1
|
Buonsenso D, Camporesi A, Di Sante G, Sali M, Boza MDCP, Morello R, Valentini P, Raffaelli F, Rodriguez L, Gonzalez L, Johnsson A, Mugabo CH, Lakshmikanth T, Brodin P. Cytokine Profile in Children Following SARS-CoV-2 Infection: Preliminary Findings. Pediatr Infect Dis J 2025; 44:54-57. [PMID: 39352145 PMCID: PMC11627325 DOI: 10.1097/inf.0000000000004558] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 08/14/2024] [Indexed: 10/03/2024]
Abstract
We provide preliminary evidence that, also in children, Long coronavirus disease (COVID) may be characterized by a proinflammatory signature. Ten Long COVID patients, 7 convalescent subjects after COVID infection and 4 healthy controls were enrolled. When adjusted for sex, children with long COVID had statistically significant differences in the levels of Flt3L, CD5, uPA, CCL23, CD40 and TGFα. When adjusted for age, CCL23 levels remained statistically significant.
Collapse
Affiliation(s)
- Danilo Buonsenso
- From the Department of Woman and Child Health and Public Health, Fondazione Policlinico Universitario A. Gemelli IRCCS, Rome, Italy
- Centers for Global Health Research Studies, Università Cattolica del Sacro Cuore, Rome, Italy
- Area Pediatrica, Dipartimento di Scienze della Vita e di Sanità Pubblica, Università Cattolica del Sacro Cuore, Rome, Italy
| | - Anna Camporesi
- Anesthesia and Intensive Care Unit, “Vittore Buzzi” Children’s Hospital, Milan, Italy
| | - Gabriele Di Sante
- Department of Medicine and Surgery, Section of Human, Clinical and Forensic Anatomy, University of Perugia, Perugia, Italy
| | - Michela Sali
- Dipartimento di Scienze di Laboratorio e Infettivologiche, Fondazione Policlinico Universitario “A. Gemelli,” IRCCS, Rome, Italy
- Dipartimento di Scienze biotecnologiche di base, Cliniche intensivologiche e perioperatorie-Sezione di Microbiologia, Università Cattolica del Sacro Cuore, Rome, Italy
| | - Maria del Carmen Pereyra Boza
- Dipartimento di Scienze di Laboratorio e Infettivologiche, Fondazione Policlinico Universitario “A. Gemelli,” IRCCS, Rome, Italy
| | - Rosa Morello
- From the Department of Woman and Child Health and Public Health, Fondazione Policlinico Universitario A. Gemelli IRCCS, Rome, Italy
| | - Piero Valentini
- From the Department of Woman and Child Health and Public Health, Fondazione Policlinico Universitario A. Gemelli IRCCS, Rome, Italy
| | - Francesca Raffaelli
- Dipartimento di Scienze Mediche e Chirurgiche, UOC di Malattie infettive, Fondazione Policlinico Universitario A. Gemelli IRCCS, Rome, Italy
| | - Lucie Rodriguez
- Department of Women’s and Children’s Health, Karolinska Institutet, Solna, Sweden
| | - Laura Gonzalez
- Department of Women’s and Children’s Health, Karolinska Institutet, Solna, Sweden
| | - Anette Johnsson
- Department of Women’s and Children’s Health, Karolinska Institutet, Solna, Sweden
| | | | | | - Petter Brodin
- Department of Women’s and Children’s Health, Karolinska Institutet, Solna, Sweden
- Medical Research Council Laboratory of Medical Sciences (LMS), Imperial College Hammersmith Campus, London, United Kingdom
| |
Collapse
|
2
|
Plank JR, Chen JC, Sundram F, Hoeh N, Muthukumaraswamy S, Lin JC. The Effects of Neuroinflammation Induced by Typhoid Vaccine on Resting and Task-Based Electroencephalography. Brain Behav 2025; 15:e70249. [PMID: 39740795 DOI: 10.1002/brb3.70249] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/27/2024] [Revised: 12/07/2024] [Accepted: 12/12/2024] [Indexed: 01/02/2025] Open
Abstract
INTRODUCTION Considerable evidence suggests a pathophysiological role of neuroinflammation in psychiatric disorders. Lumbar puncture and positron emission tomography (PET) show increased levels of inflammation in psychiatric disorders. However, the invasive nature of these techniques, as well as their expense, make them undesirable for routine use in patients. Electroencephalography (EEG) is noninvasive, affordable and shows potential as a clinical tool for detection of neuroinflammation. METHODS In this randomized, crossover design, placebo-controlled, double-blind study, typhoid vaccine was administered to 20 healthy volunteers to induce a low level of neuroinflammation. EEG was recorded before and after placebo/vaccine administration during resting-state and during performance of the Attention Network Test (ANT). Resting-state EEG was analyzed using spectral power analysis, and time-frequency analysis was used for the EEG from the ANT. Behavioral data were assessed using linear mixed models and Spearman's correlations. RESULTS Behavioral results from the ANT showed no decrement in performance following the vaccine, consistent with previous studies. During eyes-open resting, there was a relative decrease in right-frontal delta power in the vaccine condition compared to placebo. There was a trend toward greater alpha power suppression in the alerting response of the attentional network; however, this finding did not reach significance. CONCLUSION Decreased resting-state delta power may reflect an unpleasant internal state conferred by the vaccine. Inflammation did not significantly affect attention networks. The absence of significant alterations may be due to an insufficient inflammatory response. Further studies are needed to assess the feasibility of EEG as a technique for detection of neuroinflammation.
Collapse
Affiliation(s)
- Julia R Plank
- Faculty of Medical and Health Sciences, School of Pharmacy, University of Auckland, Grafton, Auckland, New Zealand
| | - Joseph Cc Chen
- Faculty of Medical and Health Sciences, School of Pharmacy, University of Auckland, Grafton, Auckland, New Zealand
| | - Frederick Sundram
- Faculty of Medical and Health Sciences, Department of Psychological Medicine, School of Medicine, University of Auckland, Grafton, Auckland, New Zealand
| | - Nicholas Hoeh
- Faculty of Medical and Health Sciences, Department of Psychological Medicine, School of Medicine, University of Auckland, Grafton, Auckland, New Zealand
| | - Suresh Muthukumaraswamy
- Faculty of Medical and Health Sciences, School of Pharmacy, University of Auckland, Grafton, Auckland, New Zealand
| | - Joanne C Lin
- Faculty of Medical and Health Sciences, School of Pharmacy, University of Auckland, Grafton, Auckland, New Zealand
| |
Collapse
|
3
|
Nersesjan V, Boldingh MI, Paulsen EQ, Argren M, Høgestøl E, Aamodt AH, Popperud TH, Kondziella D, Jørgensen CS, Jensen VVS, Benros ME. Antibodies against SARS-CoV-2 spike protein in the cerebrospinal fluid of COVID-19 patients and vaccinated controls: a multicentre study. J Neurol 2024; 272:60. [PMID: 39680178 DOI: 10.1007/s00415-024-12769-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2024] [Revised: 10/18/2024] [Accepted: 10/24/2024] [Indexed: 12/17/2024]
Abstract
INTRODUCTION SARS-CoV-2 antibodies in the cerebrospinal fluid (CSF) of COVID-19 patients possibly reflect blood-cerebrospinal fluid barrier (BCB) disruption due to systemic inflammation. However, some studies indicate that CSF antibodies signal a neurotropic infection. Currently, larger studies are needed to clarify this, and it is unknown if CSF antibodies appear solely after infection or also after COVID-19 vaccination. Therefore, we aimed to investigate the CSF dynamics of SARS-CoV-2 antibodies in a multicenter study of COVID-19 patients and vaccinated controls. METHODS A cohort study of Danish and Norwegian COVID-19 patients and controls investigated with a lumbar puncture (April 2020-December 2022). Serum and CSF were analysed locally for routine investigations, and centrally at Statens Serum Institut (Danish governmental public health institute) for SARS-CoV-2 IgG antibodies against the spike protein using the Euroimmun (quantitative) and Wantai (qualitative) assays. Primary outcome was the quantity of CSF SARS-CoV-2 antibodies post-COVID versus post-vaccination. Secondary outcomes included regression models examining the relationship between CSF antibodies and serum levels, albumin ratio, CSF pleocytosis, COVID-19 severity, and temporal antibody dynamics. RESULTS We included 124 individuals (Mean [SD] age 47.2 [16.6]; 59.7% males surviving COVID-19 and controls. Of these, 86 had paired CSF-serum testing. Antibody-index calculations did not support a SARS-CoV-2 brain infection. Multi-variate regression revealed that CSF SARS-CoV-2 antibodies were most strongly influenced by serum antibody levels and BCB permeability, as measured by increasing albumin ratio. CSF antibody levels displayed a dose-response relationship (p < 0.0001) influenced by preceding vaccinations or infections. CSF antibody levels (median [IQR]) were highest among those both previously infected and vaccinated, 100.0 [25.0-174.0], and those vaccinated without prior infection, 85.0 [12.0-142.0], and lowest among previously infected individuals without preceding vaccination, 5.9 [2.7-55.1], (p = 0.003). SARS-CoV-2 antibodies in CSF were also detected via qualitative assays in the COVID-19 (46.8%) and vaccinated (78.6%) groups, p = 0.03. CONCLUSION SARS-CoV-2 antibodies detected in CSF can be derived following both infection and vaccination for COVID-19. CSF antibody levels increase in a dose-response relationship with the number of prior infections and vaccinations and are most strongly influenced by serum antibody levels and BCB permeability. These findings stress the importance of carefully interpreting CSF antibody results when assessing neurological complications following infections not categorized as neurotropic.
Collapse
Affiliation(s)
- Vardan Nersesjan
- Copenhagen Research Center for Biological and Precision Psychiatry, Mental Health Centre Copenhagen, Copenhagen University Hospital, Copenhagen, Denmark.
- Department of Clinical Medicine, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark.
| | | | | | - Maria Argren
- Department of Neurology, Oslo University Hospital, Oslo, Norway
| | - Einar Høgestøl
- Department of Neurology, Oslo University Hospital, Oslo, Norway
- Department of Psychology, Oslo University Hospital, Oslo, Norway
- Institute of Clinical Medicine, University of Oslo, Oslo, Norway
| | - Anne Hege Aamodt
- Department of Neurology, Oslo University Hospital, Oslo, Norway
- Department of Neuromedicine and Movement Science, The Norwegian University of Science and Technology, Trondheim, Norway
| | | | - Daniel Kondziella
- Department of Clinical Medicine, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
- Department of Neurology, Rigshospitalet, Copenhagen University Hospital, Copenhagen, Denmark
| | - Charlotte Sværke Jørgensen
- Department of Virus and Microbiological Special Diagnostics, Statens Serum Institut, Copenhagen, Denmark
| | | | - Michael E Benros
- Copenhagen Research Center for Biological and Precision Psychiatry, Mental Health Centre Copenhagen, Copenhagen University Hospital, Copenhagen, Denmark
- Department of Clinical Medicine, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| |
Collapse
|
4
|
Scoullar MJL, Khoury G, Majumdar SS, Tippett E, Crabb BS. Towards a cure for long COVID: the strengthening case for persistently replicating SARS-CoV-2 as a driver of post-acute sequelae of COVID-19. Med J Aust 2024; 221:587-590. [PMID: 39580703 PMCID: PMC11625527 DOI: 10.5694/mja2.52517] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2024] [Accepted: 10/01/2024] [Indexed: 11/26/2024]
Affiliation(s)
| | | | | | - Emma Tippett
- Burnet InstituteMelbourneVIC
- Clinic NineteenMelbourneVIC
| | - Brendan S Crabb
- Burnet InstituteMelbourneVIC
- Monash UniversityMelbourneVIC
- University of MelbourneMelbourneVIC
| |
Collapse
|
5
|
Liang M, Xu J, Luo Y, Qu J. Epidemiology, pathogenesis, clinical characteristics, and treatment of mucormycosis: a review. Ann Med 2024; 56:2396570. [PMID: 39221718 PMCID: PMC11370679 DOI: 10.1080/07853890.2024.2396570] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/12/2024] [Revised: 06/25/2024] [Accepted: 07/16/2024] [Indexed: 09/04/2024] Open
Abstract
AIM This review aims to summarize the epidemiology, etiology, pathogenesis, clinical manifestations, and current diagnostic and therapeutic approaches for mucormycosis. The goal is to improve understanding of mucormycosis and promote early diagnosis and treatment to reduce mortality. METHODS A comprehensive literature review was conducted, focusing on recent studies and data on mucormycosis. The review includes an analysis of the disease's epidemiology, etiology, and pathogenesis, as well as current diagnostic techniques and therapeutic strategies. RESULTS Mucormycosis is increasingly prevalent due to the growing immunocompromised population, the COVID-19 pandemic, and advances in detection methods. The pathogenesis is closely associated with the host immune status, serum-free iron levels, and the virulence of Mucorales. However, the absence of typical clinical manifestations complicates diagnosis, leading to missed or delayed diagnoses and higher mortality. CONCLUSION An enhanced understanding of the epidemiology, pathogenesis, and clinical presentation of mucormycosis, along with the adoption of improved diagnostic and therapeutic approaches, is essential for reducing mortality rates associated with this opportunistic fungal infection. Early diagnosis and prompt treatment are critical to improving patient outcomes.
Collapse
Affiliation(s)
- Mei Liang
- Center of Infectious Disease, West China Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Jian Xu
- Center of Infectious Disease, West China Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Yanan Luo
- Center of Infectious Disease, West China Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Junyan Qu
- Center of Infectious Disease, West China Hospital, Sichuan University, Chengdu, Sichuan, China
| |
Collapse
|
6
|
Maiti AK. Bioinformatic analysis predicts the regulatory function of noncoding SNPs associated with Long COVID-19 syndrome. Immunogenetics 2024; 76:279-290. [PMID: 39042286 DOI: 10.1007/s00251-024-01348-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2024] [Accepted: 07/09/2024] [Indexed: 07/24/2024]
Abstract
Long or Post COVID-19 is a condition of collected symptoms persisted after recovery from COVID-19. Host genetic factors play a crucial role in developing Long COVID-19, and GWAS studies identified several SNPs/genes in various ethnic populations. In African-American population two SNPS, rs10999901 (C>T, p = 3.6E-08, OR = 1.39, MAF-0,27, GRCH38, chr10:71584799 bp) and rs1868001 (G>A, p = 6.7E-09, OR = 1.40, MAF-0.46, GRCH38, chr10:71587815 bp) and in Hispanic population, rs3759084 (A>C, p = 9.7E-09, OR = 1.56, MAF-0.17, chr12: 81,110,156 bp) are strongly associated with Long COVID-19. All these three SNPs reside in noncoding regions implying their regulatory function in the genome. In silico dissection suggests that rs10999901 and rs1868001 physically interact with the CDH23 and C10orf105 genes. Both SNPs act as distant enhancers and bind with several transcription factors (TFs). Further, rs10999901 SNP is a CpG that is methylated in CD4++ T cells and monocytes and loses its methylation due to transition from C>T. rs3759084 is located in the promoter (- 687 bp) of MYF5, acts as a distant enhancer, and physically interacts with PTPRQ. These results offer plausible explanations for their association and provide the basis for experiments to dissect the development of symptoms of Long COVID-19.
Collapse
Affiliation(s)
- Amit K Maiti
- Department of Genetics and Genomics, Mydnavar, 28475 Greenfield Rd, Southfield, USA.
| |
Collapse
|
7
|
Miller CM, Borre C, Green A, Funaro M, Oliveira CR, Iwasaki A. Postacute Sequelae of COVID-19 in Pediatric Patients Within the United States: A Scoping Review. AMERICAN JOURNAL OF MEDICINE OPEN 2024; 12:100078. [PMID: 39639960 PMCID: PMC11617896 DOI: 10.1016/j.ajmo.2024.100078] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 05/16/2024] [Accepted: 09/17/2024] [Indexed: 12/07/2024]
Abstract
A subset of children and adolescents experience recurrent or persistent symptoms following SARS-CoV-2 infection, known as postacute sequelae of COVID-19 (PASC), however, the clinical epidemiology within the United States (US) is not yet well understood. This scoping review aims to synthesize the clinical epidemiology of pediatric PASC in the US. A comprehensive literature search was conducted and databases were queried from inception until January 29, 2024. Studies including US children and adolescents <21 years old were considered. From 1028 studies identified, 29 met the inclusion criteria. Prevalence of PASC ranged from less than 1%-27%. Risk factors included older age, female sex, asthma, obesity, and severe initial infection. Common symptoms were dyspnea, fatigue, headaches, and chest pain. A multidisciplinary approach for diagnosis and management was common across studies. Most studies had a high risk of bias and were limited by a lack of standardized definitions and short follow-up duration. This review establishes a foundation for understanding pediatric PASC and highlights the critical need for continued research to optimize prevention and treatment strategies.
Collapse
Affiliation(s)
- Christine M. Miller
- Department of Pediatrics, Division of Infectious Diseases and Global Health, Yale University School of Medicine New Haven, New Haven, CT
| | - Carla Borre
- Department of Pediatrics, Division of Infectious Diseases and Global Health, Yale University School of Medicine New Haven, New Haven, CT
| | - Alex Green
- Department of Pediatrics, Division of Infectious Diseases and Global Health, Yale University School of Medicine New Haven, New Haven, CT
| | - Melissa Funaro
- Harvey Cushing/John Hay Whitney Medical Library, Yale University, New Haven, CT
| | - Carlos R Oliveira
- Department of Pediatrics, Division of Infectious Diseases and Global Health, Yale University School of Medicine New Haven, New Haven, CT
| | - Akiko Iwasaki
- Department of Immunobiology, Yale School of Medicine, New Haven, CT
- Howard Hughes Medical Institute, Chevy Chase, MD
- Center for Infection and Immunity, Yale School of Medicine, New Haven, CT
| |
Collapse
|
8
|
D'Onofrio V, Sékaly RP. The immune-endocrine interplay in sex differential responses to viral infection and COVID-19. Trends Immunol 2024; 45:943-958. [PMID: 39562265 DOI: 10.1016/j.it.2024.10.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2024] [Revised: 10/17/2024] [Accepted: 10/20/2024] [Indexed: 11/21/2024]
Abstract
Men are at higher risk for developing severe COVID-19 than women, while women are at higher risk for developing post-acute sequelae of COVID-19 (PASC). This highlights the impact of sex differences on immune responses and clinical outcomes of acute COVID-19 or PASC. A dynamic immune-endocrine interface plays an important role in the development of effective immune responses impacting the control of viral infections. In this opinion article we discuss mechanisms underlying the transcriptional and epigenetic regulation of immune responses by sex hormones during viral infections. We propose that disruption of this delicate immune-endocrine interplay can result in worsened outcomes of viral disease. We also posit that insights into these immune mechanisms can propel the development of novel immunomodulatory interventions that leverage immune-endocrine pathways to treat viral infections.
Collapse
Affiliation(s)
- Valentino D'Onofrio
- Center for Vaccinology, Ghent University and Ghent University Hospital, Ghent, Belgium
| | - Rafick Pierre Sékaly
- Pathology Advanced Translational Research Unit, Department of Pathology and Laboratory Medicine, Emory University School of Medicine, Atlanta, GA, USA; Emory Vaccine Center, Emory University School of Medicine, Atlanta, GA, USA.
| |
Collapse
|
9
|
Sinclair JE, Vedelago C, Ryan FJ, Carney M, Redd MA, Lynn MA, Grubor-Bauk B, Cao Y, Henders AK, Chew KY, Gilroy D, Greaves K, Labzin L, Ziser L, Ronacher K, Wallace LM, Zhang Y, Macauslane K, Ellis DJ, Rao S, Burr L, Bain A, Karawita A, Schulz BL, Li J, Lynn DJ, Palpant N, Wuethrich A, Trau M, Short KR. Post-acute sequelae of SARS-CoV-2 cardiovascular symptoms are associated with trace-level cytokines that affect cardiomyocyte function. Nat Microbiol 2024; 9:3135-3147. [PMID: 39478108 PMCID: PMC11602718 DOI: 10.1038/s41564-024-01838-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2024] [Accepted: 09/25/2024] [Indexed: 11/06/2024]
Abstract
An estimated 65 million people globally suffer from post-acute sequelae of COVID-19 (PASC), with many experiencing cardiovascular symptoms (PASC-CVS) like chest pain and heart palpitations. This study examines the role of chronic inflammation in PASC-CVS, particularly in individuals with symptoms persisting over a year after infection. Blood samples from three groups-recovered individuals, those with prolonged PASC-CVS and SARS-CoV-2-negative individuals-revealed that those with PASC-CVS had a blood signature linked to inflammation. Trace-level pro-inflammatory cytokines were detected in the plasma from donors with PASC-CVS 18 months post infection using nanotechnology. Importantly, these trace-level cytokines affected the function of primary human cardiomyocytes. Plasma proteomics also demonstrated higher levels of complement and coagulation proteins in the plasma from patients with PASC-CVS. This study highlights chronic inflammation's role in the symptoms of PASC-CVS.
