1
|
Narayana JK, Mac Aogáin M, Hansbro PM, Chotirmall SH. The bronchiectasis microbiome: current understanding and treatment implications. Curr Opin Pulm Med 2025; 31:135-144. [PMID: 39492755 DOI: 10.1097/mcp.0000000000001131] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2024]
Abstract
PURPOSE OF REVIEW Advances in DNA sequencing and analysis of the respiratory microbiome highlight its close association with bronchiectasis phenotypes, revealing fresh opportunities for diagnosis, stratification, and personalized clinical intervention. An under-recognized condition, bronchiectasis is increasingly the subject of recent large-scale, multicentre, and longitudinal clinical studies including detailed analysis of the microbiome. In this review, we summarize recent progress in our understanding of the bronchiectasis microbiome within the context of its potential use in treatment decisions. RECENT FINDINGS Diverse microbiome profiles exist in bronchiectasis, in line with the established disease heterogeneity including treatment response. Classical microbiology has established Pseudomonas aeruginosa and Haemophilus influenza as two microbial markers of disease, while holistic microbiome analysis has uncovered important associations with less common bacterial taxa including commensal an/or pathobiont species, including the emerging role of the fungal mycobiome, virome, and interactome. Integration of airway microbiomes with other high-dimensional biological and clinical datasets holds significant promise to determining treatable traits and mechanisms of disease related to the microbiome. SUMMARY The bronchiectasis microbiome is an emerging and key area of study with significant implications for understanding bronchiectasis, influencing treatment decisions and ultimately improving patient outcomes.
Collapse
Affiliation(s)
- Jayanth Kumar Narayana
- Lee Kong Chian School of Medicine, Nanyang Technological University, Singapore, Singapore
| | - Micheál Mac Aogáin
- Department of Biochemistry, St. James's Hospital
- School of Medicine, Trinity College, Dublin, Ireland
| | - Philip M Hansbro
- Centre for Inflammation, Centenary Institute and University of Technology Sydney, Faculty of Science, School of Life Sciences, Sydney, New South Wales, Australia
| | - Sanjay H Chotirmall
- Lee Kong Chian School of Medicine, Nanyang Technological University, Singapore, Singapore
- Department of Respiratory and Critical Care Medicine, Tan Tock Seng Hospital, Singapore, Singapore
| |
Collapse
|
2
|
Wang W, Qu Y, Chen H, Huang L, Gu L. The microbial co-infection interaction network in apical periodontitis with sinus tracts. J Dent 2025; 153:105496. [PMID: 39626841 DOI: 10.1016/j.jdent.2024.105496] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2024] [Revised: 11/19/2024] [Accepted: 11/30/2024] [Indexed: 12/10/2024] Open
Abstract
OBJECTIVES This study aims to characterize the bacterial co-occurrence features and potential interactions associated with the presence of sinus tracts in apical periodontitis in a Chinese population by using 16S rRNA next-generation sequencing (NGS). METHODS Thirty-one samples from twenty-six patients were collected from root canals. Following the extraction of the bacterial DNA, the V3-V4 hypervariable regions of the 16S rRNA gene were sequenced. Compositional diversity, prominent taxa and co-occurrence network analysis were compared according to the presence or absence of sinus tracts. RESULTS The overall microbiota in two groups exhibited distinguished patterns. Actinomyces dominated in samples with sinus tracts while Prevotella was the most abundant in samples without sinus tracts. The major pathogens in sinus tracts exhibited a complex co-occurrence network, in which Pseudomonas formed a distinctive cluster with enriched abundance, and the extensive correlations centered on Desulfovibrio and Pseudoramibacter may suggest novel dependencies. In the network without sinus tracts, the Bacteroidetes and Firmicutes taxa presented close internal associations. CONCLUSIONS The sequencing results confirmed the complexity of the microbiota in AP. The presence of sinus tracts was associated with distinctive infective patterns and complicated microbial co-infection interaction networks. Further investigations should be adopted to elucidate the relationship between the novel interactions and disease progression. CLINICAL SIGNIFICANCE Exploring the microbial interactions leads to a better understanding of etiology of apical periodontitis. Utilizing next generation sequencing techniques, our research uncovered the bacterial community structure and observed co-infection networks associated with sinus tracts, providing potential insights for prognosis prediction and targeted therapeutics of persistent inflammation.
Collapse
Affiliation(s)
- Wenying Wang
- Hospital of Stomatology, Sun Yat-sen University, Guangzhou, Guangdong, China; Guangdong Provincial Key Laboratory of Stomatology, Guanghua School of Stomatology, Sun Yat-sen University, Guangzhou, Guangdong, China
| | - Yang Qu
- Hospital of Stomatology, Sun Yat-sen University, Guangzhou, Guangdong, China; Guangdong Provincial Key Laboratory of Stomatology, Guanghua School of Stomatology, Sun Yat-sen University, Guangzhou, Guangdong, China
| | - Hui Chen
- Hospital of Stomatology, Sun Yat-sen University, Guangzhou, Guangdong, China; Guangdong Provincial Key Laboratory of Stomatology, Guanghua School of Stomatology, Sun Yat-sen University, Guangzhou, Guangdong, China
| | - Lijia Huang
- Hospital of Stomatology, Sun Yat-sen University, Guangzhou, Guangdong, China; Guangdong Provincial Key Laboratory of Stomatology, Guanghua School of Stomatology, Sun Yat-sen University, Guangzhou, Guangdong, China.
| | - Lisha Gu
- Hospital of Stomatology, Sun Yat-sen University, Guangzhou, Guangdong, China; Guangdong Provincial Key Laboratory of Stomatology, Guanghua School of Stomatology, Sun Yat-sen University, Guangzhou, Guangdong, China.
| |
Collapse
|
3
|
Ananth S, Adeoti AO, Ray A, Middleton PG, Ekkelenkamp M, Thee S, Shah A. Healthcare worker views on antimicrobial resistance in chronic respiratory disease. Antimicrob Resist Infect Control 2025; 14:1. [PMID: 39844291 PMCID: PMC11752958 DOI: 10.1186/s13756-025-01515-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2024] [Accepted: 01/04/2025] [Indexed: 01/24/2025] Open
Abstract
BACKGROUND AND OBJECTIVE Antimicrobial resistance (AMR) is a global crisis, however, relatively little is known regarding its impact in chronic respiratory disease and the specific challenges faced by healthcare workers across the world in this field. We aimed to assess global healthcare worker views on the challenges they face regarding AMR in chronic respiratory disease. METHODS An online survey was sent to healthcare workers globally working in chronic respiratory disease through a European Respiratory Society clinical research collaboration (AMR-Lung) focussed on AMR in chronic lung disease. Responses from different geographic regions were analysed. RESULTS 279 responses were received across 60 countries. 54.5% of respondents encountered AMR in chronic respiratory disease weekly. There were differences in perceived high-priority diseases and species with AMR burden between Europe, Asia and Africa. 76.4% of respondents thought that inappropriate antimicrobial prescribing in chronic respiratory disease was common. However, only 43.4% of respondents thought that there were adequate antimicrobial stewardship programmes in their area for chronic respiratory disease, with limited availability in outpatient (29.0%) and ambulatory settings (24.7%). Developing rapid diagnostics for antimicrobial susceptibility (59.5%) was perceived to be the most common challenge in implementing antimicrobial stewardship, with an improved understanding of regional epidemiology of AMR strains the most important factor to improve outcome (55.2%). CONCLUSIONS AMR has significant perceived burden in chronic respiratory disease by healthcare professionals globally. However, current implementation of antimicrobial stewardship is limited, with significant challenges related to the availability of rapid diagnostics and understanding of regional epidemiology of AMR strains.
Collapse
Affiliation(s)
- Sachin Ananth
- London North West University Healthcare NHS Trust, London, UK
| | | | - Animesh Ray
- All India Institute of Medical Sciences, New Delhi, India
| | - Peter G Middleton
- CITRICA, Department of Respiratory and Sleep Medicine, Westmead Clinical School, University of Sydney, Sydney, Australia
| | | | - Stephanie Thee
- Charité-Universitätsmedizin Berlin, Berlin, Germany
- Berlin Institute of Health (BIH), Berlin, Germany
| | - Anand Shah
- Royal Brompton Hospital, Guy's and St. Thomas' NHS Foundation Trust, London, UK.
- MRC Centre of Global Infectious Disease Analysis, Imperial College London, London, UK.
| |
Collapse
|
4
|
Angel NZ, Sullivan MJ, Alsheikh-Hussain A, Fang L, MacDonald S, Pribyl A, Wills B, Tyson GW, Hugenholtz P, Parks DH, Griffin P, Wood DLA. Metagenomics: a new frontier for routine pathology testing of gastrointestinal pathogens. Gut Pathog 2025; 17:4. [PMID: 39827146 PMCID: PMC11742996 DOI: 10.1186/s13099-024-00673-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/20/2024] [Accepted: 12/24/2024] [Indexed: 01/22/2025] Open
Abstract
BACKGROUND Accurate and comprehensive identification of enteropathogens, causing infectious gastroenteritis, is essential for optimal patient treatment and effective isolation processes in health care systems. Traditional diagnostic techniques are well established and optimised in low-cost formats. However, thorough testing for a wider range of causal agents is time consuming and remains limited to a subset of pathogenic organisms. Metagenomic next-generation sequencing (mNGS) allows the identification of all pathogens in a sample in a single test, without a reliance on culture or introduction of target selection bias. This study aims to determine the ability to routinely apply mNGS testing, in comparison to traditional culture or polymerase chain reaction (PCR) based tests, for the identification of causal pathogens for gastrointestinal infections. RESULTS The performance of mNGS, PCR and microscopy, culture and sensitivity (MCS) assays was established using 2,619 prospectively collected faecal samples from patients with symptomology indicative of infectious gastroenteritiss. Commonly experienced pathogens including Aeromonas spp, Campylobacter spp, Salmonella spp and Giardia spp, in single and co-infected patients, were used to establish test outcomes. When testing for these organisms, using the combined result from either or both PCR and MCS testing as the comparator, the mNGS assay had clinically acceptable sensitivity (89.2-100%). Further, the mNGS assay detected 14 additional enteropathogens, that were either not detected or not tested, by initial PCR/MCS testing. CONCLUSIONS The advantage of mNGS compared to other syndromic testing systems is the broad range of detectable targets and the ability to interrogate samples without clinician informed or assay specific bias. With the development of newer sequencing assays, it is now feasible to test for a wide range of target organisms in a sample using a single mNGS test. Overall, the mNGS based approach enabled pathogen detection that was comparable to conventional diagnostics and was shown to have the potential to be extended for the detection of many pathogens and genes of clinical interest. In conclusion, the mNGS assay offers an easy, sample to answer workflow with rapid detection of enteropathogens and has the potential to improve diagnosis, therapy and infection control precautions.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | - Gene W Tyson
- Microba Pty Ltd, Brisbane, Australia
- Centre for Microbiome Research, School of Biomedical Sciences, Queensland University of Technology (QUT), Translational Research Institute, Woolloongabba, QLD, Australia
| | - Philip Hugenholtz
- Microba Pty Ltd, Brisbane, Australia
- Australian Centre for Ecogenomics, School of Chemistry and Molecular Biosciences, University of Queensland, St Lucia, QLD, Australia
| | | | - Paul Griffin
- Microba Pty Ltd, Brisbane, Australia
- Department of Medicine, The University of Queensland, Brisbane, QLD, Australia
- Mater Research Raymond Terrace, South Brisbane, Australia
| | | |
Collapse
|
5
|
Nychas E, Marfil-Sánchez A, Chen X, Mirhakkak M, Li H, Jia W, Xu A, Nielsen HB, Nieuwdorp M, Loomba R, Ni Y, Panagiotou G. Discovery of robust and highly specific microbiome signatures of non-alcoholic fatty liver disease. MICROBIOME 2025; 13:10. [PMID: 39810263 PMCID: PMC11730835 DOI: 10.1186/s40168-024-01990-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/03/2024] [Accepted: 11/26/2024] [Indexed: 01/16/2025]
Abstract
BACKGROUND The pathogenesis of non-alcoholic fatty liver disease (NAFLD) with a global prevalence of 30% is multifactorial and the involvement of gut bacteria has been recently proposed. However, finding robust bacterial signatures of NAFLD has been a great challenge, mainly due to its co-occurrence with other metabolic diseases. RESULTS Here, we collected public metagenomic data and integrated the taxonomy profiles with in silico generated community metabolic outputs, and detailed clinical data, of 1206 Chinese subjects w/wo metabolic diseases, including NAFLD (obese and lean), obesity, T2D, hypertension, and atherosclerosis. We identified highly specific microbiome signatures through building accurate machine learning models (accuracy = 0.845-0.917) for NAFLD with high portability (generalizable) and low prediction rate (specific) when applied to other metabolic diseases, as well as through a community approach involving differential co-abundance ecological networks. Moreover, using these signatures coupled with further mediation analysis and metabolic dependency modeling, we propose synergistic defined microbial consortia associated with NAFLD phenotype in overweight and lean individuals, respectively. CONCLUSION Our study reveals robust and highly specific NAFLD signatures and offers a more realistic microbiome-therapeutics approach over individual species for this complex disease. Video Abstract.
