1
|
Wang X, Hu Y, Li X, Huang L, Yang Y, Liu C, Deng Q, Yang P, Li Y, Zhou Y, Xiao L, Wu H, He L. Mycoplasma genitalium membrane lipoprotein induces GAPDH malonylation in urethral epithelial cells to regulate cytokine response. Microb Pathog 2024; 195:106872. [PMID: 39173852 DOI: 10.1016/j.micpath.2024.106872] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2024] [Revised: 08/12/2024] [Accepted: 08/18/2024] [Indexed: 08/24/2024]
Abstract
Membrane lipoproteins serve as primary pro-inflammatory virulence factors in Mycoplasma genitalium. Membrane lipoproteins primarily induce inflammatory responses by activating Toll-like Receptor 2 (TLR2); however, the role of the metabolic status of urethral epithelial cells in inflammatory response remains unclear. In this study, we found that treatment of uroepithelial cell lines with M. genitalium membrane lipoprotein induced metabolic reprogramming, characterized by increased aerobic glycolysis, decreased oxidative phosphorylation, and increased production of the metabolic intermediates acetyl-CoA and malonyl-CoA. The metabolic shift induced by membrane lipoproteins is reversible upon blocking MyD88 and TRAM. Malonyl-CoA induces malonylation of glyceraldehyde 3-phosphate dehydrogenase (GAPDH), and malonylated GAPDH could dissociate from the 3' untranslated region of TNF-α and IFN-γ mRNA. This dissociation greatly reduces the inhibitory effect on the translation of TNF-α and IFN-γ mRNA, thus achieving fine-tuning control over cytokine secretion. These findings suggest that GAPDH malonylation following M. genitalium infection is an important inflammatory signal that plays a crucial role in urogenital inflammatory diseases.
Collapse
Affiliation(s)
- Xiaoliu Wang
- Department of Dermatology, The First Affiliated Hospital, Hengyang Medical College, University of South China, Hengyang, China
| | - Yi Hu
- Department of Obstetrics and Gynecology, The First Affiliated Hospital, Hengyang Medical College, University of South China, Hengyang, China
| | - Xinru Li
- Institute of Pathogenic Biology, Hengyang Medical College, Hunan Provincial Key Laboratory for Special Pathogens Prevention and Control, University of South China, Hengyang, China
| | - Liubin Huang
- Institute of Pathogenic Biology, Hengyang Medical College, Hunan Provincial Key Laboratory for Special Pathogens Prevention and Control, University of South China, Hengyang, China
| | - Yan Yang
- Department of Clinical Laboratory, Shanghai Putuo People's Hospital, Tongji University, Shanghai, China
| | - Chang Liu
- Institute of Pathogenic Biology, Hengyang Medical College, Hunan Provincial Key Laboratory for Special Pathogens Prevention and Control, University of South China, Hengyang, China
| | - Qing Deng
- Department of Dermatology, The First Affiliated Hospital, Hengyang Medical College, University of South China, Hengyang, China
| | - Pei Yang
- Department of Dermatology, The First Affiliated Hospital, Hengyang Medical College, University of South China, Hengyang, China
| | - Yilin Li
- Department of Obstetrics and Gynecology, The First Affiliated Hospital, Hengyang Medical College, University of South China, Hengyang, China
| | - Yiwen Zhou
- Department of Obstetrics and Gynecology, The First Affiliated Hospital, Hengyang Medical College, University of South China, Hengyang, China
| | - Lihua Xiao
- Department of Clinical Laboratory, The Second Affiliated Hospital, Hengyang Medical College, University of South China, Hengyang, China
| | - Haiying Wu
- Department of Clinical Laboratory, The Second Affiliated Hospital, Hengyang Medical College, University of South China, Hengyang, China
| | - Lu He
- Department of Obstetrics and Gynecology, The First Affiliated Hospital, Hengyang Medical College, University of South China, Hengyang, China.
| |
Collapse
|
2
|
Moingeon P. Harnessing the power of AI-based models to accelerate drug discovery against immune diseases. Expert Rev Clin Immunol 2024; 20:1135-1138. [PMID: 38932714 DOI: 10.1080/1744666x.2024.2373915] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2024] [Accepted: 06/25/2024] [Indexed: 06/28/2024]
Affiliation(s)
- Philippe Moingeon
- Servier Research Institute, Paris-Saclay University, Gif-sur-Yvette, France
| |
Collapse
|
3
|
McLean AK, Reynolds G, Pratt AG. Leveraging Multi-Tissue, Single-Cell Atlases as Tools to Elucidate Shared Mechanisms of Immune-Mediated Inflammatory Diseases. Biomedicines 2024; 12:1297. [PMID: 38927506 PMCID: PMC11201400 DOI: 10.3390/biomedicines12061297] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2024] [Revised: 06/05/2024] [Accepted: 06/08/2024] [Indexed: 06/28/2024] Open
Abstract
The observation that certain therapeutic strategies for targeting inflammation benefit patients with distinct immune-mediated inflammatory diseases (IMIDs) is exemplified by the success of TNF blockade in conditions including rheumatoid arthritis, ulcerative colitis, and skin psoriasis, albeit only for subsets of individuals with each condition. This suggests intersecting "nodes" in inflammatory networks at a molecular and cellular level may drive and/or maintain IMIDs, being "shared" between traditionally distinct diagnoses without mapping neatly to a single clinical phenotype. In line with this proposition, integrative tumour tissue analyses in oncology have highlighted novel cell states acting across diverse cancers, with important implications for precision medicine. Drawing upon advances in the oncology field, this narrative review will first summarise learnings from the Human Cell Atlas in health as a platform for interrogating IMID tissues. It will then review cross-disease studies to date that inform this endeavour before considering future directions in the field.