Collapse
Affiliation(s)
- Jane E Sinclair
- School of Chemistry and Molecular Biosciences, The University of Queensland, St Lucia, Queensland, Australia
| | - Courtney Vedelago
- Centre for Personalised Nanomedicine, Australian Institute for Bioengineering and Nanotechnology (AIBN), The University of Queensland, Brisbane, Queensland, Australia
| | - Feargal J Ryan
- Precision Medicine Theme, South Australian Health and Medical Research Institute, Adelaide, South Australia, Australia
- College of Medicine and Public Health and Flinders Health and Medical Research Institute, Flinders University, Bedford Park, South Australia, Australia
| | - Meagan Carney
- School of Mathematics and Physics, University of Queensland, Brisbane, Queensland, Australia
| | - Meredith A Redd
- Institute for Molecular Bioscience, The University of Queensland, Brisbane, Queensland, Australia
| | - Miriam A Lynn
- Precision Medicine Theme, South Australian Health and Medical Research Institute, Adelaide, South Australia, Australia
- College of Medicine and Public Health and Flinders Health and Medical Research Institute, Flinders University, Bedford Park, South Australia, Australia
| | - Branka Grubor-Bauk
- Viral Immunology Group, Adelaide Medical School, University of Adelaide, Adelaide, South Australia, Australia
| | - Yuanzhao Cao
- Institute for Molecular Bioscience, The University of Queensland, Brisbane, Queensland, Australia
| | - Anjali K Henders
- Institute for Molecular Bioscience, The University of Queensland, Brisbane, Queensland, Australia
| | - Keng Yih Chew
- School of Chemistry and Molecular Biosciences, The University of Queensland, St Lucia, Queensland, Australia
| | - Deborah Gilroy
- Institute for Molecular Bioscience, The University of Queensland, Brisbane, Queensland, Australia
| | - Kim Greaves
- Sunshine Coast University Hospital, Queensland Health, Birtinya, Queensland, Australia
- National Centre for Epidemiology and Population Health, ANU College of Health and Medicine, Australian National University, Canberra, Australian Capital Territory, Australia
| | - Larisa Labzin
- Institute for Molecular Bioscience, The University of Queensland, Brisbane, Queensland, Australia
| | - Laura Ziser
- Institute for Molecular Bioscience, The University of Queensland, Brisbane, Queensland, Australia
| | - Katharina Ronacher
- Australian Infectious Diseases Research Centre, The University of Queensland, St Lucia, Queensland, Australia
- Mater Research Institute - The University of Queensland, Translational Research Institute, Brisbane, Queensland, Australia
| | - Leanne M Wallace
- Institute for Molecular Bioscience, The University of Queensland, Brisbane, Queensland, Australia
| | - Yiwen Zhang
- Centre for Personalised Nanomedicine, Australian Institute for Bioengineering and Nanotechnology (AIBN), The University of Queensland, Brisbane, Queensland, Australia
| | - Kyle Macauslane
- School of Chemistry and Molecular Biosciences, The University of Queensland, St Lucia, Queensland, Australia
- Australian Infectious Diseases Research Centre, The University of Queensland, St Lucia, Queensland, Australia
| | - Daniel J Ellis
- School of Chemistry and Molecular Biosciences, The University of Queensland, St Lucia, Queensland, Australia
- Australian Infectious Diseases Research Centre, The University of Queensland, St Lucia, Queensland, Australia
| | - Sudha Rao
- Gene Regulation and Translational Medicine Laboratory, Department of Infection and Inflammation, QIMR Berghofer Medical Research Institute, Brisbane, Queensland, Australia
| | - Lucy Burr
- Mater Research Institute, The University of Queensland, South Brisbane, Queensland, Australia
- Department of Respiratory Medicine, Mater Adult Hospital, South Brisbane, Queensland, Australia
- Faculty of Medicine, University of Queensland, Brisbane, Queensland, Australia
| | - Amanda Bain
- Gene Regulation and Translational Medicine Laboratory, Department of Infection and Inflammation, QIMR Berghofer Medical Research Institute, Brisbane, Queensland, Australia
| | - Anjana Karawita
- Australian Centre for Disease Preparedness, Commonwealth Scientific and Industrial Research Organisation, Geelong, Victoria, Australia
| | - Benjamin L Schulz
- School of Chemistry and Molecular Biosciences, The University of Queensland, St Lucia, Queensland, Australia
- Australian Infectious Diseases Research Centre, The University of Queensland, St Lucia, Queensland, Australia
| | - Junrong Li
- Centre for Personalised Nanomedicine, Australian Institute for Bioengineering and Nanotechnology (AIBN), The University of Queensland, Brisbane, Queensland, Australia
| | - David J Lynn
- Precision Medicine Theme, South Australian Health and Medical Research Institute, Adelaide, South Australia, Australia
- College of Medicine and Public Health and Flinders Health and Medical Research Institute, Flinders University, Bedford Park, South Australia, Australia
| | - Nathan Palpant
- Institute for Molecular Bioscience, The University of Queensland, Brisbane, Queensland, Australia
| | - Alain Wuethrich
- Centre for Personalised Nanomedicine, Australian Institute for Bioengineering and Nanotechnology (AIBN), The University of Queensland, Brisbane, Queensland, Australia
| | - Matt Trau
- School of Chemistry and Molecular Biosciences, The University of Queensland, St Lucia, Queensland, Australia
- Centre for Personalised Nanomedicine, Australian Institute for Bioengineering and Nanotechnology (AIBN), The University of Queensland, Brisbane, Queensland, Australia
| | - Kirsty R Short
- School of Chemistry and Molecular Biosciences, The University of Queensland, St Lucia, Queensland, Australia.
- Australian Infectious Diseases Research Centre, The University of Queensland, St Lucia, Queensland, Australia.
- Queensland Immunology Research Centre, The University of Queensland, St Lucia, Queensland, Australia.
| |
Collapse
|
10
|
Bulgur D, Moura RM, Ribot JC. Key actors in neuropathophysiology: The role of γδ T cells. Eur J Immunol 2024; 54:e2451055. [PMID: 39240039 PMCID: PMC11628923 DOI: 10.1002/eji.202451055] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2024] [Revised: 08/26/2024] [Accepted: 08/27/2024] [Indexed: 09/07/2024]
Abstract
The neuroimmune axis has been the focus of many studies, with special emphasis on the interactions between the central nervous system and the different immune cell subsets. T cells are namely recognized to play a critical role due to their interaction with nerves, by secreting cytokines and neurotrophins, which regulate the development, function, and survival of neurons. In this context, γδ T cells are particularly relevant, as they colonize specific tissues, namely the meninges, and have a wide variety of complex functions that balance physiological systems. Notably, γδ T cells are not only key components for maintaining brain homeostasis but are also responsible for triggering or preventing inflammatory responses in various pathologies, including neurodegenerative diseases as well as neuropsychiatric and developmental disorders. Here, we provide an overview of the current state of the art on the contribution of γδ T cells in neuropathophysiology and delve into the molecular mechanisms behind it. We aim to shed light on γδ T cell functions in the central nervous system while highlighting upcoming challenges in the field and providing new clues for potential therapeutic strategies.
Collapse
Affiliation(s)
- Deniz Bulgur
- Instituto de Medicina MolecularFaculdade de Medicina da Universidade de Lisboa Avenida Professor Egas MonizLisbon1649‐028Portugal
| | - Raquel Macedo Moura
- Instituto de Medicina MolecularFaculdade de Medicina da Universidade de Lisboa Avenida Professor Egas MonizLisbon1649‐028Portugal
| | - Julie C. Ribot
- Instituto de Medicina MolecularFaculdade de Medicina da Universidade de Lisboa Avenida Professor Egas MonizLisbon1649‐028Portugal
| |
Collapse
|
11
|
Ćorović A, Zhao X, Huang Y, Newland SR, Gopalan D, Harrison J, Giakomidi D, Chen S, Yarkoni NS, Wall C, Peverelli M, Sriranjan R, Gallo A, Graves MJ, Sage A, Lyons PA, Sithole N, Bennett MR, Rudd JHF, Mallat Z, Zhao TX, Nus M, Tarkin JM. Coronavirus disease 2019-related myocardial injury is associated with immune dysregulation in symptomatic patients with cardiac magnetic resonance imaging abnormalities. Cardiovasc Res 2024; 120:1752-1767. [PMID: 39073768 PMCID: PMC11587552 DOI: 10.1093/cvr/cvae159] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/12/2024] [Revised: 05/01/2024] [Accepted: 05/23/2024] [Indexed: 07/30/2024] Open
Abstract
AIMS While acute cardiovascular complications of coronavirus disease 2019 (COVID-19) are well described, less is known about longer-term cardiac sequelae. For many individuals with cardiac signs or symptoms arising after COVID-19 infection, the aetiology remains unclear. We examined immune profiles associated with magnetic resonance imaging (MRI) abnormalities in patients with unexplained cardiac injury after COVID-19. METHODS AND RESULTS Twenty-one participants {mean age 47 [standard deviation (SD) 13] years, 71% female} with long COVID-19 (n = 17), raised troponin (n = 2), or unexplained new-onset heart failure (n = 2), who did not have pre-existing heart conditions or recent steroid/immunosuppression treatment, were enrolled a mean 346 (SD 191) days after COVID-19 infection in a prospective observational study. Cardiac MRI and blood sampling for deep immunophenotyping using mass cytometry by time of flight and measurement of proteomic inflammatory markers were performed. Nine of the 21 (43%) participants had MRI abnormalities (MRI(+)), including non-ischaemic patterns of late gadolinium enhancement and/or visually overt myocardial oedema in 8 people. One patient had mildly impaired biventricular function without fibrosis or oedema, and two had severe left ventricular (LV) impairment. MRI(+) individuals had higher blood CCL3, CCL7, FGF-23, and CD4 Th2 cells, and lower CD8 T effector memory (TEM) cells, than MRI(-). Cluster analysis revealed lower expression of inhibitory receptors PD1 and TIM3 in CD8 TEM cells from MRI(+) patients than MRI(-) patients, and functional studies of CD8 T αβ cells showed higher proportions of cytotoxic granzyme B+(GZB+)-secreting cells upon stimulation. CD8 TEM cells and CCL7 were the strongest predictors of MRI abnormalities in a least absolute shrinkage and selection operator regression model (composite area under the curve 0.96, 95% confidence interval 0.88-1.0). CCL7 was correlated with diffuse myocardial fibrosis/oedema detected by quantitative T1 mapping (r = 0.47, P = 0.04). CONCLUSION COVID-19-related cardiac injury in symptomatic patients with non-ischaemic myocarditis-like MRI abnormalities is associated with immune dysregulation, including decreased peripheral CD8 TEM cells and increased CCL7, persisting long after the initial infection.
Collapse
Affiliation(s)
- Andrej Ćorović
- Section of Cardiorespiratory Medicine, Department of Medicine, University of Cambridge, Cambridge, UK
| | - Xiaohui Zhao
- Section of Cardiorespiratory Medicine, Department of Medicine, University of Cambridge, Cambridge, UK
| | - Yuan Huang
- Section of Cardiorespiratory Medicine, Department of Medicine, University of Cambridge, Cambridge, UK
| | - Stephen R Newland
- Section of Cardiorespiratory Medicine, Department of Medicine, University of Cambridge, Cambridge, UK
| | - Deepa Gopalan
- Department of Radiology, Cambridge University Hospitals NHS Trust, Cambridge, UK
| | - James Harrison
- Section of Cardiorespiratory Medicine, Department of Medicine, University of Cambridge, Cambridge, UK
| | - Despina Giakomidi
- Section of Cardiorespiratory Medicine, Department of Medicine, University of Cambridge, Cambridge, UK
| | - Shanna Chen
- Section of Cardiorespiratory Medicine, Department of Medicine, University of Cambridge, Cambridge, UK
| | - Natalia S Yarkoni
- Cell Phenotyping Hub, Department of Medicine, University of Cambridge, Cambridge, UK
| | - Christopher Wall
- Section of Cardiorespiratory Medicine, Department of Medicine, University of Cambridge, Cambridge, UK
| | - Marta Peverelli
- Section of Cardiorespiratory Medicine, Department of Medicine, University of Cambridge, Cambridge, UK
| | - Rouchelle Sriranjan
- Section of Cardiorespiratory Medicine, Department of Medicine, University of Cambridge, Cambridge, UK
| | - Arianna Gallo
- Section of Cardiorespiratory Medicine, Department of Medicine, University of Cambridge, Cambridge, UK
| | - Martin J Graves
- Department of Radiology, University of Cambridge, Cambridge, UK
| | - Andrew Sage
- Section of Cardiorespiratory Medicine, Department of Medicine, University of Cambridge, Cambridge, UK
| | - Paul A Lyons
- Cambridge Institute of Therapeutic Immunology and Infectious Disease, Jeffrey Cheah Biomedical Centre, Cambridge Biomedical Campus, Cambridge, UK
- Department of Medicine, University of Cambridge, Cambridge, UK
| | - Nyarie Sithole
- Infectious Diseases, Department of Medicine, University of Cambridge, Cambridge, UK
| | - Martin R Bennett
- Section of Cardiorespiratory Medicine, Department of Medicine, University of Cambridge, Cambridge, UK
| | - James H F Rudd
- Section of Cardiorespiratory Medicine, Department of Medicine, University of Cambridge, Cambridge, UK
| | - Ziad Mallat
- Section of Cardiorespiratory Medicine, Department of Medicine, University of Cambridge, Cambridge, UK
| | - Tian X Zhao
- Section of Cardiorespiratory Medicine, Department of Medicine, University of Cambridge, Cambridge, UK
| | - Meritxell Nus
- Section of Cardiorespiratory Medicine, Department of Medicine, University of Cambridge, Cambridge, UK
| | - Jason M Tarkin
- Section of Cardiorespiratory Medicine, Department of Medicine, University of Cambridge, Cambridge, UK
| |
Collapse
|
12
|
Bejan I, Popescu CP, Ruta SM. Insights into the Risk Factors and Outcomes of Post-COVID-19 Syndrome-Results from a Retrospective, Cross-Sectional Study in Romania. Life (Basel) 2024; 14:1519. [PMID: 39598316 PMCID: PMC11596014 DOI: 10.3390/life14111519] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2024] [Revised: 11/16/2024] [Accepted: 11/17/2024] [Indexed: 11/29/2024] Open
Abstract
Post-Coronavirus Disease 2019 (post-COVID-19) syndrome represents a cluster of persistent symptoms following Severe Acute Respiratory Syndrome Coronavirus 2 (SARS-CoV-2) infection that can severely affect quality of life. The pathogenic mechanisms and epidemiology in different regions are still under evaluation. To assess the outcomes of post-COVID-19 syndrome, we performed a questionnaire-based, cross-sectional study in previously infected individuals. Out of 549 respondents, (male:female ratio: 0.32), 29.5% had persistent symptoms at 3 months, 23.5% had persistent symptoms at 6 months, and 18.3% had persistent symptoms at 12 months after the initial infection. The most common symptoms included fatigue (8.7%), sleep disturbances (7.1%), and cognitive impairment (6.4%). The risk of developing post-COVID-19 syndrome increased for those with more symptoms in the acute phase (OR 4.24, p < 0.001) and those experiencing reinfections (OR 2.405, p < 0.001), while SARS-CoV-2 vaccination halved the risk (OR = 0.489, p = 0.004). Individuals with post-COVID-19 syndrome had a 5.7-fold higher risk of being diagnosed with a new chronic condition, with 44% reporting cardiovascular disease, and a 6.8-fold higher likelihood of needing medical care or leave. Affected individuals reported significant impairments in mobility, pain/discomfort, and anxiety/depression, with 20.7% needing to adjust their work schedules. Overall, patients with post-COVID-19 syndrome require ongoing monitoring and rehabilitation, and further socio-economic impact studies are needed.
Collapse
Affiliation(s)
- Ioana Bejan
- Faculty of Medicine, Carol Davila University of Medicine and Pharmacy, 020956 Bucharest, Romania; (I.B.); (C.P.P.)
| | - Corneliu Petru Popescu
- Faculty of Medicine, Carol Davila University of Medicine and Pharmacy, 020956 Bucharest, Romania; (I.B.); (C.P.P.)
- Victor Babes Hospital for Infectious and Tropical Diseases, 030303 Bucharest, Romania
| | - Simona Maria Ruta
- Faculty of Medicine, Carol Davila University of Medicine and Pharmacy, 020956 Bucharest, Romania; (I.B.); (C.P.P.)
- Stefan S Nicolau Institute of Virology, 030304 Bucharest, Romania
| |
Collapse
|
13
|
Hamlin RE, Pienkos SM, Chan L, Stabile MA, Pinedo K, Rao M, Grant P, Bonilla H, Holubar M, Singh U, Jacobson KB, Jagannathan P, Maldonado Y, Holmes SP, Subramanian A, Blish CA. Sex differences and immune correlates of Long Covid development, symptom persistence, and resolution. Sci Transl Med 2024; 16:eadr1032. [PMID: 39536117 DOI: 10.1126/scitranslmed.adr1032] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2024] [Accepted: 10/18/2024] [Indexed: 11/16/2024]
Abstract
Sex differences have been observed in acute coronavirus disease 2019 (COVID-19) and Long Covid (LC) outcomes, with greater disease severity and mortality during acute infection in males and greater proportions of females developing LC. We hypothesized that sex-specific immune dysregulation contributes to LC pathogenesis. To investigate the immunologic underpinnings of LC development and symptom persistence, we performed multiomic analyses on blood samples obtained during acute severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infection and 3 and 12 months after infection in a cohort of 45 participants who either developed LC or recovered. Several sex-specific immune pathways were associated with LC. Males who would later develop LC exhibited increases in transforming growth factor-β (TGF-β) signaling during acute infection, whereas females who would go on to develop LC had reduced TGFB1 expression. Females who developed LC demonstrated increased expression of XIST, an RNA gene implicated in autoimmunity, during acute infection compared with females who recovered. Many immune features of LC were also conserved across sexes, such as alterations in monocyte phenotype and activation state. Nuclear factor κB (NF-κB) transcription factors were up-regulated in many cell types at acute and convalescent time points. Those with ongoing LC demonstrated reduced ETS1 expression across lymphocyte subsets and elevated intracellular IL-4 in T cell subsets, suggesting that ETS1 alterations may drive aberrantly elevated T helper cell 2-like responses in LC. Altogether, this study describes multiple innate and adaptive immune correlates of LC, some of which differ by sex, and offers insights toward the pursuit of tailored therapeutics.
Collapse
Affiliation(s)
- Rebecca E Hamlin
- Department of Medicine, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Shaun M Pienkos
- Department of Medicine, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Leslie Chan
- Department of Medicine, Stanford University School of Medicine, Stanford, CA 94305, USA
- Stanford Immunology Program, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Mikayla A Stabile
- Department of Medicine, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Kassandra Pinedo
- Department of Medicine, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Mallika Rao
- Stanford Center for Clinical Research, Stanford University, Stanford, CA 94305, USA
| | - Philip Grant
- Department of Medicine, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Hector Bonilla
- Department of Medicine, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Marisa Holubar
- Department of Medicine, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Upinder Singh
- Department of Medicine, Stanford University School of Medicine, Stanford, CA 94305, USA
- Department of Microbiology and Immunology, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Karen B Jacobson
- Department of Medicine, Stanford University School of Medicine, Stanford, CA 94305, USA
- Kaiser Permanente Vaccine Study Center, Oakland, CA 94612, USA
| | - Prasanna Jagannathan
- Department of Medicine, Stanford University School of Medicine, Stanford, CA 94305, USA
- Department of Microbiology and Immunology, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Yvonne Maldonado
- Department of Pediatrics, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Susan P Holmes
- Department of Statistics, Stanford University, Stanford, CA 94305, USA
| | - Aruna Subramanian
- Department of Medicine, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Catherine A Blish
- Department of Medicine, Stanford University School of Medicine, Stanford, CA 94305, USA
- Stanford Medical Scientist Training Program, Stanford University School of Medicine, Stanford, CA 94305, USA
- Chan Zuckerberg Biohub, San Francisco, CA 94158, USA
| |
Collapse
|
14
|
Antar AAR, Cox AL. Translating insights into therapies for Long Covid. Sci Transl Med 2024; 16:eado2106. [PMID: 39536116 DOI: 10.1126/scitranslmed.ado2106] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2024] [Accepted: 10/18/2024] [Indexed: 11/16/2024]
Abstract
Long Covid is defined by a wide range of symptoms that persist after the acute phase of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infection. Commonly reported symptoms include fatigue, weakness, postexertional malaise, and cognitive dysfunction, with many other symptoms reported. Symptom range, duration, and severity are highly variable and partially overlap with symptoms of myalgic encephalomyelitis/chronic fatigue syndrome and other post-acute infectious syndromes, highlighting opportunities to define shared mechanisms of pathogenesis. Potential mechanisms of Long Covid are diverse, including persistence of viral reservoirs, dysregulated immune responses, direct viral damage of tissues targeted by SARS-CoV-2, inflammation driven by reactivation of latent viral infections, vascular endothelium activation or dysfunction, and subsequent thromboinflammation, autoimmunity, metabolic derangements, microglial activation, and microbiota dysbiosis. The heterogeneity of symptoms and baseline characteristics of people with Long Covid, as well as the varying states of immunity and therapies given at the time of acute infection, have made etiologies of Long Covid difficult to determine. Here, we examine progress on preclinical models for Long Covid and review progress being made in clinical trials, highlighting the need for large human studies and further development of models to better understand Long Covid. Such studies will inform clinical trials that will define treatments to benefit those living with this condition.
Collapse
Affiliation(s)
- Annukka A R Antar
- Department of Medicine, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| | - Andrea L Cox
- Department of Medicine, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| |
Collapse
|
15
|
Silva J, Iwasaki A. Sex differences in postacute infection syndromes. Sci Transl Med 2024; 16:eado2102. [PMID: 39536120 DOI: 10.1126/scitranslmed.ado2102] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2024] [Accepted: 10/23/2024] [Indexed: 11/16/2024]
Abstract
Postacute infection syndromes like Long Covid disproportionately affect females, differing in prevalence, symptoms, and potential causes from males. This Viewpoint highlights these sex differences, gaps in current understanding, and the critical need for sex-based research.
Collapse
Affiliation(s)
- Julio Silva
- Department of Immunobiology, Yale School of Medicine, New Haven, CT 06520, USA
| | - Akiko Iwasaki
- Department of Immunobiology, Yale School of Medicine, New Haven, CT 06520, USA
- Center for Infection and Immunity, Yale School of Medicine, New Haven, CT 06520, USA
- Howard Hughes Medical Institute, Chevy Chase, MD 20815, USA
| |
Collapse
|
16
|
Carolin A, Yan K, Bishop CR, Tang B, Nguyen W, Rawle DJ, Suhrbier A. Tracking inflammation resolution signatures in lungs after SARS-CoV-2 omicron BA.1 infection of K18-hACE2 mice. PLoS One 2024; 19:e0302344. [PMID: 39531435 PMCID: PMC11556745 DOI: 10.1371/journal.pone.0302344] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2024] [Accepted: 10/17/2024] [Indexed: 11/16/2024] Open
Abstract
The severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) causes Coronavirus Disease 2019 (COVID-19), which can result in severe disease, often characterised by a 'cytokine storm' and the associated acute respiratory distress syndrome. However, many infections with SARS-CoV-2 are mild or asymptomatic throughout the course of infection. Although blood biomarkers of severe disease are well studied, less well understood are the inflammatory signatures in lung tissues associated with mild disease or silent infections, wherein infection and inflammation are rapidly resolved leading to sequelae-free recovery. Herein we described RNA-Seq and histological analyses of lungs over time in an omicron BA.1/K18-hACE2 mouse infection model, which displays these latter features. Although robust infection was evident at 2 days post infection (dpi), viral RNA was largely cleared by 10 dpi. Acute inflammatory signatures showed a slightly different pattern of cytokine signatures compared with severe infection models, and where much diminished 30 dpi and absent by 66 dpi. Cellular deconvolution identified significantly increased abundance scores for a number of anti-inflammatory pro-resolution cell types at 5/10 dpi. These included type II innate lymphoid cells, T regulatory cells, and interstitial macrophages. Genes whose expression trended downwards over 2-66 dpi included biomarkers of severe disease and were associated with 'cytokine storm' pathways. Genes whose expression trended upward during this period were associated with recovery of ciliated cells, AT2 to AT1 transition, reticular fibroblasts and innate lymphoid cells, indicating a return to homeostasis. Very few differentially expressed host genes were identified at 66 dpi, suggesting near complete recovery. The parallels between mild or subclinical infections in humans and those observed in this BA.1/K18-hACE2 mouse model are discussed with reference to the concept of "protective inflammation".
