsanov
- Cancer Biology and Genetics Program, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Om Mattagajasingh
- Department of Biochemistry and Molecular Medicine, Université de Montréal, Montreal, QC, Canada
| | - Andrea Di Gioacchino
- Laboratoire de Physique de l'Ecole Normale Supérieure, Sorbonne Université, Université de Paris, Paris, France
| | - Sajid A Marhon
- Princess Margaret Cancer Centre, University Health Network, Toronto, ON, Canada
| | - Jonathan Chacon-Barahona
- Tri-Institutional Program in Computational Biology and Medicine, Weill Cornell Medicine, New York, NY, USA
| | - Hao Li
- Halvorsen Center for Computational Oncology, Department of Epidemiology and Biostatistics, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Hua Jiang
- Laboratory of Cellular and Structural Biology, The Rockefeller University, New York, NY, USA
| | - Samira Hozeifi
- European Research Institute for the Biology of Ageing, University Medical Center Groningen, Groningen, The Netherlands
| | - Omar Rosas-Bringas
- European Research Institute for the Biology of Ageing, University Medical Center Groningen, Groningen, The Netherlands
| | - Katherine H Xu
- Massachusetts General Cancer Center, Harvard Medical School, Charlestown, MA, USA
| | - Yuhui Song
- Massachusetts General Cancer Center, Harvard Medical School, Charlestown, MA, USA
| | - Evan R Lang
- Massachusetts General Cancer Center, Harvard Medical School, Charlestown, MA, USA
| | - Alexandra S Rojas
- Massachusetts General Cancer Center, Harvard Medical School, Charlestown, MA, USA
| | - Linda T Nieman
- Massachusetts General Cancer Center, Harvard Medical School, Charlestown, MA, USA
| | - Bidish K Patel
- Massachusetts General Cancer Center, Harvard Medical School, Charlestown, MA, USA
| | - Rajmohan Murali
- Last Wish Program and Department of Pathology and Laboratory Medicine, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Pharto Chanda
- Last Wish Program and Department of Pathology and Laboratory Medicine, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Ali Karacay
- Last Wish Program and Department of Pathology and Laboratory Medicine, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Nicolas Vabret
- Precision Immunology Institute at the Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Daniel D De Carvalho
- Princess Margaret Cancer Centre, University Health Network, Toronto, ON, Canada; Department of Medical Biophysics, University of Toronto, Toronto, ON, Canada
| | - Daniel Zenklusen
- Department of Biochemistry and Molecular Medicine, Université de Montréal, Montreal, QC, Canada
| | - John LaCava
- Princess Margaret Cancer Centre, University Health Network, Toronto, ON, Canada; European Research Institute for the Biology of Ageing, University Medical Center Groningen, Groningen, The Netherlands
| | - Scott W Lowe
- Cancer Biology and Genetics Program, Memorial Sloan Kettering Cancer Center, New York, NY, USA; Howard Hughes Medical Institute, Chevy Chase, MD, USA
| | - David T Ting
- Massachusetts General Cancer Center, Harvard Medical School, Charlestown, MA, USA
| | - Christine A Iacobuzio-Donahue
- David M. Rubenstein Center for Pancreatic Cancer Research, Memorial Sloan Kettering Cancer Center, New York, NY, USA; Human Oncology and Pathogenesis Program, Memorial Sloan Kettering Cancer Center, New York, NY, USA; Last Wish Program and Department of Pathology and Laboratory Medicine, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Alexander Solovyov
- Halvorsen Center for Computational Oncology, Department of Epidemiology and Biostatistics, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Benjamin D Greenbaum
- Halvorsen Center for Computational Oncology, Department of Epidemiology and Biostatistics, Memorial Sloan Kettering Cancer Center, New York, NY, USA; Physiology, Biophysics & Systems Biology, Weill Cornell Medicine, New York, NY, USA.
| |
Collapse
|
16
|
Wang C, Li L, Zhai X, Chang H, Liu H. Evasion of the Antiviral Innate Immunity by PRV. Int J Mol Sci 2024; 25:13140. [PMID: 39684850 DOI: 10.3390/ijms252313140] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2024] [Revised: 11/29/2024] [Accepted: 12/01/2024] [Indexed: 12/18/2024] Open
Abstract
Pseudorabies virus (PRV) establishes persistent latent infections by effectively evading the host's antiviral innate immune response. PRV has developed sophisticated strategies to bypass immune surveillance through coevolution with its host. Currently, no effective vaccine exists to prevent or treat infections caused by emerging PRV variants, and the interactions between PRV and the host's innate immune defenses remain incompletely understood. Nevertheless, ongoing research is uncovering insights that may lead to novel treatments and preventive approaches for herpesvirus-related diseases. This review summarizes recent advances in understanding how PRV disrupts key adaptors in immune signaling pathways to evade antiviral immunity. Additionally, we explored the intrinsic cellular defenses that play crucial roles in combating viral invasion. A deeper understanding of the immune evasion strategies of PRV could inform the development of new therapeutic targets and vaccines.
Collapse
Affiliation(s)
- Chenlong Wang
- College of Life Sciences, Henan Agricultural University, Zhengzhou 450046, China
| | - Longxi Li
- College of Life Sciences, Henan Agricultural University, Zhengzhou 450046, China
| | - Xinyu Zhai
- College of Life Sciences, Henan Agricultural University, Zhengzhou 450046, China
| | - Hongtao Chang
- College of Veterinary Medicine, Henan Agricultural University, Zhengzhou 450046, China
| | - Huimin Liu
- College of Life Sciences, Henan Agricultural University, Zhengzhou 450046, China
| |
Collapse
|
17
|
Su D, Han L, Shi C, Li Y, Qian S, Feng Z, Yu L. An updated review of HSV-1 infection-associated diseases and treatment, vaccine development, and vector therapy application. Virulence 2024; 15:2425744. [PMID: 39508503 PMCID: PMC11562918 DOI: 10.1080/21505594.2024.2425744] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2024] [Revised: 09/24/2024] [Accepted: 10/31/2024] [Indexed: 11/15/2024] Open
Abstract
Herpes simplex virus type 1 (HSV-1) is a globally widespread virus that causes and associates with a wide range of diseases, including herpes simplex encephalitis, herpes simplex keratitis, and herpes labialis. The interaction between HSV-1 and the host involves complex immune response mechanisms, including recognition of viral invasion, maintenance of latent infection, and triggering of reactivation. Antiviral therapy is the core treatment for HSV-1 infections. Meanwhile, vaccine development employs different strategies and methods, and several promising vaccine types have emerged, such as live attenuated, protein subunit, and nucleic acid vaccines, offering new possibilities for the prevention of HSV-1 infection. Moreover, HSV-1 can be modified into a therapeutic vector for gene therapy and tumour immunotherapy. This review provides an in-depth summary of HSV-1 infection-associated innate and adaptive immune responses, disease pathogenesis, current therapeutic approaches, recent advances in vaccine development, and vector therapy applications for cancer treatment. Through a systematic review of multiple aspects of HSV-1, this study aims to provide a comprehensive and detailed reference for the public on the prevention, control, and treatment of HSV-1.
Collapse
Affiliation(s)
- Dan Su
- Department of Endocrine, The Third Affiliated Hospital of Xinxiang Medical University, Xinxiang Medical University, Xinxiang, Henan, China
- School of Basic Medical Sciences, Xinxiang Medical University, Xinxiang, Henan, China
- Xinxiang Engineering Technology Research Center of Immune Checkpoint Drug for Liver-Intestinal Tumors, Xinxiang Medical University, Xinxiang, Henan, P.R.China
| | - Liping Han
- Department of Endocrine, The Third Affiliated Hospital of Xinxiang Medical University, Xinxiang Medical University, Xinxiang, Henan, China
| | - Chengyu Shi
- School of Basic Medical Sciences, Xinxiang Medical University, Xinxiang, Henan, China
- Xinxiang Engineering Technology Research Center of Immune Checkpoint Drug for Liver-Intestinal Tumors, Xinxiang Medical University, Xinxiang, Henan, P.R.China
| | - Yaoxin Li
- Department of Endocrine, The Third Affiliated Hospital of Xinxiang Medical University, Xinxiang Medical University, Xinxiang, Henan, China
- Xinxiang Engineering Technology Research Center of Immune Checkpoint Drug for Liver-Intestinal Tumors, Xinxiang Medical University, Xinxiang, Henan, P.R.China
| | - Shaoju Qian
- School of Basic Medical Sciences, Xinxiang Medical University, Xinxiang, Henan, China
- Xinxiang Engineering Technology Research Center of Immune Checkpoint Drug for Liver-Intestinal Tumors, Xinxiang Medical University, Xinxiang, Henan, P.R.China
| | - Zhiwei Feng
- School of Basic Medical Sciences, Xinxiang Medical University, Xinxiang, Henan, China
- Xinxiang Engineering Technology Research Center of Immune Checkpoint Drug for Liver-Intestinal Tumors, Xinxiang Medical University, Xinxiang, Henan, P.R.China
| | - Lili Yu
- Department of Endocrine, The Third Affiliated Hospital of Xinxiang Medical University, Xinxiang Medical University, Xinxiang, Henan, China
- School of Basic Medical Sciences, Xinxiang Medical University, Xinxiang, Henan, China
- Xinxiang Engineering Technology Research Center of Immune Checkpoint Drug for Liver-Intestinal Tumors, Xinxiang Medical University, Xinxiang, Henan, P.R.China
| |
Collapse
|
18
|
Chen KR, Yang CY, Shu SG, Lo YC, Lee KW, Wang LC, Chen JB, Shih MC, Chang HC, Hsiao YJ, Wu CL, Tan TH, Ling P. Endosomes serve as signaling platforms for RIG-I ubiquitination and activation. SCIENCE ADVANCES 2024; 10:eadq0660. [PMID: 39504361 PMCID: PMC11540011 DOI: 10.1126/sciadv.adq0660] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/25/2024] [Accepted: 10/01/2024] [Indexed: 11/08/2024]
Abstract
RIG-I-like receptors (RLRs) are cytosolic RNA sensors critical for antiviral immunity. RLR activation is regulated by polyubiquitination and oligomerization following RNA binding. Yet, little is known about how RLRs exploit subcellular organelles to facilitate their posttranslational modifications and activation. Endosomal adaptor TAPE regulates the endosomal TLR and cytosolic RLR pathways. The potential interplay between RIG-I signaling and endosomes has been explored. Here, we report that endosomes act as platforms for facilitating RIG-I polyubiquitination and complex formation. RIG-I was translocated onto endosomes to form signaling complexes upon activation. Ablation of endosomes impaired RIG-I signaling to type I IFN activation. TAPE mediates the interaction and polyubiquitination of RIG-I and TRIM25. TAPE-deficient myeloid cells were defective in type I IFN activation upon RNA ligand and virus challenges. Myeloid TAPE deficiency increased the susceptibility to RNA virus infection in vivo. Our work reveals endosomes as signaling platforms for RIG-I activation and antiviral immunity.
Collapse
Affiliation(s)
- Kuan-Ru Chen
- Department of Microbiology and Immunology, National Cheng Kung University, 70101 Tainan, Taiwan
- Department of Medical Research, E-Da Hospital, I-Shou University, 824005 Kaohsiung, Taiwan
| | - Chia-Yu Yang
- Immunology Research Center, National Health Research Institutes, Zhunan, Taiwan
- Department of Microbiology and Immunology, College of Medicine, Chang Gung University, 33302 Tao-Yuan, Taiwan
| | - San-Ging Shu
- Department of Pediatrics, Ditmanson Medical Foundation Chia-Yi Christian Hospital, 60002 Chiayi City, Taiwan
| | - Yin-Chiu Lo
- Department of Microbiology and Immunology, National Cheng Kung University, 70101 Tainan, Taiwan
| | - Kuan-Wei Lee
- Department of Microbiology and Immunology, National Cheng Kung University, 70101 Tainan, Taiwan
| | - Li-Chun Wang
- Department of Microbiology and Immunology, National Cheng Kung University, 70101 Tainan, Taiwan
| | - Jia-Bao Chen
- Department of Microbiology and Immunology, National Cheng Kung University, 70101 Tainan, Taiwan
| | - Meng-Cen Shih
- Department of Medical Laboratory Science and Biotechnology, National Cheng Kung University, 70101 Tainan, Taiwan
| | - Hung-Chun Chang
- Department of Microbiology and Immunology, National Cheng Kung University, 70101 Tainan, Taiwan
| | - Yu-Ju Hsiao
- Department of Medical Laboratory Science and Biotechnology, National Cheng Kung University, 70101 Tainan, Taiwan
| | - Chao-Liang Wu
- Department of Medical Research, Ditmanson Medical Foundation Chia-Yi Christian Hospital, 60002 Chiayi City, Taiwan
| | - Tse-Hua Tan
- Immunology Research Center, National Health Research Institutes, Zhunan, Taiwan
| | - Pin Ling
- Department of Microbiology and Immunology, National Cheng Kung University, 70101 Tainan, Taiwan
- Department of Medical Laboratory Science and Biotechnology, National Cheng Kung University, 70101 Tainan, Taiwan
| |
Collapse
|
19
|
Sayyad Z, Acharya D, Gack MU. TRIM Proteins: Key Regulators of Immunity to Herpesvirus Infection. Viruses 2024; 16:1738. [PMID: 39599852 PMCID: PMC11599090 DOI: 10.3390/v16111738] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2024] [Revised: 10/31/2024] [Accepted: 11/01/2024] [Indexed: 11/29/2024] Open
Abstract
Herpesviruses are ubiquitous DNA viruses that can establish latency and cause a range of mild to life-threatening diseases in humans. Upon infection, herpesviruses trigger the activation of several host antiviral defense programs that play critical roles in curbing virus replication and dissemination. Recent work from many groups has integrated our understanding of TRIM (tripartite motif) proteins, a specific group of E3 ligase enzymes, as pivotal orchestrators of mammalian antiviral immunity. In this review, we summarize recent advances in the modulation of innate immune signaling by TRIM proteins during herpesvirus infection, with a focus on the detection of herpes simplex virus type 1 (HSV-1, a prototype herpesvirus) by cGAS-STING, RIG-I-like receptors, and Toll-like receptors. We also review the latest progress in understanding the intricate relationship between herpesvirus replication and TRIM protein-regulated autophagy and apoptosis. Finally, we discuss the maneuvers used by HSV-1 and other herpesviruses to overcome TRIM protein-mediated virus restriction.
