1
|
Karatepe K, Mafra de Faria B, Zhang J, Chen X, Pinto H, Fyodorov D, Sefik E, Willcockson M, Flavell R, Skoultchi A, Guo S. Linker histone regulates the myeloid versus lymphoid bifurcation of multipotent hematopoietic stem and progenitors. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.09.16.613227. [PMID: 39345411 PMCID: PMC11429722 DOI: 10.1101/2024.09.16.613227] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/01/2024]
Abstract
Myeloid-biased differentiation of multipotent hematopoietic stem and progenitor cells (HSPCs) occurs with aging or exhaustion. The molecular mechanism(s) responsible for this fate bias remain unclear. Here we report that linker histone regulates HSPC fate choice at the lymphoid versus myeloid bifurcation. HSPCs expressing H1.0 from a doxycycline (dox) inducible transgene favor the lymphoid fate, display strengthened nucleosome organization and reduced chromatin accessibility at genomic regions hosting key myeloid fate drivers. The transcription factor Hlf is located in one of such regions, where chromatin accessibility and gene expression is reduced in H1.0 high HSPCs. Furthermore, H1.0 protein in HSPCs decreases in an aspartyl protease dependent manner, a process enhanced in response to interferon alpha (IFNα) signaling. Aspartyl protease inhibitors preserve endogenous H1.0 levels and promote the lymphoid fate of wild type HSPCs. Thus, our work uncovers a point of intervention to mitigate myeloid skewed hematopoiesis.
Collapse
|
2
|
Keulen GM, Huckriede J, Wichapong K, Nicolaes GAF. Histon activities in the extracellular environment: regulation and prothrombotic implications. Curr Opin Hematol 2024; 31:230-237. [PMID: 39087372 PMCID: PMC11296287 DOI: 10.1097/moh.0000000000000827] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/02/2024]
Abstract
PURPOSE OF REVIEW Thromboembolic complications are a major contributor to global mortality. The relationship between inflammation and coagulation pathways has become an emerging research topic where the role of the innate immune response, and specifically neutrophils in "immunothrombosis" are receiving much attention. This review aims to dissect the intricate interplay between histones (from neutrophils or cellular damage) and the haemostatic pathway, and to explore mechanisms that may counteract the potentially procoagulant effects of those histones that have escaped their nuclear localization. RECENT FINDINGS Extracellular histones exert procoagulant effects via endothelial damage, platelet activation, and direct interaction with coagulation proteins. Neutralization of histone activities can be achieved by complexation with physiological molecules, through pharmacological compounds, or via proteolytic degradation. Details of neutralization of extracellular histones are still being studied. SUMMARY Leveraging the understanding of extracellular histone neutralization will pave the way for development of novel pharmacological interventions to treat and prevent complications, including thromboembolism, in patients in whom extracellular histones contribute to their overall clinical status.
Collapse
Affiliation(s)
- Gwen M Keulen
- Department of Biochemistry, Cardiovascular Research Institute Maastricht (CARIM), University of Maastricht, Maastricht, The Netherlands
| | | | | | | |
Collapse
|
3
|
Yan X, Wei S, Yang Y, Zhao Z, Wu Q, Tang H. CTSG may inhibit disease progression in HIV-related lung cancer patients by affecting immunosuppression. Infect Agent Cancer 2024; 19:34. [PMID: 39080685 PMCID: PMC11290089 DOI: 10.1186/s13027-024-00599-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2024] [Accepted: 07/16/2024] [Indexed: 08/02/2024] Open
Abstract
OBJECTIVES Lung cancer is an independent risk factor for pulmonary complications following HIV infection. This study aimed to examine the expression and clinical significance of Cathepsin G (CTSG) protein in both non-HIV and HIV-related lung cancers. METHODS The data related to lung adenocarcinoma (LUAD) and lung squamous carcinoma (LUSC) in the TCGA dataset and the data related to healthy individuals in the GTEx dataset, the GEPIA2 database was used to excavate the distinction in the expression of CTSG protein in non-small cell lung cancer (NSCLC) tissues versus normal non-cancerous tissues. The Ualcan database was used to compare the differences in CTSG expression at different stages of LUAD and LUSC. Immunohistochemistry (IHC) was used to detect the expression of CTSG proteins in the pathological tissues of patients with HIV-related lung cancer and patients with lung cancer without co-infection, the Kaplan-Meier method was used for survival analysis. RESULTS We observed that CTSG expression in NSCLC is lower compared to adjacent non-tumor tissues and correlates with NSCLC clinical stage. CTSG protein expression in HIV-related lung cancer tissues was lower than in adjacent tissues and lower than in lung cancer tissues without HIV infection, with a statistically significant difference (P < 0.05). It correlated with CD4 + T cell count and CD4+/CD8 + T cell ratio, as well as with the pathological type, distant metastasis, and clinical stage of HIV-related lung cancer, all with statistical significance (P < 0.05). CONCLUSIONS CTSG could potentially mitigate disease advancement in HIV-related lung cancer patients by inhibiting immune depletion, serving as a prospective immunotherapeutic target for both non-HIV and HIV-associated lung cancers.
Collapse
Affiliation(s)
- Xuan Yan
- Department of Respiratory and Critical Care Medicine, Shanghai Public Health Clinical Center, Fudan University, No 2901, Caolang Road, Jinshan District, Shanghai, 201508, China
| | - Shuoyan Wei
- Department of Respiratory and Critical Care Medicine, Shanghai Public Health Clinical Center, Fudan University, No 2901, Caolang Road, Jinshan District, Shanghai, 201508, China
| | - Yuexiang Yang
- Department of Pathology, Shanghai Public Health Clinical Center, Fudan University, Shanghai, China
| | - Zhangyan Zhao
- Department of Respiratory and Critical Care Medicine, Shanghai Public Health Clinical Center, Fudan University, No 2901, Caolang Road, Jinshan District, Shanghai, 201508, China
| | - Qingguo Wu
- Department of Respiratory and Critical Care Medicine, Shanghai Public Health Clinical Center, Fudan University, No 2901, Caolang Road, Jinshan District, Shanghai, 201508, China.
| | - Haicheng Tang
- Department of Respiratory and Critical Care Medicine, Shanghai Public Health Clinical Center, Fudan University, No 2901, Caolang Road, Jinshan District, Shanghai, 201508, China.
| |
Collapse
|
4
|
Liu H, Sun L, Zhao H, Zhao Z, Zhang S, Jiang S, Cheng T, Wang X, Wang T, Shao Y, Zhu H, Han H, Cao Y, Jiang E, Cao Y, Xu Y. Proteinase 3 depletion attenuates leukemia by promoting myeloid differentiation. Cell Death Differ 2024; 31:697-710. [PMID: 38589495 PMCID: PMC11165011 DOI: 10.1038/s41418-024-01288-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2023] [Revised: 03/19/2024] [Accepted: 03/22/2024] [Indexed: 04/10/2024] Open
Abstract
Hematopoietic stem and progenitor cells (HSPCs) that have impaired differentiation can transform into leukemic blasts. However, the mechanism that controls differentiation remains elusive. Here, we show that the genetic elimination of Proteinase 3 (PRTN3) in mice led to spontaneous myeloid differentiation. Mechanistically, our findings indicate that PRTN3 interacts with the N-terminal of STAT3, serving as a negative regulator of STAT3-dependent myeloid differentiation. Specifically, PRTN3 promotes STAT3 ubiquitination and degradation, while simultaneously reducing STAT3 phosphorylation and nuclear translocation during G-CSF-stimulated myeloid differentiation. Strikingly, pharmacological inhibition of STAT3 (Stattic) partially counteracted the effects of PRTN3 deficiency on myeloid differentiation. Moreover, the deficiency of PRTN3 in primary AML blasts promotes the differentiation of those cells into functional neutrophils capable of chemotaxis and phagocytosis, ultimately resulting in improved overall survival rates for recipients. These findings indicate PRTN3 exerts an inhibitory effect on STAT3-dependent myeloid differentiation and could be a promising therapeutic target for the treatment of acute myeloid leukemia.
Collapse
Affiliation(s)
- Huan Liu
- State Key Laboratory of Experimental Hematology, National Clinical Research Center for Blood Diseases, Haihe Laboratory of Cell Ecosystem, Institute of Hematology & Blood Diseases Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin, 300020, China
- Tianjin Institutes of Health Science, Tianjin, 301600, China
| | - Lu Sun
- State Key Laboratory of Experimental Hematology, National Clinical Research Center for Blood Diseases, Haihe Laboratory of Cell Ecosystem, Institute of Hematology & Blood Diseases Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin, 300020, China
- Tianjin Institutes of Health Science, Tianjin, 301600, China
| | - Hongfei Zhao
- State Key Laboratory of Experimental Hematology, National Clinical Research Center for Blood Diseases, Haihe Laboratory of Cell Ecosystem, Institute of Hematology & Blood Diseases Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin, 300020, China
- Tianjin Institutes of Health Science, Tianjin, 301600, China
| | - Zihan Zhao
- State Key Laboratory of Experimental Hematology, National Clinical Research Center for Blood Diseases, Haihe Laboratory of Cell Ecosystem, Institute of Hematology & Blood Diseases Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin, 300020, China
- Tianjin Institutes of Health Science, Tianjin, 301600, China
| | - Shiyue Zhang
- State Key Laboratory of Experimental Hematology, National Clinical Research Center for Blood Diseases, Haihe Laboratory of Cell Ecosystem, Institute of Hematology & Blood Diseases Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin, 300020, China
- Tianjin Institutes of Health Science, Tianjin, 301600, China
| | - Shan Jiang
- State Key Laboratory of Experimental Hematology, National Clinical Research Center for Blood Diseases, Haihe Laboratory of Cell Ecosystem, Institute of Hematology & Blood Diseases Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin, 300020, China
- Tianjin Institutes of Health Science, Tianjin, 301600, China
- Clinical Laboratory, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, 710061, China
| | - Tianran Cheng
- State Key Laboratory of Experimental Hematology, National Clinical Research Center for Blood Diseases, Haihe Laboratory of Cell Ecosystem, Institute of Hematology & Blood Diseases Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin, 300020, China
- Tianjin Institutes of Health Science, Tianjin, 301600, China
| | - Xiaohan Wang
- The Second School of Clinical Medicine, Guangdong Medical University, Dongguan, 523808, China
| | - Tong Wang
- State Key Laboratory of Experimental Hematology, National Clinical Research Center for Blood Diseases, Haihe Laboratory of Cell Ecosystem, Institute of Hematology & Blood Diseases Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin, 300020, China
- Tianjin Institutes of Health Science, Tianjin, 301600, China
| | - Ya Shao
- State Key Laboratory of Experimental Hematology, National Clinical Research Center for Blood Diseases, Haihe Laboratory of Cell Ecosystem, Institute of Hematology & Blood Diseases Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin, 300020, China
- Tianjin Institutes of Health Science, Tianjin, 301600, China
| | - Haiyan Zhu
- Department of Clinical Lab, Weihai Municipal Hospital, Weihai, 264200, China
| | - Huijuan Han
- Department of Medical Laboratory, School of Clinical Medicine, Ningxia Medical University; Ningxia Key Laboratory of Clinical and Pathogenic Microbiology, General Hospital of Ningxia Medical University, Yinchuan, 750001, China
| | - Yigeng Cao
- State Key Laboratory of Experimental Hematology, National Clinical Research Center for Blood Diseases, Haihe Laboratory of Cell Ecosystem, Institute of Hematology & Blood Diseases Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin, 300020, China
- Tianjin Institutes of Health Science, Tianjin, 301600, China
- Hematopoietic Stem Cell Transplantation Center, Institute of Hematology and Blood Diseases Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Tianjin, 300020, China
| | - Erlie Jiang
- State Key Laboratory of Experimental Hematology, National Clinical Research Center for Blood Diseases, Haihe Laboratory of Cell Ecosystem, Institute of Hematology & Blood Diseases Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin, 300020, China
- Tianjin Institutes of Health Science, Tianjin, 301600, China
- Hematopoietic Stem Cell Transplantation Center, Institute of Hematology and Blood Diseases Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Tianjin, 300020, China
| | - Yihai Cao
- Department of Microbiology, Tumor and Cell Biology, Karolinska Institute, Solna, 17165, Sweden.
| | - Yuanfu Xu
- State Key Laboratory of Experimental Hematology, National Clinical Research Center for Blood Diseases, Haihe Laboratory of Cell Ecosystem, Institute of Hematology & Blood Diseases Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin, 300020, China.