Collapse
Affiliation(s)
- Emmanouil Nychas
- Department of Microbiome Dynamics, Leibniz Institute for Natural Product Research and Infection Biology - Hans Knöll Institute, Beutenbergstraße 11A, Jena, 07745, Germany
| | - Andrea Marfil-Sánchez
- Department of Microbiome Dynamics, Leibniz Institute for Natural Product Research and Infection Biology - Hans Knöll Institute, Beutenbergstraße 11A, Jena, 07745, Germany
| | - Xiuqiang Chen
- Department of Microbiome Dynamics, Leibniz Institute for Natural Product Research and Infection Biology - Hans Knöll Institute, Beutenbergstraße 11A, Jena, 07745, Germany
| | - Mohammad Mirhakkak
- Department of Microbiome Dynamics, Leibniz Institute for Natural Product Research and Infection Biology - Hans Knöll Institute, Beutenbergstraße 11A, Jena, 07745, Germany
| | - Huating Li
- Department of Endocrinology and Metabolism, Shanghai Clinical Center for Diabetes, Shanghai Key Laboratory of Diabetes Mellitus, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai Diabetes Institute, Shanghai, 200233, China
| | - Weiping Jia
- Department of Endocrinology and Metabolism, Shanghai Clinical Center for Diabetes, Shanghai Key Laboratory of Diabetes Mellitus, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai Diabetes Institute, Shanghai, 200233, China
| | - Aimin Xu
- The State Key Laboratory of Pharmaceutical Biotechnology, The University of Hong Kong, Hong Kong SAR, China
- Department of Medicine, The University of Hong Kong, Hong Kong SAR, China
- Department of Pharmacology and Pharmacy, The University of Hong Kong, Hong Kong SAR, China
| | | | - Max Nieuwdorp
- Amsterdam UMC, Location AMC, Department of Vascular Medicine, University of Amsterdam, Amsterdam, The Netherlands
| | - Rohit Loomba
- Department of Medicine, MASLD Research Center, University of California, San Diego, La Jolla, CA, 92093, USA
| | - Yueqiong Ni
- Department of Microbiome Dynamics, Leibniz Institute for Natural Product Research and Infection Biology - Hans Knöll Institute, Beutenbergstraße 11A, Jena, 07745, Germany.
- Department of Endocrinology and Metabolism, Shanghai Clinical Center for Diabetes, Shanghai Key Laboratory of Diabetes Mellitus, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai Diabetes Institute, Shanghai, 200233, China.
- Cluster of Excellence Balance of the Microverse, Friedrich Schiller University Jena, Jena, Germany.
| | - Gianni Panagiotou
- Department of Microbiome Dynamics, Leibniz Institute for Natural Product Research and Infection Biology - Hans Knöll Institute, Beutenbergstraße 11A, Jena, 07745, Germany.
- Faculty of Biological Sciences, Friedrich Schiller University, Jena, 07745, Germany.
- Department of Medicine, The University of Hong Kong, Hong Kong SAR, China.
- Cluster of Excellence Balance of the Microverse, Friedrich Schiller University Jena, Jena, Germany.
| |
Collapse
|
6
|
Akiyama S, Nishijima S, Kojima Y, Kimura M, Ohsugi M, Ueki K, Mizokami M, Hattori M, Tsuchiya K, Uemura N, Kawai T, Bork P, Nagata N. Multi-biome analysis identifies distinct gut microbial signatures and their crosstalk in ulcerative colitis and Crohn's disease. Nat Commun 2024; 15:10291. [PMID: 39604394 PMCID: PMC11603027 DOI: 10.1038/s41467-024-54797-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2024] [Accepted: 11/19/2024] [Indexed: 11/29/2024] Open
Abstract
The integrative multi-kingdom interaction of the gut microbiome in ulcerative colitis (UC) and Crohn's disease (CD) remains underinvestigated. Here, we perform shotgun metagenomic sequencing of feces from patients with UC and CD, and healthy controls in the Japanese 4D cohort, profiling bacterial taxa, gene functions, and antibacterial genes, bacteriophages, and fungi. External metagenomic datasets from the US, Spain, the Netherlands, and China were analyzed to validate our multi-biome findings. We found that Enterococcus faecium and Bifidobacterium spp. were enriched in both diseases. Enriched Escherichia coli was characteristic of CD and was linked to numerous antibiotic resistance genes involved in efflux pumps and adherent-invasive Escherichia coli virulence factors. Virome changes correlated with shifts in the bacteriome, including increased abundances of phages encoding pathogenic genes. Saccharomyces paradoxus and Saccharomyces cerevisiae were enriched in UC and CD, respectively. Saccharomyces cerevisiae and Escherichia coli had negative associations with short-chain fatty acid (SCFA)-producing bacteria in CD. Multi-biome signatures and their interactions in UC and CD showed high similarities between Japan and other countries. Since bacteria, phages, and fungi formed multiple hubs of intra- or trans-kingdom networks with SCFA producers and pathobionts in UC and CD, an approach targeting the interaction network may hold therapeutic promise.
Collapse
Grants
- This work was partially supported by Japan Agency for Medical Research and Development (AMED) (Research Program on HIV/AIDS: JP22fk0410051, and Research Program on Emerging and Re-emerging Infectious Diseases: JP22fk0108538), Grants-in-Aid for Research from the National Center for Global Health and Medicine (28-2401, 19A1011, 24A1010), JSPS KAKENHI Grant (JP17K09365 and 20K08366), Smoking Research Foundation, DANONE RESEARCH GRANT, research funding of Japan Dairy Association (J-Milk), Takeda Science Foundation, Tokyo Medical University Foundation, and COCKPIT funding. The funding bodies had no role in the study design, data collection or analysis, decision to publish, or preparation of the manuscript.
Collapse
Affiliation(s)
- Shintaro Akiyama
- Department of Gastroenterology, Institute of Medicine, University of Tsukuba, Ibaraki, Japan
| | - Suguru Nishijima
- Structural and Computational Biology Unit, European Molecular Biology Laboratory, Heidelberg, Germany.
| | - Yasushi Kojima
- Department of Gastroenterology and Hepatology, National Center for Global Health and Medicine, Tokyo, Japan
| | - Moto Kimura
- Department of Clinical Research Strategic Planning Center for Clinical Sciences, National Center for Global Health and Medicine, Tokyo, Japan
| | - Mitsuru Ohsugi
- Department of Diabetes, Endocrinology and Metabolism, Center Hospital, National Center for Global Health and Medicine, Tokyo, Japan
| | - Kohjiro Ueki
- Diabetes Research Center, Research Institute, National Center for Global Health and Medicine, Tokyo, Japan
| | - Masashi Mizokami
- Genome Medical Sciences Project, Research Institute, National Center for Global Health and Medicine, Chiba, Japan
| | - Masahira Hattori
- Laboratory for Microbiome Sciences, RIKEN Center for Integrative Medical Sciences, Yokohama, Japan
| | - Kiichiro Tsuchiya
- Department of Gastroenterology, Institute of Medicine, University of Tsukuba, Ibaraki, Japan
| | - Naomi Uemura
- Department of Gastroenterology and Hepatology, National Center for Global Health and Medicine, Kohnodai Hospital, Chiba, Japan
| | - Takashi Kawai
- Department of Gastroenterological Endoscopy, Tokyo Medical University, Tokyo, Japan
| | - Peer Bork
- Structural and Computational Biology Unit, European Molecular Biology Laboratory, Heidelberg, Germany
| | - Naoyoshi Nagata
- Department of Gastroenterological Endoscopy, Tokyo Medical University, Tokyo, Japan.
| |
Collapse
|
7
|
Brown GD, Ballou ER, Bates S, Bignell EM, Borman AM, Brand AC, Brown AJP, Coelho C, Cook PC, Farrer RA, Govender NP, Gow NAR, Hope W, Hoving JC, Dangarembizi R, Harrison TS, Johnson EM, Mukaremera L, Ramsdale M, Thornton CR, Usher J, Warris A, Wilson D. The pathobiology of human fungal infections. Nat Rev Microbiol 2024; 22:687-704. [PMID: 38918447 DOI: 10.1038/s41579-024-01062-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/14/2024] [Indexed: 06/27/2024]
Abstract
Human fungal infections are a historically neglected area of disease research, yet they cause more than 1.5 million deaths every year. Our understanding of the pathophysiology of these infections has increased considerably over the past decade, through major insights into both the host and pathogen factors that contribute to the phenotype and severity of these diseases. Recent studies are revealing multiple mechanisms by which fungi modify and manipulate the host, escape immune surveillance and generate complex comorbidities. Although the emergence of fungal strains that are less susceptible to antifungal drugs or that rapidly evolve drug resistance is posing new threats, greater understanding of immune mechanisms and host susceptibility factors is beginning to offer novel immunotherapeutic options for the future. In this Review, we provide a broad and comprehensive overview of the pathobiology of human fungal infections, focusing specifically on pathogens that can cause invasive life-threatening infections, highlighting recent discoveries from the pathogen, host and clinical perspectives. We conclude by discussing key future challenges including antifungal drug resistance, the emergence of new pathogens and new developments in modern medicine that are promoting susceptibility to infection.
Collapse
Affiliation(s)
- Gordon D Brown
- Medical Research Council Centre for Medical Mycology, University of Exeter, Exeter, UK.
| | - Elizabeth R Ballou
- Medical Research Council Centre for Medical Mycology, University of Exeter, Exeter, UK
| | - Steven Bates
- Medical Research Council Centre for Medical Mycology, University of Exeter, Exeter, UK
| | - Elaine M Bignell
- Medical Research Council Centre for Medical Mycology, University of Exeter, Exeter, UK
| | - Andrew M Borman
- Medical Research Council Centre for Medical Mycology, University of Exeter, Exeter, UK
| | - Alexandra C Brand
- Medical Research Council Centre for Medical Mycology, University of Exeter, Exeter, UK
| | - Alistair J P Brown
- Medical Research Council Centre for Medical Mycology, University of Exeter, Exeter, UK
| | - Carolina Coelho
- Medical Research Council Centre for Medical Mycology, University of Exeter, Exeter, UK
| | - Peter C Cook
- Medical Research Council Centre for Medical Mycology, University of Exeter, Exeter, UK
| | - Rhys A Farrer
- Medical Research Council Centre for Medical Mycology, University of Exeter, Exeter, UK
| | - Nelesh P Govender
- Medical Research Council Centre for Medical Mycology, University of Exeter, Exeter, UK
| | - Neil A R Gow
- Medical Research Council Centre for Medical Mycology, University of Exeter, Exeter, UK
| | - William Hope
- Medical Research Council Centre for Medical Mycology, University of Exeter, Exeter, UK
| | - J Claire Hoving
- Medical Research Council Centre for Medical Mycology, University of Exeter, Exeter, UK
| | - Rachael Dangarembizi
- Medical Research Council Centre for Medical Mycology, University of Exeter, Exeter, UK
| | - Thomas S Harrison
- Medical Research Council Centre for Medical Mycology, University of Exeter, Exeter, UK
| | - Elizabeth M Johnson
- Medical Research Council Centre for Medical Mycology, University of Exeter, Exeter, UK
| | - Liliane Mukaremera
- Medical Research Council Centre for Medical Mycology, University of Exeter, Exeter, UK
| | - Mark Ramsdale
- Medical Research Council Centre for Medical Mycology, University of Exeter, Exeter, UK
| | | | - Jane Usher
- Medical Research Council Centre for Medical Mycology, University of Exeter, Exeter, UK
| | - Adilia Warris
- Medical Research Council Centre for Medical Mycology, University of Exeter, Exeter, UK
| | - Duncan Wilson
- Medical Research Council Centre for Medical Mycology, University of Exeter, Exeter, UK
| |
Collapse
|
8
|
Long MB, Chotirmall SH, Shteinberg M, Chalmers JD. Rethinking bronchiectasis as an inflammatory disease. THE LANCET. RESPIRATORY MEDICINE 2024; 12:901-914. [PMID: 38971168 DOI: 10.1016/s2213-2600(24)00176-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/26/2024] [Revised: 05/22/2024] [Accepted: 05/23/2024] [Indexed: 07/08/2024]
Abstract
Bronchiectasis is understood to be the result of a complex interaction between infection, impaired mucociliary clearance, inflammation, and lung damage. Current therapeutic approaches to bronchiectasis are heavily focused on management of infection along with enhancing mucus clearance. Long-term antibiotics have had limited success in clinical trials, suggesting a need to re-evaluate the concept of bronchiectasis as an infective disorder. We invoke the example of asthma, for which treatment paradigms shifted away from targeting smooth muscle constriction, towards permanently suppressing airway inflammation, reducing risk and ultimately inducing remission with precision anti-inflammatory treatments. In this Review, we argue that bronchiectasis is primarily a chronic inflammatory disease, requiring early identification of at-risk individuals, and we introduce a novel concept of disease activity with important implications for clinical practice and future research. A new generation of novel anti-inflammatory treatments are under development and repurposing of anti-inflammatory agents from other diseases could revolutionise patient care.
