1
|
Germain L, Veloso P, Lantz O, Legoux F. MAIT cells: Conserved watchers on the wall. J Exp Med 2025; 222:e20232298. [PMID: 39446132 PMCID: PMC11514058 DOI: 10.1084/jem.20232298] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2024] [Revised: 09/17/2024] [Accepted: 10/03/2024] [Indexed: 10/25/2024] Open
Abstract
MAIT cells are innate-like T cells residing in barrier tissues such as the lung, skin, and intestine. Both the semi-invariant T cell receptor of MAIT cells and the restricting element MR1 are deeply conserved across mammals, indicating non-redundant functions linked to antigenic specificity. MAIT cells across species concomitantly express cytotoxicity and tissue-repair genes, suggesting versatile functions. Accordingly, MAIT cells contribute to antibacterial responses as well as to the repair of damaged barrier tissues. MAIT cells recognize riboflavin biosynthetic pathway-derived metabolites, which rapidly cross epithelial barriers to be presented by antigen-presenting cells. Changes in gut ecology during intestinal inflammation drive the expansion of strong riboflavin and MAIT ligand producers. Thus, MAIT cells may enable real-time surveillance of microbiota dysbiosis across intact epithelia and provide rapid and context-dependent responses. Here, we discuss recent findings regarding the origin and regulation of MAIT ligands and the role of MAIT cells in barrier tissues. We speculate on the potential reasons for MAIT cell conservation during evolution.
Collapse
Affiliation(s)
- Lilou Germain
- INSERM ERL1305, CNRS UMR6290, Institut de Génétique and Développement de Rennes, Université de Rennes, Rennes, France
| | - Pablo Veloso
- INSERM ERL1305, CNRS UMR6290, Institut de Génétique and Développement de Rennes, Université de Rennes, Rennes, France
| | - Olivier Lantz
- Institut Curie, PSL University, Inserm U932, Immunity and Cancer, Paris, France
- Laboratoire d’immunologie Clinique, Institut Curie, Paris, France
- Centre d’investigation Clinique en Biothérapie Gustave-Roussy Institut Curie (CIC-BT1428), Paris, France
| | - François Legoux
- INSERM ERL1305, CNRS UMR6290, Institut de Génétique and Développement de Rennes, Université de Rennes, Rennes, France
- Institut Curie, PSL University, Inserm U932, Immunity and Cancer, Paris, France
| |
Collapse
|
2
|
Mistri SK, Hilton BM, Horrigan KJ, Andretta ES, Savard R, Dienz O, Hampel KJ, Gerrard DL, Rose JT, Sidiropoulos N, Majumdar D, Boyson JE. SLAM/SAP signaling regulates discrete γδ T cell developmental checkpoints and shapes the innate-like γδ TCR repertoire. eLife 2024; 13:RP97229. [PMID: 39656519 PMCID: PMC11630817 DOI: 10.7554/elife.97229] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2024] Open
Abstract
During thymic development, most γδ T cells acquire innate-like characteristics that are critical for their function in tumor surveillance, infectious disease, and tissue repair. The mechanisms, however, that regulate γδ T cell developmental programming remain unclear. Recently, we demonstrated that the SLAM/SAP signaling pathway regulates the development and function of multiple innate-like γδ T cell subsets. Here, we used a single-cell proteogenomics approach to identify SAP-dependent developmental checkpoints and to define the SAP-dependent γδ TCR repertoire in mice. SAP deficiency resulted in both a significant loss of an immature Gzma+Blk+Etv5+Tox2+ γδT17 precursor population and a significant increase in Cd4+Cd8+Rorc+Ptcra+Rag1+ thymic γδ T cells. SAP-dependent diversion of embryonic day 17 thymic γδ T cell clonotypes into the αβ T cell developmental pathway was associated with a decreased frequency of mature clonotypes in neonatal thymus, and an altered γδ TCR repertoire in the periphery. Finally, we identify TRGV4/TRAV13-4(DV7)-expressing T cells as a novel, SAP-dependent Vγ4 γδT1 subset. Together, the data support a model in which SAP-dependent γδ/αβ T cell lineage commitment regulates γδ T cell developmental programming and shapes the γδ TCR repertoire.
Collapse
MESH Headings
- Animals
- Receptors, Antigen, T-Cell, gamma-delta/metabolism
- Receptors, Antigen, T-Cell, gamma-delta/genetics
- Receptors, Antigen, T-Cell, gamma-delta/immunology
- Mice
- Signal Transduction
- Signaling Lymphocytic Activation Molecule Associated Protein/metabolism
- Signaling Lymphocytic Activation Molecule Associated Protein/genetics
- Immunity, Innate
- Mice, Inbred C57BL
- T-Lymphocyte Subsets/immunology
- T-Lymphocyte Subsets/metabolism
- Thymus Gland/immunology
- Thymus Gland/metabolism
- Cell Differentiation
- Intraepithelial Lymphocytes/immunology
- Intraepithelial Lymphocytes/metabolism
- Signaling Lymphocytic Activation Molecule Family
Collapse
Affiliation(s)
- Somen K Mistri
- Department of Surgery, Larner College of Medicine, University of VermontBurlingtonUnited States
| | - Brianna M Hilton
- Department of Surgery, Larner College of Medicine, University of VermontBurlingtonUnited States
| | - Katherine J Horrigan
- Department of Surgery, Larner College of Medicine, University of VermontBurlingtonUnited States
| | - Emma S Andretta
- Department of Surgery, Larner College of Medicine, University of VermontBurlingtonUnited States
| | - Remi Savard
- Department of Surgery, Larner College of Medicine, University of VermontBurlingtonUnited States
| | - Oliver Dienz
- Department of Surgery, Larner College of Medicine, University of VermontBurlingtonUnited States
| | - Kenneth J Hampel
- Department of Pathology and Laboratory Medicine, Larner College of Medicine, University of Vermont Medical CenterBurlingtonUnited States
| | - Diana L Gerrard
- Department of Pathology and Laboratory Medicine, Larner College of Medicine, University of Vermont Medical CenterBurlingtonUnited States
| | - Joshua T Rose
- Department of Pathology and Laboratory Medicine, Larner College of Medicine, University of Vermont Medical CenterBurlingtonUnited States
| | - Nikoletta Sidiropoulos
- Department of Pathology and Laboratory Medicine, Larner College of Medicine, University of Vermont Medical CenterBurlingtonUnited States
| | - Dev Majumdar
- Department of Surgery, Larner College of Medicine, University of VermontBurlingtonUnited States
| | - Jonathan E Boyson
- Department of Surgery, Larner College of Medicine, University of VermontBurlingtonUnited States
| |
Collapse
|
3
|
Li Z, Han B, Qi M, Li Y, Duan Y, Yao Y. Modulating macrophage-mediated programmed cell removal: An attractive strategy for cancer therapy. Biochim Biophys Acta Rev Cancer 2024; 1879:189172. [PMID: 39151808 DOI: 10.1016/j.bbcan.2024.189172] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2024] [Revised: 08/11/2024] [Accepted: 08/12/2024] [Indexed: 08/19/2024]
Abstract
Macrophage-mediated programmed cell removal (PrCR) is crucial for the identification and elimination of needless cells that maintain tissue homeostasis. The efficacy of PrCR depends on the balance between pro-phagocytic "eat me" signals and anti-phagocytic "don't eat me" signals. Recently, a growing number of studies have shown that tumourigenesis and progression are closely associated with PrCR. In the tumour microenvironment, PrCR activated by the "eat me" signal is counterbalanced by the "don't eat me" signal of CD47/SIRPα, resulting in tumour immune escape. Therefore, targeting exciting "eat me" signalling while simultaneously suppressing "don't eat me" signalling and eventually inducing macrophages to produce effective PrCR will be a very attractive antitumour strategy. Here, we comprehensively review the functions of PrCR-activating signal molecules (CRT, PS, Annexin1, SLAMF7) and PrCR-inhibiting signal molecules (CD47/SIRPα, MHC-I/LILRB1, CD24/Siglec-10, SLAMF3, SLAMF4, PD-1/PD-L1, CD31, GD2, VCAM1), the interactions between these molecules, and Warburg effect. In addition, we highlight the molecular regulatory mechanisms that affect immune system function by exciting or suppressing PrCR. Finally, we review the research advances in tumour therapy by activating PrCR and discuss the challenges and potential solutions to smooth the way for tumour treatment strategies that target PrCR.
Collapse
Affiliation(s)
- Zhenzhen Li
- Henan International Joint Laboratory of Prevention and Treatment of Pediatric Diseases, Children's Hospital Affiliated to Zhengzhou University, Zhengzhou University, Zhengzhou 450018, China; School of Pharmaceutical Sciences, Zhengzhou University, Zhengzhou, 450001, China
| | - Bingqian Han
- School of Pharmaceutical Sciences, Zhengzhou University, Zhengzhou, 450001, China
| | - Menghui Qi
- School of Pharmaceutical Sciences, Zhengzhou University, Zhengzhou, 450001, China
| | - Yinchao Li
- School of Pharmaceutical Sciences, Zhengzhou University, Zhengzhou, 450001, China
| | - Yongtao Duan
- Henan International Joint Laboratory of Prevention and Treatment of Pediatric Diseases, Children's Hospital Affiliated to Zhengzhou University, Zhengzhou University, Zhengzhou 450018, China; Henan Neurodevelopment Engineering Research Center for Children, Children's Hospital Affiliated to Zhengzhou University, Zhengzhou University, Zhengzhou 450018, China.
| | - Yongfang Yao
- Henan International Joint Laboratory of Prevention and Treatment of Pediatric Diseases, Children's Hospital Affiliated to Zhengzhou University, Zhengzhou University, Zhengzhou 450018, China; School of Pharmaceutical Sciences, Zhengzhou University, Zhengzhou, 450001, China; Key Laboratory of Advanced Drug Preparation Technologies, Ministry of Education, Zhengzhou University, Zhengzhou 450001, China.
| |
Collapse
|
4
|
Mistri SK, Hilton BM, Horrigan KJ, Andretta ES, Savard R, Dienz O, Hampel KJ, Gerrard DL, Rose JT, Sidiropoulos N, Majumdar D, Boyson JE. SLAM/SAP signaling regulates discrete γδ T cell developmental checkpoints and shapes the innate-like γδ TCR repertoire. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.01.10.575073. [PMID: 38260519 PMCID: PMC10802474 DOI: 10.1101/2024.01.10.575073] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/24/2024]
Abstract
During thymic development, most γδ T cells acquire innate-like characteristics that are critical for their function in tumor surveillance, infectious disease, and tissue repair. The mechanisms, however, that regulate γδ T cell developmental programming remain unclear. Recently, we demonstrated that the SLAM-SAP signaling pathway regulates the development and function of multiple innate-like γδ T cell subsets. Here, we used a single-cell proteogenomics approach to identify SAP-dependent developmental checkpoints and to define the SAP-dependent γδ TCR repertoire. SAP deficiency resulted in both a significant loss of an immature Gzma + Blk + Etv5 + Tox2 + γδT17 precursor population, and a significant increase in Cd4 + Cd8+ Rorc + Ptcra + Rag1 + thymic γδ T cells. SAP-dependent diversion of embryonic day 17 thymic γδ T cell clonotypes into the αβ T cell developmental pathway was associated with a decreased frequency of mature clonotypes in neonatal thymus, and an altered γδ TCR repertoire in the periphery. Finally, we identify TRGV4/TRAV13-4(DV7)-expressing T cells as a novel, SAP-dependent Vγ4 γδT1 subset. Together, the data suggest that SAP-dependent γδ/αβ T cell lineage commitment regulates γδ T cell developmental programming and shapes the γδ TCR repertoire.
Collapse
Affiliation(s)
- Somen K Mistri
- Department of Surgery, Larner College of Medicine, University of Vermont, Burlington, Vermont 05405, USA
| | - Brianna M. Hilton
- Department of Surgery, Larner College of Medicine, University of Vermont, Burlington, Vermont 05405, USA
| | - Katherine J. Horrigan
- Department of Surgery, Larner College of Medicine, University of Vermont, Burlington, Vermont 05405, USA
| | - Emma S. Andretta
- Department of Surgery, Larner College of Medicine, University of Vermont, Burlington, Vermont 05405, USA
| | - Remi Savard
- Department of Surgery, Larner College of Medicine, University of Vermont, Burlington, Vermont 05405, USA
| | - Oliver Dienz
- Department of Surgery, Larner College of Medicine, University of Vermont, Burlington, Vermont 05405, USA
| | - Kenneth J Hampel
- Department of Pathology and Laboratory Medicine, Larner College of Medicine, University of Vermont Medical Center, Burlington, Vermont 05405, USA
| | - Diana L. Gerrard
- Department of Pathology and Laboratory Medicine, Larner College of Medicine, University of Vermont Medical Center, Burlington, Vermont 05405, USA
| | - Joshua T. Rose
- Department of Pathology and Laboratory Medicine, Larner College of Medicine, University of Vermont Medical Center, Burlington, Vermont 05405, USA
| | - Nikoletta Sidiropoulos
- Department of Pathology and Laboratory Medicine, Larner College of Medicine, University of Vermont Medical Center, Burlington, Vermont 05405, USA
| | - Devdoot Majumdar
- Department of Surgery, Larner College of Medicine, University of Vermont, Burlington, Vermont 05405, USA
| | - Jonathan E. Boyson
- Department of Surgery, Larner College of Medicine, University of Vermont, Burlington, Vermont 05405, USA
| |
Collapse
|
5
|
Tai TS, Yang HY, Chuang WC, Huang YW, Ho IC, Tsai CC, Chuang YT. ScRNA-Seq Analyses Define the Role of GATA3 in iNKT Cell Effector Lineage Differentiation. Cells 2024; 13:1073. [PMID: 38920701 PMCID: PMC11201670 DOI: 10.3390/cells13121073] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2024] [Revised: 06/18/2024] [Accepted: 06/19/2024] [Indexed: 06/27/2024] Open
Abstract
While the transcription factor GATA-3 is well-established for its crucial role in T cell development, its specific influence on invariant natural killer T (iNKT) cells remains relatively unexplored. Using flow cytometry and single-cell transcriptomic analysis, we demonstrated that GATA-3 deficiency in mice leads to the absence of iNKT2 and iNKT17 cell subsets, as well as an altered distribution of iNKT1 cells. Thymic iNKT cells lacking GATA-3 exhibited diminished expression of PLZF and T-bet, key transcription factors involved in iNKT cell differentiation, and reduced production of Th2, Th17, and cytotoxic effector molecules. Single-cell transcriptomics revealed a comprehensive absence of iNKT17 cells, a substantial reduction in iNKT2 cells, and an increase in iNKT1 cells in GATA-3-deficient thymi. Differential expression analysis highlighted the regulatory role of GATA-3 in T cell activation signaling and altered expression of genes critical for iNKT cell differentiation, such as Icos, Cd127, Eomes, and Zbtb16. Notably, restoration of Icos, but not Cd127, expression could rescue iNKT cell development in GATA-3-deficient mice. In conclusion, our study demonstrates the pivotal role of GATA-3 in orchestrating iNKT cell effector lineage differentiation through the regulation of T cell activation pathways and Icos expression, providing insights into the molecular mechanisms governing iNKT cell development and function.