Collapse
Affiliation(s)
- Agnes Carolin
- QIMR Berghofer Medical Research Institute, Brisbane, Queensland, Australia
| | - Kexin Yan
- QIMR Berghofer Medical Research Institute, Brisbane, Queensland, Australia
| | - Cameron R. Bishop
- QIMR Berghofer Medical Research Institute, Brisbane, Queensland, Australia
| | - Bing Tang
- QIMR Berghofer Medical Research Institute, Brisbane, Queensland, Australia
| | - Wilson Nguyen
- QIMR Berghofer Medical Research Institute, Brisbane, Queensland, Australia
| | - Daniel J. Rawle
- QIMR Berghofer Medical Research Institute, Brisbane, Queensland, Australia
| | - Andreas Suhrbier
- QIMR Berghofer Medical Research Institute, Brisbane, Queensland, Australia
- GVN Centre of Excellence, Australian Infectious Disease Research Centre, Brisbane, Queensland, Australia
| |
Collapse
|
17
|
Horvath A, Habisch H, Prietl B, Pfeifer V, Balazs I, Kovacs G, Foris V, John N, Kleinschek D, Feldbacher N, Grønbæk H, Møller HJ, Žukauskaitė K, Madl T, Stadlbauer V. Alteration of the Gut-Lung Axis After Severe COVID-19 Infection and Modulation Through Probiotics: A Randomized, Controlled Pilot Study. Nutrients 2024; 16:3840. [PMID: 39599626 PMCID: PMC11597208 DOI: 10.3390/nu16223840] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2024] [Revised: 10/30/2024] [Accepted: 11/02/2024] [Indexed: 11/29/2024] Open
Abstract
BACKGROUND The gut-lung axis could be a potential therapeutic target for improving post-acute COVID-19 symptoms, and probiotics have been proposed as possible modulators. AIM We conducted a pilot study to understand alterations in the gut-lung axis and to explore the effects of a probiotic in post-acute COVID-19 disease. METHODS We included patients after severe COVID-19 disease (sCOV, n = 21) in a randomized, placebo-controlled trial to test the effect of a probiotic (Pro-Vi 5, Institute Allergosan, Graz, Austria) in a six-month intervention and used patients after mild disease (mCOV, n = 10) as controls, to compare the intestinal microbiome, metabolome, and patient-reported outcomes and biomarkers along the gut-lung axis at baseline and throughout probiotic intervention. RESULTS Compared to mCOV patients, sCOV patients showed lower microbial richness, which was significantly improved by probiotic intervention. A reorganization of Ruminococcaceae and Lachnospiraceae taxa was observed in sCOV patients but remained unaffected by the intervention. Serum metabolome showed a dysregulation of lipoproteins in accordance with higher BMI and comorbidities in sCOV patients. HDL and LDL fractions/components were temporarily decreased in the probiotic group. Stool metabolome was altered at baseline in sCOV patients and an increase in L-DOPA after 3 months and butyrate after 6 months of intervention could be observed. Probiotics partially improved reduced quality of life and modulated altered immune responses in sCOV patients. Increased intestinal permeability at baseline remained unaffected. CONCLUSION The study provides evidence of long-term alterations of the gut-lung axis after severe COVID-19 infection and suggests that probiotics can modulate the biomarkers of the gut-lung axis.
Collapse
Affiliation(s)
- Angela Horvath
- Center for Biomarker Research in Medicine (CBmed), Division of Translational Precision Medicine, Division of Precision Medicine Technologies, 8010 Graz, Austria; (A.H.); (B.P.); (V.P.); (I.B.); (N.F.)
- Division for Gastroenterology and Hepatology, Department of Internal Medicine, Medical University of Graz, 8010 Graz, Austria;
| | - Hansjörg Habisch
- Otto Loewi Research Center, Medicinal Chemistry, Medical University of Graz, 8010 Graz, Austria; (H.H.); (T.M.)
- BioTechMed-Graz, 8010 Graz, Austria
| | - Barbara Prietl
- Center for Biomarker Research in Medicine (CBmed), Division of Translational Precision Medicine, Division of Precision Medicine Technologies, 8010 Graz, Austria; (A.H.); (B.P.); (V.P.); (I.B.); (N.F.)
- Division of Endocrinology and Diabetes, Department of Internal Medicine, Medical University of Graz, 8010 Graz, Austria
| | - Verena Pfeifer
- Center for Biomarker Research in Medicine (CBmed), Division of Translational Precision Medicine, Division of Precision Medicine Technologies, 8010 Graz, Austria; (A.H.); (B.P.); (V.P.); (I.B.); (N.F.)
- Division of Endocrinology and Diabetes, Department of Internal Medicine, Medical University of Graz, 8010 Graz, Austria
| | - Irina Balazs
- Center for Biomarker Research in Medicine (CBmed), Division of Translational Precision Medicine, Division of Precision Medicine Technologies, 8010 Graz, Austria; (A.H.); (B.P.); (V.P.); (I.B.); (N.F.)
- Division for Gastroenterology and Hepatology, Department of Internal Medicine, Medical University of Graz, 8010 Graz, Austria;
| | - Gabor Kovacs
- Division of Pulmonology, Department of Internal Medicine, Medical University of Graz, 8010 Graz, Austria; (G.K.); (V.F.); (N.J.)
| | - Vasile Foris
- Division of Pulmonology, Department of Internal Medicine, Medical University of Graz, 8010 Graz, Austria; (G.K.); (V.F.); (N.J.)
| | - Nikolaus John
- Division of Pulmonology, Department of Internal Medicine, Medical University of Graz, 8010 Graz, Austria; (G.K.); (V.F.); (N.J.)
| | - Daniela Kleinschek
- Ludwig Boltzmann Institute for Lung Vascular Research, 8010 Graz, Austria;
| | - Nicole Feldbacher
- Center for Biomarker Research in Medicine (CBmed), Division of Translational Precision Medicine, Division of Precision Medicine Technologies, 8010 Graz, Austria; (A.H.); (B.P.); (V.P.); (I.B.); (N.F.)
- Division for Gastroenterology and Hepatology, Department of Internal Medicine, Medical University of Graz, 8010 Graz, Austria;
| | - Henning Grønbæk
- Departments of Hepatology and Gastroenterology, Aarhus University Hospital, 8200 Aarhus, Denmark;
- Department of Clinical Medicine, Aarhus University, 8000 Aarhus, Denmark;
| | - Holger Jon Møller
- Department of Clinical Medicine, Aarhus University, 8000 Aarhus, Denmark;
- Department of Clinical Biochemistry, Aarhus University Hospital, 8200 Aarhus, Denmark
| | - Kristina Žukauskaitė
- Division for Gastroenterology and Hepatology, Department of Internal Medicine, Medical University of Graz, 8010 Graz, Austria;
- Institute of Biosciences, Life Sciences Center, Vilnius University, 01513 Vilnius, Lithuania
| | - Tobias Madl
- Otto Loewi Research Center, Medicinal Chemistry, Medical University of Graz, 8010 Graz, Austria; (H.H.); (T.M.)
- BioTechMed-Graz, 8010 Graz, Austria
| | - Vanessa Stadlbauer
- Center for Biomarker Research in Medicine (CBmed), Division of Translational Precision Medicine, Division of Precision Medicine Technologies, 8010 Graz, Austria; (A.H.); (B.P.); (V.P.); (I.B.); (N.F.)
- Division for Gastroenterology and Hepatology, Department of Internal Medicine, Medical University of Graz, 8010 Graz, Austria;
- BioTechMed-Graz, 8010 Graz, Austria
| |
Collapse
|
18
|
Elliott MR, O'Connor AE, Marshall GD. Inflammatory pathways in patients with post-acute sequelae of COVID-19: The role of the clinical immunologist. Ann Allergy Asthma Immunol 2024; 133:507-515. [PMID: 39179099 PMCID: PMC11575468 DOI: 10.1016/j.anai.2024.08.021] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2024] [Revised: 08/15/2024] [Accepted: 08/16/2024] [Indexed: 08/26/2024]
Abstract
As the SARS-CoV-2 pandemic progressed, some survivors noted prolonged symptoms after acute infection, termed post-acute sequelae of COVID-19 (PASC) or "long COVID." PASC is a significant clinical and public health concern that adversely affects patients' quality of life, income, and health care expenses. Moreover, PASC symptoms are highly heterogeneous, the most common being fatigue and cognitive impairment, and they likely reflect a spectrum of clinical phenotypes. The proposed role of persistent inflammation is one of leading pathophysiological theories. This review article addresses these proposed mechanisms of persistent and aberrant inflammation, their clinical evaluation, and theoretical approaches to management. A review of public databases was used to collect literature for the review. The literature supports a prominent role of persistent and aberrant inflammation as a major contributor to the symptoms of PASC. Proposed mechanisms for persistent inflammation include reactivation of latent viruses, viral persistence, loss of immunoregulatory pathways, autoimmune mechanisms, and/or mast cell dysregulation. Persistent inflammation may result in constitutional symptoms such as fatigue, brain fog, body aches, and/or organ-specific dysfunction, such as gastrointestinal dysregulation and myocardial inflammation. There are no approved or even proven therapies for PASC at this time, but some studies have identified therapeutic options that may either reduce the risk for progression to PASC or decrease symptom burden. Laboratory evaluation and therapeutic options are limited and require further investigation to establish their clinical value. A more refined definition of PASC is needed to address the wide variety of clinical presentations, pathophysiology, and therapeutic options.
Collapse
Affiliation(s)
- Matthew R Elliott
- The University of Mississippi Medical Center, Department of Internal Medicine, Division of Clinical Immunology, Jackson, Mississippi.
| | - Anna E O'Connor
- The University of Mississippi Medical Center, Department of Internal Medicine, Division of Clinical Immunology, Jackson, Mississippi
| | - Gailen D Marshall
- The University of Mississippi Medical Center, Department of Internal Medicine, Division of Clinical Immunology, Jackson, Mississippi
| |
Collapse
|
19
|
Michot JM, Dozio V, Rohmer J, Pommeret F, Roumier M, Yu H, Sklodowki K, Danlos FX, Ouali K, Kishazi E, Naigeon M, Griscelli F, Gachot B, Groh M, Bacciarello G, Stoclin A, Willekens C, Sakkal M, Bayle A, Zitvogel L, Silvin A, Soria JC, Barlesi F, Beeler K, André F, Vasse M, Chaput N, Ackermann F, Escher C, Marabelle A. Circulating Proteins Associated with Anti-IL6 Receptor Therapeutic Resistance in the Sera of Patients with Severe COVID-19. J Proteome Res 2024; 23:5001-5015. [PMID: 39352225 DOI: 10.1021/acs.jproteome.2c00422] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/03/2024]
Abstract
Circulating proteomes provide a snapshot of the physiological state of a human organism responding to pathogenic challenges and drug interventions. The outcomes of patients with COVID-19 and acute respiratory distress syndrome triggered by the SARS-CoV2 virus remain uncertain. Tocilizumab is an anti-interleukin-6 treatment that exerts encouraging clinical activity by controlling the cytokine storm and improving respiratory distress in patients with COVID-19. We investigate the biological determinants of therapeutic outcomes after tocilizumab treatment. Overall, 28 patients hospitalized due to severe COVID-19 who were treated with tocilizumab intravenously were included in this study. Sera were collected before and after tocilizumab, and the patient's outcome was evaluated until day 30 post-tocilizumab infusion for favorable therapeutic response to tocilizumab and mortality. Hyperreaction monitoring measurements by liquid chromatography-mass spectrometry-based proteomic analysis with data-independent acquisition quantified 510 proteins and 7019 peptides in the serum of patients. Alterations in the serum proteome reflect COVID-19 outcomes in patients treated with tocilizumab. Our results suggested that circulating proteins associated with the most significant prognostic impact belonged to the complement system, platelet degranulation, acute-phase proteins, and the Fc-epsilon receptor signaling pathway. Among these, upregulation of the complement system by activation of the classical pathway was associated with poor response to tocilizumab, and upregulation of Fc-epsilon receptor signaling was associated with lower mortality.
Collapse
Affiliation(s)
- Jean-Marie Michot
- Département des Innovations Thérapeutiques et des Essais Précoces (DITEP), Gustave Roussy, Université Paris-Saclay, Villejuif 94800, France
| | - Vito Dozio
- Biognosys, Wagistrasse 21, Schlieren 8952, Switzerland
| | - Julien Rohmer
- Service de Médecine Interne, Hôpital Foch, Suresnes 92150, France
| | - Fanny Pommeret
- Département de Médecine, Gustave Roussy, Université Paris-Saclay, Villejuif 94800, France
| | - Mathilde Roumier
- Service de Médecine Interne, Hôpital Foch, Suresnes 92150, France
| | - Haochen Yu
- Biognosys, Wagistrasse 21, Schlieren 8952, Switzerland
| | | | - François-Xavier Danlos
- Département de Médecine, Gustave Roussy, Université Paris-Saclay, Villejuif 94800, France
| | - Kaissa Ouali
- Département de Médecine, Gustave Roussy, Université Paris-Saclay, Villejuif 94800, France
| | - Edina Kishazi
- Biognosys, Wagistrasse 21, Schlieren 8952, Switzerland
| | - Marie Naigeon
- INSERM U1015, Gustave Roussy Cancer Campus, Villejuif 94800, France
- Laboratoire d'Immunomonitoring en Oncologie, Gustave Roussy, Université Paris-Saclay, Villejuif 94800, France
- Université Paris Saclay, Faculté de Pharmacie, Chatenay-Malabry F-92296, France
| | - Franck Griscelli
- Département de biologie et pathologie, Gustave Roussy Cancer Campus, Villejuif 94800, France
| | - Bertrand Gachot
- Unité de Pathologie Infectieuse, Gustave Roussy Cancer Campus, Villejuif 94800, France
| | - Matthieu Groh
- Service de Médecine Interne, Hôpital Foch, Suresnes 92150, France
| | - Giulia Bacciarello
- Département de Médecine, Gustave Roussy, Université Paris-Saclay, Villejuif 94800, France
| | - Annabelle Stoclin
- Unité de Pathologie Infectieuse, Gustave Roussy Cancer Campus, Villejuif 94800, France
| | - Christophe Willekens
- Département d'hématologie, Gustave Roussy Cancer Campus, Villejuif 94800, France
| | - Madona Sakkal
- Département des Innovations Thérapeutiques et des Essais Précoces (DITEP), Gustave Roussy, Université Paris-Saclay, Villejuif 94800, France
| | - Arnaud Bayle
- Département des Innovations Thérapeutiques et des Essais Précoces (DITEP), Gustave Roussy, Université Paris-Saclay, Villejuif 94800, France
| | | | - Aymeric Silvin
- INSERM U1015, Gustave Roussy Cancer Campus, Villejuif 94800, France
| | - Jean-Charles Soria
- Département des Innovations Thérapeutiques et des Essais Précoces (DITEP), Gustave Roussy, Université Paris-Saclay, Villejuif 94800, France
- Université Paris Saclay, Faculté de Médecine, Le Kremlin-Bicêtre 94270, France
| | - Fabrice Barlesi
- Département de Médecine, Gustave Roussy, Université Paris-Saclay, Villejuif 94800, France
| | | | - Fabrice André
- Département de Médecine, Gustave Roussy, Université Paris-Saclay, Villejuif 94800, France
- Université Paris Saclay, Faculté de Médecine, Le Kremlin-Bicêtre 94270, France
- Unité INSERM U981, Gustave Roussy Cancer Campus, Villejuif 94800, France
| | - Marc Vasse
- Université Paris Saclay, Faculté de Pharmacie, Chatenay-Malabry F-92296, France
- Service de biologie clinique, Hôpital Foch, Suresnes 92150, France
- Unité INSERM U1176, Le Kremlin-Bicêtre, Université Paris Saclay, Faculté de Médecine, Le Kremlin-Bicêtre 94270, France
| | - Nathalie Chaput
- INSERM U1015, Gustave Roussy Cancer Campus, Villejuif 94800, France
- Laboratoire d'Immunomonitoring en Oncologie, Gustave Roussy, Université Paris-Saclay, Villejuif 94800, France
| | - Felix Ackermann
- Service de Médecine Interne, Hôpital Foch, Suresnes 92150, France
| | | | - Aurélien Marabelle
- Département des Innovations Thérapeutiques et des Essais Précoces (DITEP), Gustave Roussy, Université Paris-Saclay, Villejuif 94800, France
- INSERM U1015, Gustave Roussy Cancer Campus, Villejuif 94800, France
- Université Paris Saclay, Faculté de Médecine, Le Kremlin-Bicêtre 94270, France
- Centre d'investigation clinique - biothérapie, INSERM CICBT1428, Villejuif 94800, France
| |
Collapse
|
20
|
Matula Z, Király V, Bekő G, Gönczi M, Zóka A, Steinhauser R, Uher F, Vályi-Nagy I. High prevalence of long COVID in anti-TPO positive euthyroid individuals with strongly elevated SARS-CoV-2-specific T cell responses and moderately raised anti-spike IgG levels 23 months post-infection. Front Immunol 2024; 15:1448659. [PMID: 39450181 PMCID: PMC11499158 DOI: 10.3389/fimmu.2024.1448659] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2024] [Accepted: 09/24/2024] [Indexed: 10/26/2024] Open
Abstract
Introduction Severe acute respiratory syndrome coronavirus type 2 (SARS-CoV-2) infection, the causative agent of coronavirus disease 2019 (COVID-19), causes post-acute infection syndrome in a surprisingly large number of cases worldwide. This condition, also known as long COVID or post-acute sequelae of COVID-19, is characterized by extremely complex symptoms and pathology. There is a growing consensus that this condition is a consequence of virus-induced immune activation and the inflammatory cascade, with its prolonged duration caused by a persistent virus reservoir. Methods In this cross-sectional study, we analyzed the SARS-CoV-2-specific T cell response against the spike, nucleocapsid, and membrane proteins, as well as the levels of spike-specific IgG antibodies in 51 healthcare workers, categorized into long COVID or convalescent control groups based on the presence or absence of post-acute symptoms. Additionally, we compared the levels of autoantibodies previously identified during acute or critical COVID-19, including anti-dsDNA, anti-cardiolipin, anti-β2-glycoprotein I, anti-neutrophil cytoplasmic antibodies, and anti-thyroid peroxidase (anti-TPO). Furthermore, we analyzed the antibody levels targeting six nuclear antigens within the ENA-6 S panel, as positivity for certain anti-nuclear antibodies has recently been shown to associate not only with acute COVID-19 but also with long COVID. Finally, we examined the frequency of diabetes in both groups. Our investigations were conducted at an average of 18.2 months (convalescent control group) and 23.1 months (long COVID group) after confirmed acute COVID-19 infection, and an average of 21 months after booster vaccination. Results Our results showed significant differences between the two groups regarding the occurrence of acute infection relative to administering the individual vaccine doses, the frequency of acute symptoms, and the T cell response against all structural SARS-CoV-2 proteins. A statistical association was observed between the incidence of long COVID symptoms and highly elevated anti-TPO antibodies based on Pearson's chi-squared test. Although patients with long COVID showed moderately elevated anti-SARS-CoV-2 spike IgG serum antibody levels compared to control participants, and further differences were found regarding the positivity for anti-nuclear antibodies, anti-dsDNA, and HbA1c levels between the two groups, these differences were not statistically significant. Disscussion This study highlights the need for close monitoring of long COVID development in patients with elevated anti-TPO titers, which can be indicated by strongly elevated SARS-CoV-2-specific T cell response and moderately raised anti-spike IgG levels even long after the acute infection. However, our results do not exclude the possibility of new-onset thyroid autoimmunity after COVID-19, and further investigations are required to clarify the etiological link between highly elevated anti-TPO titers and long COVID.
Collapse
Affiliation(s)
- Zsolt Matula
- Laboratory for Experimental Cell Therapy, Central Hospital of Southern Pest, National Institute of Hematology and Infectious Diseases, Budapest, Hungary
| | - Viktória Király
- Central Laboratory of Central Hospital of Southern Pest, National Institute of Hematology and Infectious Diseases, Budapest, Hungary
| | - Gabriella Bekő
- Central Laboratory of Central Hospital of Southern Pest, National Institute of Hematology and Infectious Diseases, Budapest, Hungary
| | - Márton Gönczi
- Central Laboratory of Central Hospital of Southern Pest, National Institute of Hematology and Infectious Diseases, Budapest, Hungary
| | - András Zóka
- Central Laboratory of Central Hospital of Southern Pest, National Institute of Hematology and Infectious Diseases, Budapest, Hungary
| | - Róbert Steinhauser
- Central Laboratory of Central Hospital of Southern Pest, National Institute of Hematology and Infectious Diseases, Budapest, Hungary
| | - Ferenc Uher
- Laboratory for Experimental Cell Therapy, Central Hospital of Southern Pest, National Institute of Hematology and Infectious Diseases, Budapest, Hungary
| | - István Vályi-Nagy
- Department of Hematology and Stem Cell Transplantation, Central Hospital of Southern Pest, National Institute of Hematology and Infectious Diseases, Budapest, Hungary
| |
Collapse
|
21
|
Peluso MJ, Deeks SG. Mechanisms of long COVID and the path toward therapeutics. Cell 2024; 187:5500-5529. [PMID: 39326415 PMCID: PMC11455603 DOI: 10.1016/j.cell.2024.07.054] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2023] [Revised: 07/30/2024] [Accepted: 07/30/2024] [Indexed: 09/28/2024]
Abstract
Long COVID, a type of post-acute sequelae of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) (PASC) defined by medically unexplained symptoms following infection with SARS-CoV-2, is a newly recognized infection-associated chronic condition that causes disability in some people. Substantial progress has been made in defining its epidemiology, biology, and pathophysiology. However, there is no cure for the tens of millions of people believed to be experiencing long COVID, and industry engagement in developing therapeutics has been limited. Here, we review the current state of knowledge regarding the biology and pathophysiology of long COVID, focusing on how the proposed mechanisms explain the physiology of the syndrome and how they provide a rationale for the implementation of a broad experimental medicine and clinical trials agenda. Progress toward preventing and curing long COVID and other infection-associated chronic conditions will require deep and sustained investment by funders and industry.