- Tianjin Institutes of Health Science, Tianjin, 301600, China.
| |
Collapse
|
5
|
Raith J, Bachmann M, Gonther S, Stülb H, Aghdassi AA, Pham CTN, Mühl H. Targeting cathepsin C ameliorates murine acetaminophen-induced liver injury. Theranostics 2024; 14:3029-3042. [PMID: 38855187 PMCID: PMC11155399 DOI: 10.7150/thno.96092] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2024] [Accepted: 04/27/2024] [Indexed: 06/11/2024] Open
Abstract
Acetaminophen (APAP) overdosing is a major cause of acute liver failure worldwide and an established model for drug-induced acute liver injury (ALI). While studying gene expression during murine APAP-induced ALI by 3'mRNA sequencing (massive analysis of cDNA ends, MACE), we observed splenic mRNA accumulation encoding for the neutrophil serine proteases cathepsin G, neutrophil elastase, and proteinase-3 - all are hierarchically activated by cathepsin C (CtsC). This, along with increased serum levels of these proteases in diseased mice, concurs with the established phenomenon of myeloid cell mobilization during APAP intoxication. Objective: In order to functionally characterize CtsC in murine APAP-induced ALI, effects of its genetic or pharmacological inhibition were investigated. Methods and Results: We report on substantially reduced APAP toxicity in CtsC deficient mice. Alleviation of disease was likewise observed by treating mice with the CtsC inhibitor AZD7986, both in short-term prophylactic and therapeutic protocols. This latter observation indicates a mode of action beyond inhibition of granule-associated serine proteases. Protection in CtsC knockout or AZD7986-treated wildtype mice was unrelated to APAP metabolization but, as revealed by MACE, realtime PCR, or ELISA, associated with impaired expression of inflammatory genes with proven pathogenic roles in ALI. Genes consistently downregulated in protocols tested herein included cxcl2, mmp9, and angpt2. Moreover, ptpn22, a positive regulator of the toll-like receptor/interferon-axis, was reduced by targeting CtsC. Conclusions: This work suggests CtsC as promising therapeutic target for the treatment of ALI, among others paradigmatic APAP-induced ALI. Being also currently evaluated in phase III clinical trials for bronchiectasis, successful application of AZD7986 in experimental APAP intoxication emphasizes the translational potential of this latter therapeutic approach.
Collapse
Affiliation(s)
- Jessica Raith
- pharmazentrum frankfurt/ZAFES, Institute of General Pharmacology and Toxicology, Faculty of Medicine, Goethe University Frankfurt, Frankfurt am Main, Germany
| | - Malte Bachmann
- pharmazentrum frankfurt/ZAFES, Institute of General Pharmacology and Toxicology, Faculty of Medicine, Goethe University Frankfurt, Frankfurt am Main, Germany
| | - Sina Gonther
- pharmazentrum frankfurt/ZAFES, Institute of General Pharmacology and Toxicology, Faculty of Medicine, Goethe University Frankfurt, Frankfurt am Main, Germany
| | - Hendrik Stülb
- pharmazentrum frankfurt/ZAFES, Institute of General Pharmacology and Toxicology, Faculty of Medicine, Goethe University Frankfurt, Frankfurt am Main, Germany
| | - Ali A. Aghdassi
- Department of Medicine A, University Medicine Greifswald, Greifswald, Germany
| | - Christine T. N. Pham
- John Cochran VA Medical Center, Saint Louis, MO, USA; Department of Medicine, Division of Rheumatology and the Department of Surgery, Section of Vascular Surgery, Washington University School of Medicine, Saint Louis, MO, USA
| | - Heiko Mühl
- pharmazentrum frankfurt/ZAFES, Institute of General Pharmacology and Toxicology, Faculty of Medicine, Goethe University Frankfurt, Frankfurt am Main, Germany
| |
Collapse
|
6
|
Morioka S, Oishi T, Hatazawa S, Kakuta T, Ogoshi T, Umeda K, Kodera N, Kurumizaka H, Shibata M. High-Speed Atomic Force Microscopy Reveals the Nucleosome Sliding and DNA Unwrapping/Wrapping Dynamics of Tail-less Nucleosomes. NANO LETTERS 2024; 24:5246-5254. [PMID: 38602428 DOI: 10.1021/acs.nanolett.4c00801] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/12/2024]
Abstract
Each nucleosome contains four types of histone proteins, each with a histone tail. These tails are essential for the epigenetic regulation of gene expression through post-translational modifications (PTMs). However, their influence on nucleosome dynamics at the single-molecule level remains undetermined. Here, we employed high-speed atomic force microscopy to visualize nucleosome dynamics in the absence of the N-terminal tail of each histone or all of the N-terminal tails. Loss of all tails stripped 6.7 base pairs of the nucleosome from the histone core, and the DNA entry-exit angle expanded by 18° from that of wild-type nucleosomes. Tail-less nucleosomes, particularly those without H2B and H3 tails, showed a 10-fold increase in dynamics, such as nucleosome sliding and DNA unwrapping/wrapping, within 0.3 s, emphasizing their role in histone-DNA interactions. Our findings illustrate that N-terminal histone tails stabilize the nucleosome structure, suggesting that histone tail PTMs modulate nucleosome dynamics.
Collapse
Affiliation(s)
- Shin Morioka
- Graduate School of Natural Science and Technology, Kanazawa University, Kakuma-machi, Kanazawa, Ishikawa 920-1192, Japan
| | - Takumi Oishi
- Laboratory of Chromatin Structure and Function, Institute for Quantitative Biosciences, The University of Tokyo, 1-1-1 Yayoi, Bunkyo-ku, Tokyo 113-0032, Japan
- Department of Biological Sciences, Graduate School of Science, The University of Tokyo, 1-1-1 Yayoi, Bunkyo-ku, Tokyo 113-0032, Japan
| | - Suguru Hatazawa
- Laboratory of Chromatin Structure and Function, Institute for Quantitative Biosciences, The University of Tokyo, 1-1-1 Yayoi, Bunkyo-ku, Tokyo 113-0032, Japan
| | - Takahiro Kakuta
- Graduate School of Natural Science and Technology, Kanazawa University, Kakuma-machi, Kanazawa, Ishikawa 920-1192, Japan
- WPI Nano Life Science Institute (WPI-NanoLSI), Kanazawa University, Kakuma-machi, Kanazawa, Ishikawa 920-1192, Japan
| | - Tomoki Ogoshi
- WPI Nano Life Science Institute (WPI-NanoLSI), Kanazawa University, Kakuma-machi, Kanazawa, Ishikawa 920-1192, Japan
- Department of Synthetic Chemistry and Biological Chemistry, Graduate School of Engineering, Kyoto University, Katsura, Nishikyo-ku, Kyoto 615-8510, Japan
| | - Kenichi Umeda
- WPI Nano Life Science Institute (WPI-NanoLSI), Kanazawa University, Kakuma-machi, Kanazawa, Ishikawa 920-1192, Japan
| | - Noriyuki Kodera
- WPI Nano Life Science Institute (WPI-NanoLSI), Kanazawa University, Kakuma-machi, Kanazawa, Ishikawa 920-1192, Japan
| | - Hitoshi Kurumizaka
- Laboratory of Chromatin Structure and Function, Institute for Quantitative Biosciences, The University of Tokyo, 1-1-1 Yayoi, Bunkyo-ku, Tokyo 113-0032, Japan
- Department of Biological Sciences, Graduate School of Science, The University of Tokyo, 1-1-1 Yayoi, Bunkyo-ku, Tokyo 113-0032, Japan
| | - Mikihiro Shibata
- WPI Nano Life Science Institute (WPI-NanoLSI), Kanazawa University, Kakuma-machi, Kanazawa, Ishikawa 920-1192, Japan
- Institute for Frontier Science Initiative, Kanazawa University, Kakuma-machi, Kanazawa, Ishikawa 920-1192, Japan
| |
Collapse
|
7
|
Caldwell BA, Li L. Epigenetic regulation of innate immune dynamics during inflammation. J Leukoc Biol 2024; 115:589-606. [PMID: 38301269 PMCID: PMC10980576 DOI: 10.1093/jleuko/qiae026] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2023] [Revised: 01/18/2024] [Accepted: 01/19/2024] [Indexed: 02/03/2024] Open
Abstract
Innate immune cells play essential roles in modulating both immune defense and inflammation by expressing a diverse array of cytokines and inflammatory mediators, phagocytizing pathogens to promote immune clearance, and assisting with the adaptive immune processes through antigen presentation. Rudimentary innate immune "memory" states such as training, tolerance, and exhaustion develop based on the nature, strength, and duration of immune challenge, thereby enabling dynamic transcriptional reprogramming to alter present and future cell behavior. Underlying transcriptional reprogramming are broad changes to the epigenome, or chromatin alterations above the level of DNA sequence. These changes include direct modification of DNA through cytosine methylation as well as indirect modifications through alterations to histones that comprise the protein core of nucleosomes. In this review, we will discuss recent advances in our understanding of how these epigenetic changes influence the dynamic behavior of the innate immune system during both acute and chronic inflammation, as well as how stable changes to the epigenome result in long-term alterations of innate cell behavior related to pathophysiology.
Collapse
Affiliation(s)
- Blake A. Caldwell
- Department of Biological Sciences, Virginia Tech, 970 Washington St. SW, Blacksburg, VA 24061-0910, USA
| | - Liwu Li
- Department of Biological Sciences, Virginia Tech, 970 Washington St. SW, Blacksburg, VA 24061-0910, USA
| |
Collapse
|
8
|
Nechanitzky R, Ramachandran P, Nechanitzky D, Li WY, Wakeham AC, Haight J, Saunders ME, Epelman S, Mak TW. CaSSiDI: novel single-cell "Cluster Similarity Scoring and Distinction Index" reveals critical functions for PirB and context-dependent Cebpb repression. Cell Death Differ 2024; 31:265-279. [PMID: 38383888 PMCID: PMC10923835 DOI: 10.1038/s41418-024-01268-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2023] [Revised: 01/15/2024] [Accepted: 02/07/2024] [Indexed: 02/23/2024] Open
Abstract
PirB is an inhibitory cell surface receptor particularly prominent on myeloid cells. PirB curtails the phenotypes of activated macrophages during inflammation or tumorigenesis, but its functions in macrophage homeostasis are obscure. To elucidate PirB-related functions in macrophages at steady-state, we generated and compared single-cell RNA-sequencing (scRNAseq) datasets obtained from myeloid cell subsets of wild type (WT) and PirB-deficient knockout (PirB KO) mice. To facilitate this analysis, we developed a novel approach to clustering parameter optimization called "Cluster Similarity Scoring and Distinction Index" (CaSSiDI). We demonstrate that CaSSiDI is an adaptable computational framework that facilitates tandem analysis of two scRNAseq datasets by optimizing clustering parameters. We further show that CaSSiDI offers more advantages than a standard Seurat analysis because it allows direct comparison of two or more independently clustered datasets, thereby alleviating the need for batch-correction while identifying the most similar and different clusters. Using CaSSiDI, we found that PirB is a novel regulator of Cebpb expression that controls the generation of Ly6Clo patrolling monocytes and the expansion properties of peritoneal macrophages. PirB's effect on Cebpb is tissue-specific since it was not observed in splenic red pulp macrophages (RPMs). However, CaSSiDI revealed a segregation of the WT RPM population into a CD68loIrf8+ "neuronal-primed" subset and an CD68hiFtl1+ "iron-loaded" subset. Our results establish the utility of CaSSiDI for single-cell assay analyses and the determination of optimal clustering parameters. Our application of CaSSiDI in this study has revealed previously unknown roles for PirB in myeloid cell populations. In particular, we have discovered homeostatic functions for PirB that are related to Cebpb expression in distinct macrophage subsets.
Collapse
Affiliation(s)
- Robert Nechanitzky
- Princess Margaret Cancer Centre, Ontario Cancer Institute, University Health Network, Toronto, ON, Canada.
- Providence Therapeutics Holdings Inc., Calgary, AB, Canada.
| | - Parameswaran Ramachandran
- Princess Margaret Cancer Centre, Ontario Cancer Institute, University Health Network, Toronto, ON, Canada
| | - Duygu Nechanitzky
- Princess Margaret Cancer Centre, Ontario Cancer Institute, University Health Network, Toronto, ON, Canada
| | - Wanda Y Li
- Centre for Oncology and Immunology, Hong Kong Science Park, Hong Kong SAR, China
| | - Andrew C Wakeham
- Princess Margaret Cancer Centre, Ontario Cancer Institute, University Health Network, Toronto, ON, Canada
| | - Jillian Haight
- Princess Margaret Cancer Centre, Ontario Cancer Institute, University Health Network, Toronto, ON, Canada
| | - Mary E Saunders
- Princess Margaret Cancer Centre, Ontario Cancer Institute, University Health Network, Toronto, ON, Canada
| | - Slava Epelman
- Toronto General Hospital Research Institute, University Health Network, Toronto, ON, Canada
- Ted Rogers Centre for Heart Research, Translational Biology and Engineering Program, Toronto, ON, Canada
- Peter Munk Cardiac Centre, UHN, Toronto, ON, Canada
- Department of Laboratory Medicine and Pathobiology, University of Toronto, Toronto, ON, Canada
- Departments of Immunology and Medical Biophysics, University of Toronto, Toronto, ON, Canada
| | - Tak W Mak
- Princess Margaret Cancer Centre, Ontario Cancer Institute, University Health Network, Toronto, ON, Canada.
- Centre for Oncology and Immunology, Hong Kong Science Park, Hong Kong SAR, China.
- Department of Pathology Department of Pathology, School of Clinical Medicine, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong SAR, China.
| |
Collapse
|
9
|
Zhang T, Han X, Zhang H, Li X, Zhou X, Feng S, Guo C, Song F, Tao T, Yin C, Xia J. Identification of molecular markers for predicting the severity of heart failure after AMI: An Olink precision proteomic study. Clin Chim Acta 2024; 555:117825. [PMID: 38331209 DOI: 10.1016/j.cca.2024.117825] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2023] [Revised: 01/06/2024] [Accepted: 02/05/2024] [Indexed: 02/10/2024]
Abstract
BACKGROUND Acute myocardial infarction (AMI) still has a high incidence of varying degrees of heart failure (HF). The aim of this study is to identify new molecular markers for predicting the severity of HF after AMI. METHODS We analyzed demographic indicators, past medical history, clinical indicators, major adverse cardiac events (MACEs) and molecular markers in patients with different Killip classifications after AMI. Olink proteomics was used to explore new molecular markers for predicting different severity of HF after AMI. RESULTS Neutrophil count was the independent risk factors for in-hospital MACEs. Nineteen differentially expressed proteins (DEPs) increased significantly with increasing Killip classification. Five DEPs were also found to have an AUC (95 % CI) value greater than 0.8: GDF-15, NT-pro BNP, TNF-R2, TNF-R1 and TFF3. CONCLUSIONS Neutrophil count, GDF-15, TNF-R2, TNF-R1 and TFF3 were closely related to the Killip classification of HF after AMI, which suggests that the inflammatory response plays an important role in the severity of HF after AMI and that regulating inflammation might become a new target for controlling HF.