Collapse
Affiliation(s)
- Tzong-Shyuan Tai
- Department of Medical Research and Development, Chang Gung Memorial Hospital, Taoyuan 33305, Taiwan;
| | - Huang-Yu Yang
- Kidney Research Center, Department of Nephrology, Chang Gung Memorial Hospital, Taoyuan 33305, Taiwan;
- College of Medicine, Chang Gung University, Taoyuan 33302, Taiwan
- Advanced Immunology Laboratory, Chang Gung Memorial Hospital, Taoyuan 33305, Taiwan
| | - Wan-Chu Chuang
- Department of Medical Research, National Taiwan University Hospital, Taipei 10002, Taiwan
| | - Yu-Wen Huang
- Department of Medical Research, National Taiwan University Hospital, Taipei 10002, Taiwan
| | - I-Cheng Ho
- Division of Rheumatology, Inflammation, and Immunity, Department of Medicine, Brigham and Women’s Hospital, 60 Fenwood Road, Boston, MA 02115, USA;
- Harvard Medical School, 60 Fenwood Road, Boston, MA 02115, USA
| | - Ching-Chung Tsai
- Department of Pediatrics, E-Da Hospital, I-Shou University, Kaohsiung City 82445, Taiwan
- School of Medicine for International Students, College of Medicine, I-Shou University, Kaohsiung City 82445, Taiwan
| | - Ya-Ting Chuang
- Department of Medical Research, National Taiwan University Hospital, Taipei 10002, Taiwan
| |
Collapse
|
6
|
Li R, Galindo CC, Davidson D, Guo H, Zhong MC, Qian J, Li B, Ruzsics Z, Lau CM, O'Sullivan TE, Vidal SM, Sun JC, Veillette A. Suppression of adaptive NK cell expansion by macrophage-mediated phagocytosis inhibited by 2B4-CD48. Cell Rep 2024; 43:113800. [PMID: 38386559 DOI: 10.1016/j.celrep.2024.113800] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2023] [Revised: 12/21/2023] [Accepted: 01/31/2024] [Indexed: 02/24/2024] Open
Abstract
Infection of mice by mouse cytomegalovirus (MCMV) triggers activation and expansion of Ly49H+ natural killer (NK) cells, which are virus specific and considered to be "adaptive" or "memory" NK cells. Here, we find that signaling lymphocytic activation molecule family receptors (SFRs), a group of hematopoietic cell-restricted receptors, are essential for the expansion of Ly49H+ NK cells after MCMV infection. This activity is largely mediated by CD48, an SFR broadly expressed on NK cells and displaying augmented expression after MCMV infection. It is also dependent on the CD48 counter-receptor, 2B4, expressed on host macrophages. The 2B4-CD48 axis promotes expansion of Ly49H+ NK cells by repressing their phagocytosis by virus-activated macrophages through inhibition of the pro-phagocytic integrin lymphocyte function-associated antigen-1 (LFA-1) on macrophages. These data identify key roles of macrophages and the 2B4-CD48 pathway in controlling the expansion of adaptive NK cells following MCMV infection. Stimulation of the 2B4-CD48 axis may be helpful in enhancing adaptive NK cell responses for therapeutic purposes.
Collapse
Affiliation(s)
- Rui Li
- Laboratory of Molecular Oncology, Institut de Recherches Cliniques de Montréal (IRCM), Montréal, QC H2W 1R7, Canada; Department of Medicine, McGill University, Montréal, QC H3G 1Y6, Canada
| | - Cristian Camilo Galindo
- Laboratory of Molecular Oncology, Institut de Recherches Cliniques de Montréal (IRCM), Montréal, QC H2W 1R7, Canada; Department of Medicine, McGill University, Montréal, QC H3G 1Y6, Canada
| | - Dominique Davidson
- Laboratory of Molecular Oncology, Institut de Recherches Cliniques de Montréal (IRCM), Montréal, QC H2W 1R7, Canada
| | - Huaijian Guo
- Laboratory of Molecular Oncology, Institut de Recherches Cliniques de Montréal (IRCM), Montréal, QC H2W 1R7, Canada; Department of Medicine, McGill University, Montréal, QC H3G 1Y6, Canada
| | - Ming-Chao Zhong
- Laboratory of Molecular Oncology, Institut de Recherches Cliniques de Montréal (IRCM), Montréal, QC H2W 1R7, Canada
| | - Jin Qian
- Laboratory of Molecular Oncology, Institut de Recherches Cliniques de Montréal (IRCM), Montréal, QC H2W 1R7, Canada
| | - Bin Li
- Laboratory of Molecular Oncology, Institut de Recherches Cliniques de Montréal (IRCM), Montréal, QC H2W 1R7, Canada; Molecular Biology Program, University of Montréal, Montréal, QC H3T 1J4, Canada
| | - Zsolt Ruzsics
- Institute of Virology, University Medical Center, Faculty of Medicine, University of Freiburg, 79104 Freiburg, Germany
| | - Colleen M Lau
- Microbiology and Immunology, College of Veterinary Medicine, Cornell University, Ithaca, NY 14853, USA
| | - Timothy E O'Sullivan
- Department of Microbiology, Immunology, and Molecular Genetics, David Geffen School of Medicine at UCLA, Los Angeles, CA 90095, USA
| | - Silvia M Vidal
- Department of Human Genetics, McGill University, Montréal, QC H3A 0C7, Canada; Dahdaleh Institute of Genomic Medicine, McGill University, Montréal, QC H3A 0G1, Canada
| | - Joseph C Sun
- Immunology Program, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA; Department of Immunology and Microbial Pathogenesis, Weill Cornell Medical College, New York, NY 10065, USA
| | - André Veillette
- Laboratory of Molecular Oncology, Institut de Recherches Cliniques de Montréal (IRCM), Montréal, QC H2W 1R7, Canada; Department of Medicine, McGill University, Montréal, QC H3G 1Y6, Canada; Molecular Biology Program, University of Montréal, Montréal, QC H3T 1J4, Canada.
| |
Collapse
|
7
|
Herr LA, Fiala GJ, Sagar, Schaffer AM, Hummel JF, Zintchenko M, Raute K, Velasco Cárdenas RMH, Heizmann B, Ebert K, Fehrenbach K, Janowska I, Chan S, Tanriver Y, Minguet S, Schamel WW. Kidins220 and Aiolos promote thymic iNKT cell development by reducing TCR signals. SCIENCE ADVANCES 2024; 10:eadj2802. [PMID: 38489359 PMCID: PMC10942104 DOI: 10.1126/sciadv.adj2802] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/25/2023] [Accepted: 02/09/2024] [Indexed: 03/17/2024]
Abstract
Development of T cells is controlled by the signal strength of the TCR. The scaffold protein kinase D-interacting substrate of 220 kilodalton (Kidins220) binds to the TCR; however, its role in T cell development was unknown. Here, we show that T cell-specific Kidins220 knockout (T-KO) mice have strongly reduced invariant natural killer T (iNKT) cell numbers and modest decreases in conventional T cells. Enhanced apoptosis due to increased TCR signaling in T-KO iNKT thymocytes of developmental stages 2 and 3 shows that Kidins220 down-regulates TCR signaling at these stages. scRNA-seq indicated that the transcription factor Aiolos is down-regulated in Kidins220-deficient iNKT cells. Analysis of an Aiolos KO demonstrated that Aiolos is a downstream effector of Kidins220 during iNKT cell development. In the periphery, T-KO iNKT cells show reduced TCR signaling upon stimulation with α-galactosylceramide, suggesting that Kidins220 promotes TCR signaling in peripheral iNKT cells. Thus, Kidins220 reduces or promotes signaling dependent on the iNKT cell developmental stage.
Collapse
Affiliation(s)
- Laurenz A. Herr
- Signaling Research Centers BIOSS and CIBSS; University of Freiburg, Freiburg, Germany
- Department of Immunology, Faculty of Biology, University of Freiburg, Freiburg, Germany
- Centre for Chronic Immunodeficiency (CCI), Medical Center, University of Freiburg, Freiburg, Germany
| | - Gina J. Fiala
- Signaling Research Centers BIOSS and CIBSS; University of Freiburg, Freiburg, Germany
- Department of Immunology, Faculty of Biology, University of Freiburg, Freiburg, Germany
- Centre for Chronic Immunodeficiency (CCI), Medical Center, University of Freiburg, Freiburg, Germany
- Spemann Graduate School of Biology and Medicine (SGBM), University of Freiburg, Freiburg, Germany
| | - Sagar
- Department of Medicine II (Gastroenterology, Hepatology, Endocrinology, and Infectious Diseases), Freiburg University Medical Center, Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - Anna-Maria Schaffer
- Signaling Research Centers BIOSS and CIBSS; University of Freiburg, Freiburg, Germany
- Department of Immunology, Faculty of Biology, University of Freiburg, Freiburg, Germany
- Centre for Chronic Immunodeficiency (CCI), Medical Center, University of Freiburg, Freiburg, Germany
| | - Jonas F. Hummel
- Institute of Medical Microbiology and Hygiene, Medical Center, University of Freiburg, Germany
| | - Marina Zintchenko
- Signaling Research Centers BIOSS and CIBSS; University of Freiburg, Freiburg, Germany
- Department of Immunology, Faculty of Biology, University of Freiburg, Freiburg, Germany
- Centre for Chronic Immunodeficiency (CCI), Medical Center, University of Freiburg, Freiburg, Germany
| | - Katrin Raute
- Signaling Research Centers BIOSS and CIBSS; University of Freiburg, Freiburg, Germany
- Department of Immunology, Faculty of Biology, University of Freiburg, Freiburg, Germany
- Centre for Chronic Immunodeficiency (CCI), Medical Center, University of Freiburg, Freiburg, Germany
- Spemann Graduate School of Biology and Medicine (SGBM), University of Freiburg, Freiburg, Germany
| | - Rubí M.-H. Velasco Cárdenas
- Signaling Research Centers BIOSS and CIBSS; University of Freiburg, Freiburg, Germany
- Department of Immunology, Faculty of Biology, University of Freiburg, Freiburg, Germany
- Centre for Chronic Immunodeficiency (CCI), Medical Center, University of Freiburg, Freiburg, Germany
| | - Beate Heizmann
- Institut de Génétique et de Biologie Moléculaire et Cellulaire (IGBMC), INSERM U1258, CNRS UMR7104, Université de Strasbourg, Illkirch, France
| | - Karolina Ebert
- Institute of Medical Microbiology and Hygiene, Medical Center, University of Freiburg, Germany
| | - Kerstin Fehrenbach
- Signaling Research Centers BIOSS and CIBSS; University of Freiburg, Freiburg, Germany
- Department of Immunology, Faculty of Biology, University of Freiburg, Freiburg, Germany
- Centre for Chronic Immunodeficiency (CCI), Medical Center, University of Freiburg, Freiburg, Germany
| | - Iga Janowska
- Signaling Research Centers BIOSS and CIBSS; University of Freiburg, Freiburg, Germany
- Department of Immunology, Faculty of Biology, University of Freiburg, Freiburg, Germany
- Centre for Chronic Immunodeficiency (CCI), Medical Center, University of Freiburg, Freiburg, Germany
| | - Susan Chan
- Institut de Génétique et de Biologie Moléculaire et Cellulaire (IGBMC), INSERM U1258, CNRS UMR7104, Université de Strasbourg, Illkirch, France
| | - Yakup Tanriver
- Institute of Medical Microbiology and Hygiene, Medical Center, University of Freiburg, Germany
- Department of Medicine IV: Nephrology and Primary Care, Medical Center, University of Freiburg, Freiburg, Germany
| | - Susana Minguet
- Signaling Research Centers BIOSS and CIBSS; University of Freiburg, Freiburg, Germany
- Department of Immunology, Faculty of Biology, University of Freiburg, Freiburg, Germany
- Centre for Chronic Immunodeficiency (CCI), Medical Center, University of Freiburg, Freiburg, Germany
- Spemann Graduate School of Biology and Medicine (SGBM), University of Freiburg, Freiburg, Germany
| | - Wolfgang W. Schamel
- Signaling Research Centers BIOSS and CIBSS; University of Freiburg, Freiburg, Germany
- Department of Immunology, Faculty of Biology, University of Freiburg, Freiburg, Germany
- Centre for Chronic Immunodeficiency (CCI), Medical Center, University of Freiburg, Freiburg, Germany
- Spemann Graduate School of Biology and Medicine (SGBM), University of Freiburg, Freiburg, Germany
| |
Collapse
|
8
|
Amable L, Ferreira Martins LA, Pierre R, Do Cruseiro M, Chabab G, Sergé A, Kergaravat C, Delord M, Viret C, Jaubert J, Liu C, Karray S, Marie JC, Irla M, Georgiev H, Clave E, Toubert A, Lucas B, Klibi J, Benlagha K. Intrinsic factors and CD1d1 but not CD1d2 expression levels control invariant natural killer T cell subset differentiation. Nat Commun 2023; 14:7922. [PMID: 38040679 PMCID: PMC10692182 DOI: 10.1038/s41467-023-43424-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2023] [Accepted: 11/08/2023] [Indexed: 12/03/2023] Open
Abstract
Invariant natural killer T (NKT) cell subsets are defined based on their cytokine-production profiles and transcription factors. Their distribution is different in C57BL/6 (B6) and BALB/c mice, with a bias for NKT1 and NKT2/NKT17 subsets, respectively. Here, we show that the non-classical class I-like major histocompatibility complex CD1 molecules CD1d2, expressed in BALB/c and not in B6 mice, could not account for this difference. We find however that NKT cell subset distribution is intrinsic to bone marrow derived NKT cells, regardless of syngeneic CD1d-ligand recognition, and that multiple intrinsic factors are likely involved. Finally, we find that CD1d expression levels in combination with T cell antigen receptor signal strength could also influence NKT cell distribution and function. Overall, this study indicates that CD1d-mediated TCR signals and other intrinsic signals integrate to influence strain-specific NKT cell differentiation programs and subset distributions.