Collapse
Affiliation(s)
- Anthony K. McLean
- Translational and Clinical Research Institute, Newcastle University, Newcastle upon Tyne NE2 4HH, UK
| | - Gary Reynolds
- Center for Immunology and Inflammatory Diseases, Massachusetts General Hospital, Boston, MA 02114, USA
| | - Arthur G. Pratt
- Translational and Clinical Research Institute, Newcastle University, Newcastle upon Tyne NE2 4HH, UK
- Musculoskeletal Unit, Newcastle upon Tyne Hospitals NHS Foundation Trust, Newcastle upon Tyne NE7 7DN, UK
| |
Collapse
|
4
|
Direito R, Barbalho SM, Sepodes B, Figueira ME. Plant-Derived Bioactive Compounds: Exploring Neuroprotective, Metabolic, and Hepatoprotective Effects for Health Promotion and Disease Prevention. Pharmaceutics 2024; 16:577. [PMID: 38794239 PMCID: PMC11124874 DOI: 10.3390/pharmaceutics16050577] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2024] [Revised: 04/21/2024] [Accepted: 04/22/2024] [Indexed: 05/26/2024] Open
Abstract
There is a growing trend among consumers to seek out natural foods and products with natural ingredients. This shift in consumer preferences had a direct impact on both food and pharmaceutical industries, leading to a focus of scientific research and commercial efforts to meet these new demands. The aim of this work is to review recent available scientific data on foods of interest, such as the artichoke, gooseberry, and polygonoideae plants, as well as olive oil and red raspberries. Interestingly, the urgency of solutions to the climate change emergency has brought new attention to by-products of grapevine bunch stem and cane, which have been found to contain bioactive compounds with potential health benefits. There is a pressing need for a faster process of translating scientific knowledge from the laboratory to real-world applications, especially in the face of the increasing societal burden associated with non-communicable diseases (NCDs), environmental crises, the post-pandemic world, and ongoing violent conflicts around the world.
Collapse
Affiliation(s)
- Rosa Direito
- Laboratory of Systems Integration Pharmacology, Clinical and Regulatory Science, Research Institute for Medicines, Universidade de Lisboa (iMed.ULisboa), Av. Prof. Gama Pinto, 1649-003 Lisbon, Portugal (M.E.F.)
| | - Sandra Maria Barbalho
- Department of Biochemistry and Pharmacology, School of Medicine, University of Marília (UNIMAR), Avenida Hygino Muzzy Filho, 1001, Marília 17525-902, SP, Brazil;
- Postgraduate Program in Structural and Functional Interactions in Rehabilitation, University of Marília (UNIMAR), Avenida Hygino Muzzy Filho, 1001, Marília 17525-902, SP, Brazil
- Department of Biochemistry and Nutrition, School of Food and Technology of Marília (FATEC), Avenida Castro Alves, 62, Marília 17500-000, SP, Brazil
| | - Bruno Sepodes
- Laboratory of Systems Integration Pharmacology, Clinical and Regulatory Science, Research Institute for Medicines, Universidade de Lisboa (iMed.ULisboa), Av. Prof. Gama Pinto, 1649-003 Lisbon, Portugal (M.E.F.)
- Faculdade de Farmácia, Universidade de Lisboa, Av. Prof. Gama Pinto, 1649-003 Lisbon, Portugal
| | - Maria Eduardo Figueira
- Laboratory of Systems Integration Pharmacology, Clinical and Regulatory Science, Research Institute for Medicines, Universidade de Lisboa (iMed.ULisboa), Av. Prof. Gama Pinto, 1649-003 Lisbon, Portugal (M.E.F.)
- Faculdade de Farmácia, Universidade de Lisboa, Av. Prof. Gama Pinto, 1649-003 Lisbon, Portugal
| |
Collapse
|
5
|
Bonfils L, Karachalia Sandri A, Poulsen GJ, Agrawal M, Ward DJ, Colombel JF, Jess T, Allin KH. Medication-Wide Study: Exploring Medication Use 10 Years Before a Diagnosis of Inflammatory Bowel Disease. Am J Gastroenterol 2023; 118:2220-2229. [PMID: 37410928 PMCID: PMC11148653 DOI: 10.14309/ajg.0000000000002399] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/15/2023] [Accepted: 06/14/2023] [Indexed: 07/08/2023]
Abstract
INTRODUCTION There is growing interest in the prediagnostic phase of inflammatory bowel disease (IBD) and in the overlap of IBD with other diseases. We described and compared use of any prescription medication between individuals with and without IBD in a 10-year period preceding diagnosis. METHODS Based on cross-linked nationwide registers, we identified 29,219 individuals diagnosed with IBD in Denmark between 2005 and 2018 and matched to 292,190 IBD-free individuals. The primary outcome was use of any prescription medication in years 1-10 before IBD diagnosis/matching date. Participants were considered as medication users if they redeemed ≥1 prescription for any medication in the World Health Organization Anatomical Therapeutic Chemical (ATC) main groups or subgroups before diagnosis/matching. RESULTS The IBD population had a universally increased use of medications compared with the matched population before IBD diagnosis. At 10 years before diagnosis, the proportion of users was 1.1-fold to 1.8-fold higher in the IBD population in 12 of 14 ATC main groups of medication ( P -value < 0.0001). This applied across age, sex, and IBD subtypes, although it was the most pronounced for Crohn's disease (CD). Two years before diagnosis, the IBD population had a steep increase in medication use for several organ systems. When analyzing therapeutic subgroups of medication, the CD population exhibited 2.7, 2.3, 1.9, and 1.9 times more users of immunosuppressants, antianemic preparations, analgesics, and psycholeptics, respectively, than the matched population 10 years before diagnosis ( P -value < 0.0001). DISCUSSION Our findings demonstrate universally increased medication use years before IBD, especially CD, diagnosis and indicates multiorgan involvement in IBD.