Collapse
Affiliation(s)
| | - Dhiraj Acharya
- Florida Research and Innovation Center, Cleveland Clinic, 9801 SW Discovery Way, Port St. Lucie, FL 34987, USA;
| | - Michaela U. Gack
- Florida Research and Innovation Center, Cleveland Clinic, 9801 SW Discovery Way, Port St. Lucie, FL 34987, USA;
| |
Collapse
|
20
|
Zhang SY, Casanova JL. Genetic defects of brain immunity in childhood herpes simplex encephalitis. Nature 2024; 635:563-573. [PMID: 39567785 PMCID: PMC11822754 DOI: 10.1038/s41586-024-08119-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2024] [Accepted: 09/25/2024] [Indexed: 11/22/2024]
Abstract
Herpes simplex virus 1 (HSV-1) encephalitis (HSE) is the most common sporadic viral encephalitis in humans. It is life-threatening and has a first peak of incidence in childhood, during primary infection. Children with HSE are not particularly prone to other infections, including HSV-1 infections of tissues other than the brain. About 8-10% of childhood cases are due to monogenic inborn errors of 19 genes, two-thirds of which are recessive, and most of which display incomplete clinical penetrance. Childhood HSE can therefore be sporadic but genetic, enabling new diagnostic and therapeutic approaches. In this Review, we examine essential cellular and molecular mechanisms of cell-intrinsic antiviral immunity in the brain that are disrupted in individuals with HSE. These mechanisms include both known (such as mutations in the TLR3 pathway) and previously unknown (such as the TMEFF1 restriction factor) antiviral pathways, which may be dependent (for example, IFNAR1) or independent (for example, through RIPK3) of type I interferons. They operate in cortical or brainstem neurons, and underlie forebrain and brainstem infections, respectively. Conversely, the most severe inborn errors of leukocytes, including a complete lack of myeloid and/or lymphoid blood cells, do not underlie HSE. Thus congenital defects in intrinsic immunity in brain-resident neurons that underlie HSE broaden natural host defences against HSV-1 from the leukocytes of the immune system to other cells in the organism.
Collapse
Affiliation(s)
- Shen-Ying Zhang
- St Giles Laboratory of Human Genetics of Infectious Diseases, Rockefeller Branch, Rockefeller University, New York, NY, USA.
- Laboratory of Human Genetics of Infectious Diseases, Necker Branch, INSERM, Necker Hospital for Sick Children, Paris, France.
- Paris Cité University, Imagine Institute, Paris, France.
| | - Jean-Laurent Casanova
- St Giles Laboratory of Human Genetics of Infectious Diseases, Rockefeller Branch, Rockefeller University, New York, NY, USA.
- Laboratory of Human Genetics of Infectious Diseases, Necker Branch, INSERM, Necker Hospital for Sick Children, Paris, France.
- Paris Cité University, Imagine Institute, Paris, France.
- Howard Hughes Medical Institute, New York, NY, USA.
- Department of Pediatrics, Necker Hospital for Sick Children, Paris, France.
| |
Collapse
|
21
|
Sun M, Chang L, He L, Wang L, Jiang Z, Si Y, Yu J, Ma Y. Combining single-cell profiling and functional analysis explores the role of pseudogenes in human early embryonic development. J Genet Genomics 2024; 51:1173-1186. [PMID: 39032861 DOI: 10.1016/j.jgg.2024.07.013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2024] [Revised: 07/12/2024] [Accepted: 07/12/2024] [Indexed: 07/23/2024]
Abstract
More and more studies have demonstrated that pseudogenes possess coding ability, and the functions of their transcripts in the development of diseases have been partially revealed. However, the role of pseudogenes in maintenance of normal physiological states and life activities has long been neglected. Here, we identify pseudogenes that are dynamically expressed during human early embryogenesis, showing different expression patterns from that of adult tissues. We explore the expression correlation between pseudogenes and the parent genes, partly due to their shared gene regulatory elements or the potential regulation network between them. The essential role of three pseudogenes, PI4KAP1, TMED10P1, and FBXW4P1, in maintaining self-renewal of human embryonic stem cells is demonstrated. We further find that the three pseudogenes might perform their regulatory functions by binding to proteins or microRNAs. The pseudogene-related single-nucleotide polymorphisms are significantly associated with human congenital disease, further illustrating their importance during early embryonic development. Overall, this study is an excavation and exploration of functional pseudogenes during early human embryonic development, suggesting that pseudogenes are not only capable of being specifically activated in pathological states, but also play crucial roles in the maintenance of normal physiological states.
Collapse
Affiliation(s)
- Mengyao Sun
- State Key Laboratory of Common Mechanism Research for Major Diseases, Key Laboratory of RNA and Hematopoietic Regulation, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences, School of Basic Medicine Peking Union Medical College, Beijing 100005, China; Institute of Blood Transfusion, Chinese Academy of Medical Sciences and Peking Union Medical College, Chengdu, Sichuan 610052, China
| | - Le Chang
- State Key Laboratory of Common Mechanism Research for Major Diseases, Key Laboratory of RNA and Hematopoietic Regulation, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences, School of Basic Medicine Peking Union Medical College, Beijing 100005, China
| | - Liu He
- State Key Laboratory of Common Mechanism Research for Major Diseases, Key Laboratory of RNA and Hematopoietic Regulation, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences, School of Basic Medicine Peking Union Medical College, Beijing 100005, China
| | - Li Wang
- Department of Obstetrics, Haidian District Maternity and Child Health Hospital, Beijing 100080, China
| | - Zhengyang Jiang
- State Key Laboratory of Common Mechanism Research for Major Diseases, Key Laboratory of RNA and Hematopoietic Regulation, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences, School of Basic Medicine Peking Union Medical College, Beijing 100005, China
| | - Yanmin Si
- State Key Laboratory of Common Mechanism Research for Major Diseases, Key Laboratory of RNA and Hematopoietic Regulation, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences, School of Basic Medicine Peking Union Medical College, Beijing 100005, China
| | - Jia Yu
- State Key Laboratory of Common Mechanism Research for Major Diseases, Key Laboratory of RNA and Hematopoietic Regulation, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences, School of Basic Medicine Peking Union Medical College, Beijing 100005, China; Institute of Blood Transfusion, Chinese Academy of Medical Sciences and Peking Union Medical College, Chengdu, Sichuan 610052, China; Institute of Hematology and Blood Diseases Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Tianjin 300020, China.
| | - Yanni Ma
- State Key Laboratory of Common Mechanism Research for Major Diseases, Key Laboratory of RNA and Hematopoietic Regulation, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences, School of Basic Medicine Peking Union Medical College, Beijing 100005, China; Institute of Blood Transfusion, Chinese Academy of Medical Sciences and Peking Union Medical College, Chengdu, Sichuan 610052, China.
| |
Collapse
|
22
|
Duan X, Hu J, Zhang Y, Zhao X, Yang M, Sun T, Liu S, Chen X, Feng J, Li W, Yang Z, Zhang Y, Lin X, Liu D, Meng Y, Yang G, Lin Q, Zhang G, Lei H, Yi Z, Liu Y, Liang X, Wu Y, Diao W, Li Z, Liang H, Zhan M, Sun HW, Li XY, Lu L. RIG-I is an intracellular checkpoint that limits CD8 + T-cell antitumour immunity. EMBO Mol Med 2024; 16:3005-3025. [PMID: 39322862 PMCID: PMC11555380 DOI: 10.1038/s44321-024-00136-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2023] [Revised: 08/28/2024] [Accepted: 08/29/2024] [Indexed: 09/27/2024] Open
Abstract
Retinoic acid-inducible gene I (RIG-I) is a pattern recognition receptor involved in innate immunity, but its role in adaptive immunity, specifically in the context of CD8+ T-cell antitumour immunity, remains unclear. Here, we demonstrate that RIG-I is upregulated in tumour-infiltrating CD8+ T cells, where it functions as an intracellular checkpoint to negatively regulate CD8+ T-cell function and limit antitumour immunity. Mechanistically, the upregulation of RIG-I in CD8+ T cells is induced by activated T cells, and directly inhibits the AKT/glycolysis signalling pathway. In addition, knocking out RIG-I enhances the efficacy of adoptively transferred T cells against solid tumours, and inhibiting RIG-I enhances the response to PD-1 blockade. Overall, our study identifies RIG-I as an intracellular checkpoint and a potential target for alleviating inhibitory constraints on T cells in cancer immunotherapy, either alone or in combination with an immune checkpoint inhibitor.
Collapse
Affiliation(s)
- Xiaobing Duan
- Guangdong Provincial Key Laboratory of Tumour Interventional Diagnosis and Treatment, Zhuhai People's Hospital (Zhuhai Clinical Medical College of Jinan University), Zhuhai, 519000, China.
- Gene Editing Technology Center of Guangdong Province, School of Medicine, Foshan University, Foshan, 528225, China.
| | - Jiali Hu
- Guangdong Provincial Key Laboratory of Tumour Interventional Diagnosis and Treatment, Zhuhai People's Hospital (Zhuhai Clinical Medical College of Jinan University), Zhuhai, 519000, China
| | - Yuncong Zhang
- Guangdong Provincial Key Laboratory of Tumour Interventional Diagnosis and Treatment, Zhuhai People's Hospital (Zhuhai Clinical Medical College of Jinan University), Zhuhai, 519000, China
| | - Xiaoguang Zhao
- Guangdong Provincial Key Laboratory of Tumour Interventional Diagnosis and Treatment, Zhuhai People's Hospital (Zhuhai Clinical Medical College of Jinan University), Zhuhai, 519000, China
| | - Mingqi Yang
- Guangdong Provincial Key Laboratory of Tumour Interventional Diagnosis and Treatment, Zhuhai People's Hospital (Zhuhai Clinical Medical College of Jinan University), Zhuhai, 519000, China
| | - Taoping Sun
- Zhuhai Precision Medical Center, Zhuhai People's Hospital (Zhuhai Clinical Medical College of Jinan University), Zhuhai, 519000, China
| | - Siya Liu
- The Third People's Hospital of Zhuhai, Zhuhai, 519000, China
| | - Xin Chen
- Gene Editing Technology Center of Guangdong Province, School of Medicine, Foshan University, Foshan, 528225, China
| | - Juan Feng
- Gene Editing Technology Center of Guangdong Province, School of Medicine, Foshan University, Foshan, 528225, China
| | - Wenting Li
- Guangdong Provincial Key Laboratory of Tumour Interventional Diagnosis and Treatment, Zhuhai People's Hospital (Zhuhai Clinical Medical College of Jinan University), Zhuhai, 519000, China
| | - Ze Yang
- Guangdong Provincial Key Laboratory of Tumour Interventional Diagnosis and Treatment, Zhuhai People's Hospital (Zhuhai Clinical Medical College of Jinan University), Zhuhai, 519000, China
| | - Yitian Zhang
- Guangdong Provincial Key Laboratory of Tumour Interventional Diagnosis and Treatment, Zhuhai People's Hospital (Zhuhai Clinical Medical College of Jinan University), Zhuhai, 519000, China
| | - Xiaowen Lin
- Guangdong Provincial Key Laboratory of Tumour Interventional Diagnosis and Treatment, Zhuhai People's Hospital (Zhuhai Clinical Medical College of Jinan University), Zhuhai, 519000, China
| | - Dingjie Liu
- Guangdong Provincial Key Laboratory of Tumour Interventional Diagnosis and Treatment, Zhuhai People's Hospital (Zhuhai Clinical Medical College of Jinan University), Zhuhai, 519000, China
| | - Ya Meng
- Guangdong Provincial Key Laboratory of Tumour Interventional Diagnosis and Treatment, Zhuhai People's Hospital (Zhuhai Clinical Medical College of Jinan University), Zhuhai, 519000, China
| | - Guang Yang
- Guangdong Provincial Key Laboratory of Tumour Interventional Diagnosis and Treatment, Zhuhai People's Hospital (Zhuhai Clinical Medical College of Jinan University), Zhuhai, 519000, China
| | - Qiuping Lin
- Zhuhai Precision Medical Center, Zhuhai People's Hospital (Zhuhai Clinical Medical College of Jinan University), Zhuhai, 519000, China
| | - Guihai Zhang
- Department of Oncology, Zhuhai People's Hospital (Zhuhai Clinical Medical College of Jinan University), Zhuhai, 519000, China
| | - Haihong Lei
- Department of Radiation Oncology, Zhuhai People's Hospital (Zhuhai Clinical Medical College of Jinan University), Zhuhai, 519000, China
| | - Zhengsheng Yi
- Department of Radiation Oncology, Zhuhai People's Hospital (Zhuhai Clinical Medical College of Jinan University), Zhuhai, 519000, China
| | - Yanyan Liu
- Guangdong Provincial Key Laboratory of Tumour Interventional Diagnosis and Treatment, Zhuhai People's Hospital (Zhuhai Clinical Medical College of Jinan University), Zhuhai, 519000, China
| | - Xiaobing Liang
- Guangdong Huixin Life Science Co., Ltd., Zhuhai, 519000, China
| | - Yujuan Wu
- Zhuhai Central Blood Station, Zhuhai, 519000, China
| | - Wenqing Diao
- Zhuhai Central Blood Station, Zhuhai, 519000, China
| | - Zesong Li
- Guangdong Provincial Key Laboratory of Systems Biology and Synthetic Biology for Urogenital Tumours, Shenzhen Key Laboratory of Genitourinary Tumour, Department of Urology, The First Affiliated Hospital of Shenzhen University, Shenzhen Second People's Hospital (Shenzhen Institute of Translational Medicine), Shenzhen, China
| | - Haihai Liang
- Guangdong Provincial Key Laboratory of Tumour Interventional Diagnosis and Treatment, Zhuhai People's Hospital (Zhuhai Clinical Medical College of Jinan University), Zhuhai, 519000, China
- State Key Laboratory of Frigid Zone Cardiovascular Diseases (SKLFZCD), Department of Pharmacology (State-Province Key Laboratories of Biomedicine-Pharmaceutics of China, Key Laboratory of Cardiovascular Research, Ministry of Education), College of Pharmacy, Harbin Medical University, Harbin, 150081, China
| | - Meixiao Zhan
- Guangdong Provincial Key Laboratory of Tumour Interventional Diagnosis and Treatment, Zhuhai People's Hospital (Zhuhai Clinical Medical College of Jinan University), Zhuhai, 519000, China
- Guangzhou First Pepople's Hospital, the Second Affiliated Hospital, School of Medicine, South China University of Technology, Guangzhou, 510006, China
| | - Hong-Wei Sun
- Guangdong Provincial Key Laboratory of Tumour Interventional Diagnosis and Treatment, Zhuhai People's Hospital (Zhuhai Clinical Medical College of Jinan University), Zhuhai, 519000, China.