Collapse
Affiliation(s)
- Merete B Long
- Division of Molecular and Clinical Medicine, University of Dundee, Dundee, UK
| | - Sanjay H Chotirmall
- Lee Kong Chian School of Medicine, Nanyang Technological University, Singapore, Singapore; Department of Respiratory and Critical Care Medicine, Tan Tock Seng Hospital, Singapore, Singapore
| | - Michal Shteinberg
- Pulmonology Institute and CF Center, Carmel Medical Center, Haifa, Israel; The Technion, Israel Institute of Technology, The B Rappaport Faculty of Medicine, Haifa, Israel
| | - James D Chalmers
- Division of Molecular and Clinical Medicine, University of Dundee, Dundee, UK.
| |
Collapse
|
9
|
Jaggi TK, Agarwal R, Tiew PY, Shah A, Lydon EC, Hage CA, Waterer GW, Langelier CR, Delhaes L, Chotirmall SH. Fungal lung disease. Eur Respir J 2024; 64:2400803. [PMID: 39362667 PMCID: PMC11602666 DOI: 10.1183/13993003.00803-2024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2024] [Accepted: 09/13/2024] [Indexed: 10/05/2024]
Abstract
Fungal lung disease encompasses a wide spectrum of organisms and associated clinical conditions, presenting a significant global health challenge. The type and severity of disease are determined by underlying host immunity and infecting fungal strain. The most common group of diseases are associated with the filamentous fungus Aspergillus species and include allergic bronchopulmonary aspergillosis, sensitisation, aspergilloma and chronic and invasive pulmonary aspergillosis. Fungal lung disease remains epidemiologically heterogenous and is influenced by geography, environment and host comorbidities. Diagnostic modalities continue to evolve and now include novel molecular assays and biomarkers; however, persisting challenges include achieving rapid and accurate diagnosis, particularly in resource-limited settings, and in differentiating fungal infection from other pulmonary conditions. Treatment strategies for fungal lung diseases rely mainly on antifungal agents but the emergence of drug-resistant strains poses a substantial global threat and adds complexity to existing therapeutic challenges. Emerging antifungal agents and increasing insight into the lung mycobiome may offer fresh and personalised approaches to diagnosis and treatment. Innovative methodologies are required to mitigate drug resistance and the adverse effects of treatment. This state-of-the-art review describes the current landscape of fungal lung disease, highlighting key clinical insights, current challenges and emerging approaches for its diagnosis and treatment.
Collapse
Affiliation(s)
- Tavleen Kaur Jaggi
- Lee Kong Chian School of Medicine, Nanyang Technological University, Singapore, Singapore
| | - Ritesh Agarwal
- Department of Pulmonary Medicine, Postgraduate Institute of Medical Education and Research, Chandigarh, India
| | - Pei Yee Tiew
- Lee Kong Chian School of Medicine, Nanyang Technological University, Singapore, Singapore
- Department of Respiratory and Critical Care Medicine, Singapore General Hospital, Singapore, Singapore
- Duke-NUS Medical School, Singapore, Singapore
| | - Anand Shah
- Department of Respiratory Medicine, Royal Brompton and Harefield Hospitals, Guy's and St Thomas' NHS Foundation Trust, London, UK
- MRC Centre of Global Infectious Disease Analysis, School of Public Health, Imperial College London, London, UK
| | - Emily C Lydon
- Division of Infectious Diseases, Department of Medicine, University of California San Francisco, San Francisco, CA, USA
| | - Chadi A Hage
- Pulmonary, Allergy and Critical Care Medicine, University of Pittsburgh,Pittsburgh, PA, USA
- Lung Transplant, University of Pittsburgh Medical Center, Pittsburgh, PA, USA
| | - Grant W Waterer
- University of Western Australia, Royal Perth Hospital, Perth, Australia
| | - Charles R Langelier
- Division of Infectious Diseases, Department of Medicine, University of California San Francisco, San Francisco, CA, USA
- Chan Zuckerberg Biohub, San Francisco, CA, USA
| | - Laurence Delhaes
- Univ. Bordeaux, Centre de Recherche Cardio-Thoracique de Bordeaux, U1045, Bordeaux, France
- CHU de Bordeaux: Laboratoire de Parasitologie-Mycologie, CNR des Aspergilloses Chroniques, Univ. Bordeaux, FHU ACRONIM, Bordeaux, France
| | - Sanjay H Chotirmall
- Lee Kong Chian School of Medicine, Nanyang Technological University, Singapore, Singapore
- Department of Respiratory and Critical Care Medicine, Tan Tock Seng Hospital, Singapore, Singapore
| |
Collapse
|
10
|
Ringshausen FC, Baumann I, de Roux A, Dettmer S, Diel R, Eichinger M, Ewig S, Flick H, Hanitsch L, Hillmann T, Koczulla R, Köhler M, Koitschev A, Kugler C, Nüßlein T, Ott SR, Pink I, Pletz M, Rohde G, Sedlacek L, Slevogt H, Sommerwerck U, Sutharsan S, von Weihe S, Welte T, Wilken M, Rademacher J, Mertsch P. [Management of adult bronchiectasis - Consensus-based Guidelines for the German Respiratory Society (DGP) e. V. (AWMF registration number 020-030)]. Pneumologie 2024; 78:833-899. [PMID: 39515342 DOI: 10.1055/a-2311-9450] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2024]
Abstract
Bronchiectasis is an etiologically heterogeneous, chronic, and often progressive respiratory disease characterized by irreversible bronchial dilation. It is frequently associated with significant symptom burden, multiple complications, and reduced quality of life. For several years, there has been a marked global increase in the prevalence of bronchiectasis, which is linked to a substantial economic burden on healthcare systems. This consensus-based guideline is the first German-language guideline addressing the management of bronchiectasis in adults. The guideline emphasizes the importance of thoracic imaging using CT for diagnosis and differentiation of bronchiectasis and highlights the significance of etiology in determining treatment approaches. Both non-drug and drug treatments are comprehensively covered. Non-pharmacological measures include smoking cessation, physiotherapy, physical training, rehabilitation, non-invasive ventilation, thoracic surgery, and lung transplantation. Pharmacological treatments focus on the long-term use of mucolytics, bronchodilators, anti-inflammatory medications, and antibiotics. Additionally, the guideline covers the challenges and strategies for managing upper airway involvement, comorbidities, and exacerbations, as well as socio-medical aspects and disability rights. The importance of patient education and self-management is also emphasized. Finally, the guideline addresses special life stages such as transition, family planning, pregnancy and parenthood, and palliative care. The aim is to ensure comprehensive, consensus-based, and patient-centered care, taking into account individual risks and needs.
Collapse
Affiliation(s)
- Felix C Ringshausen
- Klinik für Pneumologie und Infektiologie, Medizinische Hochschule Hannover (MHH), Hannover, Deutschland
- Biomedical Research in End-Stage and Obstructive Lung Disease (BREATH), Deutsches Zentrum für Lungenforschung (DZL), Hannover, Deutschland
- European Reference Network on Rare and Complex Respiratory Diseases (ERN-LUNG), Frankfurt, Deutschland
| | - Ingo Baumann
- Hals-, Nasen- und Ohrenklinik, Universitätsklinikum Heidelberg, Heidelberg, Deutschland
| | - Andrés de Roux
- Pneumologische Praxis am Schloss Charlottenburg, Berlin, Deutschland
| | - Sabine Dettmer
- Biomedical Research in End-Stage and Obstructive Lung Disease (BREATH), Deutsches Zentrum für Lungenforschung (DZL), Hannover, Deutschland
- Institut für Diagnostische und Interventionelle Radiologie, Medizinische Hochschule Hannover (MHH), Hannover, Deutschland
| | - Roland Diel
- Institut für Epidemiologie, Universitätsklinikum Schleswig-Holstein (UKSH), Kiel, Deutschland; LungenClinic Grosshansdorf, Airway Research Center North (ARCN), Deutsches Zentrum für Lungenforschung (DZL), Grosshansdorf, Deutschland
| | - Monika Eichinger
- Klinik für Diagnostische und Interventionelle Radiologie, Thoraxklinik am Universitätsklinikum Heidelberg, Heidelberg, Deutschland; Translational Lung Research Center Heidelberg (TLRC), Deutsches Zentrum für Lungenforschung (DZL), Heidelberg, Deutschland
| | - Santiago Ewig
- Thoraxzentrum Ruhrgebiet, Kliniken für Pneumologie und Infektiologie, EVK Herne und Augusta-Kranken-Anstalt Bochum, Bochum, Deutschland
| | - Holger Flick
- Klinische Abteilung für Pulmonologie, Universitätsklinik für Innere Medizin, LKH-Univ. Klinikum Graz, Medizinische Universität Graz, Graz, Österreich
| | - Leif Hanitsch
- Institut für Medizinische Immunologie, Charité - Universitätsmedizin Berlin, Freie Universität Berlin und Humboldt-Universität zu Berlin, Berlin, Deutschland
| | - Thomas Hillmann
- Ruhrlandklinik, Westdeutsches Lungenzentrum am Universitätsklinikum Essen, Essen, Deutschland
| | - Rembert Koczulla
- Abteilung für Pneumologische Rehabilitation, Philipps Universität Marburg, Marburg, Deutschland
| | | | - Assen Koitschev
- Klinik für Hals-, Nasen-, Ohrenkrankheiten, Klinikum Stuttgart - Olgahospital, Stuttgart, Deutschland
| | - Christian Kugler
- Abteilung Thoraxchirurgie, LungenClinic Grosshansdorf, Grosshansdorf, Deutschland
| | - Thomas Nüßlein
- Klinik für Kinder- und Jugendmedizin, Gemeinschaftsklinikum Mittelrhein gGmbH, Koblenz, Deutschland
| | - Sebastian R Ott
- Pneumologie/Thoraxchirurgie, St. Claraspital AG, Basel; Universitätsklinik für Pneumologie, Allergologie und klinische Immunologie, Inselspital, Universitätsspital und Universität Bern, Bern, Schweiz
| | - Isabell Pink
- Klinik für Pneumologie und Infektiologie, Medizinische Hochschule Hannover (MHH), Hannover, Deutschland
- Biomedical Research in End-Stage and Obstructive Lung Disease (BREATH), Deutsches Zentrum für Lungenforschung (DZL), Hannover, Deutschland
- European Reference Network on Rare and Complex Respiratory Diseases (ERN-LUNG), Frankfurt, Deutschland
| | - Mathias Pletz
- Institut für Infektionsmedizin und Krankenhaushygiene, Universitätsklinikum Jena, Jena, Deutschland
| | - Gernot Rohde
- Pneumologie/Allergologie, Medizinische Klinik 1, Universitätsklinikum Frankfurt, Goethe-Universität, Frankfurt am Main, Deutschland
| | - Ludwig Sedlacek
- Institut für Medizinische Mikrobiologie und Krankenhaushygiene, Medizinische Hochschule Hannover (MHH), Hannover, Deutschland
| | - Hortense Slevogt
- Klinik für Pneumologie und Infektiologie, Medizinische Hochschule Hannover (MHH), Hannover, Deutschland
- Biomedical Research in End-Stage and Obstructive Lung Disease (BREATH), Deutsches Zentrum für Lungenforschung (DZL), Hannover, Deutschland
- Center for Individualised Infection Medicine, Hannover, Deutschland
| | - Urte Sommerwerck
- Klinik für Pneumologie, Allergologie, Schlaf- und Beatmungsmedizin, Cellitinnen-Severinsklösterchen Krankenhaus der Augustinerinnen, Köln, Deutschland
| | | | - Sönke von Weihe
- Abteilung Thoraxchirurgie, LungenClinic Grosshansdorf, Grosshansdorf, Deutschland
| | - Tobias Welte
- Klinik für Pneumologie und Infektiologie, Medizinische Hochschule Hannover (MHH), Hannover, Deutschland
- Biomedical Research in End-Stage and Obstructive Lung Disease (BREATH), Deutsches Zentrum für Lungenforschung (DZL), Hannover, Deutschland
- European Reference Network on Rare and Complex Respiratory Diseases (ERN-LUNG), Frankfurt, Deutschland
| | | | - Jessica Rademacher
- Klinik für Pneumologie und Infektiologie, Medizinische Hochschule Hannover (MHH), Hannover, Deutschland
- Biomedical Research in End-Stage and Obstructive Lung Disease (BREATH), Deutsches Zentrum für Lungenforschung (DZL), Hannover, Deutschland
- European Reference Network on Rare and Complex Respiratory Diseases (ERN-LUNG), Frankfurt, Deutschland
| | - Pontus Mertsch
- Medizinische Klinik und Poliklinik V, Klinikum der Universität München (LMU), Comprehensive Pneumology Center (CPC), Deutsches Zentrum für Lungenforschung (DZL), München, Deutschland
| |
Collapse
|
11
|
Chotirmall SH, Chang AB, Chalmers JD. Infection vs Inflammation: The Bronchiectasis "Tug Of War". Chest 2024; 166:928-930. [PMID: 39521544 DOI: 10.1016/j.chest.2024.06.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2024] [Revised: 06/05/2024] [Accepted: 06/06/2024] [Indexed: 11/16/2024] Open
Affiliation(s)
- Sanjay H Chotirmall
- Lee Kong Chian School of Medicine, Nanyang Technological University, Singapore; Department of Respiratory and Critical Care Medicine, Tan Tock Seng Hospital, Singapore.
| | - Anne B Chang
- Child and Maternal Health Division, Menzies School of Health Research, Charles Darwin University, Darwin, NT, Australia; Department of Respiratory and Sleep Medicine, Queensland Children's Hospital, Children Centre for Health Research, Queensland University of Technology, Brisbane, QLD, Australia
| | - James D Chalmers
- Division of Molecular and Clinical Medicine, University of Dundee, Dundee, England
| |
Collapse
|
12
|
Ju Y, Zhang Z, Liu M, Lin S, Sun Q, Song Z, Liang W, Tong X, Jie Z, Lu H, Cai K, Chen P, Jin X, Zhang W, Xu X, Yang H, Wang J, Hou Y, Xiao L, Jia H, Zhang T, Guo R. Integrated large-scale metagenome assembly and multi-kingdom network analyses identify sex differences in the human nasal microbiome. Genome Biol 2024; 25:257. [PMID: 39380016 PMCID: PMC11463039 DOI: 10.1186/s13059-024-03389-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2022] [Accepted: 09/06/2024] [Indexed: 10/10/2024] Open
Abstract
BACKGROUND Respiratory diseases impose an immense health burden worldwide. Epidemiological studies have revealed extensive disparities in the incidence and severity of respiratory tract infections between men and women. It has been hypothesized that there might also be a nasal microbiome axis contributing to the observed sex disparities. RESULTS Here, we study the nasal microbiome of healthy young adults in the largest cohort to date with 1593 individuals, using shotgun metagenomic sequencing. We compile the most comprehensive reference catalog for the nasal bacterial community containing 4197 metagenome-assembled genomes and integrate the mycobiome, to provide a valuable resource and a more holistic perspective for the understudied human nasal microbiome. We systematically evaluate sex differences and reveal extensive sex-specific features in both taxonomic and functional levels in the nasal microbiome. Through network analyses, we capture markedly higher ecological stability and antagonistic potentials in the female nasal microbiome compared to the male's. The analysis of the keystone bacteria reveals that the sex-dependent evolutionary characteristics might have contributed to these differences. CONCLUSIONS In summary, we construct the most comprehensive catalog of metagenome-assembled-genomes for the nasal bacterial community to provide a valuable resource for the understudied human nasal microbiome. On top of that, comparative analysis in relative abundance and microbial co-occurrence networks identify extensive sex differences in the respiratory tract community, which may help to further our understanding of the observed sex disparities in the respiratory diseases.