Collapse
Affiliation(s)
- Michael J Peluso
- Division of HIV, Infectious Diseases, and Global Medicine, University of California, San Francisco, San Francisco, CA, USA.
| | - Steven G Deeks
- Division of HIV, Infectious Diseases, and Global Medicine, University of California, San Francisco, San Francisco, CA, USA.
| |
Collapse
|
22
|
Camporesi A, Morello R, La Rocca A, Zampino G, Vezzulli F, Munblit D, Raffaelli F, Valentini P, Buonsenso D. Characteristics and predictors of Long Covid in children: a 3-year prospective cohort study. EClinicalMedicine 2024; 76:102815. [PMID: 39296584 PMCID: PMC11408803 DOI: 10.1016/j.eclinm.2024.102815] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/07/2024] [Revised: 08/19/2024] [Accepted: 08/21/2024] [Indexed: 09/21/2024] Open
Abstract
Background Children can develop Long Covid, however long term outcomes and their predictors are poorly described in these patients. The primary aim is to describe characteristics and predictors of Long Covid in children assessed in-clinics up to 36 months post-SARS-CoV-2 infection, as well as investigate the role of vaccines in preventing Long Covid, risk of reinfections and development of autoimmune diseases. Methods Children aged 0-18 years old with confirmed SARS-CoV-2 infection were invited for a prospective follow-up assessment at a peadiatric post-covid clinic in Rome, Italy, at serial intervals (3-, 6-, 12-, 18-, 24- and 36-months post-infection onset, between 01/02/2020 and 28/02/2024). Long Covid was defined as persistence of otherwise unexplained symptoms for at least three months after initial infection. Findings 1319 patients were initially included, 1296 reached the 3 months follow-up or more. Of the patients who underwent multiple follow-ups, 23.2% (301), 169 (13.2%), 89 (7.9%), 67 (6.1%), 47 (7.1%) were diagnosed with Long Covid at 3-6-12-18-24 months, respectively For the primary outcome of Long Covid at three months, age >12 years (P < 0.001, OR 11.33, 95% CI 4.2; 15.15), comorbidities (P = 0.008, OR 1.83, 95% CI 1.06; 2.44), being infected with original variants (P < 0.001, OR 4.77, 95% CI 2.46; 14.47), female sex (P < 0.001, OR 1.62, 95% CI 1.02; 1.89) were statistically significant risk factors. Age >12 years (P = 0.002, OR 9.37, 95% CI 1.58; 8.64), and infection with original (P = 0.012, OR 3.52, 95% CI 1.32; 8.64) and alfa (P < 0.001, OR 4.09, 95% CI 2.01; 8.3) SARS-CoV-2 variants remained statistically significant risk factors for Long Covid duration for at least 18 months. Vaccination was associated with a lower risk of long covid at 3, 6 and 12 months for older children and a lower risk of reinfections. Being infected with the original SARS-CoV-2 variant was associated with a higher risk of new-onset autoimmune diseases ((P = 0.035, 95% CI 1.12; 2.4). One patient was diagnosed with Long Covid after a re-infection. Interpretation This is the longest follow-up study of children with SARS-CoV-2 infection, showing a significant and long-lasting burden of Long Covid in the pediatric population. Our findings highlight the urgent need of investing in pediatric Long Covid in order to find effective diagnostic and therapeutic approaches, as well can inform preventive strategies in case of future pandemics. Funding This study has been funde by Pfizer non-competitive grant, granted to DB (#65925795).
Collapse
Affiliation(s)
- Anna Camporesi
- Pediatric Anesthesia and Intensive Care, V. Buzzi Children's Hospital, Milano, Italy
| | - Rosa Morello
- Department of Woman and Child Health and Public Health, Fondazione Policlinico Universitario A. Gemelli IRCCS, Rome, Italy
| | - Anna La Rocca
- Department of Woman and Child Health and Public Health, Fondazione Policlinico Universitario A. Gemelli IRCCS, Rome, Italy
- Medicine ans Surgery, Università Cattolica del Sacro Cuore, Rome, Italy
| | - Giuseppe Zampino
- Department of Woman and Child Health and Public Health, Fondazione Policlinico Universitario A. Gemelli IRCCS, Rome, Italy
| | - Federico Vezzulli
- Department of Pathophysiology and Transplantation, University of Milano, Milano, Italy
| | - Daniel Munblit
- Care for Long Term Conditions Division, Florence Nightingale Faculty of Nursing, Midwifery and Palliative Care, King's College London, London, United Kingdom
- Department of Paediatrics and Paediatric Infectious Diseases, Institute of Child's Health, Sechenov First Moscow State Medical University (Sechenov University), Moscow, Russian Federation
| | - Francesca Raffaelli
- UOC Malattie Infettive - Dipartimento Scienze Mediche e Chirurgiche -. Fondazione Policlinico Universitario A. Gemelli IRCCS, Rome, Italy
| | - Piero Valentini
- Department of Woman and Child Health and Public Health, Fondazione Policlinico Universitario A. Gemelli IRCCS, Rome, Italy
| | - Danilo Buonsenso
- Department of Woman and Child Health and Public Health, Fondazione Policlinico Universitario A. Gemelli IRCCS, Rome, Italy
- Centro di Salute Globale, Università Cattolica del Sacro Cuore, Rome, Italy
- Area Pediatrica, Dipartimento di Scienze della Vita e Sanità Pubblica, Università Cattolica del Sacro Cuore, Rome, Italy
| |
Collapse
|
23
|
Kanwal A, Zhang Z. Exploring common pathogenic association between Epstein Barr virus infection and long-COVID by integrating RNA-Seq and molecular dynamics simulations. Front Immunol 2024; 15:1435170. [PMID: 39391317 PMCID: PMC11464307 DOI: 10.3389/fimmu.2024.1435170] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2024] [Accepted: 08/27/2024] [Indexed: 10/12/2024] Open
Abstract
The term "Long-COVID" (LC) is characterized by the aftereffects of COVID-19 infection. Various studies have suggested that Epstein-Barr virus (EBV) reactivation is among the significant reported causes of LC. However, there is a lack of in-depth research that could largely explore the pathogenic mechanism and pinpoint the key genes in the EBV and LC context. This study mainly aimed to predict the potential disease-associated common genes between EBV reactivation and LC condition using next-generation sequencing (NGS) data and reported naturally occurring biomolecules as inhibitors. We applied the bulk RNA-Seq from LC and EBV-infected peripheral blood mononuclear cells (PBMCs), identified the differentially expressed genes (DEGs) and the Protein-Protein interaction (PPI) network using the STRING database, identified hub genes using the cytoscape plugins CytoHubba and MCODE, and performed enrichment analysis using ClueGO. The interaction analysis of a hub gene was performed against naturally occurring bioflavonoid molecules using molecular docking and the molecular dynamics (MD) simulation method. Out of 357 common genes, 22 genes (CCL2, CCL20, CDCA2, CEP55, CHI3L1, CKAP2L, DEPDC1, DIAPH3, DLGAP5, E2F8, FGF1, NEK2, PBK, TOP2A, CCL3, CXCL8, DEPDC1, IL6, RETN, MMP2, LCN2, and OLR1) were classified as hub genes, and the remaining ones were classified as neighboring genes. Enrichment analysis showed the role of hub genes in various pathways such as immune-signaling pathways, including JAK-STAT signaling, interleukin signaling, protein kinase signaling, and toll-like receptor pathways associated with the symptoms reported in the LC condition. ZNF and MYBL TF-family were predicted as abundant TFs controlling hub genes' transcriptional machinery. Furthermore, OLR1 (PDB: 7XMP) showed stable interactions with the five shortlisted refined naturally occurring bioflavonoids, i.e., apigenin, amentoflavone, ilexgenin A, myricetin, and orientin compounds. The total binding energy pattern was observed, with amentoflavone being the top docked molecule (with a binding affinity of -8.3 kcal/mol) with the lowest total binding energy of -18.48 kcal/mol. In conclusion, our research has predicted the hub genes, their molecular pathways, and the potential inhibitors between EBV and LC potential pathogenic association. The in vivo or in vitro experimental methods could be utilized to functionally validate our findings, which would be helpful to cure LC or to prevent EBV reactivation.
Collapse
Affiliation(s)
- Ayesha Kanwal
- MOE Key Laboratory for Cellular Dynamics and Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, Anhui, China
| | - Zhiyong Zhang
- MOE Key Laboratory for Cellular Dynamics and Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, Anhui, China
- Department of Physics, University of Science and Technology of China, Hefei, Anhui, China
| |
Collapse
|
24
|
Elahi S, Rezaeifar M, Osman M, Shahbaz S. Exploring the role of galectin-9 and artemin as biomarkers in long COVID with chronic fatigue syndrome: links to inflammation and cognitive function. Front Immunol 2024; 15:1443363. [PMID: 39386210 PMCID: PMC11461188 DOI: 10.3389/fimmu.2024.1443363] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2024] [Accepted: 09/03/2024] [Indexed: 10/12/2024] Open
Abstract
This study aimed to assess plasma galectin-9 (Gal-9) and artemin (ARTN) concentrations as potential biomarkers to differentiate individuals with Long COVID (LC) patients with myalgic encephalomyelitis/chronic fatigue syndrome (ME/CFS) from SARS-CoV-2 recovered (R) and healthy controls (HCs). Receiver operating characteristic (ROC) curve analysis determined a cut-off value of plasma Gal-9 and ARTN to differentiate LC patients from the R group and HCs in two independent cohorts. Positive correlations were observed between elevated plasma Gal-9 levels and inflammatory markers (e.g. SAA and IP-10), as well as sCD14 and I-FABP in LC patients. Gal-9 also exhibited a positive correlation with cognitive failure scores, suggesting its potential role in cognitive impairment in LC patients with ME/CFS. This study highlights plasma Gal-9 and/or ARTN as sensitive screening biomarkers for discriminating LC patients from controls. Notably, the elevation of LPS-binding protein in LC patients, as has been observed in HIV infected individuals, suggests microbial translocation. However, despite elevated Gal-9, we found a significant decline in ARTN levels in the plasma of people living with HIV (PLWH). Our study provides a novel and important role for Gal-9/ARTN in LC pathogenesis.
Collapse
Affiliation(s)
- Shokrollah Elahi
- School of Dentistry, Division of Foundational Sciences, Edmonton, AB, Canada
- Li Ka Shing Institute of Virology, Edmonton, AB, Canada
- Women and Children Health Research Institute, Edmonton, AB, Canada
- Cancer Research Institute of Northern Alberta, Edmonton, AB, Canada
- Glycomics Institute of Alberta, Edmonton, AB, Canada
- Alberta Transplant Institute, Edmonton, AB, Canada
| | - Maryam Rezaeifar
- School of Dentistry, Division of Foundational Sciences, Edmonton, AB, Canada
| | - Mohammed Osman
- Li Ka Shing Institute of Virology, Edmonton, AB, Canada
- Women and Children Health Research Institute, Edmonton, AB, Canada
- Department of Medicine, Division of Rheumatology, Faculty of Medicine and Dentistry, University of Alberta, Edmonton, AB, Canada
| | - Shima Shahbaz
- School of Dentistry, Division of Foundational Sciences, Edmonton, AB, Canada
| |
Collapse
|
25
|
Rowntree LC, Audsley J, Allen LF, McQuilten HA, Hagen RR, Chaurasia P, Petersen J, Littler DR, Tan HX, Murdiyarso L, Habel JR, Foo IJH, Zhang W, Ten Berge ERV, Ganesh H, Kaewpreedee P, Lee KWK, Cheng SMS, Kwok JSY, Jayasinghe D, Gras S, Juno JA, Wheatley AK, Kent SJ, Rossjohn J, Cheng AC, Kotsimbos TC, Trubiano JA, Holmes NE, Pang Chan KK, Hui DSC, Peiris M, Poon LLM, Lewin SR, Doherty PC, Thevarajan I, Valkenburg SA, Kedzierska K, Nguyen THO. SARS-CoV-2-specific CD8 + T cells from people with long COVID establish and maintain effector phenotype and key TCR signatures over 2 years. Proc Natl Acad Sci U S A 2024; 121:e2411428121. [PMID: 39284068 PMCID: PMC11441481 DOI: 10.1073/pnas.2411428121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2024] [Accepted: 07/23/2024] [Indexed: 10/02/2024] Open
Abstract
Long COVID occurs in a small but important minority of patients following COVID-19, reducing quality of life and contributing to healthcare burden. Although research into underlying mechanisms is evolving, immunity is understudied. SARS-CoV-2-specific T cell responses are of key importance for viral clearance and COVID-19 recovery. However, in long COVID, the establishment and persistence of SARS-CoV-2-specific T cells are far from clear, especially beyond 12 mo postinfection and postvaccination. We defined ex vivo antigen-specific B cell and T cell responses and their T cell receptors (TCR) repertoires across 2 y postinfection in people with long COVID. Using 13 SARS-CoV-2 peptide-HLA tetramers, spanning 11 HLA allotypes, as well as spike and nucleocapsid probes, we tracked SARS-CoV-2-specific CD8+ and CD4+ T cells and B-cells in individuals from their first SARS-CoV-2 infection through primary vaccination over 24 mo. The frequencies of ORF1a- and nucleocapsid-specific T cells and B cells remained stable over 24 mo. Spike-specific CD8+ and CD4+ T cells and B cells were boosted by SARS-CoV-2 vaccination, indicating immunization, in fully recovered and people with long COVID, altered the immunodominance hierarchy of SARS-CoV-2 T cell epitopes. Meanwhile, influenza-specific CD8+ T cells were stable across 24 mo, suggesting no bystander-activation. Compared to total T cell populations, SARS-CoV-2-specific T cells were enriched for central memory phenotype, although the proportion of central memory T cells decreased following acute illness. Importantly, TCR repertoire composition was maintained throughout long COVID, including postvaccination, to 2 y postinfection. Overall, we defined ex vivo SARS-CoV-2-specific B cells and T cells to understand primary and recall responses, providing key insights into antigen-specific responses in people with long COVID.
Collapse
Affiliation(s)
- Louise C Rowntree
- Department of Microbiology and Immunology, University of Melbourne, at the Peter Doherty Institute for Infection and Immunity, Melbourne, VIC 3000, Australia
| | - Jennifer Audsley
- Department of Infectious Diseases, University of Melbourne, at the Peter Doherty Institute for Infection and Immunity, Melbourne, VIC 3000, Australia
| | - Lilith F Allen
- Department of Microbiology and Immunology, University of Melbourne, at the Peter Doherty Institute for Infection and Immunity, Melbourne, VIC 3000, Australia
| | - Hayley A McQuilten
- Department of Microbiology and Immunology, University of Melbourne, at the Peter Doherty Institute for Infection and Immunity, Melbourne, VIC 3000, Australia
| | - Ruth R Hagen
- Department of Microbiology and Immunology, University of Melbourne, at the Peter Doherty Institute for Infection and Immunity, Melbourne, VIC 3000, Australia
| | - Priyanka Chaurasia
- Infection and Immunity Program and Department of Biochemistry and Molecular Biology, Biomedicine Discovery Institute, Monash University, Clayton, VIC 3800, Australia
| | - Jan Petersen
- Infection and Immunity Program and Department of Biochemistry and Molecular Biology, Biomedicine Discovery Institute, Monash University, Clayton, VIC 3800, Australia
| | - Dene R Littler
- Infection and Immunity Program and Department of Biochemistry and Molecular Biology, Biomedicine Discovery Institute, Monash University, Clayton, VIC 3800, Australia
| | - Hyon-Xhi Tan
- Department of Microbiology and Immunology, University of Melbourne, at the Peter Doherty Institute for Infection and Immunity, Melbourne, VIC 3000, Australia
| | - Lydia Murdiyarso
- Department of Microbiology and Immunology, University of Melbourne, at the Peter Doherty Institute for Infection and Immunity, Melbourne, VIC 3000, Australia
| | - Jennifer R Habel
- Department of Microbiology and Immunology, University of Melbourne, at the Peter Doherty Institute for Infection and Immunity, Melbourne, VIC 3000, Australia
| | - Isabelle J H Foo
- Department of Microbiology and Immunology, University of Melbourne, at the Peter Doherty Institute for Infection and Immunity, Melbourne, VIC 3000, Australia
| | - Wuji Zhang
- Department of Microbiology and Immunology, University of Melbourne, at the Peter Doherty Institute for Infection and Immunity, Melbourne, VIC 3000, Australia
| | - Elizabeth R V Ten Berge
- Department of Microbiology and Immunology, University of Melbourne, at the Peter Doherty Institute for Infection and Immunity, Melbourne, VIC 3000, Australia
| | - Hanujah Ganesh
- Department of Infectious Diseases, University of Melbourne, at the Peter Doherty Institute for Infection and Immunity, Melbourne, VIC 3000, Australia
| | - Prathanporn Kaewpreedee
- HKU-Pasteur Research Pole, School of Public Health, The University of Hong Kong, Hong Kong Special Administrative Region, China
| | - Kelly W K Lee
- HKU-Pasteur Research Pole, School of Public Health, The University of Hong Kong, Hong Kong Special Administrative Region, China
| | - Samuel M S Cheng
- Division of Public Health Laboratory Sciences, School of Public Health, The University of Hong Kong, Hong Kong Special Administrative Region, China
| | - Janette S Y Kwok
- Division of Transplantation and Immunogenetics, Department of Pathology, Queen Mary Hospital, Hong Kong Special Administrative Region, China
| | - Dhilshan Jayasinghe
- Infection & Immunity Program, La Trobe Institute for Molecular Science, La Trobe University, Bundoora, VIC 3083, Australia
- Department of Biochemistry and Chemistry, School of Agriculture, Biomedicine and Environment, La Trobe University, Bundoora, VIC 3083, Australia
| | - Stephanie Gras
- Infection and Immunity Program and Department of Biochemistry and Molecular Biology, Biomedicine Discovery Institute, Monash University, Clayton, VIC 3800, Australia
- Infection & Immunity Program, La Trobe Institute for Molecular Science, La Trobe University, Bundoora, VIC 3083, Australia
- Department of Biochemistry and Chemistry, School of Agriculture, Biomedicine and Environment, La Trobe University, Bundoora, VIC 3083, Australia
| | - Jennifer A Juno
- Department of Microbiology and Immunology, University of Melbourne, at the Peter Doherty Institute for Infection and Immunity, Melbourne, VIC 3000, Australia
| | - Adam K Wheatley
- Department of Microbiology and Immunology, University of Melbourne, at the Peter Doherty Institute for Infection and Immunity, Melbourne, VIC 3000, Australia
| | - Stephen J Kent
- Department of Microbiology and Immunology, University of Melbourne, at the Peter Doherty Institute for Infection and Immunity, Melbourne, VIC 3000, Australia
| | - Jamie Rossjohn
- Infection and Immunity Program and Department of Biochemistry and Molecular Biology, Biomedicine Discovery Institute, Monash University, Clayton, VIC 3800, Australia
- Institute of Infection and Immunity, Cardiff University School of Medicine, Cardiff CF14 4XN, United Kingdom
| | - Allen C Cheng
- School of Public Health and Preventive Medicine, Monash University, Melbourne, VIC 3004, Australia
- Monash Infectious Diseases, Monash Health and School of Clinical Sciences, Monash University, Clayton, VIC 3168, Australia
| | - Tom C Kotsimbos
- Department of Respiratory Medicine, The Alfred Hospital, Melbourne, VIC 3004, Australia
- Department of Medicine, Central Clinical School, The Alfred Hospital, Monash University, Melbourne, VIC 3004, Australia
| | - Jason A Trubiano
- Department of Infectious Diseases, University of Melbourne, at the Peter Doherty Institute for Infection and Immunity, Melbourne, VIC 3000, Australia
- Department of Infectious Diseases, Peter MacCallum Cancer Centre, Melbourne, VIC 3000, Australia
- National Centre for Infections in Cancer, Peter McCallum Cancer Centre, Melbourne, VIC 3000, Australia
- Department of Medicine (Austin Health), University of Melbourne, Heidelberg, VIC 3084, Australia
- Centre for Antibiotic Allergy and Research, Department of Infectious Diseases, Austin Health, Heidelberg, VIC 3084, Australia
| | - Natasha E Holmes
- Centre for Antibiotic Allergy and Research, Department of Infectious Diseases, Austin Health, Heidelberg, VIC 3084, Australia
- Department of Critical Care, University of Melbourne, Parkville, VIC 3000, Australia
- Data Analytics Research and Evaluation Centre, Austin Health and University of Melbourne, Heidelberg, VIC 3084, Australia
| | - Ken Ka Pang Chan
- Department of Medicine and Therapeutics, Prince of Wales Hospital, The Chinese University of Hong Kong, Hong Kong Special Administrative Region, China
- Li Ka Shing Institute of Health Sciences, Faculty of Medicine, The Chinese University of Hong Kong, Hong Kong Special Administrative Region, China
| | - David S C Hui
- Department of Medicine and Therapeutics, Prince of Wales Hospital, The Chinese University of Hong Kong, Hong Kong Special Administrative Region, China
- Li Ka Shing Institute of Health Sciences, Faculty of Medicine, The Chinese University of Hong Kong, Hong Kong Special Administrative Region, China
| | - Malik Peiris
- HKU-Pasteur Research Pole, School of Public Health, The University of Hong Kong, Hong Kong Special Administrative Region, China
- Division of Public Health Laboratory Sciences, School of Public Health, The University of Hong Kong, Hong Kong Special Administrative Region, China
- Centre for Immunology and Infection, Hong Kong Science and Technology Park, New Territories, Hong Kong Special Administrative Region, China
| | - Leo L M Poon
- HKU-Pasteur Research Pole, School of Public Health, The University of Hong Kong, Hong Kong Special Administrative Region, China
- Division of Public Health Laboratory Sciences, School of Public Health, The University of Hong Kong, Hong Kong Special Administrative Region, China
- Centre for Immunology and Infection, Hong Kong Science and Technology Park, New Territories, Hong Kong Special Administrative Region, China
| | - Sharon R Lewin
- Department of Infectious Diseases, University of Melbourne, at the Peter Doherty Institute for Infection and Immunity, Melbourne, VIC 3000, Australia
- Victorian Infectious Diseases Service, Royal Melbourne Hospital, at the Peter Doherty Institute for Infection and Immunity, Melbourne, VIC 3000, Australia
- Department of Infectious Disease, Alfred Hospital and Monash University, Melbourne, VIC 3000, Australia
| | - Peter C Doherty
- Department of Microbiology and Immunology, University of Melbourne, at the Peter Doherty Institute for Infection and Immunity, Melbourne, VIC 3000, Australia
| | - Irani Thevarajan
- Department of Infectious Diseases, University of Melbourne, at the Peter Doherty Institute for Infection and Immunity, Melbourne, VIC 3000, Australia
- Victorian Infectious Diseases Service, Royal Melbourne Hospital, at the Peter Doherty Institute for Infection and Immunity, Melbourne, VIC 3000, Australia
| | - Sophie A Valkenburg
- Department of Microbiology and Immunology, University of Melbourne, at the Peter Doherty Institute for Infection and Immunity, Melbourne, VIC 3000, Australia
- HKU-Pasteur Research Pole, School of Public Health, The University of Hong Kong, Hong Kong Special Administrative Region, China
| | - Katherine Kedzierska
- Department of Microbiology and Immunology, University of Melbourne, at the Peter Doherty Institute for Infection and Immunity, Melbourne, VIC 3000, Australia
| | - Thi H O Nguyen
- Department of Microbiology and Immunology, University of Melbourne, at the Peter Doherty Institute for Infection and Immunity, Melbourne, VIC 3000, Australia
| |
Collapse
|
26
|
Gupta MK, Gouda G, Vadde R. Deciphering the role of FOXP4 in long COVID: exploring genetic associations, evolutionary conservation, and drug identification through bioinformatics analysis. Funct Integr Genomics 2024; 24:167. [PMID: 39298002 DOI: 10.1007/s10142-024-01451-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2024] [Revised: 09/02/2024] [Accepted: 09/09/2024] [Indexed: 09/21/2024]
Abstract
Long COVID (LC) refers to a condition characterized by a variety of lingering symptoms that persist for more than 4 to 12 weeks following the initial acute SARS-CoV-2 infection. Recent research has suggested that the FOXP4 gene could potentially be a significant factor contributing to LC. Owing to that, this study investigates FOXP4's role in LC by analyzing public datasets to understand its evolution and expression in diverse human populations and searching for drugs to reduce LC symptoms. Population genetic analysis of FOXP4 across human populations unmasks distinct genetic diversity patterns and positive selection signatures, suggesting potential population-specific susceptibilities to conditions like LC. Further, we also observed that FOXP4 experiences high expression during LC. To identify potential inhibitors, drug screening analysis identifies synthetic drugs like Glisoxepide, and natural compounds Kapurimycin A3 produced from Streptomyces sp, and Cucurbitacin B from Begonia nantoensis as promising candidates. Overall, our research contributes to understanding how FOXP4 may serve as a therapeutic target for mitigating the impact of LC.
