1
|
Zhang Z, Li Z, Peng Y, Li Z, Xv N, Jin L, Cao Y, Jiang C, Chen Z. TRIM21-mediated ubiquitination of PLIN2 regulates neuronal lipid droplet accumulation after acute spinal cord injury. Exp Neurol 2024; 381:114916. [PMID: 39122166 DOI: 10.1016/j.expneurol.2024.114916] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2024] [Revised: 07/26/2024] [Accepted: 08/06/2024] [Indexed: 08/12/2024]
Abstract
To investigate the changes in neuronal lipid droplet (LD) accumulation and lipid metabolism after acute spinal cord injury (SCI), we established a rat model of compressive SCI. Oil Red O staining, BODIPY 493/503 staining, and 4-hydroxynonenal immunofluorescence staining were performed to determine overall LD accumulation, neuronal LD accumulation, and lipid peroxidation. Lipidomics was conducted to identify the lipid components in the local SCI microenvironment. We focused on the expression and regulation of perilipin 2 (PLIN2) and knocked down PLIN2 in vivo by intrathecal injection of adeno-associated virus 9-synapsin-short-hairpin RNA-PLIN2 (AAV9-SYN-shPlin2). Motor function was assessed using the Basso-Beattie-Bresnahan score. Proteins that interacted with PLIN2 were screened by immunoprecipitation (IP) and qualitative shotgun proteomics, and confirmed by co-IP. A ubiquitination assay was performed to validate whether ubiquitination was involved in PLIN2 degradation. Oil Red O staining indicated that LDs steadily accumulated after SCI. Fluorescent staining indicated the accumulation of LDs in neurons with increased lipid peroxidation. Lipidomics revealed significant changes in lipid components after SCI. PLIN2 expression significantly increased following SCI, and knockdown of PLIN2 using AAV9-SYN-Plin2 reduced neuronal LD accumulation. This intervention improved the neuronal survival and motor function of injured rats. IP and qualitative shotgun proteomics identified tripartite motif-containing protein 21 (TRIM21) as a direct binding protein of PLIN2, and this interaction was confirmed by co-IP in vitro and immunofluorescence staining in vivo. By manipulating TRIM21 expression, we found it was negatively correlated with PLIN2 expression. In conclusion, PLIN2 is involved in neuronal LD accumulation following SCI. TRIM21 mediated the ubiquitination and degradation of PLIN2 in neurons. Inhibition of PLIN2 enhanced the recovery of motor function after SCI.
Collapse
Affiliation(s)
- Zhiyang Zhang
- Department of Orthopaedics, Zhongshan Hospital, Fudan University, Shanghai 200032, China
| | - Zheng Li
- Department of Orthopaedics, the First Affiliated Hospital of University of Science and Technology of China, Hefei 230002, China
| | - Ying Peng
- Trauma center, Shanghai General Hospital, Shanghai 200080, China
| | - Zhuoxuan Li
- Trauma center, Shanghai General Hospital, Shanghai 200080, China
| | - Nixi Xv
- Department of Orthopaedics, Zhongshan Hospital, Fudan University, Shanghai 200032, China
| | - Lixia Jin
- Department of Rehabilitation, Zhongshan Hospital, Fudan University, Shanghai 200032, China
| | - Yuanwu Cao
- Department of Orthopaedics, Zhongshan Hospital, Fudan University, Shanghai 200032, China
| | - Chang Jiang
- Department of Orthopaedics, Zhongshan Hospital, Fudan University, Shanghai 200032, China
| | - Zixian Chen
- Department of Orthopaedics, Zhongshan Hospital, Fudan University, Shanghai 200032, China.
| |
Collapse
|
2
|
Choi ES, Hnath B, Sha CM, Dokholyan NV. Unveiling the double-edged sword: SOD1 trimers possess tissue-selective toxicity and bind septin-7 in motor neuron-like cells. Structure 2024; 32:1776-1792.e5. [PMID: 39208794 PMCID: PMC11455619 DOI: 10.1016/j.str.2024.08.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2024] [Revised: 06/10/2024] [Accepted: 08/02/2024] [Indexed: 09/04/2024]
Abstract
Misfolded species of superoxide dismutase 1 (SOD1) are associated with increased death in amyotrophic lateral sclerosis (ALS) models compared to insoluble protein aggregates. The mechanism by which structurally independent SOD1 trimers cause cellular toxicity is unknown but may drive disease pathology. Here, we uncovered the SOD1 trimer interactome-a map of potential tissue-selective protein-binding partners in the brain, spinal cord, and skeletal muscle. We identified binding partners and key pathways associated with SOD1 trimers and found that trimers may affect normal cellular functions such as dendritic spine morphogenesis and synaptic function in the central nervous system and cellular metabolism in skeletal muscle. We discovered SOD1 trimer-selective enrichment of genes. We performed detailed computational and biochemical characterization of SOD1 trimer protein binding for septin-7. Our investigation highlights key proteins and pathways within distinct tissues, revealing a plausible intersection of genetic and pathophysiological mechanisms in ALS through interactions involving SOD1 trimers.
Collapse
Affiliation(s)
- Esther Sue Choi
- Department of Pharmacology, Penn State College of Medicine, Hershey, PA, USA; Medical Scientist Training Program, Penn State College of Medicine, Hershey, PA, USA
| | - Brianna Hnath
- Department of Pharmacology, Penn State College of Medicine, Hershey, PA, USA; Department of Biomedical Engineering, Penn State University, University Park, PA, USA
| | - Congzhou Mike Sha
- Department of Pharmacology, Penn State College of Medicine, Hershey, PA, USA; Medical Scientist Training Program, Penn State College of Medicine, Hershey, PA, USA
| | - Nikolay V Dokholyan
- Department of Pharmacology, Penn State College of Medicine, Hershey, PA, USA; Department of Biomedical Engineering, Penn State University, University Park, PA, USA; Department of Biochemistry and Molecular Biology, Penn State College of Medicine, Hershey, PA, USA; Department of Chemistry, Penn State University, University Park, PA, USA.
| |
Collapse
|
3
|
Baird MC, Likhite SB, Vetter TA, Caporale JR, Girard HB, Roussel FS, Howard AE, Schwartz MK, Reed AR, Kaleem A, Zhang X, Meyer KC. Combination AAV therapy with galectin-1 and SOD1 downregulation demonstrates superior therapeutic effect in a severe ALS mouse model. Mol Ther Methods Clin Dev 2024; 32:101312. [PMID: 39257530 PMCID: PMC11385756 DOI: 10.1016/j.omtm.2024.101312] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2023] [Accepted: 08/02/2024] [Indexed: 09/12/2024]
Abstract
Neuroinflammation is a miscreant in accelerating progression of many neurodegenerative diseases, including amyotrophic lateral sclerosis (ALS). However, treatments targeting neuroinflammation alone have led to disappointing results in clinical trials. Both neuronal and non-neuronal cell types have been implicated in the pathogenesis of ALS, and multiple studies have shown correction of each cell type has beneficial effects on disease outcome. Previously, we shown that AAV9-mediated superoxide dismutase 1 (SOD1) suppression in motor neurons and astrocytes significantly improves motor function and extends survival in ALS mouse models. Despite neuron and astrocyte correction, ALS mice still succumb to death with microgliosis observed in endpoint tissue. Therefore, we hypothesized that the optimal therapeutic approach will target and simultaneously correct motor neurons, astrocytes, and microglia. Here, we developed a novel approach to indirectly target microglia with galectin-1 (Gal1) and combined this with our previously established AAV9.SOD1.short hairpin RNA treatment. We show Gal1 conditioning of SOD1 G93A microglia decreases inflammatory markers and rescues motor neuron death in vitro. When paired with SOD1 downregulation, we found a synergistic effect of combination treatment in vivo and show a significant extension of survival of SOD1 G93A mice over SOD1 suppression alone. These results highlight the importance of targeting inflammatory microglia as a critical component in future therapeutic development.
Collapse
Affiliation(s)
- Megan C Baird
- Center for Gene Therapy, Abigail Wexner Research Institute at Nationwide Children's Hospital, Columbus, OH 43205, USA
- Biomedical Sciences Graduate Program, The Ohio State University, Columbus, OH 43210, USA
| | - Shibi B Likhite
- Center for Gene Therapy, Abigail Wexner Research Institute at Nationwide Children's Hospital, Columbus, OH 43205, USA
| | - Tatyana A Vetter
- Center for Gene Therapy, Abigail Wexner Research Institute at Nationwide Children's Hospital, Columbus, OH 43205, USA
- Department of Pediatrics, The Ohio State University, Columbus, OH 43210, USA
| | - Joseph R Caporale
- Center for Gene Therapy, Abigail Wexner Research Institute at Nationwide Children's Hospital, Columbus, OH 43205, USA
| | - Holly B Girard
- Center for Gene Therapy, Abigail Wexner Research Institute at Nationwide Children's Hospital, Columbus, OH 43205, USA
| | - Florence S Roussel
- Center for Gene Therapy, Abigail Wexner Research Institute at Nationwide Children's Hospital, Columbus, OH 43205, USA
| | - Abigail E Howard
- Center for Gene Therapy, Abigail Wexner Research Institute at Nationwide Children's Hospital, Columbus, OH 43205, USA
| | - Maura K Schwartz
- Center for Gene Therapy, Abigail Wexner Research Institute at Nationwide Children's Hospital, Columbus, OH 43205, USA
- Biomedical Sciences Graduate Program, The Ohio State University, Columbus, OH 43210, USA
| | - Addison R Reed
- Center for Gene Therapy, Abigail Wexner Research Institute at Nationwide Children's Hospital, Columbus, OH 43205, USA
| | - Abuzar Kaleem
- Center for Gene Therapy, Abigail Wexner Research Institute at Nationwide Children's Hospital, Columbus, OH 43205, USA
| | - Xiaojin Zhang
- Center for Gene Therapy, Abigail Wexner Research Institute at Nationwide Children's Hospital, Columbus, OH 43205, USA
| | - Kathrin C Meyer
- Center for Gene Therapy, Abigail Wexner Research Institute at Nationwide Children's Hospital, Columbus, OH 43205, USA
- Biomedical Sciences Graduate Program, The Ohio State University, Columbus, OH 43210, USA
- Department of Pediatrics, The Ohio State University, Columbus, OH 43210, USA
| |
Collapse
|
4
|
Kim A, Lee DY, Sung JJ. Cdk5 inhibition in the SOD1 G93A transgenic mouse model of amyotrophic lateral sclerosis suppresses neurodegeneration and extends survival. J Neurochem 2024; 168:2908-2925. [PMID: 38934222 DOI: 10.1111/jnc.16160] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2024] [Revised: 06/06/2024] [Accepted: 06/12/2024] [Indexed: 06/28/2024]
Abstract
Deregulated cyclin-dependent kinase 5 (Cdk5) activity closely correlates with hyperphosphorylated tau, a common pathology found in neurodegenerative diseases. Previous postmortem studies had revealed increased Cdk5 immunoreactivity in amyotrophic lateral sclerosis (ALS); hence, we investigated the effects of Cdk5 inhibition on ALS model mice and neurons in this study. For the in vitro study, motor neuron cell lines with wild-type superoxide dismutase 1 (SOD1) or SOD1G93A and primary neuronal cultures from SOD1G93A transgenic (TG) mice or non-TG mice were compared for the expression of proteins involved in tau pathology, neuroinflammation, apoptosis, and neuritic outgrowth by applying Cdk5-small interfering RNA or Cdk5-short hairpin RNA (shRNA). For the in vivo study, SOD1G93A mice and non-TG mice were intrathecally injected with adeno-associated virus 9 (AAV9)-scramble (SCR)-shRNA or AAV9-Cdk5-shRNA at the age of 5 weeks. Weight and motor function were measured three times per week from 60 days of age, longevity was evaluated, and the tissues were collected from 90-day-old or 120-day-old mice. Neurons with SOD1G93A showed increased phosphorylated tau, attenuated neuritic growth, mislocalization of SOD1, and enhanced neuroinflammation and apoptosis, all of which were reversed by Cdk5 inhibition. Weights did not show significant differences among non-TG and SOD1G93A mice with or without Cdk5 silencing. SOD1G93A mice treated with AAV9-Cdk5-shRNA showed significantly delayed disease onset, delayed rotarod failure, and prolonged survival compared with those treated with AAV9-SCR-shRNA. The brain and spinal cord of SOD1G93A mice intrathecally injected with AAV9-Cdk5-shRNA exhibited suppressed tau pathology, neuroinflammation, apoptosis, and an increased number of motor neurons compared to those of SOD1G93A mice injected with AAV9-SCR-shRNA. Cdk5 inhibition could be an important mechanism in the development of a new therapeutic strategy for ALS.
Collapse
Affiliation(s)
- Ahwon Kim
- Department of Neurology, Seoul National University Hospital, Seoul, Republic of Korea
- Department of Neurology, Chungbuk National University Hospital, Cheongju-si, Chungcheongbuk-do, Republic of Korea
| | - Do-Yeon Lee
- Department of Neurology, Seoul National University Hospital, Seoul, Republic of Korea
- Department of Translational Medicine, Seoul National University College of Medicine, Seoul, Republic of Korea
- Department of Neurology, Seoul National University College of Medicine, Seoul, Republic of Korea
| | - Jung-Joon Sung
- Department of Neurology, Seoul National University Hospital, Seoul, Republic of Korea
- Department of Translational Medicine, Seoul National University College of Medicine, Seoul, Republic of Korea
- Department of Neurology, Seoul National University College of Medicine, Seoul, Republic of Korea
- Neuroscience Research Institute, Seoul National University College of Medicine, Seoul, Republic of Korea
| |
Collapse
|
5
|
Gao J, Gunasekar S, Xia ZJ, Shalin K, Jiang C, Chen H, Lee D, Lee S, Pisal ND, Luo JN, Griciuc A, Karp JM, Tanzi R, Joshi N. Gene therapy for CNS disorders: modalities, delivery and translational challenges. Nat Rev Neurosci 2024; 25:553-572. [PMID: 38898231 DOI: 10.1038/s41583-024-00829-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/23/2024] [Indexed: 06/21/2024]
Abstract
Gene therapy is emerging as a powerful tool to modulate abnormal gene expression, a hallmark of most CNS disorders. The transformative potentials of recently approved gene therapies for the treatment of spinal muscular atrophy (SMA), amyotrophic lateral sclerosis (ALS) and active cerebral adrenoleukodystrophy are encouraging further development of this approach. However, most attempts to translate gene therapy to the clinic have failed to make it to market. There is an urgent need not only to tailor the genes that are targeted to the pathology of interest but to also address delivery challenges and thereby maximize the utility of genetic tools. In this Review, we provide an overview of gene therapy modalities for CNS diseases, emphasizing the interconnectedness of different delivery strategies and routes of administration. Important gaps in understanding that could accelerate the clinical translatability of CNS genetic interventions are addressed, and we present lessons learned from failed clinical trials that may guide the future development of gene therapies for the treatment and management of CNS disorders.
Collapse
Affiliation(s)
- Jingjing Gao
- Department of Biomedical Engineering, University of Massachusetts, Amherst, MA, USA.
- Center for Bioactive Delivery, Institute for Applied Life Sciences, University of Massachusetts, Amherst, MA, USA.
| | - Swetharajan Gunasekar
- Center for Nanomedicine, Department of Anesthesiology, Perioperative and Pain Medicine, Brigham and Women's Hospital, Boston, MA, USA
| | - Ziting Judy Xia
- Center for Nanomedicine, Department of Anesthesiology, Perioperative and Pain Medicine, Brigham and Women's Hospital, Boston, MA, USA
| | - Kiruba Shalin
- Department of Biomedical Engineering, University of Massachusetts, Amherst, MA, USA
| | - Christopher Jiang
- Center for Nanomedicine, Department of Anesthesiology, Perioperative and Pain Medicine, Brigham and Women's Hospital, Boston, MA, USA
| | - Hao Chen
- Marine College, Shandong University, Weihai, China
| | - Dongtak Lee
- Center for Nanomedicine, Department of Anesthesiology, Perioperative and Pain Medicine, Brigham and Women's Hospital, Boston, MA, USA
- Harvard Medical School, Boston, MA, USA
| | - Sohyung Lee
- Center for Nanomedicine, Department of Anesthesiology, Perioperative and Pain Medicine, Brigham and Women's Hospital, Boston, MA, USA
- Harvard Medical School, Boston, MA, USA
| | - Nishkal D Pisal
- Department of Biomedical Engineering, University of Massachusetts, Amherst, MA, USA
| | - James N Luo
- Center for Nanomedicine, Department of Anesthesiology, Perioperative and Pain Medicine, Brigham and Women's Hospital, Boston, MA, USA
- Department of Surgery, Brigham and Women's Hospital, Boston, MA, USA
| | - Ana Griciuc
- Harvard Medical School, Boston, MA, USA.
- Genetics and Aging Research Unit, McCance Center for Brain Health, Mass General Institute for Neurodegenerative Disease and Department of Neurology, Massachusetts General Hospital, Boston, MA, USA.
| | - Jeffrey M Karp
- Center for Nanomedicine, Department of Anesthesiology, Perioperative and Pain Medicine, Brigham and Women's Hospital, Boston, MA, USA.
- Harvard Medical School, Boston, MA, USA.
- Harvard-MIT Program in Health Sciences and Technology, Massachusetts Institute of Technology, Cambridge, MA, USA.
- Harvard Stem Cell Institute, Harvard University, Cambridge, MA, USA.
- Broad Institute of MIT and Harvard, Cambridge, MA, USA.
| | - Rudolph Tanzi
- Harvard Medical School, Boston, MA, USA.
- Genetics and Aging Research Unit, McCance Center for Brain Health, Mass General Institute for Neurodegenerative Disease and Department of Neurology, Massachusetts General Hospital, Boston, MA, USA.
| | - Nitin Joshi
- Center for Nanomedicine, Department of Anesthesiology, Perioperative and Pain Medicine, Brigham and Women's Hospital, Boston, MA, USA.
- Harvard Medical School, Boston, MA, USA.
| |
Collapse
|
6
|
Leung KY, Santos C, De Castro SCP, Diaz DG, Copp AJ, Waddington S, Greene NDE. AAV-mediated expression of mouse or human GLDC normalises metabolic biomarkers in a GLDC-deficient mouse model of Non-Ketotic Hyperglycinemia. Mol Genet Metab 2024; 142:108496. [PMID: 38761651 DOI: 10.1016/j.ymgme.2024.108496] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/14/2024] [Revised: 04/04/2024] [Accepted: 05/13/2024] [Indexed: 05/20/2024]
Abstract
Non-Ketotic Hyperglycinemia (NKH) is a rare inborn error of metabolism caused by impaired function of the glycine cleavage system (GCS) and characterised by accumulation of glycine in body fluids and tissues. NKH is an autosomal recessive condition and the majority of affected individuals carry mutations in GLDC (glycine decarboxylase). Current treatments for NKH have limited effect and are not curative. As a monogenic condition with known genetic causation, NKH is potentially amenable to gene therapy. An AAV9-based expression vector was designed to target sites of GCS activity. Using a ubiquitous promoter to drive expression of a GFP reporter, transduction of liver and brain was confirmed following intra-venous and/or intra-cerebroventricular administration to neonatal mice. Using the same capsid and promoter with transgenes to express mouse or human GLDC, vectors were then tested in GLDC-deficient mice that provide a model of NKH. GLDC-deficient mice exhibited elevated plasma glycine concentration and accumulation of glycine in liver and brain tissues as previously observed. Moreover, the folate profile indicated suppression of folate one‑carbon metabolism (FOCM) in brain tissue, as found at embryonic stages, and reduced abundance of FOCM metabolites including betaine and choline. Neonatal administration of vector achieved reinstatement of GLDC mRNA and protein expression in GLDC-deficient mice. Treated GLDC-deficient mice showed significant lowering of plasma glycine, confirming functionality of vector expressed protein. AAV9-GLDC treatment also led to lowering of brain tissue glycine, and normalisation of the folate profile indicating restoration of glycine-derived one‑carbon supply. These findings support the hypothesis that AAV-mediated gene therapy may offer potential in treatment of NKH.