Collapse
Affiliation(s)
- Ludivine Amable
- Université Paris Cité, Institut de Recherche Saint-Louis (IRSL), EMiLy, Paris, France
| | | | - Remi Pierre
- Plateforme de recombinaison homologue et de cryoconservation (PRHTEC), Institut Cochin, Université Paris Descartes, Paris, France
| | - Marcio Do Cruseiro
- Plateforme de recombinaison homologue et de cryoconservation (PRHTEC), Institut Cochin, Université Paris Descartes, Paris, France
| | - Ghita Chabab
- Tumor Escape Resistance and Immunity department, Cancer Research Center of Lyon INSERM U1052, CNRS UMR 5286, Centre Léon Bérard, Lyon, France
| | - Arnauld Sergé
- Laboratoire Adhésion Inflammation (LAI), CNRS, INSERM, Aix-Marseille Université, Marseille, France
| | - Camille Kergaravat
- Université Paris Cité, Institut de Recherche Saint-Louis (IRSL), EMiLy, Paris, France
| | | | - Christophe Viret
- CIRI, Centre International de Recherche en Infectiologie, Université de Lyon, INSERM U1111, Université Claude Bernard Lyon 1, CNRS, UMR5308, ENS de Lyon, Lyon, France
| | - Jean Jaubert
- Mouse Genetics Unit, Institut Pasteur, Paris, France
| | - Chaohong Liu
- Department of Pathogen Biology, School of Basic Medicine, Tongji Medical College, Huazhong University of Science Technology, Wuhan, China
| | - Saoussen Karray
- Université Paris Cité, INSERM U976, Institut de Recherche Saint-Louis (IRSL), Hôpital Saint-Louis, Paris, France
| | - Julien C Marie
- Tumor Escape Resistance and Immunity department, Cancer Research Center of Lyon INSERM U1052, CNRS UMR 5286, Centre Léon Bérard, Lyon, France
| | - Magali Irla
- Centre d'Immunologie de Marseille-Luminy (CIML), CNRS, INSERM, Aix-Marseille Université, Marseille, France
| | - Hristo Georgiev
- Institute of immunology, Hannover Medical School, Hannover, Germany
| | - Emmanuel Clave
- Université Paris Cité, Institut de Recherche Saint-Louis (IRSL), EMiLy, Paris, France
| | - Antoine Toubert
- Université Paris Cité, Institut de Recherche Saint-Louis (IRSL), EMiLy, Paris, France
| | - Bruno Lucas
- Institut Cochin, Centre National de la Recherche Scientifique UMR8104, INSERM U1016, Université Paris Descartes, Paris, France
| | - Jihene Klibi
- Université Paris Cité, Institut de Recherche Saint-Louis (IRSL), EMiLy, Paris, France
| | - Kamel Benlagha
- Université Paris Cité, Institut de Recherche Saint-Louis (IRSL), EMiLy, Paris, France.
| |
Collapse
|
9
|
Wang J, Adrianto I, Subedi K, Liu T, Wu X, Yi Q, Loveless I, Yin C, Datta I, Sant'Angelo DB, Kronenberg M, Zhou L, Mi QS. Integrative scATAC-seq and scRNA-seq analyses map thymic iNKT cell development and identify Cbfβ for its commitment. Cell Discov 2023; 9:61. [PMID: 37336875 DOI: 10.1038/s41421-023-00547-x] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2022] [Accepted: 03/18/2023] [Indexed: 06/21/2023] Open
Abstract
Unlike conventional αβT cells, invariant natural killer T (iNKT) cells complete their terminal differentiation to functional iNKT1/2/17 cells in the thymus. However, underlying molecular programs that guide iNKT subset differentiation remain unclear. Here, we profiled the transcriptomes of over 17,000 iNKT cells and the chromatin accessibility states of over 39,000 iNKT cells across four thymic iNKT developmental stages using single-cell RNA sequencing (scRNA-seq) and single-cell assay for transposase-accessible chromatin sequencing (scATAC-seq) to define their developmental trajectories. Our study discovered novel features for iNKT precursors and different iNKT subsets and indicated that iNKT2 and iNKT17 lineage commitment may occur as early as stage 0 (ST0) by two distinct programs, while iNKT1 commitments may occur post ST0. Both iNKT1 and iNKT2 cells exhibit extensive phenotypic and functional heterogeneity, while iNKT17 cells are relatively homogenous. Furthermore, we identified that a novel transcription factor, Cbfβ, was highly expressed in iNKT progenitor commitment checkpoint, which showed a similar expression trajectory with other known transcription factors for iNKT cells development, Zbtb16 and Egr2, and could direct iNKT cells fate and drive their effector phenotype differentiation. Conditional deletion of Cbfβ blocked early iNKT cell development and led to severe impairment of iNKT1/2/17 cell differentiation. Overall, our findings uncovered distinct iNKT developmental programs as well as their cellular heterogeneity, and identified a novel transcription factor Cbfβ as a key regulator for early iNKT cell commitment.
Collapse
Affiliation(s)
- Jie Wang
- Center for Cutaneous Biology and Immunology Research, Department of Dermatology, Henry Ford Health, Detroit, MI, USA
- Immunology Research Program, Henry Ford Cancer Institute, Henry Ford Health, Detroit, MI, USA
| | - Indra Adrianto
- Center for Cutaneous Biology and Immunology Research, Department of Dermatology, Henry Ford Health, Detroit, MI, USA
- Immunology Research Program, Henry Ford Cancer Institute, Henry Ford Health, Detroit, MI, USA
- Center for Bioinformatics, Department of Public Health Sciences, Henry Ford Health, Detroit, MI, USA
- Department of Medicine, College of Human Medicine, Michigan State University, East Lansing, MI, USA
| | - Kalpana Subedi
- Center for Cutaneous Biology and Immunology Research, Department of Dermatology, Henry Ford Health, Detroit, MI, USA
- Immunology Research Program, Henry Ford Cancer Institute, Henry Ford Health, Detroit, MI, USA
| | - Tingting Liu
- Center for Cutaneous Biology and Immunology Research, Department of Dermatology, Henry Ford Health, Detroit, MI, USA
- Immunology Research Program, Henry Ford Cancer Institute, Henry Ford Health, Detroit, MI, USA
| | - Xiaojun Wu
- Center for Cutaneous Biology and Immunology Research, Department of Dermatology, Henry Ford Health, Detroit, MI, USA
- Immunology Research Program, Henry Ford Cancer Institute, Henry Ford Health, Detroit, MI, USA
| | - Qijun Yi
- Center for Cutaneous Biology and Immunology Research, Department of Dermatology, Henry Ford Health, Detroit, MI, USA
- Immunology Research Program, Henry Ford Cancer Institute, Henry Ford Health, Detroit, MI, USA
| | - Ian Loveless
- Center for Bioinformatics, Department of Public Health Sciences, Henry Ford Health, Detroit, MI, USA
| | - Congcong Yin
- Center for Cutaneous Biology and Immunology Research, Department of Dermatology, Henry Ford Health, Detroit, MI, USA
- Immunology Research Program, Henry Ford Cancer Institute, Henry Ford Health, Detroit, MI, USA
| | - Indrani Datta
- Center for Bioinformatics, Department of Public Health Sciences, Henry Ford Health, Detroit, MI, USA
| | - Derek B Sant'Angelo
- Child Health Institute of New Jersey, Rutgers Robert Wood Johnson Medical School, New Brunswick, NJ, USA
| | | | - Li Zhou
- Center for Cutaneous Biology and Immunology Research, Department of Dermatology, Henry Ford Health, Detroit, MI, USA.
- Immunology Research Program, Henry Ford Cancer Institute, Henry Ford Health, Detroit, MI, USA.
- Department of Medicine, College of Human Medicine, Michigan State University, East Lansing, MI, USA.
- Department of Internal Medicine, Henry Ford Health, Detroit, MI, USA.
| | - Qing-Sheng Mi
- Center for Cutaneous Biology and Immunology Research, Department of Dermatology, Henry Ford Health, Detroit, MI, USA.
- Immunology Research Program, Henry Ford Cancer Institute, Henry Ford Health, Detroit, MI, USA.
- Department of Medicine, College of Human Medicine, Michigan State University, East Lansing, MI, USA.
- Department of Internal Medicine, Henry Ford Health, Detroit, MI, USA.
| |
Collapse
|
10
|
Rietdijk S, Keszei M, Castro W, Terhorst C, Abadía-Molina AC. Characterization of Ly108-H1 Signaling Reveals Ly108-3 Expression and Additional Strain-Specific Differences in Lupus Prone Mice. Int J Mol Sci 2023; 24:5024. [PMID: 36902453 PMCID: PMC10003074 DOI: 10.3390/ijms24055024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2023] [Revised: 02/10/2023] [Accepted: 02/28/2023] [Indexed: 03/08/2023] Open
Abstract
Ly108 (SLAMF6) is a homophilic cell surface molecule that binds SLAM-associated protein (SAP), an intracellular adapter protein that modulates humoral immune responses. Furthermore, Ly108 is crucial for the development of natural killer T (NKT) cells and CTL cytotoxicity. Significant attention has been paid towards expression and function of Ly108 since multiple isoforms were identified, i.e., Ly108-1, Ly108-2, Ly108-3, and Ly108-H1, some of which are differentially expressed in several mouse strains. Surprisingly, Ly108-H1 appeared to protect against disease in a congenic mouse model of Lupus. Here, we use cell lines to further define Ly108-H1 function in comparison with other isoforms. We show that Ly108-H1 inhibits IL-2 production while having little effect upon cell death. With a refined method, we could detect phosphorylation of Ly108-H1 and show that SAP binding is retained. We propose that Ly108-H1 may regulate signaling at two levels by retaining the capability to bind its extracellular as well as intracellular ligands, possibly inhibiting downstream pathways. In addition, we detected Ly108-3 in primary cells and show that this isoform is also differentially expressed between mouse strains. The presence of additional binding motifs and a non-synonymous SNP in Ly108-3 further extends the diversity between murine strains. This work highlights the importance of isoform awareness, as inherent homology can present a challenge when interpreting mRNA and protein expression data, especially as alternatively splicing potentially affects function.
Collapse
Affiliation(s)
- Svend Rietdijk
- Unidad de Inmunología, IBIMER, CIBM, Universidad de Granada, 18016 Granada, Spain
- Division of Immunology, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA 02215, USA
- Department of Gastroenterology and Hepatology, OLVG Hospital, 1091 AC Amsterdam, The Netherlands
| | - Marton Keszei
- Division of Immunology, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA 02215, USA
| | - Wilson Castro
- Division of Immunology, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA 02215, USA
| | - Cox Terhorst
- Division of Immunology, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA 02215, USA
| | - Ana C. Abadía-Molina
- Unidad de Inmunología, IBIMER, CIBM, Universidad de Granada, 18016 Granada, Spain
- Departamento de Bioquímica y Biología Molecular III e Inmunología, Facultad de Medicina, Universidad de Granada, 18016 Granada, Spain
| |
Collapse
|
11
|
Li Y, Yang Y, Wang J, Cai P, Li M, Tang X, Tan Y, Wang Y, Zhang F, Wen X, Liang Q, Nie Y, Chen T, Peng X, He X, Zhu Y, Shi G, Cheung WW, Wei L, Chen Y, Lu Y. Bacteroides ovatus-mediated CD27− MAIT cell activation is associated with obesity-related T2D progression. Cell Mol Immunol 2022; 19:791-804. [DOI: 10.1038/s41423-022-00871-4] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2021] [Accepted: 04/13/2022] [Indexed: 12/13/2022] Open
|
12
|
Baranek T, de Amat Herbozo C, Mallevaey T, Paget C. Deconstructing iNKT cell development at single-cell resolution. Trends Immunol 2022; 43:503-512. [PMID: 35654639 DOI: 10.1016/j.it.2022.04.012] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2022] [Revised: 04/29/2022] [Accepted: 04/29/2022] [Indexed: 12/22/2022]
Abstract
Invariant natural killer T (iNKT) cells are increasingly regarded as disease biomarkers and immunotherapeutic targets. However, a greater understanding of their biology is necessary to effectively target these cells in the clinic. The discovery of iNKT1/2/17 cell effector subsets was a milestone in our understanding of iNKT cell development and function. Recent transcriptomic studies have uncovered an even greater heterogeneity and challenge our understanding of iNKT cell ontogeny and effector differentiation. We propose a refined model whereby iNKT cells differentiate through a dynamic and continuous instructive process that requires the accumulation and integration of various signals within the thymus or peripheral tissues. Within this framework, we question the existence of true iNKT2 cells and discuss the parallels between mouse and human iNKT cells.
Collapse
Affiliation(s)
- Thomas Baranek
- Centre d'Étude des Pathologies Respiratoires (CEPR), Institut National de la Santé et de la Recherche Médicale (INSERM) Unité Mixte de Recherche 1100, Faculté de Médecine, Université de Tours, Tours, France
| | - Carolina de Amat Herbozo
- Department of Immunology, Temerty Faculty of Medicine, University of Toronto, Toronto, ON, Canada
| | - Thierry Mallevaey
- Department of Immunology, Temerty Faculty of Medicine, University of Toronto, Toronto, ON, Canada; Institute of Biomedical Engineering, University of Toronto, Toronto, ON, Canada.
| | - Christophe Paget
- Centre d'Étude des Pathologies Respiratoires (CEPR), Institut National de la Santé et de la Recherche Médicale (INSERM) Unité Mixte de Recherche 1100, Faculté de Médecine, Université de Tours, Tours, France.
| |
Collapse
|
13
|
Hebbandi Nanjundappa R, Sokke Umeshappa C, Geuking MB. The impact of the gut microbiota on T cell ontogeny in the thymus. Cell Mol Life Sci 2022; 79:221. [PMID: 35377005 PMCID: PMC11072498 DOI: 10.1007/s00018-022-04252-y] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2021] [Revised: 03/10/2022] [Accepted: 03/16/2022] [Indexed: 12/12/2022]
Abstract
The intestinal microbiota is critical for the development of gut-associated lymphoid tissues, including Peyer's patches and mesenteric lymph nodes, and is instrumental in educating the local as well as systemic immune system. In addition, it also impacts the development and function of peripheral organs, such as liver, lung, and the brain, in health and disease. However, whether and how the intestinal microbiota has an impact on T cell ontogeny in the hymus remains largely unclear. Recently, the impact of molecules and metabolites derived from the intestinal microbiota on T cell ontogeny in the thymus has been investigated in more detail. In this review, we will discuss the recent findings in the emerging field of the gut-thymus axis and we will highlight the current questions and challenges in the field.