Collapse
Affiliation(s)
- Yanmei Ju
- BGI Research, Shenzhen, 518083, China
- Shenzhen Key Laboratory of Human Commensal Microorganisms and Health Research, BGI Research, Shenzhen, 518083, China
- College of Life Sciences, University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Zhe Zhang
- BGI Research, Shenzhen, 518083, China
- Shenzhen Key Laboratory of Human Commensal Microorganisms and Health Research, BGI Research, Shenzhen, 518083, China
| | - Mingliang Liu
- BGI Research, Shenzhen, 518083, China
- Shenzhen Key Laboratory of Human Commensal Microorganisms and Health Research, BGI Research, Shenzhen, 518083, China
- College of Life Sciences, University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Shutian Lin
- BGI Research, Shenzhen, 518083, China
- Shenzhen Key Laboratory of Human Commensal Microorganisms and Health Research, BGI Research, Shenzhen, 518083, China
- College of Life Sciences, University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Qiang Sun
- BGI Research, Shenzhen, 518083, China
- Shenzhen Key Laboratory of Human Commensal Microorganisms and Health Research, BGI Research, Shenzhen, 518083, China
- Department of Statistical Sciences, University of Toronto, 700 University Ave, Toronto, ON, M5G 1Z5, Canada
| | | | - Weiting Liang
- BGI Research, Shenzhen, 518083, China
- Shenzhen Key Laboratory of Human Commensal Microorganisms and Health Research, BGI Research, Shenzhen, 518083, China
- College of Life Sciences, University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Xin Tong
- BGI Research, Shenzhen, 518083, China
- Shenzhen Key Laboratory of Human Commensal Microorganisms and Health Research, BGI Research, Shenzhen, 518083, China
| | - Zhuye Jie
- BGI Research, Shenzhen, 518083, China
- Shenzhen Key Laboratory of Human Commensal Microorganisms and Health Research, BGI Research, Shenzhen, 518083, China
| | - Haorong Lu
- China National Genebank, BGI Research, Shenzhen, 518210, China
| | - Kaiye Cai
- BGI Research, Shenzhen, 518083, China
| | | | - Xin Jin
- BGI Research, Shenzhen, 518083, China
| | | | - Xun Xu
- BGI Research, Shenzhen, 518083, China
| | - Huanming Yang
- BGI Research, Shenzhen, 518083, China
- James D, Watson Institute of Genome Sciences, Hangzhou, 310013, China
| | - Jian Wang
- BGI Research, Shenzhen, 518083, China
| | - Yong Hou
- BGI Research, Shenzhen, 518083, China
| | - Liang Xiao
- BGI Research, Shenzhen, 518083, China
- Shenzhen Engineering Laboratory of Detection and Intervention of Human Intestinal Microbiome, BGI Research, Shenzhen, 518083, China
- Qingdao-Europe Advanced Institute for Life Sciences, BGI Research, Qingdao, 266555, China
| | - Huijue Jia
- School of Life Sciences, Fudan University, Shanghai, 200433, China.
- Greater Bay Area Institute of Precision Medicine, Guangzhou, 511458, China.
| | - Tao Zhang
- Shenzhen Key Laboratory of Human Commensal Microorganisms and Health Research, BGI Research, Shenzhen, 518083, China.
- BGI Research, Wuhan, 430074, China.
| | - Ruijin Guo
- BGI Research, Shenzhen, 518083, China.
- Shenzhen Key Laboratory of Human Commensal Microorganisms and Health Research, BGI Research, Shenzhen, 518083, China.
- BGI Research, Wuhan, 430074, China.
| |
Collapse
|
13
|
He ZF, Lin SZ, Pan CX, Chen ZM, Cen LJ, Zhang XX, Huang Y, Chen CL, Zha SS, Li HM, Lin ZH, Shi MX, Zhong NS, Guan WJ. The roles of bacteria and viruses in COPD-Bronchiectasis association: A prospective cohort study. Respir Med 2024; 231:107692. [PMID: 38852923 DOI: 10.1016/j.rmed.2024.107692] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/29/2024] [Revised: 04/21/2024] [Accepted: 06/03/2024] [Indexed: 06/11/2024]
Abstract
BACKGROUND Exacerbations are implicated in bronchiectasis and COPD, which frequently co-exist [COPD-Bronchiectasis association (CBA)]. We aimed to determine the bacterial and viral spectrum at stable-state and exacerbation onset of CBA, and their association with exacerbations and clinical outcomes of CBA as compared with bronchiectasis. METHODS We prospectively collected spontaneous sputum from adults with CBA, bronchiectasis with (BO) and without airflow obstruction (BNO) for bacterial culture and viral detection at stable-state and exacerbations. RESULTS We enrolled 76 patients with CBA, 58 with BO, and 138 with BNO (711 stable and 207 exacerbation visits). Bacterial detection rate increased from BNO, CBA to BO at steady-state (P = 0.02), but not at AE onset (P = 0.91). No significant differences in viral detection rate were found among BNO, CBA and BO. Compared with steady-state, viral isolations occurred more frequently at exacerbation in BNO (15.8 % vs 32.1 %, P = 0.001) and CBA (19.5 % vs 30.6 %, P = 0.036) only. In CBA, isolation of viruses, human metapneumovirus and bacteria plus viruses was associated with exacerbation. Repeated detection of Pseudomonas aeruginosa (PA) correlated with higher modified Reiff score (P = 0.032) in CBA but not in BO (P = 0.178). Repeated detection of PA yielded a shorter time to the first exacerbation in CBA [median: 4.3 vs 11.1 months, P = 0.006] but not in BO (median: 8.4 vs 7.6 months, P = 0.47). CONCLUSIONS Isolation of any viruses, human metapneumovirus and bacterialplus viruses was associated with CBA exacerbations. Repeated detection of PA confers greater impact of future exacerbations on CBA than on BO.
Collapse
Affiliation(s)
- Zhen-Feng He
- State Key Laboratory of Respiratory Disease, National Clinical Research Center for Respiratory Disease, National Center for Respiratory Medicine, Department of Respiratory and Critical Care Medicine, Guangzhou Institute of Respiratory Health, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, Guangdong, China
| | - Sheng-Zhu Lin
- State Key Laboratory of Respiratory Disease, National Clinical Research Center for Respiratory Disease, National Center for Respiratory Medicine, Department of Respiratory and Critical Care Medicine, Guangzhou Institute of Respiratory Health, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, Guangdong, China
| | - Cui-Xia Pan
- State Key Laboratory of Respiratory Disease, National Clinical Research Center for Respiratory Disease, National Center for Respiratory Medicine, Department of Respiratory and Critical Care Medicine, Guangzhou Institute of Respiratory Health, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, Guangdong, China
| | - Zhao-Ming Chen
- State Key Laboratory of Respiratory Disease, National Clinical Research Center for Respiratory Disease, National Center for Respiratory Medicine, Department of Respiratory and Critical Care Medicine, Guangzhou Institute of Respiratory Health, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, Guangdong, China
| | - Lai-Jian Cen
- State Key Laboratory of Respiratory Disease, National Clinical Research Center for Respiratory Disease, National Center for Respiratory Medicine, Department of Respiratory and Critical Care Medicine, Guangzhou Institute of Respiratory Health, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, Guangdong, China
| | - Xiao-Xian Zhang
- State Key Laboratory of Respiratory Disease, National Clinical Research Center for Respiratory Disease, National Center for Respiratory Medicine, Department of Respiratory and Critical Care Medicine, Guangzhou Institute of Respiratory Health, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, Guangdong, China
| | - Yan Huang
- Department of Geriatrics, National Key Clinical Specialty, Guangzhou First People's Hospital, South China University of Technology, Guangzhou, China
| | - Chun-Lan Chen
- Department of Respiratory and Critical Care Medicine, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, Guangzhou, China
| | - Shan-Shan Zha
- State Key Laboratory of Respiratory Disease, National Clinical Research Center for Respiratory Disease, National Center for Respiratory Medicine, Department of Respiratory and Critical Care Medicine, Guangzhou Institute of Respiratory Health, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, Guangdong, China
| | - Hui-Min Li
- State Key Laboratory of Respiratory Disease, National Clinical Research Center for Respiratory Disease, National Center for Respiratory Medicine, Department of Respiratory and Critical Care Medicine, Guangzhou Institute of Respiratory Health, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, Guangdong, China
| | - Zhen-Hong Lin
- State Key Laboratory of Respiratory Disease, National Clinical Research Center for Respiratory Disease, National Center for Respiratory Medicine, Department of Respiratory and Critical Care Medicine, Guangzhou Institute of Respiratory Health, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, Guangdong, China
| | - Ming-Xin Shi
- State Key Laboratory of Respiratory Disease, National Clinical Research Center for Respiratory Disease, National Center for Respiratory Medicine, Department of Respiratory and Critical Care Medicine, Guangzhou Institute of Respiratory Health, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, Guangdong, China
| | - Nan-Shan Zhong
- State Key Laboratory of Respiratory Disease, National Clinical Research Center for Respiratory Disease, National Center for Respiratory Medicine, Department of Respiratory and Critical Care Medicine, Guangzhou Institute of Respiratory Health, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, Guangdong, China; Guangzhou National Laboratory, Guangzhou, China
| | - Wei-Jie Guan
- State Key Laboratory of Respiratory Disease, National Clinical Research Center for Respiratory Disease, National Center for Respiratory Medicine, Department of Respiratory and Critical Care Medicine, Guangzhou Institute of Respiratory Health, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, Guangdong, China; Guangzhou National Laboratory, Guangzhou, China.
| |
Collapse
|
14
|
Katsoulis O, Pitts OR, Singanayagam A. The airway mycobiome and interactions with immunity in health and chronic lung disease. OXFORD OPEN IMMUNOLOGY 2024; 5:iqae009. [PMID: 39206335 PMCID: PMC11357796 DOI: 10.1093/oxfimm/iqae009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2024] [Revised: 07/07/2024] [Accepted: 07/15/2024] [Indexed: 09/04/2024] Open
Abstract
The existence of commensal fungi that reside within the respiratory tract, termed the airway mycobiome, has only recently been discovered. Studies are beginning to characterize the spectrum of fungi that inhabit the human upper and lower respiratory tract but heterogeneous sampling and analysis techniques have limited the generalizability of findings to date. In this review, we discuss existing studies that have examined the respiratory mycobiota in healthy individuals and in those with inflammatory lung conditions such as asthma, chronic obstructive pulmonary disease and cystic fibrosis. Associations between specific fungi and features of disease pathogenesis are emerging but the precise functional consequences imparted by mycobiota upon the immune system remain poorly understood. It is imperative that further research is conducted in this important area as a more detailed understanding could facilitate the development of novel approaches to manipulating the mycobiome for therapeutic benefit.
Collapse
Affiliation(s)
- Orestis Katsoulis
- Centre for Bacterial Resistance Biology, Department of Infectious Disease, Imperial College London, London SW7 2DD, UK
| | - Oliver R Pitts
- Centre for Bacterial Resistance Biology, Department of Infectious Disease, Imperial College London, London SW7 2DD, UK
| | - Aran Singanayagam
- Centre for Bacterial Resistance Biology, Department of Infectious Disease, Imperial College London, London SW7 2DD, UK
- National Heart and Lung Institute, Imperial College London, London SW7 2DD, UK
| |
Collapse
|
15
|
De Angelis A, Johnson ED, Sutharsan S, Aliberti S. Exacerbations of bronchiectasis. Eur Respir Rev 2024; 33:240085. [PMID: 39048130 PMCID: PMC11267293 DOI: 10.1183/16000617.0085-2024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2024] [Accepted: 05/28/2024] [Indexed: 07/27/2024] Open
Abstract
Bronchiectasis presents a significant challenge due to its rising prevalence, associated economic burden and clinical heterogeneity. This review synthesises contemporary understanding and literature of bronchiectasis exacerbations, addressing the transition from stable state to exacerbations, underlining the importance of early and precise recognition, rigorous severity assessment, prompt treatment, and prevention measures, as well as emphasising the need for strategies to assess and improve early and long-term patient outcomes. The review highlights the interplay between stable state phases and exacerbations in bronchiectasis, introducing the concept of "exogenous and endogenous changes in airways homeostasis" and the "adapted island model" with a particular focus on "frequent exacerbators", a group of patients associated with specific clinical characteristics and worse outcomes. The pathophysiology of exacerbations is explored through the lens of microbial and nonmicrobial triggers and the presence and the activity of comorbidities, elaborating on the impact of both exogenous insults, such as infections and pollution, and endogenous factors such as inflammatory endotypes. Finally, the review proposes a multidisciplinary approach to care, integrating advancements in precision medicine and biomarker research, paving the way for tailored treatments that challenge the traditional antibiotic paradigm.