| | - Xian-Yang Li
- Guangdong Provincial Key Laboratory of Tumour Interventional Diagnosis and Treatment, Zhuhai People's Hospital (Zhuhai Clinical Medical College of Jinan University), Zhuhai, 519000, China.
| | - Ligong Lu
- Guangdong Provincial Key Laboratory of Tumour Interventional Diagnosis and Treatment, Zhuhai People's Hospital (Zhuhai Clinical Medical College of Jinan University), Zhuhai, 519000, China.
- Guangzhou First Pepople's Hospital, the Second Affiliated Hospital, School of Medicine, South China University of Technology, Guangzhou, 510006, China.
| |
Collapse
|
23
|
Liu X, Min Q, Li Y, Chen S. Enhanced Cellular Immunity for Hepatitis B Virus Vaccine: A Novel Polyinosinic-Polycytidylic Acid-Incorporated Adjuvant Leveraging Cytoplasmic Retinoic Acid-Inducible Gene-Like Receptor Activation and Increased Antigen Uptake. Biomater Res 2024; 28:0096. [PMID: 39469105 PMCID: PMC11513446 DOI: 10.34133/bmr.0096] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2024] [Revised: 10/02/2024] [Accepted: 10/08/2024] [Indexed: 10/30/2024] Open
Abstract
Conventional aluminum adjuvants exhibit limited cellular immunity. Polyinosinic-polycytidylic acid (poly I:C) activates cytoplasmic retinoic acid-inducible gene-like receptor (RLR), triggering strong T cell activation and cellular responses. However, when applied as an adjuvant, its limited endocytosis and restricted cytoplasmic delivery diminish its effectiveness and increase its toxicity. Hybrid polymer-lipid nanoparticle (PLNP) possesses numerous benefits such as good stability, reduced drug leakage, simple fabrication, easy property modulation, and excellent reproducibility compared to the lipid nanoparticle or the polymeric vector. Here, we developed a novel cationic polymer-lipid hybrid adjuvant capable of incorporating poly I:C to enhance cellular immunity. The hepatitis B surface antigen (HBsAg) was immobilized onto poly I:C-incorprated PLNP (PPLNP) via electrostatic interactions, forming the HBsAg/PPLNP vaccine formulation. The PPLNP adjuvant largely enhanced the cellular endocytosis and cytoplasmic transport of poly I:C, activating RLR followed by promoting type I interferon (IFN) secretion. Meanwhile, PPLNP obviously enhanced the antigen uptake, prolonged antigen retention at the site of administration, and facilitated enhanced transport of antigens to lymph nodes. The HBsAg/PPLNP nanovaccine led to amplified concentrations of antigen-specific immunoglobulin G (IgG), IFN-γ, granzyme B, and an enhanced IgG2a/IgG1 ratio, alongside the FasL+/CD8+ T cell activation, favoring a T helper 1 (TH1)-driven immune response. PPLNP, distinguished by its biocompatibility, ease of fabrication, and effectiveness in augmenting cellular immunity, holds significant promise as a new adjuvant.
Collapse
Affiliation(s)
- Xuhan Liu
- Guangdong Provincial Key Laboratory of Chinese Medicine Ingredients and Gut Microbiomics, Institute for Inheritance-Based Innovation of Chinese Medicine, Marshall Laboratory of Biomedical Engineering, School of Pharmacy, Shenzhen University Medical School, Shenzhen University, Shenzhen 518055, China
| | - Qiuxia Min
- Department of Pharmacy, First People’s Hospital of Yunnan Province,
Kunming University of Science and Technology, Kunming, 650034 Yunnan, China
| | - Yihui Li
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Guangdong-Hong Kong Joint Laboratory for RNA Medicine, Medical Research Center, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou 510120, China
| | - Siyuan Chen
- Research Institute for Biomaterials, Tech Institute for Advanced Materials, Bioinspired Biomedical Materials & Devices Center, College of Materials Science and Engineering, Jiangsu Collaborative Innovation Center for Advanced Inorganic Function Composites, Suqian Advanced Materials Industry Technology Innovation Center, Nanjing Tech University, Nanjing 211816 China
| |
Collapse
|
24
|
Tapescu I, Cherry S. DDX RNA helicases: key players in cellular homeostasis and innate antiviral immunity. J Virol 2024; 98:e0004024. [PMID: 39212449 PMCID: PMC11494928 DOI: 10.1128/jvi.00040-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/04/2024] Open
Abstract
RNA helicases are integral in RNA metabolism, performing important roles in cellular homeostasis and stress responses. In particular, the DExD/H-box (DDX) helicase family possesses a conserved catalytic core that binds structural features rather than specific sequences in RNA targets. DDXs have critical roles in all aspects of RNA metabolism including ribosome biogenesis, translation, RNA export, and RNA stability. Importantly, functional specialization within this family arises from divergent N and C termini and is driven at least in part by gene duplications with 18 of the 42 human helicases having paralogs. In addition to their key roles in the homeostatic control of cellular RNA, these factors have critical roles in RNA virus infection. The canonical RIG-I-like receptors (RLRs) play pivotal roles in cytoplasmic sensing of viral RNA structures, inducing antiviral gene expression. Additional RNA helicases function as viral sensors or regulators, further diversifying the innate immune defense arsenal. Moreover, some of these helicases have been coopted by viruses to facilitate their replication. Altogether, DDX helicases exhibit functional specificity, playing intricate roles in RNA metabolism and host defense. This review will discuss the mechanisms by which these RNA helicases recognize diverse RNA structures in cellular and viral RNAs, and how this impacts RNA processing and innate immune responses.
Collapse
Affiliation(s)
- Iulia Tapescu
- Department of Pathology and Laboratory Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA
- Biochemistry and Biophysics Graduate Group, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Sara Cherry
- Department of Pathology and Laboratory Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| |
Collapse
|
25
|
Sarkar L, Liu G, Acharya D, Zhu J, Sayyad Z, Gack MU. MDA5 ISGylation is crucial for immune signaling to control viral replication and pathogenesis. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.09.20.614144. [PMID: 39386617 PMCID: PMC11463472 DOI: 10.1101/2024.09.20.614144] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 10/12/2024]
Abstract
The posttranslational modification (PTM) of innate immune sensor proteins by ubiquitin or ubiquitin-like proteins is crucial for regulating antiviral host responses. The cytoplasmic dsRNA receptor melanoma differentiation-associated protein 5 (MDA5) undergoes several PTMs including ISGylation within its first caspase activation and recruitment domain (CARD), which promotes MDA5 signaling. However, the relevance of MDA5 ISGylation for antiviral immunity in an infected organism has been elusive. Here, we generated knock-in mice (MDA5 K23R/K43R ) in which the two major ISGylation sites, K23 and K43, in MDA5 were mutated. Primary cells derived from MDA5 K23R/K43R mice exhibited abrogated endogenous MDA5 ISGylation and an impaired ability of MDA5 to form oligomeric assemblies leading to blunted cytokine responses to MDA5 RNA-agonist stimulation or infection with encephalomyocarditis virus (EMCV) or West Nile virus. Phenocopying MDA5 -/- mice, the MDA5 K23R/K43R mice infected with EMCV displayed increased mortality, elevated viral titers, and an ablated induction of cytokines and chemokines compared to WT mice. Molecular studies identified human HERC5 (and its functional murine homolog HERC6) as the primary E3 ligases responsible for MDA5 ISGylation and activation. Taken together, these findings establish the importance of CARD ISGylation for MDA5-mediated RNA virus restriction, promoting potential avenues for immunomodulatory drug design for antiviral or anti-inflammatory applications.
Collapse
Affiliation(s)
- Lucky Sarkar
- Florida Research and Innovation Center, Cleveland Clinic, Port St. Lucie, FL 34987, USA
| | | | - Dhiraj Acharya
- Florida Research and Innovation Center, Cleveland Clinic, Port St. Lucie, FL 34987, USA
| | - Junji Zhu
- Florida Research and Innovation Center, Cleveland Clinic, Port St. Lucie, FL 34987, USA
| | - Zuberwasim Sayyad
- Florida Research and Innovation Center, Cleveland Clinic, Port St. Lucie, FL 34987, USA
| | - Michaela U. Gack
- Florida Research and Innovation Center, Cleveland Clinic, Port St. Lucie, FL 34987, USA
| |
Collapse
|
26
|
Antony F, Kinha D, Nowińska A, Rouse BT, Suryawanshi A. The immunobiology of corneal HSV-1 infection and herpetic stromal keratitis. Clin Microbiol Rev 2024; 37:e0000624. [PMID: 39078136 PMCID: PMC11391706 DOI: 10.1128/cmr.00006-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/31/2024] Open
Abstract
SUMMARYHuman alphaherpesvirus 1 (HSV-1) is a highly successful neurotropic pathogen that primarily infects the epithelial cells lining the orofacial mucosa. After primary lytic replication in the oral, ocular, and nasal mucosal epithelial cells, HSV-1 establishes life-long latency in neurons within the trigeminal ganglion. Patients with compromised immune systems experience frequent reactivation of HSV-1 from latency, leading to virus entry in the sensory neurons, followed by anterograde transport and lytic replication at the innervated mucosal epithelial surface. Although recurrent infection of the corneal mucosal surface is rare, it can result in a chronic immuno-inflammatory condition called herpetic stromal keratitis (HSK). HSK leads to gradual vision loss and can cause permanent blindness in severe untreated cases. Currently, there is no cure or successful vaccine to prevent latent or recurrent HSV-1 infections, posing a significant clinical challenge to managing HSK and preventing vision loss. The conventional clinical management of HSK primarily relies on anti-virals to suppress HSV-1 replication, anti-inflammatory drugs (such as corticosteroids) to provide symptomatic relief from pain and inflammation, and surgical interventions in more severe cases to replace damaged cornea. However, each clinical treatment strategy has limitations, such as local and systemic drug toxicities and the emergence of anti-viral-resistant HSV-1 strains. In this review, we summarize the factors and immune cells involved in HSK pathogenesis and highlight alternate therapeutic strategies for successful clinical management of HSK. We also discuss the therapeutic potential of immunoregulatory cytokines and immunometabolism modulators as promising HSK therapies against emerging anti-viral-resistant HSV-1 strains.
Collapse
Affiliation(s)
- Ferrin Antony
- Department of Molecular and Cell Biology, University of California, Berkeley, California, USA
| | - Divya Kinha
- Department of Population Health and Pathobiology, College of Veterinary Medicine, North Carolina State University, Raleigh, North Carolina, USA
| | - Anna Nowińska
- Clinical Department of Ophthalmology, Faculty of Medical Sciences in Zabrze, Medical University of Silesia in Katowice, Katowice, Poland
- Ophthalmology Department, Railway Hospital in Katowice, Katowice, Poland
| | - Barry T. Rouse
- College of Veterinary Medicine, University of Tennessee, Knoxville, Tennessee, USA
| | - Amol Suryawanshi
- Department of Population Health and Pathobiology, College of Veterinary Medicine, North Carolina State University, Raleigh, North Carolina, USA
| |
Collapse
|
27
|
Landman SL, Ressing ME, Gram AM, Tjokrodirijo RTN, van Veelen PA, Neefjes J, Hoeben RC, van der Veen AG, Berlin I. Epstein-Barr virus nuclear antigen EBNA3A modulates IRF3-dependent IFNβ expression. J Biol Chem 2024; 300:107645. [PMID: 39127175 PMCID: PMC11403517 DOI: 10.1016/j.jbc.2024.107645] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2022] [Revised: 07/22/2024] [Accepted: 07/24/2024] [Indexed: 08/12/2024] Open
Abstract
Epstein-Barr virus (EBV), the causative agent of infectious mononucleosis, persistently infects over 90% of the human adult population and is associated with several human cancers. To establish life-long infection, EBV tampers with the induction of type I interferon (IFN I)-dependent antiviral immunity in the host. How various EBV genes help orchestrate this crucial strategy is incompletely defined. Here, we reveal a mechanism by which the EBV nuclear antigen 3A (EBNA3A) may inhibit IFNβ induction. Using proximity biotinylation we identify the histone acetyltransferase P300, a member of the IFNβ transcriptional complex, as a binding partner of EBNA3A. We further show that EBNA3A also interacts with the activated IFN-inducing transcription factor interferon regulatory factor 3 that collaborates with P300 in the nucleus. Both events are mediated by the N-terminal domain of EBNA3A. We propose that EBNA3A limits the binding of interferon regulatory factor 3 to the IFNβ promoter, thereby hampering downstream IFN I signaling. Collectively, our findings suggest a new mechanism of immune evasion by EBV, affected by its latency gene EBNA3A.