Collapse
Affiliation(s)
- Tianxing Zhang
- Department of Cardiology, Xuanwu Hospital, Capital Medical University, Beijing 100053, China
| | - Xuexue Han
- Department of Cardiology, Xuanwu Hospital, Capital Medical University, Beijing 100053, China
| | - Hao Zhang
- Department of Cardiology, Xuanwu Hospital, Capital Medical University, Beijing 100053, China
| | - Xue Li
- Department of Cardiology, Xuanwu Hospital, Capital Medical University, Beijing 100053, China
| | - Xingzhu Zhou
- Department of Cardiology, Xuanwu Hospital, Capital Medical University, Beijing 100053, China
| | - Shuhui Feng
- Department of Cardiology, Xuanwu Hospital, Capital Medical University, Beijing 100053, China
| | - Chenglong Guo
- Department of Cardiology, Xuanwu Hospital, Capital Medical University, Beijing 100053, China
| | - Fei Song
- Department of Cardiology, Xuanwu Hospital, Capital Medical University, Beijing 100053, China
| | - Tianqi Tao
- Department of Geriatrics, The Second Medical Center and National Clinical Research Center for Geriatric Diseases, Chinese PLA General Hospital, Beijing, China
| | - Chunlin Yin
- Department of Cardiology, Xuanwu Hospital, Capital Medical University, Beijing 100053, China
| | - Jinggang Xia
- Department of Cardiology, Xuanwu Hospital, Capital Medical University, Beijing 100053, China.
| |
Collapse
|
10
|
Galy B, Conrad M, Muckenthaler M. Mechanisms controlling cellular and systemic iron homeostasis. Nat Rev Mol Cell Biol 2024; 25:133-155. [PMID: 37783783 DOI: 10.1038/s41580-023-00648-1] [Citation(s) in RCA: 123] [Impact Index Per Article: 123.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/31/2023] [Indexed: 10/04/2023]
Abstract
In mammals, hundreds of proteins use iron in a multitude of cellular functions, including vital processes such as mitochondrial respiration, gene regulation and DNA synthesis or repair. Highly orchestrated regulatory systems control cellular and systemic iron fluxes ensuring sufficient iron delivery to target proteins is maintained, while limiting its potentially deleterious effects in iron-mediated oxidative cell damage and ferroptosis. In this Review, we discuss how cells acquire, traffick and export iron and how stored iron is mobilized for iron-sulfur cluster and haem biogenesis. Furthermore, we describe how these cellular processes are fine-tuned by the combination of various sensory and regulatory systems, such as the iron-regulatory protein (IRP)-iron-responsive element (IRE) network, the nuclear receptor co-activator 4 (NCOA4)-mediated ferritinophagy pathway, the prolyl hydroxylase domain (PHD)-hypoxia-inducible factor (HIF) axis or the nuclear factor erythroid 2-related factor 2 (NRF2) regulatory hub. We further describe how these pathways interact with systemic iron homeostasis control through the hepcidin-ferroportin axis to ensure appropriate iron fluxes. This knowledge is key for the identification of novel therapeutic opportunities to prevent diseases of cellular and/or systemic iron mismanagement.
Collapse
Affiliation(s)
- Bruno Galy
- German Cancer Research Center (DKFZ), Division of Virus-associated Carcinogenesis (F170), Heidelberg, Germany
| | - Marcus Conrad
- Helmholtz Zentrum München, Institute of Metabolism and Cell Death, Neuherberg, Germany
| | - Martina Muckenthaler
- Department of Paediatric Hematology, Oncology and Immunology, University of Heidelberg, Heidelberg, Germany.
- Molecular Medicine Partnership Unit, University of Heidelberg, Heidelberg, Germany.
- German Centre for Cardiovascular Research (DZHK), Partner site Heidelberg/Mannheim, Heidelberg, Germany.
- Translational Lung Research Center Heidelberg (TLRC), German Center for Lung Research (DZL), University of Heidelberg, Heidelberg, Germany.
| |
Collapse
|
11
|
Vastert SJ, Canny SP, Canna SW, Schneider R, Mellins ED. Cytokine Storm Syndrome Associated with Systemic Juvenile Idiopathic Arthritis. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2024; 1448:323-353. [PMID: 39117825 DOI: 10.1007/978-3-031-59815-9_23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/10/2024]
Abstract
The cytokine storm syndrome (CSS) associated with systemic juvenile idiopathic arthritis (sJIA) has widely been referred to as macrophage activation syndrome (MAS). In this chapter, we use the term sJIA-associated CSS (sJIA-CSS) when referring to this syndrome and use the term MAS when referencing publications that specifically report on sJIA-associated MAS.
Collapse
Affiliation(s)
- Sebastiaan J Vastert
- Department of Paediatric Rheumatology & Immunology and Center for Translational Immunology, University Medical Center Utrecht, Utrecht, The Netherlands
| | - Susan P Canny
- Department of Pediatrics, University of Washington, Seattle, WA, USA
| | - Scott W Canna
- Department of Pediatrics and Institute for Immunology, University of Pennsylvania, Philadelphia, PA, USA
| | - Rayfel Schneider
- Department of Paediatrics, University of Toronto and The Hospital for Sick Children, Toronto, ON, Canada
| | - Elizabeth D Mellins
- Divisions of Human Gene Therapy and Allergy, Immunology & Rheumatology, Department of Pediatrics, Stanford University School of Medicine, Stanford, CA, USA.
- Stanford Program in Immunology, Stanford University School of Medicine, Stanford, CA, USA.
| |
Collapse
|
12
|
Schulert GS, Kessel C. Molecular Pathways in the Pathogenesis of Systemic Juvenile Idiopathic Arthritis. Rheum Dis Clin North Am 2023; 49:895-911. [PMID: 37821202 DOI: 10.1016/j.rdc.2023.06.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/13/2023]
Abstract
Systemic juvenile idiopathic arthritis (sJIA) is a rare childhood chronic inflammatory disorder with risk for life-threatening complications including macrophage activation syndrome and lung disease. At onset, sJIA pathogenesis resembles that of the autoinflammatory periodic fever syndromes with marked innate immune activation, expansion of neutrophils and monocytes, and high levels of interleukin-18. Here, we review the current conceptual understanding of sJIA pathogenesis with a focus on both innate and adaptive immune pathways. Finally, we consider how recent progress toward understanding the immunologic basis of sJIA may support new therapies for refractory disease courses.
Collapse
Affiliation(s)
- Grant S Schulert
- Division of Rheumatology, Department of Pediatrics, Cincinnati Children's Hospital Medical Center, University of Cincinnati College of Medicine, 3333 Burnet Avenue, MLC 4010, Cincinnati, OH 45229, USA.
| | - Christoph Kessel
- Department of Pediatric Rheumatology and Immunology, Translational Inflammation Research, University Children's Hospital, Muenster, Germany
| |
Collapse
|
13
|
Xu H, Tan S, Zhao Y, Zhang L, Cao W, Li X, Tian J, Wang X, Li X, Wang F, Cao J, Zhao T. Lin - PU.1 dim GATA-1 - defines haematopoietic stem cells with long-term multilineage reconstitution activity. Cell Prolif 2023; 56:e13490. [PMID: 37147872 PMCID: PMC10623959 DOI: 10.1111/cpr.13490] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2023] [Revised: 04/10/2023] [Accepted: 04/15/2023] [Indexed: 05/07/2023] Open
Abstract
Despite extensive characterization of the state and function of haematopoietic stem cells (HSCs), the use of transcription factors to define the HSC population is still limited. We show here that the HSC population in mouse bone marrow can be defined by the distinct expression levels of Spi1 and Gata1. By using a double fluorescence knock-in mouse model, PGdKI, in which the expression levels of PU.1 and GATA-1 are indicated by the expression of GFP and mCherry, respectively, we uncover that the HSCs with lymphoid and myeloid repopulating activity are specifically enriched in a Lin- PU.1dim GATA-1- (LPG) cell subset. In vivo competitive repopulation assays demonstrate that bone marrow cells gated by LPG exhibit haematopoietic reconstitution activity which is comparable to that of classical Lin- Sca1+ c-kit+ (LSK). The integrated analysis of single-cell RNA sequence data from LPG and LSK-gated cells reveals that a transcriptional network governed by core TFs contributes to regulation of HSC multipotency. These discoveries provide new clues for HSC characterization and functional study.
Collapse
Affiliation(s)
- Haoyu Xu
- State Key Laboratory of Stem Cell and Reproductive Biology, Institute for Stem Cell and Regeneration, Institute of ZoologyChinese Academy of SciencesBeijingChina
- Beijing Institute for Stem Cell and Regenerative MedicineBeijingChina
- University of Chinese Academy of SciencesBeijingChina
| | - Shaojing Tan
- State Key Laboratory of Stem Cell and Reproductive Biology, Institute for Stem Cell and Regeneration, Institute of ZoologyChinese Academy of SciencesBeijingChina
- Beijing Institute for Stem Cell and Regenerative MedicineBeijingChina
- University of Chinese Academy of SciencesBeijingChina
| | - Yu Zhao
- State Key Laboratory of Stem Cell and Reproductive Biology, Institute for Stem Cell and Regeneration, Institute of ZoologyChinese Academy of SciencesBeijingChina
- Beijing Institute for Stem Cell and Regenerative MedicineBeijingChina
- University of Chinese Academy of SciencesBeijingChina
| | - Lin Zhang
- State Key Laboratory of Stem Cell and Reproductive Biology, Institute for Stem Cell and Regeneration, Institute of ZoologyChinese Academy of SciencesBeijingChina
- Beijing Institute for Stem Cell and Regenerative MedicineBeijingChina
- University of Chinese Academy of SciencesBeijingChina
| | - Weiyun Cao
- State Key Laboratory of Stem Cell and Reproductive Biology, Institute for Stem Cell and Regeneration, Institute of ZoologyChinese Academy of SciencesBeijingChina
- Beijing Institute for Stem Cell and Regenerative MedicineBeijingChina
- University of Chinese Academy of SciencesBeijingChina
| | - Xing Li
- State Key Laboratory of Stem Cell and Reproductive Biology, Institute for Stem Cell and Regeneration, Institute of ZoologyChinese Academy of SciencesBeijingChina
- Beijing Institute for Stem Cell and Regenerative MedicineBeijingChina
- University of Chinese Academy of SciencesBeijingChina
| | - Jiayi Tian
- State Key Laboratory of Stem Cell and Reproductive Biology, Institute for Stem Cell and Regeneration, Institute of ZoologyChinese Academy of SciencesBeijingChina
- Beijing Institute for Stem Cell and Regenerative MedicineBeijingChina
- University of Chinese Academy of SciencesBeijingChina
| | - Xiaojing Wang
- State Key Laboratory of Stem Cell and Reproductive Biology, Institute for Stem Cell and Regeneration, Institute of ZoologyChinese Academy of SciencesBeijingChina
- Beijing Institute for Stem Cell and Regenerative MedicineBeijingChina
- University of Chinese Academy of SciencesBeijingChina
| | - Xiaoyan Li
- State Key Laboratory of Stem Cell and Reproductive Biology, Institute for Stem Cell and Regeneration, Institute of ZoologyChinese Academy of SciencesBeijingChina
- University of Chinese Academy of SciencesBeijingChina
| | - Fengchao Wang
- National Institute of Biological Sciences (NIBS)BeijingChina
| | - Jiani Cao
- State Key Laboratory of Stem Cell and Reproductive Biology, Institute for Stem Cell and Regeneration, Institute of ZoologyChinese Academy of SciencesBeijingChina
- Beijing Institute for Stem Cell and Regenerative MedicineBeijingChina
- University of Chinese Academy of SciencesBeijingChina
| | - Tongbiao Zhao
- State Key Laboratory of Stem Cell and Reproductive Biology, Institute for Stem Cell and Regeneration, Institute of ZoologyChinese Academy of SciencesBeijingChina
- Beijing Institute for Stem Cell and Regenerative MedicineBeijingChina
- University of Chinese Academy of SciencesBeijingChina
| |
Collapse
|
14
|
Oishi T, Hatazawa S, Kujirai T, Kato J, Kobayashi Y, Ogasawara M, Akatsu M, Ehara H, Sekine SI, Hayashi G, Takizawa Y, Kurumizaka H. Contributions of histone tail clipping and acetylation in nucleosome transcription by RNA polymerase II. Nucleic Acids Res 2023; 51:10364-10374. [PMID: 37718728 PMCID: PMC10602921 DOI: 10.1093/nar/gkad754] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2023] [Revised: 08/18/2023] [Accepted: 09/07/2023] [Indexed: 09/19/2023] Open
Abstract
The N-terminal tails of histones protrude from the nucleosome core and are target sites for histone modifications, such as acetylation and methylation. Histone acetylation is considered to enhance transcription in chromatin. However, the contribution of the histone N-terminal tail to the nucleosome transcription by RNA polymerase II (RNAPII) has not been clarified. In the present study, we reconstituted nucleosomes lacking the N-terminal tail of each histone, H2A, H2B, H3 or H4, and performed RNAPII transcription assays. We found that the N-terminal tail of H3, but not H2A, H2B and H4, functions in RNAPII pausing at the SHL(-5) position of the nucleosome. Consistently, the RNAPII transcription assay also revealed that the nucleosome containing N-terminally acetylated H3 drastically alleviates RNAPII pausing at the SHL(-5) position. In addition, the H3 acetylated nucleosome produced increased amounts of the run-off transcript. These results provide important evidence that the H3 N-terminal tail plays a role in RNAPII pausing at the SHL(-5) position of the nucleosome, and its acetylation directly alleviates this nucleosome barrier.