Collapse
Affiliation(s)
- Alessandro De Angelis
- Department of Biomedical Sciences, Humanitas University, Milan, Italy
- IRCCS Humanitas Research Hospital, Respiratory Unit, Milan, Italy
| | - Emma D Johnson
- University of Dundee, Ninewells Hospital and Medical School, Dundee, UK
| | - Sivagurunathan Sutharsan
- Division of Cystic Fibrosis, Department of Pulmonary Medicine, University Medicine Essen -Ruhrlandklinik, University of Duisburg-Essen, Essen, Germany
| | - Stefano Aliberti
- Department of Biomedical Sciences, Humanitas University, Milan, Italy
- IRCCS Humanitas Research Hospital, Respiratory Unit, Milan, Italy
| |
Collapse
|
16
|
Liu Y, Fachrul M, Inouye M, Méric G. Harnessing human microbiomes for disease prediction. Trends Microbiol 2024; 32:707-719. [PMID: 38246848 DOI: 10.1016/j.tim.2023.12.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2023] [Revised: 12/12/2023] [Accepted: 12/12/2023] [Indexed: 01/23/2024]
Abstract
The human microbiome has been increasingly recognized as having potential use for disease prediction. Predicting the risk, progression, and severity of diseases holds promise to transform clinical practice, empower patient decisions, and reduce the burden of various common diseases, as has been demonstrated for cardiovascular disease or breast cancer. Combining multiple modifiable and non-modifiable risk factors, including high-dimensional genomic data, has been traditionally favored, but few studies have incorporated the human microbiome into models for predicting the prospective risk of disease. Here, we review research into the use of the human microbiome for disease prediction with a particular focus on prospective studies as well as the modulation and engineering of the microbiome as a therapeutic strategy.
Collapse
Affiliation(s)
- Yang Liu
- Cambridge Baker Systems Genomics Initiative, Department of Public Health and Primary Care, University of Cambridge, Cambridge, UK; Cambridge Baker Systems Genomics Initiative, Baker Heart and Diabetes Institute, Melbourne, Victoria, Australia; Department of Clinical Pathology, Melbourne Medical School, The University of Melbourne, Melbourne, Victoria, Australia; Victor Phillip Dahdaleh Heart and Lung Research Institute, University of Cambridge, Cambridge, UK; British Heart Foundation Cardiovascular Epidemiology Unit, Department of Public Health and Primary Care, University of Cambridge, Cambridge, UK
| | - Muhamad Fachrul
- Cambridge Baker Systems Genomics Initiative, Baker Heart and Diabetes Institute, Melbourne, Victoria, Australia; Department of Clinical Pathology, Melbourne Medical School, The University of Melbourne, Melbourne, Victoria, Australia; Human Genomics and Evolution Unit, St Vincent's Institute of Medical Research, Victoria, Australia; Melbourne Integrative Genomics, University of Melbourne, Parkville, Victoria, Australia; School of BioSciences, University of Melbourne, Parkville, Victoria, Australia
| | - Michael Inouye
- Cambridge Baker Systems Genomics Initiative, Department of Public Health and Primary Care, University of Cambridge, Cambridge, UK; Cambridge Baker Systems Genomics Initiative, Baker Heart and Diabetes Institute, Melbourne, Victoria, Australia; Victor Phillip Dahdaleh Heart and Lung Research Institute, University of Cambridge, Cambridge, UK; British Heart Foundation Cardiovascular Epidemiology Unit, Department of Public Health and Primary Care, University of Cambridge, Cambridge, UK; Health Data Research UK Cambridge, Wellcome Genome Campus and University of Cambridge, Cambridge, UK; British Heart Foundation Cambridge Centre of Research Excellence, School of Clinical Medicine, University of Cambridge, Cambridge, UK
| | - Guillaume Méric
- Cambridge Baker Systems Genomics Initiative, Baker Heart and Diabetes Institute, Melbourne, Victoria, Australia; Department of Cardiometabolic Health, University of Melbourne, Melbourne, Victoria, Australia; Central Clinical School, Monash University, Melbourne, Victoria, Australia; Department of Medical Science, Molecular Epidemiology, Uppsala University, Uppsala, Sweden; Department of Cardiovascular Research, Translation, and Implementation, La Trobe University, Melbourne, Victoria, Australia.
| |
Collapse
|
17
|
Lira-Junior R, Aogáin MM, Crncalo E, Ekberg NR, Chotirmall SH, Pettersson S, Gustafsson A, Brismar K, Bostanci N. Effects of intermittent fasting on periodontal inflammation and subgingival microbiota. J Periodontol 2024; 95:640-649. [PMID: 38655661 DOI: 10.1002/jper.23-0676] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2023] [Revised: 03/21/2024] [Accepted: 03/29/2024] [Indexed: 04/26/2024]
Abstract
BACKGROUND Studies on the impact of intermittent fasting on periodontal health are still scarce. Thus, this study evaluated the effects of long-term intermittent fasting on periodontal health and the subgingival microbiota. METHODS This pilot study was part of a nonrandomized controlled trial. Overweight/obese participants (n = 14) entered an intermittent fasting program, specifically the 5:2 diet, in which they restricted caloric intake to about a quarter of the normal total daily caloric expenditure for two nonconsecutive days/week. Subjects underwent a thorough clinical and laboratory examination, including an assessment of their periodontal condition, at baseline and 6 months after starting the diet. Additionally, subgingival microbiota was assessed by 16S rRNA gene sequencing. RESULTS After 6 months of intermittent fasting, weight, body mass index, C-reactive protein, hemoglobin A1c (HbA1c), and the cholesterol profile improved significantly (p < 0.05). Moreover, significant reductions were observed in bleeding on probing (p = 0.01) and the presence of shallow periodontal pockets after fasting (p < 0.001), while no significant change was seen in plaque index (p = 0.14). While we did not observe significant changes in α- or β-diversity of the subgingival microbiota related to dietary intervention (p > 0.05), significant differences were seen in the abundances of several taxa among individuals exhibiting ≥60% reduction (good responders) in probing pocket depth of 4-5 mm compared to those with <60% reduction (bad responders). CONCLUSION Intermittent fasting decreased systemic and periodontal inflammation. Although the subgingival microbiota was unaltered by this intervention, apparent taxonomic variability was observed between good and bad responders.
Collapse
Affiliation(s)
- Ronaldo Lira-Junior
- Section of Oral Diagnostics and Surgery, Division of Oral Diagnostics and Rehabilitation, Department of Dental Medicine, Karolinska Institutet, Stockholm, Sweden
| | - Micheál Mac Aogáin
- Biochemical Genetics Laboratory, Department of Biochemistry, St. James's Hospital, Dublin, Ireland
- Clinical Biochemistry Unit, School of Medicine, Trinity College Dublin, Dublin, Ireland
| | - Eva Crncalo
- Division of Oral Health and Periodontology, Department of Dental Medicine, Karolinska Institutet, Stockholm, Sweden
| | - Neda Rajamand Ekberg
- Department of Molecular Medicine and Surgery, Rolf Luft Research Center for Diabetes and Endocrinology, Karolinska Institutet, Stockholm, Sweden
| | - Sanjay H Chotirmall
- Lee Kong Chian School of Medicine, Nanyang Technological University, Singapore, Singapore
- Department of Respiratory and Critical Care Medicine, Tan Tock Seng Hospital, Singapore, Singapore
| | - Sven Pettersson
- Department of Microbiology and Immunology, National University of Singapore, Singapore, Singapore
| | - Anders Gustafsson
- Division of Oral Health and Periodontology, Department of Dental Medicine, Karolinska Institutet, Stockholm, Sweden
| | - Kerstin Brismar
- Department of Molecular Medicine and Surgery, Rolf Luft Research Center for Diabetes and Endocrinology, Karolinska Institutet, Stockholm, Sweden
| | - Nagihan Bostanci
- Division of Oral Health and Periodontology, Department of Dental Medicine, Karolinska Institutet, Stockholm, Sweden
| |
Collapse
|
18
|
Perea L, Faner R, Chalmers JD, Sibila O. Pathophysiology and genomics of bronchiectasis. Eur Respir Rev 2024; 33:240055. [PMID: 38960613 PMCID: PMC11220622 DOI: 10.1183/16000617.0055-2024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2024] [Accepted: 05/02/2024] [Indexed: 07/05/2024] Open
Abstract
Bronchiectasis is a complex and heterogeneous inflammatory chronic respiratory disease with an unknown cause in around 30-40% of patients. The presence of airway infection together with chronic inflammation, airway mucociliary dysfunction and lung damage are key components of the vicious vortex model that better describes its pathophysiology. Although bronchiectasis research has significantly increased over the past years and different endotypes have been identified, there are still major gaps in the understanding of the pathophysiology. Genomic approaches may help to identify new endotypes, as has been shown in other chronic airway diseases, such as COPD.Different studies have started to work in this direction, and significant contributions to the understanding of the microbiome and proteome diversity have been made in bronchiectasis in recent years. However, the systematic application of omics approaches to identify new molecular insights into the pathophysiology of bronchiectasis (endotypes) is still limited compared with other respiratory diseases.Given the complexity and diversity of these technologies, this review describes the key components of the pathophysiology of bronchiectasis and how genomics can be applied to increase our knowledge, including the study of new techniques such as proteomics, metabolomics and epigenomics. Furthermore, we propose that the novel concept of trained innate immunity, which is driven by microbiome exposures leading to epigenetic modifications, can complement our current understanding of the vicious vortex. Finally, we discuss the challenges, opportunities and implications of genomics application in clinical practice for better patient stratification into new therapies.
Collapse
Affiliation(s)
- Lidia Perea
- Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Barcelona, Spain
| | - Rosa Faner
- Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Barcelona, Spain
- Centro de Investigación Biomédica en Red de Enfermedades Respiratorias M.P. (CIBERES), Barcelona, Spain
| | - James D Chalmers
- Division of Molecular and Clinical Medicine, Ninewells Hospital and Medical School, University of Dundee, Dundee, UK
| | - Oriol Sibila
- Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Barcelona, Spain
- Centro de Investigación Biomédica en Red de Enfermedades Respiratorias M.P. (CIBERES), Barcelona, Spain
- Respiratory Department, Hospital Clínic, University of Barcelona, Barcelona, Spain
| |
Collapse
|
19
|
Gao Y, Richardson H, Dicker AJ, Barton A, Kuzmanova E, Shteinberg M, Perea L, Goeminne PC, Cant E, Hennayake C, Pollock J, Abo Leyah H, Choi H, Polverino E, Blasi F, Welte T, Aliberti S, Long M, Shoemark A, Sibila O, Huang JTJ, Chalmers JD. Endotypes of Exacerbation in Bronchiectasis: An Observational Cohort Study. Am J Respir Crit Care Med 2024; 210:77-86. [PMID: 38717347 DOI: 10.1164/rccm.202310-1729oc] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2023] [Accepted: 05/07/2024] [Indexed: 07/02/2024] Open
Abstract
Rationale: Bronchiectasis is characterized by acute exacerbations, but the biological mechanisms underlying these events are poorly characterized. Objectives: To investigate the inflammatory and microbial characteristics of exacerbations of bronchiectasis. Methods: A total of 120 patients with bronchiectasis were enrolled and presented with acute exacerbations within 12 months. Spontaneous sputum samples were obtained during a period of clinical stability and again at exacerbation before receipt of antibiotic treatment. A validated rapid PCR assay for bacteria and viruses was used to classify exacerbations as bacterial, viral, or both. Sputum inflammatory assessments included label-free liquid chromatography-tandem mass spectrometry and measurement of sputum cytokines and neutrophil elastase activity. 16 s rRNA sequencing was used to characterize the microbiome. Measurements and Main Results: Bronchiectasis exacerbations showed profound molecular heterogeneity. At least one bacterium was identified in 103 samples (86%), and a high bacterial load (total bacterial load > 107 copies/g) was observed in 81 patients (68%). Respiratory viruses were identified in 55 (46%) patients, with rhinovirus being the most common virus (31%). PCR testing was more sensitive than culture. No consistent change in the microbiome was observed at exacerbation. Exacerbations were associated with increased neutrophil elastase, proteinase-3, IL-1β, and CXCL8. These markers were particularly associated with bacterial and bacterial plus viral exacerbations. Distinct inflammatory and microbiome profiles were seen between different exacerbation subtypes, including bacterial, viral, and eosinophilic events in both hypothesis-led and hypothesis-free analysis using integrated microbiome and proteomics, demonstrating four subtypes of exacerbation. Conclusions: Bronchiectasis exacerbations are heterogeneous events with contributions from bacteria, viruses, and inflammatory dysregulation.