Collapse
Affiliation(s)
- Sanne L Landman
- Department of Cell and Chemical Biology, Leiden University Medical Center (LUMC), Leiden, the Netherlands; Oncode Institute, Leiden University Medical Center (LUMC), Leiden, the Netherlands
| | - Maaike E Ressing
- Department of Cell and Chemical Biology, Leiden University Medical Center (LUMC), Leiden, the Netherlands
| | - Anna M Gram
- Department of Cell and Chemical Biology, Leiden University Medical Center (LUMC), Leiden, the Netherlands
| | | | | | - Jacques Neefjes
- Department of Cell and Chemical Biology, Leiden University Medical Center (LUMC), Leiden, the Netherlands; Oncode Institute, Leiden University Medical Center (LUMC), Leiden, the Netherlands
| | - Rob C Hoeben
- Department of Cell and Chemical Biology, Leiden University Medical Center (LUMC), Leiden, the Netherlands
| | | | - Ilana Berlin
- Department of Cell and Chemical Biology, Leiden University Medical Center (LUMC), Leiden, the Netherlands; Oncode Institute, Leiden University Medical Center (LUMC), Leiden, the Netherlands.
| |
Collapse
|
28
|
Li X, Yu H, Li D, Liu N. LINE-1 transposable element renaissance in aging and age-related diseases. Ageing Res Rev 2024; 100:102440. [PMID: 39059477 DOI: 10.1016/j.arr.2024.102440] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2024] [Revised: 07/16/2024] [Accepted: 07/24/2024] [Indexed: 07/28/2024]
Abstract
Transposable elements (TEs) are essential components of eukaryotic genomes and subject to stringent regulatory mechanisms to avoid their potentially deleterious effects. However, numerous studies have verified the resurrection of TEs, particularly long interspersed nuclear element-1 (LINE-1), during preimplantation development, aging, cancer, and other age-related diseases. The LINE-1 family has also been implicated in several aging-related processes, including genomic instability, loss of heterochromatin, DNA methylation, and the senescence-associated secretory phenotype (SASP). Additionally, the role of the LINE-1 family in cancer development has also been substantiated. Research in this field has offered valuable insights into the functional mechanisms underlying LINE-1 activity, enhancing our understanding of aging regulation. This review provides a comprehensive summary of current findings on LINE-1 and their roles in aging and age-related diseases.
Collapse
Affiliation(s)
- Xiang Li
- School of Medicine, Nankai University, Tianjin 300071, China
| | - Huaxin Yu
- School of Medicine, Nankai University, Tianjin 300071, China
| | - Dong Li
- School of Medicine, Nankai University, Tianjin 300071, China
| | - Na Liu
- School of Medicine, Nankai University, Tianjin 300071, China.
| |
Collapse
|
29
|
Guduric‐Fuchs J, Pedrini E, Bertelli PM, McDonnell S, Pathak V, McLoughlin K, O'Neill CL, Stitt AW, Medina RJ. A new gene signature for endothelial senescence identifies self-RNA sensing by retinoic acid-inducible gene I as a molecular facilitator of vascular aging. Aging Cell 2024; 23:e14240. [PMID: 39422883 PMCID: PMC11488300 DOI: 10.1111/acel.14240] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2024] [Revised: 04/30/2024] [Accepted: 05/20/2024] [Indexed: 10/19/2024] Open
Abstract
The number of senescent vascular endothelial cells increases during aging and their dysfunctional phenotype contributes to age-related cardiovascular disease. Identification of senescent cells is challenging as molecular changes are often tissue specific and occur amongst clusters of normal cells. Here, we established, benchmarked, and validated a new gene signature called EndoSEN that pinpoints senescent endothelial cells. The EndoSEN signature was enriched for interferon-stimulated genes (ISG) and correlated with the senescence-associated secretory phenotype (SASP). SASP establishment is classically attributed to DNA damage and cyclic GMP-AMP synthase activation, but our results revealed a pivotal role for RNA accumulation and sensing in senescent endothelial cells. Mechanistically, we showed that endothelial cell senescence hallmarks include self-RNA accumulation, RNA sensor RIG-I upregulation, and an ISG signature. Moreover, a virtual model of RIG-I knockout in endothelial cells underscored senescence as a key pathway regulated by this sensor. We tested and confirmed that RIG-I knockdown was sufficient to extend the lifespan and decrease the SASP in endothelial cells. Taken together, our evidence suggests that targeting RNA sensing is a potential strategy to delay vascular aging.
Collapse
Affiliation(s)
- Jasenka Guduric‐Fuchs
- Wellcome‐Wolfson Institute for Experimental Medicine, School of Medicine, Dentistry, and Biomedical Sciences, Queen's University BelfastBelfastUK
| | - Edoardo Pedrini
- Wellcome‐Wolfson Institute for Experimental Medicine, School of Medicine, Dentistry, and Biomedical Sciences, Queen's University BelfastBelfastUK
- Center for Omics Sciences (COSR)San Raffaele Scientific InstituteMilanItaly
| | - Pietro M. Bertelli
- Wellcome‐Wolfson Institute for Experimental Medicine, School of Medicine, Dentistry, and Biomedical Sciences, Queen's University BelfastBelfastUK
| | - Shannon McDonnell
- Wellcome‐Wolfson Institute for Experimental Medicine, School of Medicine, Dentistry, and Biomedical Sciences, Queen's University BelfastBelfastUK
| | - Varun Pathak
- Wellcome‐Wolfson Institute for Experimental Medicine, School of Medicine, Dentistry, and Biomedical Sciences, Queen's University BelfastBelfastUK
| | - Kiran McLoughlin
- Wellcome‐Wolfson Institute for Experimental Medicine, School of Medicine, Dentistry, and Biomedical Sciences, Queen's University BelfastBelfastUK
| | - Christina L. O'Neill
- Wellcome‐Wolfson Institute for Experimental Medicine, School of Medicine, Dentistry, and Biomedical Sciences, Queen's University BelfastBelfastUK
| | - Alan W. Stitt
- Wellcome‐Wolfson Institute for Experimental Medicine, School of Medicine, Dentistry, and Biomedical Sciences, Queen's University BelfastBelfastUK
| | - Reinhold J. Medina
- Wellcome‐Wolfson Institute for Experimental Medicine, School of Medicine, Dentistry, and Biomedical Sciences, Queen's University BelfastBelfastUK
- Department of Eye and Vision ScienceInstitute for Life Course and Medical Science, University of LiverpoolLiverpoolUK
| |
Collapse
|
30
|
Pavlou A, Mulenge F, Gern OL, Busker LM, Greimel E, Waltl I, Kalinke U. Orchestration of antiviral responses within the infected central nervous system. Cell Mol Immunol 2024; 21:943-958. [PMID: 38997413 PMCID: PMC11364666 DOI: 10.1038/s41423-024-01181-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2024] [Accepted: 05/05/2024] [Indexed: 07/14/2024] Open
Abstract
Many newly emerging and re-emerging viruses have neuroinvasive potential, underscoring viral encephalitis as a global research priority. Upon entry of the virus into the CNS, severe neurological life-threatening conditions may manifest that are associated with high morbidity and mortality. The currently available therapeutic arsenal against viral encephalitis is rather limited, emphasizing the need to better understand the conditions of local antiviral immunity within the infected CNS. In this review, we discuss new insights into the pathophysiology of viral encephalitis, with a focus on myeloid cells and CD8+ T cells, which critically contribute to protection against viral CNS infection. By illuminating the prerequisites of myeloid and T cell activation, discussing new discoveries regarding their transcriptional signatures, and dissecting the mechanisms of their recruitment to sites of viral replication within the CNS, we aim to further delineate the complexity of antiviral responses within the infected CNS. Moreover, we summarize the current knowledge in the field of virus infection and neurodegeneration and discuss the potential links of some neurotropic viruses with certain pathological hallmarks observed in neurodegeneration.
Collapse
Affiliation(s)
- Andreas Pavlou
- Institute for Experimental Infection Research, TWINCORE, Centre for Experimental and Clinical Infection Research, a joint venture between the Helmholtz Centre for Infection Research and the Hannover Medical School, 30625, Hannover, Germany
| | - Felix Mulenge
- Institute for Experimental Infection Research, TWINCORE, Centre for Experimental and Clinical Infection Research, a joint venture between the Helmholtz Centre for Infection Research and the Hannover Medical School, 30625, Hannover, Germany
| | - Olivia Luise Gern
- Institute for Experimental Infection Research, TWINCORE, Centre for Experimental and Clinical Infection Research, a joint venture between the Helmholtz Centre for Infection Research and the Hannover Medical School, 30625, Hannover, Germany
| | - Lena Mareike Busker
- Institute for Experimental Infection Research, TWINCORE, Centre for Experimental and Clinical Infection Research, a joint venture between the Helmholtz Centre for Infection Research and the Hannover Medical School, 30625, Hannover, Germany
- Department of Pathology, University of Veterinary Medicine Hannover, Foundation, 30559, Hannover, Germany
| | - Elisabeth Greimel
- Institute for Experimental Infection Research, TWINCORE, Centre for Experimental and Clinical Infection Research, a joint venture between the Helmholtz Centre for Infection Research and the Hannover Medical School, 30625, Hannover, Germany
| | - Inken Waltl
- Institute for Experimental Infection Research, TWINCORE, Centre for Experimental and Clinical Infection Research, a joint venture between the Helmholtz Centre for Infection Research and the Hannover Medical School, 30625, Hannover, Germany
| | - Ulrich Kalinke
- Institute for Experimental Infection Research, TWINCORE, Centre for Experimental and Clinical Infection Research, a joint venture between the Helmholtz Centre for Infection Research and the Hannover Medical School, 30625, Hannover, Germany.
- Cluster of Excellence RESIST (EXC 2155), Hannover Medical School, 30625, Hannover, Germany.
| |
Collapse
|
31
|
Szymanik KH, Hancks DC, Sullivan CS. Viral piracy of host RNA phosphatase DUSP11 by avipoxviruses. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.08.06.606876. [PMID: 39211142 PMCID: PMC11361023 DOI: 10.1101/2024.08.06.606876] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/04/2024]
Abstract
Proper recognition of viral pathogens is an essential part of the innate immune response. A common viral replicative intermediate and chemical signal that cells use to identify pathogens is the presence of a triphosphorylated 5' end (5'ppp) RNA, which activates the cytosolic RNA sensor RIG-I and initiates downstream antiviral signaling. While 5'pppRNA generated by viral RNA-dependent RNA polymerases (RdRps) can be a potent activator of the immune response, endogenous RNA polymerase III (RNAPIII) transcripts can retain the 5'pppRNA generated during transcription and induce a RIG-I-mediated immune response. We have previously shown that host RNA triphosphatase dual-specificity phosphatase 11 (DUSP11) can act on both host and viral RNAs, altering their levels and reducing their ability to induce RIG-I activation. Our previous work explored how artificially altered DUSP11 can impact immune activation, prompting further exploration into natural contexts of altered DUSP11. Here, we have identified viral DUSP11 homologs (vDUSP11s) present in some avipoxviruses. Consistent with the known functions of endogenous DUSP11, we have shown that expression of vDUSP11s: 1) reduces levels of endogenous RNAPIII transcripts, 2) reduces a cell's sensitivity to 5'pppRNA-mediated immune activation, and 3) restores virus infection defects seen in the absence of DUSP11. Our results identify a virus-relevant context where DUSP11 activity has been co-opted to alter RNA metabolism and influence the outcome of infection.
Collapse
|
32
|
Korsgaard U, García-Rodríguez JL, Jakobsen T, Ahmadov U, Dietrich KG, Vissing SM, Paasch TP, Lindebjerg J, Kjems J, Hager H, Kristensen LS. The Transcriptional Landscape of Coding and Noncoding RNAs in Recurrent and Nonrecurrent Colon Cancer. THE AMERICAN JOURNAL OF PATHOLOGY 2024; 194:1424-1442. [PMID: 38704091 DOI: 10.1016/j.ajpath.2024.04.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/16/2023] [Revised: 03/15/2024] [Accepted: 04/05/2024] [Indexed: 05/06/2024]
Abstract
A number of patients with colon cancer with local or local advanced disease suffer from recurrence and there is an urgent need for better prognostic biomarkers in this setting. Here, the transcriptomic landscape of mRNAs, long noncoding RNAs, snRNAs, small nucleolar RNAs (snoRNAs), small Cajal body-specific RNAs, pseudogenes, and circular RNAs, as well as RNAs denoted as miscellaneous RNAs, was profiled by total RNA sequencing. In addition to well-known coding and noncoding RNAs, differential expression analysis also uncovered transcripts that have not been implicated previously in colon cancer, such as RNA5SP149, RNU4-2, and SNORD3A. Moreover, there was a profound global up-regulation of snRNA pseudogenes, snoRNAs, and rRNA pseudogenes in more advanced tumors. A global down-regulation of circular RNAs in tumors relative to normal tissues was observed, although only a few were expressed differentially between tumor stages. Many previously undescribed transcripts, including RNU6-620P, RNU2-20P, VTRNA1-3, and RNA5SP60, indicated strong prognostic biomarker potential in receiver operating characteristics analyses. In summary, this study unveiled numerous differentially expressed RNAs across various classes between recurrent and nonrecurrent colon cancer. Notably, there was a significant global up-regulation of snRNA pseudogenes, snoRNAs, and rRNA pseudogenes in advanced tumors. Many of these newly discovered candidates demonstrate a strong prognostic potential for stage II colon cancer.