Collapse
Affiliation(s)
- Takumi Oishi
- Laboratory of Chromatin Structure and Function, Institute for Quantitative Biosciences, The University of Tokyo, 1-1-1 Yayoi, Bunkyo-ku, Tokyo 113-0032, Japan
- Department of Biological Sciences, Graduate School of Science, The University of Tokyo, 1-1-1 Yayoi, Bunkyo-ku, Tokyo 113-0032, Japan
| | - Suguru Hatazawa
- Laboratory of Chromatin Structure and Function, Institute for Quantitative Biosciences, The University of Tokyo, 1-1-1 Yayoi, Bunkyo-ku, Tokyo 113-0032, Japan
| | - Tomoya Kujirai
- Laboratory of Chromatin Structure and Function, Institute for Quantitative Biosciences, The University of Tokyo, 1-1-1 Yayoi, Bunkyo-ku, Tokyo 113-0032, Japan
- Laboratory for Transcription Structural Biology, RIKEN Center for Biosystems Dynamics Research, 1-7-22 Suehiro-cho, Tsurumi-ku, Yokohama 230-0045, Japan
| | - Junko Kato
- Laboratory of Chromatin Structure and Function, Institute for Quantitative Biosciences, The University of Tokyo, 1-1-1 Yayoi, Bunkyo-ku, Tokyo 113-0032, Japan
| | - Yuki Kobayashi
- Laboratory of Chromatin Structure and Function, Institute for Quantitative Biosciences, The University of Tokyo, 1-1-1 Yayoi, Bunkyo-ku, Tokyo 113-0032, Japan
| | - Mitsuo Ogasawara
- Laboratory of Chromatin Structure and Function, Institute for Quantitative Biosciences, The University of Tokyo, 1-1-1 Yayoi, Bunkyo-ku, Tokyo 113-0032, Japan
| | - Munetaka Akatsu
- Laboratory of Chromatin Structure and Function, Institute for Quantitative Biosciences, The University of Tokyo, 1-1-1 Yayoi, Bunkyo-ku, Tokyo 113-0032, Japan
- Department of Biological Sciences, Graduate School of Science, The University of Tokyo, 1-1-1 Yayoi, Bunkyo-ku, Tokyo 113-0032, Japan
| | - Haruhiko Ehara
- Laboratory for Transcription Structural Biology, RIKEN Center for Biosystems Dynamics Research, 1-7-22 Suehiro-cho, Tsurumi-ku, Yokohama 230-0045, Japan
| | - Shun-ichi Sekine
- Laboratory for Transcription Structural Biology, RIKEN Center for Biosystems Dynamics Research, 1-7-22 Suehiro-cho, Tsurumi-ku, Yokohama 230-0045, Japan
| | - Gosuke Hayashi
- Department of Biomolecular Engineering, Graduate School of Engineering, Nagoya University, Furo-cho, Chikusa-ku, Nagoya 464-8603, Japan
| | - Yoshimasa Takizawa
- Laboratory of Chromatin Structure and Function, Institute for Quantitative Biosciences, The University of Tokyo, 1-1-1 Yayoi, Bunkyo-ku, Tokyo 113-0032, Japan
| | - Hitoshi Kurumizaka
- Laboratory of Chromatin Structure and Function, Institute for Quantitative Biosciences, The University of Tokyo, 1-1-1 Yayoi, Bunkyo-ku, Tokyo 113-0032, Japan
- Department of Biological Sciences, Graduate School of Science, The University of Tokyo, 1-1-1 Yayoi, Bunkyo-ku, Tokyo 113-0032, Japan
- Laboratory for Transcription Structural Biology, RIKEN Center for Biosystems Dynamics Research, 1-7-22 Suehiro-cho, Tsurumi-ku, Yokohama 230-0045, Japan
| |
Collapse
|
15
|
Yang H, Sui P, Guo Y, Chen S, Maloof ME, Ge G, Nihozeko F, Delma CR, Zhu G, Zhang P, Ye Z, Medina EA, Ayad NG, Mesa R, Nimer SD, Chiang C, Xu M, Chen Y, Yang F. Loss of BRD4 induces cell senescence in HSC/HPCs by deregulating histone H3 clipping. EMBO Rep 2023; 24:e57032. [PMID: 37650863 PMCID: PMC10561362 DOI: 10.15252/embr.202357032] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2023] [Revised: 07/28/2023] [Accepted: 08/10/2023] [Indexed: 09/01/2023] Open
Abstract
Bromodomain-containing protein 4 (BRD4) is overexpressed and functionally implicated in various myeloid malignancies. However, the role of BRD4 in normal hematopoiesis remains largely unknown. Here, utilizing an inducible Brd4 knockout mouse model, we find that deletion of Brd4 (Brd4Δ/Δ ) in the hematopoietic system impairs hematopoietic stem cell (HSC) self-renewal and differentiation, which associates with cell cycle arrest and senescence. ATAC-seq analysis shows increased chromatin accessibility in Brd4Δ/Δ hematopoietic stem/progenitor cells (HSC/HPCs). Genome-wide mapping with cleavage under target and release using nuclease (CUT&RUN) assays demonstrate that increased global enrichment of H3K122ac and H3K4me3 in Brd4Δ/Δ HSC/HPCs is associated with the upregulation of senescence-specific genes. Interestingly, Brd4 deletion increases clipped H3 (cH3) which correlates with the upregulation of senescence-specific genes and results in a higher frequency of senescent HSC/HPCs. Re-expression of BRD4 reduces cH3 levels and rescues the senescence rate in Brd4Δ/Δ HSC/HPCs. This study unveils an important role of BRD4 in HSC/HPC function by preventing H3 clipping and suppressing senescence gene expression.
Collapse
Affiliation(s)
- Hui Yang
- Department of Cell Systems and AnatomyUniversity of Texas Health San AntonioSan AntonioTXUSA
| | - Pinpin Sui
- Department of Cell Systems and AnatomyUniversity of Texas Health San AntonioSan AntonioTXUSA
| | - Ying Guo
- Department of Cell Systems and AnatomyUniversity of Texas Health San AntonioSan AntonioTXUSA
| | - Shi Chen
- Department of Molecular MedicineUniversity of Texas Health San AntonioSan AntonioTXUSA
| | - Marie E Maloof
- Sylvester Comprehensive Cancer CenterUniversity of Miami Miller School of MedicineMiamiFLUSA
| | - Guo Ge
- Department of Cell Systems and AnatomyUniversity of Texas Health San AntonioSan AntonioTXUSA
| | - Francine Nihozeko
- Department of Cell Systems and AnatomyUniversity of Texas Health San AntonioSan AntonioTXUSA
| | - Caroline R Delma
- Department of Pathology and Laboratory Medicine, Division of HematopathologyUniversity of Texas Health San AntonioSan AntonioTXUSA
| | - Ganqian Zhu
- Department of Molecular MedicineUniversity of Texas Health San AntonioSan AntonioTXUSA
| | - Peng Zhang
- Department of Cell Systems and AnatomyUniversity of Texas Health San AntonioSan AntonioTXUSA
| | - Zhenqing Ye
- Department of Population Health SciencesUniversity of Texas Health San AntonioSan AntonioTXUSA
- Greehey Children's Cancer Research InstituteUniversity of Texas Health San AntonioSan AntonioTXUSA
| | - Edward A Medina
- Department of Pathology and Laboratory Medicine, Division of HematopathologyUniversity of Texas Health San AntonioSan AntonioTXUSA
| | - Nagi G Ayad
- Department of Oncology, Lombardi Comprehensive Cancer CenterGeorgetown UniversityWashingtonDCUSA
| | - Ruben Mesa
- Mays Cancer CenterUniversity of Texas Health San AntonioSan AntonioTXUSA
| | - Stephen D Nimer
- Sylvester Comprehensive Cancer CenterUniversity of Miami Miller School of MedicineMiamiFLUSA
| | - Cheng‐Ming Chiang
- Simmons Comprehensive Cancer CenterUniversity of Texas Southwestern Medical CenterDallasTXUSA
- Department of BiochemistryUniversity of Texas Southwestern Medical CenterDallasTXUSA
- Department of PharmacologyUniversity of Texas Southwestern Medical CenterDallasTXUSA
| | - Mingjiang Xu
- Department of Molecular MedicineUniversity of Texas Health San AntonioSan AntonioTXUSA
- Mays Cancer CenterUniversity of Texas Health San AntonioSan AntonioTXUSA
| | - Yidong Chen
- Department of Population Health SciencesUniversity of Texas Health San AntonioSan AntonioTXUSA
- Greehey Children's Cancer Research InstituteUniversity of Texas Health San AntonioSan AntonioTXUSA
| | - Feng‐Chun Yang
- Department of Cell Systems and AnatomyUniversity of Texas Health San AntonioSan AntonioTXUSA
- Mays Cancer CenterUniversity of Texas Health San AntonioSan AntonioTXUSA
| |
Collapse
|
16
|
Spangenberg SH, Palermo A, Gazaniga NR, Martínez-Peña F, Guijas C, Chin EN, Rinschen MM, Sander PN, Webb B, Pereira LE, Jia Y, Meitz L, Siuzdak G, Lairson LL. Hydroxyproline metabolism enhances IFN-γ-induced PD-L1 expression and inhibits autophagic flux. Cell Chem Biol 2023; 30:1115-1134.e10. [PMID: 37467751 PMCID: PMC11426993 DOI: 10.1016/j.chembiol.2023.06.016] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2022] [Revised: 04/20/2023] [Accepted: 06/16/2023] [Indexed: 07/21/2023]
Abstract
The immune checkpoint protein PD-L1 plays critical roles in both immune system homeostasis and tumor progression. Impaired PD-1/PD-L1 function promotes autoimmunity and PD-L1 expression within tumors promotes immune evasion. If and how changes in metabolism or defined metabolites regulate PD-L1 expression is not fully understood. Here, using a metabolomics activity screening-based approach, we have determined that hydroxyproline (Hyp) significantly and directly enhances adaptive (i.e., IFN-γ-induced) PD-L1 expression in multiple relevant myeloid and cancer cell types. Mechanistic studies reveal that Hyp acts as an inhibitor of autophagic flux, which allows it to regulate this negative feedback mechanism, thereby contributing to its overall effect on PD-L1 expression. Due to its prevalence in fibrotic tumors, these findings suggest that hydroxyproline could contribute to the establishment of an immunosuppressive tumor microenvironment and that Hyp metabolism could be targeted to pharmacologically control PD-L1 expression for the treatment of cancer or autoimmune diseases.
Collapse
Affiliation(s)
| | - Amelia Palermo
- Scripps Center for Metabolomics, the Scripps Research Institute, La Jolla, CA 92037, USA; Department of Molecular and Medical Pharmacology, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, CA 90095, USA
| | - Nathalia R Gazaniga
- Department of Chemistry, the Scripps Research Institute, La Jolla, CA 92037, USA
| | | | - Carlos Guijas
- Scripps Center for Metabolomics, the Scripps Research Institute, La Jolla, CA 92037, USA
| | - Emily N Chin
- Department of Chemistry, the Scripps Research Institute, La Jolla, CA 92037, USA
| | - Markus M Rinschen
- Scripps Center for Metabolomics, the Scripps Research Institute, La Jolla, CA 92037, USA
| | - Philipp N Sander
- Department of Chemistry, the Scripps Research Institute, La Jolla, CA 92037, USA
| | - Bill Webb
- Scripps Center for Metabolomics, the Scripps Research Institute, La Jolla, CA 92037, USA
| | - Laura E Pereira
- Department of Chemistry, the Scripps Research Institute, La Jolla, CA 92037, USA
| | - Ying Jia
- Department of Chemistry, the Scripps Research Institute, La Jolla, CA 92037, USA
| | - Lance Meitz
- Department of Chemistry, the Scripps Research Institute, La Jolla, CA 92037, USA
| | - Gary Siuzdak
- Scripps Center for Metabolomics, the Scripps Research Institute, La Jolla, CA 92037, USA; Department of Integrative Structural and Computational Biology, La Jolla, CA 92037, USA.
| | - Luke L Lairson
- Department of Chemistry, the Scripps Research Institute, La Jolla, CA 92037, USA.
| |
Collapse
|
17
|
Johnson MG, Adam E, Watt A, Page AE. Effects of High-Speed Training on Messenger RNA Expression in Two-Year-Old Thoroughbred Racehorses. J Equine Vet Sci 2023; 128:104892. [PMID: 37433342 DOI: 10.1016/j.jevs.2023.104892] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2023] [Revised: 07/06/2023] [Accepted: 07/06/2023] [Indexed: 07/13/2023]
Abstract
Accumulating high-speed exercise has been identified as a significant risk factor for catastrophic injuries in racing Thoroughbreds. Injuries, regardless of severity, are a main cause of withdrawal from the racing industry, raising animal welfare concerns and resulting in significant economic losses. While most of the current literature focuses on injuries incurred during racing rather than training, the present study aims to help fill this gap. As such, peripheral blood was collected weekly, prior to exercise or administration of medication, from eighteen, two-year-old Thoroughbreds throughout their first season of race training. Messenger RNA (mRNA) was isolated and used to analyze the expression of 34 genes via RT-qPCR. Statistical analysis of the noninjured horses (n = 6) showed that 13 genes were significantly correlated with increasing average weekly high-speed furlong performance. Additionally, there was a negative correlation for CXCL1, IGFBP3, and MPO with both cumulative high-speed furlongs and week of training for all horses. Comparison of both groups showed opposing correlations between the anti-inflammatory index (IL1RN, IL-10, and PTGS1) and average weekly high-speed furlong performance. Furthermore, evaluation of training effects on mRNA expression during the weeks surrounding injury, showed differences between groups in IL-13 and MMP9 at -3 and -2 weeks prior to injury. While some previously reported relationships between exercise adaptation and mRNA expression were not noted in this study, this may have been due to the small sample size. Several novel correlations, however, were identified and warrant further investigation as markers of exercise adaptation or potential risk for injury.