Collapse
Affiliation(s)
- Linéa Bonfils
- Center for Molecular Prediction of Inflammatory Bowel Disease (PREDICT), Department of Clinical Medicine, Aalborg University, Copenhagen, Denmark
| | - Anastasia Karachalia Sandri
- Center for Molecular Prediction of Inflammatory Bowel Disease (PREDICT), Department of Clinical Medicine, Aalborg University, Copenhagen, Denmark
| | - Gry J Poulsen
- Center for Molecular Prediction of Inflammatory Bowel Disease (PREDICT), Department of Clinical Medicine, Aalborg University, Copenhagen, Denmark
| | - Manasi Agrawal
- Center for Molecular Prediction of Inflammatory Bowel Disease (PREDICT), Department of Clinical Medicine, Aalborg University, Copenhagen, Denmark
- The Dr Henry D. Janowitz Division of Gastroenterology, Icahn School of Medicine at Mount Sinai, New York, New York, USA
| | - Daniel J Ward
- Center for Molecular Prediction of Inflammatory Bowel Disease (PREDICT), Department of Clinical Medicine, Aalborg University, Copenhagen, Denmark
| | - Jean-Frederic Colombel
- The Dr Henry D. Janowitz Division of Gastroenterology, Icahn School of Medicine at Mount Sinai, New York, New York, USA
| | - Tine Jess
- Center for Molecular Prediction of Inflammatory Bowel Disease (PREDICT), Department of Clinical Medicine, Aalborg University, Copenhagen, Denmark
- Department of Gastroenterology & Hepatology, Aalborg University Hospital, Aalborg, Denmark
| | - Kristine H Allin
- Center for Molecular Prediction of Inflammatory Bowel Disease (PREDICT), Department of Clinical Medicine, Aalborg University, Copenhagen, Denmark
- Department of Gastroenterology & Hepatology, Aalborg University Hospital, Aalborg, Denmark
| |
Collapse
|
6
|
Waterhölter A, Wunderlich M, Turner JE. MAIT cells in immune-mediated tissue injury and repair. Eur J Immunol 2023; 53:e2350483. [PMID: 37740567 DOI: 10.1002/eji.202350483] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2023] [Revised: 09/20/2023] [Accepted: 09/21/2023] [Indexed: 09/24/2023]
Abstract
Mucosal-associated invariant T (MAIT) cells are T cells that express a semi-invariant αβ T-cell receptor (TCR), recognizing non-peptide antigens, such as microbial-derived vitamin B2 metabolites, presented by the nonpolymorphic MHC class I related-1 molecule. Like NKT cells and γδT cells, MAIT cells belong to the group of innate-like T cells that combine properties of the innate and adaptive immune systems. They account for up to 10% of the blood T-cell population in humans and are particularly abundant at mucosal sites. Beyond the emerging role of MAIT cells in antibacterial and antiviral defenses, increasing evidence suggests additional functions in noninfectious settings, including immune-mediated inflammatory diseases and tissue repair. Here, we discuss recent advances in the understanding of MAIT cell functions in sterile tissue inflammation, with a particular focus on autoimmunity, chronic inflammatory diseases, and tissue repair.
Collapse
Affiliation(s)
- Alex Waterhölter
- III. Department of Medicine, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
- Hamburg Center for Translational Immunology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
- Hamburg Center for Kidney Health (HCKH), University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Malte Wunderlich
- III. Department of Medicine, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
- Hamburg Center for Translational Immunology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
- Hamburg Center for Kidney Health (HCKH), University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Jan-Eric Turner
- III. Department of Medicine, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
- Hamburg Center for Translational Immunology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
- Hamburg Center for Kidney Health (HCKH), University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| |
Collapse
|
7
|
Moingeon P. Artificial intelligence-driven drug development against autoimmune diseases. Trends Pharmacol Sci 2023; 44:411-424. [PMID: 37268540 DOI: 10.1016/j.tips.2023.04.005] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2023] [Revised: 04/22/2023] [Accepted: 04/25/2023] [Indexed: 06/04/2023]
Abstract
Artificial intelligence (AI)-based predictive models are being used to foster a precision medicine approach to treat complex chronic diseases such as autoimmune and autoinflammatory disorders (AIIDs). In the past few years the first models of systemic lupus erythematosus (SLE), primary Sjögren syndrome (pSS), and rheumatoid arthritis (RA) have been produced by molecular profiling of patients using omic technologies and integrating the data with AI. These advances have confirmed a complex pathophysiology involving multiple proinflammatory pathways and also provide evidence for shared molecular dysregulation across different AIIDs. I discuss how models are used to stratify patients, assess causality in pathophysiology, design drug candidates in silico, and predict drug efficacy in virtual patients. By relating individual patient characteristics to the predicted properties of millions of drug candidates, these models can improve the management of AIIDs through more personalized treatments.
Collapse
Affiliation(s)
- Philippe Moingeon
- Research and Development, Servier Laboratories, 50 Rue Carnot, 92150 Suresnes, France; French Academy of Pharmacy, 4 Avenue de l'Observatoire, 75006 Paris, France.
| |
Collapse
|
8
|
Zhang J, Li W, Gong M, Gu Y, Zhang H, Dong B, Guo Q, Pang X, Xiang Q, He X, Cui Y. Risk of venous thromboembolism with janus kinase inhibitors in inflammatory immune diseases: a systematic review and meta-analysis. Front Pharmacol 2023; 14:1189389. [PMID: 37351513 PMCID: PMC10282754 DOI: 10.3389/fphar.2023.1189389] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2023] [Accepted: 05/22/2023] [Indexed: 06/24/2023] Open
Abstract
Objectives: This study aimed to evaluate the risk of venous thrombosis (VTE) associated with Janus kinase (JAK) inhibitors in patients diagnosed with immune-mediated inflammatory diseases. Methods: We conducted a comprehensive search of PUBMED, Cochrane, and Embase databases for randomized controlled trials evaluating venous thromboembolic incidence after administering JAK inhibitors in patients with immune-mediated inflammatory diseases. The studies were screened according to the Preferred Reporting Items for Systematic Reviews and Meta-Analyses (PRISMA) guidelines, and a meta-analysis was performed. Results: A total of 16 studies, enrolling 17,242 participants, were included in this review. Four approved doses of JAK inhibitors were administered in the included studies. The meta-analysis revealed no significant difference in the incidence of VTE between patients receiving JAK inhibitors, a placebo, or tumor necrosis factor (TNF) inhibitors (RR 0.72, 95% CI (0.33-1.55); RR 0.94, 95%CI (0.33-2.69)). Subgroup analysis showed a lower risk of VTE with lower doses of JAK inhibitors [RR 0.56, 95%CI (0.36-0.88)]. Compared with the higher dose of tofacitinib, the lower dose was associated with a lower risk of pulmonary embolism [RR 0.37, 95%CI (0.18-0.78)]. Conclusion: Our meta-analysis of randomized controlled trials observed a potential increase in the risk of VTE in patients with immune-mediated inflammatory diseases treated with JAK inhibitors compared to placebo or tumor necrosis factor inhibitors, though statistical significance was not attained. Notably, a higher risk of pulmonary embolism was observed with high doses of tofacitinib. Our findings provide valuable insights for physicians when evaluating the use of JAK inhibitors for patients with immune-mediated inflammatory diseases. Systematic Review Registration: https://www.crd.york.ac.uk/prospero/display_record.php?ID=CRD42023382544, identifier CRD42023382544.