Collapse
Affiliation(s)
- Kit-Yi Leung
- Developmental Biology and Cancer Department, Great Ormond Street Institute of Child Health, University College London, London, UK
| | - Chloe Santos
- Developmental Biology and Cancer Department, Great Ormond Street Institute of Child Health, University College London, London, UK
| | - Sandra C P De Castro
- Developmental Biology and Cancer Department, Great Ormond Street Institute of Child Health, University College London, London, UK
| | - Diana Gold Diaz
- Developmental Biology and Cancer Department, Great Ormond Street Institute of Child Health, University College London, London, UK
| | - Andrew J Copp
- Developmental Biology and Cancer Department, Great Ormond Street Institute of Child Health, University College London, London, UK
| | - Simon Waddington
- EGA Institute for Women's Health, University College London, London, UK
| | - Nicholas D E Greene
- Developmental Biology and Cancer Department, Great Ormond Street Institute of Child Health, University College London, London, UK.
| |
Collapse
|
7
|
Guo X, Zhang Z, Gu J, Ke P, Liu J, Meng Y, Zheng W, Que W, Fan R, Luo J, Xiao F. FUDNC1-dependent mitophagy ameliorate motor neuron death in an amyotrophic lateral sclerosis mouse model. Neurobiol Dis 2024; 197:106534. [PMID: 38759931 DOI: 10.1016/j.nbd.2024.106534] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2024] [Revised: 05/04/2024] [Accepted: 05/13/2024] [Indexed: 05/19/2024] Open
Abstract
Amyotrophic lateral sclerosis (ALS) is one of the most common neurodegenerative diseases, yet effective treatment is lacking. Moreover, the underlying pathomechanisms of ALS remain unclear, with impaired mitophagy function being increasingly recognized as a contributing factor. FUN14 domain-containing protein 1 (FUNDC1) is an autophagy receptor localized to the outer mitochondrial membrane and a mitochondrial membrane protein that mediates mitophagy and therefore considered as important factor in neurodegenerative diseases. However, its specific role in ALS is not yet clear. Therefore, this study aimed to investigate the regulatory role of FUNDC1 in ALS and determine its regulatory mechanisms. ALS transgenic mice were obtained and maintained under standard conditions. Cell lines were generated by stable transfection with hSOD1G93A or control vectors. Mice received intrathecal injections of AAV9 vectors expressing FUNDC1 or EGFP. Motor function was assessed through behavioral tests, and histological and immunostaining analyses were performed. Colocalization analysis was conducted in transfected cells, and protein expression was evaluated via western blotting. We first observed that FUNDC1 was significantly downregulated in the spinal cord tissues of SOD1G93A mice. FUNDC1 overexpression considerably improved locomotor activity and prolonged survival time in SOD1G93A mice. Mechanistically, reduced expression of FUNDC1 resulted in decreased mitophagy, as indicated by decreased recruitment through LC3 in SOD1G93A mice and cellular models. Consequently, this led to increased mitochondrial accumulation and cell apoptosis, exacerbating the ALS phenotype. Furthermore, we identified transcription factor FOXD3 as an essential upstream factor of FUNDC1, resulting in reduced transcription of FUNDC1 in ALS lesions. This study suggests a novel strategy of targeting FUNDC1-mediated mitophagy for developing therapeutic interventions to mitigate disease progression and improve outcomes for ALS patients.
Collapse
Affiliation(s)
- Xia Guo
- Department of Neurology, The First Affiliated Hospital of Chongqing Medical University, Chongqing Key Laboratory of Neurology, Chongqing 400016, China; Department of Neurology, The Second Affiliated Hospital of Zunyi Medical University, Zunyi, Guizhou 563000, China
| | - Zhuo Zhang
- Department of Neurology, The First Affiliated Hospital of Chongqing Medical University, Chongqing Key Laboratory of Neurology, Chongqing 400016, China
| | - Juan Gu
- Department of Neurology, The First Affiliated Hospital of Chongqing Medical University, Chongqing Key Laboratory of Neurology, Chongqing 400016, China; Key Laboratory of Medical Electrophysiology of Ministry of Education and Medical Electrophysiological Key Laboratory of Sichuan Province, Institute of Cardiovascular Research, Southwest Medical University, Luzhou, Sichuan 646000, China
| | - PingYang Ke
- Department of Neurology, The First Affiliated Hospital of Chongqing Medical University, Chongqing Key Laboratory of Neurology, Chongqing 400016, China
| | - Jing Liu
- Department of Neurology, The First Affiliated Hospital of Chongqing Medical University, Chongqing Key Laboratory of Neurology, Chongqing 400016, China
| | - Yuan Meng
- Department of Neurology, The First Affiliated Hospital of Chongqing Medical University, Chongqing Key Laboratory of Neurology, Chongqing 400016, China
| | - Wei Zheng
- Department of Neurology, The First Affiliated Hospital of Chongqing Medical University, Chongqing Key Laboratory of Neurology, Chongqing 400016, China
| | - WenJun Que
- Department of Neurology, The First Affiliated Hospital of Chongqing Medical University, Chongqing Key Laboratory of Neurology, Chongqing 400016, China
| | - Rui Fan
- Department of Neurology, The First Affiliated Hospital of Chongqing Medical University, Chongqing Key Laboratory of Neurology, Chongqing 400016, China
| | - Jing Luo
- Department of Neurology, The First Affiliated Hospital of Chongqing Medical University, Chongqing Key Laboratory of Neurology, Chongqing 400016, China.
| | - Fei Xiao
- Department of Neurology, The First Affiliated Hospital of Chongqing Medical University, Chongqing Key Laboratory of Neurology, Chongqing 400016, China.
| |
Collapse
|
8
|
Chen KS, Koubek EJ, Sakowski SA, Feldman EL. Stem cell therapeutics and gene therapy for neurologic disorders. Neurotherapeutics 2024; 21:e00427. [PMID: 39096590 PMCID: PMC11345629 DOI: 10.1016/j.neurot.2024.e00427] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2024] [Revised: 07/22/2024] [Accepted: 07/22/2024] [Indexed: 08/05/2024] Open
Abstract
Rapid advances in biological knowledge and technological innovation have greatly advanced the fields of stem cell and gene therapies to combat a broad spectrum of neurologic disorders. Researchers are currently exploring a variety of stem cell types (e.g., embryonic, progenitor, induced pluripotent) and various transplantation strategies, each with its own advantages and drawbacks. Similarly, various gene modification techniques (zinc finger, TALENs, CRISPR-Cas9) are employed with various delivery vectors to modify underlying genetic contributors to neurologic disorders. While these two individual fields continue to blaze new trails, it is the combination of these technologies which enables genetically engineered stem cells and vastly increases investigational and therapeutic opportunities. The capability to culture and expand stem cells outside the body, along with their potential to correct genetic abnormalities in patient-derived cells or enhance cells with extra gene products, unleashes the full biological potential for innovative, multifaceted approaches to treat complex neurological disorders. In this review, we provide an overview of stem cell and gene therapies in the context of neurologic disorders, highlighting recent advances and current shortcomings, and discuss prospects for future therapies in clinical settings.
Collapse
Affiliation(s)
- Kevin S Chen
- Department of Neurology, University of Michigan, Ann Arbor, MI 48109, USA; NeuroNetwork for Emerging Therapies, University of Michigan, Ann Arbor, MI 48109, USA; Department of Neurosurgery, University of Michigan, Ann Arbor, MI 48109, USA
| | - Emily J Koubek
- Department of Neurology, University of Michigan, Ann Arbor, MI 48109, USA; NeuroNetwork for Emerging Therapies, University of Michigan, Ann Arbor, MI 48109, USA
| | - Stacey A Sakowski
- Department of Neurology, University of Michigan, Ann Arbor, MI 48109, USA; NeuroNetwork for Emerging Therapies, University of Michigan, Ann Arbor, MI 48109, USA
| | - Eva L Feldman
- Department of Neurology, University of Michigan, Ann Arbor, MI 48109, USA; NeuroNetwork for Emerging Therapies, University of Michigan, Ann Arbor, MI 48109, USA.
| |
Collapse
|
9
|
Cau MF, Ferraresso F, Seadler M, Badior K, Zhang Y, Ketelboeter LM, Rodriguez GG, Chen T, Ferraresso M, Wietrzny A, Robertson M, Haugen A, Cullis PR, de Moya M, Dyer M, Kastrup CJ. siRNA-mediated reduction of a circulating protein in swine using lipid nanoparticles. Mol Ther Methods Clin Dev 2024; 32:101258. [PMID: 38779336 PMCID: PMC11109470 DOI: 10.1016/j.omtm.2024.101258] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2023] [Accepted: 04/22/2024] [Indexed: 05/25/2024]
Abstract
Genetic manipulation of animal models is a fundamental research tool in biology and medicine but is challenging in large animals. In rodents, models can be readily developed by knocking out genes in embryonic stem cells or by knocking down genes through in vivo delivery of nucleic acids. Swine are a preferred animal model for studying the cardiovascular and immune systems, but there are limited strategies for genetic manipulation. Lipid nanoparticles (LNPs) efficiently deliver small interfering RNA (siRNA) to knock down circulating proteins, but swine are sensitive to LNP-induced complement activation-related pseudoallergy (CARPA). We hypothesized that appropriately administering optimized siRNA-LNPs could knock down circulating levels of plasminogen, a blood protein synthesized in the liver. siRNA-LNPs against plasminogen (siPLG) reduced plasma plasminogen protein and hepatic plasminogen mRNA levels to below 5% of baseline values. Functional assays showed that reducing plasminogen levels modulated systemic blood coagulation. Clinical signs of CARPA were not observed, and occasional mild and transient hepatotoxicity was present in siPLG-treated animals at 5 h post-infusion, which returned to baseline by 7 days. These findings advance siRNA-LNPs in swine models, enabling genetic engineering of blood and hepatic proteins, which can likely expand to proteins in other tissues in the future.
Collapse
Affiliation(s)
- Massimo F. Cau
- Michael Smith Laboratories, University of British Columbia, Vancouver, BC V6T 1Z4, Canada
- School of Biomedical Engineering, University of British Columbia, Vancouver, BC V6T 1Z4, Canada
| | - Francesca Ferraresso
- Michael Smith Laboratories, University of British Columbia, Vancouver, BC V6T 1Z4, Canada
- Department of Biochemistry and Molecular Biology, University of British Columbia, Vancouver, BC V6T 1Z4, Canada
- Versiti Blood Research Institute, Milwaukee, WI 53226, USA
| | - Monica Seadler
- Versiti Blood Research Institute, Milwaukee, WI 53226, USA
- Department of Surgery, Division of Trauma and Acute Care Surgery, Medical College of Wisconsin, Milwaukee, WI 53226, USA
| | | | - Youjie Zhang
- Versiti Blood Research Institute, Milwaukee, WI 53226, USA
| | | | | | - Taylor Chen
- Versiti Blood Research Institute, Milwaukee, WI 53226, USA
| | | | | | - Madelaine Robertson
- Michael Smith Laboratories, University of British Columbia, Vancouver, BC V6T 1Z4, Canada
- Department of Biochemistry and Molecular Biology, University of British Columbia, Vancouver, BC V6T 1Z4, Canada
| | - Amber Haugen
- Versiti Blood Research Institute, Milwaukee, WI 53226, USA
| | - Pieter R. Cullis
- Department of Biochemistry and Molecular Biology, University of British Columbia, Vancouver, BC V6T 1Z4, Canada
| | - Marc de Moya
- Department of Surgery, Division of Trauma and Acute Care Surgery, Medical College of Wisconsin, Milwaukee, WI 53226, USA
| | - Mitchell Dyer
- Versiti Blood Research Institute, Milwaukee, WI 53226, USA
- Department of Surgery, Division of Vascular and Endovascular Surgery, Medical College of Wisconsin, Milwaukee, WI 53226, USA
| | - Christian J. Kastrup
- Michael Smith Laboratories, University of British Columbia, Vancouver, BC V6T 1Z4, Canada
- Department of Biochemistry and Molecular Biology, University of British Columbia, Vancouver, BC V6T 1Z4, Canada
- Versiti Blood Research Institute, Milwaukee, WI 53226, USA
- Department of Surgery, Division of Trauma and Acute Care Surgery, Medical College of Wisconsin, Milwaukee, WI 53226, USA
- Departments of Biochemistry, Biomedical Engineering, and Pharmacology and Toxicology, Medical College of Wisconsin, Milwaukee, WI 53226, USA
| |
Collapse
|
10
|
Willimann M, Tiyaboonchai A, Adachi K, Li B, Waldburger L, Nakai H, Grompe M, Thöny B. AAV Capsid Screening for Translational Pig Research Using a Mouse Xenograft Liver Model. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.05.29.596409. [PMID: 38853940 PMCID: PMC11160762 DOI: 10.1101/2024.05.29.596409] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2024]
Abstract
In gene therapy, delivery vectors are a key component for successful gene delivery and safety, based on which adeno-associated viruses (AAVs) gained popularity in particular for the liver, but also for other organs. Traditionally, rodents have been used as animal models to develop and optimize treatments, but species and organ specific tropism of AAV desire large animal models more closely related to humans for preclinical in-depth studies. Relevant AAV variants with the potential for clinical translation in liver gene therapy were previously evolved in vivo in a xenogeneic mouse model transplanted with human hepatocytes. Here, we selected and evaluated efficient AAV capsids using chimeric mice with a >90% xenografted pig hepatocytes. The pig is a valuable preclinical model for therapy studies due to its anatomic and immunological similarities to humans. Using a DNA-barcoded recombinant AAV library containing 47 different capsids and subsequent Illumina sequencing of barcodes in the AAV vector genome DNA and transcripts in the porcine hepatocytes, we found the AAVLK03 and AAVrh20 capsid to be the most efficient delivery vectors regarding transgene expression in porcine hepatocytes. In attempting to validate these findings with primary porcine hepatocytes, we observed capsid-specific differences in cell entry and transgene expression efficiency where the AAV2, AAVAnc80, and AAVDJ capsids showed superior efficiency to AAVLK03 and AAVrh20. This work highlights intricacies of in vitro testing with primary hepatocytes and the requirements for suitable pre-clinical animal models but suggests the chimeric mouse to be a valuable model to predict AAV capsids to transduce porcine hepatocytes efficiently.
Collapse
Affiliation(s)
- Melanie Willimann
- University Children's Hospital Zurich, Division of Metabolism and Children's Research Center, Zurich, Switzerland
| | - Amita Tiyaboonchai
- Oregon Health & Science University, Stem Cell Center, Portland, Oregon, USA
| | - Kei Adachi
- Oregon Health & Science University, Department of Molecular & Medical Genetics, Portland, Oregon, USA
| | - Bin Li
- Oregon Health & Science University, Stem Cell Center, Portland, Oregon, USA
| | - Lea Waldburger
- University Children's Hospital Zurich, Division of Metabolism and Children's Research Center, Zurich, Switzerland
| | - Hiroyuki Nakai
- Oregon Health & Science University, Department of Molecular & Medical Genetics, Portland, Oregon, USA
| | - Markus Grompe
- Oregon Health & Science University, Stem Cell Center, Portland, Oregon, USA
| | - Beat Thöny
- University Children's Hospital Zurich, Division of Metabolism and Children's Research Center, Zurich, Switzerland
| |
Collapse
|
11
|
Huang M, Liu YU, Yao X, Qin D, Su H. Variability in SOD1-associated amyotrophic lateral sclerosis: geographic patterns, clinical heterogeneity, molecular alterations, and therapeutic implications. Transl Neurodegener 2024; 13:28. [PMID: 38811997 PMCID: PMC11138100 DOI: 10.1186/s40035-024-00416-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2024] [Accepted: 04/17/2024] [Indexed: 05/31/2024] Open
Abstract
Amyotrophic lateral sclerosis (ALS) is a fatal neurodegenerative disease characterized by progressive loss of motor neurons, resulting in global health burden and limited post-diagnosis life expectancy. Although primarily sporadic, familial ALS (fALS) cases suggest a genetic basis. This review focuses on SOD1, the first gene found to be associated with fALS, which has been more recently confirmed by genome sequencing. While informative, databases such as ALSoD and STRENGTH exhibit regional biases. Through a systematic global examination of SOD1 mutations from 1993 to 2023, we found different geographic distributions and clinical presentations. Even though different SOD1 variants are expressed at different protein levels and have different half-lives and dismutase activities, these alterations lead to loss of function that is not consistently correlated with disease severity. Gain of function of toxic aggregates of SOD1 resulting from mutated SOD1 has emerged as one of the key contributors to ALS. Therapeutic interventions specifically targeting toxic gain of function of mutant SOD1, including RNA interference and antibodies, show promise, but a cure remains elusive. This review provides a comprehensive perspective on SOD1-associated ALS and describes molecular features and the complex genetic landscape of SOD1, highlighting its importance in determining diverse clinical manifestations observed in ALS patients and emphasizing the need for personalized therapeutic strategies.
Collapse
Affiliation(s)
- Miaodan Huang
- State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, Department of Pharmaceutical Sciences, Faculty of Health Sciences, University of Macau, Macao, China
| | - Yong U Liu
- Laboratory for Neuroimmunology in Health and Diseases, Guangzhou First People's Hospital School of Medicine, South China University of Technology, Guangzhou, China
| | - Xiaoli Yao
- Department of Neurology, The First Affiliated Hospital, Sun Yat-Sen University, Guangdong Provincial Key Laboratory of Diagnosis and Treatment of Major Neurological Diseases, National Key Clinical Department and Key Discipline of Neurology, Guangzhou, China.
| | - Dajiang Qin
- Key Laboratory of Biological Targeting Diagnosis, Therapy and Rehabilitation of Guangdong Higher Education Institutes, The Fifth Affiliated Hospital of Guangzhou Medical University, Guangzhou, 510799, China.
| | - Huanxing Su
- State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, Department of Pharmaceutical Sciences, Faculty of Health Sciences, University of Macau, Macao, China.
| |
Collapse
|
12
|
Tsekrekou M, Giannakou M, Papanikolopoulou K, Skretas G. Protein aggregation and therapeutic strategies in SOD1- and TDP-43- linked ALS. Front Mol Biosci 2024; 11:1383453. [PMID: 38855322 PMCID: PMC11157337 DOI: 10.3389/fmolb.2024.1383453] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2024] [Accepted: 05/02/2024] [Indexed: 06/11/2024] Open
Abstract
Amyotrophic lateral sclerosis (ALS) is a fatal neurodegenerative disease with severe socio-economic impact. A hallmark of ALS pathology is the presence of aberrant cytoplasmic inclusions composed of misfolded and aggregated proteins, including both wild-type and mutant forms. This review highlights the critical role of misfolded protein species in ALS pathogenesis, particularly focusing on Cu/Zn superoxide dismutase (SOD1) and TAR DNA-binding protein 43 (TDP-43), and emphasizes the urgent need for innovative therapeutic strategies targeting these misfolded proteins directly. Despite significant advancements in understanding ALS mechanisms, the disease remains incurable, with current treatments offering limited clinical benefits. Through a comprehensive analysis, the review focuses on the direct modulation of the misfolded proteins and presents recent discoveries in small molecules and peptides that inhibit SOD1 and TDP-43 aggregation, underscoring their potential as effective treatments to modify disease progression and improve clinical outcomes.