Collapse
Affiliation(s)
- Manoj Kumar Gupta
- Department of Biotechnology and Bioinformatics, Yogi Vemana University, Kadapa, Andhra Pradesh, 516005, India.
| | - Gayatri Gouda
- ICAR-National Rice Research Institute, Cuttack, Odisha, 753 006, India
| | - Ramakrishna Vadde
- Department of Biotechnology and Bioinformatics, Yogi Vemana University, Kadapa, Andhra Pradesh, 516005, India.
| |
Collapse
|
27
|
Pasculli P, Zingaropoli MA, Dominelli F, Solimini AG, Masci GM, Birtolo LI, Pasquariello L, Paribeni F, Iafrate F, Panebianco V, Galardo G, Mancone M, Catalano C, Pugliese F, Palange P, Mastroianni CM, Ciardi MR. Insights into Long COVID: Unraveling Risk Factors, Clinical Features, Radiological Findings, Functional Sequelae and Correlations: A Retrospective Cohort Study. Am J Med 2024:S0002-9343(24)00569-2. [PMID: 39299642 DOI: 10.1016/j.amjmed.2024.09.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/07/2024] [Revised: 09/05/2024] [Accepted: 09/09/2024] [Indexed: 09/22/2024]
Abstract
BACKGROUND The long-term symptomatology of COVID-19 has yet to be comprehensively described. The aim of the study was to describe persistent COVID-19 symptoms in a cohort of hospitalized and home-isolated patients. METHODS A retrospective cohort study was conducted on long COVID patients. Long COVID symptoms were identified, and patients were divided into hospitalized (in-patients) and home-isolated (out-patients), as well as according to the number of symptoms. Patients were examined by a multidisciplinary medical team. Blood tests, high resolution chest computed tomography (CT), and physical and infectious examinations were performed. Finally, in-patients were evaluated at 2 time-points: on hospital admission (T0) and 3 months after discharge (Tpost). RESULTS There were 364 COVID-19 patients enrolled; 82% of patients reported one or more symptoms. The most reported symptom was fatigue. Chest CT showed alteration in 76% of patients, and pulmonary function alterations were observed in 44.7% of patients. A higher risk of presenting at least one symptom was seen in patients treated with corticosteroid, and a higher risk of presenting chest CT residual lesion was observed in hospitalized patients and in patients that received hydroxychloroquine treatment. Moreover, a higher risk of altered pulmonary function was observed in older patients. CONCLUSION Long-term sequelae are present in a remarkable number of long COVID patients and pose a new challenge to the health care system to identify long-lasting effects and improve patients' well-being. Multidisciplinary teams are crucial to develop preventive measures, and clinical management strategies.
Collapse
Affiliation(s)
| | | | | | | | - Giorgio Maria Masci
- Department of Radiological, Oncological and Pathological Sciences, Policlinico Umberto I, Rome, Italy
| | - Lucia Ilaria Birtolo
- Department of Clinical, Internal, Anesthesiology and Cardiovascular Sciences, Sapienza University of Rome, Rome, Italy
| | - Lara Pasquariello
- Department of Public Health and Infectious Diseases, Division of Pulmonary Medicine, Policlinico Umberto I Hospital, Rome, Italy
| | - Filippo Paribeni
- Department of Specialist Surgery and Organ Transplantation "Paride Stefanini", Policlinico Umberto I, Rome, Italy
| | - Franco Iafrate
- Department of Radiological, Oncological and Pathological Sciences, Policlinico Umberto I, Rome, Italy
| | - Valeria Panebianco
- Department of Radiological, Oncological and Pathological Sciences, Policlinico Umberto I, Rome, Italy
| | - Gioacchino Galardo
- Medical Emergency Unit, Policlinico Umberto I, Sapienza University of Rome, Rome, Italy
| | - Massimo Mancone
- Department of Clinical, Internal, Anesthesiology and Cardiovascular Sciences, Sapienza University of Rome, Rome, Italy
| | - Carlo Catalano
- Department of Radiological, Oncological and Pathological Sciences, Policlinico Umberto I, Rome, Italy
| | - Francesco Pugliese
- Department of Specialist Surgery and Organ Transplantation "Paride Stefanini", Policlinico Umberto I, Rome, Italy
| | - Paolo Palange
- Department of Public Health and Infectious Diseases, Division of Pulmonary Medicine, Policlinico Umberto I Hospital, Rome, Italy
| | | | | |
Collapse
|
28
|
Haunhorst S, Dudziak D, Scheibenbogen C, Seifert M, Sotzny F, Finke C, Behrends U, Aden K, Schreiber S, Brockmann D, Burggraf P, Bloch W, Ellert C, Ramoji A, Popp J, Reuken P, Walter M, Stallmach A, Puta C. Towards an understanding of physical activity-induced post-exertional malaise: Insights into microvascular alterations and immunometabolic interactions in post-COVID condition and myalgic encephalomyelitis/chronic fatigue syndrome. Infection 2024:10.1007/s15010-024-02386-8. [PMID: 39240417 DOI: 10.1007/s15010-024-02386-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2024] [Accepted: 08/28/2024] [Indexed: 09/07/2024]
Abstract
BACKGROUND A considerable number of patients who contracted SARS-CoV-2 are affected by persistent multi-systemic symptoms, referred to as Post-COVID Condition (PCC). Post-exertional malaise (PEM) has been recognized as one of the most frequent manifestations of PCC and is a diagnostic criterion of myalgic encephalomyelitis/chronic fatigue syndrome (ME/CFS). Yet, its underlying pathomechanisms remain poorly elucidated. PURPOSE AND METHODS In this review, we describe current evidence indicating that key pathophysiological features of PCC and ME/CFS are involved in physical activity-induced PEM. RESULTS Upon physical activity, affected patients exhibit a reduced systemic oxygen extraction and oxidative phosphorylation capacity. Accumulating evidence suggests that these are mediated by dysfunctions in mitochondrial capacities and microcirculation that are maintained by latent immune activation, conjointly impairing peripheral bioenergetics. Aggravating deficits in tissue perfusion and oxygen utilization during activities cause exertional intolerance that are frequently accompanied by tachycardia, dyspnea, early cessation of activity and elicit downstream metabolic effects. The accumulation of molecules such as lactate, reactive oxygen species or prostaglandins might trigger local and systemic immune activation. Subsequent intensification of bioenergetic inflexibilities, muscular ionic disturbances and modulation of central nervous system functions can lead to an exacerbation of existing pathologies and symptoms.
Collapse
Affiliation(s)
- Simon Haunhorst
- Department of Sports Medicine and Health Promotion, Friedrich-Schiller-University Jena, Wöllnitzer Straße 42, 07749, Jena, Germany
- Center for Interdisciplinary Prevention of Diseases Related to Professional Activities, Jena, Germany
| | - Diana Dudziak
- Institute of Immunology, Jena University Hospital/ Friedrich-Schiller-University Jena, Jena, Germany
| | - Carmen Scheibenbogen
- Institute of Medical Immunology, Charité-Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt Universität Zu Berlin, and Berlin Institute of Health (BIH), Berlin, Germany
| | - Martina Seifert
- Institute of Medical Immunology, Charité-Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt Universität Zu Berlin, and Berlin Institute of Health (BIH), Berlin, Germany
- German Center for Cardiovascular Research (DZHK), Partner Site Berlin, Berlin, Germany
| | - Franziska Sotzny
- Institute of Medical Immunology, Charité-Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt Universität Zu Berlin, and Berlin Institute of Health (BIH), Berlin, Germany
| | - Carsten Finke
- Department of Neurology, Charité-Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität Zu Berlin, Berlin, Germany
| | - Uta Behrends
- Children's Hospital, School of Medicine, Technical University of Munich, Munich, Germany
- German Center for Infection Research (DZIF), Berlin, Germany
- AGV Research Unit Gene Vectors, Helmholtz Munich (HMGU), Munich, Germany
| | - Konrad Aden
- Institute of Clinical Molecular Biology, Kiel University and University Medical Center Schleswig-Holstein, Campus Kiel, Kiel, Germany
- Department of Internal Medicine I, Kiel University and University Medical Center Schleswig-Holstein, Campus Kiel, Kiel, Germany
| | - Stefan Schreiber
- Department of Internal Medicine I, Kiel University and University Medical Center Schleswig-Holstein, Campus Kiel, Kiel, Germany
| | - Dirk Brockmann
- Center Synergy of Systems, TU Dresden University of Technology, Dresden, Germany
| | - Paul Burggraf
- mHealth Pioneers GmbH, Körtestraße 10, 10967, Berlin, Germany
| | - Wilhelm Bloch
- Department for Molecular and Cellular Sports Medicine, Institute for Cardiovascular Research and Sports Medicine, German Sport University Cologne, Cologne, Germany
| | - Claudia Ellert
- , Landarztnetz Lahn-Dill, Wetzlar, Germany
- Initiative Long COVID Deutschland, Lemgo, Germany
| | - Anuradha Ramoji
- Institute of Physical Chemistry (IPC) and Abbe Center of Photonics (ACP), Member of the Leibniz Centre for Photonics in Infection Research (LPI), Friedrich-Schiller-University Jena, Jena, Germany
- Leibniz Institute of Photonic Technology, Member of Leibniz Health Technologies, Member of the Leibniz Centre for Photonics in Infection Research (LPI), Jena, Germany
| | - Juergen Popp
- Institute of Physical Chemistry (IPC) and Abbe Center of Photonics (ACP), Member of the Leibniz Centre for Photonics in Infection Research (LPI), Friedrich-Schiller-University Jena, Jena, Germany
- Leibniz Institute of Photonic Technology, Member of Leibniz Health Technologies, Member of the Leibniz Centre for Photonics in Infection Research (LPI), Jena, Germany
| | - Philipp Reuken
- Department for Internal Medicine IV (Gastroenterology, Hepatology and Infectious Diseases), Jena University Hospital, Jena, Germany
| | - Martin Walter
- Department of Psychiatry and Psychotherapy, Jena Center for Mental Health, Jena University Hospital, Jena, Germany
- German Center for Mental Health (DZPG), Partner Site Jena, Jena, Germany
| | - Andreas Stallmach
- Department for Internal Medicine IV (Gastroenterology, Hepatology and Infectious Diseases), Jena University Hospital, Jena, Germany
| | - Christian Puta
- Department of Sports Medicine and Health Promotion, Friedrich-Schiller-University Jena, Wöllnitzer Straße 42, 07749, Jena, Germany.
- Department for Internal Medicine IV (Gastroenterology, Hepatology and Infectious Diseases), Jena University Hospital, Jena, Germany.
- Center for Sepsis Control and Care (CSCC), Jena University Hospital/Friedrich-Schiller-University Jena, Jena, Germany.
| |
Collapse
|
29
|
Griffin DO. Postacute Sequelae of COVID (PASC or Long COVID): An Evidenced-Based Approach. Open Forum Infect Dis 2024; 11:ofae462. [PMID: 39220656 PMCID: PMC11363684 DOI: 10.1093/ofid/ofae462] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2024] [Accepted: 08/09/2024] [Indexed: 09/04/2024] Open
Abstract
While the acute manifestations of infectious diseases are well known, in some individuals, symptoms can either persist or appear after the acute period. Postviral fatigue syndromes are recognized with other viral infections and are described after coronavirus disease 2019 (COVID-19). We have a growing number of individuals with symptoms that persist for weeks, months, and years. Here, we share the evidence regarding the abnormalities associated with postacute sequelae of COVID-19 (PASC) and therapeutics. We describe physiological and biochemical abnormalities seen in individuals reporting PASC. We describe the several evidence-based interventions to offer patients. It is expected that this growing understanding of the mechanisms driving PASC and the benefits seen with certain therapeutics may not only lead to better outcomes for those with PASC but may also have the potential for understanding and treating other postinfectious sequelae.
Collapse
Affiliation(s)
- Daniel O Griffin
- Division of Infectious Diseases, Department of Medicine, Columbia University, College of Physicians and Surgeons, New York, New York, USA
| |
Collapse
|
30
|
Zapatero-Belinchón FJ, Kumar P, Ott M, Schwartz O, Sigal A. Understanding emerging and re-emerging viruses to facilitate pandemic preparedness. Nat Microbiol 2024; 9:2208-2211. [PMID: 39198691 DOI: 10.1038/s41564-024-01789-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/01/2024]
Affiliation(s)
| | - Priti Kumar
- Yale University School of Medicine, New Haven, CT, USA.
| | - Melanie Ott
- Gladstone Institute of Virology, University of California, San Francisco, San Francisco, CA, USA.
| | | | - Alex Sigal
- Africa Health Research Institute, Durban, South Africa.
| |
Collapse
|
31
|
Choi YJ, Kim HN, Lee J, Nham E, Seong H, Yoon JG, Noh JY, Song JY, Cheong HJ, Kim WJ. Erythema nodosum as an unusual skin manifestation of long COVID: A case report. Int J Infect Dis 2024; 146:107152. [PMID: 38936655 DOI: 10.1016/j.ijid.2024.107152] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2024] [Revised: 05/24/2024] [Accepted: 06/20/2024] [Indexed: 06/29/2024] Open
Abstract
Erythema nodosum (EN) is a skin manifestation of panniculitis characterized by symmetric, painful, tender nodules, and most cases are self-limiting. Few cases of EN following Severe acute respiratory syndrome coronavirus-2 (SARS-CoV-2) vaccination have been reported, and they are generally self-limiting. We reported the challenging case of a 63-year-old Asian woman with EN that persisted for more than three months after a coronavirus disease-19 (COVID-19). There was no improvement despite topical steroid and NSAIDs treatment, and the patient was successfully treated with combination of high-dose steroid and NSAIDs. There were long-lasting symptoms involving various organ symptoms persisting over three months after COVID-19, which is known as Long COVID. As part of Long COVID, there are limited cases of skin manifestations. Given that immune dysregulation due to persistent coronaviruses may contribute to refractory EN, Erythema nodosum related to COVID-19 is rare, but can occur; clinicians should be aware of the occurrence of EN following COVID-19 infection.
Collapse
Affiliation(s)
- Yu Jung Choi
- Division of Infectious Diseases, Department of Internal Medicine, Korea University Guro Hospital, Korea University College of Medicine, Seoul, Republic of Korea; Vaccine Innovation Center-KU Medicine, Korea University College of Medicine, Seoul, Republic of Korea
| | - Han-Na Kim
- Division of Dermatology, Korea University Guro Hospital, Korea University College of Medicine, Seoul, Republic of Korea
| | - Jiyeon Lee
- Division of Pathology, Korea University Guro Hospital, Korea University College of Medicine, Seoul, Republic of Korea
| | - Eliel Nham
- Division of Infectious Diseases, Department of Internal Medicine, Korea University Guro Hospital, Korea University College of Medicine, Seoul, Republic of Korea; Vaccine Innovation Center-KU Medicine, Korea University College of Medicine, Seoul, Republic of Korea
| | - Hye Seong
- Division of Infectious Diseases, Department of Internal Medicine, Korea University Guro Hospital, Korea University College of Medicine, Seoul, Republic of Korea; Vaccine Innovation Center-KU Medicine, Korea University College of Medicine, Seoul, Republic of Korea
| | - Jin Gu Yoon
- Division of Infectious Diseases, Department of Internal Medicine, Korea University Guro Hospital, Korea University College of Medicine, Seoul, Republic of Korea; Vaccine Innovation Center-KU Medicine, Korea University College of Medicine, Seoul, Republic of Korea
| | - Ji Yun Noh
- Division of Infectious Diseases, Department of Internal Medicine, Korea University Guro Hospital, Korea University College of Medicine, Seoul, Republic of Korea; Vaccine Innovation Center-KU Medicine, Korea University College of Medicine, Seoul, Republic of Korea
| | - Joon Young Song
- Division of Infectious Diseases, Department of Internal Medicine, Korea University Guro Hospital, Korea University College of Medicine, Seoul, Republic of Korea; Vaccine Innovation Center-KU Medicine, Korea University College of Medicine, Seoul, Republic of Korea
| | - Hee Jin Cheong
- Division of Infectious Diseases, Department of Internal Medicine, Korea University Guro Hospital, Korea University College of Medicine, Seoul, Republic of Korea; Vaccine Innovation Center-KU Medicine, Korea University College of Medicine, Seoul, Republic of Korea
| | - Woo Joo Kim
- Division of Infectious Diseases, Department of Internal Medicine, Korea University Guro Hospital, Korea University College of Medicine, Seoul, Republic of Korea; Vaccine Innovation Center-KU Medicine, Korea University College of Medicine, Seoul, Republic of Korea.
| |
Collapse
|
32
|
Schlegel B, Morikone M, Mu F, Tang WY, Kohanbash G, Rajasundaram D. bcRflow: a Nextflow pipeline for characterizing B cell receptor repertoires from non-targeted transcriptomic data. NAR Genom Bioinform 2024; 6:lqae137. [PMID: 39411512 PMCID: PMC11474772 DOI: 10.1093/nargab/lqae137] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2024] [Revised: 08/13/2024] [Accepted: 09/23/2024] [Indexed: 10/19/2024] Open
Abstract
B cells play a critical role in the adaptive recognition of foreign antigens through diverse receptor generation. While targeted immune sequencing methods are commonly used to profile B cell receptors (BCRs), they have limitations in cost and tissue availability. Analyzing B cell receptor profiling from non-targeted transcriptomics data is a promising alternative, but a systematic pipeline integrating tools for accurate immune repertoire extraction is lacking. Here, we present bcRflow, a Nextflow pipeline designed to characterize BCR repertoires from non-targeted transcriptomics data, with functional modules for alignment, processing, and visualization. bcRflow is a comprehensive, reproducible, and scalable pipeline that can run on high-performance computing clusters, cloud-based computing resources like Amazon Web Services (AWS), the Open OnDemand framework, or even local desktops. bcRflow utilizes institutional configurations provided by nf-core to ensure maximum portability and accessibility. To demonstrate the functionality of the bcRflow pipeline, we analyzed a public dataset of bulk transcriptomic samples from COVID-19 patients and healthy controls. We have shown that bcRflow streamlines the analysis of BCR repertoires from non-targeted transcriptomics data, providing valuable insights into the B cell immune response for biological and clinical research. bcRflow is available at https://github.com/Bioinformatics-Core-at-Childrens/bcRflow.