Collapse
Affiliation(s)
- Ulrik Korsgaard
- Department of Clinical Pathology, Vejle Hospital, Vejle, Denmark; Danish Colorectal Cancer Center South, Vejle Hospital, Vejle, Denmark
| | | | | | - Ulvi Ahmadov
- Department of Biomedicine, Aarhus University, Aarhus, Denmark
| | | | - Stine M Vissing
- Department of Biomedicine, Aarhus University, Aarhus, Denmark
| | - Thea P Paasch
- Department of Biomedicine, Aarhus University, Aarhus, Denmark
| | - Jan Lindebjerg
- Department of Clinical Pathology, Vejle Hospital, Vejle, Denmark; Danish Colorectal Cancer Center South, Vejle Hospital, Vejle, Denmark
| | - Jørgen Kjems
- Department of Molecular Biology and Genetics, Aarhus University, Aarhus, Denmark; Interdisciplinary Nanoscience Center, Aarhus University, Aarhus, Denmark
| | - Henrik Hager
- Department of Clinical Pathology, Vejle Hospital, Vejle, Denmark; Danish Colorectal Cancer Center South, Vejle Hospital, Vejle, Denmark; Department of Pathology, Aarhus University Hospital, Aarhus, Denmark
| | | |
Collapse
|
33
|
Yu X, Tian J, Wang Y, Su N, Luo J, Duan M, Shi N. The pseudogene GBP1P1 suppresses influenza A virus replication by acting as a protein decoy for DHX9. J Virol 2024; 98:e0073824. [PMID: 38940585 PMCID: PMC11264600 DOI: 10.1128/jvi.00738-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2024] [Accepted: 06/05/2024] [Indexed: 06/29/2024] Open
Abstract
Recently, substantial evidence has demonstrated that pseudogene-derived long noncoding RNAs (lncRNAs) as regulatory RNAs have been implicated in basic physiological processes and disease development through multiple modes of functional interaction with DNA, RNA, and proteins. Here, we report an important role for GBP1P1, the pseudogene of guanylate-binding protein 1, in regulating influenza A virus (IAV) replication in A549 cells. GBP1P1 was dramatically upregulated after IAV infection, which is controlled by JAK/STAT signaling. Functionally, ectopic expression of GBP1P1 in A549 cells resulted in significant suppression of IAV replication. Conversely, silencing GBP1P1 facilitated IAV replication and virus production, suggesting that GBP1P1 is one of the interferon-inducible antiviral effectors. Mechanistically, GBP1P1 is localized in the cytoplasm and functions as a sponge to trap DHX9 (DExH-box helicase 9), which subsequently restricts IAV replication. Together, these studies demonstrate that GBP1P1 plays an important role in antagonizing IAV replication.IMPORTANCELong noncoding RNAs (lncRNAs) are extensively expressed in mammalian cells and play a crucial role as regulators in various biological processes. A growing body of evidence suggests that host-encoded lncRNAs are important regulators involved in host-virus interactions. Here, we define a novel function of GBP1P1 as a decoy to compete with viral mRNAs for DHX9 binding. We demonstrate that GBP1P1 induction by IAV is mediated by JAK/STAT activation. In addition, GBP1P1 has the ability to inhibit IAV replication. Importantly, we reveal that GBP1P1 acts as a decoy to bind and titrate DHX9 away from viral mRNAs, thereby attenuating virus production. This study provides new insight into the role of a previously uncharacterized GBP1P1, a pseudogene-derived lncRNA, in the host antiviral process and a further understanding of the complex GBP network.
Collapse
Affiliation(s)
- Xiaohang Yu
- State Key Laboratory for Diagnosis and Treatment of Severe Zoonotic Infectious Diseases, Key Laboratory for Zoonosis Research of the Ministry of Education, Institute of Zoonosis, College of Veterinary Medicine, Jilin University, Changchun, Jilin Province, China
| | - Jiaxin Tian
- School of Life Science and Technology, Changchun University of Science and Technology, Changchun, Jilin Province, China
| | - Yihe Wang
- State Key Laboratory for Diagnosis and Treatment of Severe Zoonotic Infectious Diseases, Key Laboratory for Zoonosis Research of the Ministry of Education, Institute of Zoonosis, College of Veterinary Medicine, Jilin University, Changchun, Jilin Province, China
| | - Ning Su
- State Key Laboratory for Diagnosis and Treatment of Severe Zoonotic Infectious Diseases, Key Laboratory for Zoonosis Research of the Ministry of Education, Institute of Zoonosis, College of Veterinary Medicine, Jilin University, Changchun, Jilin Province, China
| | - Jinna Luo
- State Key Laboratory for Diagnosis and Treatment of Severe Zoonotic Infectious Diseases, Key Laboratory for Zoonosis Research of the Ministry of Education, Institute of Zoonosis, College of Veterinary Medicine, Jilin University, Changchun, Jilin Province, China
| | - Ming Duan
- State Key Laboratory for Diagnosis and Treatment of Severe Zoonotic Infectious Diseases, Key Laboratory for Zoonosis Research of the Ministry of Education, Institute of Zoonosis, College of Veterinary Medicine, Jilin University, Changchun, Jilin Province, China
| | - Ning Shi
- State Key Laboratory for Diagnosis and Treatment of Severe Zoonotic Infectious Diseases, Key Laboratory for Zoonosis Research of the Ministry of Education, Institute of Zoonosis, College of Veterinary Medicine, Jilin University, Changchun, Jilin Province, China
| |
Collapse
|
34
|
Liu Y, Wang K, Gong X, Qu W, Xiao Y, Sun H, Kang J, Sheng J, Wu F, Dai F. Schisandra chinensis inhibits the entry of BoHV-1 by blocking PI3K-Akt pathway and enhances the m6A methylation of gD to inhibit the entry of progeny virus. Front Microbiol 2024; 15:1444414. [PMID: 39104584 PMCID: PMC11298802 DOI: 10.3389/fmicb.2024.1444414] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2024] [Accepted: 07/11/2024] [Indexed: 08/07/2024] Open
Abstract
Schisandra chinensis, a traditional Chinese medicine known for its antitussive and sedative effects, has shown promise in preventing various viral infections. Bovine herpesvirus-1 (BoHV-1) is an enveloped DNA virus that causes respiratory disease in cattle, leading to significant economic losses in the industry. Because the lack of previous reports on Schisandra chinensis resisting BoHV-1 infection, this study aimed to investigate the specific mechanisms involved. Results from TCID50, qPCR, IFA, and western blot analyses demonstrated that Schisandra chinensis could inhibit BoHV-1 entry into MDBK cells, primarily through its extract Methylgomisin O (Meth O). The specific mechanism involved Meth O blocking BoHV-1 entry into cells via clathrin- and caveolin-mediated endocytosis by suppressing the activation of PI3K-Akt signaling pathway. Additionally, findings from TCID50, qPCR, co-immunoprecipitation and western blot assays revealed that Schisandra chinensis blocked BoHV-1 gD transcription through enhancing m6A methylation of gD after virus entry, thereby hindering gD protein expression and preventing progeny virus entry into cells and ultimately inhibiting BoHV-1 replication. Overall, these results suggest that Schisandra chinensis can resist BoHV-1 infection by targeting the PI3K-Akt signaling pathway and inhibiting gD transcription.
Collapse
Affiliation(s)
- Yang Liu
- College of Veterinary Medicine, Yunnan Agricultural University, Kunming, China
- Key Laboratory of Animal Biosafety Risk Prevention and Control of Ministry of Agriculture and Rural Affairs (South), China Animal Health and Epidemiology Center, Qingdao, China
| | - Kang Wang
- College of Veterinary Medicine, Yunnan Agricultural University, Kunming, China
- Key Laboratory of Animal Biosafety Risk Prevention and Control of Ministry of Agriculture and Rural Affairs (South), China Animal Health and Epidemiology Center, Qingdao, China
| | - Xiao Gong
- Qingdao YeBio Bio-Engineering Co., Ltd., Qingdao, China
| | - Weijie Qu
- College of Veterinary Medicine, Yunnan Agricultural University, Kunming, China
| | - Yangyang Xiao
- Key Laboratory of Animal Biosafety Risk Prevention and Control of Ministry of Agriculture and Rural Affairs (South), China Animal Health and Epidemiology Center, Qingdao, China
- College of Animal Science and Technology, Shihezi University, Xinjiang, China
| | - Hongtao Sun
- Key Laboratory of Animal Biosafety Risk Prevention and Control of Ministry of Agriculture and Rural Affairs (South), China Animal Health and Epidemiology Center, Qingdao, China
| | - Jingli Kang
- Key Laboratory of Animal Biosafety Risk Prevention and Control of Ministry of Agriculture and Rural Affairs (South), China Animal Health and Epidemiology Center, Qingdao, China
| | - Jinliang Sheng
- Key Laboratory of Animal Biosafety Risk Prevention and Control of Ministry of Agriculture and Rural Affairs (South), China Animal Health and Epidemiology Center, Qingdao, China
- College of Animal Science and Technology, Shihezi University, Xinjiang, China
| | - Faxing Wu
- Key Laboratory of Animal Biosafety Risk Prevention and Control of Ministry of Agriculture and Rural Affairs (South), China Animal Health and Epidemiology Center, Qingdao, China
| | - Feiyan Dai
- College of Veterinary Medicine, Yunnan Agricultural University, Kunming, China
| |
Collapse
|
35
|
Cuddy SR, Flores ME, Krakowiak PA, Whitford AL, Dochnal SA, Babnis A, Miyake T, Tigano M, Engel DA, Cliffe AR. Co-option of mitochondrial nucleic acid sensing pathways by HSV-1 UL12.5 for reactivation from latent Infection. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.07.06.601241. [PMID: 39005440 PMCID: PMC11245091 DOI: 10.1101/2024.07.06.601241] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/16/2024]
Abstract
Although viruses subvert innate immune pathways for their replication, there is evidence they can also co-opt anti-viral responses for their benefit. The ubiquitous human pathogen, Herpes Simplex Virus-1 (HSV-1), encodes a protein (UL12.5) that induces the release of mitochondrial nucleic acid into the cytosol, which activates immune sensing pathways and reduces productive replication in non-neuronal cells. HSV-1 establishes latency in neurons and can reactivate to cause disease. We found that UL12.5 is required for HSV-1 reactivation in neurons and acts to directly promote viral lytic gene expression during initial exit from latency. Further, the direct activation of innate immune sensing pathways triggered HSV reactivation and compensated for a lack of UL12.5. Finally, we found that the induction of HSV-1 lytic genes during reactivation required intact RNA and DNA sensing pathways, demonstrating that HSV-1 can both respond to and active antiviral nucleic acid sensing pathways to reactivate from a latent infection.
Collapse
Affiliation(s)
- Sean R. Cuddy
- Neuroscience Graduate Program, University of Virginia, Charlottesville, VA, 22908
| | - Matthew E. Flores
- Department of Microbiology, Immunology and Cancer Biology, University of Virginia, Charlottesville, VA, 22908
| | - Patryk A. Krakowiak
- Department of Microbiology, Immunology and Cancer Biology, University of Virginia, Charlottesville, VA, 22908
| | - Abigail L. Whitford
- Department of Microbiology, Immunology and Cancer Biology, University of Virginia, Charlottesville, VA, 22908
| | - Sara A. Dochnal
- Department of Microbiology, Immunology and Cancer Biology, University of Virginia, Charlottesville, VA, 22908
| | - Aleksandra Babnis
- Department of Microbiology, Immunology and Cancer Biology, University of Virginia, Charlottesville, VA, 22908
| | - Tsuyoshi Miyake
- Department of Microbiology, Immunology and Cancer Biology, University of Virginia, Charlottesville, VA, 22908
| | - Marco Tigano
- Department of Pathology and Genomic Medicine, Thomas Jefferson University, 1020 Locust Street, Philadelphia 19107
| | - Daniel A. Engel
- Department of Microbiology, Immunology and Cancer Biology, University of Virginia, Charlottesville, VA, 22908
| | - Anna. R Cliffe
- Department of Microbiology, Immunology and Cancer Biology, University of Virginia, Charlottesville, VA, 22908
| |
Collapse
|
36
|
Issa W, Njeim R, Carrazco A, Burke GW, Mitrofanova A. Role of the Innate Immune Response in Glomerular Disease Pathogenesis: Focus on Podocytes. Cells 2024; 13:1157. [PMID: 38995008 PMCID: PMC11240682 DOI: 10.3390/cells13131157] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2024] [Revised: 07/03/2024] [Accepted: 07/03/2024] [Indexed: 07/13/2024] Open
Abstract
Accumulating evidence indicates that inflammatory and immunologic processes play a significant role in the development and progression of glomerular diseases. Podocytes, the terminally differentiated epithelial cells, are crucial for maintaining the integrity of the glomerular filtration barrier. Once injured, podocytes cannot regenerate, leading to progressive proteinuric glomerular diseases. However, emerging evidence suggests that podocytes not only maintain the glomerular filtration barrier and are important targets of immune responses but also exhibit many features of immune-like cells, where they are involved in the modulation of the activity of innate and adaptive immunity. This dual role of podocytes may lead to the discovery and development of new therapeutic targets for treating glomerular diseases. This review aims to provide an overview of the innate immunity mechanisms involved in podocyte injury and the progression of proteinuric glomerular diseases.