Collapse
Affiliation(s)
- Maria Tsekrekou
- Institute of Chemical Biology, National Hellenic Research Foundation, Athens, Greece
| | - Maria Giannakou
- Institute of Chemical Biology, National Hellenic Research Foundation, Athens, Greece
- Department of Biology, National and Kapodistrian University of Athens, Athens, Greece
| | - Katerina Papanikolopoulou
- Institute for Fundamental Biomedical Research, Biomedical Sciences Research Centre “Alexander Fleming”, Vari, Greece
- ResQ Biotech, Patras Science Park, Rio, Greece
| | - Georgios Skretas
- Institute of Chemical Biology, National Hellenic Research Foundation, Athens, Greece
- ResQ Biotech, Patras Science Park, Rio, Greece
- Institute for Bio-innovation, Biomedical Sciences Research Centre “Alexander Fleming”, Vari, Greece
| |
Collapse
|
13
|
Wang JH, Gessler DJ, Zhan W, Gallagher TL, Gao G. Adeno-associated virus as a delivery vector for gene therapy of human diseases. Signal Transduct Target Ther 2024; 9:78. [PMID: 38565561 PMCID: PMC10987683 DOI: 10.1038/s41392-024-01780-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2023] [Revised: 02/08/2024] [Accepted: 02/19/2024] [Indexed: 04/04/2024] Open
Abstract
Adeno-associated virus (AAV) has emerged as a pivotal delivery tool in clinical gene therapy owing to its minimal pathogenicity and ability to establish long-term gene expression in different tissues. Recombinant AAV (rAAV) has been engineered for enhanced specificity and developed as a tool for treating various diseases. However, as rAAV is being more widely used as a therapy, the increased demand has created challenges for the existing manufacturing methods. Seven rAAV-based gene therapy products have received regulatory approval, but there continue to be concerns about safely using high-dose viral therapies in humans, including immune responses and adverse effects such as genotoxicity, hepatotoxicity, thrombotic microangiopathy, and neurotoxicity. In this review, we explore AAV biology with an emphasis on current vector engineering strategies and manufacturing technologies. We discuss how rAAVs are being employed in ongoing clinical trials for ocular, neurological, metabolic, hematological, neuromuscular, and cardiovascular diseases as well as cancers. We outline immune responses triggered by rAAV, address associated side effects, and discuss strategies to mitigate these reactions. We hope that discussing recent advancements and current challenges in the field will be a helpful guide for researchers and clinicians navigating the ever-evolving landscape of rAAV-based gene therapy.
Collapse
Affiliation(s)
- Jiang-Hui Wang
- Horae Gene Therapy Center, University of Massachusetts Chan Medical School, Worcester, MA, 01605, USA
- Department of Microbiology and Physiological Systems, University of Massachusetts Chan Medical School, Worcester, MA, 01605, USA
- Centre for Eye Research Australia, Royal Victorian Eye and Ear Hospital, East Melbourne, VIC, 3002, Australia
- Ophthalmology, Department of Surgery, University of Melbourne, East Melbourne, VIC, 3002, Australia
| | - Dominic J Gessler
- Horae Gene Therapy Center, University of Massachusetts Chan Medical School, Worcester, MA, 01605, USA
- Department of Microbiology and Physiological Systems, University of Massachusetts Chan Medical School, Worcester, MA, 01605, USA
- Department of Neurological Surgery, University of Massachusetts Chan Medical School, Worcester, MA, 01605, USA
- Department of Neurosurgery, University of Minnesota, Minneapolis, MN, 55455, USA
| | - Wei Zhan
- Horae Gene Therapy Center, University of Massachusetts Chan Medical School, Worcester, MA, 01605, USA
- Department of Microbiology and Physiological Systems, University of Massachusetts Chan Medical School, Worcester, MA, 01605, USA
- Department of Medicine, University of Massachusetts Chan Medical School, Worcester, MA, 01605, USA
- Li Weibo Institute for Rare Diseases Research, University of Massachusetts Chan Medical School, Worcester, MA, 01605, USA
| | - Thomas L Gallagher
- Horae Gene Therapy Center, University of Massachusetts Chan Medical School, Worcester, MA, 01605, USA
| | - Guangping Gao
- Horae Gene Therapy Center, University of Massachusetts Chan Medical School, Worcester, MA, 01605, USA.
- Department of Microbiology and Physiological Systems, University of Massachusetts Chan Medical School, Worcester, MA, 01605, USA.
- Li Weibo Institute for Rare Diseases Research, University of Massachusetts Chan Medical School, Worcester, MA, 01605, USA.
| |
Collapse
|
14
|
Silva-Hucha S, Fernández de Sevilla ME, Humphreys KM, Benson FE, Franco JM, Pozo D, Pastor AM, Morcuende S. VEGF expression disparities in brainstem motor neurons of the SOD1 G93A ALS model: Correlations with neuronal vulnerability. Neurotherapeutics 2024; 21:e00340. [PMID: 38472048 PMCID: PMC11070718 DOI: 10.1016/j.neurot.2024.e00340] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2023] [Revised: 02/08/2024] [Accepted: 02/26/2024] [Indexed: 03/14/2024] Open
Abstract
Amyotrophic lateral sclerosis (ALS) is a rare neuromuscular disease characterized by severe muscle weakness mainly due to degeneration and death of motor neurons. A peculiarity of the neurodegenerative processes is the variable susceptibility among distinct neuronal populations, exemplified by the contrasting resilience of motor neurons innervating the ocular motor system and the more vulnerable facial and hypoglossal motor neurons. The crucial role of vascular endothelial growth factor (VEGF) as a neuroprotective factor in the nervous system is well-established since a deficit of VEGF has been related to motoneuronal degeneration. In this study, we investigated the survival of ocular, facial, and hypoglossal motor neurons utilizing the murine SOD1G93A ALS model at various stages of the disease. Our primary objective was to determine whether the survival of the different brainstem motor neurons was linked to disparate VEGF expression levels in resilient and susceptible motor neurons throughout neurodegeneration. Our findings revealed a selective loss of motor neurons exclusively within the vulnerable nuclei. Furthermore, a significantly higher level of VEGF was detected in the more resistant motor neurons, the extraocular ones. We also examined whether TDP-43 dynamics in the brainstem motor neuron of SOD mice was altered. Our data suggests that the increased VEGF levels observed in extraocular motor neurons may potentially underlie their resistance during the neurodegenerative processes in ALS in a TDP-43-independent manner. Our work might help to better understand the underlying mechanisms of selective vulnerability of motor neurons in ALS.
Collapse
Affiliation(s)
- Silvia Silva-Hucha
- Departamento de Fisiología, Facultad de Biología, Universidad de Sevilla, 41012 Seville, Spain; Cell and Developmental Biology, University College London, Medawar Building, Gower Street, London WC1E 6BT, UK
| | | | - Kirsty M Humphreys
- Division of Biomedical and Life Sciences, Faculty of Health and Medicine, Lancaster University, Lancaster LA1 4YQ, UK
| | - Fiona E Benson
- Division of Biomedical and Life Sciences, Faculty of Health and Medicine, Lancaster University, Lancaster LA1 4YQ, UK
| | - Jaime M Franco
- Andalusian Center of Molecular Biology and Regenerative Medicine-CABIMER, Junta de Andalucía-Universidad Pablo de Olavide-Universidad de Sevilla-CSIC, 41092, Seville, Spain
| | - David Pozo
- Andalusian Center of Molecular Biology and Regenerative Medicine-CABIMER, Junta de Andalucía-Universidad Pablo de Olavide-Universidad de Sevilla-CSIC, 41092, Seville, Spain; Department of Medical Biochemistry, Molecular Biology and Immunology, Universidad de Sevilla Medical School, 41009 Seville, Spain
| | - Angel M Pastor
- Departamento de Fisiología, Facultad de Biología, Universidad de Sevilla, 41012 Seville, Spain.
| | - Sara Morcuende
- Departamento de Fisiología, Facultad de Biología, Universidad de Sevilla, 41012 Seville, Spain.
| |
Collapse
|
15
|
Perera A, Brock O, Ahmed A, Shaw C, Ashkan K. Taking the knife to neurodegeneration: a review of surgical gene therapy delivery to the CNS. Acta Neurochir (Wien) 2024; 166:136. [PMID: 38483631 PMCID: PMC10940433 DOI: 10.1007/s00701-024-06028-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2024] [Accepted: 02/28/2024] [Indexed: 03/17/2024]
Abstract
Gene supplementation and editing for neurodegenerative disorders has emerged in recent years as the understanding of the genetic mechanisms underlying several neurodegenerative disorders increases. The most common medium to deliver genetic material to cells is via viral vectors; and with respect to the central nervous system, adeno-associated viral (AAV) vectors are a popular choice. The most successful example of AAV-based gene therapy for neurodegenerative disorders is Zolgensma© which is a transformative intravenous therapy given to babies with spinal muscular atrophy. However, the field has stalled in achieving safe drug delivery to the central nervous system in adults for which treatments for disorders such as amyotrophic lateral sclerosis are desperately needed. Surgical gene therapy delivery has been proposed as a potential solution to this problem. While the field of the so-called regenerative neurosurgery has yielded pre-clinical optimism, several challenges have emerged. This review seeks to explore the field of regenerative neurosurgery with respect to AAV-based gene therapy for neurodegenerative diseases, its progress so far and the challenges that need to be overcome.
Collapse
Affiliation(s)
- Andrea Perera
- Maurice Wohl Institute of Neuroscience, Department of Basic Clinical Neuroscience, King's College London, Cutcombe Road, Denmark Hill, London, SE5 9RS, UK.
- Department of Neurosurgery, King's College Hospital NHS Trust, London, UK.
| | - Olivier Brock
- Maurice Wohl Institute of Neuroscience, Department of Basic Clinical Neuroscience, King's College London, Cutcombe Road, Denmark Hill, London, SE5 9RS, UK
| | - Aminul Ahmed
- Department of Neurosurgery, King's College Hospital NHS Trust, London, UK
- Wolfson Centre for Age-Related Diseases, King's College London, London, UK
| | - Chris Shaw
- Maurice Wohl Institute of Neuroscience, Department of Basic Clinical Neuroscience, King's College London, Cutcombe Road, Denmark Hill, London, SE5 9RS, UK
- Centre for Brain Research, University of Auckland, 85 Park Road Grafton, Auckland, 1023, New Zealand
| | - Keyoumars Ashkan
- Maurice Wohl Institute of Neuroscience, Department of Basic Clinical Neuroscience, King's College London, Cutcombe Road, Denmark Hill, London, SE5 9RS, UK
- Department of Neurosurgery, King's College Hospital NHS Trust, London, UK
| |
Collapse
|
16
|
Wen D, Ji Y, Li Y, Duan W, Wang Y, Li Z, Tao M, Liu Y. OPTN gene therapy increases autophagy and protects mitochondria in SOD1-G93A-expressing transgenic mice and cells. FEBS J 2024; 291:795-813. [PMID: 37983563 DOI: 10.1111/febs.17009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2023] [Revised: 10/18/2023] [Accepted: 11/17/2023] [Indexed: 11/22/2023]
Abstract
Amyotrophic lateral sclerosis (ALS) is a neurodegenerative disorder characterized by progressive motor neuron (MN) death. Mutation of the superoxide dismutase 1 (SOD1) gene, which results in abnormal protein aggregation, is one of the causes of familial ALS. Autophagic dysfunction occurs in SOD1-G93A mutant mice as the disease progresses, but the etiology of this disease is still unclear. Optineurin (OPTN) is an adaptor that is involved in autophagy and participates in aggrephagy and mitophagy. Previous studies have established that OPTN mutations contribute to diseases such as glaucoma and ALS. However, the function of OPTN in autophagy and mitophagy has not been intensively investigated in models of ALS. In this study, we assessed the beneficial effect of OPTN on autophagy and mitochondrial function by intrathecally injecting adeno-associated virus 9 (AAV9)-OPTN into SOD1-G93A transgenic mice and by administering lentivirus (LV)-OPTN to cells expressing the SOD1-G93A mutant protein. The expression of voltage-dependent anion channel 1 (VDAC1) was increased and autophagy was elevated after OPTN gene therapy, as shown by a lower level of p62 and a higher level of microtubule-associated protein 1A/1B-light chain 3 (LC3)-II. Moreover, using electron microscopy, we observed a hyperpolarized mitochondrial transmembrane potential and reversal of mitochondrial morphological abnormalities. Furthermore, the protein level of TANK-binding kinase 1 (TBK1) was increased, suggesting that mitophagy was increased. Our findings from both animal and cell line studies strongly suggest that OPTN gene therapy is a powerful strategy to increase autophagy and protect mitochondria to prevent the progression of ALS and could be effective in the treatment of ALS.
Collapse
Affiliation(s)
- Di Wen
- Department of Neurology, The Second Hospital of Hebei Medical University, Shijiazhuang, China
| | - Yingxiao Ji
- Department of Neurology, Hebei General Hospital, Shijiazhuang, China
| | - Yuanyuan Li
- Department of Neurology, The Second Hospital of Hebei Medical University, Shijiazhuang, China
- Neurological Laboratory of Hebei Province, Shijiazhuang, China
| | - Weisong Duan
- Department of Neurology, The Second Hospital of Hebei Medical University, Shijiazhuang, China
- Neurological Laboratory of Hebei Province, Shijiazhuang, China
| | - Yanyan Wang
- Department of Neurology, The Second Hospital of Hebei Medical University, Shijiazhuang, China
| | - Zhongyao Li
- Department of Neurology, The Second Hospital of Hebei Medical University, Shijiazhuang, China
- Neurological Laboratory of Hebei Province, Shijiazhuang, China
| | - Meichun Tao
- Department of Neurology, The Second Hospital of Hebei Medical University, Shijiazhuang, China
| | - Yakun Liu
- Department of Neurology, The Second Hospital of Hebei Medical University, Shijiazhuang, China
- Neurological Laboratory of Hebei Province, Shijiazhuang, China
| |
Collapse
|
17
|
Marlin E, Valencia M, Peregrín N, Ferrero R, Nicolás MJ, Vinueza-Gavilanes R, Pineda-Lucena A, Artieda J, Arrasate M, Aragón T. Pharmacological inhibition of the integrated stress response accelerates disease progression in an amyotrophic lateral sclerosis mouse model. Br J Pharmacol 2024; 181:495-508. [PMID: 37823684 DOI: 10.1111/bph.16260] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2023] [Revised: 09/04/2023] [Accepted: 09/29/2023] [Indexed: 10/13/2023] Open
Abstract
BACKGROUND AND PURPOSE The integrated stress response (ISR) regulates translation in response to diverse stresses. ISR activation has been documented in amyotrophic lateral sclerosis (ALS) patients and ALS experimental models. In experimental models, both ISR stimulation and inhibition prevented ALS neurodegeneration; however, which mode of ISR regulation would work in patients is still debated. We previously demonstrated that the ISR modulator ISRIB (Integrated Stress Response InhiBitor, an eIF2B activator) enhances survival of neurons expressing the ALS neurotoxic allele SOD1 G93A. Here, we tested the effect of two ISRIB-like eIF2B activators (2BAct and PRXS571) in the disease progression of transgenic SOD1G93A mice. EXPERIMENTAL APPROACH After biochemical characterization in primary neurons, SOD1G93A mice were treated with 2BAct and PRXS571. Muscle denervation of vulnerable motor units was monitored with a longitudinal electromyographic test. We used a clinical score to document disease onset and progression; force loss was determined with the hanging wire motor test. Motor neuronal survival was assessed by immunohistochemistry. KEY RESULTS In primary neurons, 2BAct and PRXS571 relieve the ISR-imposed translational inhibition while maintaining high ATF4 levels. Electromyographic recordings evidenced an earlier and more dramatic muscle denervation in treated SOD1G93A mice that correlated with a decrease in motor neuron survival. Both compounds anticipated disease onset and shortened survival time. CONCLUSION AND IMPLICATIONS 2BAct and PRXS571 anticipate disease onset, aggravating muscle denervation and motor neuronal death of SOD1G93A mice. This study reveals that the ISR works as a neuroprotective pathway in ALS motor neurons and reveals the toxicity that eIF2B activators may display in ALS patients.
Collapse
Affiliation(s)
- Elías Marlin
- Gene Therapy and Regulation of Gene Expression Program, Center for Applied Medical Research (CIMA), University of Navarra, Pamplona, Spain
- Neuroscience Program, Center for Applied Medical Research (CIMA), University of Navarra, Pamplona, Spain
- Navarra Institute for Health Research (IdiSNA), Pamplona, Spain
| | - Miguel Valencia
- Neuroscience Program, Center for Applied Medical Research (CIMA), University of Navarra, Pamplona, Spain
- Navarra Institute for Health Research (IdiSNA), Pamplona, Spain
- Institute of Data Science and Artificial Intelligence (DATAI), University of Navarra, Pamplona, Spain
| | - Nuria Peregrín
- Gene Therapy and Regulation of Gene Expression Program, Center for Applied Medical Research (CIMA), University of Navarra, Pamplona, Spain
- Neuroscience Program, Center for Applied Medical Research (CIMA), University of Navarra, Pamplona, Spain
| | - Roberto Ferrero
- Gene Therapy and Regulation of Gene Expression Program, Center for Applied Medical Research (CIMA), University of Navarra, Pamplona, Spain
- Navarra Institute for Health Research (IdiSNA), Pamplona, Spain
| | - María Jesús Nicolás
- Neuroscience Program, Center for Applied Medical Research (CIMA), University of Navarra, Pamplona, Spain
- Navarra Institute for Health Research (IdiSNA), Pamplona, Spain
| | - Rodrigo Vinueza-Gavilanes
- Gene Therapy and Regulation of Gene Expression Program, Center for Applied Medical Research (CIMA), University of Navarra, Pamplona, Spain
- Neuroscience Program, Center for Applied Medical Research (CIMA), University of Navarra, Pamplona, Spain
- Navarra Institute for Health Research (IdiSNA), Pamplona, Spain
| | - Antonio Pineda-Lucena
- Molecular Therapeutics Program, Center for Applied Medical Research (CIMA), University of Navarra, Pamplona, Spain
| | - Julio Artieda
- Navarra Institute for Health Research (IdiSNA), Pamplona, Spain
- Department of Neurology, Clínica Universidad de Navarra, University of Navarra, Pamplona, Spain
- School of Medicine, University of Navarra, Pamplona, Spain
| | - Montserrat Arrasate
- Gene Therapy and Regulation of Gene Expression Program, Center for Applied Medical Research (CIMA), University of Navarra, Pamplona, Spain
- Neuroscience Program, Center for Applied Medical Research (CIMA), University of Navarra, Pamplona, Spain
- Navarra Institute for Health Research (IdiSNA), Pamplona, Spain
- School of Medicine, University of Navarra, Pamplona, Spain
| | - Tomás Aragón
- Gene Therapy and Regulation of Gene Expression Program, Center for Applied Medical Research (CIMA), University of Navarra, Pamplona, Spain
- Navarra Institute for Health Research (IdiSNA), Pamplona, Spain
| |
Collapse
|
18
|
López-Erauskin J, Bravo-Hernandez M, Presa M, Baughn MW, Melamed Z, Beccari MS, Agra de Almeida Quadros AR, Arnold-Garcia O, Zuberi A, Ling K, Platoshyn O, Niño-Jara E, Ndayambaje IS, McAlonis-Downes M, Cabrera L, Artates JW, Ryan J, Hermann A, Ravits J, Bennett CF, Jafar-Nejad P, Rigo F, Marsala M, Lutz CM, Cleveland DW, Lagier-Tourenne C. Stathmin-2 loss leads to neurofilament-dependent axonal collapse driving motor and sensory denervation. Nat Neurosci 2024; 27:34-47. [PMID: 37996528 PMCID: PMC10842032 DOI: 10.1038/s41593-023-01496-0] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2022] [Accepted: 10/16/2023] [Indexed: 11/25/2023]
Abstract
The mRNA transcript of the human STMN2 gene, encoding for stathmin-2 protein (also called SCG10), is profoundly impacted by TAR DNA-binding protein 43 (TDP-43) loss of function. The latter is a hallmark of several neurodegenerative diseases, including amyotrophic lateral sclerosis (ALS). Using a combination of approaches, including transient antisense oligonucleotide-mediated suppression, sustained shRNA-induced depletion in aging mice, and germline deletion, we show that stathmin-2 has an important role in the establishment and maintenance of neurofilament-dependent axoplasmic organization that is critical for preserving the caliber and conduction velocity of myelinated large-diameter axons. Persistent stathmin-2 loss in adult mice results in pathologies found in ALS, including reduced interneurofilament spacing, axonal caliber collapse that drives tearing within outer myelin layers, diminished conduction velocity, progressive motor and sensory deficits, and muscle denervation. These findings reinforce restoration of stathmin-2 as an attractive therapeutic approach for ALS and other TDP-43-dependent neurodegenerative diseases.