Collapse
Affiliation(s)
- Brent T Schlegel
- Department of Pediatrics, Division of Health Informatics, University of Pittsburgh School of Medicine, UPMC Children's Hospital of Pittsburgh, John G. Rangos Sr. Research Center, 4401 Penn Avenue, Pittsburgh, PA 15224, USA
| | - Michael Morikone
- Department of Pediatrics, Division of Health Informatics, University of Pittsburgh School of Medicine, UPMC Children's Hospital of Pittsburgh, John G. Rangos Sr. Research Center, 4401 Penn Avenue, Pittsburgh, PA 15224, USA
| | - Fangping Mu
- Center for Research Computing, University of Pittsburgh, 312 Schenley Place, 4420 Bayard Street, Pittsburgh, PA 15260, USA
| | - Wan-Yee Tang
- Department of Environmental and Occupational Health, University of Pittsburgh, School of Public Health, 130 DeSoto Street, Pittsburgh, PA 15261, USA
| | - Gary Kohanbash
- Department of Neurological Surgery, University of Pittsburgh School of Medicine, UPMC Children's Hospital of Pittsburgh, John G. Rangos Sr. Research Center, 4401 Penn Avenue, Pittsburgh, PA 15224, USA
| | - Dhivyaa Rajasundaram
- Department of Pediatrics, Division of Health Informatics, University of Pittsburgh School of Medicine, UPMC Children's Hospital of Pittsburgh, John G. Rangos Sr. Research Center, 4401 Penn Avenue, Pittsburgh, PA 15224, USA
| |
Collapse
|
33
|
Braun A, Rowntree LC, Huang Z, Pandey K, Thuesen N, Li C, Petersen J, Littler DR, Raji S, Nguyen THO, Jappe Lange E, Persson G, Schantz Klausen M, Kringelum J, Chung S, Croft NP, Faridi P, Ayala R, Rossjohn J, Illing PT, Scull KE, Ramarathinam S, Mifsud NA, Kedzierska K, Sørensen AB, Purcell AW. Mapping the immunopeptidome of seven SARS-CoV-2 antigens across common HLA haplotypes. Nat Commun 2024; 15:7547. [PMID: 39214998 PMCID: PMC11364864 DOI: 10.1038/s41467-024-51959-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2023] [Accepted: 08/21/2024] [Indexed: 09/04/2024] Open
Abstract
Most COVID-19 vaccines elicit immunity against the SARS-CoV-2 Spike protein. However, Spike protein mutations in emerging strains and immune evasion by the SARS-CoV-2 virus demonstrates the need to develop more broadly targeting vaccines. To facilitate this, we use mass spectrometry to identify immunopeptides derived from seven relatively conserved structural and non-structural SARS-CoV-2 proteins (N, E, Nsp1/4/5/8/9). We use two different B-lymphoblastoid cell lines to map Human Leukocyte Antigen (HLA) class I and class II immunopeptidomes covering some of the prevalent HLA types across the global human population. We employ DNA plasmid transfection and direct antigen delivery approaches to sample different antigens and find 248 unique HLA class I and HLA class II bound peptides with 71 derived from N, 12 from E, 28 from Nsp1, 19 from Nsp4, 73 from Nsp8 and 45 peptides derived from Nsp9. Over half of the viral peptides are unpublished. T cell reactivity tested against 56 of the detected peptides shows CD8+ and CD4+ T cell responses against several peptides from the N, E, and Nsp9 proteins. Results from this study will aid the development of next-generation COVID vaccines targeting epitopes from across a number of SARS-CoV-2 proteins.
Collapse
Affiliation(s)
- Asolina Braun
- Department of Biochemistry and Molecular Biology, Infection and Immunity Program, Biomedicine Discovery Institute, Monash University, Clayton, VIC, Australia
| | - Louise C Rowntree
- Department of Microbiology and Immunology, University of Melbourne, at the Peter Doherty Institute for Infection and Immunity, Melbourne, VIC, Australia
| | - Ziyi Huang
- Department of Biochemistry and Molecular Biology, Infection and Immunity Program, Biomedicine Discovery Institute, Monash University, Clayton, VIC, Australia
| | - Kirti Pandey
- Department of Biochemistry and Molecular Biology, Infection and Immunity Program, Biomedicine Discovery Institute, Monash University, Clayton, VIC, Australia
| | | | - Chen Li
- Department of Biochemistry and Molecular Biology, Infection and Immunity Program, Biomedicine Discovery Institute, Monash University, Clayton, VIC, Australia
| | - Jan Petersen
- Department of Biochemistry and Molecular Biology, Infection and Immunity Program, Biomedicine Discovery Institute, Monash University, Clayton, VIC, Australia
| | - Dene R Littler
- Department of Biochemistry and Molecular Biology, Infection and Immunity Program, Biomedicine Discovery Institute, Monash University, Clayton, VIC, Australia
| | - Shabana Raji
- Department of Microbiology and Immunology, University of Melbourne, at the Peter Doherty Institute for Infection and Immunity, Melbourne, VIC, Australia
| | - Thi H O Nguyen
- Department of Microbiology and Immunology, University of Melbourne, at the Peter Doherty Institute for Infection and Immunity, Melbourne, VIC, Australia
| | | | | | | | | | - Shanzou Chung
- Department of Biochemistry and Molecular Biology, Infection and Immunity Program, Biomedicine Discovery Institute, Monash University, Clayton, VIC, Australia
| | - Nathan P Croft
- Department of Biochemistry and Molecular Biology, Infection and Immunity Program, Biomedicine Discovery Institute, Monash University, Clayton, VIC, Australia
| | - Pouya Faridi
- Department of Biochemistry and Molecular Biology, Infection and Immunity Program, Biomedicine Discovery Institute, Monash University, Clayton, VIC, Australia
| | - Rochelle Ayala
- Department of Biochemistry and Molecular Biology, Infection and Immunity Program, Biomedicine Discovery Institute, Monash University, Clayton, VIC, Australia
| | - Jamie Rossjohn
- Department of Biochemistry and Molecular Biology, Infection and Immunity Program, Biomedicine Discovery Institute, Monash University, Clayton, VIC, Australia
- Institute of Infection and Immunity, Cardiff University, School of Medicine, Cardiff, UK
| | - Patricia T Illing
- Department of Biochemistry and Molecular Biology, Infection and Immunity Program, Biomedicine Discovery Institute, Monash University, Clayton, VIC, Australia
| | - Katherine E Scull
- Department of Biochemistry and Molecular Biology, Infection and Immunity Program, Biomedicine Discovery Institute, Monash University, Clayton, VIC, Australia
| | - Sri Ramarathinam
- Department of Biochemistry and Molecular Biology, Infection and Immunity Program, Biomedicine Discovery Institute, Monash University, Clayton, VIC, Australia
| | - Nicole A Mifsud
- Department of Biochemistry and Molecular Biology, Infection and Immunity Program, Biomedicine Discovery Institute, Monash University, Clayton, VIC, Australia
| | - Katherine Kedzierska
- Department of Microbiology and Immunology, University of Melbourne, at the Peter Doherty Institute for Infection and Immunity, Melbourne, VIC, Australia
| | | | - Anthony W Purcell
- Department of Biochemistry and Molecular Biology, Infection and Immunity Program, Biomedicine Discovery Institute, Monash University, Clayton, VIC, Australia.
| |
Collapse
|
34
|
Xu D, Qin X. Type I Interferonopathy among Non-Elderly Female Patients with Post-Acute Sequelae of COVID-19. Viruses 2024; 16:1369. [PMID: 39339845 PMCID: PMC11435747 DOI: 10.3390/v16091369] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2024] [Revised: 08/19/2024] [Accepted: 08/26/2024] [Indexed: 09/30/2024] Open
Abstract
The pathophysiological mechanisms of the post-acute sequelae of COVID-19 (PASC) remain unclear. Sex differences not only exist in the disease severity of acute SARS-CoV-2 infection but also in the risk of suffering from PASC. Women have a higher risk of suffering from PASC and a longer time to resolution than men. To explore the possible immune mechanisms of PASC among non-elderly females, we mined single-cell transcriptome data from peripheral blood samples of non-elderly female patients with PASC and acute SARS-CoV-2 infection, together with age- and gender-matched non-PASC and healthy controls available from the Gene Expression Omnibus database. By comparing the differences, we found that a CD14+ monocyte subset characterized by higher expression of signal transducers and activators of transcription 2 (STAT2) (CD14+STAT2high) was notably increased in the PASC patients compared with the non-PASC individuals. The transcriptional factor (TF) activity analysis revealed that STAT2 and IRF9 were the key TFs determining the function of CD14+STAT2high monocytes. STAT2 and IRF9 are TFs exclusively involving type I and III interferon (IFN) signaling pathways, resulting in uncontrolled IFN-I signaling activation and type I interferonopathy. Furthermore, increased expression of common interferon-stimulated genes (ISGs) has also been identified in most monocyte subsets among the non-elderly female PASC patients, including IFI6, IFITM3, IFI44L, IFI44, EPSTI1, ISG15, and MX1. This study reveals a featured CD14+STAT2high monocyte associated with uncontrolled IFN-I signaling activation, which is indicative of a possible type I interferonopathy in the non-elderly female patients with PASC.
Collapse
Affiliation(s)
- Donghua Xu
- Division of Comparative Pathology, Tulane National Primate Research Center, Tulane University School of Medicine, Tulane University, 18703 Three Rivers Road, Covington, LA 70433, USA
- Department of Microbiology and Immunology, School of Medicine, Tulane University, New Orleans, LA 70112, USA
| | - Xuebin Qin
- Division of Comparative Pathology, Tulane National Primate Research Center, Tulane University School of Medicine, Tulane University, 18703 Three Rivers Road, Covington, LA 70433, USA
- Department of Microbiology and Immunology, School of Medicine, Tulane University, New Orleans, LA 70112, USA
| |
Collapse
|
35
|
Roberts NJ. Long-Term SARS-CoV-2 Findings Related to Persisting Viral Antigen and Inflammation Resemble Those Reported for Influenza Virus and Respiratory Syncytial Virus. Viruses 2024; 16:1353. [PMID: 39339830 PMCID: PMC11436236 DOI: 10.3390/v16091353] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2024] [Revised: 08/18/2024] [Accepted: 08/22/2024] [Indexed: 09/30/2024] Open
Abstract
Recent studies have documented prolonged expression of viral antigens and RNA and associated inflammation after infection with SARS-CoV-2 in a substantial proportion of infected patients. The persisting SARS-CoV-2 effects and findings, with inflammation associated with continued detection of viral antigens, especially resemble those previously reported for influenza virus, as well as respiratory syncytial virus (RSV). The reports indicate the need for improved insight into the mechanisms whereby post-SARS-CoV-2 infection-related illness is apparently more common and perhaps even more persistent after infection than observed for other respiratory viruses.
Collapse
Affiliation(s)
- Norbert J. Roberts
- Division of Infectious Diseases and Immunology, Department of Medicine, New York University Grossman School of Medicine, New York, NY 10016, USA;
- Division of Infectious Diseases, Department of Internal Medicine, University of Texas Medical Branch at Galveston, Galveston, TX 77555, USA
| |
Collapse
|
36
|
Al-Aly Z, Davis H, McCorkell L, Soares L, Wulf-Hanson S, Iwasaki A, Topol EJ. Long COVID science, research and policy. Nat Med 2024; 30:2148-2164. [PMID: 39122965 DOI: 10.1038/s41591-024-03173-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2024] [Accepted: 07/02/2024] [Indexed: 08/12/2024]
Abstract
Long COVID represents the constellation of post-acute and long-term health effects caused by SARS-CoV-2 infection; it is a complex, multisystem disorder that can affect nearly every organ system and can be severely disabling. The cumulative global incidence of long COVID is around 400 million individuals, which is estimated to have an annual economic impact of approximately $1 trillion-equivalent to about 1% of the global economy. Several mechanistic pathways are implicated in long COVID, including viral persistence, immune dysregulation, mitochondrial dysfunction, complement dysregulation, endothelial inflammation and microbiome dysbiosis. Long COVID can have devastating impacts on individual lives and, due to its complexity and prevalence, it also has major ramifications for health systems and economies, even threatening progress toward achieving the Sustainable Development Goals. Addressing the challenge of long COVID requires an ambitious and coordinated-but so far absent-global research and policy response strategy. In this interdisciplinary review, we provide a synthesis of the state of scientific evidence on long COVID, assess the impacts of long COVID on human health, health systems, the economy and global health metrics, and provide a forward-looking research and policy roadmap.
Collapse
Affiliation(s)
- Ziyad Al-Aly
- VA St. Louis Health Care System, Saint Louis, MO, USA.
- Washington University in St. Louis, Saint Louis, MO, USA.
| | - Hannah Davis
- Patient-led Research Collaborative, Calabasas, CA, USA
| | | | | | | | - Akiko Iwasaki
- Yale University, New Haven, CT, USA
- Howard Hughes Medical Institute, Chevy Chase, MD, USA
| | - Eric J Topol
- Scripps Institute, San Diego, California, CA, USA
| |
Collapse
|
37
|
Li P, Liu M, He WM. Integrated Transcriptomic Analysis Reveals Reciprocal Interactions between SARS-CoV-2 Infection and Multi-Organ Dysfunction, Especially the Correlation of Renal Failure and COVID-19. Life (Basel) 2024; 14:960. [PMID: 39202702 PMCID: PMC11355357 DOI: 10.3390/life14080960] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2024] [Revised: 07/22/2024] [Accepted: 07/29/2024] [Indexed: 09/03/2024] Open
Abstract
The COVID-19 pandemic, which is caused by the SARS-CoV-2 virus, has resulted in extensive health challenges globally. While SARS-CoV-2 primarily targets the respiratory system, clinical studies have revealed that it could also affect multiple organs, including the heart, kidneys, liver, and brain, leading to severe complications. To unravel the intricate molecular interactions between the virus and host tissues, we performed an integrated transcriptomic analysis to investigate the effects of SARS-CoV-2 on various organs, with a particular focus on the relationship between renal failure and COVID-19. A comparative analysis showed that SARS-CoV-2 triggers a systemic immune response in the brain, heart, and kidney tissues, characterized by significant upregulation of cytokine and chemokine secretion, along with enhanced migration of lymphocytes and leukocytes. A weighted gene co-expression network analysis demonstrated that SARS-CoV-2 could also induce tissue-specific transcriptional profiling. More importantly, single-cell sequencing revealed that COVID-19 patients with renal failure exhibited lower metabolic activity in lung epithelial and B cells, with reduced ligand-receptor interactions, especially CD226 and ICAM, suggesting a compromised immune response. A trajectory analysis revealed that COVID-19 patients with renal failure exhibited less mature alveolar type 1 cells. Furthermore, these patients showed potential fibrosis in the hearts, liver, and lung increased extracellular matrix remodeling activities. However, there was no significant metabolic dysregulation in the liver of COVID-19 patients with renal failure. Candidate drugs prediction by Drug Signatures database and LINCS L1000 Antibody Perturbations Database underscored the importance of considering multi-organ effects in COVID-19 management and highlight potential therapeutic strategies, including targeting viral entry and replication, controlling tissue fibrosis, and alleviating inflammation.
Collapse
Affiliation(s)
- Pai Li
- Capricorn Partner, 3000 Leuven, Belgium
| | - Meng Liu
- Lee Kong Chian School of Medicine, Nanyang Technological University, Singapore 308232, Singapore
| | - Wei-Ming He
- School of Chemical Biology and Biotechnology, Peking University Shenzhen Graduate School, Shenzhen 518055, China
| |
Collapse
|
38
|
Davenport TE, Blitshteyn S, Clague-Baker N, Davies-Payne D, Treisman GJ, Tyson SF. Long COVID Is Not a Functional Neurologic Disorder. J Pers Med 2024; 14:799. [PMID: 39201991 PMCID: PMC11355889 DOI: 10.3390/jpm14080799] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2024] [Revised: 07/22/2024] [Accepted: 07/23/2024] [Indexed: 09/03/2024] Open
Abstract
Long COVID is a common sequela of SARS-CoV-2 infection. Data from numerous scientific studies indicate that long COVID involves a complex interaction between pathophysiological processes. Long COVID may involve the development of new diagnosable health conditions and exacerbation of pre-existing health conditions. However, despite this rapidly accumulating body of evidence regarding the pathobiology of long COVID, psychogenic and functional interpretations of the illness presentation continue to be endorsed by some healthcare professionals, creating confusion and inappropriate diagnostic and therapeutic pathways for people living with long COVID. The purpose of this perspective is to present a clinical and scientific rationale for why long COVID should not be considered as a functional neurologic disorder. It will begin by discussing the parallel historical development of pathobiological and psychosomatic/sociogenic diagnostic constructs arising from a common root in neurasthenia, which has resulted in the collective understandings of myalgic encephalomyelitis/chronic fatigue syndrome (ME/CFS) and functional neurologic disorder (FND), respectively. We will also review the case definition criteria for FND and the distinguishing clinical and neuroimaging findings in FND vs. long COVID. We conclude that considering long COVID as FND is inappropriate based on differentiating pathophysiologic mechanisms and distinguishing clinical findings.
Collapse
Affiliation(s)
- Todd E. Davenport
- Department of Physical Therapy, University of the Pacific, Stockton, CA 95211, USA
- Workwell Foundation, Santa Rosa, CA 95403, USA
| | - Svetlana Blitshteyn
- Department of Neurology, Jacobs School of Medicine and Biomedical Sciences, University of Buffalo, Buffalo, NY 14203, USA
- Dysautonomia Clinic, Williamsville, NY 14221, USA
| | - Nicola Clague-Baker
- School of Allied Health Professions and Nursing, Institute of Population Health, University of Liverpool, Liverpool L69 7ZX, UK
| | - David Davies-Payne
- Department of Radiology, Starship Children’s Hospital, Auckland 1023, New Zealand
| | - Glenn J. Treisman
- Department of Psychiatry, Johns Hopkins School of Medicine, Baltimore, MD 21287, USA;
| | - Sarah F. Tyson
- School of Health Sciences, University of Manchester, Manchester M14 4PX, UK;
| |
Collapse
|
39
|
Askarian M, Taherifard E, Jazzabi F, Shayan Z, Assadian O, Groot G, Hatam N, Askarian A, Faghihi SM, Taherifard E. Epidemiological and clinical characteristics of long COVID-19 among Iranians: A community-based study in southern Iran. BMC Public Health 2024; 24:2007. [PMID: 39061051 PMCID: PMC11282730 DOI: 10.1186/s12889-024-19543-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2024] [Accepted: 07/19/2024] [Indexed: 07/28/2024] Open
Abstract
BACKGROUND The study aimed to evaluate the prevalence and pattern of long COVID-19 (LC) symptoms among individuals who had contracted COVID-19, to calculate the incidence of LC, and to provide insights into risk factors associated with developing LC in this population. METHODS This population-based cross-sectional survey was conducted in Fars province in 2023. Adult participants with a history of COVID-19 were recruited using a cluster random sampling method, alongside a control group with similar characteristics through the same methodology. Data were collected through in-person interviews using two researcher-developed data collection forms focused on demographic and clinical information. RESULTS A total of 2010 participants, comprising 1561 (77.7%) and 449 (22.3%) individuals with and without a previous history of COVID-19 were included. Among those with COVID-19 history, the prevalence of experiencing any symptoms was 93.7% (95% CI of 92.3%-94.8%) during the disease acute phase and 36.4% (95% CI of 34.0%-38.8%) after recovery. The incidence of symptoms specifically related to COVID-19, calculated by comparing the symptom rates between participants with and without a history of COVID-19, was found to be 13%. Factors such as older age, previous hospitalization for COVID-19, presence of cardiovascular disease, and use of steroids/chemotherapy were associated with LC symptoms. CONCLUSIONS Our investigation sheds light on long-term aspects of COVID-19, demonstrating a significant prevalence of LC with diverse manifestations. It also underscores the importance of establishing standardized criteria and control groups in research on LC to address challenges related to heterogeneity and potential overestimation of symptoms.
Collapse
Affiliation(s)
- Mehrdad Askarian
- Department of Community Medicine, Shiraz Medical School, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Erfan Taherifard
- MD-MPH Department, Shiraz Medical School, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Fatemeh Jazzabi
- Student Research Committee, Shiraz Medical School, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Zahra Shayan
- Department of Biostatistics, Shiraz Medical School, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Ojan Assadian
- Institute for Skin Integrity and Prevention, Regional Hospital Wiener Neustadt, Wiener Neustadt, Lower Austria, Austria
- Institute for Skin Integrity and Prevention, University of Huddersfield, Huddersfield, West Yorkshire, UK
| | - Gary Groot
- Department of Community Health and Epidemiology, College of Medicine, University of Saskatchewan, Saskatoon, Canada
| | - Nahid Hatam
- Department of Community Medicine, Shiraz Medical School, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Ardalan Askarian
- College of Arts & Science, University of Saskatchewan, Saskatoon, Canada
| | | | - Ehsan Taherifard
- Student Research Committee, Shiraz Medical School, Shiraz University of Medical Sciences, Shiraz, Iran.
| |
Collapse
|
40
|
Schwabenland M, Hasavci D, Frase S, Wolf K, Deigendesch N, Buescher JM, Mertz KD, Ondruschka B, Altmeppen H, Matschke J, Glatzel M, Frank S, Thimme R, Beck J, Hosp JA, Blank T, Bengsch B, Prinz M. High throughput spatial immune mapping reveals an innate immune scar in post-COVID-19 brains. Acta Neuropathol 2024; 148:11. [PMID: 39060438 PMCID: PMC11281987 DOI: 10.1007/s00401-024-02770-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2024] [Revised: 07/15/2024] [Accepted: 07/15/2024] [Indexed: 07/28/2024]
Abstract
The underlying pathogenesis of neurological sequelae in post-COVID-19 patients remains unclear. Here, we used multidimensional spatial immune phenotyping and machine learning methods on brains from initial COVID-19 survivors to identify the biological correlate associated with previous SARS-CoV-2 challenge. Compared to healthy controls, individuals with post-COVID-19 revealed a high percentage of TMEM119+P2RY12+CD68+Iba1+HLA-DR+CD11c+SCAMP2+ microglia assembled in prototypical cellular nodules. In contrast to acute SARS-CoV-2 cases, the frequency of CD8+ parenchymal T cells was reduced, suggesting an immune shift toward innate immune activation that may contribute to neurological alterations in post-COVID-19 patients.