Collapse
Affiliation(s)
- Mackenzie G Johnson
- Maxwell H. Gluck Equine Research Center, University of Kentucky, Lexington, KY
| | - Emma Adam
- Maxwell H. Gluck Equine Research Center, University of Kentucky, Lexington, KY
| | | | - Allen E Page
- Maxwell H. Gluck Equine Research Center, University of Kentucky, Lexington, KY.
| |
Collapse
|
18
|
Mu Y, Lan M, Li Y, Zhang Z, Guan Y. Effects of florfenicol on the antioxidant and immune systems of Chinese soft-shelled turtle (Pelodiscus sinensis). FISH & SHELLFISH IMMUNOLOGY 2023; 140:108991. [PMID: 37562587 DOI: 10.1016/j.fsi.2023.108991] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/17/2023] [Revised: 06/16/2023] [Accepted: 08/07/2023] [Indexed: 08/12/2023]
Abstract
Florfenicol is a commonly used antibiotic for the treatment of bacterial diseases of the Chinese soft-shelled turtle (Pelodiscus sinensis). The study investigated the effects of florfenicol on the antioxidant and immune system of P. sinensis. Results showed that the total antioxidant capacity (T-AOC), superoxide dismutase (SOD), and catalase (CAT) activities were significantly increased in the 10 mg/kg and 40 mg/kg florfenicol treatment groups compared with the control group. Besides, the malondialdehyde (MDA) content was significantly increased, and the glutathione peroxidase (GSH-Px) activity was significantly decreased with 40 mg/kg florfenicol treatment. In addition, florfenicol has effects on the immune system, 10 mg/kg of florfenicol significantly promoted the activities of acid phosphatase (ACP) and alkaline phosphatase (AKP), whereas 40 mg/kg of florfenicol significantly inhibited their activities. To elucidate the molecular mechanisms, a comparative transcriptome analysis was conducted. A total of 59 differentially expressed genes (DEGs) and 12 significantly enriched KEGG pathways were identified in the 10 mg/kg group; 150 DEGs and 10 significantly enriched KEGG pathways were identified in the 40 mg/kg group. Among them, the complement and coagulation cascade pathways were the most significant which may play an important regulatory role in the immune response. The MADCAM1, STAT3, and IL4I1 genes may be the key genes of florfenicol affecting the immune response. The APOA1, APOA4, SPLA2, FADS1, and FADS2 genes may play a key role in anti-inflammatory and antioxidant effects through redox-related pathways. The study lays the foundation for a deeper understanding of the mechanism of the florfenicol effect on P. sinensis.
Collapse
Affiliation(s)
- Yuqi Mu
- School of Life Sciences, Hebei University, Baoding, 071002, China
| | - Mengyan Lan
- School of Life Sciences, Hebei University, Baoding, 071002, China
| | - Yali Li
- School of Life Sciences, Hebei University, Baoding, 071002, China
| | - Zhao Zhang
- School of Life Sciences, Hebei University, Baoding, 071002, China.
| | - Yueqiang Guan
- School of Life Sciences, Hebei University, Baoding, 071002, China; Innovation Center for Bioengineering and Biotechnology of Hebei Province, Baoding, 071002, China.
| |
Collapse
|
19
|
Shi ZR, Duan YX, Cui F, Wu ZJ, Li MP, Song PP, Peng QL, Ye WT, Yin KL, Kang MQ, Yu YX, Yang J, Tang W, Liao R. Integrated proteogenomic characterization reveals an imbalanced hepatocellular carcinoma microenvironment after incomplete radiofrequency ablation. J Exp Clin Cancer Res 2023; 42:133. [PMID: 37231509 DOI: 10.1186/s13046-023-02716-y] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2023] [Accepted: 05/19/2023] [Indexed: 05/27/2023] Open
Abstract
BACKGROUND Efforts to precisely assess tumor-specific T-cell immune responses still face major challenges, and the potential molecular mechanisms mediating hepatocellular carcinoma (HCC) microenvironment imbalance after incomplete radiofrequency ablation (iRFA) are unclear. This study aimed to provide further insight into the integrated transcriptomic and proteogenomic landscape and identify a new target involved in HCC progression following iRFA. METHODS Peripheral blood and matched tissue samples were collected from 10 RFA-treated HCC patients. Multiplex immunostaining and flow cytometry were used to assess local and systemic immune responses. Differentially expressed genes (DEGs) and differentially expressed proteins (DEPs) were explored via transcriptomic and proteogenomic analyses. Proteinase-3 (PRTN3) was identified in these analyses. And then, the ability of PRTN3 to predict overall survival (OS) was assessed in 70 HCC patients with early recurrence after RFA. In vitro CCK-8, wound healing and transwell assays were conducted to observe interactions between Kupffer cells (KCs) and HCC cells induced by PRTN3. The protein levels of multiple oncogenic factors and signaling pathway components were detected by western blotting. A xenograft mouse model was built to observe the tumorigenic effect of PRTN3 overexpression on HCC. RESULTS Multiplex immunostaining revealed no immediate significant change in local immune cell counts in periablational tumor tissues after 30 min of iRFA. Flow cytometry showed significantly increased levels of CD4+ T cells, CD4+CD8+ T cells, and CD4+CD25+CD127- Tregs and significantly decreased the levels of CD16+CD56+ natural killer cells on day 5 after cRFA (p < 0.05). Transcriptomics and proteomics revealed 389 DEGs and 20 DEPs. Pathway analysis showed that the DEP-DEGs were mainly enriched in the immunoinflammatory response, cancer progression and metabolic processes. Among the DEP-DEGs, PRTN3 was persistently upregulated and closely associated with the OS of patients with early recurrent HCC following RFA. PRTN3 expressed in KCs may affect the migration and invasion of heat stress-treated HCC cells. PRTN3 promotes tumor growth via multiple oncogenic factors and the PI3K/AKT and P38/ERK signaling pathways. CONCLUSIONS This study provides a comprehensive overview of the immune response and transcriptomic and proteogenomic landscapes of the HCC milieu induced by iRFA, revealing that PRTN3 promotes HCC progression after iRFA. TRIAL REGISTRATION ChiCTR2200055606, http://www.chictr.org.cn/showproj.aspx?proj=32588 .
Collapse
Affiliation(s)
- Zheng-Rong Shi
- Department of Hepatobiliary Surgery, The First Affiliated Hospital of Chongqing Medical University, No. Youyi Rd, Chongqing, 400016, China
| | - Yu-Xin Duan
- Department of Hepatobiliary Surgery, The First Affiliated Hospital of Chongqing Medical University, No. Youyi Rd, Chongqing, 400016, China
| | - Fang Cui
- Department of Laboratory Medicine, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Zhong-Jun Wu
- Department of Hepatobiliary Surgery, The First Affiliated Hospital of Chongqing Medical University, No. Youyi Rd, Chongqing, 400016, China
| | - Mao-Ping Li
- Department of Ultrasound, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Pei-Pei Song
- National Center for Global Health and Medicine, Tokyo, Japan
| | - Qi-Ling Peng
- Faculty of Basic Medical Sciences, Chongqing Medical University, Chongqing, 400016, China
| | - Wen-Tao Ye
- Department of Hepatobiliary Surgery, The First Affiliated Hospital of Chongqing Medical University, No. Youyi Rd, Chongqing, 400016, China
| | - Kun-Li Yin
- Department of Hepatobiliary Surgery, The First Affiliated Hospital of Chongqing Medical University, No. Youyi Rd, Chongqing, 400016, China
| | - Mei-Qing Kang
- Department of Hepatobiliary Surgery, The First Affiliated Hospital of Chongqing Medical University, No. Youyi Rd, Chongqing, 400016, China
| | - Yan-Xi Yu
- Department of Hepatobiliary Surgery, The First Affiliated Hospital of Chongqing Medical University, No. Youyi Rd, Chongqing, 400016, China
| | - Jian Yang
- Department of Hepatobiliary Surgery, The First Affiliated Hospital of Chongqing Medical University, No. Youyi Rd, Chongqing, 400016, China
| | - Wei Tang
- National Center for Global Health and Medicine, Tokyo, Japan
| | - Rui Liao
- Department of Hepatobiliary Surgery, The First Affiliated Hospital of Chongqing Medical University, No. Youyi Rd, Chongqing, 400016, China.
| |
Collapse
|
20
|
Weekley BH, Rice JC. The MMP-2 histone H3 N-terminal tail protease is selectively targeted to the transcription start sites of active genes. Epigenetics Chromatin 2023; 16:16. [PMID: 37161413 PMCID: PMC10170761 DOI: 10.1186/s13072-023-00491-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2023] [Accepted: 04/27/2023] [Indexed: 05/11/2023] Open
Abstract
BACKGROUND Proteolysis of the histone H3 N-terminal tail (H3NT) is an evolutionarily conserved epigenomic feature of nearly all eukaryotes, generating a cleaved H3 product that is retained in ~ 5-10% of the genome. Although H3NT proteolysis within chromatin was first reported over 60 years ago, the genomic sites targeted for H3NT proteolysis and the impact of this histone modification on chromatin structure and function remain largely unknown. The goal of this study was to identify the specific regions targeted for H3NT proteolysis and investigate the consequence of H3NT "clipping" on local histone post-translational modification (PTM) dynamics. RESULTS Leveraging recent findings that matrix metalloproteinase 2 (MMP-2) functions as the principal nuclear H3NT protease in the human U2OS osteosarcoma cell line, a ChIP-Seq approach was used to map MMP-2 localization genome wide. The results indicate that MMP-2 is selectively targeted to the transcription start sites (TSSs) of protein coding genes, primarily at the + 1 nucleosome. MMP-2 localization was exclusive to highly expressed genes, further supporting a functional role for H3NT proteolysis in transcriptional regulation. MMP-2 dependent H3NT proteolysis at the TSSs of these genes resulted in a > twofold reduction of activation-associated histone H3 PTMs, including H3K4me3, H3K9ac and H3K18ac. One of genes requiring MMP-2 mediated H3NT proteolysis for proficient expression was the lysosomal cathepsin B protease (CTSB), which we discovered functions as a secondary nuclear H3NT protease in U2OS cells. CONCLUSIONS This study revealed that the MMP-2 H3NT protease is selectively targeted to the TSSs of active protein coding genes in U2OS cells. The resulting H3NT proteolysis directly alters local histone H3 PTM patterns at TSSs, which likely functions to regulate transcription. MMP-2 mediated H3NT proteolysis directly activates CTSB, a secondary H3NT protease that generates additional cleaved H3 products within chromatin.
Collapse
Affiliation(s)
- Benjamin H Weekley
- Department of Biochemistry and Molecular Medicine, University of Southern California Keck School of Medicine, 1450 Biggy Street, HNRT 6506, Los Angeles, CA, 90033, USA
| | - Judd C Rice
- Department of Biochemistry and Molecular Medicine, University of Southern California Keck School of Medicine, 1450 Biggy Street, HNRT 6506, Los Angeles, CA, 90033, USA.
| |
Collapse
|
21
|
Identification of PRTN3 as a novel biomarker for the diagnosis of early gastric cance. J Proteomics 2023; 277:104852. [PMID: 36804624 DOI: 10.1016/j.jprot.2023.104852] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2023] [Revised: 02/04/2023] [Accepted: 02/10/2023] [Indexed: 02/18/2023]
Abstract
Gastric cancer (GC) remains one of the most common types of cancer worldwide and has a high mortality rate. However, tools for the early detection of gastric cancer are still lacking. Isobaric tagging for relative and absolute quantitation (iTRAQ) proteomic assays were conducted to identify and quantify the differentially expressed proteins (DEPs) in the gastric mucosal tissues of GC patients at different stages. Bioinformatics analysis was used to identify the pathways enriched among the DEPs and candidate marker proteins. The expression levels and distribution of candidate proteins were confirmed by parallel reaction monitoring (PRM) analysis. In this study, by using the iTRAQ quantitative proteomic strategy, we identified 727 and 502 DEPs that were upregulated in EGC vs. PGC and EGC vs. NGC, respectively. These DEPs were mainly involved in the innate immune response and RNA binding. PRTN3 was identified as a marker of early gastric cancer by Gene Ontology enrichment analysis. Furthermore, the PRM assay confirmed the significant overexpression of PRTN3 in EGC gastric mucosa compared to PGC and NGC mucosa. Our data demonstrated that PRTN3 in the gastric mucosa could be used as a novel biomarker to identify patients with early gastric cancer via endoscopy. SIGNIFICANCE: Gastric cancer remains one of the most common types of cancer worldwide and has a high mortality rate. Patients with progressive gastric cancer and gastroesophageal junction cancer have a poor prognosis, with a 5-year relative survival rate of 6%. Therefore, early detection and diagnosis of gastric cancer is a key step toward improving the survival rate. The present study identified PRTN3 as a marker of early gastric cancer by an iTRAQ quantitative proteomic strategy. The PRM assay confirmed the significant overexpression of PRTN3 in EGC gastric mucosa compared to PGC and NGC mucosa. This study discovered that PRTN3 in the gastric mucosa could be used as a novel biomarker to identify patients with early gastric cancer via endoscopy.