Collapse
Affiliation(s)
- Jone López-Erauskin
- Ludwig Institute and Department of Cellular and Molecular Medicine, University of California at San Diego, La Jolla, CA, USA
| | - Mariana Bravo-Hernandez
- Department of Anesthesiology and Stem Cell Program and Institute for Genomic Medicine, University of California at San Diego, La Jolla, CA, USA
- Ionis Pharmaceuticals Inc., Carlsbad, CA, USA
| | | | - Michael W Baughn
- Ludwig Institute and Department of Cellular and Molecular Medicine, University of California at San Diego, La Jolla, CA, USA
| | - Ze'ev Melamed
- Ludwig Institute and Department of Cellular and Molecular Medicine, University of California at San Diego, La Jolla, CA, USA
- Department of Medical Neurobiology, Faculty of Medicine, The Hebrew University of Jerusalem, Jerusalem, Israel
| | - Melinda S Beccari
- Ludwig Institute and Department of Cellular and Molecular Medicine, University of California at San Diego, La Jolla, CA, USA
| | - Ana Rita Agra de Almeida Quadros
- Department of Neurology, The Sean M. Healey and AMG Center for ALS, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
- Broad Institute of Harvard and MIT, Cambridge, MA, USA
| | - Olatz Arnold-Garcia
- Ludwig Institute and Department of Cellular and Molecular Medicine, University of California at San Diego, La Jolla, CA, USA
- Department of Neurosciences, Biodonostia Health Research Institute, San Sebastián, Spain
- CIBERNED, ISCIII (CIBER, Carlos III Institute, Spanish Ministry of Sciences and Innovation), Madrid, Spain
| | | | - Karen Ling
- Ionis Pharmaceuticals Inc., Carlsbad, CA, USA
| | - Oleksandr Platoshyn
- Department of Anesthesiology and Stem Cell Program and Institute for Genomic Medicine, University of California at San Diego, La Jolla, CA, USA
| | - Elkin Niño-Jara
- Department of Anesthesiology and Stem Cell Program and Institute for Genomic Medicine, University of California at San Diego, La Jolla, CA, USA
| | - I Sandra Ndayambaje
- Department of Neurology, The Sean M. Healey and AMG Center for ALS, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
| | - Melissa McAlonis-Downes
- Ludwig Institute and Department of Cellular and Molecular Medicine, University of California at San Diego, La Jolla, CA, USA
| | - Larissa Cabrera
- Ludwig Institute and Department of Cellular and Molecular Medicine, University of California at San Diego, La Jolla, CA, USA
| | - Jonathan W Artates
- Ludwig Institute and Department of Cellular and Molecular Medicine, University of California at San Diego, La Jolla, CA, USA
| | | | - Anita Hermann
- Department of Neurosciences, School of Medicine, University of California at San Diego, La Jolla, CA, USA
| | - John Ravits
- Department of Neurosciences, School of Medicine, University of California at San Diego, La Jolla, CA, USA
| | | | | | - Frank Rigo
- Ionis Pharmaceuticals Inc., Carlsbad, CA, USA
| | - Martin Marsala
- Department of Anesthesiology and Stem Cell Program and Institute for Genomic Medicine, University of California at San Diego, La Jolla, CA, USA
| | | | - Don W Cleveland
- Ludwig Institute and Department of Cellular and Molecular Medicine, University of California at San Diego, La Jolla, CA, USA.
| | - Clotilde Lagier-Tourenne
- Department of Neurology, The Sean M. Healey and AMG Center for ALS, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA.
- Broad Institute of Harvard and MIT, Cambridge, MA, USA.
| |
Collapse
|
19
|
Bradford WH, Zhang J, Gutierrez-Lara EJ, Liang Y, Do A, Wang TM, Nguyen L, Mataraarachchi N, Wang J, Gu Y, McCulloch A, Peterson KL, Sheikh F. Plakophilin 2 gene therapy prevents and rescues arrhythmogenic right ventricular cardiomyopathy in a mouse model harboring patient genetics. NATURE CARDIOVASCULAR RESEARCH 2023; 2:1246-1261. [PMID: 39196150 PMCID: PMC11357983 DOI: 10.1038/s44161-023-00370-3] [Citation(s) in RCA: 12] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/23/2023] [Accepted: 10/16/2023] [Indexed: 08/29/2024]
Abstract
Arrhythmogenic right ventricular cardiomyopathy (ARVC) is a fatal genetic heart disease characterized by cardiac arrhythmias, in which fibrofatty deposition leads to heart failure, with no effective treatments. Plakophilin 2 (PKP2) is the most frequently mutated gene in ARVC, and although altered RNA splicing has been implicated, there are no models to study its effect and therapeutics. Here, we generate a mouse model harboring a PKP2 mutation (IVS10-1G>C) affecting RNA splicing, recapitulating ARVC features and sudden death starting at 4 weeks. Administering AAV-PKP2 gene therapy (adeno-associated viral therapy to drive cardiac expression of PKP2) to neonatal mice restored PKP2 protein levels, completely preventing cardiac desmosomal and pathological deficits associated with ARVC, ensuring 100% survival of mice up to 6 months. Late-stage AAV-PKP2 administration rescued desmosomal protein deficits and reduced pathological deficits including improved cardiac function in adult mice, resulting in 100% survival up to 4 months. We suggest that AAV-PKP2 gene therapy holds promise for circumventing ARVC associated with PKP2 mutations, including splice site mutations.
Collapse
Affiliation(s)
- William H Bradford
- Department of Medicine, University of California San Diego, La Jolla, CA, USA
| | - Jing Zhang
- Department of Medicine, University of California San Diego, La Jolla, CA, USA
| | | | - Yan Liang
- Department of Medicine, University of California San Diego, La Jolla, CA, USA
| | - Aryanne Do
- Department of Medicine, University of California San Diego, La Jolla, CA, USA
| | - Tsui-Min Wang
- Department of Medicine, University of California San Diego, La Jolla, CA, USA
| | - Lena Nguyen
- Department of Medicine, University of California San Diego, La Jolla, CA, USA
| | | | - Jie Wang
- Department of Medicine, University of California San Diego, La Jolla, CA, USA
| | - Yusu Gu
- Department of Medicine, University of California San Diego, La Jolla, CA, USA
| | - Andrew McCulloch
- Department of Bioengineering, University of California San Diego, La Jolla, CA, USA
| | - Kirk L Peterson
- Department of Medicine, University of California San Diego, La Jolla, CA, USA
| | - Farah Sheikh
- Department of Medicine, University of California San Diego, La Jolla, CA, USA.
| |
Collapse
|
20
|
Bakavayev S, Stavsky A, Argueti-Ostrovsky S, Yehezkel G, Fridmann-Sirkis Y, Barak Z, Gitler D, Israelson A, Engel S. Blocking an epitope of misfolded SOD1 ameliorates disease phenotype in a model of amyotrophic lateral sclerosis. Brain 2023; 146:4594-4607. [PMID: 37394908 DOI: 10.1093/brain/awad222] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2022] [Revised: 05/01/2023] [Accepted: 06/11/2023] [Indexed: 07/04/2023] Open
Abstract
The current strategies to mitigate the toxicity of misfolded superoxide dismutase 1 (SOD1) in familial amyotrophic lateral sclerosis via blocking SOD1 expression in the CNS are indiscriminative for misfolded and intact proteins, and as such, entail a risk of depriving CNS cells of their essential antioxidant potential. As an alternative approach to neutralize misfolded and spare unaffected SOD1 species, we developed scFv-SE21 antibody that blocks the β6/β7 loop epitope exposed exclusively in misfolded SOD1. The β6/β7 loop epitope has previously been proposed to initiate amyloid-like aggregation of misfolded SOD1 and mediate its prion-like activity. The adeno-associated virus-mediated expression of scFv-SE21 in the CNS of hSOD1G37R mice rescued spinal motor neurons, reduced the accumulation of misfolded SOD1, decreased gliosis and thus delayed disease onset and extended survival by 90 days. The results provide evidence for the role of the exposed β6/β7 loop epitope in the mechanism of neurotoxic gain-of-function of misfolded SOD1 and open avenues for the development of mechanism-based anti-SOD1 therapeutics, whose selective targeting of misfolded SOD1 species may entail a reduced risk of collateral oxidative damage to the CNS.
Collapse
Affiliation(s)
- Shamchal Bakavayev
- Department of Clinical Biochemistry and Pharmacology, Faculty of Health Sciences, Ben-Gurion University of the Negev, Beer-Sheva 84105, Israel
| | - Alexandra Stavsky
- Department of Physiology and Cell Biology, Faculty of Health Sciences, Ben-Gurion University of the Negev, Beer-Sheva 84105, Israel
| | - Shirel Argueti-Ostrovsky
- Department of Physiology and Cell Biology, Faculty of Health Sciences, Ben-Gurion University of the Negev, Beer-Sheva 84105, Israel
| | - Galit Yehezkel
- Department of Life Sciences, Faculty of Natural Sciences, Ben-Gurion University of the Negev, Beer-Sheva 84105, Israel
| | - Yael Fridmann-Sirkis
- Department of Life Sciences Core Facilities, Faculty of Biochemistry, Weizmann Institute of Science, Rehovot 76100, Israel
| | - Zeev Barak
- Department of Life Sciences, Faculty of Natural Sciences, Ben-Gurion University of the Negev, Beer-Sheva 84105, Israel
| | - Daniel Gitler
- Department of Physiology and Cell Biology, Faculty of Health Sciences, Ben-Gurion University of the Negev, Beer-Sheva 84105, Israel
- The Zlotowski Center for Neuroscience, Ben-Gurion University of the Negev, Beer-Sheva 84105, Israel
| | - Adrian Israelson
- Department of Physiology and Cell Biology, Faculty of Health Sciences, Ben-Gurion University of the Negev, Beer-Sheva 84105, Israel
- The Zlotowski Center for Neuroscience, Ben-Gurion University of the Negev, Beer-Sheva 84105, Israel
| | - Stanislav Engel
- Department of Clinical Biochemistry and Pharmacology, Faculty of Health Sciences, Ben-Gurion University of the Negev, Beer-Sheva 84105, Israel
- The Zlotowski Center for Neuroscience, Ben-Gurion University of the Negev, Beer-Sheva 84105, Israel
| |
Collapse
|
21
|
Maduka CV, Alhaj M, Ural E, Habeeb OM, Kuhnert MM, Smith K, Makela AV, Pope H, Chen S, Hix JM, Mallett CL, Chung S, Hakun M, Tundo A, Zinn KR, Hankenson KD, Goodman SB, Narayan R, Contag CH. Polylactide Degradation Activates Immune Cells by Metabolic Reprogramming. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2023; 10:e2304632. [PMID: 37737614 PMCID: PMC10625072 DOI: 10.1002/advs.202304632] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/11/2023] [Revised: 08/04/2023] [Indexed: 09/23/2023]
Abstract
Polylactide (PLA) is the most widely utilized biopolymer in medicine. However, chronic inflammation and excessive fibrosis resulting from its degradation remain significant obstacles to extended clinical use. Immune cell activation has been correlated to the acidity of breakdown products, yet methods to neutralize the pH have not significantly reduced adverse responses. Using a bioenergetic model, delayed cellular changes were observed that are not apparent in the short-term. Amorphous and semi-crystalline PLA degradation products, including monomeric l-lactic acid, mechanistically remodel metabolism in cells leading to a reactive immune microenvironment characterized by elevated proinflammatory cytokines. Selective inhibition of metabolic reprogramming and altered bioenergetics both reduce these undesirable high cytokine levels and stimulate anti-inflammatory signals. The results present a new biocompatibility paradigm by identifying metabolism as a target for immunomodulation to increase tolerance to biomaterials, ensuring safe clinical application of PLA-based implants for soft- and hard-tissue regeneration, and advancing nanomedicine and drug delivery.
Collapse
Affiliation(s)
- Chima V. Maduka
- Comparative Medicine & Integrative BiologyMichigan State UniversityEast LansingMI48824USA
- Department of Biomedical EngineeringMichigan State UniversityEast LansingMI48824USA
- Institute for Quantitative Health Science & EngineeringMichigan State UniversityEast LansingMI48824USA
| | - Mohammed Alhaj
- Department of Chemical Engineering & Materials ScienceMichigan State UniversityEast LansingMI48824USA
| | - Evran Ural
- Department of Biomedical EngineeringMichigan State UniversityEast LansingMI48824USA
- Institute for Quantitative Health Science & EngineeringMichigan State UniversityEast LansingMI48824USA
| | - Oluwatosin M. Habeeb
- Department of Biomedical EngineeringMichigan State UniversityEast LansingMI48824USA
- Institute for Quantitative Health Science & EngineeringMichigan State UniversityEast LansingMI48824USA
| | - Maxwell M. Kuhnert
- Department of Biomedical EngineeringMichigan State UniversityEast LansingMI48824USA
- Institute for Quantitative Health Science & EngineeringMichigan State UniversityEast LansingMI48824USA
| | - Kylie Smith
- Department of Biomedical EngineeringMichigan State UniversityEast LansingMI48824USA
- Institute for Quantitative Health Science & EngineeringMichigan State UniversityEast LansingMI48824USA
| | - Ashley V. Makela
- Department of Biomedical EngineeringMichigan State UniversityEast LansingMI48824USA
- Institute for Quantitative Health Science & EngineeringMichigan State UniversityEast LansingMI48824USA
| | - Hunter Pope
- Department of Biomedical EngineeringMichigan State UniversityEast LansingMI48824USA
- Institute for Quantitative Health Science & EngineeringMichigan State UniversityEast LansingMI48824USA
| | - Shoue Chen
- School of PackagingMichigan State UniversityEast LansingMI48824USA
| | - Jeremy M. Hix
- Institute for Quantitative Health Science & EngineeringMichigan State UniversityEast LansingMI48824USA
| | - Christiane L. Mallett
- Institute for Quantitative Health Science & EngineeringMichigan State UniversityEast LansingMI48824USA
| | - Seock‐Jin Chung
- Department of Biomedical EngineeringMichigan State UniversityEast LansingMI48824USA
- Institute for Quantitative Health Science & EngineeringMichigan State UniversityEast LansingMI48824USA
| | - Maxwell Hakun
- Department of Biomedical EngineeringMichigan State UniversityEast LansingMI48824USA
- Institute for Quantitative Health Science & EngineeringMichigan State UniversityEast LansingMI48824USA
| | - Anthony Tundo
- Department of Biomedical EngineeringMichigan State UniversityEast LansingMI48824USA
- Institute for Quantitative Health Science & EngineeringMichigan State UniversityEast LansingMI48824USA
| | - Kurt R. Zinn
- Department of Biomedical EngineeringMichigan State UniversityEast LansingMI48824USA
- Institute for Quantitative Health Science & EngineeringMichigan State UniversityEast LansingMI48824USA
| | - Kurt D. Hankenson
- Department of Orthopedic SurgeryUniversity of Michigan Medical SchoolAnn ArborMI48109USA
| | - Stuart B. Goodman
- Department of Orthopedic SurgeryStanford UniversityStanfordCA94063USA
- Department of BioengineeringStanford UniversityStanfordCA94305USA
| | - Ramani Narayan
- Department of Chemical Engineering & Materials ScienceMichigan State UniversityEast LansingMI48824USA
| | - Christopher H. Contag
- Department of Biomedical EngineeringMichigan State UniversityEast LansingMI48824USA
- Institute for Quantitative Health Science & EngineeringMichigan State UniversityEast LansingMI48824USA
- Department of Microbiology & Molecular GeneticsMichigan State UniversityEast LansingMI48864USA
| |
Collapse
|
22
|
Georgiou E, Kagiava A, Sargiannidou I, Schiza N, Stavrou M, Richter J, Tryfonos C, Heslegrave A, Zetterberg H, Christodoulou C, Kleopa KA. AAV9-mediated SH3TC2 gene replacement therapy targeted to Schwann cells for the treatment of CMT4C. Mol Ther 2023; 31:3290-3307. [PMID: 37641403 PMCID: PMC10638072 DOI: 10.1016/j.ymthe.2023.08.020] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2023] [Revised: 07/19/2023] [Accepted: 08/25/2023] [Indexed: 08/31/2023] Open
Abstract
Type 4C Charcot-Marie-Tooth (CMT4C) demyelinating neuropathy is caused by autosomal recessive SH3TC2 gene mutations. SH3TC2 is highly expressed in myelinating Schwann cells. CMT4C is a childhood-onset progressive disease without effective treatment. Here, we generated a gene therapy for CMT4C mediated by an adeno-associated viral 9 vector (AAV9) to deliver the human SH3TC2 gene in the Sh3tc2-/- mouse model of CMT4C. We used a minimal fragment of the myelin protein zero (Mpz) promoter (miniMpz), which was cloned and validated to achieve Schwann cell-targeted expression of SH3TC2. Following the demonstration of AAV9-miniMpz.SH3TC2myc vector efficacy to re-establish SH3TC2 expression in the peripheral nervous system, we performed an early as well as a delayed treatment trial in Sh3tc2-/- mice. We demonstrate both after early as well as following late treatment improvements in multiple motor performance tests and nerve conduction velocities. Moreover, treatment led to normalization of the organization of the nodes of Ranvier, which is typically deficient in CMT4C patients and Sh3tc2-/- mice, along with reduced ratios of demyelinated fibers, increased myelin thickness and reduced g-ratios at both time points of intervention. Taken together, our results provide a proof of concept for an effective and potentially translatable gene replacement therapy for CMT4C treatment.