Collapse
Affiliation(s)
- Juqi Zhang
- Department of Pharmacy, Peking University First Hospital, Beijing, China
- Institute of Clinical Pharmacology, Peking University First Hospital, Beijing, China
- Department of Pharmacy Administration and Clinical Pharmacy, School of Pharmaceutical Sciences, Peking University, Beijing, China
| | - Wenhui Li
- Department of Pharmacy, Peking University First Hospital, Beijing, China
- Institute of Clinical Pharmacology, Peking University First Hospital, Beijing, China
- Department of Pharmacy Administration and Clinical Pharmacy, School of Pharmaceutical Sciences, Peking University, Beijing, China
| | - Mingli Gong
- Department of Pharmacy, Xu Zhou Medical University, Xuzhou, China
| | - Yanlun Gu
- Department of Pharmacy, Peking University First Hospital, Beijing, China
- Institute of Clinical Pharmacology, Peking University First Hospital, Beijing, China
- Department of Pharmacy Administration and Clinical Pharmacy, School of Pharmaceutical Sciences, Peking University, Beijing, China
| | - Hanxu Zhang
- Department of Pharmacy, Peking University First Hospital, Beijing, China
- Institute of Clinical Pharmacology, Peking University First Hospital, Beijing, China
- Department of Pharmacy Administration and Clinical Pharmacy, School of Pharmaceutical Sciences, Peking University, Beijing, China
| | - Bingqi Dong
- Department of General Surgery, Peking University First Hospita, Beijing, China
| | - Qi Guo
- Institute of Clinical Pharmacology, Peking University First Hospital, Beijing, China
- Department of Pharmacy Administration and Clinical Pharmacy, School of Pharmaceutical Sciences, Peking University, Beijing, China
- Department of Pharmacy, Peking University Third Hospital, Beijing, China
| | - Xiaocong Pang
- Department of Pharmacy, Peking University First Hospital, Beijing, China
- Institute of Clinical Pharmacology, Peking University First Hospital, Beijing, China
| | - Qian Xiang
- Department of Pharmacy, Peking University First Hospital, Beijing, China
- Institute of Clinical Pharmacology, Peking University First Hospital, Beijing, China
| | - Xu He
- Department of Pharmacy, Peking University First Hospital, Beijing, China
- Institute of Clinical Pharmacology, Peking University First Hospital, Beijing, China
| | - Yimin Cui
- Department of Pharmacy, Peking University First Hospital, Beijing, China
- Institute of Clinical Pharmacology, Peking University First Hospital, Beijing, China
- Department of Pharmacy Administration and Clinical Pharmacy, School of Pharmaceutical Sciences, Peking University, Beijing, China
| |
Collapse
|
9
|
Cable J, Rathmell JC, Pearce EL, Ho PC, Haigis MC, Mamedov MR, Wu MJ, Kaech SM, Lynch L, Febbraio MA, Bapat SP, Hong HS, Zou W, Belkaid Y, Sullivan ZA, Keller A, Wculek SK, Green DR, Postic C, Amit I, Benitah SA, Jones RG, Reina-Campos M, Torres SV, Beyaz S, Brennan D, O'Neill LAJ, Perry RJ, Brenner D. Immunometabolism at the crossroads of obesity and cancer-a Keystone Symposia report. Ann N Y Acad Sci 2023; 1523:38-50. [PMID: 36960914 PMCID: PMC10367315 DOI: 10.1111/nyas.14976] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/25/2023]
Abstract
Immunometabolism considers the relationship between metabolism and immunity. Typically, researchers focus on either the metabolic pathways within immune cells that affect their function or the impact of immune cells on systemic metabolism. A more holistic approach that considers both these viewpoints is needed. On September 5-8, 2022, experts in the field of immunometabolism met for the Keystone symposium "Immunometabolism at the Crossroads of Obesity and Cancer" to present recent research across the field of immunometabolism, with the setting of obesity and cancer as an ideal example of the complex interplay between metabolism, immunity, and cancer. Speakers highlighted new insights on the metabolic links between tumor cells and immune cells, with a focus on leveraging unique metabolic vulnerabilities of different cell types in the tumor microenvironment as therapeutic targets and demonstrated the effects of diet, the microbiome, and obesity on immune system function and cancer pathogenesis and therapy. Finally, speakers presented new technologies to interrogate the immune system and uncover novel metabolic pathways important for immunity.
Collapse
Affiliation(s)
| | - Jeffrey C Rathmell
- Vanderbilt-Ingram Cancer Center; Vanderbilt Center for Immunobiology; Department of Pathology, Microbiology, and Immunology, Vanderbilt University Medical Center, Nashville, Tennessee, USA
| | - Erika L Pearce
- Bloomberg-Kimmel Institute for Cancer Immunotherapy at Johns Hopkins, Baltimore, Maryland, USA
- Max Planck Institute of Immunobiology and Epigenetics, Freiburg, Germany
| | - Ping-Chih Ho
- Department of Fundamental Oncology and Ludwig Institute for Cancer Research, University of Lausanne, Lausanne, Switzerland
| | - Marcia C Haigis
- Department of Cell Biology, Blavatnik Institute, Harvard Medical School, Boston, Massachusetts, USA
| | - Murad R Mamedov
- Gladstone-UCSF Institute of Genomic Immunology and Department of Medicine, University of California San Francisco, San Francisco, California, USA
| | - Meng-Ju Wu
- Cancer Center, Massachusetts General Hospital; Department of Medicine, Harvard Medical School, Boston, Massachusetts, USA
- Broad Institute of Harvard and Massachusetts Institute of Technology, Cambridge, Massachusetts, USA
| | - Susan M Kaech
- NOMIS Center for Immunobiology and Microbial Pathogenesis, Salk Institute for Biological Studies, La Jolla, California, USA
| | - Lydia Lynch
- Brigham and Women's Hospital, Harvard Medical School, Boston, Massachusetts, USA
| | - Mark A Febbraio
- Monash Institute of Pharmaceutical Sciences, Monash University, Parkville, Victoria, Australia
| | - Sagar P Bapat
- Diabetes Center and Department of Laboratory Medicine, University of California San Francisco, San Francisco, California, USA
| | - Hanna S Hong
- Department of Molecular and Integrative Physiology, University of Michigan, Ann Arbor, Michigan, USA
| | - Weiping Zou
- Department of Surgery; Center of Excellence for Cancer Immunology and Immunotherapy, University of Michigan Rogel Cancer Center; Department of Pathology; Graduate Program in Immunology; Graduate Program in Cancer Biology, University of Michigan School of Medicine, Ann Arbor, Michigan, USA
| | - Yasmine Belkaid
- Metaorganism Immunity Section, Laboratory of Immune System Biology, and NIAID Microbiome Program National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Maryland, USA
| | - Zuri A Sullivan
- Department of Immunobiology, Molecular and Cellular Biology, Harvard University, Cambridge, Massachusetts, USA
| | - Andrea Keller
- Department of Biological Chemistry and Pharmacology, College of Medicine; and Comprehensive Cancer Center, Wexner Medical Center, Arthur G. James Cancer Hospital, The Ohio State University, Columbus, Ohio, USA
| | - Stefanie K Wculek
- Centro Nacional de Investigaciones Cardiovasculares (CNIC), Madrid, Spain
| | - Douglas R Green