Collapse
Affiliation(s)
- Wadih Issa
- Department of Internal Medicine, Saint Joseph University, Beirut 1107 2180, Lebanon
- Katz Family Division of Nephrology and Hypertension, Department of Medicine, University of Miami Miller School of Medicine, Miami, FL 33136, USA
- Peggy and Harold Katz Family Drug Discovery Center, University of Miami Miller School of Medicine, Miami, FL 33136, USA
| | - Rachel Njeim
- Katz Family Division of Nephrology and Hypertension, Department of Medicine, University of Miami Miller School of Medicine, Miami, FL 33136, USA
- Peggy and Harold Katz Family Drug Discovery Center, University of Miami Miller School of Medicine, Miami, FL 33136, USA
| | - Arianna Carrazco
- Katz Family Division of Nephrology and Hypertension, Department of Medicine, University of Miami Miller School of Medicine, Miami, FL 33136, USA
- Peggy and Harold Katz Family Drug Discovery Center, University of Miami Miller School of Medicine, Miami, FL 33136, USA
| | - George W. Burke
- Division of Kidney-Pancreas Transplantation, Department of Surgery, Miami Transplant Institute, University of Miami Miller School of Medicine, Miami, FL 33136, USA
| | - Alla Mitrofanova
- Katz Family Division of Nephrology and Hypertension, Department of Medicine, University of Miami Miller School of Medicine, Miami, FL 33136, USA
- Peggy and Harold Katz Family Drug Discovery Center, University of Miami Miller School of Medicine, Miami, FL 33136, USA
| |
Collapse
|
37
|
Lo Cigno I, Calati F, Girone C, Catozzo M, Gariglio M. High-risk HPV oncoproteins E6 and E7 and their interplay with the innate immune response: Uncovering mechanisms of immune evasion and therapeutic prospects. J Med Virol 2024; 96:e29685. [PMID: 38783790 DOI: 10.1002/jmv.29685] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2024] [Revised: 04/22/2024] [Accepted: 05/10/2024] [Indexed: 05/25/2024]
Abstract
Human papillomaviruses (HPVs) are double-stranded DNA (dsDNA) tumor viruses causally associated with 5% of human cancers, comprising both anogenital and upper aerodigestive tract carcinomas. Despite the availability of prophylactic vaccines, HPVs continue to pose a significant global health challenge, primarily due to inadequate vaccine access and coverage. These viruses can establish persistent infections by evading both the intrinsic defenses of infected tissues and the extrinsic defenses provided by professional innate immune cells. Crucial for their evasion strategies is their unique intraepithelial life cycle, which effectively shields them from host detection. Thus, strategies aimed at reactivating the innate immune response within infected or transformed epithelial cells, particularly through the production of type I interferons (IFNs) and lymphocyte-recruiting chemokines, are considered viable solutions to counteract the adverse effects of persistent infections by these oncogenic viruses. This review focuses on the complex interplay between the high-risk HPV oncoproteins E6 and E7 and the innate immune response in epithelial cells and HPV-associated cancers. In particular, it details the molecular mechanisms by which E6 and E7 modulate the innate immune response, highlighting significant progress in our comprehension of these processes. It also examines forward-looking strategies that exploit the innate immune system to ameliorate existing anticancer therapies, thereby providing crucial insights into future therapeutic developments.
Collapse
Affiliation(s)
- Irene Lo Cigno
- Virology Unit, Department of Translational Medicine, Eastern Piedmont University, Novara, Italy
| | - Federica Calati
- Virology Unit, Department of Translational Medicine, Eastern Piedmont University, Novara, Italy
| | - Carlo Girone
- Virology Unit, Department of Translational Medicine, Eastern Piedmont University, Novara, Italy
| | - Marta Catozzo
- Virology Unit, Department of Translational Medicine, Eastern Piedmont University, Novara, Italy
| | - Marisa Gariglio
- Virology Unit, Department of Translational Medicine, Eastern Piedmont University, Novara, Italy
| |
Collapse
|
38
|
Bazzone LE, Zhu J, King M, Liu G, Guo Z, MacKay CR, Kyawe PP, Qaisar N, Rojas-Quintero J, Owen CA, Brass AL, McDougall W, Baer CE, Cashman T, Trivedi CM, Gack MU, Finberg RW, Kurt-Jones EA. ADAM9 promotes type I interferon-mediated innate immunity during encephalomyocarditis virus infection. Nat Commun 2024; 15:4153. [PMID: 38755212 PMCID: PMC11098812 DOI: 10.1038/s41467-024-48524-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2023] [Accepted: 05/02/2024] [Indexed: 05/18/2024] Open
Abstract
Viral myocarditis, an inflammatory disease of the heart, causes significant morbidity and mortality. Type I interferon (IFN)-mediated antiviral responses protect against myocarditis, but the mechanisms are poorly understood. We previously identified A Disintegrin And Metalloproteinase domain 9 (ADAM9) as an important factor in viral pathogenesis. ADAM9 is implicated in a range of human diseases, including inflammatory diseases; however, its role in viral infection is unknown. Here, we demonstrate that mice lacking ADAM9 are more susceptible to encephalomyocarditis virus (EMCV)-induced death and fail to mount a characteristic type I IFN response. This defect in type I IFN induction is specific to positive-sense, single-stranded RNA (+ ssRNA) viruses and involves melanoma differentiation-associated protein 5 (MDA5)-a key receptor for +ssRNA viruses. Mechanistically, ADAM9 binds to MDA5 and promotes its oligomerization and thereby downstream mitochondrial antiviral-signaling protein (MAVS) activation in response to EMCV RNA stimulation. Our findings identify a role for ADAM9 in the innate antiviral response, specifically MDA5-mediated IFN production, which protects against virus-induced cardiac damage, and provide a potential therapeutic target for treatment of viral myocarditis.
Collapse
Affiliation(s)
- Lindsey E Bazzone
- Department of Medicine, Division of Infectious Diseases and Immunology, University of Massachusetts Chan Medical School, Worcester, MA, USA
- Department of Medicine, Division of Pulmonary and Critical Care Medicine, University of Massachusetts Chan Medical School, Worcester, MA, USA
| | - Junji Zhu
- Florida Research and Innovation Center, Cleveland Clinic, Port St Lucie, FL, USA
| | - Michael King
- Department of Medicine, Division of Infectious Diseases and Immunology, University of Massachusetts Chan Medical School, Worcester, MA, USA
| | - GuanQun Liu
- Florida Research and Innovation Center, Cleveland Clinic, Port St Lucie, FL, USA
| | - Zhiru Guo
- Department of Medicine, Division of Infectious Diseases and Immunology, University of Massachusetts Chan Medical School, Worcester, MA, USA
| | - Christopher R MacKay
- Department of Medicine, Division of Infectious Diseases and Immunology, University of Massachusetts Chan Medical School, Worcester, MA, USA
| | - Pyae P Kyawe
- Department of Medicine, Division of Infectious Diseases and Immunology, University of Massachusetts Chan Medical School, Worcester, MA, USA
| | - Natasha Qaisar
- Department of Medicine, Division of Infectious Diseases and Immunology, University of Massachusetts Chan Medical School, Worcester, MA, USA
| | - Joselyn Rojas-Quintero
- Division of Pulmonary and Critical Care Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, MA, USA
| | - Caroline A Owen
- Division of Pulmonary and Critical Care Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, MA, USA
| | - Abraham L Brass
- Department of Microbiology and Physiological Systems, University of Massachusetts Chan Medical School, Worcester, MA, USA
| | - William McDougall
- Department of Microbiology and Physiological Systems, University of Massachusetts Chan Medical School, Worcester, MA, USA
| | - Christina E Baer
- Department of Microbiology and Physiological Systems, University of Massachusetts Chan Medical School, Worcester, MA, USA
| | - Timothy Cashman
- Department of Medicine, Division of Cardiovascular Medicine, University of Massachusetts Chan Medical School, Worcester, MA, USA
| | - Chinmay M Trivedi
- Department of Medicine, Division of Cardiovascular Medicine, University of Massachusetts Chan Medical School, Worcester, MA, USA
| | - Michaela U Gack
- Florida Research and Innovation Center, Cleveland Clinic, Port St Lucie, FL, USA
| | - Robert W Finberg
- Department of Medicine, Division of Infectious Diseases and Immunology, University of Massachusetts Chan Medical School, Worcester, MA, USA
- Program in Innate Immunity, University of Massachusetts Chan Medical School, Worcester, MA, USA
| | - Evelyn A Kurt-Jones
- Department of Medicine, Division of Infectious Diseases and Immunology, University of Massachusetts Chan Medical School, Worcester, MA, USA.
- Program in Innate Immunity, University of Massachusetts Chan Medical School, Worcester, MA, USA.
| |
Collapse
|
39
|
Yoneyama M, Kato H, Fujita T. Physiological functions of RIG-I-like receptors. Immunity 2024; 57:731-751. [PMID: 38599168 DOI: 10.1016/j.immuni.2024.03.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2024] [Revised: 02/19/2024] [Accepted: 03/04/2024] [Indexed: 04/12/2024]
Abstract
RIG-I-like receptors (RLRs) are crucial for pathogen detection and triggering immune responses and have immense physiological importance. In this review, we first summarize the interferon system and innate immunity, which constitute primary and secondary responses. Next, the molecular structure of RLRs and the mechanism of sensing non-self RNA are described. Usually, self RNA is refractory to the RLR; however, there are underlying host mechanisms that prevent immune reactions. Studies have revealed that the regulatory mechanisms of RLRs involve covalent molecular modifications, association with regulatory factors, and subcellular localization. Viruses have evolved to acquire antagonistic RLR functions to escape the host immune reactions. Finally, the pathologies caused by the malfunction of RLR signaling are described.
Collapse
Affiliation(s)
- Mitsutoshi Yoneyama
- Division of Molecular Immunology, Medical Mycology Research Center, Chiba University, Chiba, Japan; Division of Pandemic and Post-disaster Infectious Diseases, Research Institute of Disaster Medicine, Chiba University, Chiba, Japan
| | - Hiroki Kato
- Institute of Cardiovascular Immunology, Medical Faculty, University Hospital Bonn, University of Bonn, Bonn, Germany
| | - Takashi Fujita
- Institute of Cardiovascular Immunology, Medical Faculty, University Hospital Bonn, University of Bonn, Bonn, Germany; Laboratory of Regulatory Information, Institute for Frontier Life and Medical Sciences, Kyoto University, Kyoto, Japan.
| |
Collapse
|
40
|
Cheng D, Zhu J, Liu G, Gack MU, MacDuff DA. HOIL1 mediates MDA5 activation through ubiquitination of LGP2. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.04.02.587772. [PMID: 38617308 PMCID: PMC11014604 DOI: 10.1101/2024.04.02.587772] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/16/2024]
Abstract
The RIG-I-like receptors (RLRs), RIG-I and MDA5, are innate sensors of RNA virus infections that are critical for mounting a robust antiviral immune response. We have shown previously that HOIL1, a component of the Linear Ubiquitin Chain Assembly Complex (LUBAC), is essential for interferon (IFN) induction in response to viruses sensed by MDA5, but not for viruses sensed by RIG-I. LUBAC contains two unusual E3 ubiquitin ligases, HOIL1 and HOIP. HOIP generates methionine-1-linked polyubiquitin chains, whereas HOIL1 has recently been shown to conjugate ubiquitin onto serine and threonine residues. Here, we examined the differential requirement for HOIL1 and HOIP E3 ligase activities in RLR-mediated IFN induction. We determined that HOIL1 E3 ligase activity was critical for MDA5-dependent IFN induction, while HOIP E3 ligase activity played only a modest role in promoting IFN induction. HOIL1 E3 ligase promoted MDA5 oligomerization, its translocation to mitochondrial-associated membranes, and the formation of MAVS aggregates. We identified that HOIL1 can interact with and facilitate the ubiquitination of LGP2, a positive regulator of MDA5 oligomerization. In summary, our work identifies LGP2 ubiquitination by HOIL1 in facilitating the activation of MDA5 and the induction of a robust IFN response.
Collapse
Affiliation(s)
- Deion Cheng
- . Department of Microbiology and Immunology, University of Illinois Chicago College of Medicine, Chicago, Illinois, USA
| | - Junji Zhu
- . Cleveland Clinic Florida Research and Innovation Center, Port St. Lucie, Florida, USA
| | - GuanQun Liu
- . Cleveland Clinic Florida Research and Innovation Center, Port St. Lucie, Florida, USA
| | - Michaela U. Gack
- . Cleveland Clinic Florida Research and Innovation Center, Port St. Lucie, Florida, USA
| | - Donna A. MacDuff
- . Department of Microbiology and Immunology, University of Illinois Chicago College of Medicine, Chicago, Illinois, USA
| |
Collapse
|
41
|
Zhang F, Liu S, Qiao Z, Li L, Han Y, Sun J, Ge C, Zhu J, Li D, Yao H, Zhang H, Dai J, Yan Y, Chen Z, Yin L, Ma F. Housekeeping U1 snRNA facilitates antiviral innate immunity by promoting TRIM25-mediated RIG-I activation. Cell Rep 2024; 43:113945. [PMID: 38483900 DOI: 10.1016/j.celrep.2024.113945] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2023] [Revised: 01/24/2024] [Accepted: 02/27/2024] [Indexed: 04/02/2024] Open
Abstract
U1 small nuclear RNA (snRNA) is an abundant and evolutionarily conserved 164-nucleotide RNA species that functions in pre-mRNA splicing, and it is considered to be a housekeeping non-coding RNA. However, the role of U1 snRNA in regulating host antiviral immunity remains largely unexplored. Here, we find that RNVU1-18, a U1 pseudogene, is significantly upregulated in the host infected with RNA viruses, including influenza and respiratory syncytial virus. Overexpression of U1 snRNA protects cells against RNA viruses, while knockdown of U1 snRNA leads to more viral burden in vitro and in vivo. Knockout of RNVU1-18 is sufficient to impair the type I interferon-dependent antiviral innate immunity. U1 snRNA is required to fully activate the retinoic acid-inducible gene I (RIG-I)-dependent antiviral signaling, since it interacts with tripartite motif 25 (TRIM25) and enhances the RIG-I-TRIM25 interaction to trigger K63-linked ubiquitination of RIG-I. Our study reveals the important role of housekeeping U1 snRNA in regulating host antiviral innate immunity and restricting RNA virus infection.