Collapse
Affiliation(s)
- Elena Georgiou
- Neuroscience Department, The Cyprus Institute of Neurology and Genetics, Nicosia, Cyprus
| | - Alexia Kagiava
- Neuroscience Department, The Cyprus Institute of Neurology and Genetics, Nicosia, Cyprus
| | - Irene Sargiannidou
- Neuroscience Department, The Cyprus Institute of Neurology and Genetics, Nicosia, Cyprus
| | - Natasa Schiza
- Neuroscience Department, The Cyprus Institute of Neurology and Genetics, Nicosia, Cyprus
| | - Marina Stavrou
- Neuroscience Department, The Cyprus Institute of Neurology and Genetics, Nicosia, Cyprus
| | - Jan Richter
- Molecular Virology Department, The Cyprus Institute of Neurology and Genetics, Nicosia, Cyprus
| | - Christina Tryfonos
- Molecular Virology Department, The Cyprus Institute of Neurology and Genetics, Nicosia, Cyprus
| | - Amanda Heslegrave
- Department of Neurodegenerative Disease, UCL Institute of Neurology, London, UK; UK Dementia Research Institute at UCL, London, UK
| | - Henrik Zetterberg
- Department of Neurodegenerative Disease, UCL Institute of Neurology, London, UK; UK Dementia Research Institute at UCL, London, UK; Department of Psychiatry and Neurochemistry, Institute of Neuroscience and Physiology, the Sahlgrenska Academy at the University of Gothenburg, Mölndal, Sweden; Clinical Neurochemistry Laboratory, Sahlgrenska University Hospital, Mölndal, Sweden; Hong Kong Center for Neurodegenerative Diseases, Clear Water Bay, Hong Kong, China; Wisconsin Alzheimer's Disease Research Center, University of Wisconsin School of Medicine and Public Health, University of Wisconsin-Madison, Madison, WI, USA
| | - Christina Christodoulou
- Molecular Virology Department, The Cyprus Institute of Neurology and Genetics, Nicosia, Cyprus
| | - Kleopas A Kleopa
- Neuroscience Department, The Cyprus Institute of Neurology and Genetics, Nicosia, Cyprus; Center for Neuromuscular Disorders, The Cyprus Institute of Neurology and Genetics, Nicosia, Cyprus.
| |
Collapse
|
23
|
Guan T, Zhou T, Zhang X, Guo Y, Yang C, Lin J, Zhang JV, Cheng Y, Marzban H, Wang YT, Kong J. Selective removal of misfolded SOD1 delays disease onset in a mouse model of amyotrophic lateral sclerosis. Cell Mol Life Sci 2023; 80:304. [PMID: 37752364 PMCID: PMC11072549 DOI: 10.1007/s00018-023-04956-9] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2023] [Revised: 07/26/2023] [Accepted: 09/07/2023] [Indexed: 09/28/2023]
Abstract
BACKGROUND Amyotrophic lateral sclerosis (ALS) is a devastating neurodegenerative disease. There is no cure currently. The discovery that mutations in the gene SOD1 are a cause of ALS marks a breakthrough in the search for effective treatments for ALS. SOD1 is an antioxidant that is highly expressed in motor neurons. Human SOD1 is prone to aberrant modifications. Familial ALS-linked SOD1 variants are particularly susceptible to aberrant modifications. Once modified, SOD1 undergoes conformational changes and becomes misfolded. This study aims to determine the effect of selective removal of misfolded SOD1 on the pathogenesis of ALS. METHODS Based on the chaperone-mediated protein degradation pathway, we designed a fusion peptide named CT4 and tested its efficiency in knocking down intracellularly misfolded SOD1 and its efficacy in modifying the pathogenesis of ALS. RESULTS Expression of the plasmid carrying the CT4 sequence in human HEK cells resulted in robust removal of misfolded SOD1 induced by serum deprivation. Co-transfection of the CT4 and the G93A-hSOD1 plasmids at various ratios demonstrated a dose-dependent knockdown efficiency on G93A-hSOD1, which could be further increased when misfolding of SOD1 was enhanced by serum deprivation. Application of the full-length CT4 peptide to primary cultures of neurons expressing the G93A variant of human SOD1 revealed a time course of the degradation of misfolded SOD1; misfolded SOD1 started to decrease by 2 h after the application of CT4 and disappeared by 7 h. Intravenous administration of the CT4 peptide at 10 mg/kg to the G93A-hSOD1 reduced human SOD1 in spinal cord tissue by 68% in 24 h and 54% in 48 h in presymptomatic ALS mice. Intraperitoneal administration of the CT4 peptide starting from 60 days of age significantly delayed the onset of ALS and prolonged the lifespan of the G93A-hSOD1 mice. CONCLUSIONS The CT4 peptide directs the degradation of misfolded SOD1 in high efficiency and specificity. Selective removal of misfolded SOD1 significantly delays the onset of ALS, demonstrating that misfolded SOD1 is the toxic form of SOD1 that causes motor neuron death. The study proves that selective removal of misfolded SOD1 is a promising treatment for ALS.
Collapse
Affiliation(s)
- Teng Guan
- Department of Human Anatomy and Cell Science, Max Rady College of Medicine, University of Manitoba, Winnipeg, MB, Canada
| | - Ting Zhou
- Department of Human Anatomy and Cell Science, Max Rady College of Medicine, University of Manitoba, Winnipeg, MB, Canada
- Department of Pharmacy, The Second Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Xiaosha Zhang
- Department of Human Anatomy and Cell Science, Max Rady College of Medicine, University of Manitoba, Winnipeg, MB, Canada
| | - Ying Guo
- Department of Human Anatomy and Cell Science, Max Rady College of Medicine, University of Manitoba, Winnipeg, MB, Canada
- Department of Forensic Medicine, Hebei North University, Zhangjiakou, China
| | - Chaoxian Yang
- Department of Human Anatomy and Cell Science, Max Rady College of Medicine, University of Manitoba, Winnipeg, MB, Canada
- Department of Neurobiology, Southwest Medical University, Luzhou, China
| | - Justin Lin
- Department of Human Anatomy and Cell Science, Max Rady College of Medicine, University of Manitoba, Winnipeg, MB, Canada
| | - Jiasi Vicky Zhang
- Department of Human Anatomy and Cell Science, Max Rady College of Medicine, University of Manitoba, Winnipeg, MB, Canada
| | - Yongquan Cheng
- Department of Human Anatomy and Cell Science, Max Rady College of Medicine, University of Manitoba, Winnipeg, MB, Canada
| | - Hassan Marzban
- Department of Human Anatomy and Cell Science, Max Rady College of Medicine, University of Manitoba, Winnipeg, MB, Canada
| | - Yu Tian Wang
- Brain Research Centre and Department of Medicine, Vancouver Coastal Health Research Institute, University of British Columbia, Vancouver, BC, Canada
| | - Jiming Kong
- Department of Human Anatomy and Cell Science, Max Rady College of Medicine, University of Manitoba, Winnipeg, MB, Canada.
- Department of Human Anatomy and Cell Science, Max Rady College of Medicine, University of Manitoba, 745 Bannatyne Avenue, Winnipeg, MB, R3E 0J9, Canada.
| |
Collapse
|
24
|
Zhu L, Li S, Li XJ, Yin P. Pathological insights from amyotrophic lateral sclerosis animal models: comparisons, limitations, and challenges. Transl Neurodegener 2023; 12:46. [PMID: 37730668 PMCID: PMC10510301 DOI: 10.1186/s40035-023-00377-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2023] [Accepted: 09/01/2023] [Indexed: 09/22/2023] Open
Abstract
In order to dissect amyotrophic lateral sclerosis (ALS), a multigenic, multifactorial, and progressive neurodegenerative disease with heterogeneous clinical presentations, researchers have generated numerous animal models to mimic the genetic defects. Concurrent and comparative analysis of these various models allows identification of the causes and mechanisms of ALS in order to finally obtain effective therapeutics. However, most genetically modified rodent models lack overt pathological features, imposing challenges and limitations in utilizing them to rigorously test the potential mechanisms. Recent studies using large animals, including pigs and non-human primates, have uncovered important events that resemble neurodegeneration in patients' brains but could not be produced in small animals. Here we describe common features as well as discrepancies among these models, highlighting new insights from these models. Furthermore, we will discuss how to make rodent models more capable of recapitulating important pathological features based on the important pathogenic insights from large animal models.
Collapse
Affiliation(s)
- Longhong Zhu
- Guangdong Key Laboratory of Non-Human Primate Research, Key Laboratory of CNS Regeneration (Ministry of Education), GHM Institute of CNS Regeneration, Jinan University, Guangzhou, 510632, China
| | - Shihua Li
- Guangdong Key Laboratory of Non-Human Primate Research, Key Laboratory of CNS Regeneration (Ministry of Education), GHM Institute of CNS Regeneration, Jinan University, Guangzhou, 510632, China
| | - Xiao-Jiang Li
- Guangdong Key Laboratory of Non-Human Primate Research, Key Laboratory of CNS Regeneration (Ministry of Education), GHM Institute of CNS Regeneration, Jinan University, Guangzhou, 510632, China.
| | - Peng Yin
- Guangdong Key Laboratory of Non-Human Primate Research, Key Laboratory of CNS Regeneration (Ministry of Education), GHM Institute of CNS Regeneration, Jinan University, Guangzhou, 510632, China.
| |
Collapse
|
25
|
Fang YM, Chen WC, Zheng WJ, Yang YS, Zhang Y, Chen XL, Pei MQ, Lin S, He HF. A cutting-edge strategy for spinal cord injury treatment: resident cellular transdifferentiation. Front Cell Neurosci 2023; 17:1237641. [PMID: 37711511 PMCID: PMC10498389 DOI: 10.3389/fncel.2023.1237641] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2023] [Accepted: 08/14/2023] [Indexed: 09/16/2023] Open
Abstract
Spinal cord injury causes varying degrees of motor and sensory function loss. However, there are no effective treatments for spinal cord repair following an injury. Moreover, significant preclinical advances in bioengineering and regenerative medicine have not yet been translated into effective clinical therapies. The spinal cord's poor regenerative capacity makes repairing damaged and lost neurons a critical treatment step. Reprogramming-based neuronal transdifferentiation has recently shown great potential in repair and plasticity, as it can convert mature somatic cells into functional neurons for spinal cord injury repair in vitro and in vivo, effectively halting the progression of spinal cord injury and promoting functional improvement. However, the mechanisms of the neuronal transdifferentiation and the induced neuronal subtypes are not yet well understood. This review analyzes the mechanisms of resident cellular transdifferentiation based on a review of the relevant recent literature, describes different molecular approaches to obtain different neuronal subtypes, discusses the current challenges and improvement methods, and provides new ideas for exploring therapeutic approaches for spinal cord injury.
Collapse
Affiliation(s)
- Yu-Ming Fang
- Department of Anaesthesiology, The Second Affiliated Hospital of Fujian Medical University, Quanzhou, China
| | - Wei-Can Chen
- Department of Anaesthesiology, The Second Affiliated Hospital of Fujian Medical University, Quanzhou, China
| | - Wan-Jing Zheng
- Department of Anaesthesiology, The Second Affiliated Hospital of Fujian Medical University, Quanzhou, China
| | - Yu-Shen Yang
- Department of Anaesthesiology, The Second Affiliated Hospital of Fujian Medical University, Quanzhou, China
| | - Yan Zhang
- Department of Anaesthesiology, The Second Affiliated Hospital of Fujian Medical University, Quanzhou, China
| | - Xin-Li Chen
- Department of Anaesthesiology, The Second Affiliated Hospital of Fujian Medical University, Quanzhou, China
| | - Meng-Qin Pei
- Department of Anaesthesiology, The Second Affiliated Hospital of Fujian Medical University, Quanzhou, China
| | - Shu Lin
- Centre of Neurological and Metabolic Research, The Second Affiliated Hospital of Fujian Medical University, Quanzhou, China
- Neuroendocrinology Group, Garvan Institute of Medical Research, Sydney, NSW, Australia
| | - He-Fan He
- Department of Anaesthesiology, The Second Affiliated Hospital of Fujian Medical University, Quanzhou, China
| |
Collapse
|
26
|
Tosolini AP, Smith GM. Editorial: Gene therapy for the central and peripheral nervous system, volume II. Front Mol Neurosci 2023; 16:1258458. [PMID: 37593465 PMCID: PMC10431961 DOI: 10.3389/fnmol.2023.1258458] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2023] [Accepted: 07/14/2023] [Indexed: 08/19/2023] Open
Affiliation(s)
- Andrew P. Tosolini
- Department of Neuromuscular Diseases, Queen Square Institute of Neurology, University College London, London, United Kingdom
- UCL Queen Square Motor Neuron Disease Centre, University College London, London, United Kingdom
- Australian Institute for Bioengineering and Nanotechnology, The University of Queensland, St Lucia, QLD, Australia
- School of Biomedical Sciences, Faculty of Medicine, The University of Queensland, St Lucia, QLD, Australia
| | - George M. Smith
- Shriners Hospitals Pediatric Research Center, Lewis Katz School of Medicine, Temple University, Philadelphia, PA, United States
- Department of Neural Sciences, Lewis Katz School of Medicine, Temple University, Philadelphia, PA, United States
| |
Collapse
|
27
|
Xie S, Guan C, Huang T, Yang G, Hu J, Sun D, Lu H. Activating Mitochondrial Sirtuin 3 in Chondrocytes Alleviates Aging-Induced Fibrocartilage Layer Degeneration and Promotes Healing of Degenerative Rotator Cuff Injury. THE AMERICAN JOURNAL OF PATHOLOGY 2023; 193:939-949. [PMID: 37068637 DOI: 10.1016/j.ajpath.2023.03.013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/08/2023] [Revised: 03/04/2023] [Accepted: 03/23/2023] [Indexed: 04/19/2023]
Abstract
The present study aimed to examine the impact of mitochondrial sirtuin 3 (SIRT3) on the degenerative rotator cuff injury, which is a prevalent issue among the elderly population primarily due to aging-related tissue degradation. The study hypothesized that SIRT3, as a major deacetylase in mitochondria, is a significant factor in controlling the quality of mitochondria and the deterioration of fibrocartilage, a crucial component of the rotator cuff. Results showed that the aging process led to weakened biomechanical properties and degeneration of the fibrocartilage layer in mice, accompanied by a decrease in SIRT3 expression. SIRT3 activation ameliorated the aging-related disruption of chondrocyte phenotype and fibrocartilage degradation. SIRT3 activator honokiol improved the phenotype of senescent chondrocytes and promoted rotator cuff healing in aged mice through SIRT3 activation. In conclusion, the findings suggested that the decline in SIRT3 levels with age contributes to rotator cuff degeneration and chondrocyte senescence, and that SIRT3 activation through the use of honokiol is an effective approach for promoting rotator cuff healing in the elderly population.
Collapse
Affiliation(s)
- Shanshan Xie
- Department of Sports Medicine, Xiangya Hospital, Central South University, Changsha, China; Key Laboratory of Organ Injury, Aging and Regenerative Medicine of Hunan Province, Changsha, China
| | - Changbiao Guan
- Department of Sports Medicine, Xiangya Hospital, Central South University, Changsha, China; Key Laboratory of Organ Injury, Aging and Regenerative Medicine of Hunan Province, Changsha, China
| | - Tingmo Huang
- Department of Sports Medicine, Xiangya Hospital, Central South University, Changsha, China; Key Laboratory of Organ Injury, Aging and Regenerative Medicine of Hunan Province, Changsha, China
| | - Guang Yang
- Department of Sports Medicine, Xiangya Hospital, Central South University, Changsha, China; Key Laboratory of Organ Injury, Aging and Regenerative Medicine of Hunan Province, Changsha, China
| | - Jianzhong Hu
- Key Laboratory of Organ Injury, Aging and Regenerative Medicine of Hunan Province, Changsha, China; Department of Spine Surgery, Xiangya Hospital, Central South University, Changsha, China; Hunan Engineering Research Center of Sports and Health, Changsha, China; Mobile Health Ministry of Education-China Mobile Joint Laboratory, Changsha, China
| | - Deyi Sun
- Department of Sports Medicine, Xiangya Hospital, Central South University, Changsha, China; Key Laboratory of Organ Injury, Aging and Regenerative Medicine of Hunan Province, Changsha, China; National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, China.
| | - Hongbin Lu
- Department of Sports Medicine, Xiangya Hospital, Central South University, Changsha, China; National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, China; Key Laboratory of Organ Injury, Aging and Regenerative Medicine of Hunan Province, Changsha, China; Hunan Engineering Research Center of Sports and Health, Changsha, China; Xiangya Hospital-International Chinese Musculeskeletal Research Society Sports Medicine Research Centre, Changsha, China.
| |
Collapse
|
28
|
Duan W, Urani E, Mattson MP. The potential of gene editing for Huntington's disease. Trends Neurosci 2023; 46:365-376. [PMID: 36907678 PMCID: PMC10121915 DOI: 10.1016/j.tins.2023.02.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2022] [Revised: 02/21/2023] [Accepted: 02/22/2023] [Indexed: 03/12/2023]
Abstract
Huntington's disease (HD) is a dominantly inherited neurodegenerative disorder caused by a trinucleotide repeat expansion in the huntingtin gene resulting in long stretches of polyglutamine repeats in the huntingtin protein. The disease involves progressive degeneration of neurons in the striatum and cerebral cortex resulting in loss of control of motor function, psychiatric problems, and cognitive deficits. There are as yet no treatments that can slow disease progression in HD. Recent advances in gene editing using clustered regularly interspaced short palindromic repeats (CRISPR)-CRISPR-associated protein 9 (Cas9) systems and demonstrations of their ability to correct gene mutations in animal models of a range of diseases suggest that gene editing may prove effective in preventing or ameliorating HD. Here we describe (i) potential CRISPR-Cas designs and cellular delivery methods for the correction of mutant genes that cause inherited diseases, and (ii) recent preclinical findings demonstrating the efficacy of such gene-editing approaches in animal models, with a focus on HD.
Collapse
Affiliation(s)
- Wenzhen Duan
- Department of Psychiatry and Behavioral Sciences, Johns Hopkins University School of Medicine, Baltimore, MD, USA; Department of Neuroscience, Johns Hopkins University School of Medicine, Baltimore, MD, USA.
| | - Ece Urani
- Program in Molecular Biology and Genetics, Bilkent University, Ankara, Turkey
| | - Mark P Mattson
- Department of Neuroscience, Johns Hopkins University School of Medicine, Baltimore, MD, USA.
| |
Collapse
|
29
|
Gao T, Huo J, Xin C, Yang J, Liu Q, Dong H, Li R, Liu Y. Protective effects of intrathecal injection of AAV9-RabGGTB-GFP+ in SOD1G93A mice. Front Aging Neurosci 2023; 15:1092607. [PMID: 36967828 PMCID: PMC10036913 DOI: 10.3389/fnagi.2023.1092607] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2022] [Accepted: 02/24/2023] [Indexed: 03/12/2023] Open
Abstract
IntroductionAmyotrophic lateral sclerosis (ALS) is a neurodegenerative disease that widely affects motor neurons of the CNS. About 20% of patients with ALS have familial ALS (fALS). One of the classic models of ALS are SOD1G93A mice. Misfolded SOD1 protein can be overexpressed in motor neurons, which results in progressive paralysis of the limbs of mice. There is still no effective treatment for ALS. In recent years, the treatment of ALS by regulating autophagy has become a research hotspot. Autophagy obstacles have been confirmed to be one of the early pathological events of ALS. Rab7 is a member of the Ras superfamily and plays a key role in the late stage of autophagy. In our previous studies, we found that prenoylation of Rab7 was inhibited in the ALS model. Prenylation is a post-translational modification in which farnesyl or geranylgeranyl groups are covalently linked to target proteins. Based on these findings, we proposed the novel idea that the regulation of RabGGTB (the β-subunit of RabGGTase) mediated prenylation modification of Rab7, and that this can be used as a prevention and treatment of ALS associated with abnormal protein accumulation.MethodsIn the present study, RabGGTB was overexpressed in mouse spinal cord motoneurons by using adeno-associated virus as vector. Then immunofluorescence quantitative analysis was used for pathological study. The body weight, footprint analysis, the accelerating rotarod test, and neurological deficits score were used to evaluate animal behavior.ResultsOur results show that the protein level of RabGGTB was significantly increased in the lumbar and thoracic regions of spinal cord motoneurons of injected mice. Furthermore, the onset time and survival time of SOD1G93A mice injected with AAV9-RabGGTB-GFP+ were delayed compared with those of mice without overexpression. At the same time, we also observed a decrease in SOD1 misfolded and glial overactivation in the lumbar spinal cord of these SOD1G93A mice.ConclusionThe findings reported here show that RabGGTB plays a significant role in the pathogenesis of SOD1G93A mice and with great therapeutic potential for reducing abnormal aggregation of SOD1 in ALS.