Collapse
|
22
|
Fang Y, Ma K, Huang YM, Dang Y, Liu Z, Xu Y, Zheng XL, Yang X, Huo Y, Dai X. Fibronectin leucine-rich transmembrane protein 2 drives monocyte differentiation into macrophages via the UNC5B-Akt/mTOR axis. Front Immunol 2023; 14:1162004. [PMID: 37090697 PMCID: PMC10117657 DOI: 10.3389/fimmu.2023.1162004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2023] [Accepted: 03/27/2023] [Indexed: 04/09/2023] Open
Abstract
Upon migrating into the tissues, hematopoietic stem cell (HSC)-derived monocytes differentiate into macrophages, playing a crucial role in determining innate immune responses towards external pathogens and internal stimuli. However, the regulatory mechanisms underlying monocyte-to-macrophage differentiation remain largely unexplored. Here we divulge a previously uncharacterized but essential role for an axon guidance molecule, fibronectin leucine-rich transmembrane protein 2 (FLRT2), in monocyte-to-macrophage maturation. FLRT2 is almost undetectable in human monocytic cell lines, human peripheral blood mononuclear cells (PBMCs), and mouse primary monocytes but significantly increases in fully differentiated macrophages. Myeloid-specific deletion of FLRT2 (Flrt2ΔMyel) contributes to decreased peritoneal monocyte-to-macrophage generation in mice in vivo, accompanied by impaired macrophage functions. Gain- and loss-of-function studies support the promoting effect of FLRT2 on THP-1 cell and human PBMC differentiation into macrophages. Mechanistically, FLRT2 directly interacts with Unc-5 netrin receptor B (UNC5B) via its extracellular domain (ECD) and activates Akt/mTOR signaling. In vivo administration of mTOR agonist MYH1485 reverses the impaired phenotypes observed in Flrt2ΔMyel mice. Together, these results identify FLRT2 as a novel pivotal endogenous regulator of monocyte differentiation into macrophages. Targeting the FLRT2/UNC5B-Akt/mTOR axis may provide potential therapeutic strategies directly relevant to human diseases associated with aberrant monocyte/macrophage differentiation.
Collapse
Affiliation(s)
- Yaxiong Fang
- Key Laboratory of Molecular Target & Clinical Pharmacology and the State Key Laboratory of Respiratory Disease, School of Pharmaceutical Sciences, Guangzhou Medical University, Guangzhou, Guangdong, China
| | - Kongyang Ma
- Centre for Infection and Immunity Studies (CIIS), School of Medicine, Sun Yat-sen University, Shenzhen, Guangdong, China
| | - Yi-Min Huang
- Key Laboratory of Molecular Target & Clinical Pharmacology and the State Key Laboratory of Respiratory Disease, School of Pharmaceutical Sciences, Guangzhou Medical University, Guangzhou, Guangdong, China
| | - Yuanye Dang
- Key Laboratory of Molecular Target & Clinical Pharmacology and the State Key Laboratory of Respiratory Disease, School of Pharmaceutical Sciences, Guangzhou Medical University, Guangzhou, Guangdong, China
| | - Zhaoyu Liu
- Medical Research Center, Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, Guangdong, China
| | - Yiming Xu
- School of Basic Medical Sciences, Guangzhou Medical University, Guangzhou, Guangdong, China
| | - Xi-Long Zheng
- Department of Biochemistry & Molecular Biology, Cumming School of Medicine, University of Calgary, Calgary, AB, Canada
| | - Xiangdong Yang
- Shanghai Institute of Cardiovascular Diseases, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Yongliang Huo
- Affiliated Cancer Hospital & Institute of Guangzhou Medical University, Experimental Animal Center, Guangzhou Municipal and Guangdong Provincial Key Laboratory of Protein Modification and Degradation, State Key Laboratory of Respiratory Disease, School of Basic Medical Sciences, Guangzhou Medical University, Guangzhou, Guangdong, China
- *Correspondence: Xiaoyan Dai, ; Yongliang Huo,
| | - Xiaoyan Dai
- Key Laboratory of Molecular Target & Clinical Pharmacology and the State Key Laboratory of Respiratory Disease, School of Pharmaceutical Sciences, Guangzhou Medical University, Guangzhou, Guangdong, China
- *Correspondence: Xiaoyan Dai, ; Yongliang Huo,
| |
Collapse
|
23
|
Li L, Han Z, Wang R, Fan J, Zheng Y, Huang Y, Yang Z, Yan F, Liu P, Zhao H, Ma Q, Luo Y. Association of admission neutrophil serine proteinases levels with the outcomes of acute ischemic stroke: a prospective cohort study. J Neuroinflammation 2023; 20:70. [PMID: 36906528 PMCID: PMC10007819 DOI: 10.1186/s12974-023-02758-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2022] [Accepted: 03/07/2023] [Indexed: 03/13/2023] Open
Abstract
BACKGROUND Neutrophil serine proteinases (NSPs), released by activated neutrophils, are key proteins involved in the pathophysiologic processes of stroke. NSPs are also implicated in the process and response of thrombolysis. This study aimed to analyze three NSPs (neutrophil elastase, cathepsin G, and proteinase 3) in relation to acute ischemic stroke (AIS) outcomes and in relation to the outcomes of patients treated with intravenous recombinant tissue plasminogen activator (IV-rtPA). METHODS Among 736 patients prospectively recruited at the stroke center from 2018 to 2019, 342 patients diagnosed with confirmed AIS were included. Plasma neutrophil elastase (NE), cathepsin G (CTSG), and proteinase 3 (PR3) concentrations were measured on admission. The primary endpoint was unfavorable outcome defined as modified Rankin Scale score 3-6 at 3 months, and the secondary endpoints were symptomatic intracerebral hemorrhage (sICH) within 48 h, and mortality within 3 months. In the subgroup of patients who received IV-rtPA, post-thrombolysis early neurological improvement (ENI) (defined as National Institutes of Health Stroke Scale score = 0 or decrease of ≥ 4 within 24 h after thrombolysis) was also included as the secondary endpoint. Univariate and multivariate logistic regression analyses were performed to evaluate the association between NSPs levels and AIS outcomes. RESULTS Higher NE and PR3 plasma levels were associated with the 3-month mortality and 3-month unfavorable outcome. Higher NE plasma levels were also associated with the risk of sICH after AIS. After adjusting for potential confounders, plasma NE level > 229.56 ng/mL (odds ratio [OR] = 4.478 [2.344-8.554]) and PR3 > 388.77 ng/mL (OR = 2.805 [1.504-5.231]) independently predicted the 3-month unfavorable outcome. Regarding rtPA treatment, patients with NE plasma concentration > 177.22 ng/mL (OR = 8.931 [2.330-34.238]) or PR3 > 388.77 ng/mL (OR = 4.275 [1.045-17.491]) were over 4 times more likely to suffer unfavorable outcomes after rtPA treatment. The addition of NE and PR3 to clinical predictors of unfavorable functional outcome after AIS and the outcome after rtPA treatment improved discrimination as well as reclassification (integrated discrimination improvement = 8.2% and 18.1%, continuous net reclassification improvement = 100.0% and 91.8%, respectively). CONCLUSIONS Plasma NE and PR3 are novel and independent predictors of 3-month functional outcomes after AIS. Plasma NE and PR3 also possess predictive value to identify patients with unfavorable outcomes after rtPA treatment. NE is probably an important mediator of the effects of neutrophils on stroke outcomes, which worth further investigation.
Collapse
Affiliation(s)
- Lingzhi Li
- Institute of Cerebrovascular Diseases Research and Department of Neurology, Xuanwu Hospital of Capital Medical University, 45 Changchun Street, Beijing, 100053, China.,Beijing Key Laboratory of Translational Medicine for Cerebrovascular Diseases, Beijing, China
| | - Ziping Han
- Institute of Cerebrovascular Diseases Research and Department of Neurology, Xuanwu Hospital of Capital Medical University, 45 Changchun Street, Beijing, 100053, China.,Beijing Key Laboratory of Translational Medicine for Cerebrovascular Diseases, Beijing, China
| | - Rongliang Wang
- Institute of Cerebrovascular Diseases Research and Department of Neurology, Xuanwu Hospital of Capital Medical University, 45 Changchun Street, Beijing, 100053, China.,Beijing Key Laboratory of Translational Medicine for Cerebrovascular Diseases, Beijing, China
| | - Junfen Fan
- Institute of Cerebrovascular Diseases Research and Department of Neurology, Xuanwu Hospital of Capital Medical University, 45 Changchun Street, Beijing, 100053, China.,Beijing Key Laboratory of Translational Medicine for Cerebrovascular Diseases, Beijing, China
| | - Yangmin Zheng
- Institute of Cerebrovascular Diseases Research and Department of Neurology, Xuanwu Hospital of Capital Medical University, 45 Changchun Street, Beijing, 100053, China
| | - Yuyou Huang
- Institute of Cerebrovascular Diseases Research and Department of Neurology, Xuanwu Hospital of Capital Medical University, 45 Changchun Street, Beijing, 100053, China.,Beijing Key Laboratory of Translational Medicine for Cerebrovascular Diseases, Beijing, China
| | - Zhenhong Yang
- Institute of Cerebrovascular Diseases Research and Department of Neurology, Xuanwu Hospital of Capital Medical University, 45 Changchun Street, Beijing, 100053, China.,Beijing Key Laboratory of Translational Medicine for Cerebrovascular Diseases, Beijing, China
| | - Feng Yan
- Institute of Cerebrovascular Diseases Research and Department of Neurology, Xuanwu Hospital of Capital Medical University, 45 Changchun Street, Beijing, 100053, China.,Beijing Key Laboratory of Translational Medicine for Cerebrovascular Diseases, Beijing, China
| | - Ping Liu
- Institute of Cerebrovascular Diseases Research and Department of Neurology, Xuanwu Hospital of Capital Medical University, 45 Changchun Street, Beijing, 100053, China.,Beijing Key Laboratory of Translational Medicine for Cerebrovascular Diseases, Beijing, China
| | - Haiping Zhao
- Institute of Cerebrovascular Diseases Research and Department of Neurology, Xuanwu Hospital of Capital Medical University, 45 Changchun Street, Beijing, 100053, China.,Beijing Key Laboratory of Translational Medicine for Cerebrovascular Diseases, Beijing, China
| | - Qingfeng Ma
- Institute of Cerebrovascular Diseases Research and Department of Neurology, Xuanwu Hospital of Capital Medical University, 45 Changchun Street, Beijing, 100053, China
| | - Yumin Luo
- Institute of Cerebrovascular Diseases Research and Department of Neurology, Xuanwu Hospital of Capital Medical University, 45 Changchun Street, Beijing, 100053, China. .,Beijing Key Laboratory of Translational Medicine for Cerebrovascular Diseases, Beijing, China. .,Beijing Institute for Brain Disorders, Beijing, China.
| |
Collapse
|
24
|
Ganesan A, Dermadi D, Kalesinskas L, Donato M, Sowers R, Utz PJ, Khatri P. Inferring direction of associations between histone modifications using a neural processes-based framework. iScience 2023; 26:105756. [PMID: 36619977 PMCID: PMC9813700 DOI: 10.1016/j.isci.2022.105756] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2022] [Revised: 11/19/2022] [Accepted: 12/06/2022] [Indexed: 12/12/2022] Open
Abstract
Current technologies do not allow predicting interactions between histone post-translational modifications (HPTMs) at a system-level. We describe a computational framework, imputation-followed-by-inference, to predict directed association between two HPTMs using EpiTOF, a mass cytometry-based platform that allows profiling multiple HPTMs at a single-cell resolution. Using EpiTOF profiles of >55,000,000 peripheral mononuclear blood cells from 158 healthy human subjects, we show that neural processes (NP) have significantly higher accuracy than linear regression and k-nearest neighbors models to impute the abundance of an HPTM. Next, we infer the direction of association to show we recapitulate known HPTM associations and identify several previously unidentified ones in healthy individuals. Using this framework in an influenza vaccine cohort, we identify changes in associations between 6 pairs of HPTMs 30 days following vaccination, of which several have been shown to be involved in innate memory. These results demonstrate the utility of our framework in identifying directed interactions between HPTMs.