Collapse
Affiliation(s)
- Roopa Hebbandi Nanjundappa
- Department of Microbiology, Immunology, and Infectious Diseases, Snyder Institute for Chronic Diseases, Cumming School of Medicine, University of Calgary, Calgary, AB, T2N 4N1, Canada
- Department of Microbiology and Immunology, Dalhousie University, Halifax, NS, Canada
- Department of Pediatrics, IWK Research Center, Halifax, NS, Canada
| | - Channakeshava Sokke Umeshappa
- Department of Microbiology and Immunology, Dalhousie University, Halifax, NS, Canada
- Department of Pediatrics, IWK Research Center, Halifax, NS, Canada
| | - Markus B Geuking
- Department of Microbiology, Immunology, and Infectious Diseases, Snyder Institute for Chronic Diseases, Cumming School of Medicine, University of Calgary, Calgary, AB, T2N 4N1, Canada.
| |
Collapse
|
14
|
Immune Checkpoint Receptors Signaling in T Cells. Int J Mol Sci 2022; 23:ijms23073529. [PMID: 35408889 PMCID: PMC8999077 DOI: 10.3390/ijms23073529] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2022] [Revised: 03/16/2022] [Accepted: 03/21/2022] [Indexed: 12/15/2022] Open
Abstract
The characterization of the receptors negatively modulating lymphocyte function is rapidly advancing, driven by success in tumor immunotherapy. As a result, the number of immune checkpoint receptors characterized from a functional perspective and targeted by innovative drugs continues to expand. This review focuses on the less explored area of the signaling mechanisms of these receptors, of those expressed in T cells. Studies conducted mainly on PD-1, CTLA-4, and BTLA have evidenced that the extracellular parts of some of the receptors act as decoy receptors for activating ligands, but in all instances, the tyrosine phosphorylation of their cytoplasmatic tail drives a crucial inhibitory signal. This negative signal is mediated by a few key signal transducers, such as tyrosine phosphatase, inositol phosphatase, and diacylglycerol kinase, which allows them to counteract TCR-mediated activation. The characterization of these signaling pathways is of great interest in the development of therapies for counteracting tumor-infiltrating lymphocyte exhaustion/anergy independently from the receptors involved.
Collapse
|
15
|
Krovi SH, Loh L, Spengler A, Brunetti T, Gapin L. Current insights in mouse iNKT and MAIT cell development using single cell transcriptomics data. Semin Immunol 2022; 60:101658. [PMID: 36182863 DOI: 10.1016/j.smim.2022.101658] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/02/2022] [Revised: 08/17/2022] [Accepted: 09/21/2022] [Indexed: 01/15/2023]
Abstract
Innate T (Tinn) cells are a collection of T cells with important regulatory functions that have a crucial role in immunity towards tumors, bacteria, viruses, and in cell-mediated autoimmunity. In mice, the two main αβ Tinn cell subsets include the invariant NKT (iNKT) cells that recognize glycolipid antigens presented by non-polymorphic CD1d molecules and the mucosal associated invariant T (MAIT) cells that recognize vitamin B metabolites presented by the non-polymorphic MR1 molecules. Due to their ability to promptly secrete large quantities of cytokines either after T cell antigen receptor (TCR) activation or upon exposure to tissue- and antigen-presenting cell-derived cytokines, Tinn cells are thought to act as a bridge between the innate and adaptive immune systems and have the ability to shape the overall immune response. Their swift response reflects the early acquisition of helper effector programs during their development in the thymus, independently of pathogen exposure and prior to taking up residence in peripheral tissues. Several studies recently profiled, in an unbiased manner, the transcriptomes of mouse thymic iNKT and MAIT cells at the single cell level. Based on these data, we re-examine in this review how Tinn cells develop in the mouse thymus and undergo effector differentiation.
Collapse
Affiliation(s)
| | - Liyen Loh
- University of Colorado Anschutz Medical Campus, Aurora, USA
| | | | - Tonya Brunetti
- University of Colorado Anschutz Medical Campus, Aurora, USA
| | - Laurent Gapin
- University of Colorado Anschutz Medical Campus, Aurora, USA.
| |
Collapse
|
16
|
Development of αβ T Cells with Innate Functions. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2022; 1365:149-160. [DOI: 10.1007/978-981-16-8387-9_10] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
|
17
|
Bortoluzzi S, Dashtsoodol N, Engleitner T, Drees C, Helmrath S, Mir J, Toska A, Flossdorf M, Öllinger R, Solovey M, Colomé-Tatché M, Kalfaoglu B, Ono M, Buch T, Ammon T, Rad R, Schmidt-Supprian M. Brief homogeneous TCR signals instruct common iNKT progenitors whose effector diversification is characterized by subsequent cytokine signaling. Immunity 2021; 54:2497-2513.e9. [PMID: 34562377 DOI: 10.1016/j.immuni.2021.09.003] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2020] [Revised: 09/14/2020] [Accepted: 09/02/2021] [Indexed: 12/22/2022]
Abstract
Innate-like T cell populations expressing conserved TCRs play critical roles in immunity through diverse developmentally acquired effector functions. Focusing on the prototypical lineage of invariant natural killer T (iNKT) cells, we sought to dissect the mechanisms and timing of fate decisions and functional effector differentiation. Utilizing induced expression of the semi-invariant NKT cell TCR on double positive thymocytes, an initially highly synchronous wave of iNKT cell development was triggered by brief homogeneous TCR signaling. After reaching a uniform progenitor state characterized by IL-4 production potential and proliferation, effector subsets emerged simultaneously, but then diverged toward different fates. While NKT17 specification was quickly completed, NKT1 cells slowly differentiated and expanded. NKT2 cells resembled maturing progenitors, which gradually diminished in numbers. Thus, iNKT subset diversification occurs in dividing progenitor cells without acute TCR input but utilizes multiple active cytokine signaling pathways. These data imply a two-step model of iNKT effector differentiation.
Collapse
Affiliation(s)
- Sabrina Bortoluzzi
- Institute of Experimental Hematology, School of Medicine, Technical University of Munich, Munich 81675, Germany; Center for Translational Cancer Research (TranslaTUM), School of Medicine, Technical University of Munich, Munich 81675, Germany
| | - Nyambayar Dashtsoodol
- Institute of Experimental Hematology, School of Medicine, Technical University of Munich, Munich 81675, Germany; Center for Translational Cancer Research (TranslaTUM), School of Medicine, Technical University of Munich, Munich 81675, Germany; Department of Immunology, School of Biomedicine, Mongolian National University of Medical Sciences, Ulaanbaatar 14210, Mongolia
| | - Thomas Engleitner
- Center for Translational Cancer Research (TranslaTUM), School of Medicine, Technical University of Munich, Munich 81675, Germany; Institute of Molecular Oncology and Functional Genomics, School of Medicine, Technical University of Munich, Munich 81675, Germany; German Cancer Consortium (DKTK) and German Cancer Research Center (DKFZ), Heidelberg 69120, Germany
| | - Christoph Drees
- Institute of Experimental Hematology, School of Medicine, Technical University of Munich, Munich 81675, Germany
| | - Sabine Helmrath
- Institute of Experimental Hematology, School of Medicine, Technical University of Munich, Munich 81675, Germany; Center for Translational Cancer Research (TranslaTUM), School of Medicine, Technical University of Munich, Munich 81675, Germany
| | - Jonas Mir
- Institute for Medical Microbiology, Immunology and Hygiene, Technical University of Munich, Munich 81675, Germany
| | - Albulena Toska
- Institute for Medical Microbiology, Immunology and Hygiene, Technical University of Munich, Munich 81675, Germany
| | - Michael Flossdorf
- Institute for Medical Microbiology, Immunology and Hygiene, Technical University of Munich, Munich 81675, Germany
| | - Rupert Öllinger
- Center for Translational Cancer Research (TranslaTUM), School of Medicine, Technical University of Munich, Munich 81675, Germany; Institute of Molecular Oncology and Functional Genomics, School of Medicine, Technical University of Munich, Munich 81675, Germany; German Cancer Consortium (DKTK) and German Cancer Research Center (DKFZ), Heidelberg 69120, Germany
| | - Maria Solovey
- Institute of Computational Biology, Helmholtz Zentrum München, Neuherberg 85764, Germany
| | - Maria Colomé-Tatché
- Institute of Computational Biology, Helmholtz Zentrum München, Neuherberg 85764, Germany; Biomedical Center (BMC), Physiological Chemistry, Faculty of Medicine, LMU Munich, Planegg-Martinsried 82152, Germany
| | - Bahire Kalfaoglu
- Department of Life Sciences, Imperial College London, London SW7 2AZ, UK
| | - Masahiro Ono
- Department of Life Sciences, Imperial College London, London SW7 2AZ, UK
| | - Thorsten Buch
- Institute of Laboratory Animal Science, University of Zurich, Schlieren 8952, Switzerland
| | - Tim Ammon
- Institute of Experimental Hematology, School of Medicine, Technical University of Munich, Munich 81675, Germany; Center for Translational Cancer Research (TranslaTUM), School of Medicine, Technical University of Munich, Munich 81675, Germany
| | - Roland Rad
- Center for Translational Cancer Research (TranslaTUM), School of Medicine, Technical University of Munich, Munich 81675, Germany; Institute of Molecular Oncology and Functional Genomics, School of Medicine, Technical University of Munich, Munich 81675, Germany; German Cancer Consortium (DKTK) and German Cancer Research Center (DKFZ), Heidelberg 69120, Germany
| | - Marc Schmidt-Supprian
- Institute of Experimental Hematology, School of Medicine, Technical University of Munich, Munich 81675, Germany; Center for Translational Cancer Research (TranslaTUM), School of Medicine, Technical University of Munich, Munich 81675, Germany; German Cancer Consortium (DKTK) and German Cancer Research Center (DKFZ), Heidelberg 69120, Germany.
| |
Collapse
|
18
|
Baranek T, Lebrigand K, de Amat Herbozo C, Gonzalez L, Bogard G, Dietrich C, Magnone V, Boisseau C, Jouan Y, Trottein F, Si-Tahar M, Leite-de-Moraes M, Mallevaey T, Paget C. High Dimensional Single-Cell Analysis Reveals iNKT Cell Developmental Trajectories and Effector Fate Decision. Cell Rep 2021; 32:108116. [PMID: 32905761 DOI: 10.1016/j.celrep.2020.108116] [Citation(s) in RCA: 48] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2020] [Revised: 07/24/2020] [Accepted: 08/17/2020] [Indexed: 02/02/2023] Open
Abstract
CD1d-restricted invariant Natural Killer T (iNKT) cells represent a unique class of T lymphocytes endowed with potent regulatory and effector immune functions. Although these functions are acquired during thymic ontogeny, the sequence of events that gives rise to discrete effector subsets remains unclear. Using an unbiased single-cell transcriptomic analysis combined with functional assays, we reveal an unappreciated diversity among thymic iNKT cells, especially among iNKT1 cells. Mathematical modeling and biological methods unravel a developmental map whereby iNKT2 cells constitute a transient branching point toward the generation of iNKT1 and iNKT17 cells, which reconciles the two previously proposed models. In addition, we identify the transcription co-factor Four-and-a-half LIM domains protein 2 (FHL2) as a critical cell-intrinsic regulator of iNKT1 specification. Thus, these data illustrate the changing transcriptional network that guides iNKT cell effector fate.
Collapse
Affiliation(s)
- Thomas Baranek
- INSERM, Centre d'Etude des Pathologies Respiratoires (CEPR), UMR 1100, Tours, France; Université de Tours, Faculté de Médecine de Tours, Tours, France.
| | - Kevin Lebrigand
- Université Côte d'Azur, CNRS, IPMC, Sophia-Antipolis, France
| | | | - Loïc Gonzalez
- INSERM, Centre d'Etude des Pathologies Respiratoires (CEPR), UMR 1100, Tours, France; Université de Tours, Faculté de Médecine de Tours, Tours, France
| | - Gemma Bogard
- INSERM, Centre d'Etude des Pathologies Respiratoires (CEPR), UMR 1100, Tours, France; Université de Tours, Faculté de Médecine de Tours, Tours, France
| | - Céline Dietrich
- Université de Paris, Paris, France; Laboratory of Immunoregulation and Immunopathology, INEM (Institut Necker-Enfants Malades), CNRS UMR8253 and INSERM UMR1151, Paris, France
| | | | - Chloé Boisseau
- INSERM, Centre d'Etude des Pathologies Respiratoires (CEPR), UMR 1100, Tours, France; Université de Tours, Faculté de Médecine de Tours, Tours, France
| | - Youenn Jouan
- INSERM, Centre d'Etude des Pathologies Respiratoires (CEPR), UMR 1100, Tours, France; Université de Tours, Faculté de Médecine de Tours, Tours, France; Service de Médecine Intensive et Réanimation, Centre Hospitalier Régional Universitaire, Tours, France
| | - François Trottein
- Centre d'Infection et d'Immunité de Lille, Inserm U1019, CNRS UMR 9017, University of Lille, CHU Lille- Institut Pasteur de Lille, 59000 Lille, France
| | - Mustapha Si-Tahar
- INSERM, Centre d'Etude des Pathologies Respiratoires (CEPR), UMR 1100, Tours, France; Université de Tours, Faculté de Médecine de Tours, Tours, France
| | - Maria Leite-de-Moraes
- Université de Paris, Paris, France; Laboratory of Immunoregulation and Immunopathology, INEM (Institut Necker-Enfants Malades), CNRS UMR8253 and INSERM UMR1151, Paris, France
| | - Thierry Mallevaey
- Department of Immunology, University of Toronto, Toronto, ON M5S 1A8, Canada; Institute of Biomaterials & Biomedical Engineering, Toronto, ON M5S 1A8, Canada
| | - Christophe Paget
- INSERM, Centre d'Etude des Pathologies Respiratoires (CEPR), UMR 1100, Tours, France; Université de Tours, Faculté de Médecine de Tours, Tours, France.
| |
Collapse
|
19
|
Wang K, Zhao W, Jin R, Ge Q. Thymic iNKT cell differentiation at single-cell resolution. Cell Mol Immunol 2021; 18:2065-2066. [PMID: 34035498 DOI: 10.1038/s41423-021-00697-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2021] [Accepted: 05/04/2021] [Indexed: 11/09/2022] Open
Affiliation(s)
- Ke Wang
- Department of Immunology, School of Basic Medical Sciences, Peking University, NHC Key Laboratory of Medical Immunology (Peking University), Beijing, China
| | - Weijia Zhao
- Department of Immunology, School of Basic Medical Sciences, Peking University, NHC Key Laboratory of Medical Immunology (Peking University), Beijing, China
| | - Rong Jin
- Department of Immunology, School of Basic Medical Sciences, Peking University, NHC Key Laboratory of Medical Immunology (Peking University), Beijing, China
| | - Qing Ge
- Department of Immunology, School of Basic Medical Sciences, Peking University, NHC Key Laboratory of Medical Immunology (Peking University), Beijing, China. .,Department of Integration of Chinese and Western Medicine, School of Basic Medical Sciences, Peking University, Beijing, China.
| |
Collapse
|
20
|
Xu Y, Ma J, Luo H, Shi Y, Liu H, Sun A, Xu C, Ji H, Liu X. Chromatin assembly factor 1B critically controls the early development but not function acquisition of invariant natural killer T cells in mice. Eur J Immunol 2021; 51:1698-1714. [PMID: 33949677 DOI: 10.1002/eji.202049074] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2020] [Revised: 03/09/2021] [Indexed: 11/09/2022]
Abstract
CD4+ CD8+ double-positive thymocytes give rise to both conventional TCRαβ+ T cells and invariant natural killer T cells (iNKT cells), but these two kinds of cells display different characteristics. The molecular mechanism underlying iNKT cell lineage development and function acquisition remain to be elucidated. We show that the loss of chromatin assembly factor 1B (CHAF1b) maintains the normal development of conventional TCRαβ+ T cells but severely impairs early development of iNKT cells. This dysregulation is accompanied by the impairment in chromatin activation and gene transcription at Vα14-Jα18 locus. Notably, ectopic expression of a Vα14-Jα18 TCR rescues Chaf1b-deficient iNKT cell developmental defects. Moreover, cytokine secretion and antitumor activity are substantially maintained in Vα14-Jα18 TCR transgene-rescued Chaf1b-deficient iNKT cells. Our study identifies CHAF1b as a critical factor that controls the early development but not function acquisition of iNKT cells via lineage- and stage-specific regulation.