Collapse
Affiliation(s)
- Tianchu Gao
- Department of Neurology, The Second Hospital of Hebei Medical University, Shijiazhuang, Hebei, China
- The Key Laboratory of Neurology, Hebei Medical University, Ministry of Education, Shijiazhuang, Hebei, China
- Neurological Laboratory of Hebei Province, Shijiazhuang, Hebei, China
| | - Jia Huo
- Department of Neurology, The Second Hospital of Hebei Medical University, Shijiazhuang, Hebei, China
- The Key Laboratory of Neurology, Hebei Medical University, Ministry of Education, Shijiazhuang, Hebei, China
- Neurological Laboratory of Hebei Province, Shijiazhuang, Hebei, China
| | - Cheng Xin
- Department of Neurology, The Second Hospital of Hebei Medical University, Shijiazhuang, Hebei, China
- The Key Laboratory of Neurology, Hebei Medical University, Ministry of Education, Shijiazhuang, Hebei, China
- Neurological Laboratory of Hebei Province, Shijiazhuang, Hebei, China
| | - Jing Yang
- Department of Neurology, The Second Hospital of Hebei Medical University, Shijiazhuang, Hebei, China
- The Key Laboratory of Neurology, Hebei Medical University, Ministry of Education, Shijiazhuang, Hebei, China
- Neurological Laboratory of Hebei Province, Shijiazhuang, Hebei, China
| | - Qi Liu
- Department of Neurology, The Second Hospital of Hebei Medical University, Shijiazhuang, Hebei, China
- The Key Laboratory of Neurology, Hebei Medical University, Ministry of Education, Shijiazhuang, Hebei, China
- Neurological Laboratory of Hebei Province, Shijiazhuang, Hebei, China
| | - Hui Dong
- Department of Neurology, The Second Hospital of Hebei Medical University, Shijiazhuang, Hebei, China
- The Key Laboratory of Neurology, Hebei Medical University, Ministry of Education, Shijiazhuang, Hebei, China
- Neurological Laboratory of Hebei Province, Shijiazhuang, Hebei, China
| | - Rui Li
- Department of Neurology, The Second Hospital of Hebei Medical University, Shijiazhuang, Hebei, China
- The Key Laboratory of Neurology, Hebei Medical University, Ministry of Education, Shijiazhuang, Hebei, China
- Neurological Laboratory of Hebei Province, Shijiazhuang, Hebei, China
- *Correspondence: Rui Li, ; Yaling Liu,
| | - Yaling Liu
- Department of Neurology, The Second Hospital of Hebei Medical University, Shijiazhuang, Hebei, China
- The Key Laboratory of Neurology, Hebei Medical University, Ministry of Education, Shijiazhuang, Hebei, China
- Neurological Laboratory of Hebei Province, Shijiazhuang, Hebei, China
- *Correspondence: Rui Li, ; Yaling Liu,
| |
Collapse
|
30
|
Merjane J, Chung R, Patani R, Lisowski L. Molecular mechanisms of amyotrophic lateral sclerosis as broad therapeutic targets for gene therapy applications utilizing adeno-associated viral vectors. Med Res Rev 2023. [PMID: 36786126 DOI: 10.1002/med.21937] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2021] [Revised: 08/19/2022] [Accepted: 02/02/2023] [Indexed: 02/15/2023]
Abstract
Despite the devastating clinical outcome of the neurodegenerative disease, amyotrophic lateral sclerosis (ALS), its etiology remains mysterious. Approximately 90% of ALS is characterized as sporadic, signifying that the patient has no family history of the disease. The development of an impactful disease modifying therapy across the ALS spectrum has remained out of grasp, largely due to the poorly understood mechanisms of disease onset and progression. Currently, ALS is invariably fatal and rapidly progressive. It is hypothesized that multiple factors can lead to the development of ALS, however, treatments are often focused on targeting specific familial forms of the disease (10% of total cases). There is a strong need to develop disease modifying treatments for ALS that can be effective across the full ALS spectrum of familial and sporadic cases. Although the onset of disease varies significantly between patients, there are general disease mechanisms and progressions that can be seen broadly across ALS patients. Therefore, this review explores the targeting of these widespread disease mechanisms as possible areas for therapeutic intervention to treat ALS broadly. In particular, this review will focus on targeting mechanisms of defective protein homeostasis and RNA processing, which are both increasingly recognized as design principles of ALS pathogenesis. Additionally, this review will explore the benefits of gene therapy as an approach to treating ALS, specifically focusing on the use of adeno-associated virus (AAV) as a vector for gene delivery to the CNS and recent advances in the field.
Collapse
Affiliation(s)
- Jessica Merjane
- Translational Vectorology Research Unit, Children's Medical Research Institute, Faculty of Medicine and Health, The University of Sydney, Westmead, New South Wales, Australia
| | - Roger Chung
- Department of Biomedical Sciences, Centre for Motor Neuron Disease Research, Faculty of Medicine & Health Sciences, Macquarie University, Sydney, New South Wales, Australia
| | - Rickie Patani
- Department of Neuromuscular Disease, UCL Queen Square Institute of Neurology, Queen Square, London, UK.,The Francis Crick Institute, London, UK
| | - Leszek Lisowski
- Translational Vectorology Research Unit, Children's Medical Research Institute, Faculty of Medicine and Health, The University of Sydney, Westmead, New South Wales, Australia.,Laboratory of Molecular Oncology and Innovative Therapies, Military Institute of Medicine, Warsaw, Poland
| |
Collapse
|
31
|
Camu W, De La Cruz E, Esselin F. Therapeutic tools for familial ALS. Rev Neurol (Paris) 2023; 179:49-53. [PMID: 36503675 DOI: 10.1016/j.neurol.2022.10.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2022] [Revised: 10/20/2022] [Accepted: 10/21/2022] [Indexed: 12/13/2022]
Abstract
Familial ALS (FALS) accounts for 10 to 15% of ALS cases. In more than 70% of FALS patients, a causal gene is identified and animal models have been developed for a subset of them, mainly for the most frequently mutated genes. Therapeutic tools to treat those patients are dominated by gene-specific therapy and the most advanced approaches target the SOD1 gene mutations. Either by direct delivery of antisense oligonucleotides (ASO) or using viral vectors such as adenoviruses (AAV) to deliver ASOs, gene specific therapies have shown promising results in animal models. The recent use of subpial injections of AAV9+anti SOD1 ASO now shows that the disease is completely prevented or stopped in the animal, depending on the moment of injection, e.g., before or after disease onset. However, the use of viral vectors in humans seems to be limited at least by their immunogenicity. Antibody-based therapies are also efficient to treat animal models, but to a lesser extent. Most of the experiments targeted the SOD1 protein in its misfolded conformation. This approach seems better tolerated than the AAV one, an important limit being the choice of the epitope. Unexpectedly, some advances in treating the C9ORF72 animal model have been obtained using a modulation of microbiota, and this strategy has the great advantage to have an easy route of administration and a good safety profile. The landscape of experimental FALS treatment is rapidly evolving and results are promising. This is an important unmet need for ALS patients and several human phase I, II and III trials are ongoing.
Collapse
Affiliation(s)
- W Camu
- Explorations neurologiques et centre de référence SLA, université de Montpellier, CHU Gui de Chauliac, INM, Inserm, Montpellier, France.
| | - E De La Cruz
- Explorations neurologiques et centre de référence SLA, université de Montpellier, CHU Gui de Chauliac, INM, Inserm, Montpellier, France
| | - F Esselin
- Explorations neurologiques et centre de référence SLA, université de Montpellier, CHU Gui de Chauliac, INM, Inserm, Montpellier, France
| |
Collapse
|
32
|
Kondo T, Inoue I, Umeyama K, Watanabe M, Matsunari H, Uchikura A, Nakano K, Tsukita K, Imamura K, Nagashima H, Inoue H. A Transgenic Pig Model With Human Mutant SOD1 Exhibits the Early Pathology of Amyotrophic Lateral Sclerosis. J Transl Med 2023; 103:100013. [PMID: 37039150 DOI: 10.1016/j.labinv.2022.100013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2022] [Revised: 09/26/2022] [Accepted: 10/05/2022] [Indexed: 01/12/2023] Open
Abstract
Amyotrophic lateral sclerosis (ALS) causes progressive degeneration of the motor neurons. In this study, we delivered the genetic construct including the whole locus of human mutant superoxide dismutase 1 (SOD1) with the promoter region of human SOD1 into porcine zygotes using intracytoplasmic sperm injection-mediated gene transfer, and we thereby generated a pig model of human mutant SOD1-mediated familial ALS. The established ALS pig model exhibited an initial abnormality of motor neurons with accumulated misfolded SOD1. The ALS pig model, with a body size similar to that of human beings, will provide opportunities for cell and gene therapy platforms in preclinical translational research.
Collapse
|
33
|
Liu J, Liu J, Meng C, Gu Q, Huang C, Liu F, Xia C. NRF2 and FXR dual signaling pathways cooperatively regulate the effects of oleanolic acid on cholestatic liver injury. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2023; 108:154529. [PMID: 36343550 DOI: 10.1016/j.phymed.2022.154529] [Citation(s) in RCA: 10] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/19/2022] [Revised: 10/21/2022] [Accepted: 10/26/2022] [Indexed: 06/16/2023]
Abstract
BACKGROUND Previous studies have shown that the anti-cholestatic effect of oleanolic acid (OA) is associated with FXR and NRF2. However, how the two signaling pathways cooperate to regulate the anti-cholestatic effect of OA remains unclear. PURPOSE This study aimed to further demonstrate the effect of OA on alpha-naphthyl isothiocyanate (ANIT)-induced cholestatic liver injury and the interaction mechanism between NRF2 and FXR signaling pathways in maintaining bile acid homeostasis. METHODS Gene knockout animals and cell models, metabolomics analysis, and co-immunoprecipitation were used to investigate the mechanism of OA against cholestatic liver injury. RESULTS The effect of OA against ANIT-induced liver injury in rats was dramatically reduced after Nrf2 gene knockdown. With the silencing of Fxr, the hepatoprotective effect of OA was weakened, but it still effectively alleviated cholestatic liver injury in rats. In L02 cells, OA can up-regulate the levels of NRF2, FXR, BSEP and UGT1A1, and reduce the expression of CYP7A1. Silencing of NRF2 or FXR significantly attenuated the protective effect of OA on ANIT-induced L02 cell injury and its regulation on downstream target genes, and the influence of NRF2 gene silencing on OA appeared to be greater. The NRF2 activator sulforaphane, and the FXR activator GW4064 both remarkably promoted NRF2 binding to P300 and FXR to RXRα, but reduced β-catenin binding to P300 and β-catenin binding to FXR. CONCLUSION The effect of OA on cholestatic liver injury is closely related to the simultaneous activation of NRF2 and FXR dual signaling pathways, in which NRF2 signaling pathway plays a more important role. The dual signaling pathways of NRF2 and FXR cooperatively regulate bile acid metabolic homeostasis through the interaction mechanism with β-catenin/P300.
Collapse
Affiliation(s)
- Jianming Liu
- Clinical Pharmacology Institute, Pharmaceutical School, Nanchang University, Nanchang 330031, P. R. China; Department of Pharmacy, The First Affiliated Hospital of Nanchang University, Nanchang 330006, P. R. China
| | - Jiawei Liu
- Clinical Pharmacology Institute, Pharmaceutical School, Nanchang University, Nanchang 330031, P. R. China
| | - Chao Meng
- Clinical Pharmacology Institute, Pharmaceutical School, Nanchang University, Nanchang 330031, P. R. China
| | - Qi Gu
- Clinical Pharmacology Institute, Pharmaceutical School, Nanchang University, Nanchang 330031, P. R. China
| | - Chao Huang
- Clinical Pharmacology Institute, Pharmaceutical School, Nanchang University, Nanchang 330031, P. R. China
| | - Fanglan Liu
- Clinical Pharmacology Institute, Pharmaceutical School, Nanchang University, Nanchang 330031, P. R. China; Jiangxi Key Laboratory of Clinical Pharmacokinetics, Nanchang 330031, P. R. China
| | - Chunhua Xia
- Clinical Pharmacology Institute, Pharmaceutical School, Nanchang University, Nanchang 330031, P. R. China; Jiangxi Key Laboratory of Clinical Pharmacokinetics, Nanchang 330031, P. R. China.
| |
Collapse
|
34
|
Comprehensive evaluation of human-derived anti-poly-GA antibodies in cellular and animal models of C9orf72 disease. Proc Natl Acad Sci U S A 2022; 119:e2123487119. [PMID: 36454749 PMCID: PMC9894253 DOI: 10.1073/pnas.2123487119] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/03/2022] Open
Abstract
Hexanucleotide G4C2 repeat expansions in the C9orf72 gene are the most common genetic cause of amyotrophic lateral sclerosis and frontotemporal dementia. Dipeptide repeat proteins (DPRs) generated by translation of repeat-containing RNAs show toxic effects in vivo as well as in vitro and are key targets for therapeutic intervention. We generated human antibodies that bind DPRs with high affinity and specificity. Anti-GA antibodies engaged extra- and intra-cellular poly-GA and reduced aggregate formation in a poly-GA overexpressing human cell line. However, antibody treatment in human neuronal cultures synthesizing exogenous poly-GA resulted in the formation of large extracellular immune complexes and did not affect accumulation of intracellular poly-GA aggregates. Treatment with antibodies was also shown to directly alter the morphological and biochemical properties of poly-GA and to shift poly-GA/antibody complexes to more rapidly sedimenting ones. These alterations were not observed with poly-GP and have important implications for accurate measurement of poly-GA levels including the need to evaluate all centrifugation fractions and disrupt the interaction between treatment antibodies and poly-GA by denaturation. Targeting poly-GA and poly-GP in two mouse models expressing G4C2 repeats by systemic antibody delivery for up to 16 mo was well-tolerated and led to measurable brain penetration of antibodies. Long-term treatment with anti-GA antibodies produced improvement in an open-field movement test in aged C9orf72450 mice. However, chronic administration of anti-GA antibodies in AAV-(G4C2)149 mice was associated with increased levels of poly-GA detected by immunoassay and did not significantly reduce poly-GA aggregates or alleviate disease progression in this model.
Collapse
|
35
|
Miki S, Koga T, Mckinney AM, Parisian AD, Tadokoro T, Vadla R, Marsala M, Hevner RF, Costello JF, Furnari F. TERT promoter C228T mutation in neural progenitors confers growth advantage following telomere shortening in vivo. Neuro Oncol 2022; 24:2063-2075. [PMID: 35325218 PMCID: PMC9713509 DOI: 10.1093/neuonc/noac080] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
BACKGROUND Heterozygous TERT (telomerase reverse transcriptase) promoter mutations (TPMs) facilitate TERT expression and are the most frequent mutation in glioblastoma (GBM). A recent analysis revealed this mutation is one of the earliest events in gliomagenesis. However, no appropriate human models have been engineered to study the role of this mutation in the initiation of these tumors. METHOD We established GBM models by introducing the heterozygous TPM in human induced pluripotent stem cells (hiPSCs) using a two-step targeting approach in the context of GBM genetic alterations, CDKN2A/B and PTEN deletion, and EGFRvIII overexpression. The impact of the mutation was evaluated through the in vivo passage and in vitro experiment and analysis. RESULTS Orthotopic injection of neuronal precursor cells (NPCs) derived from hiPSCs with the TPM into immunodeficient mice did not enhance tumorigenesis compared to TERT promoter wild type NPCs at initial in vivo passage presumably due to relatively long telomeres. However, the mutation recruited GA-Binding Protein and engendered low-level TERT expression resulting in enhanced tumorigenesis and maintenance of short telomeres upon secondary passage as observed in human GBM. These results provide the first insights regarding increased tumorigenesis upon introducing a TPM compared to isogenic controls without TPMs. CONCLUSION Our novel GBM models presented the growth advantage of heterozygous TPMs for the first time in the context of GBM driver mutations relative to isogenic controls, thereby allowing for the identification and validation of TERT promoter-specific vulnerabilities in a genetically accurate background.
Collapse
Affiliation(s)
- Shunichiro Miki
- Department of Medicine, University of California San Diego, La Jolla, California, USA
| | - Tomoyuki Koga
- Department of Neurosurgery, University of Minnesota, Minneapolis, Minnesota, USA
| | - Andrew M Mckinney
- Department of Neurological Surgery, University of California, San Francisco, San Francisco, California, USA
| | - Alison D Parisian
- Department of Medicine, University of California San Diego, La Jolla, California, USA
- Biomedical Sciences Graduate Program, University of California, San Diego, La Jolla, California, USA
| | - Takahiro Tadokoro
- Neuroregeneration Laboratory, Department of Anesthesiology, University of California San Diego, La Jolla, California, USA
| | - Raghavendra Vadla
- Department of Medicine, University of California San Diego, La Jolla, California, USA
| | - Martin Marsala
- Neuroregeneration Laboratory, Department of Anesthesiology, University of California San Diego, La Jolla, California, USA
| | - Robert F Hevner
- Department of Pathology, University of California San Diego, La Jolla, California, USA
| | - Joseph F Costello
- Department of Neurological Surgery, University of California, San Francisco, San Francisco, California, USA
| | - Frank Furnari
- Department of Medicine, University of California San Diego, La Jolla, California, USA
- Laboratory of Tumor Biology, Ludwig Cancer Research, San Diego Branch, La Jolla, California, USA
| |
Collapse
|
36
|
In vivo genome editing using novel AAV-PHP variants rescues motor function deficits and extends survival in a SOD1-ALS mouse model. Gene Ther 2022; 30:443-454. [PMID: 36450833 PMCID: PMC9713118 DOI: 10.1038/s41434-022-00375-w] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2022] [Revised: 10/10/2022] [Accepted: 11/08/2022] [Indexed: 12/03/2022]
Abstract
CRISPR-based gene editing technology represents a promising approach to deliver therapies for inherited disorders, including amyotrophic lateral sclerosis (ALS). Toxic gain-of-function superoxide dismutase 1 (SOD1) mutations are responsible for ~20% of familial ALS cases. Thus, current clinical strategies to treat SOD1-ALS are designed to lower SOD1 levels. Here, we utilized AAV-PHP.B variants to deliver CRISPR-Cas9 guide RNAs designed to disrupt the human SOD1 (huSOD1) transgene in SOD1G93A mice. A one-time intracerebroventricular injection of AAV.PHP.B-huSOD1-sgRNA into neonatal H11Cas9 SOD1G93A mice caused robust and sustained mutant huSOD1 protein reduction in the cortex and spinal cord, and restored motor function. Neonatal treatment also reduced spinal motor neuron loss, denervation at neuromuscular junction (NMJ) and muscle atrophy, diminished axonal damage and preserved compound muscle action potential throughout the lifespan of treated mice. SOD1G93A treated mice achieved significant disease-free survival, extending lifespan by more than 110 days. Importantly, a one-time intrathecal or intravenous injection of AAV.PHP.eB-huSOD1-sgRNA in adult H11Cas9 SOD1G93A mice, immediately before symptom onset, also extended lifespan by at least 170 days. We observed substantial protection against disease progression, demonstrating the utility of our CRISPR editing preclinical approach for target evaluation. Our approach uncovered key parameters (e.g., AAV capsid, Cas9 expression) that resulted in improved efficacy compared to similar approaches and can also serve to accelerate drug target validation.
Collapse
|
37
|
Liu P, Dai S, Mi T, Tang G, Wang Z, Wang H, Du H, Tang Y, Teng Z, Liu C. Acetate supplementation restores cognitive deficits caused by ARID1A haploinsufficiency in excitatory neurons. EMBO Mol Med 2022; 14:e15795. [PMID: 36385502 PMCID: PMC9728054 DOI: 10.15252/emmm.202215795] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2022] [Revised: 10/13/2022] [Accepted: 10/14/2022] [Indexed: 11/18/2022] Open
Abstract
Mutations in AT-rich interactive domain-containing protein 1A (ARID1A) cause Coffin-Siris syndrome (CSS), a rare genetic disorder that results in mild to severe intellectual disabilities. However, the biological role of ARID1A in the brain remains unclear. In this study, we report that the haploinsufficiency of ARID1A in excitatory neurons causes cognitive impairment and defects in hippocampal synaptic transmission and dendritic morphology in mice. Similarly, human embryonic stem cell-derived excitatory neurons with deleted ARID1A exhibit fewer dendritic branches and spines, and abnormal electrophysiological activity. Importantly, supplementation of acetate, an epigenetic metabolite, can ameliorate the morphological and electrophysiological deficits observed in mice with Arid1a haploinsufficiency, as well as in ARID1A-null human excitatory neurons. Mechanistically, transcriptomic and ChIP-seq analyses demonstrate that acetate supplementation can increase the levels of H3K27 acetylation at the promoters of key regulatory genes associated with neural development and synaptic transmission. Collectively, these findings support the essential roles of ARID1A in the excitatory neurons and cognition and suggest that acetate supplementation could be a potential therapeutic intervention for CSS.