Collapse
Affiliation(s)
- Fan Zhang
- National Key Laboratory of Immunity and Inflammation, and CAMS Key Laboratory of Synthetic Biology Regulatory Elements, Suzhou Institute of Systems Medicine, Chinese Academy of Medical Sciences & Peking Union Medical College, Suzhou 215123, China; School of Pharmacy, Xi'an Jiaotong University, Xi'an 710061, China
| | - Siying Liu
- National Key Laboratory of Immunity and Inflammation, and CAMS Key Laboratory of Synthetic Biology Regulatory Elements, Suzhou Institute of Systems Medicine, Chinese Academy of Medical Sciences & Peking Union Medical College, Suzhou 215123, China
| | - Zigang Qiao
- National Key Laboratory of Immunity and Inflammation, and CAMS Key Laboratory of Synthetic Biology Regulatory Elements, Suzhou Institute of Systems Medicine, Chinese Academy of Medical Sciences & Peking Union Medical College, Suzhou 215123, China
| | - Liang Li
- National Key Laboratory of Immunity and Inflammation, and CAMS Key Laboratory of Synthetic Biology Regulatory Elements, Suzhou Institute of Systems Medicine, Chinese Academy of Medical Sciences & Peking Union Medical College, Suzhou 215123, China
| | - Yu Han
- National Key Laboratory of Immunity and Inflammation, and CAMS Key Laboratory of Synthetic Biology Regulatory Elements, Suzhou Institute of Systems Medicine, Chinese Academy of Medical Sciences & Peking Union Medical College, Suzhou 215123, China
| | - Jiya Sun
- National Key Laboratory of Immunity and Inflammation, and CAMS Key Laboratory of Synthetic Biology Regulatory Elements, Suzhou Institute of Systems Medicine, Chinese Academy of Medical Sciences & Peking Union Medical College, Suzhou 215123, China
| | - Chenglong Ge
- Institute of Functional Nano and Soft Materials (FUNSOM), Jiangsu Key Laboratory for Carbon-Based Functional Materials and Devices, Collaborative Innovation Center of Suzhou Nano Science and Technology, Soochow University, Suzhou 215123, China
| | - Jingfei Zhu
- National Key Laboratory of Immunity and Inflammation, and CAMS Key Laboratory of Synthetic Biology Regulatory Elements, Suzhou Institute of Systems Medicine, Chinese Academy of Medical Sciences & Peking Union Medical College, Suzhou 215123, China
| | - Dapei Li
- National Key Laboratory of Immunity and Inflammation, and CAMS Key Laboratory of Synthetic Biology Regulatory Elements, Suzhou Institute of Systems Medicine, Chinese Academy of Medical Sciences & Peking Union Medical College, Suzhou 215123, China
| | - Haiping Yao
- National Key Laboratory of Immunity and Inflammation, and CAMS Key Laboratory of Synthetic Biology Regulatory Elements, Suzhou Institute of Systems Medicine, Chinese Academy of Medical Sciences & Peking Union Medical College, Suzhou 215123, China
| | - Huiying Zhang
- National Key Laboratory of Immunity and Inflammation, and CAMS Key Laboratory of Synthetic Biology Regulatory Elements, Suzhou Institute of Systems Medicine, Chinese Academy of Medical Sciences & Peking Union Medical College, Suzhou 215123, China
| | - Jianfeng Dai
- Institute of Biology and Medical Sciences, Soochow University, Suzhou 215123, China
| | - Yongdong Yan
- Department of Respiratory Medicine, Children's Hospital of Soochow University, Suzhou 215025, China
| | - Zhengrong Chen
- Department of Respiratory Medicine, Children's Hospital of Soochow University, Suzhou 215025, China.
| | - Lichen Yin
- Institute of Functional Nano and Soft Materials (FUNSOM), Jiangsu Key Laboratory for Carbon-Based Functional Materials and Devices, Collaborative Innovation Center of Suzhou Nano Science and Technology, Soochow University, Suzhou 215123, China.
| | - Feng Ma
- National Key Laboratory of Immunity and Inflammation, and CAMS Key Laboratory of Synthetic Biology Regulatory Elements, Suzhou Institute of Systems Medicine, Chinese Academy of Medical Sciences & Peking Union Medical College, Suzhou 215123, China.
| |
Collapse
|
42
|
Avila-Bonilla RG, Macias S. The molecular language of RNA 5' ends: guardians of RNA identity and immunity. RNA (NEW YORK, N.Y.) 2024; 30:327-336. [PMID: 38325897 PMCID: PMC10946433 DOI: 10.1261/rna.079942.124] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/09/2024] [Accepted: 02/01/2024] [Indexed: 02/09/2024]
Abstract
RNA caps are deposited at the 5' end of RNA polymerase II transcripts. This modification regulates several steps of gene expression, in addition to marking transcripts as self to enable the innate immune system to distinguish them from uncapped foreign RNAs, including those derived from viruses. Specialized immune sensors, such as RIG-I and IFITs, trigger antiviral responses upon recognition of uncapped cytoplasmic transcripts. Interestingly, uncapped transcripts can also be produced by mammalian hosts. For instance, 5'-triphosphate RNAs are generated by RNA polymerase III transcription, including tRNAs, Alu RNAs, or vault RNAs. These RNAs have emerged as key players of innate immunity, as they can be recognized by the antiviral sensors. Mechanisms that regulate the presence of 5'-triphosphates, such as 5'-end dephosphorylation or RNA editing, prevent immune recognition of endogenous RNAs and excessive inflammation. Here, we provide a comprehensive overview of the complexity of RNA cap structures and 5'-triphosphate RNAs, highlighting their roles in transcript identity, immune surveillance, and disease.
Collapse
Affiliation(s)
- Rodolfo Gamaliel Avila-Bonilla
- Institute of Immunology and Infection Research, School of Biological Sciences, University of Edinburgh, EH9 3FL Edinburgh, United Kingdom
| | - Sara Macias
- Institute of Immunology and Infection Research, School of Biological Sciences, University of Edinburgh, EH9 3FL Edinburgh, United Kingdom
| |
Collapse
|
43
|
Jiao H, James SJ, Png CW, Cui C, Li H, Li L, Chia WN, Min N, Li W, Claser C, Rénia L, Wang H, Chen MIC, Chu JJH, Tan KSW, Deng Y, Zhang Y. DUSP4 modulates RIG-I- and STING-mediated IRF3-type I IFN response. Cell Death Differ 2024; 31:280-291. [PMID: 38383887 PMCID: PMC10923883 DOI: 10.1038/s41418-024-01269-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2023] [Revised: 02/05/2024] [Accepted: 02/07/2024] [Indexed: 02/23/2024] Open
Abstract
Detection of cytosolic nucleic acids by pattern recognition receptors, including STING and RIG-I, leads to the activation of multiple signalling pathways that culminate in the production of type I interferons (IFNs) which are vital for host survival during virus infection. In addition to protective immune modulatory functions, type I IFNs are also associated with autoimmune diseases. Hence, it is important to elucidate the mechanisms that govern their expression. In this study, we identified a critical regulatory function of the DUSP4 phosphatase in innate immune signalling. We found that DUSP4 regulates the activation of TBK1 and ERK1/2 in a signalling complex containing DUSP4, TBK1, ERK1/2 and IRF3 to regulate the production of type I IFNs. Mice deficient in DUSP4 were more resistant to infections by both RNA and DNA viruses but more susceptible to malaria parasites. Therefore, our study establishes DUSP4 as a regulator of nucleic acid sensor signalling and sheds light on an important facet of the type I IFN regulatory system.
Collapse
Affiliation(s)
- Huipeng Jiao
- Zhejiang Provincial Key Laboratory of Cancer Molecular Cell Biology, Life Sciences Institute, Zhejiang University, Hangzhou, Zhejiang, 310058, China
- Department of Microbiology and Immunology, TRP Immunology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, 117597, Singapore
- Immunology Programme, Life Sciences Institute, National University of Singapore, Singapore, 117597, Singapore
| | - Sharmy J James
- Department of Microbiology and Immunology, TRP Immunology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, 117597, Singapore
- Immunology Programme, Life Sciences Institute, National University of Singapore, Singapore, 117597, Singapore
| | - Chin Wen Png
- Department of Microbiology and Immunology, TRP Immunology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, 117597, Singapore
- Immunology Programme, Life Sciences Institute, National University of Singapore, Singapore, 117597, Singapore
| | - Chaoyu Cui
- Department of Microbiology and Immunology, TRP Immunology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, 117597, Singapore
- School of Pharmaceutical Sciences (Shenzhen), Shenzhen Campus of Sun Yat-sen University, Sun Yat-sen University, Shenzhen, 518100, China
| | - Heng Li
- Department of Microbiology and Immunology, TRP Immunology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, 117597, Singapore
- Immunology Programme, Life Sciences Institute, National University of Singapore, Singapore, 117597, Singapore
| | - Liang Li
- Department of Pharmacology, School of Medicine, Southern University of Science and Technology, Shenzhen, 518055, China
| | - Wan Ni Chia
- Department of Microbiology and Immunology, TRP Immunology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, 117597, Singapore
| | - Nyo Min
- Department of Microbiology and Immunology, TRP Immunology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, 117597, Singapore
| | - Weiyun Li
- State Key Laboratory of Cell Biology, Shanghai Institute of Biochemistry and Cell Biology, Chinese Academy of Sciences, University of Chinese Academy of Sciences, Innovation Center for Cell Signaling Network, Shanghai, 200031, China
| | - Carla Claser
- Singapore Immunology Network, Agency for Science, Technology and Research (A*STAR), Singapore, 138668, Singapore
| | - Laurent Rénia
- Singapore Immunology Network, Agency for Science, Technology and Research (A*STAR), Singapore, 138668, Singapore
| | - Hongyan Wang
- State Key Laboratory of Cell Biology, Shanghai Institute of Biochemistry and Cell Biology, Chinese Academy of Sciences, University of Chinese Academy of Sciences, Innovation Center for Cell Signaling Network, Shanghai, 200031, China
| | - Mark I-Cheng Chen
- Saw Swee Hock School of Public Health, National University of Singapore, Singapore, 117597, Singapore
| | - Justin Jang Hann Chu
- Department of Microbiology and Immunology, TRP Immunology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, 117597, Singapore
| | - Kevin Shyong Wei Tan
- Department of Microbiology and Immunology, TRP Immunology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, 117597, Singapore
| | - Yinyue Deng
- School of Pharmaceutical Sciences (Shenzhen), Shenzhen Campus of Sun Yat-sen University, Sun Yat-sen University, Shenzhen, 518100, China.
| | - Yongliang Zhang
- Department of Microbiology and Immunology, TRP Immunology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, 117597, Singapore.
- Immunology Programme, Life Sciences Institute, National University of Singapore, Singapore, 117597, Singapore.
| |
Collapse
|
44
|
Liu Y, Cui J, Kang J, Wang Z, Xu X, Wu F. Bovine herpesvirus-1 gE protein inhibits IFN-β production to enhance replication by promoting MAVS ubiquitination and interfering with the interaction between IRF3 and CBP/p300. Vet Microbiol 2023; 287:109899. [PMID: 37931576 DOI: 10.1016/j.vetmic.2023.109899] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2023] [Revised: 10/20/2023] [Accepted: 10/25/2023] [Indexed: 11/08/2023]
Abstract
Bovine herpesvirus-1 (BoHV-1) can infect all breeds of cattle and cause respiratory and genital tract diseases. In the process of viral infection, viruses can use their own proteins to suppress the innate immunity of the host and promote its replication; however, the mechanism by which BoHV-1 evades the innate immune response is not fully understood. In this study, we found that rabbits inoculated with the live gene deletion vaccine BoHV-1-△gI/gE/TK generated higher interferon-β (IFN-β) production in the serum, liver, lung and kidney than rabbits inoculated with wt BoHV-1, which led to milder lesions in the lung and kidney. We performed gene deletion and ectopic expression experiments on viral proteins and found that gE was the major protein that inhibited IFN-β expression. Further studies showed that MAVS and IRF3 were the targets of gE, and the specific mechanism was that gE inhibited IFN-β production by promoting MAVS ubiquitination and interfering with the interaction between IRF3 and CBP/p300. These results suggest a new way of BoHV-1 inhibition of IFN-β production to evade the host innate immunity.