Collapse
Affiliation(s)
- Yonghua Gao
- Department of Respiratory and Critical Care Medicine, Shanghai Pulmonary Hospital, Tongji University School of Medicine, Shanghai, China
| | - Hollian Richardson
- Division of Molecular and Clinical Medicine, University of Dundee, Ninewells Hospital and Medical School, Dundee, Scotland, United Kingdom
| | - Alison J Dicker
- Division of Molecular and Clinical Medicine, University of Dundee, Ninewells Hospital and Medical School, Dundee, Scotland, United Kingdom
| | - Alun Barton
- Division of Molecular and Clinical Medicine, University of Dundee, Ninewells Hospital and Medical School, Dundee, Scotland, United Kingdom
| | - Elena Kuzmanova
- Division of Molecular and Clinical Medicine, University of Dundee, Ninewells Hospital and Medical School, Dundee, Scotland, United Kingdom
| | - Michal Shteinberg
- Pulmonology Institute and Cystic Fibrosis Center, Carmel Medical Center, Haifa, Israel
| | - Lidia Perea
- Respiratory Institute, Hospital Clínic, Institute of Biomedical Research August Pi i Sunyer, University of Barcelona, Barcelona, Spain
| | - Pieter C Goeminne
- Department of Respiratory Disease, AZ Nikolaas, Sint-Niklaas, Belgium
| | - Erin Cant
- Division of Molecular and Clinical Medicine, University of Dundee, Ninewells Hospital and Medical School, Dundee, Scotland, United Kingdom
| | - Chandani Hennayake
- Division of Molecular and Clinical Medicine, University of Dundee, Ninewells Hospital and Medical School, Dundee, Scotland, United Kingdom
| | - Jennifer Pollock
- Division of Molecular and Clinical Medicine, University of Dundee, Ninewells Hospital and Medical School, Dundee, Scotland, United Kingdom
| | - Hani Abo Leyah
- Department of Respiratory Medicine, Sheffield Teaching Hospitals NHS Foundation Trust, Sheffield, United Kingdom
| | - Hayoung Choi
- Division of Pulmonary, Allergy, and Critical Care Medicine, Department of Internal Medicine, Hallym University Kangnam Sacred Heart Hospital, Seoul, Republic of Korea
| | - Eva Polverino
- Pneumology Department, Hospital Universitari Vall d'Hebron, Vall d'Hebron Institut de Recerca (VHIR), Vall d'Hebron Barcelona Hospital Campus, CIBERES, Barcelona, Spain
| | - Francesco Blasi
- Department of Pathophysiology and Transplantation, University of Milan, Milan, Italy
| | - Tobias Welte
- Department of Respiratory Medicine, Hannover Medical School, Hannover, Germany; and
| | - Stefano Aliberti
- Istituto di Ricovero e Cura a Carattere Scientifico di natura pubblica Humanitas Research Hospital, Rozzano, Milan, Italy
| | - Merete Long
- Division of Molecular and Clinical Medicine, University of Dundee, Ninewells Hospital and Medical School, Dundee, Scotland, United Kingdom
| | - Amelia Shoemark
- Division of Molecular and Clinical Medicine, University of Dundee, Ninewells Hospital and Medical School, Dundee, Scotland, United Kingdom
| | - Oriol Sibila
- Respiratory Institute, Hospital Clínic, Institute of Biomedical Research August Pi i Sunyer, University of Barcelona, Barcelona, Spain
| | - Jeffrey T J Huang
- Division of Molecular and Clinical Medicine, University of Dundee, Ninewells Hospital and Medical School, Dundee, Scotland, United Kingdom
| | - James D Chalmers
- Division of Molecular and Clinical Medicine, University of Dundee, Ninewells Hospital and Medical School, Dundee, Scotland, United Kingdom
| |
Collapse
|
20
|
Mac Aogáin M, Dicker AJ, Mertsch P, Chotirmall SH. Infection and the microbiome in bronchiectasis. Eur Respir Rev 2024; 33:240038. [PMID: 38960615 PMCID: PMC11220623 DOI: 10.1183/16000617.0038-2024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2024] [Accepted: 05/02/2024] [Indexed: 07/05/2024] Open
Abstract
Bronchiectasis is marked by bronchial dilatation, recurrent infections and significant morbidity, underpinned by a complex interplay between microbial dysbiosis and immune dysregulation. The identification of distinct endophenotypes have refined our understanding of its pathogenesis, including its heterogeneous disease mechanisms that influence treatment and prognosis responses. Next-generation sequencing (NGS) has revolutionised the way we view airway microbiology, allowing insights into the "unculturable". Understanding the bronchiectasis microbiome through targeted amplicon sequencing and/or shotgun metagenomics has provided key information on the interplay of the microbiome and host immunity, a central feature of disease progression. The rapid increase in translational and clinical studies in bronchiectasis now provides scope for the application of precision medicine and a better understanding of the efficacy of interventions aimed at restoring microbial balance and/or modulating immune responses. Holistic integration of these insights is driving an evolving paradigm shift in our understanding of bronchiectasis, which includes the critical role of the microbiome and its unique interplay with clinical, inflammatory, immunological and metabolic factors. Here, we review the current state of infection and the microbiome in bronchiectasis and provide views on the future directions in this field.
Collapse
Affiliation(s)
- Micheál Mac Aogáin
- Biochemical Genetics Laboratory, Department of Biochemistry, St. James's Hospital, Dublin, Ireland
- Clinical Biochemistry Unit, School of Medicine, Trinity College Dublin, Dublin, Ireland
| | - Alison J Dicker
- Respiratory Research Group, Ninewells Hospital and Medical School, University of Dundee, Dundee, UK
| | - Pontus Mertsch
- Department of Medicine V, LMU University Hospital, LMU Munich, Comprehensive Pneumology Center (CPC), Member of the German Center of Lung Research (DZL), Munich, Germany
| | - Sanjay H Chotirmall
- Lee Kong Chian School of Medicine, Nanyang Technological University, Singapore, Singapore
- Department of Respiratory and Critical Care Medicine, Tan Tock Seng Hospital, Singapore, Singapore
| |
Collapse
|
21
|
Johnson E, Long MB, Chalmers JD. Biomarkers in bronchiectasis. Eur Respir Rev 2024; 33:230234. [PMID: 38960612 PMCID: PMC11220624 DOI: 10.1183/16000617.0234-2023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2023] [Accepted: 03/09/2024] [Indexed: 07/05/2024] Open
Abstract
Bronchiectasis is a heterogeneous disease with multiple aetiologies and diverse clinical features. There is a general consensus that optimal treatment requires precision medicine approaches focused on specific treatable disease characteristics, known as treatable traits. Identifying subtypes of conditions with distinct underlying biology (endotypes) depends on the identification of biomarkers that are associated with disease features, prognosis or treatment response and which can be applied in clinical practice. Bronchiectasis is a disease characterised by inflammation, infection, structural lung damage and impaired mucociliary clearance. Increasingly there are available methods to measure each of these components of the disease, revealing heterogeneous inflammatory profiles, microbiota, radiology and mucus and epithelial biology in patients with bronchiectasis. Using emerging biomarkers and omics technologies to guide treatment in bronchiectasis is a promising field of research. Here we review the most recent data on biomarkers in bronchiectasis.
Collapse
Affiliation(s)
- Emma Johnson
- Division of Molecular and Clinical Medicine, University of Dundee, Ninewells Hospital and Medical School, Dundee, UK
| | - Merete B Long
- Division of Molecular and Clinical Medicine, University of Dundee, Ninewells Hospital and Medical School, Dundee, UK
| | - James D Chalmers
- Division of Molecular and Clinical Medicine, University of Dundee, Ninewells Hospital and Medical School, Dundee, UK
| |
Collapse
|
22
|
Raboso B, Pou C, Abril R, Erro M, Sánchez C, Manzano C, Zamarrón E, Suarez-Cuartin G, González J. Bronchiectasis. OPEN RESPIRATORY ARCHIVES 2024; 6:100339. [PMID: 39026515 PMCID: PMC11255363 DOI: 10.1016/j.opresp.2024.100339] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2024] [Accepted: 05/02/2024] [Indexed: 07/20/2024] Open
Abstract
Non-cystic fibrosis bronchiectasis, a condition that remains relatively underrecognized, has garnered increasing research focus in recent years. This scientific interest has catalyzed advancements in diagnostic methodologies, enabling comprehensive clinical and molecular profiling. Such progress facilitates the development of personalized treatment strategies, marking a significant step toward precision medicine for these patients. Bronchiectasis poses significant diagnostic challenges in both clinical settings and research studies. While computed tomography (CT) remains the gold standard for diagnosis, novel alternatives are emerging. These include artificial intelligence-powered algorithms, ultra-low dose chest CT, and magnetic resonance imaging (MRI) techniques, all of which are becoming recognized as feasible diagnostic tools. The precision medicine paradigm calls for refined characterization of bronchiectasis patients by analyzing their inflammatory and molecular profiles. Research into the underlying mechanisms of inflammation and the evaluation of biomarkers such as neutrophil elastase, mucins, and antimicrobial peptides have led to the identification of distinct patient endotypes. These endotypes present variable clinical outcomes, necessitating tailored therapeutic interventions. Among these, eosinophilic bronchiectasis is notable for its prevalence and specific prognostic factors, calling for careful consideration of treatable traits. A deeper understanding of the microbiome's influence on the pathogenesis and progression of bronchiectasis has inspired a holistic approach, which considers the multibiome as an interconnected microbial network rather than treating pathogens as solitary entities. Interactome analysis therefore becomes a vital tool for pinpointing alterations during both stable phases and exacerbations. This array of innovative approaches has revolutionized the personalization of treatments, incorporating therapies such as inhaled mannitol or ARINA-1, brensocatib for anti-inflammatory purposes, and inhaled corticosteroids specifically for patients with eosinophilic bronchiectasis.
Collapse
Affiliation(s)
| | | | - Rosa Abril
- University Hospital Complex Insular-Materno Infantil (CHUIMI) of Gran Canaria, Gran Canaria, Spain
| | - Marta Erro
- Puerta del Hierro University Hospital, Madrid, Spain
| | | | - Carlos Manzano
- Translational Research in Respiratory Medicine, University Hospital Arnau de Vilanova and Santa Maria, IRBLleida, Lleida, Spain
| | | | - Guillermo Suarez-Cuartin
- Hospital Universitari Bellvitge University Hospital, Bellvitge Biomedical Research Institute (IDIBELL), Barcelona, Spain
- CIBER of Respiratory Diseases (CIBERES), Institute of Health Carlos III, Madrid, Spain
| | - Jessica González
- Translational Research in Respiratory Medicine, University Hospital Arnau de Vilanova and Santa Maria, IRBLleida, Lleida, Spain
- CIBER of Respiratory Diseases (CIBERES), Institute of Health Carlos III, Madrid, Spain
| |
Collapse
|
23
|
Chotirmall SH, Chalmers JD. The Precision Medicine Era of Bronchiectasis. Am J Respir Crit Care Med 2024; 210:24-34. [PMID: 38949497 PMCID: PMC11197062 DOI: 10.1164/rccm.202403-0473pp] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2024] [Accepted: 04/10/2024] [Indexed: 07/02/2024] Open
Affiliation(s)
- Sanjay H. Chotirmall
- Lee Kong Chian School of Medicine, Nanyang Technological University, Singapore, Singapore
- Department of Respiratory and Critical Care Medicine, Tan Tock Seng Hospital, Singapore, Singapore; and
| | - James D. Chalmers
- Division of Molecular and Clinical Medicine, University of Dundee, Ninewells Hospital and Medical School, Dundee, United Kingdom
| |
Collapse
|
24
|
Nickerson R, Thornton CS, Johnston B, Lee AHY, Cheng Z. Pseudomonas aeruginosa in chronic lung disease: untangling the dysregulated host immune response. Front Immunol 2024; 15:1405376. [PMID: 39015565 PMCID: PMC11250099 DOI: 10.3389/fimmu.2024.1405376] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2024] [Accepted: 06/14/2024] [Indexed: 07/18/2024] Open
Abstract
Pseudomonas aeruginosa is a highly adaptable opportunistic pathogen capable of exploiting barriers and immune defects to cause chronic lung infections in conditions such as cystic fibrosis. In these contexts, host immune responses are ineffective at clearing persistent bacterial infection, instead driving a cycle of inflammatory lung damage. This review outlines key components of the host immune response to chronic P. aeruginosa infection within the lung, beginning with initial pathogen recognition, followed by a robust yet maladaptive innate immune response, and an ineffective adaptive immune response that propagates lung damage while permitting bacterial persistence. Untangling the interplay between host immunity and chronic P. aeruginosa infection will allow for the development and refinement of strategies to modulate immune-associated lung damage and potentiate the immune system to combat chronic infection more effectively.
Collapse
Affiliation(s)
- Rhea Nickerson
- Department of Microbiology and Immunology, Faculty of Medicine, Dalhousie University, Halifax, NS, Canada
| | - Christina S. Thornton
- Department of Medicine, Cumming School of Medicine, University of Calgary, Calgary, AB, Canada
- Department of Microbiology, Immunology and Infectious Diseases, Cumming School of Medicine, University of Calgary, Calgary, AB, Canada
| | - Brent Johnston
- Department of Microbiology and Immunology, Faculty of Medicine, Dalhousie University, Halifax, NS, Canada
| | - Amy H. Y. Lee
- Department of Molecular Biology and Biochemistry, Faculty of Science, Simon Fraser University, Burnaby, BC, Canada
| | - Zhenyu Cheng
- Department of Microbiology and Immunology, Faculty of Medicine, Dalhousie University, Halifax, NS, Canada
| |
Collapse
|
25
|
Hagiwara A, Shuto H, Kudoh R, Omori S, Hiramatsu K, Kadota JI, Fushimi K, Komiya K. Medical Causes of Hospitalisation among Patients with Bronchiectasis: A Nationwide Study in Japan. Pathogens 2024; 13:492. [PMID: 38921790 PMCID: PMC11206607 DOI: 10.3390/pathogens13060492] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2024] [Revised: 05/30/2024] [Accepted: 06/07/2024] [Indexed: 06/27/2024] Open
Abstract
PURPOSE Although the international guidelines for managing bronchiectasis are centred on preventing the exacerbation of bronchiectasis, the medical causes of admissions to hospital among patients with bronchiectasis have not been fully investigated. METHODS This study targeted patients with bronchiectasis who were admitted to hospitals between April 2018 and March 2020 using the national inpatient database in Japan. The causes of hospitalisation and types of antibiotics used for hospitalised patients were recorded. RESULTS In total, 21,300 hospitalisations of 16,723 patients with bronchiectasis were analysed. The most common cause was respiratory diseases in 15,145 (71.1%) admissions, including bacterial pneumonia and the exacerbation of bronchiectasis in 6238 (41.2%) and 3151 (20.8%), respectively. Antipseudomonal antibiotics were used in approximately 60% of patients with bacterial pneumonia who were administered antibiotic treatments and in approximately 50% of patients with the exacerbation of bronchiectasis. CONCLUSIONS Bacterial pneumonia was the most frequent cause of hospitalisation, followed by the exacerbation of bronchiectasis, among patients with bronchiectasis. Physicians need to focus on the prevention of bacterial pneumonia in addition to the exacerbation of bronchiectasis in patients with bronchiectasis.