Collapse
Affiliation(s)
- Yu Xu
- State Key Laboratory of Cell Biology, Shanghai Institute of Biochemistry and Cell Biology, Center for Excellence in Molecular Cell Science, Chinese Academy of Sciences, University of Chinese Academy of Sciences, Shanghai, P. R. China
| | - Junwei Ma
- State Key Laboratory of Cell Biology, Shanghai Institute of Biochemistry and Cell Biology, Center for Excellence in Molecular Cell Science, Chinese Academy of Sciences, University of Chinese Academy of Sciences, Shanghai, P. R. China
| | - Haorui Luo
- State Key Laboratory of Cell Biology, Shanghai Institute of Biochemistry and Cell Biology, Center for Excellence in Molecular Cell Science, Chinese Academy of Sciences, University of Chinese Academy of Sciences, Shanghai, P. R. China
| | - Yaohuang Shi
- State Key Laboratory of Cell Biology, Shanghai Institute of Biochemistry and Cell Biology, Center for Excellence in Molecular Cell Science, Chinese Academy of Sciences, University of Chinese Academy of Sciences, Shanghai, P. R. China.,School of Life Science and Technology, Shanghai Tech University, Shanghai, P. R. China
| | - Haifeng Liu
- State Key Laboratory of Cell Biology, Shanghai Institute of Biochemistry and Cell Biology, Center for Excellence in Molecular Cell Science, Chinese Academy of Sciences, University of Chinese Academy of Sciences, Shanghai, P. R. China
| | - Ao Sun
- State Key Laboratory of Cell Biology, Shanghai Institute of Biochemistry and Cell Biology, Center for Excellence in Molecular Cell Science, Chinese Academy of Sciences, University of Chinese Academy of Sciences, Shanghai, P. R. China
| | - Chenqi Xu
- State Key Laboratory of Cell Biology, Shanghai Institute of Biochemistry and Cell Biology, Center for Excellence in Molecular Cell Science, Chinese Academy of Sciences, University of Chinese Academy of Sciences, Shanghai, P. R. China
| | - Hongbin Ji
- State Key Laboratory of Cell Biology, Shanghai Institute of Biochemistry and Cell Biology, Center for Excellence in Molecular Cell Science, Chinese Academy of Sciences, University of Chinese Academy of Sciences, Shanghai, P. R. China
| | - Xiaolong Liu
- State Key Laboratory of Cell Biology, Shanghai Institute of Biochemistry and Cell Biology, Center for Excellence in Molecular Cell Science, Chinese Academy of Sciences, University of Chinese Academy of Sciences, Shanghai, P. R. China.,School of Life Science and Technology, Shanghai Tech University, Shanghai, P. R. China.,School of Life Science, Hangzhou Institute for Advanced Study, University of Chinese Academy of Sciences, Hangzhou, P. R. China
| |
Collapse
|
21
|
Legoux F, Salou M, Lantz O. MAIT Cell Development and Functions: the Microbial Connection. Immunity 2021; 53:710-723. [PMID: 33053329 DOI: 10.1016/j.immuni.2020.09.009] [Citation(s) in RCA: 99] [Impact Index Per Article: 24.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2020] [Revised: 07/21/2020] [Accepted: 09/14/2020] [Indexed: 12/24/2022]
Abstract
Mucosal-associated invariant T (MAIT) cells are an evolutionarily conserved T cell subset, which reacts to most bacteria through T cell receptor (TCR)-mediated recognition of metabolites derived from the vitamin B2 biosynthetic pathway. Microbiota-derived signals affect all stages of MAIT cell biology including intra-thymic development, peripheral expansion, and functions in specific organs. In tissues, MAIT cells can integrate multiple signals and display effector functions involved in the defense against infectious pathogens. In addition to anti-bacterial activity, MAIT cells improve wound healing in the skin, suggesting a role in epithelium homeostasis through bi-directional interactions with the local microbiota. In humans, blood MAIT cell frequency is modified during several auto-immune diseases, which are often associated with microbiota dysbiosis, further emphasizing the potential interplay of MAIT cells with the microbiota. Here, we will review how microbes interact with MAIT cells, from initial intra-thymic development to tissue colonization and functions.
Collapse
Affiliation(s)
- François Legoux
- INSERM U932, PSL University, Institut Curie, Paris, 75005, France
| | - Marion Salou
- INSERM U932, PSL University, Institut Curie, Paris, 75005, France
| | - Olivier Lantz
- INSERM U932, PSL University, Institut Curie, Paris, 75005, France; Laboratoire d'immunologie clinique, Institut Curie, Paris, 75005, France; Centre d'investigation Clinique en Biothérapie, Institut Curie (CIC-BT1428), Paris, 75005, France.
| |
Collapse
|
22
|
Gan J, Mao XR, Zheng SJ, Li JF. Invariant natural killer T cells: Not to be ignored in liver disease. J Dig Dis 2021; 22:136-142. [PMID: 33421264 DOI: 10.1111/1751-2980.12968] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/01/2020] [Revised: 12/14/2020] [Accepted: 01/04/2021] [Indexed: 12/11/2022]
Abstract
The liver is an important immune organ. Hepatocellular injury can be caused by many factors, which further leads to chronic liver diseases by activating the immune system. Multiple immune cells, such as T lymphocytes, B lymphocytes, natural killer cells (NKs), natural killer T cells (NKTs), and γδT cells, accumulate and participate in the immune regulation of the liver. NKTs are an indispensable component of immune cells in the liver, and invariant natural killer T cells (iNKTs) are the main subpopulation of NKTs. iNKTs activated by glycolipid antigen presented on CD1d secrete a series of cytokines and also act on other immune cells through cell-to-cell contact. Studies on the relationship between iNKTs and liver immunity have provided clues to uncover the pathogenesis of liver diseases and develop a promising strategy for the diagnosis and treatment of liver diseases.
Collapse
Affiliation(s)
- Jian Gan
- The First Clinical Medical College of Lanzhou University, Lanzhou, Gansu Province, China
| | - Xiao Rong Mao
- The First Clinical Medical College of Lanzhou University, Lanzhou, Gansu Province, China.,Department of Infectious Disease, The First Hospital of Lanzhou University, Lanzhou, Gansu Province, China
| | - Su Jun Zheng
- Artificial Liver Center, Beijing YouAn Hospital, Capital Medical University, Beijing, China
| | - Jun Feng Li
- The First Clinical Medical College of Lanzhou University, Lanzhou, Gansu Province, China.,Department of Infectious Disease, The First Hospital of Lanzhou University, Lanzhou, Gansu Province, China.,Institute of Infectious Diseases, The First Hospital of Lanzhou University, Lanzhou, Gansu Province, China
| |
Collapse
|
23
|
Zhong MC, Lu Y, Qian J, Zhu Y, Dong L, Zahn A, Di Noia JM, Karo-Atar D, King IL, Veillette A. SLAM family receptors control pro-survival effectors in germinal center B cells to promote humoral immunity. J Exp Med 2021; 218:e20200756. [PMID: 33237304 PMCID: PMC7694575 DOI: 10.1084/jem.20200756] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2020] [Revised: 08/31/2020] [Accepted: 10/20/2020] [Indexed: 12/05/2022] Open
Abstract
Expression of the signaling lymphocytic activation molecule (SLAM)-associated protein (SAP) is critical for the germinal center (GC) reaction and T cell-dependent antibody production. However, when SAP is expressed normally, the role of the associated SLAM family receptors (SFRs) in these processes is nebulous. Herein, we established that in the presence of SAP, SFRs suppressed the expansion of the GC reaction but facilitated the generation of antigen-specific B cells and antibodies. SFRs favored the generation of antigen-reactive B cells and antibodies by boosting expression of pro-survival effectors, such as the B cell antigen receptor (BCR) and Bcl-2, in activated GC B cells. The effects of SFRs on the GC reaction and T cell-dependent antibody production necessitated expression of multiple SFRs, both in T cells and in B cells. Hence, while in the presence of SAP, SFRs inhibit the GC reaction, they are critical for the induction of T cell-mediated humoral immunity by enhancing expression of pro-survival effectors in GC B cells.
Collapse
Affiliation(s)
- Ming-Chao Zhong
- Laboratory of Molecular Oncology, Institut de recherches cliniques de Montréal, Montréal, Québec, Canada
| | - Yan Lu
- Laboratory of Molecular Oncology, Institut de recherches cliniques de Montréal, Montréal, Québec, Canada
| | - Jin Qian
- Laboratory of Molecular Oncology, Institut de recherches cliniques de Montréal, Montréal, Québec, Canada
| | - Yingzi Zhu
- Laboratory of Molecular Oncology, Institut de recherches cliniques de Montréal, Montréal, Québec, Canada
- Department of Rheumatology and Immunology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Lingli Dong
- Department of Rheumatology and Immunology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Astrid Zahn
- Laboratory of Mechanisms of Genetic Diversity, Institut de recherches cliniques de Montréal, Montréal, Québec, Canada
| | - Javier M. Di Noia
- Laboratory of Mechanisms of Genetic Diversity, Institut de recherches cliniques de Montréal, Montréal, Québec, Canada
- Department of Biochemistry and Molecular Medicine, University of Montréal, Montréal, Québec, Canada
- Department of Medicine, University of Montréal, Montréal, Québec, Canada
- Department of Medicine, McGill University, Montréal, Québec, Canada
| | - Danielle Karo-Atar
- Meakins-Christie Laboratories, Department of Medicine, McGill University Health Centre, Montréal, Québec, Canada
| | - Irah L. King
- Meakins-Christie Laboratories, Department of Medicine, McGill University Health Centre, Montréal, Québec, Canada
- Department of Microbiology and Immunology, McGill University, Montréal, Québec, Canada
| | - André Veillette
- Laboratory of Molecular Oncology, Institut de recherches cliniques de Montréal, Montréal, Québec, Canada
- Department of Medicine, University of Montréal, Montréal, Québec, Canada
- Department of Medicine, McGill University, Montréal, Québec, Canada
| |
Collapse
|
24
|
Salou M, Legoux F, Lantz O. MAIT cell development in mice and humans. Mol Immunol 2020; 130:31-36. [PMID: 33352411 DOI: 10.1016/j.molimm.2020.12.003] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2020] [Accepted: 12/02/2020] [Indexed: 01/11/2023]
Abstract
MAIT cells arise in the thymus following rearrangement of a T cell receptor (TCR) reactive against microbial vitamin B2-derived metabolites presented by the MHC-Ib molecule, MR1. Mechanisms that are conserved in mammals ensure the frequent production of MR1-restricted TCRs and the intra-thymic differentiation of MR1-restricted thymocytes into effector cells. Upon thymic egress and migration into non-lymphoid tissues, additional signals modulate MAIT cell functions according to each local tissue environment. Here, we review the recent progress made towards a better understanding of the establishment of this major immune cell subset.
Collapse
Affiliation(s)
- Marion Salou
- INSERM U932, PSL University, Institut Curie, Paris, 75005, France
| | - François Legoux
- INSERM U932, PSL University, Institut Curie, Paris, 75005, France
| | - Olivier Lantz
- INSERM U932, PSL University, Institut Curie, Paris, 75005, France; Laboratoire d'immunologie clinique, Institut Curie, Paris, 75005, France; Centre d'investigation Clinique en Biothérapie, Institut Curie (CIC-BT1428), Paris, 75005, France.
| |
Collapse
|
25
|
Nomura A, Taniuchi I. The Role of CD8 Downregulation during Thymocyte Differentiation. Trends Immunol 2020; 41:972-981. [DOI: 10.1016/j.it.2020.09.006] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2020] [Revised: 09/11/2020] [Accepted: 09/12/2020] [Indexed: 11/26/2022]
|
26
|
MicroRNA miR-181-A Rheostat for TCR Signaling in Thymic Selection and Peripheral T-Cell Function. Int J Mol Sci 2020; 21:ijms21176200. [PMID: 32867301 PMCID: PMC7503384 DOI: 10.3390/ijms21176200] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2020] [Revised: 08/17/2020] [Accepted: 08/25/2020] [Indexed: 12/17/2022] Open
Abstract
The selection of T cells during intra-thymic d evelopment is crucial to obtain a functional and simultaneously not self-reactive peripheral T cell repertoire. However, selection is a complex process dependent on T cell receptor (TCR) thresholds that remain incompletely understood. In peripheral T cells, activation, clonal expansion, and contraction of the active T cell pool, as well as other processes depend on TCR signal strength. Members of the microRNA (miRNA) miR-181 family have been shown to be dynamically regulated during T cell development as well as dependent on the activation stage of T cells. Indeed, it has been shown that expression of miR-181a leads to the downregulation of multiple phosphatases, implicating miR-181a as ‘‘rheostat’’ of TCR signaling. Consistently, genetic models have revealed an essential role of miR-181a/b-1 for the generation of unconventional T cells as well as a function in tuning TCR sensitivity in peripheral T cells during aging. Here, we review these broad roles of miR-181 family members in T cell function via modulating TCR signal strength.