- St. Jude Children's Research Hospital, Memphis, Tennessee, USA
| | - Catherine Postic
- Université Paris Cité, CNRS, INSERM, Institut Cochin, Paris, France
| | - Ido Amit
- Department of Systems Immunology, Weizmann Institute of Science, Rehovot, Israel
| | - Salvador Aznar Benitah
- Institute for Research in Biomedicine (IRB Barcelona), The Barcelona Institute of Science and Technology (BIST) and Catalan Institution for Research and Advanced Studies (ICREA), Barcelona, Spain
| | - Russell G Jones
- Department of Metabolism and Nutritional Programming, Van Andel Research Institute, Grand Rapids, Michigan, USA
| | | | - Santiago Valle Torres
- Department of Microbiology and Immunology, The Peter Doherty Institute for Infection and Immunity, University of Melbourne, Melbourne, Victoria, Australia
| | - Semir Beyaz
- Cold Spring Harbor Laboratory, Cold Spring Harbor, New York, USA
| | - Donal Brennan
- UCD Gynecological Oncology Group, UCD School of Medicine, Catherine McAuley Research Centre, Mater Misericordiae University Hospital, Belfield, Ireland
| | - Luke A J O'Neill
- School of Biochemistry and Immunology, Trinity Biomedical Sciences Institute, Trinity College, Dublin, Ireland
| | - Rachel J Perry
- Department of Cellular and Molecular Physiology and Department of Internal Medicine (Endocrinology), Yale University School of Medicine, New Haven, Connecticut, USA
| | - Dirk Brenner
- Experimental and Molecular Immunology, Department of Infection and Immunity, Luxembourg Institute of Health, Esch-sur-Alzette, Luxembourg
- Immunology and Genetics, Luxembourg Centre for System Biomedicine (LCSB), University of Luxembourg, Belval, Luxembourg
- Odense Research Center for Anaphylaxis, Department of Dermatology and Allergy Center, Odense University Hospital, University of Southern Denmark, Odense, Denmark
| |
Collapse
|
10
|
Lin CMA, Cooles FAH, Isaacs JD. Precision medicine: the precision gap in rheumatic disease. Nat Rev Rheumatol 2022; 18:725-733. [PMID: 36216923 DOI: 10.1038/s41584-022-00845-w] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/07/2022] [Indexed: 11/09/2022]
Abstract
For many oncological conditions, the application of timely and patient-tailored targeted therapies, or precision medicine, is a major therapeutic development that has provided considerable clinical benefit. However, despite the application of increasingly sophisticated technologies, alongside advanced bioinformatic and machine-learning algorithms, this success is yet to be replicated for the rheumatic diseases. In rheumatoid arthritis, for example, despite an array of targeted biologic and conventional therapeutics, treatment choice remains largely based on trial and error. The concept of the 'precision gap' for rheumatic disease can help us to identify factors that underpin the slow progress towards the discovery and adoption of precision-medicine approaches for rheumatic disease. In a rheumatic disease such as rheumatoid arthritis, it is possible to identify four themes that have slowed progress, solutions to which should help to close the precision gap. These themes relate to our fundamental understanding of disease pathogenesis, how we determine treatment response, confounders of treatment outcomes and trial design.
Collapse
Affiliation(s)
- Chung M A Lin
- Translational and Clinical Research Institute, Newcastle University, Newcastle upon Tyne, UK
| | - Faye A H Cooles
- Translational and Clinical Research Institute, Newcastle University, Newcastle upon Tyne, UK
| | - John D Isaacs
- Translational and Clinical Research Institute, Newcastle University, Newcastle upon Tyne, UK. .,Musculoskeletal Unit, Newcastle upon Tyne Hospitals NHS Foundation Trust, Newcastle upon Tyne, UK.
| |
Collapse
|
11
|
Chapelle N, Fantou A, Marron T, Kenigsberg E, Merad M, Martin JC. Single-cell profiling to transform immunotherapy usage and target discovery in immune-mediated inflammatory diseases. Front Immunol 2022; 13:1006944. [DOI: 10.3389/fimmu.2022.1006944] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2022] [Accepted: 10/24/2022] [Indexed: 11/09/2022] Open
Abstract
Immunotherapy drugs are transforming the clinical care landscape of major human diseases from cancer, to inflammatory diseases, cardiovascular diseases, neurodegenerative diseases and even aging. In polygenic immune-mediated inflammatory diseases (IMIDs), the clinical benefits of immunotherapy have nevertheless remained limited to a subset of patients. Yet the identification of new actionable molecular candidates has remained challenging, and the use of standard of care imaging and/or histological diagnostic assays has failed to stratify potential responders from non-responders to biotherapies already available. We argue that these limitations partly stem from a poor understanding of disease pathophysiology and insufficient characterization of the roles assumed by candidate targets during disease initiation, progression and treatment. By transforming the resolution and scale of tissue cell mapping, high-resolution profiling strategies offer unprecedented opportunities to the understanding of immunopathogenic events in human IMID lesions. Here we discuss the potential for single-cell technologies to reveal relevant pathogenic cellular programs in IMIDs and to enhance patient stratification to guide biotherapy eligibility and clinical trial design.
Collapse
|
12
|
Abstract
Parasitic helminth infections, while a major cause of neglected tropical disease burden, negatively correlate with the incidence of immune-mediated inflammatory diseases such as inflammatory bowel diseases (IBD). To evade expulsion, helminths have developed sophisticated mechanisms to regulate their host's immune responses. Controlled experimental human helminth infections have been assessed clinically for treating inflammatory conditions; however, such a radical therapeutic modality has challenges. An alternative approach is to harness the immunomodulatory properties within the worm's excretory-secretory (ES) complement, its secretome. Here, we report a biologics discovery and validation pipeline to generate and screen in vivo a recombinant cell-free secretome library of helminth-derived immunomodulatory proteins. We successfully expressed 78 recombinant ES proteins from gastrointestinal hookworms and screened the crude in vitro translation reactions for anti-IBD properties in a mouse model of acute colitis. After statistical filtering and ranking, 20 proteins conferred significant protection against various parameters of colitis. Lead candidates from distinct protein families, including annexins, transthyretins, nematode-specific retinol-binding proteins, and SCP/TAPS were identified. Representative proteins were produced in mammalian cells and further validated, including ex vivo suppression of inflammatory cytokine secretion by T cells from IBD patient colon biopsies. Proteins identified herein offer promise as novel, safe, and mechanistically differentiated biologics for treating the globally increasing burden of inflammatory diseases.