Collapse
Affiliation(s)
- Pei‐Pei Liu
- State Key Laboratory of Stem Cell and Reproductive BiologyInstitute of Zoology, Chinese Academy of SciencesBeijingChina,University of Chinese Academy of SciencesBeijingChina,Institute for Stem Cell and RegenerationChinese Academy of SciencesBeijingChina,Beijing Institute for Stem Cell and Regenerative MedicineBeijingChina
| | - Shang‐Kun Dai
- State Key Laboratory of Stem Cell and Reproductive BiologyInstitute of Zoology, Chinese Academy of SciencesBeijingChina,University of Chinese Academy of SciencesBeijingChina,School of Life Sciences and MedicineShandong University of TechnologyZiboChina
| | - Ting‐Wei Mi
- State Key Laboratory of Stem Cell and Reproductive BiologyInstitute of Zoology, Chinese Academy of SciencesBeijingChina
| | - Gang‐Bin Tang
- State Key Laboratory of Stem Cell and Reproductive BiologyInstitute of Zoology, Chinese Academy of SciencesBeijingChina
| | - Zhuo Wang
- State Key Laboratory of Stem Cell and Reproductive BiologyInstitute of Zoology, Chinese Academy of SciencesBeijingChina,University of Chinese Academy of SciencesBeijingChina
| | - Hui Wang
- State Key Laboratory of Stem Cell and Reproductive BiologyInstitute of Zoology, Chinese Academy of SciencesBeijingChina,University of Chinese Academy of SciencesBeijingChina
| | - Hong‐Zhen Du
- State Key Laboratory of Stem Cell and Reproductive BiologyInstitute of Zoology, Chinese Academy of SciencesBeijingChina,Institute for Stem Cell and RegenerationChinese Academy of SciencesBeijingChina,Beijing Institute for Stem Cell and Regenerative MedicineBeijingChina
| | - Yi Tang
- Department of Neurology, Innovation Center for Neurological Disorders, Xuanwu HospitalCapital Medical UniversityBeijingChina
| | - Zhao‐Qian Teng
- State Key Laboratory of Stem Cell and Reproductive BiologyInstitute of Zoology, Chinese Academy of SciencesBeijingChina,University of Chinese Academy of SciencesBeijingChina,Institute for Stem Cell and RegenerationChinese Academy of SciencesBeijingChina,Beijing Institute for Stem Cell and Regenerative MedicineBeijingChina
| | - Chang‐Mei Liu
- State Key Laboratory of Stem Cell and Reproductive BiologyInstitute of Zoology, Chinese Academy of SciencesBeijingChina,University of Chinese Academy of SciencesBeijingChina,Institute for Stem Cell and RegenerationChinese Academy of SciencesBeijingChina,Beijing Institute for Stem Cell and Regenerative MedicineBeijingChina
| |
Collapse
|
38
|
Germain ND, Chung WK, Sarmiere PD. RNA interference (RNAi)-based therapeutics for treatment of rare neurologic diseases. Mol Aspects Med 2022; 91:101148. [PMID: 36257857 DOI: 10.1016/j.mam.2022.101148] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2022] [Revised: 09/18/2022] [Accepted: 10/04/2022] [Indexed: 12/14/2022]
Abstract
Advances in genome sequencing have greatly facilitated the identification of genomic variants underlying rare neurodevelopmental and neurodegenerative disorders. Understanding the fundamental causes of rare monogenic disorders has made gene therapy a possible treatment approach for these conditions. RNA interference (RNAi) technologies such as small interfering RNA (siRNA), microRNA (miRNA), and short hairpin RNA (shRNA), and other oligonucleotide-based modalities such as antisense oligonucleotides (ASOs) are being developed as potential therapeutic approaches for manipulating expression of the genes that cause a variety of neurological diseases. Here, we offer a brief review of the mechanism of action of these RNAi approaches; provide deeper discussion of the advantages, challenges, and specific considerations related to the development of RNAi therapeutics for neurological disease; and highlight examples of rare neurological diseases for which RNAi therapeutics hold great promise.
Collapse
Affiliation(s)
- Noelle D Germain
- Ovid Therapeutics, Inc., 1460 Broadway, New York, NY, 10036, USA
| | - Wendy K Chung
- Departments of Pediatrics and Medicine, Columbia University, 1150 St. Nicholas Avenue, Room 620, New York, NY, 10032, USA
| | | |
Collapse
|
39
|
Surdyka M, Jesion E, Niewiadomska-Cimicka A, Trottier Y, Kalinowska-Pośka Ż, Figiel M. Selective transduction of cerebellar Purkinje and granule neurons using delivery of AAV-PHP.eB and AAVrh10 vectors at axonal terminal locations. Front Mol Neurosci 2022; 15:947490. [PMID: 36176957 PMCID: PMC9513253 DOI: 10.3389/fnmol.2022.947490] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2022] [Accepted: 07/25/2022] [Indexed: 11/25/2022] Open
Abstract
Adeno-associated virus (AAV)-based brain gene therapies require precision without off-targeting of unaffected neurons to avoid side effects. The cerebellum and its cell populations, including granule and Purkinje cells, are vulnerable to neurodegeneration; hence, conditions to deliver the therapy to specific cell populations selectively remain challenging. We have investigated a system consisting of the AAV serotypes, targeted injections, and transduction modes (direct or retrograde) for targeted delivery of AAV to cerebellar cell populations. We selected the AAV-PHP.eB and AAVrh10 serotypes valued for their retrograde features, and we thoroughly examined their cerebellar transduction pattern when injected into lobules and deep cerebellar nuclei. We found that AAVrh10 is suitable for the transduction of neurons in the mode highly dependent on placing the virus at axonal terminals. The strategy secures selective transduction for granule cells. The AAV-PHP.eB can transduce Purkinje cells and is very selective for the cell type when injected into the DCN at axonal PC terminals. Therefore, both serotypes can be used in a retrograde mode for selective transduction of major neuronal types in the cerebellum. Moreover, our in vivo transduction strategies are suitable for pre-clinical protocol development for gene delivery to granule cells by AAVrh10 and Purkinje cells by AAV-PHPeB.
Collapse
Affiliation(s)
- Magdalena Surdyka
- Department of Molecular Neurobiology, Institute of Bioorganic Chemistry Polish Academy of Sciences, Poznań, Poland
| | - Ewelina Jesion
- Department of Molecular Neurobiology, Institute of Bioorganic Chemistry Polish Academy of Sciences, Poznań, Poland
| | - Anna Niewiadomska-Cimicka
- Institute of Genetics and Molecular and Cellular Biology, INSERM U1258, CNRS UMR7104, University of Strasbourg, Illkirch, France
| | - Yvon Trottier
- Institute of Genetics and Molecular and Cellular Biology, INSERM U1258, CNRS UMR7104, University of Strasbourg, Illkirch, France
| | - Żaneta Kalinowska-Pośka
- Department of Molecular Neurobiology, Institute of Bioorganic Chemistry Polish Academy of Sciences, Poznań, Poland
| | - Maciej Figiel
- Department of Molecular Neurobiology, Institute of Bioorganic Chemistry Polish Academy of Sciences, Poznań, Poland
- *Correspondence: Maciej Figiel
| |
Collapse
|
40
|
Marlin E, Viu-Idocin C, Arrasate M, Aragón T. The Role and Therapeutic Potential of the Integrated Stress Response in Amyotrophic Lateral Sclerosis. Int J Mol Sci 2022; 23:ijms23147823. [PMID: 35887167 PMCID: PMC9321386 DOI: 10.3390/ijms23147823] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2022] [Revised: 07/08/2022] [Accepted: 07/09/2022] [Indexed: 02/06/2023] Open
Abstract
In amyotrophic lateral sclerosis (ALS) patients, loss of cellular homeostasis within cortical and spinal cord motor neurons triggers the activation of the integrated stress response (ISR), an intracellular signaling pathway that remodels translation and promotes a gene expression program aimed at coping with stress. Beyond its neuroprotective role, under regimes of chronic or excessive stress, ISR can also promote cell/neuronal death. Given the two-edged sword nature of ISR, many experimental attempts have tried to establish the therapeutic potential of ISR enhancement or inhibition in ALS. This review discusses the complex interplay between ISR and disease progression in different models of ALS, as well as the opportunities and limitations of ISR modulation in the hard quest to find an effective therapy for ALS.
Collapse
Affiliation(s)
- Elías Marlin
- Neuroscience Program, Center for Applied Medical Research (CIMA), University of Navarra, 31008 Pamplona, Spain;
- Gene Therapy and Regulation of Gene Expression Program, Center for Applied Medical Research (CIMA), University of Navarra, 31008 Pamplona, Spain
- School of Medicine, University of Navarra, 31008 Pamplona, Spain
- Neuroscience Department, Navarra Institute for Health Research (IdiSNA), University of Navarra, 31008 Pamplona, Spain
| | | | - Montserrat Arrasate
- Neuroscience Program, Center for Applied Medical Research (CIMA), University of Navarra, 31008 Pamplona, Spain;
- School of Medicine, University of Navarra, 31008 Pamplona, Spain
- Neuroscience Department, Navarra Institute for Health Research (IdiSNA), University of Navarra, 31008 Pamplona, Spain
- Correspondence: (M.A.); (T.A.)
| | - Tomás Aragón
- Gene Therapy and Regulation of Gene Expression Program, Center for Applied Medical Research (CIMA), University of Navarra, 31008 Pamplona, Spain
- Neuroscience Department, Navarra Institute for Health Research (IdiSNA), University of Navarra, 31008 Pamplona, Spain
- Correspondence: (M.A.); (T.A.)
| |
Collapse
|
41
|
Gosset P, Camu W, Raoul C, Mezghrani A. Prionoids in amyotrophic lateral sclerosis. Brain Commun 2022; 4:fcac145. [PMID: 35783556 PMCID: PMC9242622 DOI: 10.1093/braincomms/fcac145] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2022] [Revised: 03/16/2022] [Accepted: 06/01/2022] [Indexed: 12/20/2022] Open
Abstract
Amyotrophic lateral sclerosis (ALS) is the third most frequent neurodegenerative disease after Alzheimer’s and Parkinson’s disease. ALS is characterized by the selective and progressive loss of motoneurons in the spinal cord, brainstem and cerebral cortex. Clinical manifestations typically occur in midlife and start with focal muscle weakness, followed by the rapid and progressive wasting of muscles and subsequent paralysis. As with other neurodegenerative diseases, the condition typically begins at an initial point and then spreads along neuroanatomical tracts. This feature of disease progression suggests the spreading of prion-like proteins called prionoids in the affected tissues, which is similar to the spread of prion observed in Creutzfeldt-Jakob disease. Intensive research over the last decade has proposed the ALS-causing gene products Cu/Zn superoxide dismutase 1, TAR DNA-binding protein of 43 kDa, and fused in sarcoma as very plausible prionoids contributing to the spread of the pathology. In this review, we will discuss the molecular and cellular mechanisms leading to the propagation of these prionoids in ALS.
Collapse
Affiliation(s)
- Philippe Gosset
- INM, Univ Montpellier, INSERM, CNRS, Montpellier 34095, France
| | - William Camu
- INM, Univ Montpellier, INSERM, CNRS, Montpellier 34095, France
| | - Cedric Raoul
- INM, Univ Montpellier, INSERM, CNRS, Montpellier 34095, France
| | | |
Collapse
|
42
|
Tadokoro T, Bravo-Hernandez M, Agashkov K, Kobayashi Y, Platoshyn O, Navarro M, Marsala S, Miyanohara A, Yoshizumi T, Shigyo M, Krotov V, Juhas S, Juhasova J, Nguyen D, Kupcova Skalnikova H, Motlik J, Studenovska H, Proks V, Reddy R, Driscoll SP, Glenn TD, Kemthong T, Malaivijitnond S, Tomori Z, Vanicky I, Kakinohana M, Pfaff SL, Ciacci J, Belan P, Marsala M. Precision spinal gene delivery-induced functional switch in nociceptive neurons reverses neuropathic pain. Mol Ther 2022; 30:2722-2745. [PMID: 35524407 PMCID: PMC9372322 DOI: 10.1016/j.ymthe.2022.04.023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2022] [Revised: 03/31/2022] [Accepted: 04/29/2022] [Indexed: 11/17/2022] Open
Abstract
Second-order spinal cord excitatory neurons play a key role in spinal processing and transmission of pain signals to the brain. Exogenously-induced change in developmentally-imprinted excitatory neurotransmitter phenotype of these neurons to inhibitory has not yet been achieved. Here we use a subpial dorsal horn-targeted delivery of AAV (adeno-associated virus) vector(s) encoding GABA (gamma-Aminobutyric acid,) synthesizing-releasing inhibitory machinery in mice with neuropathic pain. Treated animals showed a progressive and complete reversal of neuropathic pain (tactile and brush-evoked pain behavior) which persisted for minimum 2.5 months post-treatment. The mechanism of this treatment effect results from the switch of excitatory to preferential inhibitory neurotransmitter phenotype in dorsal horn nociceptive neurons and a resulting increase in inhibitory activity in regional spinal circuitry after peripheral nociceptive stimulation. No detectable side effects (such as sedation, motor weakness or loss of normal sensation) were seen between 2-13 months post-treatment in naive adult mice, pigs and non-human primates. The use of this treatment approach may represent a potent and safe treatment modality in patients suffering from spinal cord- or peripheral nerve-injury induced neuropathic pain.
Collapse
Affiliation(s)
- Takahiro Tadokoro
- Neuroregeneration Laboratory, Department of Anesthesiology, University of California, San Diego (UCSD), La Jolla, CA 92037, USA; Department of Anesthesiology, University of Ryukyus, Okinawa, Japan; Neurgain Technologies, 9620 Towne Centre Drive, Suite 100, San Diego, CA 92121, USA
| | - Mariana Bravo-Hernandez
- Neuroregeneration Laboratory, Department of Anesthesiology, University of California, San Diego (UCSD), La Jolla, CA 92037, USA
| | - Kirill Agashkov
- Departments of Sensory Signaling and Molecular Biophysics, Bogomoletz Institute of Physiology, Kyiv, Ukraine
| | - Yoshiomi Kobayashi
- Neuroregeneration Laboratory, Department of Anesthesiology, University of California, San Diego (UCSD), La Jolla, CA 92037, USA
| | - Oleksandr Platoshyn
- Neuroregeneration Laboratory, Department of Anesthesiology, University of California, San Diego (UCSD), La Jolla, CA 92037, USA
| | - Michael Navarro
- Neuroregeneration Laboratory, Department of Anesthesiology, University of California, San Diego (UCSD), La Jolla, CA 92037, USA
| | - Silvia Marsala
- Neuroregeneration Laboratory, Department of Anesthesiology, University of California, San Diego (UCSD), La Jolla, CA 92037, USA; Neurgain Technologies, 9620 Towne Centre Drive, Suite 100, San Diego, CA 92121, USA
| | - Atsushi Miyanohara
- Neuroregeneration Laboratory, Department of Anesthesiology, University of California, San Diego (UCSD), La Jolla, CA 92037, USA; Vector Core Laboratory, University of California, San Diego (UCSD), La Jolla, CA 92037, USA
| | - Tetsuya Yoshizumi
- Neuroregeneration Laboratory, Department of Anesthesiology, University of California, San Diego (UCSD), La Jolla, CA 92037, USA
| | - Michiko Shigyo
- Neuroregeneration Laboratory, Department of Anesthesiology, University of California, San Diego (UCSD), La Jolla, CA 92037, USA
| | - Volodymyr Krotov
- Departments of Sensory Signaling and Molecular Biophysics, Bogomoletz Institute of Physiology, Kyiv, Ukraine
| | - Stefan Juhas
- Institute of Animal Physiology and Genetics, Czech Academy of Sciences, Rumburská 89, 277 21 Liběchov, Czech Republic
| | - Jana Juhasova
- Institute of Animal Physiology and Genetics, Czech Academy of Sciences, Rumburská 89, 277 21 Liběchov, Czech Republic
| | - Duong Nguyen
- Institute of Animal Physiology and Genetics, Czech Academy of Sciences, Rumburská 89, 277 21 Liběchov, Czech Republic
| | - Helena Kupcova Skalnikova
- Institute of Animal Physiology and Genetics, Czech Academy of Sciences, Rumburská 89, 277 21 Liběchov, Czech Republic
| | - Jan Motlik
- Institute of Animal Physiology and Genetics, Czech Academy of Sciences, Rumburská 89, 277 21 Liběchov, Czech Republic
| | - Hana Studenovska
- Institute of Macromolecular Chemistry, Czech Academy of Sciences, Department of Biomaterials and Bioanalogous Systems, Heyrovsky Square 2,162 06 Prague 6, Czech Republic
| | - Vladimir Proks
- Institute of Macromolecular Chemistry, Czech Academy of Sciences, Department of Biomaterials and Bioanalogous Systems, Heyrovsky Square 2,162 06 Prague 6, Czech Republic
| | - Rajiv Reddy
- Department of Anesthesiology, Pain Medicine, University of California, San Diego (UCSD), La Jolla, CA 92037, USA
| | - Shawn P Driscoll
- Gene Expression Laboratory and the Howard Hughes Medical Institute, Salk Institute for Biological Studies, La Jolla, CA 92037, USA
| | - Thomas D Glenn
- Gene Expression Laboratory and the Howard Hughes Medical Institute, Salk Institute for Biological Studies, La Jolla, CA 92037, USA
| | - Taratorn Kemthong
- National Primate Research Center of Thailand, Chulalongkorn University, Kaengkhoi District, Saraburi 18110, Thailand
| | - Suchinda Malaivijitnond
- National Primate Research Center of Thailand, Chulalongkorn University, Kaengkhoi District, Saraburi 18110, Thailand
| | - Zoltan Tomori
- Department of Biophysics, Institute of Experimental Physics, Slovak Academy of Sciences, Kosice, Slovakia
| | - Ivo Vanicky
- Institute of Neurobiology, Biomedical Research Center, Slovak Academy of Sciences, Kosice, Slovakia
| | | | - Samuel L Pfaff
- Gene Expression Laboratory and the Howard Hughes Medical Institute, Salk Institute for Biological Studies, La Jolla, CA 92037, USA
| | - Joseph Ciacci
- Department of Neurosurgery, University of California, San Diego (UCSD), La Jolla, CA 92037, USA
| | - Pavel Belan
- Departments of Sensory Signaling and Molecular Biophysics, Bogomoletz Institute of Physiology, Kyiv, Ukraine; Kyiv Academic University, Kyiv, Ukraine
| | - Martin Marsala
- Neuroregeneration Laboratory, Department of Anesthesiology, University of California, San Diego (UCSD), La Jolla, CA 92037, USA; Institute of Neurobiology, Biomedical Research Center, Slovak Academy of Sciences, Kosice, Slovakia.
| |
Collapse
|
43
|
Oya R, Tsukamoto O, Hitsumoto T, Nakahara N, Okamoto C, Matsuoka K, Kato H, Inohara H, Takashima S. Gene Transfer of Skeletal Muscle-Type Myosin Light Chain Kinase via Adeno-Associated Virus 6 Improves Muscle Functions in an Amyotrophic Lateral Sclerosis Mouse Model. Int J Mol Sci 2022; 23:1747. [PMID: 35163674 PMCID: PMC8836241 DOI: 10.3390/ijms23031747] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2021] [Revised: 01/29/2022] [Accepted: 02/01/2022] [Indexed: 12/04/2022] Open
Abstract
Amyotrophic lateral sclerosis (ALS) is a neurodegenerative disease that shows progressive muscle weakness. A few treatments exist including symptomatic therapies, which can prolong survival or reduce a symptom; however, no fundamental therapies have been found. As a therapeutic strategy, enhancing muscle force is important for patients' quality of life. In this study, we focused on skeletal muscle-specific myosin regulatory light chain kinase (skMLCK), which potentially enhances muscle contraction, as overexpression of skMLCK was thought to improve muscle function. The adeno-associated virus serotype 6 encoding skMLCK (AAV6/skMLCK) and eGFP (control) was produced and injected intramuscularly into the lower limbs of SOD1G37R mice, which are a familial ALS model. AAV6/skMLCK showed the successful expression of skMLCK in the muscle tissues. Although the control did not affect the muscle force in both of the WT and SOD1G37R mice, AAV6/skMLCK enhanced the twitch force of SOD1G37R mice and the tetanic force of WT and SOD1G37R mice. These results indicate that overexpression of skMLCK can enhance the tetanic force of healthy muscle as well as rescue weakened muscle function. In conclusion, the gene transfer of skMLCK has the potential to be a new therapy for ALS as well as for other neuromuscular diseases.