Collapse
|
27
|
Xu P, Luo H, Kong Y, Lai WF, Cui L, Zhu X. Cancer neoantigen: Boosting immunotherapy. Biomed Pharmacother 2020; 131:110640. [PMID: 32836075 DOI: 10.1016/j.biopha.2020.110640] [Citation(s) in RCA: 36] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2020] [Revised: 08/13/2020] [Accepted: 08/16/2020] [Indexed: 12/21/2022] Open
Abstract
Tumor neoantigen has a high degree of immunogenicity. As one of the emerging methods of tumor immunotherapy, the vaccine developed against it has served to clinical trials of various solid tumors, especially in the treatment of melanoma. Currently, a variety of immunotherapy methods have been applied to the treatment of the tumor. However, other therapeutic methods have the disadvantages of low specificity and prominent side effects. Treatments require tumor antigen with higher immunogenicity as the target of immune attack. This review will recommend the identification of neoantigen, the influencing factors of neoantigen, and the application of personalized vaccines for neoantigen in metastatic tumors such as malignant melanoma.
Collapse
Affiliation(s)
- Peijia Xu
- Guangdong Key Laboratory for Research and Development of Natural Drugs, The Marine Biomedical Research Institute, Guangdong Medical University, Zhanjiang, 524023, China; The Marine Biomedical Research Institute of Guangdong Zhanjiang, Zhanjiang, 524023, China; The Key Lab of Zhanjiang for R&D Marine Microbial Resources in the Beibu Gulf Rim, Guangdong Medical University, Zhanjiang, 524023, China
| | - Haiqing Luo
- Cancer Center, Affiliated Hospital, Guangdong Medical University, Zhanjiang, 524023, China
| | - Ying Kong
- Department of Clinical Laboratory, Hubei No. 3 People's Hospital of Jianghan University, Wuhan, 430033, China
| | - Wing-Fu Lai
- Department of Applied Biology and Chemical Technology, The Hong Kong Polytechnic University, Hong Kong, China; School of Life and Health Sciences, The Chinese University of Hong Kong (Shenzhen), Shenzhen, China.
| | - Liao Cui
- Guangdong Key Laboratory for Research and Development of Natural Drugs, The Marine Biomedical Research Institute, Guangdong Medical University, Zhanjiang, 524023, China; The Marine Biomedical Research Institute of Guangdong Zhanjiang, Zhanjiang, 524023, China.
| | - Xiao Zhu
- Guangdong Key Laboratory for Research and Development of Natural Drugs, The Marine Biomedical Research Institute, Guangdong Medical University, Zhanjiang, 524023, China; The Marine Biomedical Research Institute of Guangdong Zhanjiang, Zhanjiang, 524023, China; The Key Lab of Zhanjiang for R&D Marine Microbial Resources in the Beibu Gulf Rim, Guangdong Medical University, Zhanjiang, 524023, China; Southern Marine Science and Engineering Guangdong Laboratory (Zhanjiang), Zhanjiang, 524023, China.
| |
Collapse
|
28
|
Kumar A, Hill TM, Gordy LE, Suryadevara N, Wu L, Flyak AI, Bezbradica JS, Van Kaer L, Joyce S. Nur77 controls tolerance induction, terminal differentiation, and effector functions in semi-invariant natural killer T cells. Proc Natl Acad Sci U S A 2020; 117:17156-17165. [PMID: 32611812 PMCID: PMC7382224 DOI: 10.1073/pnas.2001665117] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
Semi-invariant natural killer T (iNKT) cells are self-reactive lymphocytes, yet how this lineage attains self-tolerance remains unknown. iNKT cells constitutively express high levels of Nr4a1-encoded Nur77, a transcription factor that integrates signal strength downstream of the T cell receptor (TCR) within activated thymocytes and peripheral T cells. The function of Nur77 in iNKT cells is unknown. Here we report that sustained Nur77 overexpression (Nur77tg) in mouse thymocytes abrogates iNKT cell development. Introgression of a rearranged Vα14-Jα18 TCR-α chain gene into the Nur77tg (Nur77tg;Vα14tg) mouse rescued iNKT cell development up to the early precursor stage, stage 0. iNKT cells in bone marrow chimeras that reconstituted thymic cellularity developed beyond stage 0 precursors and yielded IL-4-producing NKT2 cell subset but not IFN-γ-producing NKT1 cell subset. Nonetheless, the developing thymic iNKT cells that emerged in these chimeras expressed the exhaustion marker PD1 and responded poorly to a strong glycolipid agonist. Thus, Nur77 integrates signals emanating from the TCR to control thymic iNKT cell tolerance induction, terminal differentiation, and effector functions.
Collapse
MESH Headings
- Animals
- Cell Differentiation/genetics
- Cell Differentiation/immunology
- Cells, Cultured
- Immune Tolerance/genetics
- Immune Tolerance/immunology
- Mice
- Mice, Knockout
- Natural Killer T-Cells/immunology
- Natural Killer T-Cells/metabolism
- Nuclear Receptor Subfamily 4, Group A, Member 1/genetics
- Nuclear Receptor Subfamily 4, Group A, Member 1/immunology
- Nuclear Receptor Subfamily 4, Group A, Member 1/metabolism
- Receptors, Antigen, T-Cell
- Thymocytes
Collapse
Affiliation(s)
- Amrendra Kumar
- Department of Veterans Affairs, Tennessee Valley Healthcare System, Nashville, TN 37232
- Department of Pathology, Microbiology, and Immunology, Vanderbilt University Medical Center, Nashville, TN 37232
| | - Timothy M Hill
- Department of Pathology, Microbiology, and Immunology, Vanderbilt University Medical Center, Nashville, TN 37232
- Department of Chemistry and Life Science, US Military Academy, West Point, NY 10996
| | - Laura E Gordy
- Department of Pathology, Microbiology, and Immunology, Vanderbilt University Medical Center, Nashville, TN 37232
| | - Naveenchandra Suryadevara
- Department of Pathology, Microbiology, and Immunology, Vanderbilt University Medical Center, Nashville, TN 37232
| | - Lan Wu
- Department of Pathology, Microbiology, and Immunology, Vanderbilt University Medical Center, Nashville, TN 37232
| | - Andrew I Flyak
- Department of Pathology, Microbiology, and Immunology, Vanderbilt University Medical Center, Nashville, TN 37232
- Department of Biology, Caltech, Pasadena, CA 91125
| | - Jelena S Bezbradica
- Department of Pathology, Microbiology, and Immunology, Vanderbilt University Medical Center, Nashville, TN 37232
- The Kennedy Institute of Rheumatology, University of Oxford, Oxford OX1 2JD, United Kingdom
| | - Luc Van Kaer
- Department of Pathology, Microbiology, and Immunology, Vanderbilt University Medical Center, Nashville, TN 37232
| | - Sebastian Joyce
- Department of Veterans Affairs, Tennessee Valley Healthcare System, Nashville, TN 37232;
- Department of Pathology, Microbiology, and Immunology, Vanderbilt University Medical Center, Nashville, TN 37232
| |
Collapse
|
29
|
Thymic development of unconventional T cells: how NKT cells, MAIT cells and γδ T cells emerge. Nat Rev Immunol 2020; 20:756-770. [DOI: 10.1038/s41577-020-0345-y] [Citation(s) in RCA: 83] [Impact Index Per Article: 16.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/13/2020] [Indexed: 12/11/2022]
|
30
|
Klibi J, Benlagha K. Cortical Thymocytes Along With Their Selecting Ligands Are Required for the Further Thymic Maturation of NKT Cells in Mice. Front Immunol 2020; 11:815. [PMID: 32457751 PMCID: PMC7221135 DOI: 10.3389/fimmu.2020.00815] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2020] [Accepted: 04/09/2020] [Indexed: 12/21/2022] Open
Abstract
Following positive selection, NKT cell precursors enter an “NK-like” program and progress from an NK– to an NK+ maturational stage to give rise to NKT1 cells. Maturation takes place in the thymus or after emigration of NK– NKT cells to the periphery. In this study, we followed the fate of injected NKT cells at the NK– stage of their development in the thymus of a series of mice with differential CD1d expression. Our results indicate that CD1d-expressing cortical thymocytes, and not epithelial cells, macrophages, or dendritic cells, are necessary and sufficient to promote the maturation of thymic NKT1 cells. Migration out of the thymus of NK– NKT cells occurred in the absence of CD1d expression, however, CD1d expression is required for maturation in peripheral organs. We also found that the natural ligand Isoglobotriosylceramide (iGb3), and the cysteine protease Cathepsin L, both localizing with CD1d in the endosomal compartment and crucial for NKT cell positive selection, are also required for NK– to NK+ NKT cell transition. Overall, our study indicates that the maturational transition of NKT cells require continuous TCR/CD1d interactions and suggest that these interactions occur in the thymic cortex where DP cortical thymocytes are located. We thus concluded that key components necessary for positive selection of NKT cells are also required for subsequent maturation.
Collapse
Affiliation(s)
- Jihene Klibi
- Université de Paris Diderot, Institut de Recherche Saint Louis (IRSL), Inserm U1160, Paris, France
| | - Kamel Benlagha
- Université de Paris Diderot, Institut de Recherche Saint Louis (IRSL), Inserm U1160, Paris, France
| |
Collapse
|
31
|
Dienz O, DeVault VL, Musial SC, Mistri SK, Mei L, Baraev A, Dragon JA, Krementsov D, Veillette A, Boyson JE. Critical Role for SLAM/SAP Signaling in the Thymic Developmental Programming of IL-17- and IFN-γ-Producing γδ T Cells. JOURNAL OF IMMUNOLOGY (BALTIMORE, MD. : 1950) 2020; 204:1521-1534. [PMID: 32024701 PMCID: PMC7065973 DOI: 10.4049/jimmunol.1901082] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/05/2019] [Accepted: 01/04/2020] [Indexed: 12/14/2022]
Abstract
During thymic development, mouse γδ T cells commit to either an IFN-γ- or an IL-17-producing phenotype through mechanisms that remain unclear. In this study, we investigated the extent to which the SLAM/SAP signaling pathway regulates the functional programming of γδ T cells. Characterization of SLAM family receptor expression revealed that thymic γδ T cell subsets were each marked by distinct coexpression profiles of SLAMF1, SLAMF4, and SLAMF6. In the thymus, Vγ1 and Vγ4 T cells that exhibited an SLAMF1+SLAMF6+ double positive phenotype were largely contained within immature CD24+CD73- and CD24+CD73+ subsets, whereas SLAMF1 single positive, SLAMF6 single positive, or SLAMF1SLAMF6 double negative cells were found within mature CD24-CD73+ and CD24-CD73- subsets. In the periphery, SLAMF1 and SLAMF6 expression distinguished IL-17- and IFN-γ-producing γδ T cells, respectively. Disruption of SLAM family receptor signaling through deletion of SAP resulted in impaired thymic Vγ1 and Vγ4 T cell maturation at the CD24+CD73-SLAMF1+SLAMF6+ double positive stage that was associated with a decreased frequency of CD44+RORγt+ γδ T cells. Impaired development was in turn associated with decreased γδ T cell IL-17 and IFN-γ production in the thymus as well as in peripheral tissues. The role for SAP was subset-specific, as Vγ1Vδ6.3, Vγ4, Vγ5, but not Vγ6 subsets were SAP-dependent. Together, these data suggest that the SLAM/SAP signaling pathway plays a larger role in γδ T cell development than previously appreciated and represents a critical checkpoint in the functional programming of both IL-17- and IFN-γ-producing γδ T cell subsets.
Collapse
Affiliation(s)
- Oliver Dienz
- Department of Surgery, Larner College of Medicine, University of Vermont, Burlington, VT 05405
| | - Victoria L DeVault
- Department of Surgery, Larner College of Medicine, University of Vermont, Burlington, VT 05405
| | - Shawn C Musial
- Department of Surgery, Larner College of Medicine, University of Vermont, Burlington, VT 05405
| | - Somen K Mistri
- Department of Surgery, Larner College of Medicine, University of Vermont, Burlington, VT 05405
| | - Linda Mei
- Department of Surgery, Larner College of Medicine, University of Vermont, Burlington, VT 05405
| | - Aleksandr Baraev
- Department of Surgery, Larner College of Medicine, University of Vermont, Burlington, VT 05405
| | - Julie A Dragon
- Department of Microbiology and Molecular Genetics, University of Vermont, Burlington, VT 05405
| | - Dimitry Krementsov
- Department of Biomedical and Health Sciences, University of Vermont, Burlington, VT 05405; and
| | - Andre Veillette
- Montreal Clinical Research Institute, Montreal, Quebec H2W 1R7, Canada
| | - Jonathan E Boyson
- Department of Surgery, Larner College of Medicine, University of Vermont, Burlington, VT 05405;
| |
Collapse
|
32
|
Hajaj E, Eisenberg G, Klein S, Frankenburg S, Merims S, Ben David I, Eisenhaure T, Henrickson SE, Villani AC, Hacohen N, Abudi N, Abramovich R, Cohen JE, Peretz T, Veillette A, Lotem M. SLAMF6 deficiency augments tumor killing and skews toward an effector phenotype revealing it as a novel T cell checkpoint. eLife 2020; 9:e52539. [PMID: 32122464 PMCID: PMC7075692 DOI: 10.7554/elife.52539] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2019] [Accepted: 02/11/2020] [Indexed: 12/29/2022] Open
Abstract
SLAMF6 is a homotypic receptor of the Ig-superfamily whose exact role in immune modulation has remained elusive. Its constitutive expression on resting and activated T cells precludes it from being a bona fide exhaustion marker. By breeding Pmel-1 mice with SLAMF6 -/- mice, we generated donors for T cells lacking SLAMF6 and expressing a transgenic TCR for gp100-melanoma antigen. Activated Pmel-1xSLAMF6 -/- CD8+ T cells displayed improved polyfunctionality and strong tumor cytolysis. T-bet was the dominant transcription factor in Pmel-1 x SLAMF6 -/- cells, and upon activation, they acquired an effector-memory phenotype. Adoptive transfer of Pmel-1 x SLAMF6 -/- T cells to melanoma-bearing mice resulted in lasting tumor regression in contrast to temporary responses achieved with Pmel-1 T cells. LAG-3 expression was elevated in the SLAMF6 -/- cells, and the addition of the LAG-3-blocking antibody to the adoptive transfer protocol improved the SLAMF6 -/- T cells and expedited the antitumor response even further. The results from this study support the notion that SLAMF6 is an inhibitory immune receptor whose absence enables powerful CD8+ T cells to eradicate tumors.