Collapse
|
13
|
Yan M, Komatsu N, Muro R, Huynh NCN, Tomofuji Y, Okada Y, Suzuki HI, Takaba H, Kitazawa R, Kitazawa S, Pluemsakunthai W, Mitsui Y, Satoh T, Okamura T, Nitta T, Im SH, Kim CJ, Kollias G, Tanaka S, Okamoto K, Tsukasaki M, Takayanagi H. ETS1 governs pathological tissue-remodeling programs in disease-associated fibroblasts. Nat Immunol 2022; 23:1330-1341. [PMID: 35999392 DOI: 10.1038/s41590-022-01285-0] [Citation(s) in RCA: 27] [Impact Index Per Article: 13.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2021] [Accepted: 07/08/2022] [Indexed: 02/04/2023]
Abstract
Fibroblasts, the most abundant structural cells, exert homeostatic functions but also drive disease pathogenesis. Single-cell technologies have illuminated the shared characteristics of pathogenic fibroblasts in multiple diseases including autoimmune arthritis, cancer and inflammatory colitis. However, the molecular mechanisms underlying the disease-associated fibroblast phenotypes remain largely unclear. Here, we identify ETS1 as the key transcription factor governing the pathological tissue-remodeling programs in fibroblasts. In arthritis, ETS1 drives polarization toward tissue-destructive fibroblasts by orchestrating hitherto undescribed regulatory elements of the osteoclast differentiation factor receptor activator of nuclear factor-κB ligand (RANKL) as well as matrix metalloproteinases. Fibroblast-specific ETS1 deletion resulted in ameliorated bone and cartilage damage under arthritic conditions without affecting the inflammation level. Cross-tissue fibroblast single-cell data analyses and genetic loss-of-function experiments lent support to the notion that ETS1 defines the perturbation-specific fibroblasts shared among various disease settings. These findings provide a mechanistic basis for pathogenic fibroblast polarization and have important therapeutic implications.
Collapse
Affiliation(s)
- Minglu Yan
- Department of Immunology, Graduate School of Medicine and Faculty of Medicine, The University of Tokyo, Tokyo, Japan
| | - Noriko Komatsu
- Department of Immunology, Graduate School of Medicine and Faculty of Medicine, The University of Tokyo, Tokyo, Japan
| | - Ryunosuke Muro
- Department of Immunology, Graduate School of Medicine and Faculty of Medicine, The University of Tokyo, Tokyo, Japan
| | - Nam Cong-Nhat Huynh
- Department of Immunology, Graduate School of Medicine and Faculty of Medicine, The University of Tokyo, Tokyo, Japan.,Laboratory of Oral-Maxillofacial Biology, Faculty of Odonto-Stomatology, University of Medicine and Pharmacy at Ho Chi Minh City, Ho Chi Minh City, Vietnam
| | - Yoshihiko Tomofuji
- Department of Statistical Genetics, Osaka University, Graduate School of Medicine, Osaka, Japan
| | - Yukinori Okada
- Department of Statistical Genetics, Osaka University, Graduate School of Medicine, Osaka, Japan.,Department of Genome Informatics, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan.,Laboratory for Systems Genetics, RIKEN Center for Integrative Medical Sciences, Kanagawa, Japan
| | - Hiroshi I Suzuki
- Division of Molecular Oncology, Center for Neurological Diseases and Cancer, Nagoya University Graduate School of Medicine, Nagoya, Japan.,Institute for Glyco-core Research (iGCORE), Nagoya University, Nagoya, Japan
| | - Hiroyuki Takaba
- Department of Immunology, Graduate School of Medicine and Faculty of Medicine, The University of Tokyo, Tokyo, Japan
| | - Riko Kitazawa
- Division of Diagnostic Pathology, Ehime University Hospital, Toon City, Japan
| | - Sohei Kitazawa
- Department of Molecular Pathology, Graduate School of Medicine, Ehime University, Toon City, Japan
| | - Warunee Pluemsakunthai
- Department of Immunology, Graduate School of Medicine and Faculty of Medicine, The University of Tokyo, Tokyo, Japan
| | - Yuichi Mitsui
- Department of Immune Regulation, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University, Tokyo, Japan.,Innate Cell Therapy, Osaka, Japan
| | - Takashi Satoh
- Department of Immune Regulation, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University, Tokyo, Japan.,Innate Cell Therapy, Osaka, Japan
| | - Tadashi Okamura
- Department of Laboratory Animal Medicine, Research Institute, National Center for Global Health and Medicine, Tokyo, Japan
| | - Takeshi Nitta
- Department of Immunology, Graduate School of Medicine and Faculty of Medicine, The University of Tokyo, Tokyo, Japan
| | - Sin-Hyeog Im
- Department of Life Sciences, Pohang University of Science and Technology (POSTECH), POSTECH Biotech Center, Pohang, Republic of Korea.,ImmunoBiome, Pohang, Republic of Korea.,Institute of Convergence Science, Yonsei University, Seoul, Republic of Korea
| | - Chan Johng Kim
- Department of Life Sciences, Pohang University of Science and Technology (POSTECH), POSTECH Biotech Center, Pohang, Republic of Korea
| | - George Kollias
- Institute for Bioinnovation, Biomedical Sciences Research Center (BSRC) 'Alexander Fleming,' Vari, Attika, Greece.,Department of Physiology, Medical School, National and Kapodistrian University of Athens, Athens, Greece
| | - Sakae Tanaka
- Department of Orthopaedic Surgery, Faculty of Medicine, The University of Tokyo, Tokyo, Japan
| | - Kazuo Okamoto
- Department of Osteoimmunology, Graduate School of Medicine and Faculty of Medicine, The University of Tokyo, Tokyo, Japan
| | - Masayuki Tsukasaki
- Department of Immunology, Graduate School of Medicine and Faculty of Medicine, The University of Tokyo, Tokyo, Japan
| | - Hiroshi Takayanagi
- Department of Immunology, Graduate School of Medicine and Faculty of Medicine, The University of Tokyo, Tokyo, Japan.