Collapse
Affiliation(s)
- Ananthakrishnan Ganesan
- Institute for Immunity, Transplantation and Infection, School of Medicine, Stanford University, Stanford, CA 94305, USA
- Institute for Computational and Mathematical Engineering, School of Engineering, Stanford University, Stanford, CA 94305, USA
- Center for Biomedical Informatics Research, Department of Medicine, School of Medicine, Stanford University, Stanford, CA 94305, USA
| | - Denis Dermadi
- Institute for Immunity, Transplantation and Infection, School of Medicine, Stanford University, Stanford, CA 94305, USA
- Center for Biomedical Informatics Research, Department of Medicine, School of Medicine, Stanford University, Stanford, CA 94305, USA
| | - Laurynas Kalesinskas
- Institute for Immunity, Transplantation and Infection, School of Medicine, Stanford University, Stanford, CA 94305, USA
- Center for Biomedical Informatics Research, Department of Medicine, School of Medicine, Stanford University, Stanford, CA 94305, USA
| | - Michele Donato
- Institute for Immunity, Transplantation and Infection, School of Medicine, Stanford University, Stanford, CA 94305, USA
- Center for Biomedical Informatics Research, Department of Medicine, School of Medicine, Stanford University, Stanford, CA 94305, USA
| | - Rosalie Sowers
- Institute for Immunity, Transplantation and Infection, School of Medicine, Stanford University, Stanford, CA 94305, USA
- Center for Biomedical Informatics Research, Department of Medicine, School of Medicine, Stanford University, Stanford, CA 94305, USA
| | - Paul J. Utz
- Institute for Immunity, Transplantation and Infection, School of Medicine, Stanford University, Stanford, CA 94305, USA
- Division of Immunology and Rheumatology, Department of Medicine, School of Medicine, Stanford University, Stanford, CA 94305, USA
| | - Purvesh Khatri
- Institute for Immunity, Transplantation and Infection, School of Medicine, Stanford University, Stanford, CA 94305, USA
- Center for Biomedical Informatics Research, Department of Medicine, School of Medicine, Stanford University, Stanford, CA 94305, USA
| |
Collapse
|
25
|
Cross-Talk between N6-Methyladenosine and Their Related RNAs Defined a Signature and Confirmed m6A Regulators for Diagnosis of Endometriosis. Int J Mol Sci 2023; 24:ijms24021665. [PMID: 36675186 PMCID: PMC9862014 DOI: 10.3390/ijms24021665] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2022] [Revised: 01/06/2023] [Accepted: 01/10/2023] [Indexed: 01/18/2023] Open
Abstract
An RNA modification known as N6-methyladenosine (m6A) interacts with a range of coding and non-coding RNAs. The majority of the research has focused on identifying m6A regulators that are differentially expressed in endometriosis, but it has ignored their mechanisms that are derived from the alterations of modifications among RNAs, affecting the disease progression primarily. Here, we aimed to investigate the potential roles of m6A regulators in the diagnostic potency, immune microenvironment, and clinicopathological features of endometriosis through interacting genes. A GEO cohort was incorporated into this study. Variance expression profiling was executed via the "limma" R package. Pearson analysis was performed to investigate the correlations among 767 interacting lncRNAs, 374 interacting mRNAs, and 23 m6A regulators. K-means clustering analysis, based on patterns of mRNA modifications, was applied to perform clinical feature analysis. Infiltrating immune cells and stromal cells were calculated using the Cibersort method. An m6A-related risk model was created and supported by an independent risk assay. LASSO regression analysis and Cox analyses were implemented to determine the diagnostic genes. The diagnostic targets of endometriosis were verified using PCR and the WB method. Results: A thorough investigation of the m6A modification patterns in the GEO database was carried out, based on mRNAs and lncRNAs related to these m6A regulators. Two molecular subtypes were identified using unsupervised clustering analysis, resulting in further complex infiltration levels of immune microenvironment cells in diversified endometriosis pathology types. We identified two m6A regulators, namely METTL3 and YTHDF2, as diagnostic targets of endometriosis following the usage of overlapping genes to construct a diagnostic m6A signature of endometriosis through multivariate logistic regression, and we validated it using independent GSE86534 and GSE105764 cohorts. Finally, we found that m6A alterations might be one of the important reasons for the progression of endometriosis, especially with significant downregulation of the expressions of METTL3 and YTHDF2. Finally, m6A modification patterns have significant effects on the diversity and complexity of the progression and immune microenvironment, and might be key diagnostic markers for endometriosis.
Collapse
|
26
|
Mechanisms of DNA methylation and histone modifications. PROGRESS IN MOLECULAR BIOLOGY AND TRANSLATIONAL SCIENCE 2023; 197:51-92. [PMID: 37019597 DOI: 10.1016/bs.pmbts.2023.01.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/11/2023]
Abstract
The field of genetics has expanded a lot in the past few decades due to the accessibility of human genome sequences, but still, the regulation of transcription cannot be explicated exclusively by the sequence of DNA of an individual. The coordination and crosstalk between chromatin factors which are conserved is indispensable for all living creatures. The regulation of gene expression has been dependent on the methylation of DNA, post-translational modifications of histones, effector proteins, chromatin remodeler enzymes that affect the chromatin structure and function, and other cellular activities such as DNA replication, DNA repair, proliferation and growth. The mutation and deletion of these factors can lead to human diseases. Various studies are being performed to identify and understand the gene regulatory mechanisms in the diseased state. The information from these high throughput screening studies is able to aid the treatment developments based on the epigenetics regulatory mechanisms. This book chapter will discourse on various modifications and their mechanisms that take place on histones and DNA that regulate the transcription of genes.
Collapse
|
27
|
Bai L, Dermadi D, Kalesinskas L, Dvorak M, Chang SE, Ganesan A, Rubin SJS, Kuo A, Cheung P, Donato M, Utz PJ, Habtezion A, Khatri P. Mass-cytometry-based quantitation of global histone post-translational modifications at single-cell resolution across peripheral immune cells in IBD. J Crohns Colitis 2022; 17:804-815. [PMID: 36571819 PMCID: PMC10155749 DOI: 10.1093/ecco-jcc/jjac194] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/10/2022] [Indexed: 01/26/2023]
Abstract
BACKGROUND AND AIMS Current understanding of histone post-translational modifications (histone modifications) across immune cell types in patients with inflammatory bowel disease (IBD) during remission and flare is limited. The study aimed to quantify histone modifications at a single-cell resolution in IBD patients during remission and flare and how they differ compared to healthy controls. METHODS We performed a case-control study of 94 subjects (83 IBD patients and 11 healthy controls). IBD patients had either UC (n=38) or CD (n=45) in clinical remission or flare. We used epigenetic profiling by time-of-flight (EpiTOF) to investigate changes in histone modifications within peripheral blood mononuclear cells from IBD patients. RESULTS We discovered substantial heterogeneity in histone modifications across multiple immune cell types in IBD patients. They had a higher proportion of less differentiated CD34 + hematopoietic progenitors, and a subset of CD56 bright NK cells and γδ T cells characterized by distinct histone modifications associated with the gene transcription. The subset of CD56 bright NK cells had increased several histone acetylations. An epigenetically defined subset of NK was associated with higher levels of CRP in peripheral blood. CD14+ monocytes from IBD patients had significantly decreased cleaved H3T22, suggesting they were epigenetically primed for macrophage differentiation. CONCLUSION We describe the first systems-level quantification of histone modifications across immune cells from IBD patients at a single-cell resolution revealing the increased epigenetic heterogeneity that is not possible with traditional ChIP-seq profiling. Our data open new directions in investigating the association between histone modifications and IBD pathology using other epigenomic tools.
Collapse
Affiliation(s)
- Lawrence Bai
- Immunology Program, Stanford University School of Medicine, 1215 Welch Road, Modular B, Stanford, CA 94305 USA
| | - Denis Dermadi
- Institute for Immunity, Transplantation and Infection, School of Medicine, Stanford University, Stanford, CA 94305, USA.,Center for Biomedical Informatics Research, Department of Medicine, Stanford University, Stanford, CA 94305, USA
| | - Laurynas Kalesinskas
- Biomedical Informatics Training Program, Stanford University School of Medicine, 1265 Welch Road, MSOB X-343, Stanford, CA 94305 USA
| | - Mai Dvorak
- Institute for Immunity, Transplantation and Infection, School of Medicine, Stanford University, Stanford, CA 94305, USA.,Division of Immunology and Rheumatology, Department of Medicine, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Sarah E Chang
- Institute for Immunity, Transplantation and Infection, School of Medicine, Stanford University, Stanford, CA 94305, USA.,Division of Immunology and Rheumatology, Department of Medicine, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Ananthakrishnan Ganesan
- Computational and Mathematical Engineering, Stanford University, 475 Via Ortega, Suite B060, Stanford, CA 94305 USA
| | - Samuel J S Rubin
- Division of Gastroenterology and Hepatology, Department of Medicine, Stanford University School of Medicine, Stanford, CA 94305, United States
| | - Alex Kuo
- Institute for Immunity, Transplantation and Infection, School of Medicine, Stanford University, Stanford, CA 94305, USA.,Division of Immunology and Rheumatology, Department of Medicine, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Peggie Cheung
- Institute for Immunity, Transplantation and Infection, School of Medicine, Stanford University, Stanford, CA 94305, USA.,Division of Immunology and Rheumatology, Department of Medicine, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Michele Donato
- Institute for Immunity, Transplantation and Infection, School of Medicine, Stanford University, Stanford, CA 94305, USA.,Center for Biomedical Informatics Research, Department of Medicine, Stanford University, Stanford, CA 94305, USA
| | - Paul J Utz
- Immunology Program, Stanford University School of Medicine, 1215 Welch Road, Modular B, Stanford, CA 94305 USA.,Institute for Immunity, Transplantation and Infection, School of Medicine, Stanford University, Stanford, CA 94305, USA.,Division of Immunology and Rheumatology, Department of Medicine, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Aida Habtezion
- Immunology Program, Stanford University School of Medicine, 1215 Welch Road, Modular B, Stanford, CA 94305 USA.,Institute for Immunity, Transplantation and Infection, School of Medicine, Stanford University, Stanford, CA 94305, USA.,Division of Gastroenterology and Hepatology, Department of Medicine, Stanford University School of Medicine, Stanford, CA 94305, United States
| | - Purvesh Khatri
- Immunology Program, Stanford University School of Medicine, 1215 Welch Road, Modular B, Stanford, CA 94305 USA.,Institute for Immunity, Transplantation and Infection, School of Medicine, Stanford University, Stanford, CA 94305, USA.,Center for Biomedical Informatics Research, Department of Medicine, Stanford University, Stanford, CA 94305, USA
| |
Collapse
|
28
|
Bernstein MN, Ni Z, Prasad A, Brown J, Mohanty C, Stewart R, Newton MA, Kendziorski C. SpatialCorr identifies gene sets with spatially varying correlation structure. CELL REPORTS METHODS 2022; 2:100369. [PMID: 36590683 PMCID: PMC9795364 DOI: 10.1016/j.crmeth.2022.100369] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 04/16/2022] [Revised: 09/26/2022] [Accepted: 11/21/2022] [Indexed: 12/15/2022]
Abstract
Recent advances in spatially resolved transcriptomics technologies enable both the measurement of genome-wide gene expression profiles and their mapping to spatial locations within a tissue. A first step in spatial transcriptomics data analysis is identifying genes with expression that varies spatially, and robust statistical methods exist to address this challenge. While useful, these methods do not detect spatial changes in the coordinated expression within a group of genes. To this end, we present SpatialCorr, a method for identifying sets of genes with spatially varying correlation structure. Given a collection of gene sets pre-defined by a user, SpatialCorr tests for spatially induced differences in the correlation of each gene set within tissue regions, as well as between and among regions. An application to cutaneous squamous cell carcinoma demonstrates the power of the approach for revealing biological insights not identified using existing methods.
Collapse
Affiliation(s)
| | - Zijian Ni
- Department of Statistics, University of Wisconsin-Madison, Madison, WI 53706, USA
| | - Aman Prasad
- Department of Dermatology, University of Wisconsin-Madison, Madison, WI 53715, USA
| | - Jared Brown
- Department of Statistics, University of Wisconsin-Madison, Madison, WI 53706, USA
| | - Chitrasen Mohanty
- Department of Biostatistics and Medical Informatics, University of Wisconsin-Madison, Madison, WI 53792, USA
| | - Ron Stewart
- Morgridge Institute for Research, Madison, WI 53715, USA
| | - Michael A. Newton
- Department of Statistics, University of Wisconsin-Madison, Madison, WI 53706, USA
- Department of Biostatistics and Medical Informatics, University of Wisconsin-Madison, Madison, WI 53792, USA
| | - Christina Kendziorski
- Department of Biostatistics and Medical Informatics, University of Wisconsin-Madison, Madison, WI 53792, USA
| |
Collapse
|
29
|
Wang L, Nie R, Zhang J, Cai J. scCapsNet-mask: an updated version of scCapsNet with extended applicability in functional analysis related to scRNA-seq data. BMC Bioinformatics 2022; 23:539. [PMID: 36510124 PMCID: PMC9743530 DOI: 10.1186/s12859-022-05098-8] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2022] [Accepted: 12/03/2022] [Indexed: 12/14/2022] Open
Abstract
BACKGROUND With the rapid accumulation of scRNA-seq data, more and more automatic cell type identification methods have been developed, especially those based on deep learning. Although these methods have reached relatively high prediction accuracy, many issues still exist. One is the interpretability. The second is how to deal with the non-standard test samples that are not encountered in the training process. RESULTS Here we introduce scCapsNet-mask, an updated version of scCapsNet. The scCapsNet-mask provides a reasonable solution to the issues of interpretability and non-standard test samples. Firstly, the scCapsNet-mask utilizes a mask to ease the task of model interpretation in the original scCapsNet. The results show that scCapsNet-mask could constrain the coupling coefficients, and make a one-to-one correspondence between the primary capsules and type capsules. Secondly, the scCapsNet-mask can process non-standard samples more reasonably. In one example, the scCapsNet-mask was trained on the committed cells, and then tested on less differentiated cells as the non-standard samples. It could not only estimate the lineage bias of less differentiated cells, but also distinguish the development stages more accurately than traditional machine learning models. Therefore, the pseudo-temporal order of cells for each lineage could be established. Following these pseudo-temporal order, lineage specific genes exhibit a gradual increase expression pattern and stem cell associated genes exhibit a gradual decrease expression pattern. In another example, the scCapsNet-mask was trained on scRNA-seq data, and then used to assign cell type in spatial transcriptomics that may contain non-standard sample of doublets. The results show that the scCapsNet-mask not only restored the spatial map but also identified several non-standard samples of doublet. CONCLUSIONS The scCapsNet-mask offers a suitable solution to the challenge of interpretability and non-standard test samples. By adding a mask, it has the advantages of automatic processing and easy interpretation compared with the original scCapsNet. In addition, the scCapsNet-mask could more accurately reflect the composition of non-standard test samples than traditional machine learning methods. Therefore, it can extend its applicability in functional analysis, such as fate bias prediction in less differentiated cells and cell type assignment in spatial transcriptomics.