Collapse
Affiliation(s)
- Ryohei Oya
- Department of Medical Biochemistry, Osaka University Graduate School of Medicine/Frontier Biosciences, Osaka 565-0871, Japan; (R.O.); (T.H.); (C.O.); (K.M.); (H.K.); (S.T.)
- Department of Otorhinolaryngology Head and Neck Surgery, Osaka University Graduate School of Medicine, Osaka 565-0871, Japan;
| | - Osamu Tsukamoto
- Department of Medical Biochemistry, Osaka University Graduate School of Medicine/Frontier Biosciences, Osaka 565-0871, Japan; (R.O.); (T.H.); (C.O.); (K.M.); (H.K.); (S.T.)
| | - Tatsuro Hitsumoto
- Department of Medical Biochemistry, Osaka University Graduate School of Medicine/Frontier Biosciences, Osaka 565-0871, Japan; (R.O.); (T.H.); (C.O.); (K.M.); (H.K.); (S.T.)
| | - Naoya Nakahara
- Department of Molecular Physiology, The Jikei University School of Medicine, Tokyo 105-8461, Japan;
| | - Chisato Okamoto
- Department of Medical Biochemistry, Osaka University Graduate School of Medicine/Frontier Biosciences, Osaka 565-0871, Japan; (R.O.); (T.H.); (C.O.); (K.M.); (H.K.); (S.T.)
| | - Ken Matsuoka
- Department of Medical Biochemistry, Osaka University Graduate School of Medicine/Frontier Biosciences, Osaka 565-0871, Japan; (R.O.); (T.H.); (C.O.); (K.M.); (H.K.); (S.T.)
| | - Hisakazu Kato
- Department of Medical Biochemistry, Osaka University Graduate School of Medicine/Frontier Biosciences, Osaka 565-0871, Japan; (R.O.); (T.H.); (C.O.); (K.M.); (H.K.); (S.T.)
| | - Hidenori Inohara
- Department of Otorhinolaryngology Head and Neck Surgery, Osaka University Graduate School of Medicine, Osaka 565-0871, Japan;
| | - Seiji Takashima
- Department of Medical Biochemistry, Osaka University Graduate School of Medicine/Frontier Biosciences, Osaka 565-0871, Japan; (R.O.); (T.H.); (C.O.); (K.M.); (H.K.); (S.T.)
| |
Collapse
|
44
|
Benatti HR, Gray-Edwards HL. Adeno-Associated Virus Delivery Limitations for Neurological Indications. Hum Gene Ther 2022; 33:1-7. [PMID: 35049369 DOI: 10.1089/hum.2022.29196.hrb] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022] Open
Affiliation(s)
- Hector Ribeiro Benatti
- Horae Gene Therapy Center, University of Massachusetts Chan Medical School, Worcester, Massachusetts, USA
| | - Heather L Gray-Edwards
- Horae Gene Therapy Center, University of Massachusetts Chan Medical School, Worcester, Massachusetts, USA.,Department of Radiology, University of Massachusetts Chan Medical School, Worcester, Massachusetts, USA
| |
Collapse
|
45
|
Odeh HM, Fare CM, Shorter J. Nuclear-Import Receptors Counter Deleterious Phase Transitions in Neurodegenerative Disease. J Mol Biol 2022; 434:167220. [PMID: 34464655 PMCID: PMC8748273 DOI: 10.1016/j.jmb.2021.167220] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2021] [Revised: 08/20/2021] [Accepted: 08/24/2021] [Indexed: 01/17/2023]
Abstract
Nuclear-import receptors (NIRs) engage nuclear-localization signals (NLSs) of polypeptides in the cytoplasm and transport these cargo across the size-selective barrier of the nuclear-pore complex into the nucleoplasm. Beyond this canonical role in nuclear transport, NIRs operate in the cytoplasm to chaperone and disaggregate NLS-bearing clients. Indeed, NIRs can inhibit and reverse functional and deleterious phase transitions of their cargo, including several prominent neurodegenerative disease-linked RNA-binding proteins (RBPs) with prion-like domains (PrLDs), such as TDP-43, FUS, EWSR1, TAF15, hnRNPA1, and hnRNPA2. Importantly, elevated NIR expression can mitigate degenerative phenotypes connected to aberrant cytoplasmic aggregation of RBPs with PrLDs. Here, we review recent discoveries that NIRs can also antagonize aberrant interactions and toxicity of arginine-rich, dipeptide-repeat proteins that are associated with amyotrophic lateral sclerosis (ALS) and frontotemporal dementia (FTD) caused by G4C2 hexanucleotide repeat expansions in the first intron of C9ORF72. We also highlight recent findings that multiple NIR family members can prevent and reverse liquid-liquid phase separation of specific clients bearing RGG motifs in an NLS-independent manner. Finally, we discuss strategies to enhance NIR activity or expression, which could have therapeutic utility for several neurodegenerative disorders, including ALS, FTD, multisystem proteinopathy, limbic-predominant age-related TDP-43 encephalopathy, tauopathies, and related diseases.
Collapse
Affiliation(s)
- Hana M Odeh
- Department of Biochemistry and Biophysics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Charlotte M Fare
- Department of Biochemistry and Biophysics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA; Biochemistry and Molecular Biophysics Graduate Group, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA. https://twitter.com/CharlotteFare
| | - James Shorter
- Department of Biochemistry and Biophysics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA; Biochemistry and Molecular Biophysics Graduate Group, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA.
| |
Collapse
|
46
|
Lukacova N, Kisucka A, Kiss Bimbova K, Bacova M, Ileninova M, Kuruc T, Galik J. Glial-Neuronal Interactions in Pathogenesis and Treatment of Spinal Cord Injury. Int J Mol Sci 2021; 22:13577. [PMID: 34948371 PMCID: PMC8708227 DOI: 10.3390/ijms222413577] [Citation(s) in RCA: 29] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2021] [Revised: 12/13/2021] [Accepted: 12/15/2021] [Indexed: 12/14/2022] Open
Abstract
Traumatic spinal cord injury (SCI) elicits an acute inflammatory response which comprises numerous cell populations. It is driven by the immediate response of macrophages and microglia, which triggers activation of genes responsible for the dysregulated microenvironment within the lesion site and in the spinal cord parenchyma immediately adjacent to the lesion. Recently published data indicate that microglia induces astrocyte activation and determines the fate of astrocytes. Conversely, astrocytes have the potency to trigger microglial activation and control their cellular functions. Here we review current information about the release of diverse signaling molecules (pro-inflammatory vs. anti-inflammatory) in individual cell phenotypes (microglia, astrocytes, blood inflammatory cells) in acute and subacute SCI stages, and how they contribute to delayed neuronal death in the surrounding spinal cord tissue which is spared and functional but reactive. In addition, temporal correlation in progressive degeneration of neurons and astrocytes and their functional interactions after SCI are discussed. Finally, the review highlights the time-dependent transformation of reactive microglia and astrocytes into their neuroprotective phenotypes (M2a, M2c and A2) which are crucial for spontaneous post-SCI locomotor recovery. We also provide suggestions on how to modulate the inflammation and discuss key therapeutic approaches leading to better functional outcome after SCI.
Collapse
Affiliation(s)
- Nadezda Lukacova
- Institute of Neurobiology, Biomedical Research Centre, Slovak Academy of Sciences, Soltesovej 4–6, 040 01 Kosice, Slovakia; (A.K.); (K.K.B.); (M.B.); (M.I.); (T.K.); (J.G.)
| | | | | | | | | | | | | |
Collapse
|
47
|
Kagiava A, Richter J, Tryfonos C, Leal-Julià M, Sargiannidou I, Christodoulou C, Bosch A, Kleopa KA. Efficacy of AAV serotypes to target Schwann cells after intrathecal and intravenous delivery. Sci Rep 2021; 11:23358. [PMID: 34857831 PMCID: PMC8640002 DOI: 10.1038/s41598-021-02694-1] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2021] [Accepted: 11/18/2021] [Indexed: 12/20/2022] Open
Abstract
To optimize gene delivery to myelinating Schwann cells we compared clinically relevant AAV serotypes and injection routes. AAV9 and AAVrh10 vectors expressing either EGFP or the neuropathy-associated gene GJB1/Connexin32 (Cx32) under a myelin specific promoter were injected intrathecally or intravenously in wild type and Gjb1-null mice, respectively. Vector biodistribution in lumbar roots and sciatic nerves was higher in AAVrh10 injected mice while EGFP and Cx32 expression rates and levels were similar between the two serotypes. A gradient of biodistribution away from the injection site was seen with both intrathecal and intravenous delivery, while similar expression rates were achieved despite higher vector amounts injected intravenously. Quantified immune cells in relevant tissues were similar to non-injected littermates. Overall, AAV9 and AAVrh10 efficiently transduce Schwann cells throughout the peripheral nervous system with both clinically relevant routes of administration, although AAV9 and intrathecal injection may offer a more efficient approach for treating demyelinating neuropathies.
Collapse
Affiliation(s)
- A Kagiava
- Neuroscience Department, The Cyprus Institute of Neurology and Genetics and Cyprus School of Molecular Medicine, 6 Iroon Avenue, P.O. Box 23462, 1683, Nicosia, Cyprus.
| | - J Richter
- Molecular Virology Department, The Cyprus Institute of Neurology and Genetics and Cyprus School of Molecular Medicine, Nicosia, Cyprus
| | - C Tryfonos
- Molecular Virology Department, The Cyprus Institute of Neurology and Genetics and Cyprus School of Molecular Medicine, Nicosia, Cyprus
| | - M Leal-Julià
- Department of Biochemistry and Molecular Biology, Institute of Neurosciences, Barcelona, Spain
- Unitat Mixta UAB-VHIR, Vall d'Hebron Institut de Recerca (VHIR), Barcelona, Spain
| | - I Sargiannidou
- Neuroscience Department, The Cyprus Institute of Neurology and Genetics and Cyprus School of Molecular Medicine, 6 Iroon Avenue, P.O. Box 23462, 1683, Nicosia, Cyprus
| | - C Christodoulou
- Molecular Virology Department, The Cyprus Institute of Neurology and Genetics and Cyprus School of Molecular Medicine, Nicosia, Cyprus
| | - A Bosch
- Department of Biochemistry and Molecular Biology, Institute of Neurosciences, Barcelona, Spain
- Centro de Investigación Biomédica en Red Sobre Enfermedades Neurodegenerativas (CIBERNED), Bellaterra, Spain
- Unitat Mixta UAB-VHIR, Vall d'Hebron Institut de Recerca (VHIR), Barcelona, Spain
| | - K A Kleopa
- Neuroscience Department, The Cyprus Institute of Neurology and Genetics and Cyprus School of Molecular Medicine, 6 Iroon Avenue, P.O. Box 23462, 1683, Nicosia, Cyprus
- Center for Neuromuscular Diseases, The Cyprus Institute of Neurology and Genetics and Cyprus School of Molecular Medicine, Nicosia, Cyprus
| |
Collapse
|
48
|
Bonifacino T, Zerbo RA, Balbi M, Torazza C, Frumento G, Fedele E, Bonanno G, Milanese M. Nearly 30 Years of Animal Models to Study Amyotrophic Lateral Sclerosis: A Historical Overview and Future Perspectives. Int J Mol Sci 2021; 22:ijms222212236. [PMID: 34830115 PMCID: PMC8619465 DOI: 10.3390/ijms222212236] [Citation(s) in RCA: 43] [Impact Index Per Article: 14.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2021] [Revised: 11/08/2021] [Accepted: 11/09/2021] [Indexed: 12/20/2022] Open
Abstract
Amyotrophic lateral sclerosis (ALS) is a fatal, multigenic, multifactorial, and non-cell autonomous neurodegenerative disease characterized by upper and lower motor neuron loss. Several genetic mutations lead to ALS development and many emerging gene mutations have been discovered in recent years. Over the decades since 1990, several animal models have been generated to study ALS pathology including both vertebrates and invertebrates such as yeast, worms, flies, zebrafish, mice, rats, guinea pigs, dogs, and non-human primates. Although these models show different peculiarities, they are all useful and complementary to dissect the pathological mechanisms at the basis of motor neuron degeneration and ALS progression, thus contributing to the development of new promising therapeutics. In this review, we describe the up to date and available ALS genetic animal models, classified by the different genetic mutations and divided per species, pointing out their features in modeling, the onset and progression of the pathology, as well as their specific pathological hallmarks. Moreover, we highlight similarities, differences, advantages, and limitations, aimed at helping the researcher to select the most appropriate experimental animal model, when designing a preclinical ALS study.
Collapse
Affiliation(s)
- Tiziana Bonifacino
- Pharmacology and Toxicology Unit, Department of Pharmacy, University of Genoa, 16148 Genoa, Italy; (T.B.); (R.A.Z.); (M.B.); (C.T.); (G.F.); (G.B.); (M.M.)
- Inter-University Center for the Promotion of the 3Rs Principles in Teaching & Research (Centro 3R), 56122 Genoa, Italy
| | - Roberta Arianna Zerbo
- Pharmacology and Toxicology Unit, Department of Pharmacy, University of Genoa, 16148 Genoa, Italy; (T.B.); (R.A.Z.); (M.B.); (C.T.); (G.F.); (G.B.); (M.M.)
| | - Matilde Balbi
- Pharmacology and Toxicology Unit, Department of Pharmacy, University of Genoa, 16148 Genoa, Italy; (T.B.); (R.A.Z.); (M.B.); (C.T.); (G.F.); (G.B.); (M.M.)
| | - Carola Torazza
- Pharmacology and Toxicology Unit, Department of Pharmacy, University of Genoa, 16148 Genoa, Italy; (T.B.); (R.A.Z.); (M.B.); (C.T.); (G.F.); (G.B.); (M.M.)
| | - Giulia Frumento
- Pharmacology and Toxicology Unit, Department of Pharmacy, University of Genoa, 16148 Genoa, Italy; (T.B.); (R.A.Z.); (M.B.); (C.T.); (G.F.); (G.B.); (M.M.)
| | - Ernesto Fedele
- Pharmacology and Toxicology Unit, Department of Pharmacy, University of Genoa, 16148 Genoa, Italy; (T.B.); (R.A.Z.); (M.B.); (C.T.); (G.F.); (G.B.); (M.M.)
- IRCCS Ospedale Policlinico San Martino, 16132 Genoa, Italy
- Correspondence:
| | - Giambattista Bonanno
- Pharmacology and Toxicology Unit, Department of Pharmacy, University of Genoa, 16148 Genoa, Italy; (T.B.); (R.A.Z.); (M.B.); (C.T.); (G.F.); (G.B.); (M.M.)
- IRCCS Ospedale Policlinico San Martino, 16132 Genoa, Italy
| | - Marco Milanese
- Pharmacology and Toxicology Unit, Department of Pharmacy, University of Genoa, 16148 Genoa, Italy; (T.B.); (R.A.Z.); (M.B.); (C.T.); (G.F.); (G.B.); (M.M.)
- Inter-University Center for the Promotion of the 3Rs Principles in Teaching & Research (Centro 3R), 56122 Genoa, Italy
| |
Collapse
|
49
|
Jensen TL, Gøtzsche CR, Woldbye DPD. Current and Future Prospects for Gene Therapy for Rare Genetic Diseases Affecting the Brain and Spinal Cord. Front Mol Neurosci 2021; 14:695937. [PMID: 34690692 PMCID: PMC8527017 DOI: 10.3389/fnmol.2021.695937] [Citation(s) in RCA: 37] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2021] [Accepted: 09/02/2021] [Indexed: 12/12/2022] Open
Abstract
In recent years, gene therapy has been raising hopes toward viable treatment strategies for rare genetic diseases for which there has been almost exclusively supportive treatment. We here review this progress at the pre-clinical and clinical trial levels as well as market approvals within diseases that specifically affect the brain and spinal cord, including degenerative, developmental, lysosomal storage, and metabolic disorders. The field reached an unprecedented milestone when Zolgensma® (onasemnogene abeparvovec) was approved by the FDA and EMA for in vivo adeno-associated virus-mediated gene replacement therapy for spinal muscular atrophy. Shortly after EMA approved Libmeldy®, an ex vivo gene therapy with lentivirus vector-transduced autologous CD34-positive stem cells, for treatment of metachromatic leukodystrophy. These successes could be the first of many more new gene therapies in development that mostly target loss-of-function mutation diseases with gene replacement (e.g., Batten disease, mucopolysaccharidoses, gangliosidoses) or, less frequently, gain-of-toxic-function mutation diseases by gene therapeutic silencing of pathologic genes (e.g., amyotrophic lateral sclerosis, Huntington's disease). In addition, the use of genome editing as a gene therapy is being explored for some diseases, but this has so far only reached clinical testing in the treatment of mucopolysaccharidoses. Based on the large number of planned, ongoing, and completed clinical trials for rare genetic central nervous system diseases, it can be expected that several novel gene therapies will be approved and become available within the near future. Essential for this to happen is the in depth characterization of short- and long-term effects, safety aspects, and pharmacodynamics of the applied gene therapy platforms.
Collapse
Affiliation(s)
- Thomas Leth Jensen
- Department of Neurology, Rigshospitalet University Hospital, Copenhagen, Denmark
| | | | | |
Collapse
|
50
|
Blizard S, Park D, O’Toole N, Norooz S, Dela Torre M, Son Y, Holstein A, Austin S, Harman J, Haraszti S, Fared D, Xu M. Neuron-Specific IMP2 Overexpression by Synapsin Promoter-Driven AAV9: A Tool to Study Its Role in Axon Regeneration. Cells 2021; 10:2654. [PMID: 34685634 PMCID: PMC8534607 DOI: 10.3390/cells10102654] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2021] [Revised: 08/30/2021] [Accepted: 10/02/2021] [Indexed: 11/17/2022] Open
Abstract
Insulin-like growth factor II mRNA-binding protein (IMP) 2 is one of the three homologues (IMP1-3) that belong to a conserved family of mRNA-binding proteins. Its alternative splice product is aberrantly expressed in human hepatocellular carcinoma, and it is therefore identified as HCC. Previous works have indicated that IMP1/ZBP1 (zipcode binding protein) is critical in axon guidance and regeneration by regulating localization and translation of specific mRNAs. However, the role of IMP2 in the nervous system is largely unknown. We used the synapsin promoter-driven adeno-associated viral (AAV) 9 constructs for transgene expression both in vitro and in vivo. These viral vectors have proven to be effective to transduce the neuron-specific overexpression of IMP2 and HCC. Applying this viral vector in the injury-conditioned dorsal root ganglion (DRG) culture demonstrates that overexpression of IMP2 significantly inhibits axons regenerating from the neurons, whereas overexpression of HCC barely interrupts the process. Quantitative analysis of binding affinities of IMPs to β-actin mRNA reveals that it is closely associated with their roles in axon regeneration. Although IMPs share significant structural homology, the distinctive functions imply their different ability to localize specific mRNAs and to regulate the axonal translation.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | | | | | | | - Mei Xu
- Department of Bio-Medical Sciences, Philadelphia College of Osteopathic Medicine, 4170 City Avenue, Philadelphia, PA 19131, USA; (S.B.); (D.P.); (N.O.); (S.N.); (M.D.T.); (Y.S.); (A.H.); (S.A.); (J.H.); (S.H.); (D.F.)
| |
Collapse
|