| |
Collapse
|
14
|
Li X, Omonova Tuychi Qizi C, Mohamed Khamis A, Zhang C, Su Z. Nanotechnology for Enhanced Cytoplasmic and Organelle Delivery of Bioactive Molecules to Immune Cells. Pharm Res 2022; 39:1065-1083. [PMID: 35661086 DOI: 10.1007/s11095-022-03284-0] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2021] [Accepted: 04/30/2022] [Indexed: 12/18/2022]
Abstract
Immune cells stand as a critical component of the immune system to maintain the internal environment homeostasis. The dysfunction of immune cells can result in various life-threatening diseases, including refractory infection, diabetes, cardiovascular disease, and cancer. Therefore, strategies to standardize or even enhance the function of immune cells are critical. Recently, nanotechnology has been highly researched and extensively applied for enhancing the cytoplasmic delivery of bioactive molecules to immune cells, providing efficient approaches to correct in vivo and in vitro dysfunction of immune cells. This review focuses on the technologies and challenges involved in improving endo-lysosomal escape, cytoplasmic release and organelle targeted delivery of different bioactive molecules in immune cells. Furthermore, it will elaborate on the broader vision of applying nanotechnology for treating immune cell-related diseases and constructing immune therapies and cytopharmaceuticals as potential treatments for diseases.
Collapse
Affiliation(s)
- Xiaoyu Li
- State Key Laboratory of Natural Medicines, Center of Advanced Pharmaceuticals and Biomaterials, Jiangsu Key Laboratory of Drug Discovery for Metabolic Diseases, China Pharmaceutical University, Nanjing, 210009, China
| | - Charos Omonova Tuychi Qizi
- State Key Laboratory of Natural Medicines, Center of Advanced Pharmaceuticals and Biomaterials, Jiangsu Key Laboratory of Drug Discovery for Metabolic Diseases, China Pharmaceutical University, Nanjing, 210009, China
| | - Amari Mohamed Khamis
- State Key Laboratory of Natural Medicines, Center of Advanced Pharmaceuticals and Biomaterials, Jiangsu Key Laboratory of Drug Discovery for Metabolic Diseases, China Pharmaceutical University, Nanjing, 210009, China
| | - Can Zhang
- State Key Laboratory of Natural Medicines, Center of Advanced Pharmaceuticals and Biomaterials, Jiangsu Key Laboratory of Drug Discovery for Metabolic Diseases, China Pharmaceutical University, Nanjing, 210009, China.
| | - Zhigui Su
- State Key Laboratory of Natural Medicines, Center of Advanced Pharmaceuticals and Biomaterials, Jiangsu Key Laboratory of Drug Discovery for Metabolic Diseases, China Pharmaceutical University, Nanjing, 210009, China.
| |
Collapse
|
15
|
Fiocchi C, Iliopoulos D. Inflammatory Bowel Disease Therapy: Beyond the Immunome. Front Immunol 2022; 13:864762. [PMID: 35615360 PMCID: PMC9124778 DOI: 10.3389/fimmu.2022.864762] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2022] [Accepted: 04/11/2022] [Indexed: 12/19/2022] Open
Affiliation(s)
- Claudio Fiocchi
- Department of Inflammation & Immunity, Lerner Research Institute Cleveland, Cleveland, OH, United States
- Department of Gastroenterology, Hepatology & Nutrition, Digestive Disease and Surgery Institute, Cleveland Clinic, Cleveland, OH, United States
- *Correspondence: Claudio Fiocchi,
| | | |
Collapse
|
16
|
Marron TU, Galsky MD, Taouli B, Fiel MI, Ward S, Kim E, Yankelevitz D, Doroshow D, Guttman-Yassky E, Ungar B, Mehandru S, Golas BJ, Labow D, Sfakianos J, Nair SS, Chakravarty D, Buckstein M, Song X, Kenigsberg E, Gnjatic S, Brown BD, Sparano J, Tewari A, Schwartz M, Bhardwaj N, Merad M. Neoadjuvant clinical trials provide a window of opportunity for cancer drug discovery. Nat Med 2022; 28:626-629. [PMID: 35347282 PMCID: PMC9901535 DOI: 10.1038/s41591-022-01681-x] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
Window-of-opportunity trials, during which patients receive short-duration pre-surgical therapies, provide a platform for understanding the therapies’ mechanisms of action, but will require a paradigm shift in trial design, specimen collection and analysis.
Collapse
Affiliation(s)
- Thomas U Marron
- The neoAdjuvant Research Group to Evaluate Therapeutics (TARGET), Icahn School of Medicine at Mount Sinai, New York, NY, USA.
- Immunotherapy and Novel TargEt Research Across Clinical Teams (INTERACT), Icahn School of Medicine at Mount Sinai, New York, NY, USA.
- Early Phase Trials Unit, Tisch Cancer Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA.
- Tisch Cancer Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA.
- Precision Immunology Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA.
- Division of Hematology and Medical Oncology, Icahn School of Medicine at Mount Sinai, New York, NY, USA.
- Center for Thoracic Oncology, Tisch Cancer Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA.
- Center of Excellence for Liver and Bile Duct Cancer, Icahn School of Medicine at Mount Sinai, New York, NY, USA.
- Liver Cancer Program, Division of Liver Diseases and RM Transplant Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA.