Collapse
Affiliation(s)
- Lifei Wang
- grid.413073.20000 0004 1758 9341Shulan (Hangzhou) Hospital Affiliated to Zhejiang Shuren University Shulan International Medical College, Hangzhou, China ,grid.464209.d0000 0004 0644 6935China National Center for Bioinformation, Beijing, 100101 China ,grid.9227.e0000000119573309Key Laboratory of Genomic and Precision Medicine, Beijing Institute of Genomics, Chinese Academy of Sciences, Beijing, 100101 China ,grid.410726.60000 0004 1797 8419University of Chinese Academy of Sciences, Beijing, 100049 China
| | - Rui Nie
- grid.464209.d0000 0004 0644 6935China National Center for Bioinformation, Beijing, 100101 China ,grid.9227.e0000000119573309Key Laboratory of Genomic and Precision Medicine, Beijing Institute of Genomics, Chinese Academy of Sciences, Beijing, 100101 China ,grid.410726.60000 0004 1797 8419University of Chinese Academy of Sciences, Beijing, 100049 China
| | - Jiang Zhang
- grid.20513.350000 0004 1789 9964School of Systems Science, Beijing Normal University, Beijing, 100875 China
| | - Jun Cai
- grid.464209.d0000 0004 0644 6935China National Center for Bioinformation, Beijing, 100101 China ,grid.9227.e0000000119573309Key Laboratory of Genomic and Precision Medicine, Beijing Institute of Genomics, Chinese Academy of Sciences, Beijing, 100101 China ,grid.410726.60000 0004 1797 8419University of Chinese Academy of Sciences, Beijing, 100049 China
| |
Collapse
|
30
|
Daura E, Tegelberg S, Hakala P, Lehesjoki AE, Joensuu T. Cystatin B deficiency results in sustained histone H3 tail cleavage in postnatal mouse brain mediated by increased chromatin-associated cathepsin L activity. Front Mol Neurosci 2022; 15:1069122. [DOI: 10.3389/fnmol.2022.1069122] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2022] [Accepted: 11/14/2022] [Indexed: 12/05/2022] Open
Abstract
Cystatin B (CSTB) is a cysteine cathepsin inhibitor whose biallelic loss-of-function mutations in human result in defects in brain development and in neurodegeneration. The physiological function of CSTB is largely unknown, and the mechanisms underlying the human brain diseases remain poorly understood. We previously showed that CSTB modulates the proteolysis of the N-terminal tail of histone H3 (H3cs1) during in vitro neurogenesis. Here we investigated the significance of this mechanism in postnatal mouse brain. Spatiotemporal analysis of H3cs1 intensity showed that while H3cs1 in wild-type (wt) mice was found at varying levels during the first postnatal month, it was virtually absent in adult brain. We further showed that the high level of H3cs1 coincides with chromatin association of de novo synthesized cathepsin L suggesting a role for nuclear cathepsin L in brain development and maturation. On the contrary, the brains of Cstb–/– mice showed sustained H3cs1 proteolysis to adulthood with increased chromatin-associated cathepsin L activity, implying that CSTB regulates chromatin-associated cathepsin L activity in the postnatal mouse brain. As H3 tail proteolysis has been linked to cellular senescence in vitro, we explored the presence of several cellular senescence markers in the maturing Cstb–/– cerebellum, where we see increased levels of H3cs1. While several markers showed alterations in Cstb–/– mice, the results remained inconclusive regarding the association of deficient CSTB function with H3cs1-induced senescence. Together, we identify a molecular role for CSTB in brain with implications for brain development and disease.
Collapse
|
31
|
Wei F, Pan B, Diao J, Wang Y, Sheng Y, Gao S. The micronuclear histone H3 clipping in the unicellular eukaryote Tetrahymena thermophila. MARINE LIFE SCIENCE & TECHNOLOGY 2022; 4:584-594. [PMID: 37078088 PMCID: PMC10077241 DOI: 10.1007/s42995-022-00151-0] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/29/2022] [Accepted: 10/07/2022] [Indexed: 05/02/2023]
Abstract
Clipping of the histone H3 N-terminal tail has been implicated in multiple fundamental biological processes for a growing list of eukaryotes. H3 clipping, serving as an irreversible process to permanently remove some post-translational modifications (PTMs), may lead to noticeable changes in chromatin dynamics or gene expression. The eukaryotic model organism Tetrahymena thermophila is among the first few eukaryotes that exhibits H3 clipping activity, wherein the first six amino acids of H3 are cleaved off during vegetative growth. Clipping only occurs in the transcriptionally silent micronucleus of the binucleated T. thermophila, thus offering a unique opportunity to reveal the role of H3 clipping in epigenetic regulation. However, the physiological functions of the truncated H3 and its protease(s) for clipping remain elusive. Here, we review the major findings of H3 clipping in T. thermophila and highlight its association with histone modifications and cell cycle regulation. We also summarize the functions and mechanisms of H3 clipping in other eukaryotes, focusing on the high diversity in terms of protease families and cleavage sites. Finally, we predict several protease candidates in T. thermophila and provide insights for future studies. Supplementary Information The online version contains supplementary material available at 10.1007/s42995-022-00151-0.
Collapse
Affiliation(s)
- Fan Wei
- Institute of Evolution and Marine Biodiversity, Ocean University of China, Qingdao, 266003 China
- Laboratory for Marine Biology and Biotechnology, Qingdao National Laboratory for Marine Science and Technology, Qingdao, 266237 China
| | - Bo Pan
- Institute of Evolution and Marine Biodiversity, Ocean University of China, Qingdao, 266003 China
- Laboratory for Marine Biology and Biotechnology, Qingdao National Laboratory for Marine Science and Technology, Qingdao, 266237 China
| | - Jinghan Diao
- Institute of Evolution and Marine Biodiversity, Ocean University of China, Qingdao, 266003 China
- Laboratory for Marine Biology and Biotechnology, Qingdao National Laboratory for Marine Science and Technology, Qingdao, 266237 China
| | - Yuanyuan Wang
- Institute of Evolution and Marine Biodiversity, Ocean University of China, Qingdao, 266003 China
- Laboratory for Marine Biology and Biotechnology, Qingdao National Laboratory for Marine Science and Technology, Qingdao, 266237 China
| | - Yalan Sheng
- Institute of Evolution and Marine Biodiversity, Ocean University of China, Qingdao, 266003 China
| | - Shan Gao
- Institute of Evolution and Marine Biodiversity, Ocean University of China, Qingdao, 266003 China
- Laboratory for Marine Biology and Biotechnology, Qingdao National Laboratory for Marine Science and Technology, Qingdao, 266237 China
| |
Collapse
|
32
|
Tribondeau A, Sachs LM, Buisine N. Tetrabromobisphenol A effects on differentiating mouse embryonic stem cells reveals unexpected impact on immune system. Front Genet 2022; 13:996826. [PMID: 36386828 PMCID: PMC9640982 DOI: 10.3389/fgene.2022.996826] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2022] [Accepted: 10/06/2022] [Indexed: 07/27/2023] Open
Abstract
Tetrabromobisphenol A (TBBPA) is a potent flame retardant used in numerous appliances and a major pollutant in households and ecosystems. In vertebrates, it was shown to affect neurodevelopment, the hypothalamic-pituitary-gonadal axis and thyroid signaling, but its toxicity and modes of actions are still a matter of debate. The molecular phenotype resulting from exposure to TBBPA is only poorly described, especially at the level of transcriptome reprogramming, which further limits our understanding of its molecular toxicity. In this work, we combined functional genomics and system biology to provide a system-wide description of the transcriptomic alterations induced by TBBPA acting on differentiating mESCs, and provide potential new toxicity markers. We found that TBBPA-induced transcriptome reprogramming affect a large collection of genes loosely connected within the network of biological pathways, indicating widespread interferences on biological processes. We also found two hotspots of action: at the level of neuronal differentiation markers, and surprisingly, at the level of immune system functions, which has been largely overlooked until now. This effect is particularly strong, as terminal differentiation markers of both myeloid and lymphoid lineages are strongly reduced: the membrane T cell receptor (Cd79a, Cd79b), interleukin seven receptor (Il7r), macrophages cytokine receptor (Csf1r), monocyte chemokine receptor (Ccr2). Also, the high affinity IgE receptor (Fcer1g), a key mediator of allergic reactions, is strongly induced. Thus, the molecular imbalance induce by TBBPA may be stronger than initially realized.
Collapse
|
33
|
Margraf A, Perretti M. Immune Cell Plasticity in Inflammation: Insights into Description and Regulation of Immune Cell Phenotypes. Cells 2022; 11:cells11111824. [PMID: 35681519 PMCID: PMC9180515 DOI: 10.3390/cells11111824] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2022] [Revised: 05/28/2022] [Accepted: 05/30/2022] [Indexed: 02/01/2023] Open
Abstract
Inflammation is a life-saving immune reaction occurring in response to invading pathogens. Nonetheless, inflammation can also occur in an uncontrolled, unrestricted manner, leading to chronic disease and organ damage. Mechanisms triggering an inflammatory response, hindering such a response, or leading to its resolution are well-studied but so far insufficiently elucidated with regard to precise therapeutic interventions. Notably, as an immune reaction evolves, requirements and environments for immune cells change, and thus cellular phenotypes adapt and shift, leading to the appearance of distinct cellular subpopulations with new functional features. In this article, we aim to highlight properties of, and overarching regulatory factors involved in, the occurrence of immune cell phenotypes with a special focus on neutrophils, macrophages and platelets. Additionally, we point out implications for both diagnostics and therapeutics in inflammation research.
Collapse
|
34
|
Shindo Y, Brown MG, Amodeo AA. Versatile roles for histones in early development. Curr Opin Cell Biol 2022; 75:102069. [PMID: 35279563 PMCID: PMC9064922 DOI: 10.1016/j.ceb.2022.02.003] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2021] [Revised: 01/30/2022] [Accepted: 02/04/2022] [Indexed: 11/28/2022]
Abstract
The nuclear environment changes dramatically over the course of early development. Histones are core chromatin components that play critical roles in regulating gene expression and nuclear architecture. Additionally, the embryos of many species, including Drosophila, Zebrafish, and Xenopus use the availability of maternally deposited histones to time critical early embryonic events including cell cycle slowing and zygotic genome activation. Here, we review recent insights into how histones control early development. We first discuss the regulation of chromatin functions through interaction of histones and transcription factors, incorporation of variant histones, and histone post-translational modifications. We also highlight emerging roles for histones as developmental regulators independent of chromatin association.
Collapse
Affiliation(s)
- Yuki Shindo
- Department of Biological Sciences, Dartmouth College, Hanover, NH 03755, USA.
| | - Madeleine G Brown
- Department of Biological Sciences, Dartmouth College, Hanover, NH 03755, USA
| | - Amanda A Amodeo
- Department of Biological Sciences, Dartmouth College, Hanover, NH 03755, USA.
| |
Collapse
|
35
|
Identification of hub genes for adult patients with sepsis via RNA sequencing. Sci Rep 2022; 12:5128. [PMID: 35332254 PMCID: PMC8948204 DOI: 10.1038/s41598-022-09175-z] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2022] [Accepted: 03/16/2022] [Indexed: 12/13/2022] Open
Abstract
To screen out potential prognostic hub genes for adult patients with sepsis via RNA sequencing and construction of a microRNA-mRNA-PPI network and investigate the localization of these hub genes in peripheral blood monocytes. The peripheral blood of 33 subjects was subjected to microRNA and mRNA sequencing using high-throughput sequencing, and differentially expressed genes (DEGs) and differentially expressed microRNAs (DEMs) were identified by bioinformatics. Single-cell transcriptome sequencing (10 × Genomics) was further conducted. Among the samples from 23 adult septic patients and 10 healthy individuals, 20,391 genes and 1633 microRNAs were detected by RNA sequencing. In total, 1114 preliminary DEGs and 76 DEMs were obtained using DESeq2, and 454 DEGs were ultimately distinguished. A microRNA-mRNA-PPI network was constructed based on the DEGs and the top 20 DEMs, which included 10 upregulated and 10 downregulated microRNAs. Furthermore, the hub genes TLR5, FCGR1A, ELANE, GNLY, IL2RB and TGFBR3, which may be associated with the prognosis of sepsis, and their negatively correlated microRNAs, were analysed. The genes TLR5, FCGR1A and ELANE were mainly expressed in macrophages, and the genes GNLY, IL2RB and TGFBR3 were expressed specifically in T cells and natural killer cells. Parallel analysis of mRNAs and microRNAs in patients with sepsis was demonstrated to be feasible using RNA-seq. Potential hub genes and microRNAs that may be related to sepsis prognosis were identified, providing new prospects for sepsis treatment. However, further experiments are needed.
Collapse
|
36
|
|