Collapse
Affiliation(s)
- Akihiko Hagiwara
- Respiratory Medicine and Infectious Diseases, Oita University Faculty of Medicine, 1-1 Idaigaoka, Hasama-machi, Yufu 879-5593, Oita, Japan
| | - Hisayuki Shuto
- Respiratory Medicine and Infectious Diseases, Oita University Faculty of Medicine, 1-1 Idaigaoka, Hasama-machi, Yufu 879-5593, Oita, Japan
| | - Ryohei Kudoh
- Respiratory Medicine and Infectious Diseases, Oita University Faculty of Medicine, 1-1 Idaigaoka, Hasama-machi, Yufu 879-5593, Oita, Japan
| | - Shota Omori
- Respiratory Medicine and Infectious Diseases, Oita University Faculty of Medicine, 1-1 Idaigaoka, Hasama-machi, Yufu 879-5593, Oita, Japan
| | - Kazufumi Hiramatsu
- Respiratory Medicine and Infectious Diseases, Oita University Faculty of Medicine, 1-1 Idaigaoka, Hasama-machi, Yufu 879-5593, Oita, Japan
| | - Jun-ichi Kadota
- Respiratory Medicine and Infectious Diseases, Oita University Faculty of Medicine, 1-1 Idaigaoka, Hasama-machi, Yufu 879-5593, Oita, Japan
| | - Kiyohide Fushimi
- Department of Health Policy and Informatics, Tokyo Medical and Dental University Graduate School, 1-5-45 Yushima, Bunkyo-ku, Tokyo 113-8519, Japan
| | - Kosaku Komiya
- Respiratory Medicine and Infectious Diseases, Oita University Faculty of Medicine, 1-1 Idaigaoka, Hasama-machi, Yufu 879-5593, Oita, Japan
- Research Center for GLOBAL and LOCAL Infectious Diseases, Oita University Faculty of Medicine, 1-1 Idaigaoka, Hasama-machi, Yufu 879-5593, Oita, Japan
| |
Collapse
|
26
|
Azoicai A, Lupu A, Alexoae MM, Starcea IM, Mocanu A, Lupu VV, Mitrofan EC, Nedelcu AH, Tepordei RT, Munteanu D, Mitrofan C, Salaru DL, Ioniuc I. Lung microbiome: new insights into bronchiectasis' outcome. Front Cell Infect Microbiol 2024; 14:1405399. [PMID: 38895737 PMCID: PMC11183332 DOI: 10.3389/fcimb.2024.1405399] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2024] [Accepted: 05/15/2024] [Indexed: 06/21/2024] Open
Abstract
The present treatments for bronchiectasis, which is defined by pathological dilatation of the airways, are confined to symptom relief and minimizing exacerbations. The condition is becoming more common worldwide. Since the disease's pathophysiology is not entirely well understood, developing novel treatments is critically important. The interplay of chronic infection, inflammation, and compromised mucociliary clearance, which results in structural alterations and the emergence of new infection, is most likely responsible for the progression of bronchiectasis. Other than treating bronchiectasis caused by cystic fibrosis, there are no approved treatments. Understanding the involvement of the microbiome in this disease is crucial, the microbiome is defined as the collective genetic material of all bacteria in an environment. In clinical practice, bacteria in the lungs have been studied using cultures; however, in recent years, researchers use next-generation sequencing methods, such as 16S rRNA sequencing. Although the microbiome in bronchiectasis has not been entirely investigated, what is known about it suggests that Haemophilus, Pseudomonas and Streptococcus dominate the lung bacterial ecosystems, they present significant intraindividual stability and interindividual heterogeneity. Pseudomonas and Haemophilus-dominated microbiomes have been linked to more severe diseases and frequent exacerbations, however additional research is required to fully comprehend the role of microbiome in the evolution of bronchiectasis. This review discusses recent findings on the lung microbiota and its association with bronchiectasis.
Collapse
Affiliation(s)
- Alice Azoicai
- Mother and Child Medicine Department, “Grigore T. Popa” University of Medicine and Pharmacy, Iasi, Romania
| | - Ancuta Lupu
- Mother and Child Medicine Department, “Grigore T. Popa” University of Medicine and Pharmacy, Iasi, Romania
| | - Monica Mihaela Alexoae
- Mother and Child Medicine Department, “Grigore T. Popa” University of Medicine and Pharmacy, Iasi, Romania
| | - Iuliana Magdalena Starcea
- Mother and Child Medicine Department, “Grigore T. Popa” University of Medicine and Pharmacy, Iasi, Romania
| | - Adriana Mocanu
- Mother and Child Medicine Department, “Grigore T. Popa” University of Medicine and Pharmacy, Iasi, Romania
| | - Vasile Valeriu Lupu
- Mother and Child Medicine Department, “Grigore T. Popa” University of Medicine and Pharmacy, Iasi, Romania
| | | | - Alin Horatiu Nedelcu
- Faculty of Medicine, “Grigore T. Popa” University of Medicine and Pharmacy, Iasi, Romania
| | - Razvan Tudor Tepordei
- Faculty of Medicine, “Grigore T. Popa” University of Medicine and Pharmacy, Iasi, Romania
| | - Dragos Munteanu
- Faculty of Medicine, “Grigore T. Popa” University of Medicine and Pharmacy, Iasi, Romania
| | - Costica Mitrofan
- Faculty of Medicine, “Grigore T. Popa” University of Medicine and Pharmacy, Iasi, Romania
| | - Delia Lidia Salaru
- Faculty of Medicine, “Grigore T. Popa” University of Medicine and Pharmacy, Iasi, Romania
| | - Ileana Ioniuc
- Mother and Child Medicine Department, “Grigore T. Popa” University of Medicine and Pharmacy, Iasi, Romania
| |
Collapse
|
27
|
Choi H, McShane PJ, Aliberti S, Chalmers JD. Bronchiectasis management in adults: state of the art and future directions. Eur Respir J 2024; 63:2400518. [PMID: 38782469 PMCID: PMC11211698 DOI: 10.1183/13993003.00518-2024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2024] [Accepted: 05/08/2024] [Indexed: 05/25/2024]
Abstract
Formerly regarded as a rare disease, bronchiectasis is increasingly recognised. A renewed interest in this disease has led to significant progress in bronchiectasis research. Randomised clinical trials (RCTs) have demonstrated the benefits of airway clearance techniques, inhaled antibiotics and long-term macrolide therapy in bronchiectasis patients. However, the heterogeneity of bronchiectasis remains one of the most challenging aspects of management. Phenotypes and endotypes of bronchiectasis have been identified to help find "treatable traits" and partially overcome disease complexity. The goals of therapy for bronchiectasis are to reduce the symptom burden, improve quality of life, reduce exacerbations and prevent disease progression. We review the pharmacological and non-pharmacological treatments that can improve mucociliary clearance, reduce airway inflammation and tackle airway infection, the key pathophysiological features of bronchiectasis. There are also promising treatments in development for the management of bronchiectasis, including novel anti-inflammatory therapies. This review provides a critical update on the management of bronchiectasis focusing on treatable traits and recent RCTs.
Collapse
Affiliation(s)
- Hayoung Choi
- Division of Pulmonary, Allergy and Critical Care Medicine, Department of Internal Medicine, Hallym University Kangnam Sacred Heart Hospital, Hallym University College of Medicine, Seoul, Republic of Korea
| | - Pamela J McShane
- Division of Pulmonary and Critical Care, University of Texas Health Science Center at Tyler, Tyler, TX, USA
| | - Stefano Aliberti
- Department of Biomedical Sciences, Humanitas University, Milan, Italy
- Respiratory Unit, IRCCS Humanitas Research Hospital, Milan, Italy
| | - James D Chalmers
- Division of Molecular and Clinical Medicine, University of Dundee, Ninewells Hospital and Medical School, Dundee, UK
| |
Collapse
|
28
|
Yang J, Li J, Zhang L, Shen Z, Xiao Y, Zhang G, Chen M, Chen F, Liu L, Wang Y, Chen L, Wang X, Zhang L, Wang L, Wang Z, Wang J, Li M, Ren L. Highly diverse sputum microbiota correlates with the disease severity in patients with community-acquired pneumonia: a longitudinal cohort study. Respir Res 2024; 25:223. [PMID: 38811936 PMCID: PMC11137881 DOI: 10.1186/s12931-024-02821-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2024] [Accepted: 04/24/2024] [Indexed: 05/31/2024] Open
Abstract
BACKGROUND Community-acquired pneumonia (CAP) is a common and serious condition that can be caused by a variety of pathogens. However, much remains unknown about how these pathogens interact with the lower respiratory commensals, and whether any correlation exists between the dysbiosis of the lower respiratory microbiota and disease severity and prognosis. METHODS We conducted a retrospective cohort study to investigate the composition and dynamics of sputum microbiota in patients diagnosed with CAP. In total, 917 sputum specimens were collected consecutively from 350 CAP inpatients enrolled in six hospitals following admission. The V3-V4 region of the 16 S rRNA gene was then sequenced. RESULTS The sputum microbiota in 71% of the samples were predominately composed of respiratory commensals. Conversely, 15% of the samples demonstrated dominance by five opportunistic pathogens. Additionally, 5% of the samples exhibited sterility, resembling the composition of negative controls. Compared to non-severe CAP patients, severe cases exhibited a more disrupted sputum microbiota, characterized by the highly dominant presence of potential pathogens, greater deviation from a healthy state, more significant alterations during hospitalization, and sparser bacterial interactions. The sputum microbiota on admission demonstrated a moderate prediction of disease severity (AUC = 0.74). Furthermore, different pathogenic infections were associated with specific microbiota alterations. Acinetobacter and Pseudomonas were more abundant in influenza A infections, with Acinetobacter was also enriched in Klebsiella pneumoniae infections. CONCLUSION Collectively, our study demonstrated that pneumonia may not consistently correlate with severe dysbiosis of the respiratory microbiota. Instead, the degree of microbiota dysbiosis was correlated with disease severity in CAP patients.
Collapse
Affiliation(s)
- Jing Yang
- Beijing Institute of Genomics, Chinese Academy of Sciences, China National Center for Bioinformation, Beijing, 100101, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
- Changping Laboratory, Beijing, 102206, China
| | - Jinman Li
- NHC Key Laboratory of Systems Biology of Pathogens and Christophe Mérieux Laboratory, National Institute of Pathogen Biology, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100730, China
| | - Linfeng Zhang
- Beijing Institute of Genomics, Chinese Academy of Sciences, China National Center for Bioinformation, Beijing, 100101, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Zijie Shen
- Beijing Institute of Genomics, Chinese Academy of Sciences, China National Center for Bioinformation, Beijing, 100101, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Yan Xiao
- NHC Key Laboratory of Systems Biology of Pathogens and Christophe Mérieux Laboratory, National Institute of Pathogen Biology, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100730, China
- Key Laboratory of Respiratory Disease Pathogenomics, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100730, China
- State Key Laboratory of Respiratory Health and Multimorbidity, National Institute of Pathogen Biology, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100730, China
| | - Guoliang Zhang
- Shenzhen Third People's Hospital, Shenzhen, 518112, China
| | - Mingwei Chen
- The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, 710061, China
| | - Fuhui Chen
- The Second Affiliated Hospital of Harbin Medical University, Harbin, 150001, China
| | - Ling Liu
- Jiangsu Provincial Key Laboratory of Critical Care Medicine, Department of Critical Care Medicine, School of Medicine, Zhongda Hospital, Southeast University, Nanjing, 210009, China
| | - Ying Wang
- NHC Key Laboratory of Systems Biology of Pathogens and Christophe Mérieux Laboratory, National Institute of Pathogen Biology, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100730, China
| | - Lan Chen
- NHC Key Laboratory of Systems Biology of Pathogens and Christophe Mérieux Laboratory, National Institute of Pathogen Biology, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100730, China
- Key Laboratory of Respiratory Disease Pathogenomics, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100730, China
| | - Xinming Wang
- NHC Key Laboratory of Systems Biology of Pathogens and Christophe Mérieux Laboratory, National Institute of Pathogen Biology, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100730, China
- Key Laboratory of Respiratory Disease Pathogenomics, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100730, China
| | - Li Zhang
- Beijing Institute of Genomics, Chinese Academy of Sciences, China National Center for Bioinformation, Beijing, 100101, China
| | - Lu Wang
- Beijing Institute of Genomics, Chinese Academy of Sciences, China National Center for Bioinformation, Beijing, 100101, China
| | - Zhang Wang
- Institute of Ecological Sciences, South China Normal University, Guangzhou, 510631, China
| | - Jianwei Wang
- NHC Key Laboratory of Systems Biology of Pathogens and Christophe Mérieux Laboratory, National Institute of Pathogen Biology, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100730, China.