Collapse
Affiliation(s)
- Marius Schwabenland
- Institute of Neuropathology, Faculty of Medicine, University of Freiburg, Breisacher Str. 64, 79106, Freiburg, Germany
| | - Dilara Hasavci
- Institute of Neuropathology, Faculty of Medicine, University of Freiburg, Breisacher Str. 64, 79106, Freiburg, Germany
| | - Sibylle Frase
- Department of Neurology and Neuroscience, University Medical Center, Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - Katharina Wolf
- Department of Neurology and Neuroscience, University Medical Center, Faculty of Medicine, University of Freiburg, Freiburg, Germany
- Department of Neurosurgery, University Medical Center Freiburg, Freiburg, Germany
| | - Nikolaus Deigendesch
- Institute of Medical Genetics and Pathology, University Hospital Basel, University of Basel, Basel, Switzerland
| | - Joerg M Buescher
- Max Planck Institute for Immunobiology and Epigenetics, 79108, Freiburg, Germany
| | - Kirsten D Mertz
- Institute of Pathology, Cantonal Hospital Baselland, Liestal, Switzerland
- University of Basel, Basel, Switzerland
| | - Benjamin Ondruschka
- Institute of Legal Medicine, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Hermann Altmeppen
- Institute of Neuropathology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Jakob Matschke
- Institute of Neuropathology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Markus Glatzel
- Institute of Neuropathology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Stephan Frank
- Division of Neuropathology, Institute of Medical Genetics and Pathology, University Hospital Basel, University of Basel, Basel, Switzerland
| | - Robert Thimme
- Clinic for Internal Medicine II, Gastroenterology, Hepatology, Endocrinology, and Infectious Disease, Faculty of Medicine, University Medical Center Freiburg, Freiburg, Germany
| | - Juergen Beck
- Department of Neurosurgery, University Medical Center Freiburg, Freiburg, Germany
| | - Jonas A Hosp
- Department of Neurology and Neuroscience, University Medical Center, Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - Thomas Blank
- Institute of Neuropathology, Faculty of Medicine, University of Freiburg, Breisacher Str. 64, 79106, Freiburg, Germany
| | - Bertram Bengsch
- Clinic for Internal Medicine II, Gastroenterology, Hepatology, Endocrinology, and Infectious Disease, Faculty of Medicine, University Medical Center Freiburg, Freiburg, Germany
- Signalling Research Centres BIOSS and CIBSS, University of Freiburg, Freiburg, Germany
| | - Marco Prinz
- Institute of Neuropathology, Faculty of Medicine, University of Freiburg, Breisacher Str. 64, 79106, Freiburg, Germany.
- Signalling Research Centres BIOSS and CIBSS, University of Freiburg, Freiburg, Germany.
| |
Collapse
|
41
|
Zheng HY, Song TZ, Zheng YT. Immunobiology of COVID-19: Mechanistic and therapeutic insights from animal models. Zool Res 2024; 45:747-766. [PMID: 38894519 PMCID: PMC11298684 DOI: 10.24272/j.issn.2095-8137.2024.062] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2024] [Accepted: 04/22/2024] [Indexed: 06/21/2024] Open
Abstract
The distribution of the immune system throughout the body complicates in vitro assessments of coronavirus disease 2019 (COVID-19) immunobiology, often resulting in a lack of reproducibility when extrapolated to the whole organism. Consequently, developing animal models is imperative for a comprehensive understanding of the pathology and immunology of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infection. This review summarizes current progress related to COVID-19 animal models, including non-human primates (NHPs), mice, and hamsters, with a focus on their roles in exploring the mechanisms of immunopathology, immune protection, and long-term effects of SARS-CoV-2 infection, as well as their application in immunoprevention and immunotherapy of SARS-CoV-2 infection. Differences among these animal models and their specific applications are also highlighted, as no single model can fully encapsulate all aspects of COVID-19. To effectively address the challenges posed by COVID-19, it is essential to select appropriate animal models that can accurately replicate both fatal and non-fatal infections with varying courses and severities. Optimizing animal model libraries and associated research tools is key to resolving the global COVID-19 pandemic, serving as a robust resource for future emerging infectious diseases.
Collapse
Affiliation(s)
- Hong-Yi Zheng
- State Key Laboratory of Genetic Evolution & Animal Models, KIZ-CUHK Joint Laboratory of Bioresources and Molecular Research in Common Diseases, Center for Biosafety Mega-Science, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, Yunnan 650223, China
| | - Tian-Zhang Song
- State Key Laboratory of Genetic Evolution & Animal Models, KIZ-CUHK Joint Laboratory of Bioresources and Molecular Research in Common Diseases, Center for Biosafety Mega-Science, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, Yunnan 650223, China
| | - Yong-Tang Zheng
- State Key Laboratory of Genetic Evolution & Animal Models, KIZ-CUHK Joint Laboratory of Bioresources and Molecular Research in Common Diseases, Center for Biosafety Mega-Science, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, Yunnan 650223, China
- National Resource Center for Non-Human Primates, National Research Facility for Phenotypic & Genetic Analysis of Model Animals (Primate Facility), Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, Yunnan 650107, China. E-mail:
| |
Collapse
|
42
|
Wynberg E, Han AX, van Willigen HDG, Verveen A, van Pul L, Maurer I, van Leeuwen EM, van den Aardweg JG, de Jong MD, Nieuwkerk P, Prins M, Kootstra NA, de Bree GJ. Inflammatory profiles are associated with long COVID up to 6 months after COVID-19 onset: A prospective cohort study of individuals with mild to critical COVID-19. PLoS One 2024; 19:e0304990. [PMID: 39008486 PMCID: PMC11249251 DOI: 10.1371/journal.pone.0304990] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2023] [Accepted: 05/17/2024] [Indexed: 07/17/2024] Open
Abstract
BACKGROUND After initial COVID-19, immune dysregulation may persist and drive post-acute sequelae of COVID-19 (PASC). We described longitudinal trajectories of cytokines in adults up to 6 months following SARS-CoV-2 infection and explored early predictors of PASC. METHODS RECoVERED is a prospective cohort of individuals with laboratory-confirmed SARS-CoV-2 infection between May 2020 and June 2021 in Amsterdam, the Netherlands. Serum was collected at weeks 4, 12 and 24 of follow-up. Monthly symptom questionnaires were completed from month 2 after COVID-19 onset onwards; lung diffusion capacity (DLCO) was tested at 6 months. Cytokine concentrations were analysed by human magnetic Luminex screening assay. We used a linear mixed-effects model to study log-concentrations of cytokines over time, assessing their association with socio-demographic and clinical characteristics that were included in the model as fixed effects. RESULTS 186/349 (53%) participants had ≥2 serum samples and were included in current analyses. Of these, 101/186 (54%: 45/101[45%] female, median age 55 years [IQR = 45-64]) reported PASC at 12 and 24 weeks after COVID-19 onset. We included 37 reference samples (17/37[46%] female, median age 49 years [IQR = 40-56]). In a multivariate model, PASC was associated with raised CRP and abnormal diffusion capacity with raised IL10, IL17, IL6, IP10 and TNFα at 24 weeks. Early (0-4 week) IL-1β and BMI at COVID-19 onset were predictive of PASC at 24 weeks. CONCLUSIONS Our findings indicate that immune dysregulation plays an important role in PASC pathogenesis, especially among individuals with reduced pulmonary function. Early IL-1β shows promise as a predictor of PASC.
Collapse
Affiliation(s)
- Elke Wynberg
- Department of Medical Microbiology & Infection Prevention, Amsterdam UMC, University of Amsterdam, Amsterdam Institute for Infection and Immunity, Amsterdam, the Netherlands
- Department of Infectious Diseases, Public Health Service of Amsterdam, Amsterdam, the Netherlands
| | - Alvin X Han
- Department of Medical Microbiology & Infection Prevention, Amsterdam UMC, University of Amsterdam, Amsterdam Institute for Infection and Immunity, Amsterdam, the Netherlands
| | - Hugo D G van Willigen
- Department of Medical Microbiology & Infection Prevention, Amsterdam UMC, University of Amsterdam, Amsterdam Institute for Infection and Immunity, Amsterdam, the Netherlands
| | - Anouk Verveen
- Department of Medical Psychology, Amsterdam UMC, Amsterdam Public Health Research Institute, University of Amsterdam, Amsterdam, the Netherlands
| | - Lisa van Pul
- Department of Experimental Immunology, Amsterdam UMC, University of Amsterdam, Amsterdam Institute for Infection and Immunity, Amsterdam, the Netherlands
| | - Irma Maurer
- Department of Experimental Immunology, Amsterdam UMC, University of Amsterdam, Amsterdam Institute for Infection and Immunity, Amsterdam, the Netherlands
| | - Ester M van Leeuwen
- Department of Experimental Immunology, Amsterdam UMC, University of Amsterdam, Amsterdam Institute for Infection and Immunity, Amsterdam, the Netherlands
| | - Joost G van den Aardweg
- Department of Pulmonology, Amsterdam UMC, University of Amsterdam, Amsterdam, the Netherlands
| | - Menno D de Jong
- Department of Medical Microbiology & Infection Prevention, Amsterdam UMC, University of Amsterdam, Amsterdam Institute for Infection and Immunity, Amsterdam, the Netherlands
| | - Pythia Nieuwkerk
- Department of Medical Psychology, Amsterdam UMC, Amsterdam Public Health Research Institute, University of Amsterdam, Amsterdam, the Netherlands
| | - Maria Prins
- Department of Infectious Diseases, Public Health Service of Amsterdam, Amsterdam, the Netherlands
- Department of Infectious Diseases, Internal Medicine, Amsterdam UMC, University of Amsterdam, Amsterdam Institute for Infection and Immunity, Amsterdam, the Netherlands
| | - Neeltje A Kootstra
- Department of Medical Psychology, Amsterdam UMC, Amsterdam Public Health Research Institute, University of Amsterdam, Amsterdam, the Netherlands
| | - Godelieve J de Bree
- Department of Infectious Diseases, Internal Medicine, Amsterdam UMC, University of Amsterdam, Amsterdam Institute for Infection and Immunity, Amsterdam, the Netherlands
| |
Collapse
|
43
|
Peluso MJ, Ryder D, Flavell R, Wang Y, Levi J, LaFranchi BH, Deveau TM, Buck AM, Munter SE, Asare KA, Aslam M, Koch W, Szabo G, Hoh R, Deswal M, Rodriguez A, Buitrago M, Tai V, Shrestha U, Lu S, Goldberg SA, Dalhuisen T, Vasquez JJ, Durstenfeld MS, Hsue PY, Kelly JD, Kumar N, Martin JN, Gambhir A, Somsouk M, Seo Y, Deeks SG, Laszik ZG, VanBrocklin HF, Henrich TJ. Tissue-based T cell activation and viral RNA persist for up to 2 years after SARS-CoV-2 infection. Sci Transl Med 2024; 16:eadk3295. [PMID: 38959327 PMCID: PMC11337933 DOI: 10.1126/scitranslmed.adk3295] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2023] [Accepted: 04/15/2024] [Indexed: 07/05/2024]
Abstract
The mechanisms of postacute medical conditions and unexplained symptoms after SARS-CoV-2 infection [Long Covid (LC)] are incompletely understood. There is growing evidence that viral persistence, immune dysregulation, and T cell dysfunction may play major roles. We performed whole-body positron emission tomography imaging in a well-characterized cohort of 24 participants at time points ranging from 27 to 910 days after acute SARS-CoV-2 infection using the radiopharmaceutical agent [18F]F-AraG, a selective tracer that allows for anatomical quantitation of activated T lymphocytes. Tracer uptake in the postacute COVID-19 group, which included those with and without continuing symptoms, was higher compared with prepandemic controls in many regions, including the brain stem, spinal cord, bone marrow, nasopharyngeal and hilar lymphoid tissue, cardiopulmonary tissues, and gut wall. T cell activation in the spinal cord and gut wall was associated with the presence of LC symptoms. In addition, tracer uptake in lung tissue was higher in those with persistent pulmonary symptoms specifically. Increased T cell activation in these tissues was also observed in many individuals without LC. Given the high [18F]F-AraG uptake detected in the gut, we obtained colorectal tissue for in situ hybridization of SARS-CoV-2 RNA and immunohistochemical studies in a subset of five participants with LC symptoms. We identified intracellular SARS-CoV-2 single-stranded spike protein-encoding RNA in rectosigmoid lamina propria tissue in all five participants and double-stranded spike protein-encoding RNA in three participants up to 676 days after initial COVID-19, suggesting that tissue viral persistence could be associated with long-term immunologic perturbations.
Collapse
Affiliation(s)
- Michael J. Peluso
- Division of HIV, Infectious Diseases, and Global Medicine, University of California, San Francisco, San Francisco, CA, USA, 94110
| | - Dylan Ryder
- Division of HIV, Infectious Diseases, and Global Medicine, University of California, San Francisco, San Francisco, CA, USA, 94110
- Division of Experimental Medicine, University of California, San Francisco, San Francisco, CA, USA, 94110
| | - Robert Flavell
- Department of Radiology, University of California, San Francisco, San Francisco, CA, USA, 94158
| | - Yingbing Wang
- Department of Radiology, University of California, San Francisco, San Francisco, CA, USA, 94158
| | - Jelena Levi
- CellSight Technologies, San Francisco, CA, USA, 94107
| | - Brian H. LaFranchi
- Division of Experimental Medicine, University of California, San Francisco, San Francisco, CA, USA, 94110
| | - Tyler-Marie Deveau
- Division of Experimental Medicine, University of California, San Francisco, San Francisco, CA, USA, 94110
| | - Amanda M. Buck
- Division of Experimental Medicine, University of California, San Francisco, San Francisco, CA, USA, 94110
| | - Sadie E. Munter
- Division of HIV, Infectious Diseases, and Global Medicine, University of California, San Francisco, San Francisco, CA, USA, 94110
- Division of Experimental Medicine, University of California, San Francisco, San Francisco, CA, USA, 94110
| | - Kofi A. Asare
- Division of HIV, Infectious Diseases, and Global Medicine, University of California, San Francisco, San Francisco, CA, USA, 94110
- Division of Experimental Medicine, University of California, San Francisco, San Francisco, CA, USA, 94110
| | - Maya Aslam
- Department of Radiology, University of California, San Francisco, San Francisco, CA, USA, 94158
| | - Walter Koch
- Department of Radiology, University of California, San Francisco, San Francisco, CA, USA, 94158
| | - Gyula Szabo
- Department of Pathology, University of California, San Francisco, San Francisco, CA, USA, 94143
| | - Rebecca Hoh
- Division of HIV, Infectious Diseases, and Global Medicine, University of California, San Francisco, San Francisco, CA, USA, 94110
| | - Monika Deswal
- Division of HIV, Infectious Diseases, and Global Medicine, University of California, San Francisco, San Francisco, CA, USA, 94110
| | - Antonio Rodriguez
- Division of HIV, Infectious Diseases, and Global Medicine, University of California, San Francisco, San Francisco, CA, USA, 94110
| | - Melissa Buitrago
- Division of HIV, Infectious Diseases, and Global Medicine, University of California, San Francisco, San Francisco, CA, USA, 94110
| | - Viva Tai
- Division of HIV, Infectious Diseases, and Global Medicine, University of California, San Francisco, San Francisco, CA, USA, 94110
| | - Uttam Shrestha
- Department of Radiology, University of California, San Francisco, San Francisco, CA, USA, 94158
| | - Scott Lu
- Department of Epidemiology and Biostatistics, University of California, San Francisco, San Francisco, CA, USA, 94158
| | - Sarah A. Goldberg
- Department of Epidemiology and Biostatistics, University of California, San Francisco, San Francisco, CA, USA, 94158
| | - Thomas Dalhuisen
- Department of Epidemiology and Biostatistics, University of California, San Francisco, San Francisco, CA, USA, 94158
| | - Joshua J. Vasquez
- Division of Experimental Medicine, University of California, San Francisco, San Francisco, CA, USA, 94110
| | - Matthew S. Durstenfeld
- Division of Cardiology, University of California, San Francisco, San Francisco, CA, USA, 94110
| | - Priscilla Y. Hsue
- Division of Cardiology, University of California, San Francisco, San Francisco, CA, USA, 94110
| | - J. Daniel Kelly
- Department of Epidemiology and Biostatistics, University of California, San Francisco, San Francisco, CA, USA, 94158
| | - Nitasha Kumar
- Division of Experimental Medicine, University of California, San Francisco, San Francisco, CA, USA, 94110
| | - Jeffrey N. Martin
- Department of Epidemiology and Biostatistics, University of California, San Francisco, San Francisco, CA, USA, 94158
| | - Aruna Gambhir
- CellSight Technologies, San Francisco, CA, USA, 94107
| | - Ma Somsouk
- Division of Gastroenterology, University of California, San Francisco, San Francisco, CA, USA, 94110
| | - Youngho Seo
- Department of Radiology, University of California, San Francisco, San Francisco, CA, USA, 94158
| | - Steven G. Deeks
- Division of HIV, Infectious Diseases, and Global Medicine, University of California, San Francisco, San Francisco, CA, USA, 94110
| | - Zoltan G. Laszik
- Department of Pathology, University of California, San Francisco, San Francisco, CA, USA, 94143
| | - Henry F. VanBrocklin
- Department of Radiology, University of California, San Francisco, San Francisco, CA, USA, 94158
| | - Timothy J. Henrich
- Division of Experimental Medicine, University of California, San Francisco, San Francisco, CA, USA, 94110
| |
Collapse
|
44
|
Saito S, Shahbaz S, Osman M, Redmond D, Bozorgmehr N, Rosychuk RJ, Lam G, Sligl W, Cohen Tervaert JW, Elahi S. Diverse immunological dysregulation, chronic inflammation, and impaired erythropoiesis in long COVID patients with chronic fatigue syndrome. J Autoimmun 2024; 147:103267. [PMID: 38797051 DOI: 10.1016/j.jaut.2024.103267] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2023] [Revised: 05/16/2024] [Accepted: 05/22/2024] [Indexed: 05/29/2024]
Abstract
A substantial number of patients recovering from acute SARS-CoV-2 infection present serious lingering symptoms, often referred to as long COVID (LC). However, a subset of these patients exhibits the most debilitating symptoms characterized by ongoing myalgic encephalomyelitis or chronic fatigue syndrome (ME/CFS). We specifically identified and studied ME/CFS patients from two independent LC cohorts, at least 12 months post the onset of acute disease, and compared them to the recovered group (R). ME/CFS patients had relatively increased neutrophils and monocytes but reduced lymphocytes. Selective T cell exhaustion with reduced naïve but increased terminal effector T cells was observed in these patients. LC was associated with elevated levels of plasma pro-inflammatory cytokines, chemokines, Galectin-9 (Gal-9), and artemin (ARTN). A defined threshold of Gal-9 and ARTN concentrations had a strong association with LC. The expansion of immunosuppressive CD71+ erythroid cells (CECs) was noted. These cells may modulate the immune response and contribute to increased ARTN concentration, which correlated with pain and cognitive impairment. Serology revealed an elevation in a variety of autoantibodies in LC. Intriguingly, we found that the frequency of 2B4+CD160+ and TIM3+CD160+ CD8+ T cells completely separated LC patients from the R group. Our further analyses using a multiple regression model revealed that the elevated frequency/levels of CD4 terminal effector, ARTN, CEC, Gal-9, CD8 terminal effector, and MCP1 but lower frequency/levels of TGF-β and MAIT cells can distinguish LC from the R group. Our findings provide a new paradigm in the pathogenesis of ME/CFS to identify strategies for its prevention and treatment.
Collapse
Affiliation(s)
- Suguru Saito
- School of Dentistry, Division of Foundational Sciences, Faculty of Medicine & Dentistry, University of Alberta, Edmonton, T6G 2E1, AB, Canada
| | - Shima Shahbaz
- School of Dentistry, Division of Foundational Sciences, Faculty of Medicine & Dentistry, University of Alberta, Edmonton, T6G 2E1, AB, Canada
| | - Mohammed Osman
- Department of Medicine, Division of Rheumatology, Faculty of Medicine & Dentistry, University of Alberta, Edmonton, T6G 2E1, AB, Canada
| | - Desiree Redmond
- Department of Medicine, Division of Rheumatology, Faculty of Medicine & Dentistry, University of Alberta, Edmonton, T6G 2E1, AB, Canada
| | - Najmeh Bozorgmehr
- School of Dentistry, Division of Foundational Sciences, Faculty of Medicine & Dentistry, University of Alberta, Edmonton, T6G 2E1, AB, Canada
| | - Rhonda J Rosychuk
- Department of Pediatrics, Division of Infectious Disease, Faculty of Medicine & Dentistry, University of Alberta, Edmonton, T6G 2E1, AB, Canada
| | - Grace Lam
- Department of Medicine, Division of Pulmonary Medicine, Faculty of Medicine & Dentistry, University of Alberta, Edmonton, T6G 2E1, AB, Canada
| | - Wendy Sligl
- Department of Critical Care Medicine, Faculty of Medicine & Dentistry, University of Alberta, Edmonton, T6G 2E1, AB, Canada; Department of Medicine, Division of Infectious Diseases, Faculty of Medicine & Dentistry, University of Alberta, Edmonton, T6G 2E1, AB, Canada
| | - Jan Willem Cohen Tervaert
- Department of Medicine, Division of Rheumatology, Faculty of Medicine & Dentistry, University of Alberta, Edmonton, T6G 2E1, AB, Canada
| | - Shokrollah Elahi
- School of Dentistry, Division of Foundational Sciences, Faculty of Medicine & Dentistry, University of Alberta, Edmonton, T6G 2E1, AB, Canada; Department of Oncology, University of Alberta, Edmonton, T6G 2E1, AB, Canada; Faculty of Medicine & Dentistry, University of Alberta, Edmonton, T6G 2E1, AB, Canada; Li Ka Shing Institute of Virology, Faculty of Medicine & Dentistry, University of Alberta, Edmonton, T6G 2E1, AB, Canada.
| |
Collapse
|
45
|
Martínez-Fleta P, Marcos MC, Jimenez-Carretero D, Galván-Román JM, Girón-Moreno RM, Calero-García AA, Arcos-García A, Martín-Gayo E, de la Fuente H, Esparcia-Pinedo L, Aspa J, Ancochea J, Alfranca A, Sánchez-Madrid F. Imbalance of SARS-CoV-2-specific CCR6+ and CXCR3+ CD4+ T cells and IFN-γ + CD8+ T cells in patients with Long-COVID. Clin Immunol 2024; 264:110267. [PMID: 38825071 DOI: 10.1016/j.clim.2024.110267] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2024] [Revised: 05/29/2024] [Accepted: 05/30/2024] [Indexed: 06/04/2024]
Abstract
Long-COVID (LC) is characterised by persistent symptoms for at least 3 months after acute infection. A dysregulation of the immune system and a persistent hyperinflammatory state may cause LC. LC patients present differences in activation and exhaustion states of innate and adaptive compartments. Different T CD4+ cell subsets can be identified by differential expression of chemokine receptors (CCR). However, changes in T cells with expression of CCRs such as CCR6 and CXCR3 and their relationship with CD8+ T cells remains unexplored in LC. Here, we performed unsupervised analysis and found CCR6+ CD4+ subpopulations enriched in COVID-19 convalescent individuals upon activation with SARS-CoV-2 peptides. SARS-CoV-2 specific CCR6+ CD4+ are decreased in LC patients, whereas CXCR3+ CCR6- and CCR4+ CCR6- CD4+ T cells are increased. LC patients showed lower IFN-γ-secreting CD8+ T cells after stimulation with SARS-CoV-2 Spike protein. This work underscores the role of CCR6 in the pathophysiology of LC.