Collapse
Affiliation(s)
- Emma Hajaj
- Sharett Institute of Oncology, Hadassah Hebrew University HospitalJerusalemIsrael
- Wohl Institute for Translational Medicine, Hadassah Medical OrganizationJerusalemIsrael
- Lautenberg Center for Immunology and Cancer Research, Faculty of Medicine, Hebrew UniversityJerusalemIsrael
| | - Galit Eisenberg
- Sharett Institute of Oncology, Hadassah Hebrew University HospitalJerusalemIsrael
- Wohl Institute for Translational Medicine, Hadassah Medical OrganizationJerusalemIsrael
| | - Shiri Klein
- Sharett Institute of Oncology, Hadassah Hebrew University HospitalJerusalemIsrael
- Wohl Institute for Translational Medicine, Hadassah Medical OrganizationJerusalemIsrael
| | - Shoshana Frankenburg
- Sharett Institute of Oncology, Hadassah Hebrew University HospitalJerusalemIsrael
- Wohl Institute for Translational Medicine, Hadassah Medical OrganizationJerusalemIsrael
| | - Sharon Merims
- Sharett Institute of Oncology, Hadassah Hebrew University HospitalJerusalemIsrael
- Wohl Institute for Translational Medicine, Hadassah Medical OrganizationJerusalemIsrael
| | - Inna Ben David
- Sharett Institute of Oncology, Hadassah Hebrew University HospitalJerusalemIsrael
- Wohl Institute for Translational Medicine, Hadassah Medical OrganizationJerusalemIsrael
| | | | - Sarah E Henrickson
- Broad Institute of MIT and HarvardCambridgeUnited States
- Boston Children's Hospital, Department of PediatricsBostonUnited States
| | - Alexandra Chloé Villani
- Broad Institute of MIT and HarvardCambridgeUnited States
- Center for Cancer Research, Massachusetts General HospitalCharlestownUnited States
- Department of Medicine, Harvard Medical SchoolBostonUnited States
- Center for Immunology and Inflammatory Diseases, Massachusetts General HospitalCharlestownUnited States
| | - Nir Hacohen
- Broad Institute of MIT and HarvardCambridgeUnited States
- Center for Cancer Research, Massachusetts General HospitalCharlestownUnited States
- Department of Medicine, Harvard Medical SchoolBostonUnited States
| | - Nathalie Abudi
- Wohl Institute for Translational Medicine, Hadassah Medical OrganizationJerusalemIsrael
- Goldyne Savad Institute of Gene Therapy, Hadassah Hebrew University HospitalJerusalemIsrael
| | - Rinat Abramovich
- Wohl Institute for Translational Medicine, Hadassah Medical OrganizationJerusalemIsrael
- Goldyne Savad Institute of Gene Therapy, Hadassah Hebrew University HospitalJerusalemIsrael
| | - Jonathan E Cohen
- Sharett Institute of Oncology, Hadassah Hebrew University HospitalJerusalemIsrael
- Wohl Institute for Translational Medicine, Hadassah Medical OrganizationJerusalemIsrael
| | - Tamar Peretz
- Sharett Institute of Oncology, Hadassah Hebrew University HospitalJerusalemIsrael
| | | | - Michal Lotem
- Sharett Institute of Oncology, Hadassah Hebrew University HospitalJerusalemIsrael
- Wohl Institute for Translational Medicine, Hadassah Medical OrganizationJerusalemIsrael
- Lautenberg Center for Immunology and Cancer Research, Faculty of Medicine, Hebrew UniversityJerusalemIsrael
| |
Collapse
|
33
|
Latour S, Fischer A. Signaling pathways involved in the T-cell-mediated immunity against Epstein-Barr virus: Lessons from genetic diseases. Immunol Rev 2020; 291:174-189. [PMID: 31402499 DOI: 10.1111/imr.12791] [Citation(s) in RCA: 85] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2019] [Revised: 06/05/2019] [Accepted: 06/10/2019] [Indexed: 12/13/2022]
Abstract
Primary immunodeficiencies (PIDs) provide researchers with unique models to understand in vivo immune responses in general and immunity to infections in particular. In humans, impaired immune control of Epstein-Barr virus (EBV) infection is associated with the occurrence of several different immunopathologic conditions; these include non-malignant and malignant B-cell lymphoproliferative disorders, hemophagocytic lymphohistiocytosis (HLH), a severe inflammatory condition, and a chronic acute EBV infection of T cells. Studies of PIDs associated with a predisposition to develop severe, chronic EBV infections have led to the identification of key components of immunity to EBV - notably the central role of T-cell expansion and its regulation in the pathophysiology of EBV-associated diseases. On one hand, the defective expansion of EBV-specific CD8 T cells results from mutations in genes involved in T-cell activation (such as RASGRP1, MAGT1, and ITK), DNA metabolism (CTPS1) or co-stimulatory pathways (CD70, CD27, and TNFSFR9 (also known as CD137/4-1BB)) leads to impaired elimination of proliferating EBV-infected B cells and the occurrence of lymphoma. On the other hand, protracted T-cell expansion and activation after the defective killing of EBV-infected B cells is caused by genetic defects in the components of the lytic granule exocytosis pathway or in the small adapter protein SH2D1A (also known as SAP), a key activator of T- and NK cell-cytotoxicity. In this setting, the persistence of EBV-infected cells results in HLH, a condition characterized by unleashed T-cell and macrophage activation. Moreover, genetic defects causing selective vulnerability to EBV infection have highlighted the role of co-receptor molecules (CD27, CD137, and SLAM-R) selectively involved in immune responses against infected B cells via specific T-B cell interactions.
Collapse
Affiliation(s)
- Sylvain Latour
- Laboratory of Lymphocyte Activation and Susceptibility to EBV infection, Inserm UMR 1163, Paris, France.,University Paris Descartes Sorbonne Paris Cité, Imagine Institut, Paris, France
| | - Alain Fischer
- University Paris Descartes Sorbonne Paris Cité, Imagine Institut, Paris, France.,Department of Pediatric Immunology, Hematology and Rheumatology, Necker-Enfants Malades Hospital, Assistance Publique-Hôpitaux de Paris (APHP), Paris, France.,Collège de France, Paris, France.,Inserm UMR 1163, Paris, France
| |
Collapse
|
34
|
Abstract
Recent studies suggest that murine invariant natural killer T (iNKT) cell development culminates in three terminally differentiated iNKT cell subsets denoted as NKT1, 2, and 17 cells. Although these studies corroborate the significance of the subset division model, less is known about the factors driving subset commitment in iNKT cell progenitors. In this review, we discuss the latest findings in iNKT cell development, focusing in particular on how T-cell receptor signal strength steers iNKT cell progenitors toward specific subsets and how early progenitor cells can be identified. In addition, we will discuss the essential factors for their sustenance and functionality. A picture is emerging wherein the majority of thymic iNKT cells are mature effector cells retained in the organ rather than developing precursors.
Collapse
Affiliation(s)
- Kristin Hogquist
- Center for Immunology, University of Minnesota, Minneapolis, MN, 55455, USA
| | - Hristo Georgiev
- Center for Immunology, University of Minnesota, Minneapolis, MN, 55455, USA
| |
Collapse
|
35
|
Hayday AC. γδ T Cell Update: Adaptate Orchestrators of Immune Surveillance. THE JOURNAL OF IMMUNOLOGY 2020; 203:311-320. [PMID: 31285310 DOI: 10.4049/jimmunol.1800934] [Citation(s) in RCA: 116] [Impact Index Per Article: 23.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/10/2018] [Accepted: 05/02/2019] [Indexed: 12/15/2022]
Abstract
As interest in γδ T cells grows rapidly, what key points are emerging, and where is caution warranted? γδ T cells fulfill critical functions, as reflected in associations with vaccine responsiveness and cancer survival in humans and ever more phenotypes of γδ T cell-deficient mice, including basic physiological deficiencies. Such phenotypes reflect activities of distinct γδ T cell subsets, whose origins offer interesting insights into lymphocyte development but whose variable evolutionary conservation can obfuscate translation of knowledge from mice to humans. By contrast, an emerging and conserved feature of γδ T cells is their "adaptate" biology: an integration of adaptive clonally-restricted specificities, innate tissue-sensing, and unconventional recall responses that collectively strengthen host resistance to myriad challenges. Central to adaptate biology are butyrophilins and other γδ cell regulators, the study of which should greatly enhance our understanding of tissue immunogenicity and immunosurveillance and guide intensifying clinical interest in γδ cells and other unconventional lymphocytes.
Collapse
Affiliation(s)
- Adrian C Hayday
- Peter Gorer Department of Immunobiology, King's College London, London SE1 9RT, United Kingdom; and Francis Crick Institute, London NW1 1AT, United Kingdom
| |
Collapse
|
36
|
Kojo S, Ohno-Oishi M, Wada H, Nieke S, Seo W, Muroi S, Taniuchi I. Constitutive CD8 expression drives innate CD8 + T-cell differentiation via induction of iNKT2 cells. Life Sci Alliance 2020; 3:3/2/e202000642. [PMID: 31980555 PMCID: PMC6985454 DOI: 10.26508/lsa.202000642] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2020] [Revised: 01/16/2020] [Accepted: 01/17/2020] [Indexed: 01/26/2023] Open
Abstract
Temporal down-regulation of the CD8 co-receptor after receiving positive-selection signals has been proposed to serve as an important determinant to segregate helper versus cytotoxic lineages by generating differences in the duration of TCR signaling between MHC-I and MHC-II selected thymocytes. By contrast, little is known about whether CD8 also modulates TCR signaling engaged by the non-classical MHC-I-like molecule, CD1d, during development of invariant natural killer T (iNKT) cells. Here, we show that constitutive transgenic CD8 expression resulted in enhanced differentiation of innate memory-like CD8+ thymocytes in both a cell-intrinsic and cell-extrinsic manner, the latter being accomplished by an increase in the IL-4-producing iNKT2 subset. Skewed iNKT2 differentiation requires cysteine residues in the intracellular domain of CD8α that are essential for transmitting cellular signaling. Collectively, these findings shed a new light on the relevance of CD8 down-regulation in shaping the balance of iNKT-cell subsets by modulating TCR signaling.
Collapse
Affiliation(s)
- Satoshi Kojo
- Laboratory for Transcriptional Regulation, RIKEN Center for Integrative Medical Sciences, Yokohama, Japan
| | - Michiko Ohno-Oishi
- Laboratory for Transcriptional Regulation, RIKEN Center for Integrative Medical Sciences, Yokohama, Japan
| | - Hisashi Wada
- Laboratory for Transcriptional Regulation, RIKEN Center for Integrative Medical Sciences, Yokohama, Japan
| | - Sebastian Nieke
- Laboratory for Transcriptional Regulation, RIKEN Center for Integrative Medical Sciences, Yokohama, Japan
| | - Wooseok Seo
- Laboratory for Transcriptional Regulation, RIKEN Center for Integrative Medical Sciences, Yokohama, Japan
| | - Sawako Muroi
- Laboratory for Transcriptional Regulation, RIKEN Center for Integrative Medical Sciences, Yokohama, Japan
| | - Ichiro Taniuchi
- Laboratory for Transcriptional Regulation, RIKEN Center for Integrative Medical Sciences, Yokohama, Japan
| |
Collapse
|
37
|
Orola MJ, Tizian C, Zhu C, Andersen L, Gülich AF, Alteneder M, Stojakovic T, Wiedermann U, Trauner M, Ellmeier W, Sakaguchi S. The zinc-finger transcription factor MAZR regulates iNKT cell subset differentiation. Cell Mol Life Sci 2019; 76:4391-4404. [PMID: 31065747 PMCID: PMC6803753 DOI: 10.1007/s00018-019-03119-z] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2018] [Revised: 04/19/2019] [Accepted: 04/29/2019] [Indexed: 01/06/2023]
Abstract
Invariant natural killer T (iNKT) cells represent a subgroup of innate-like T cells and play an important role in immune responses against certain pathogens. In addition, they have been linked to autoimmunity and antitumor immunity. iNKT cells consist of several subsets with distinct functions; however, the transcriptional networks controlling iNKT subset differentiation are still not fully characterized. Myc-associated zinc-finger-related factor (MAZR, also known as PATZ1) is an essential transcription factor for CD8+ lineage differentiation of conventional T cells. Here, we show that MAZR plays an important role in iNKT cells. T-cell lineage-specific deletion of MAZR resulted in an iNKT cell-intrinsic defect that led to an increase in iNKT2 cell numbers, concurrent with a reduction in iNKT1 and iNKT17 cells. Consistent with the alteration in the subset distribution, deletion of MAZR also resulted in an increase in the percentage of IL-4-producing cells. Moreover, MAZR-deficient iNKT cells displayed an enhanced expression of Erg2 and ThPOK, key factors for iNKT cell generation and subset differentiation, indicating that MAZR controls iNKT cell development through fine-tuning of their expression levels. Taken together, our study identified MAZR as an essential transcription factor regulating iNKT cell subset differentiation and effector function.
Collapse
Affiliation(s)
- Maria Jonah Orola
- Division of Immunobiology, Institute of Immunology, Center for Pathophysiology, Infectiology and Immunology, Medical University of Vienna, 1090, Vienna, Austria
- Institute of Specific Prophylaxis and Tropical Medicine, Center for Pathophysiology, Infectiology and Immunology, Medical University of Vienna, 1090, Vienna, Austria
| | - Caroline Tizian
- Division of Immunobiology, Institute of Immunology, Center for Pathophysiology, Infectiology and Immunology, Medical University of Vienna, 1090, Vienna, Austria
- Institute of Microbiology and Infectious Diseases and Immunology, Charité-University Medical Centre Berlin (CBF), 12203, Berlin, Germany
| | - Ci Zhu
- Hans Popper Laboratory of Molecular Hepatology, Division of Gastroenterology and Hepatology, Department of Internal Medicine III, Medical University of Vienna, 1090, Vienna, Austria
| | - Liisa Andersen
- Division of Immunobiology, Institute of Immunology, Center for Pathophysiology, Infectiology and Immunology, Medical University of Vienna, 1090, Vienna, Austria
| | - Alexandra Franziska Gülich
- Division of Immunobiology, Institute of Immunology, Center for Pathophysiology, Infectiology and Immunology, Medical University of Vienna, 1090, Vienna, Austria
| | - Marlis Alteneder
- Division of Immunobiology, Institute of Immunology, Center for Pathophysiology, Infectiology and Immunology, Medical University of Vienna, 1090, Vienna, Austria
| | - Tatjana Stojakovic
- Clinical Institute of Medical and Chemical Laboratory Diagnostics, University Hospital Graz, 8036, Graz, Austria
| | - Ursula Wiedermann
- Institute of Specific Prophylaxis and Tropical Medicine, Center for Pathophysiology, Infectiology and Immunology, Medical University of Vienna, 1090, Vienna, Austria
| | - Michael Trauner
- Hans Popper Laboratory of Molecular Hepatology, Division of Gastroenterology and Hepatology, Department of Internal Medicine III, Medical University of Vienna, 1090, Vienna, Austria
| | - Wilfried Ellmeier
- Division of Immunobiology, Institute of Immunology, Center for Pathophysiology, Infectiology and Immunology, Medical University of Vienna, 1090, Vienna, Austria
| | - Shinya Sakaguchi
- Division of Immunobiology, Institute of Immunology, Center for Pathophysiology, Infectiology and Immunology, Medical University of Vienna, 1090, Vienna, Austria.
| |
Collapse
|
38
|
Fujii SI, Shimizu K. Immune Networks and Therapeutic Targeting of iNKT Cells in Cancer. Trends Immunol 2019; 40:984-997. [PMID: 31676264 DOI: 10.1016/j.it.2019.09.008] [Citation(s) in RCA: 64] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2019] [Revised: 09/18/2019] [Accepted: 09/19/2019] [Indexed: 01/08/2023]
Abstract
One of the primary goals in tumor immunotherapy is to reset the immune system from tolerogenic to immunogenic - a process in which invariant natural killer T (iNKT) cells are implicated. iNKT cells develop in the thymus and perform immunosurveillance against tumor cells peripherally. When optimally stimulated, iNKT cells differentiate and display more efficient immune functions. Some cells survive and act as effector memory cells. We discuss the putative roles of iNKT cells in antitumor immunity, and posit that it may be possible to develop novel therapeutic strategies to treat cancers using iNKT cells. In particular, we highlight the challenge of uniquely energizing iNKT cell-licensed dendritic cells to serve as effective immunoadjuvants for both arms of the immune system, thus coupling immunological networks.