Collapse
Affiliation(s)
- Yang Liu
- Key Laboratory of Animal Biosafety Risk Prevention and Control of Ministry of Agriculture and Rural Affairs (South), China Animal Health and Epidemiology Center, Qingdao, Shandong 266032, China; College of Veterinary Medicine, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Jin Cui
- Key Laboratory of Animal Biosafety Risk Prevention and Control of Ministry of Agriculture and Rural Affairs (South), China Animal Health and Epidemiology Center, Qingdao, Shandong 266032, China
| | - Jingli Kang
- Key Laboratory of Animal Biosafety Risk Prevention and Control of Ministry of Agriculture and Rural Affairs (South), China Animal Health and Epidemiology Center, Qingdao, Shandong 266032, China
| | - Zhiliang Wang
- Key Laboratory of Animal Biosafety Risk Prevention and Control of Ministry of Agriculture and Rural Affairs (South), China Animal Health and Epidemiology Center, Qingdao, Shandong 266032, China
| | - Xingang Xu
- College of Veterinary Medicine, Northwest A&F University, Yangling, Shaanxi 712100, China.
| | - Faxing Wu
- Key Laboratory of Animal Biosafety Risk Prevention and Control of Ministry of Agriculture and Rural Affairs (South), China Animal Health and Epidemiology Center, Qingdao, Shandong 266032, China.
| |
Collapse
|
45
|
Chen W, Gullett JM, Tweedell RE, Kanneganti TD. Innate immune inflammatory cell death: PANoptosis and PANoptosomes in host defense and disease. Eur J Immunol 2023; 53:e2250235. [PMID: 36782083 PMCID: PMC10423303 DOI: 10.1002/eji.202250235] [Citation(s) in RCA: 63] [Impact Index Per Article: 31.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2022] [Revised: 02/02/2023] [Accepted: 02/06/2023] [Indexed: 02/15/2023]
Abstract
Regulated cell death (RCD) triggered by innate immune activation is an important strategy for host survival during pathogen invasion and perturbations of cellular homeostasis. There are two main categories of RCD, including nonlytic and lytic pathways. Apoptosis is the most well-characterized nonlytic RCD, and the inflammatory pyroptosis and necroptosis pathways are among the best known lytic forms. While these were historically viewed as independent RCD pathways, extensive evidence of cross-talk among their molecular components created a knowledge gap in our mechanistic understanding of RCD and innate immune pathway components, which led to the identification of PANoptosis. PANoptosis is a unique innate immune inflammatory RCD pathway that is regulated by PANoptosome complexes upon sensing pathogens, pathogen-associated molecular patterns (PAMPs), damage-associated molecular patterns (DAMPs) or the cytokines produced downstream. Cytosolic innate immune sensors and regulators, such as ZBP1, AIM2 and RIPK1, promote the assembly of PANoptosomes to drive PANoptosis. In this review, we discuss the molecular components of the known PANoptosomes and highlight the mechanisms of PANoptosome assembly, activation and regulation identified to date. We also discuss how PANoptosomes and mutations in PANoptosome components are linked to diseases. Given the impact of RCD, and PANoptosis specifically, across the disease spectrum, improved understanding of PANoptosomes and their regulation will be critical for identifying new therapeutic targets and strategies.
Collapse
Affiliation(s)
- Wen Chen
- Department of Immunology, St. Jude Children's Research Hospital, Memphis, TN, 38105, USA
| | - Jessica M. Gullett
- Department of Immunology, St. Jude Children's Research Hospital, Memphis, TN, 38105, USA
| | - Rebecca E. Tweedell
- Department of Immunology, St. Jude Children's Research Hospital, Memphis, TN, 38105, USA
| | | |
Collapse
|
46
|
Huang W, Bai L, Tang H. Epstein-Barr virus infection: the micro and macro worlds. Virol J 2023; 20:220. [PMID: 37784180 PMCID: PMC10546641 DOI: 10.1186/s12985-023-02187-9] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2023] [Accepted: 09/19/2023] [Indexed: 10/04/2023] Open
Abstract
Epstein‒Barr virus (EBV) is a DNA virus that belongs to the human B lymphotropic herpesvirus family and is highly prevalent in the human population. Once infected, a host can experience latent infection because EBV evades the immune system, leading to hosts harboring the virus for their lifetime. EBV is associated with many diseases and causes significant challenges to human health. This review first offers a description of the natural history of EBV infection, clarifies the interaction between EBV and the immune system, and finally focuses on several major types of diseases caused by EBV infection.
Collapse
Affiliation(s)
- Wei Huang
- Center of Infectious Diseases, West China Hospital of Sichuan University, Chengdu, 610041, China
- Division of Infectious Diseases, State Key Laboratory of Biotherapy and Center of Infectious Diseases, West China Hospital, Sichuan University, Chengdu, 610041, China
| | - Lang Bai
- Center of Infectious Diseases, West China Hospital of Sichuan University, Chengdu, 610041, China.
- Division of Infectious Diseases, State Key Laboratory of Biotherapy and Center of Infectious Diseases, West China Hospital, Sichuan University, Chengdu, 610041, China.
| | - Hong Tang
- Center of Infectious Diseases, West China Hospital of Sichuan University, Chengdu, 610041, China.
- Division of Infectious Diseases, State Key Laboratory of Biotherapy and Center of Infectious Diseases, West China Hospital, Sichuan University, Chengdu, 610041, China.
| |
Collapse
|
47
|
Bohnsack KE, Yi S, Venus S, Jankowsky E, Bohnsack MT. Cellular functions of eukaryotic RNA helicases and their links to human diseases. Nat Rev Mol Cell Biol 2023; 24:749-769. [PMID: 37474727 DOI: 10.1038/s41580-023-00628-5] [Citation(s) in RCA: 61] [Impact Index Per Article: 30.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/13/2023] [Indexed: 07/22/2023]
Abstract
RNA helicases are highly conserved proteins that use nucleoside triphosphates to bind or remodel RNA, RNA-protein complexes or both. RNA helicases are classified into the DEAD-box, DEAH/RHA, Ski2-like, Upf1-like and RIG-I families, and are the largest class of enzymes active in eukaryotic RNA metabolism - virtually all aspects of gene expression and its regulation involve RNA helicases. Mutation and dysregulation of these enzymes have been linked to a multitude of diseases, including cancer and neurological disorders. In this Review, we discuss the regulation and functional mechanisms of RNA helicases and their roles in eukaryotic RNA metabolism, including in transcription regulation, pre-mRNA splicing, ribosome assembly, translation and RNA decay. We highlight intriguing models that link helicase structure, mechanisms of function (such as local strand unwinding, translocation, winching, RNA clamping and displacing RNA-binding proteins) and biological roles, including emerging connections between RNA helicases and cellular condensates formed through liquid-liquid phase separation. We also discuss associations of RNA helicases with human diseases and recent efforts towards the design of small-molecule inhibitors of these pivotal regulators of eukaryotic gene expression.
Collapse
Affiliation(s)
- Katherine E Bohnsack
- Department of Molecular Biology, University Medical Center Göttingen, Göttingen, Germany.
| | - Soon Yi
- Center for RNA Science and Therapeutics, School of Medicine, Case Western Reserve University, Cleveland, OH, USA
- Department of Biochemistry, School of Medicine, Case Western Reserve University, Cleveland, OH, USA
| | - Sarah Venus
- Center for RNA Science and Therapeutics, School of Medicine, Case Western Reserve University, Cleveland, OH, USA
- Department of Biochemistry, School of Medicine, Case Western Reserve University, Cleveland, OH, USA
| | - Eckhard Jankowsky
- Center for RNA Science and Therapeutics, School of Medicine, Case Western Reserve University, Cleveland, OH, USA.
- Department of Biochemistry, School of Medicine, Case Western Reserve University, Cleveland, OH, USA.
- Case Comprehensive Cancer Center, School of Medicine, Case Western Reserve University, Cleveland, OH, USA.
- Moderna, Cambridge, MA, USA.
| | - Markus T Bohnsack
- Department of Molecular Biology, University Medical Center Göttingen, Göttingen, Germany.
- Göttingen Centre for Molecular Biosciences, University of Göttingen, Göttingen, Germany.
- Max Planck Institute for Multidisciplinary Sciences, Göttingen, Germany.
| |
Collapse
|
48
|
Dremel SE, Jimenez AR, Tucker JM. "Transfer" of power: The intersection of DNA virus infection and tRNA biology. Semin Cell Dev Biol 2023; 146:31-39. [PMID: 36682929 PMCID: PMC10101907 DOI: 10.1016/j.semcdb.2023.01.011] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2022] [Revised: 01/17/2023] [Accepted: 01/17/2023] [Indexed: 01/21/2023]
Abstract
Transfer RNAs (tRNAs) are at the heart of the molecular biology central dogma, functioning to decode messenger RNAs into proteins. As obligate intracellular parasites, viruses depend on the host translation machinery, including host tRNAs. Thus, the ability of a virus to fine-tune tRNA expression elicits the power to impact the outcome of infection. DNA viruses commonly upregulate the output of RNA polymerase III (Pol III)-dependent transcripts, including tRNAs. Decades after these initial discoveries we know very little about how mature tRNA pools change during viral infection, as tRNA sequencing methodology has only recently reached proficiency. Here, we review perturbation of tRNA biogenesis by DNA virus infection, including an emerging player called tRNA-derived fragments (tRFs). We discuss how tRNA dysregulation shifts the power landscape between the host and virus, highlighting the potential for tRNA-based antivirals as a future therapeutic.
Collapse
Affiliation(s)
- Sarah E Dremel
- HIV and AIDS Malignancy Branch, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD, USA
| | - Ariana R Jimenez
- Interdisciplinary Graduate Program in Immunology, University of Iowa, Iowa City, IA, USA
| | - Jessica M Tucker
- Department of Microbiology and Immunology, University of Iowa, Iowa City, IA, USA.
| |
Collapse
|
49
|
Li WS, Zhang QQ, Li Q, Liu SY, Yuan GQ, Pan YW. Innate immune response restarts adaptive immune response in tumors. Front Immunol 2023; 14:1260705. [PMID: 37781382 PMCID: PMC10538570 DOI: 10.3389/fimmu.2023.1260705] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2023] [Accepted: 08/25/2023] [Indexed: 10/03/2023] Open
Abstract
The imbalance of immune response plays a crucial role in the development of diseases, including glioblastoma. It is essential to comprehend how the innate immune system detects tumors and pathogens. Endosomal and cytoplasmic sensors can identify diverse cancer cell antigens, triggering the production of type I interferon and pro-inflammatory cytokines. This, in turn, stimulates interferon stimulating genes, enhancing the presentation of cancer antigens, and promoting T cell recognition and destruction of cancer cells. While RNA and DNA sensing of tumors and pathogens typically involve different receptors and adapters, their interaction can activate adaptive immune response mechanisms. This review highlights the similarity in RNA and DNA sensing mechanisms in the innate immunity of both tumors and pathogens. The aim is to enhance the anti-tumor innate immune response, identify regions of the tumor that are not responsive to treatment, and explore new targets to improve the response to conventional tumor therapy and immunotherapy.
Collapse
Affiliation(s)
- Wen-shan Li
- The Department of Neurosurgery, The Second Hospital of Lanzhou University, Lanzhou, Gansu, China
- Key Laboratory of Neurology of Gansu Province, The Second Hospital of Lanzhou University, Lanzhou, Gansu, China
- Department of Neurosurgery, Qinghai Provincial People’s Hospital, Xining, Qinghai, China
| | - Qing-qing Zhang
- Department of Respiratory and Critical Care Medicine, Qinghai University Affiliated Hospital, Xining, Qinghai, China
| | - Qiao Li
- The Department of Neurosurgery, The Second Hospital of Lanzhou University, Lanzhou, Gansu, China
- Key Laboratory of Neurology of Gansu Province, The Second Hospital of Lanzhou University, Lanzhou, Gansu, China
| | - Shang-yu Liu
- The Department of Neurosurgery, The Second Hospital of Lanzhou University, Lanzhou, Gansu, China
- Key Laboratory of Neurology of Gansu Province, The Second Hospital of Lanzhou University, Lanzhou, Gansu, China
| | - Guo-qiang Yuan
- The Department of Neurosurgery, The Second Hospital of Lanzhou University, Lanzhou, Gansu, China
- Key Laboratory of Neurology of Gansu Province, The Second Hospital of Lanzhou University, Lanzhou, Gansu, China
| | - Ya-wen Pan
- The Department of Neurosurgery, The Second Hospital of Lanzhou University, Lanzhou, Gansu, China
- Key Laboratory of Neurology of Gansu Province, The Second Hospital of Lanzhou University, Lanzhou, Gansu, China
| |
Collapse
|
50
|
Zhou S, Van Bortle K. The Pol III transcriptome: Basic features, recurrent patterns, and emerging roles in cancer. WILEY INTERDISCIPLINARY REVIEWS. RNA 2023; 14:e1782. [PMID: 36754845 PMCID: PMC10498592 DOI: 10.1002/wrna.1782] [Citation(s) in RCA: 24] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/06/2022] [Revised: 01/13/2023] [Accepted: 01/18/2023] [Indexed: 02/10/2023]
Abstract
The RNA polymerase III (Pol III) transcriptome is universally comprised of short, highly structured noncoding RNA (ncRNA). Through RNA-protein interactions, the Pol III transcriptome actuates functional activities ranging from nuclear gene regulation (7SK), splicing (U6, U6atac), and RNA maturation and stability (RMRP, RPPH1, Y RNA), to cytoplasmic protein targeting (7SL) and translation (tRNA, 5S rRNA). In higher eukaryotes, the Pol III transcriptome has expanded to include additional, recently evolved ncRNA species that effectively broaden the footprint of Pol III transcription to additional cellular activities. Newly evolved ncRNAs function as riboregulators of autophagy (vault), immune signaling cascades (nc886), and translation (Alu, BC200, snaR). Notably, upregulation of Pol III transcription is frequently observed in cancer, and multiple ncRNA species are linked to both cancer progression and poor survival outcomes among cancer patients. In this review, we outline the basic features and functions of the Pol III transcriptome, and the evidence for dysregulation and dysfunction for each ncRNA in cancer. When taken together, recurrent patterns emerge, ranging from shared functional motifs that include molecular scaffolding and protein sequestration, overlapping protein interactions, and immunostimulatory activities, to the biogenesis of analogous small RNA fragments and noncanonical miRNAs, augmenting the function of the Pol III transcriptome and further broadening its role in cancer. This article is categorized under: RNA in Disease and Development > RNA in Disease RNA Processing > Processing of Small RNAs RNA Interactions with Proteins and Other Molecules > Protein-RNA Interactions: Functional Implications.
Collapse
Affiliation(s)
- Sihang Zhou
- Department of Cell and Developmental Biology, University of Illinois Urbana-Champaign, Urbana, Illinois, USA
| | - Kevin Van Bortle
- Department of Cell and Developmental Biology, University of Illinois Urbana-Champaign, Urbana, Illinois, USA
- Cancer Center at Illinois, University of Illinois Urbana-Champaign, Urbana, Illinois, USA
| |
Collapse
|