| | - Matthew D Galsky
- The neoAdjuvant Research Group to Evaluate Therapeutics (TARGET), Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Early Phase Trials Unit, Tisch Cancer Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Tisch Cancer Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Division of Hematology and Medical Oncology, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Department of Urology, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Bachir Taouli
- The neoAdjuvant Research Group to Evaluate Therapeutics (TARGET), Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Tisch Cancer Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Center of Excellence for Liver and Bile Duct Cancer, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Liver Cancer Program, Division of Liver Diseases and RM Transplant Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Department of Diagnostic, Molecular and Interventional Radiology, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- BioMedical Engineering and Imaging Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Maria Isabel Fiel
- The neoAdjuvant Research Group to Evaluate Therapeutics (TARGET), Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Tisch Cancer Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Center of Excellence for Liver and Bile Duct Cancer, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Liver Cancer Program, Division of Liver Diseases and RM Transplant Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Department of Pathology, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Stephen Ward
- The neoAdjuvant Research Group to Evaluate Therapeutics (TARGET), Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Tisch Cancer Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Center of Excellence for Liver and Bile Duct Cancer, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Liver Cancer Program, Division of Liver Diseases and RM Transplant Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Department of Pathology, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Edward Kim
- The neoAdjuvant Research Group to Evaluate Therapeutics (TARGET), Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Tisch Cancer Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Center of Excellence for Liver and Bile Duct Cancer, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Liver Cancer Program, Division of Liver Diseases and RM Transplant Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- BioMedical Engineering and Imaging Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Division of Interventional Radiology, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - David Yankelevitz
- The neoAdjuvant Research Group to Evaluate Therapeutics (TARGET), Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Tisch Cancer Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Center for Thoracic Oncology, Tisch Cancer Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- BioMedical Engineering and Imaging Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Division of Interventional Radiology, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Deborah Doroshow
- The neoAdjuvant Research Group to Evaluate Therapeutics (TARGET), Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Early Phase Trials Unit, Tisch Cancer Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Tisch Cancer Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Division of Hematology and Medical Oncology, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Center for Thoracic Oncology, Tisch Cancer Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Emma Guttman-Yassky
- Immunotherapy and Novel TargEt Research Across Clinical Teams (INTERACT), Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Precision Immunology Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Department of Dermatology, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Benjamin Ungar
- Immunotherapy and Novel TargEt Research Across Clinical Teams (INTERACT), Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Precision Immunology Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Department of Dermatology, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Saurabh Mehandru
- Immunotherapy and Novel TargEt Research Across Clinical Teams (INTERACT), Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Precision Immunology Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Division of Gastroenterology, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Benjamin J Golas
- The neoAdjuvant Research Group to Evaluate Therapeutics (TARGET), Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Tisch Cancer Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Division of Surgical Oncology, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Daniel Labow
- The neoAdjuvant Research Group to Evaluate Therapeutics (TARGET), Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Tisch Cancer Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Division of Surgical Oncology, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - John Sfakianos
- The neoAdjuvant Research Group to Evaluate Therapeutics (TARGET), Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Tisch Cancer Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Department of Urology, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Sujit S Nair
- The neoAdjuvant Research Group to Evaluate Therapeutics (TARGET), Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Tisch Cancer Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Department of Urology, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Dimple Chakravarty
- The neoAdjuvant Research Group to Evaluate Therapeutics (TARGET), Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Tisch Cancer Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Department of Urology, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Michael Buckstein
- The neoAdjuvant Research Group to Evaluate Therapeutics (TARGET), Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Tisch Cancer Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Center of Excellence for Liver and Bile Duct Cancer, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Liver Cancer Program, Division of Liver Diseases and RM Transplant Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Department of Radiation Oncology, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Xiaoyu Song
- The neoAdjuvant Research Group to Evaluate Therapeutics (TARGET), Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Tisch Cancer Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Department of Population Health Science and Policy, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Effi Kenigsberg
- The neoAdjuvant Research Group to Evaluate Therapeutics (TARGET), Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Precision Immunology Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Department of Oncological Sciences, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Department of Genomics and Genetics, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Sacha Gnjatic
- The neoAdjuvant Research Group to Evaluate Therapeutics (TARGET), Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Tisch Cancer Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Precision Immunology Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Division of Hematology and Medical Oncology, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Center for Thoracic Oncology, Tisch Cancer Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Department of Oncological Sciences, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Brian D Brown
- The neoAdjuvant Research Group to Evaluate Therapeutics (TARGET), Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Tisch Cancer Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Precision Immunology Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Department of Oncological Sciences, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Department of Genomics and Genetics, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Joseph Sparano
- The neoAdjuvant Research Group to Evaluate Therapeutics (TARGET), Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Tisch Cancer Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Division of Hematology and Medical Oncology, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Department of Oncological Sciences, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Ashutosh Tewari
- The neoAdjuvant Research Group to Evaluate Therapeutics (TARGET), Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Tisch Cancer Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Department of Urology, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Myron Schwartz
- The neoAdjuvant Research Group to Evaluate Therapeutics (TARGET), Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Tisch Cancer Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Precision Immunology Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Center of Excellence for Liver and Bile Duct Cancer, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Liver Cancer Program, Division of Liver Diseases and RM Transplant Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Division of Surgical Oncology, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Nina Bhardwaj
- The neoAdjuvant Research Group to Evaluate Therapeutics (TARGET), Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Immunotherapy and Novel TargEt Research Across Clinical Teams (INTERACT), Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Early Phase Trials Unit, Tisch Cancer Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Tisch Cancer Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Precision Immunology Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Division of Hematology and Medical Oncology, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Center for Thoracic Oncology, Tisch Cancer Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Department of Urology, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Department of Oncological Sciences, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Miriam Merad
- The neoAdjuvant Research Group to Evaluate Therapeutics (TARGET), Icahn School of Medicine at Mount Sinai, New York, NY, USA.
- Immunotherapy and Novel TargEt Research Across Clinical Teams (INTERACT), Icahn School of Medicine at Mount Sinai, New York, NY, USA.
- Early Phase Trials Unit, Tisch Cancer Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA.
- Tisch Cancer Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA.
- Precision Immunology Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA.
- Division of Hematology and Medical Oncology, Icahn School of Medicine at Mount Sinai, New York, NY, USA.
- Center for Thoracic Oncology, Tisch Cancer Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA.
- Center of Excellence for Liver and Bile Duct Cancer, Icahn School of Medicine at Mount Sinai, New York, NY, USA.
- Liver Cancer Program, Division of Liver Diseases and RM Transplant Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA.
- Department of Oncological Sciences, Icahn School of Medicine at Mount Sinai, New York, NY, USA.
| |
Collapse
|
17
|
Clark IA. Chronic cerebral aspects of long COVID, post-stroke syndromes and similar states share their pathogenesis and perispinal etanercept treatment logic. Pharmacol Res Perspect 2022; 10:e00926. [PMID: 35174650 PMCID: PMC8850677 DOI: 10.1002/prp2.926] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2021] [Revised: 01/11/2022] [Accepted: 01/17/2022] [Indexed: 12/15/2022] Open
Abstract
The chronic neurological aspects of traumatic brain injury, post-stroke syndromes, long COVID-19, persistent Lyme disease, and influenza encephalopathy having close pathophysiological parallels that warrant being investigated in an integrated manner. A mechanism, common to all, for this persistence of the range of symptoms common to these conditions is described. While TNF maintains cerebral homeostasis, its excessive production through either pathogen-associated molecular patterns or damage-associated molecular patterns activity associates with the persistence of the symptoms common across both infectious and non-infectious conditions. The case is made that this shared chronicity arises from a positive feedback loop causing the persistence of the activation of microglia by the TNF that these cells generate. Lowering this excess TNF is the logical way to reducing this persistent, TNF-maintained, microglial activation. While too large to negotiate the blood-brain barrier effectively, the specific anti-TNF biological, etanercept, shows promise when administered by the perispinal route, which allows it to bypass this obstruction.
Collapse
Affiliation(s)
- Ian Albert Clark
- Research School of BiologyAustralian National UniversityCanberraACTAustralia
| |
Collapse
|