Collapse
Affiliation(s)
- Pedro Martínez-Fleta
- Department of Immunology, Hospital Universitario de La Princesa IIS-Princesa (Instituto de Investigación Sanitaria del Hospital Universitario de La Princesa), Madrid, Spain
| | - María Celeste Marcos
- Department of Pneumology, Hospital Universitario de La Princesa IIS-Princesa (Instituto de Investigación Sanitaria del Hospital Universitario de La Princesa), Madrid, Spain
| | | | - José María Galván-Román
- Department of Internal Medicine, Hospital Universitario de La Princesa IIS-Princesa (Instituto de Investigación Sanitaria del Hospital Universitario de La Princesa), Madrid, Spain
| | - Rosa María Girón-Moreno
- Department of Pneumology, Hospital Universitario de La Princesa IIS-Princesa (Instituto de Investigación Sanitaria del Hospital Universitario de La Princesa), Madrid, Spain
| | - Ana Adela Calero-García
- Department of Immunology, Hospital Universitario de La Princesa IIS-Princesa (Instituto de Investigación Sanitaria del Hospital Universitario de La Princesa), Madrid, Spain
| | - Ana Arcos-García
- Department of Pneumology, Hospital Universitario de La Princesa IIS-Princesa (Instituto de Investigación Sanitaria del Hospital Universitario de La Princesa), Madrid, Spain
| | - Enrique Martín-Gayo
- Department of Immunology, Hospital Universitario de La Princesa IIS-Princesa (Instituto de Investigación Sanitaria del Hospital Universitario de La Princesa), Madrid, Spain; Department of Medicine, Universidad Autónoma de Madrid (UAM), Madrid, Spain; CIBER Infectious Diseases (CIBERINFECC) from Instituto de Salud Carlos III, Madrid, Spain
| | - Hortensia de la Fuente
- Department of Immunology, Hospital Universitario de La Princesa IIS-Princesa (Instituto de Investigación Sanitaria del Hospital Universitario de La Princesa), Madrid, Spain; CIBER Cardiovascular CIBERCV, Madrid, Spain
| | - Laura Esparcia-Pinedo
- Department of Immunology, Hospital Universitario de La Princesa IIS-Princesa (Instituto de Investigación Sanitaria del Hospital Universitario de La Princesa), Madrid, Spain
| | - Javier Aspa
- Department of Pneumology, Hospital Universitario de La Princesa IIS-Princesa (Instituto de Investigación Sanitaria del Hospital Universitario de La Princesa), Madrid, Spain
| | - Julio Ancochea
- Department of Pneumology, Hospital Universitario de La Princesa IIS-Princesa (Instituto de Investigación Sanitaria del Hospital Universitario de La Princesa), Madrid, Spain
| | - Arantzazu Alfranca
- Department of Immunology, Hospital Universitario de La Princesa IIS-Princesa (Instituto de Investigación Sanitaria del Hospital Universitario de La Princesa), Madrid, Spain; CIBER Cardiovascular CIBERCV, Madrid, Spain; Department of Medicine, Universidad Autónoma de Madrid (UAM), Madrid, Spain
| | - Francisco Sánchez-Madrid
- Department of Immunology, Hospital Universitario de La Princesa IIS-Princesa (Instituto de Investigación Sanitaria del Hospital Universitario de La Princesa), Madrid, Spain; CIBER Cardiovascular CIBERCV, Madrid, Spain; Department of Medicine, Universidad Autónoma de Madrid (UAM), Madrid, Spain.
| |
Collapse
|
46
|
Ameratunga R, Jordan A, Lehnert K, Leung E, Mears ER, Snell R, Steele R, Woon ST. SARS-CoV-2 evolution has increased resistance to monoclonal antibodies and first-generation COVID-19 vaccines: Is there a future therapeutic role for soluble ACE2 receptors for COVID-19? Antiviral Res 2024; 227:105894. [PMID: 38677595 DOI: 10.1016/j.antiviral.2024.105894] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2024] [Revised: 04/17/2024] [Accepted: 04/22/2024] [Indexed: 04/29/2024]
Abstract
COVID-19 has caused calamitous health, economic and societal consequences. Although several COVID-19 vaccines have received full authorization for use, global deployment has faced political, financial and logistical challenges. The efficacy of first-generation COVID-19 vaccines is waning and breakthrough infections are allowing ongoing transmission and evolution of SARS-CoV-2. Furthermore, COVID-19 vaccine efficacy relies on a functional immune system. Despite receiving three primary doses and three or more heterologous boosters, some immunocompromised patients may not be adequately protected by COVID-19 vaccines and remain vulnerable to severe disease. The evolution of new SARS-CoV-2 variants has also resulted in the rapid obsolescence of monoclonal antibodies. Convalescent plasma from COVID-19 survivors has produced inconsistent results. New drugs such as Paxlovid (nirmatrelvir/ritonavir) are beyond the reach of low- and middle-income countries. With widespread use of Paxlovid, it is likely nirmatrelvir-resistant clades of SARS-CoV-2 will emerge in the future. There is thus an urgent need for new effective anti-SARS-CoV-2 treatments. The in vitro efficacy of soluble ACE2 against multiple SARS-CoV-2 variants including omicron (B.1.1.529), was recently described using a competitive ELISA assay as a surrogate marker for virus neutralization. This indicates soluble wild-type ACE2 receptors are likely to be resistant to viral evolution. Nasal and inhaled treatment with soluble ACE2 receptors has abrogated severe disease in animal models of COVID-19. There is an urgent need for clinical trials of this new class of antiviral therapeutics, which could complement vaccines and Paxlovid.
Collapse
Affiliation(s)
- Rohan Ameratunga
- Department of Clinical Immunology, Auckland Hospital, Park Rd, Grafton, 1010, Auckland, New Zealand; Department of Virology and Immunology, Auckland Hospital, Park Rd, Grafton, 1010, Auckland, New Zealand; Department of Molecular Medicine and Pathology, School of Medicine, Faculty of Medical and Health Sciences, University of Auckland, Auckland, New Zealand.
| | - Anthony Jordan
- Department of Clinical Immunology, Auckland Hospital, Park Rd, Grafton, 1010, Auckland, New Zealand
| | - Klaus Lehnert
- Applied Translational Genetics Group, School of Biological Sciences, University of Auckland, Auckland, New Zealand
| | - Euphemia Leung
- Auckland Cancer Society Research Centre, School of Medicine, Faculty of Medical and Health Sciences, University of Auckland, Auckland, New Zealand
| | - Emily R Mears
- Applied Translational Genetics Group, School of Biological Sciences, University of Auckland, Auckland, New Zealand
| | - Russell Snell
- Applied Translational Genetics Group, School of Biological Sciences, University of Auckland, Auckland, New Zealand
| | - Richard Steele
- Department of Virology and Immunology, Auckland Hospital, Park Rd, Grafton, 1010, Auckland, New Zealand
| | - See-Tarn Woon
- Department of Virology and Immunology, Auckland Hospital, Park Rd, Grafton, 1010, Auckland, New Zealand; Department of Molecular Medicine and Pathology, School of Medicine, Faculty of Medical and Health Sciences, University of Auckland, Auckland, New Zealand
| |
Collapse
|
47
|
Quan SF, Weaver MD, Czeisler MÉ, Barger LK, Booker LA, Howard ME, Jackson ML, Lane RI, McDonald CF, Ridgers A, Robbins R, Varma P, Wiley JF, Rajaratnam SM, Czeisler CA. Sleep and long COVID: Preexisting sleep issues and the risk of PASC in a large general population using 3 different model definitions. MEDRXIV : THE PREPRINT SERVER FOR HEALTH SCIENCES 2024:2024.06.20.24309263. [PMID: 38947041 PMCID: PMC11213061 DOI: 10.1101/2024.06.20.24309263] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/02/2024]
Abstract
Study Objectives Insomnia, poor sleep quality and extremes of sleep duration are associated with COVID-19 infection. This study assessed whether these factors are related to Post-Acute Sequelae of SARS-CoV-2 infection (PASC). Methods Cross-sectional survey of a general population of 24,803 U.S. adults to determine the association of insomnia, poor sleep quality and sleep duration with PASC. Results Prevalence rates of PASC among previously COVID-19 infected participants for three definitions of PASC were COPE (21.9%), NICE (38.9%) and RECOVER PASC Score (15.3%). PASC was associated with insomnia in all 3 models in fully adjusted models with adjusted odds ratios (aORs) and 95% confidence intervals (CI) ranging from 1.30 (95% CI: 1.11-1.52, p≤0.05, PASC Score) to 1.52 (95% CI: 1.34-1.71, p≤0.001, (NICE). Poor sleep quality was related to PASC in all models with aORs ranging from 1.77 (95% CI: 1.60-1.97, p≤0.001, NICE) to 2.00 (95% CI: 1.77-2.26, p≤0.001, COPE). Sleep <6 hours was associated with PASC with aORs between 1.59 (95% CI: 1.40-1.80, p≤0.001, PASC Score) to 1.70 (95% CI: 1.53-1.89, p≤0.001, COPE). Sleep ≥ 9 hours was not associated with PASC in any model. Although vaccination with COVID-19 booster decreased the likelihood of developing PASC, it did not attenuate associations between insomnia, poor sleep quality and short sleep duration with PASC in any of the models. Conclusions Insomnia, poor sleep quality and short sleep duration are potential risk factors for PASC. Interventions to improve sleep may decrease the development of PASC.
Collapse
Affiliation(s)
- Stuart F. Quan
- Division of Sleep and Circadian Disorders, Brigham and Women’s Hospital, Boston, MA
- Division of Sleep Medicine, Harvard Medical School, Boston, MA
| | - Matthew D. Weaver
- Division of Sleep and Circadian Disorders, Brigham and Women’s Hospital, Boston, MA
- Division of Sleep Medicine, Harvard Medical School, Boston, MA
| | - Mark É. Czeisler
- Francis Weld Peabody Society, Harvard Medical School, Boston, MA
- School of Psychological Sciences, Turner Institute for Brain and Mental Health, Monash University, Melbourne, Australia
- Institute for Breathing and Sleep, Austin Health, Heidelberg, Victoria, Australia
| | - Laura K. Barger
- Division of Sleep and Circadian Disorders, Brigham and Women’s Hospital, Boston, MA
- Division of Sleep Medicine, Harvard Medical School, Boston, MA
| | - Lauren A. Booker
- Institute for Breathing and Sleep, Austin Health, Heidelberg, Victoria, Australia
- University Department of Rural Health, La Trobe Rural Health School, La Trobe University, Bendigo, Victoria, Australia
| | - Mark E. Howard
- Institute for Breathing and Sleep, Austin Health, Heidelberg, Victoria, Australia
- Turner Institute for Brain and Mental Health, Monash University, Melbourne, Australia
- Department of Medicine, The University of Melbourne, Melbourne, Victoria, Australia
| | - Melinda L. Jackson
- School of Psychological Sciences, Turner Institute for Brain and Mental Health, Monash University, Melbourne, Australia
- Institute for Breathing and Sleep, Austin Health, Heidelberg, Victoria, Australia
| | - Rashon I. Lane
- Division of Sleep and Circadian Disorders, Brigham and Women’s Hospital, Boston, MA
| | - Christine F. McDonald
- Institute for Breathing and Sleep, Austin Health, Heidelberg, Victoria, Australia
- Department of Medicine, The University of Melbourne, Melbourne, Victoria, Australia
- Department of Respiratory and Sleep Medicine, Austin Health, Heidelberg, Victoria, Australia
- Faculty of Medicine, Monash University, Melbourne Australia
| | - Anna Ridgers
- Institute for Breathing and Sleep, Austin Health, Heidelberg, Victoria, Australia
- Department of Medicine, The University of Melbourne, Melbourne, Victoria, Australia
- Department of Respiratory and Sleep Medicine, Austin Health, Heidelberg, Victoria, Australia
| | - Rebecca Robbins
- Division of Sleep and Circadian Disorders, Brigham and Women’s Hospital, Boston, MA
- Division of Sleep Medicine, Harvard Medical School, Boston, MA
| | - Prerna Varma
- School of Psychological Sciences, Turner Institute for Brain and Mental Health, Monash University, Melbourne, Australia
| | - Joshua F. Wiley
- School of Psychological Sciences, Turner Institute for Brain and Mental Health, Monash University, Melbourne, Australia
| | - Shantha M.W. Rajaratnam
- Division of Sleep and Circadian Disorders, Brigham and Women’s Hospital, Boston, MA
- School of Psychological Sciences, Turner Institute for Brain and Mental Health, Monash University, Melbourne, Australia
- Institute for Breathing and Sleep, Austin Health, Heidelberg, Victoria, Australia
- Division of Sleep Medicine, Harvard Medical School, Boston, MA
| | - Charles A. Czeisler
- Division of Sleep and Circadian Disorders, Brigham and Women’s Hospital, Boston, MA
- Division of Sleep Medicine, Harvard Medical School, Boston, MA
| |
Collapse
|
48
|
Joung JY, Lee JS, Choi Y, Kim YJ, Oh HM, Seo HS, Son CG. Evaluating myelophil, a 30% ethanol extract of Astragalus membranaceus and Salvia miltiorrhiza, for alleviating fatigue in long COVID: a real-world observational study. Front Pharmacol 2024; 15:1394810. [PMID: 38966550 PMCID: PMC11222562 DOI: 10.3389/fphar.2024.1394810] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2024] [Accepted: 06/05/2024] [Indexed: 07/06/2024] Open
Abstract
Background Persistent post-infectious symptoms, predominantly fatigue, characterize Long COVID. This study investigated the efficacy of Myelophil (MYP), which contains metabolites extracted from Astragalus membranaceus and Salvia miltiorrhiza using 30% ethanol, in alleviating fatigue among subjects with Long COVID. Methods In this prospective observational study, we enrolled subjects with significant fatigue related to Long COVID, using criteria of scores of 60 or higher on the modified Korean Chalder Fatigue scale (mKCFQ11), or five or higher on the Visual Analog Scale (VAS) for brain fog. Utilizing a single-arm design, participants were orally administered MYP (2,000 mg daily) for 4 weeks. Changes in fatigue severity were assessed using mKCFQ11, Multidimensional Fatigue Inventory (MFI-20), and VAS for fatigue and brain fog. In addition, changes in quality of life using the short form 12 (SF-12) were also assessed along with plasma cortisol levels. Results A total of 50 participants (18 males, 32 females) were enrolled; 49 were included in the intention-to-treat analysis with scores of 66.9 ± 11.7 on mKCFQ11 and 6.3 ± 1.5 on the brain fog VAS. After 4 weeks of MYP administration, there were statistically significant improvements in fatigue levels: mKCFQ11 was measured at 34.8 ± 17.1 and brain fog VAS at 3.0 ± 1.9. Additionally, MFI-20 decreased from 64.8 ± 9.8 to 49.3 ± 10.8, fatigue VAS dropped from 7.4 ± 1.0 to 3.4 ± 1.7, SF-12 scores rose from 53.3 ± 14.9 to 78.6 ± 14.3, and plasma cortisol levels also elevated from 138.8 ± 50.1 to 176.9 ± 62.0 /mL. No safety concerns emerged during the trial. Conclusion Current findings underline MYP's potential in managing Long COVID-induced fatigue. However, comprehensive studies remain imperative. Clinical Trial Registration https://cris.nih.go.kr, identifier KCT0008948.
Collapse
Affiliation(s)
- Jin-Yong Joung
- Department of Internal Medicine, Daejeon Good-morning Korean Medicine Hospital, Daejeon, Republic of Korea
- Institute of Bioscience and Integrative Medicine, Daejeon University, Daejeon, Republic of Korea
| | - Jin-Seok Lee
- Institute of Bioscience and Integrative Medicine, Daejeon University, Daejeon, Republic of Korea
| | - Yujin Choi
- Institute of Bioscience and Integrative Medicine, Daejeon University, Daejeon, Republic of Korea
| | - Yoon Jung Kim
- Institute of Bioscience and Integrative Medicine, Daejeon University, Daejeon, Republic of Korea
| | - Hyeon-Muk Oh
- Institute of Bioscience and Integrative Medicine, Daejeon University, Daejeon, Republic of Korea
- Department of Internal Medicine, Daejeon Korean Medicine Hospital of Daejeon University, Daejeon, Republic of Korea
| | - Hyun-Sik Seo
- Institute of Bioscience and Integrative Medicine, Daejeon University, Daejeon, Republic of Korea
- Department of Internal Medicine, Daejeon Korean Medicine Hospital of Daejeon University, Daejeon, Republic of Korea
| | - Chang-Gue Son
- Institute of Bioscience and Integrative Medicine, Daejeon University, Daejeon, Republic of Korea
- Department of Internal Medicine, Daejeon Korean Medicine Hospital of Daejeon University, Daejeon, Republic of Korea
| |
Collapse
|
49
|
Hamlin RE, Pienkos SM, Chan L, Stabile MA, Pinedo K, Rao M, Grant P, Bonilla H, Holubar M, Singh U, Jacobson KB, Jagannathan P, Maldonado Y, Holmes SP, Subramanian A, Blish CA. Sex differences and immune correlates of Long COVID development, persistence, and resolution. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.06.18.599612. [PMID: 38948732 PMCID: PMC11212991 DOI: 10.1101/2024.06.18.599612] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/02/2024]
Abstract
Sex differences have been observed in acute COVID-19 and Long COVID (LC) outcomes, with greater disease severity and mortality during acute infection in males and a greater proportion of females developing LC. We hypothesized that sex-specific immune dysregulation contributes to the pathogenesis of LC. To investigate the immunologic underpinnings of LC development and persistence, we used single-cell transcriptomics, single-cell proteomics, and plasma proteomics on blood samples obtained during acute SARS-CoV-2 infection and at 3 and 12 months post-infection in a cohort of 45 patients who either developed LC or recovered. Several sex-specific immune pathways were associated with LC. Specifically, males who would develop LC at 3 months had widespread increases in TGF-β signaling during acute infection in proliferating NK cells. Females who would develop LC demonstrated increased expression of XIST, an RNA gene implicated in autoimmunity, and increased IL1 signaling in monocytes at 12 months post infection. Several immune features of LC were also conserved across sexes. Both males and females with LC had reduced co-stimulatory signaling from monocytes and broad upregulation of NF-κB transcription factors. In both sexes, those with persistent LC demonstrated increased LAG3, a marker of T cell exhaustion, reduced ETS1 transcription factor expression across lymphocyte subsets, and elevated intracellular IL-4 levels in T cell subsets, suggesting that ETS1 alterations may drive an aberrantly elevated Th2-like response in LC. Altogether, this study describes multiple innate and adaptive immune correlates of LC, some of which differ by sex, and offers insights toward the pursuit of tailored therapeutics.
Collapse
Affiliation(s)
- Rebecca E. Hamlin
- Department of Medicine, Stanford University School of Medicine; Stanford, CA, USA
| | - Shaun M. Pienkos
- Department of Medicine, Stanford University School of Medicine; Stanford, CA, USA
| | - Leslie Chan
- Department of Medicine, Stanford University School of Medicine; Stanford, CA, USA
- Stanford Immunology Program, Stanford University School of Medicine; Stanford, CA, USA
| | - Mikayla A. Stabile
- Department of Medicine, Stanford University School of Medicine; Stanford, CA, USA
| | - Kassandra Pinedo
- Department of Medicine, Stanford University School of Medicine; Stanford, CA, USA
| | - Mallika Rao
- Stanford Center for Clinical Research, Stanford University; Stanford, CA, USA
| | - Philip Grant
- Department of Medicine, Stanford University School of Medicine; Stanford, CA, USA
| | - Hector Bonilla
- Department of Medicine, Stanford University School of Medicine; Stanford, CA, USA
| | - Marisa Holubar
- Department of Medicine, Stanford University School of Medicine; Stanford, CA, USA
| | - Upinder Singh
- Department of Medicine, Stanford University School of Medicine; Stanford, CA, USA
- Department of Microbiology and Immunology, Stanford University School of Medicine; Stanford, CA, USA
| | - Karen B. Jacobson
- Department of Medicine, Stanford University School of Medicine; Stanford, CA, USA
| | - Prasanna Jagannathan
- Department of Medicine, Stanford University School of Medicine; Stanford, CA, USA
- Department of Microbiology and Immunology, Stanford University School of Medicine; Stanford, CA, USA
| | - Yvonne Maldonado
- Department of Pediatrics, Stanford University School of Medicine; Stanford, CA, USA
| | - Susan P. Holmes
- Department of Statistics, Stanford University; Stanford, CA, USA
| | - Aruna Subramanian
- Department of Medicine, Stanford University School of Medicine; Stanford, CA, USA
| | - Catherine A. Blish
- Department of Medicine, Stanford University School of Medicine; Stanford, CA, USA
- Stanford Medical Scientist Training Program, Stanford University School of Medicine; Stanford, CA, USA
- Chan Zuckerberg Biohub; San Francisco, CA, USA
| |
Collapse
|
50
|
Hamlin RE, Blish CA. Challenges and opportunities in long COVID research. Immunity 2024; 57:1195-1214. [PMID: 38865966 PMCID: PMC11210969 DOI: 10.1016/j.immuni.2024.05.010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2024] [Revised: 04/19/2024] [Accepted: 05/10/2024] [Indexed: 06/14/2024]
Abstract
Long COVID (LC) is a condition in which patients do not fully recover from the initial SARS-CoV-2 infection but rather have persistent or new symptoms for months to years following the infection. Ongoing research efforts are investigating the pathophysiologic mechanisms of LC and exploring preventative and therapeutic treatment approaches for patients. As a burgeoning area of investigation, LC research can be structured to be more inclusive, innovative, and effective. In this perspective, we highlight opportunities for patient engagement and diverse research expertise, as well as the challenges of developing definitions and reproducible studies. Our intention is to provide a foundation for collaboration and progress in understanding the biomarkers and mechanisms driving LC.
Collapse
Affiliation(s)
| | - Catherine A Blish
- Department of Medicine, Stanford University, Stanford, CA, USA; Chan Zuckerberg Biohub, San Francisco, CA, USA.
| |
Collapse
|