Collapse
Affiliation(s)
- Shin-Ichiro Fujii
- Laboratory for Immunotherapy, RIKEN Center for Integrative Medical Sciences (IMS), Yokohama, Kanagawa, Japan.
| | - Kanako Shimizu
- Laboratory for Immunotherapy, RIKEN Center for Integrative Medical Sciences (IMS), Yokohama, Kanagawa, Japan
| |
Collapse
|
39
|
Winter SJ, Krueger A. Development of Unconventional T Cells Controlled by MicroRNA. Front Immunol 2019; 10:2520. [PMID: 31708931 PMCID: PMC6820353 DOI: 10.3389/fimmu.2019.02520] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2019] [Accepted: 10/10/2019] [Indexed: 12/21/2022] Open
Abstract
Post-transcriptional gene regulation through microRNA (miRNA) has emerged as a major control mechanism of multiple biological processes, including development and function of T cells. T cells are vital components of the immune system, with conventional T cells playing a central role in adaptive immunity and unconventional T cells having additional functions reminiscent of both innate and adaptive immunity, such as involvement in stress responses and tissue homeostasis. Unconventional T cells encompass cells expressing semi-invariant T cell receptors (TCRs), such as invariant Natural Killer T (iNKT) and Mucosal-Associated Invariant T (MAIT) cells. Additionally, some T cells with diverse TCR repertoires, including γδT cells, intraepithelial lymphocytes (IEL) and regulatory T (Treg) cells, share some functional and/or developmental features with their semi-invariant unconventional counterparts. Unconventional T cells are particularly sensitive to disruption of miRNA function, both globally and on the individual miRNA level. Here, we review the role of miRNA in the development and function of unconventional T cells from an iNKT-centric point of view. The function of single miRNAs can provide important insights into shared and individual pathways for the formation of different unconventional T cell subsets.
Collapse
Affiliation(s)
- Samantha J Winter
- Institute for Molecular Medicine, Goethe-University Frankfurt, Frankfurt am Main, Germany
| | - Andreas Krueger
- Institute for Molecular Medicine, Goethe-University Frankfurt, Frankfurt am Main, Germany
| |
Collapse
|
40
|
Myeloid cells activate iNKT cells to produce IL-4 in the thymic medulla. Proc Natl Acad Sci U S A 2019; 116:22262-22268. [PMID: 31611396 DOI: 10.1073/pnas.1910412116] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
Interleukin-4 (IL-4) is produced by a unique subset of invariant natural killer T (iNKT) cells (NKT2) in the thymus in the steady state, where it conditions CD8+ T cells to become "memory-like" among other effects. However, the signals that cause NKT2 cells to constitutively produce IL-4 remain poorly defined. Using histocytometry, we observed IL-4-producing NKT2 cells localized to the thymic medulla, suggesting that medullary signals might instruct NKT2 cells to produce IL-4. Moreover, NKT2 cells receive and require T cell receptor (TCR) stimulation for continuous IL-4 production in the steady state, since NKT2 cells lost IL-4 production when intrathymically transferred into CD1d-deficient recipients. In bone marrow chimeric recipients, only hematopoietic, not stromal, antigen-presenting cells (APCs), provided such stimulation. Furthermore, using different Cre-recombinase transgenic mouse strains to specifically target CD1d deficiency to various APCs, together with the use of diphtheria toxin receptor (DTR) transgenic mouse strains to deplete various APCs, we found that macrophages were the predominant cell to stimulate NKT2 IL-4 production. Thus, NKT2 cells appear to encounter and require different activating ligands for selection in the cortex and activation in the medulla.
Collapse
|
41
|
SLAM-SAP-Fyn: Old Players with New Roles in iNKT Cell Development and Function. Int J Mol Sci 2019; 20:ijms20194797. [PMID: 31569599 PMCID: PMC6801923 DOI: 10.3390/ijms20194797] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2019] [Revised: 09/23/2019] [Accepted: 09/24/2019] [Indexed: 12/25/2022] Open
Abstract
Invariant natural killer T (iNKT) cells are a unique T cell lineage that develop in the thymus and emerge with a memory-like phenotype. Accordingly, following antigenic stimulation, they can rapidly produce copious amounts of Th1 and Th2 cytokines and mediate activation of several immune cells. Thus, it is not surprising that iNKT cells play diverse roles in a broad range of diseases. Given their pivotal roles in host immunity, it is crucial that we understand the mechanisms that govern iNKT cell development and effector functions. Over the last two decades, several studies have contributed to the current knowledge of iNKT cell biology and activity. Collectively, these studies reveal that the thymic development of iNKT cells, their lineage expansion, and functional properties are tightly regulated by a complex network of transcription factors and signaling molecules. While prior studies have clearly established the importance of the SLAM-SAP-Fyn signaling axis in iNKT cell ontogenesis, recent studies provide exciting mechanistic insights into the role of this signaling cascade in iNKT cell development, lineage fate decisions, and functions. Here we summarize the previous literature and discuss the more recent studies that guide our understanding of iNKT cell development and functional responses.
Collapse
|
42
|
Legoux F, Gilet J, Procopio E, Echasserieau K, Bernardeau K, Lantz O. Molecular mechanisms of lineage decisions in metabolite-specific T cells. Nat Immunol 2019; 20:1244-1255. [PMID: 31431722 DOI: 10.1038/s41590-019-0465-3] [Citation(s) in RCA: 65] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2019] [Accepted: 07/10/2019] [Indexed: 01/26/2023]
Abstract
Mucosal-associated invariant T cells (MAIT cells) recognize the microbial metabolite 5-(2-oxopropylideneamino)-6-D-ribitylaminouracil (5-OP-RU) presented by the MHC class Ib molecule, MR1. MAIT cells acquire effector functions during thymic development, but the mechanisms involved are unclear. Here we used single-cell RNA-sequencing to characterize the developmental path of 5-OP-RU-specific thymocytes. In addition to the known MAIT1 and MAIT17 effector subsets selected on bone-marrow-derived hematopoietic cells, we identified 5-OP-RU-specific thymocytes that were selected on thymic epithelial cells and differentiated into CD44- naive T cells. MAIT cell positive selection required signaling through the adapter, SAP, that controlled the expression of the transcription factor, ZBTB16. Pseudotemporal ordering of single cells revealed transcriptional trajectories of 5-OP-RU-specific thymocytes selected on either thymic epithelial cells or hematopoietic cells. The resulting model illustrates T cell lineage decisions.
Collapse
Affiliation(s)
| | - Jules Gilet
- INSERM U932, PSL University, Institut Curie, Paris, France
| | | | - Klara Echasserieau
- Production de Protéines Recombinantes, Centre de Recherche en Cancérologie et Immunologie Nantes-Angers, INSERM-1232, Nantes, France
| | - Karine Bernardeau
- Production de Protéines Recombinantes, Centre de Recherche en Cancérologie et Immunologie Nantes-Angers, INSERM-1232, Nantes, France
| | - Olivier Lantz
- INSERM U932, PSL University, Institut Curie, Paris, France. .,Laboratoire d'immunologie Clinique, Institut Curie, Paris, France. .,Centre d'investigation Clinique en Biothérapie, Gustave-Roussy Institut Curie, Paris, France.
| |
Collapse
|
43
|
Gerth E, Mattner J. The Role of Adaptor Proteins in the Biology of Natural Killer T (NKT) Cells. Front Immunol 2019; 10:1449. [PMID: 31293596 PMCID: PMC6603179 DOI: 10.3389/fimmu.2019.01449] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2019] [Accepted: 06/10/2019] [Indexed: 12/31/2022] Open
Abstract
Adaptor proteins contribute to the selection, differentiation and activation of natural killer T (NKT) cells, an innate(-like) lymphocyte population endowed with powerful immunomodulatory properties. Distinct from conventional T lymphocytes NKT cells preferentially home to the liver, undergo a thymic maturation and differentiation process and recognize glycolipid antigens presented by the MHC class I-like molecule CD1d on antigen presenting cells. NKT cells express a semi-invariant T cell receptor (TCR), which combines the Vα14-Jα18 chain with a Vβ2, Vβ7, or Vβ8 chain in mice and the Vα24 chain with the Vβ11 chain in humans. The avidity of interactions between their TCR, the presented glycolipid antigen and CD1d govern the selection and differentiation of NKT cells. Compared to TCR ligation on conventional T cells engagement of the NKT cell TCR delivers substantially stronger signals, which trigger the unique NKT cell developmental program. Furthermore, NKT cells express a panoply of primarily inhibitory NK cell receptors (NKRs) that control their self-reactivity and avoid autoimmune activation. Adaptor proteins influence NKT cell biology through the integration of TCR, NKR and/or SLAM (signaling lymphocyte-activation molecule) receptor signals or the variation of CD1d-restricted antigen presentation. TCR and NKR ligation engage the SH2 domain-containing leukocyte protein of 76kDa slp-76 whereas the SLAM associated protein SAP serves as adaptor for the SLAM receptor family. Indeed, the selection and differentiation of NKT cells selectively requires co-stimulation via SLAM receptors. Furthermore, SAP deficiency causes X-linked lymphoproliferative disease with multiple immune defects including a lack of circulating NKT cells. While a deletion of slp-76 leads to a complete loss of all peripheral T cell populations, mutations in the SH2 domain of slp-76 selectively affect NKT cell biology. Furthermore, adaptor proteins influence the expression and trafficking of CD1d in antigen presenting cells and subsequently selection and activation of NKT cells. Adaptor protein complex 3 (AP-3), for example, is required for the efficient presentation of glycolipid antigens which require internalization and processing. Thus, our review will focus on the complex contribution of adaptor proteins to the delivery of TCR, NKR and SLAM receptor signals in the unique biology of NKT cells and CD1d-restricted antigen presentation.
Collapse
Affiliation(s)
- Evelyn Gerth
- Mikrobiologisches Institut - Klinische Mikrobiologie, Immunologie und Hygiene, Universitätsklinikum Erlangen, Friedrich-Alexander Universität (FAU) Erlangen-Nürnberg, Erlangen, Germany
| | - Jochen Mattner
- Mikrobiologisches Institut - Klinische Mikrobiologie, Immunologie und Hygiene, Universitätsklinikum Erlangen, Friedrich-Alexander Universität (FAU) Erlangen-Nürnberg, Erlangen, Germany
| |
Collapse
|
44
|
Darcy PW, Jin K, Osorio L, Denzin LK, Sant'Angelo DB. Coexpression of YY1 Is Required to Elaborate the Effector Functions Controlled by PLZF in NKT Cells. THE JOURNAL OF IMMUNOLOGY 2019; 203:627-638. [PMID: 31227579 DOI: 10.4049/jimmunol.1900055] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/17/2019] [Accepted: 06/04/2019] [Indexed: 01/15/2023]
Abstract
The promyelocytic leukemia zinc-finger transcription factor (PLZF) is essential for nearly all of the unique, innate-like functions and characteristics of NKT cells. It is not known, however, if the activity of PLZF is regulated by other factors. In this article, we show that the function of PLZF is completely dependent on the transcription factor Yin Yang 1 (YY1). Mouse NKT cells expressing wild-type levels of PLZF, but deficient for YY1, had developmental defects, lost their characteristic "preformed" mRNA for cytokines, and failed to produce cytokine protein upon primary activation. Immunoprecipitation experiments showed that YY1 and PLZF were coassociated. Taken together, these biochemical and genetic data show that the broadly expressed transcription factor, YY1, is required for the cell-specific "master regulator" functions of PLZF.
Collapse
Affiliation(s)
- Patrick W Darcy
- Child Health Institute of New Jersey, Rutgers Robert Wood Johnson Medical School, New Brunswick, NJ 08901
| | - Kangxin Jin
- Child Health Institute of New Jersey, Rutgers Robert Wood Johnson Medical School, New Brunswick, NJ 08901
| | - Louis Osorio
- Child Health Institute of New Jersey, Rutgers Robert Wood Johnson Medical School, New Brunswick, NJ 08901
| | - Lisa K Denzin
- Child Health Institute of New Jersey, Rutgers Robert Wood Johnson Medical School, New Brunswick, NJ 08901.,Graduate School of Biomedical Sciences, Rutgers Robert Wood Johnson Medical School, New Brunswick, NJ 08901; and.,Department of Pediatrics, Rutgers Robert Wood Johnson Medical School, New Brunswick, NJ 08901
| | - Derek B Sant'Angelo
- Child Health Institute of New Jersey, Rutgers Robert Wood Johnson Medical School, New Brunswick, NJ 08901; .,Graduate School of Biomedical Sciences, Rutgers Robert Wood Johnson Medical School, New Brunswick, NJ 08901; and.,Department of Pediatrics, Rutgers Robert Wood Johnson Medical School, New Brunswick, NJ 08901
| |
Collapse
|
45
|
Affiliation(s)
- Shankar S Iyer
- Division of Gastroenterology, Hepatology and Endoscopy, Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA.
| | - Yu-Hwa Huang
- Division of Gastroenterology, Hepatology and Endoscopy, Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
| | - Richard S Blumberg
- Division of Gastroenterology, Hepatology and Endoscopy, Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA.
| |
Collapse
|