- Key Laboratory of Respiratory Disease Pathogenomics, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100730, China.
| | - Mingkun Li
- Beijing Institute of Genomics, Chinese Academy of Sciences, China National Center for Bioinformation, Beijing, 100101, China.
- University of Chinese Academy of Sciences, Beijing, 100049, China.
| | - Lili Ren
- NHC Key Laboratory of Systems Biology of Pathogens and Christophe Mérieux Laboratory, National Institute of Pathogen Biology, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100730, China.
- Key Laboratory of Respiratory Disease Pathogenomics, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100730, China.
- State Key Laboratory of Respiratory Health and Multimorbidity, National Institute of Pathogen Biology, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100730, China.
| |
Collapse
|
29
|
Su Q, Lau RI, Liu Q, Li MKT, Yan Mak JW, Lu W, Lau ISF, Lau LHS, Yeung GTY, Cheung CP, Tang W, Liu C, Ching JYL, Cheong PK, Chan FKL, Ng SC. The gut microbiome associates with phenotypic manifestations of post-acute COVID-19 syndrome. Cell Host Microbe 2024; 32:651-660.e4. [PMID: 38657605 DOI: 10.1016/j.chom.2024.04.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2023] [Revised: 02/28/2024] [Accepted: 04/01/2024] [Indexed: 04/26/2024]
Abstract
The mechanisms underlying the many phenotypic manifestations of post-acute COVID-19 syndrome (PACS) are poorly understood. Herein, we characterized the gut microbiome in heterogeneous cohorts of subjects with PACS and developed a multi-label machine learning model for using the microbiome to predict specific symptoms. Our processed data covered 585 bacterial species and 500 microbial pathways, explaining 12.7% of the inter-individual variability in PACS. Three gut-microbiome-based enterotypes were identified in subjects with PACS and associated with different phenotypic manifestations. The trained model showed an accuracy of 0.89 in predicting individual symptoms of PACS in the test set and maintained a sensitivity of 86% and a specificity of 82% in predicting upcoming symptoms in an independent longitudinal cohort of subjects before they developed PACS. This study demonstrates that the gut microbiome is associated with phenotypic manifestations of PACS, which has potential clinical utility for the prediction and diagnosis of PACS.
Collapse
Affiliation(s)
- Qi Su
- Microbiota I-Center (MagIC), Hong Kong SAR, China; Department of Medicine and Therapeutics, The Chinese University of Hong Kong, Hong Kong SAR, China
| | - Raphaela I Lau
- Microbiota I-Center (MagIC), Hong Kong SAR, China; Department of Medicine and Therapeutics, The Chinese University of Hong Kong, Hong Kong SAR, China
| | - Qin Liu
- Microbiota I-Center (MagIC), Hong Kong SAR, China
| | - Moses K T Li
- Microbiota I-Center (MagIC), Hong Kong SAR, China
| | - Joyce Wing Yan Mak
- Department of Medicine and Therapeutics, The Chinese University of Hong Kong, Hong Kong SAR, China
| | - Wenqi Lu
- Microbiota I-Center (MagIC), Hong Kong SAR, China; Department of Medicine and Therapeutics, The Chinese University of Hong Kong, Hong Kong SAR, China
| | - Ivan S F Lau
- Department of Medicine and Therapeutics, The Chinese University of Hong Kong, Hong Kong SAR, China
| | - Louis H S Lau
- Department of Medicine and Therapeutics, The Chinese University of Hong Kong, Hong Kong SAR, China
| | - Giann T Y Yeung
- Department of Medicine and Therapeutics, The Chinese University of Hong Kong, Hong Kong SAR, China
| | - Chun Pan Cheung
- Microbiota I-Center (MagIC), Hong Kong SAR, China; Department of Medicine and Therapeutics, The Chinese University of Hong Kong, Hong Kong SAR, China
| | - Whitney Tang
- Microbiota I-Center (MagIC), Hong Kong SAR, China; Department of Medicine and Therapeutics, The Chinese University of Hong Kong, Hong Kong SAR, China
| | - Chengyu Liu
- Microbiota I-Center (MagIC), Hong Kong SAR, China; Department of Medicine and Therapeutics, The Chinese University of Hong Kong, Hong Kong SAR, China
| | - Jessica Y L Ching
- Microbiota I-Center (MagIC), Hong Kong SAR, China; Department of Medicine and Therapeutics, The Chinese University of Hong Kong, Hong Kong SAR, China
| | - Pui Kuan Cheong
- Microbiota I-Center (MagIC), Hong Kong SAR, China; Department of Medicine and Therapeutics, The Chinese University of Hong Kong, Hong Kong SAR, China
| | - Francis K L Chan
- Microbiota I-Center (MagIC), Hong Kong SAR, China; Centre for Gut Microbiota Research, The Chinese University of Hong Kong, Hong Kong SAR, China
| | - Siew C Ng
- Microbiota I-Center (MagIC), Hong Kong SAR, China; Department of Medicine and Therapeutics, The Chinese University of Hong Kong, Hong Kong SAR, China; Li Ka Shing Institute of Health Sciences, State Key Laboratory of Digestive Disease, Institute of Digestive Disease, The Chinese University of Hong Kong, Hong Kong SAR, China.
| |
Collapse
|
30
|
Shteinberg M, Chalmers JD, Narayana JK, Dicker AJ, Rahat MA, Simanovitch E, Bidgood L, Cohen S, Stein N, Abo-Hilu N, Abbott J, Avital S, Fireman-Klein E, Richardson H, Muhammad E, Jrbashyan J, Schneer S, Nasrallah N, Eisenberg I, Chotirmall SH, Adir Y. Bronchiectasis with Chronic Rhinosinusitis Is Associated with Eosinophilic Airway Inflammation and Is Distinct from Asthma. Ann Am Thorac Soc 2024; 21:748-758. [PMID: 38194593 DOI: 10.1513/annalsats.202306-551oc] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2023] [Accepted: 01/09/2024] [Indexed: 01/11/2024] Open
Abstract
Rationale: Bronchiectasis is an airway inflammatory disease that is frequently associated with chronic rhinosinusitis (CRS). An eosinophilic endotype of bronchiectasis has recently been described, but detailed testing to differentiate eosinophilic bronchiectasis from asthma has not been performed. Objectives: This prospective observational study aimed to test the hypotheses that bronchiectasis with CRS is enriched for the eosinophilic phenotype in comparison with bronchiectasis alone and that the eosinophilic bronchiectasis phenotype exists as a separate entity from bronchiectasis associated with asthma. Methods: People with idiopathic or postinfectious bronchiectasis were assessed for concomitant CRS. We excluded people with asthma or primary ciliary dyskinesia and smokers. We assessed sputum and blood cell counts, nasal NO and fractional excreted NO, methacholine reactivity, skin allergy testing and total and specific immunoglobulin (Ig) E, cytokines in the sputum and serum, and the microbiome in the sputum and nasopharynx. Results: A total of 22 people with CRS (BE + CRS) and 17 without CRS (BE - CRS) were included. Sex, age, Reiff score, and bronchiectasis severity were similar. Median sputum eosinophil percentages were 0% (IQR, 0-1.5%) in BE - CRS and 3% (1-12%) in BE + CRS (P = 0.012). Blood eosinophil counts were predictive of sputum eosinophilia (counts ⩾3%; area under the receiver operating characteristic curve, 0.68; 95% confidence interval, 0.50-0.85). Inclusion of CRS improved the prediction of sputum eosinophilia by blood eosinophil counts (area under the receiver operating characteristic curve, 0.79; 95% confidence interval, 0.65-0.94). Methacholine tests were negative in 85.7% of patients in the BE - CRS group and 85.2% of patients in the BE + CRS group (P > 0.99). Specific IgE and skin testing were similar between the groups, but total IgE levels were increased in people with increased sputum eosinophils. Microbiome analysis demonstrated distinct microbiota in nasopharyngeal and airway samples in the BE + CRS and BE - CRS groups, without significant differences between groups. However, interactome analysis revealed altered interactomes in individuals with high sputum eosinophil counts and CRS. Conclusions: Bronchiectasis with CRS is associated with an eosinophilic airway inflammation that is distinct from asthma.
Collapse
Affiliation(s)
- Michal Shteinberg
- Pulmonology Institute and CF Center
- Technion-Israel Institute of Technology, The B. Rappoport Faculty of Medicine, Haifa, Israel
| | - James D Chalmers
- Division of Molecular and Clinical Medicine, Ninewells Hospital, University of Dundee, Dundee, United Kingdom
| | - Jayanth K Narayana
- Lee Kong Chian School of Medicine, Nanyang Technological University, Singapore; and
| | - Alison J Dicker
- Division of Molecular and Clinical Medicine, Ninewells Hospital, University of Dundee, Dundee, United Kingdom
| | - Michal A Rahat
- Immunotherapy Laboratory
- Technion-Israel Institute of Technology, The B. Rappoport Faculty of Medicine, Haifa, Israel
| | | | - Lucy Bidgood
- Division of Molecular and Clinical Medicine, Ninewells Hospital, University of Dundee, Dundee, United Kingdom
| | - Shai Cohen
- Allergy and Immunology Unit
- Technion-Israel Institute of Technology, The B. Rappoport Faculty of Medicine, Haifa, Israel
| | - Nili Stein
- Community Medicine and Epidemiology Department
| | | | - James Abbott
- Division of Molecular and Clinical Medicine, Ninewells Hospital, University of Dundee, Dundee, United Kingdom
| | | | - Einat Fireman-Klein
- Pulmonology Institute and CF Center
- Technion-Israel Institute of Technology, The B. Rappoport Faculty of Medicine, Haifa, Israel
| | - Hollian Richardson
- Division of Molecular and Clinical Medicine, Ninewells Hospital, University of Dundee, Dundee, United Kingdom
| | | | | | - Sonia Schneer
- Pulmonology Institute and CF Center
- Technion-Israel Institute of Technology, The B. Rappoport Faculty of Medicine, Haifa, Israel
| | | | - Iya Eisenberg
- Radiology Department, Carmel Medical Center, Haifa, Israel
| | - Sanjay H Chotirmall
- Lee Kong Chian School of Medicine, Nanyang Technological University, Singapore; and
- Department of Respiratory and Critical Care Medicine, Tan Tock Seng Hospital, Singapore
| | - Yochai Adir
- Pulmonology Institute and CF Center
- Technion-Israel Institute of Technology, The B. Rappoport Faculty of Medicine, Haifa, Israel
| |
Collapse
|
31
|
Konovalovas A, Armalytė J, Klimkaitė L, Liveikis T, Jonaitytė B, Danila E, Bironaitė D, Mieliauskaitė D, Bagdonas E, Aldonytė R. Human nasal microbiota shifts in healthy and chronic respiratory disease conditions. BMC Microbiol 2024; 24:150. [PMID: 38678223 PMCID: PMC11055347 DOI: 10.1186/s12866-024-03294-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2023] [Accepted: 04/04/2024] [Indexed: 04/29/2024] Open
Abstract
BACKGROUND An increasing number of studies investigate various human microbiotas and their roles in the development of diseases, maintenance of health states, and balanced signaling towards the brain. Current data demonstrate that the nasal microbiota contains a unique and highly variable array of commensal bacteria and opportunistic pathogens. However, we need to understand how to harness current knowledge, enrich nasal microbiota with beneficial microorganisms, and prevent pathogenic developments. RESULTS In this study, we have obtained nasal, nasopharyngeal, and bronchoalveolar lavage fluid samples from healthy volunteers and patients suffering from chronic respiratory tract diseases for full-length 16 S rRNA sequencing analysis using Oxford Nanopore Technologies. Demographic and clinical data were collected simultaneously. The microbiome analysis of 97 people from Lithuania suffering from chronic inflammatory respiratory tract disease and healthy volunteers revealed that the human nasal microbiome represents the microbiome of the upper airways well. CONCLUSIONS The nasal microbiota of patients was enriched with opportunistic pathogens, which could be used as indicators of respiratory tract conditions. In addition, we observed that a healthy human nasal microbiome contained several plant- and bee-associated species, suggesting the possibility of enriching human nasal microbiota via such exposures when needed. These candidate probiotics should be investigated for their modulating effects on airway and lung epithelia, immunogenic properties, neurotransmitter content, and roles in maintaining respiratory health and nose-brain interrelationships.
Collapse
Affiliation(s)
- Aleksandras Konovalovas
- Life Sciences Center, Institute of Biosciences, Vilnius University, Vilnius, Lithuania
- State Research Institute Centre for Innovative Medicine, Vilnius, Lithuania
| | - Julija Armalytė
- Life Sciences Center, Institute of Biosciences, Vilnius University, Vilnius, Lithuania.
| | - Laurita Klimkaitė
- Life Sciences Center, Institute of Biosciences, Vilnius University, Vilnius, Lithuania
| | - Tomas Liveikis
- Life Sciences Center, Institute of Biosciences, Vilnius University, Vilnius, Lithuania
| | - Brigita Jonaitytė
- Clinic of Chest Diseases, Immunology, and Allergology, Faculty of Medicine, Vilnius University, Vilnius, Lithuania
| | - Edvardas Danila
- Clinic of Chest Diseases, Immunology, and Allergology, Faculty of Medicine, Vilnius University, Vilnius, Lithuania
- Centre of Pulmonology and Allergology, Vilnius University Hospital Santaros Klinikos, Vilnius, Lithuania
| | - Daiva Bironaitė
- State Research Institute Centre for Innovative Medicine, Vilnius, Lithuania
| | | | - Edvardas Bagdonas
- State Research Institute Centre for Innovative Medicine, Vilnius, Lithuania
| | - Rūta Aldonytė
- State Research Institute Centre for Innovative Medicine, Vilnius, Lithuania.
| |
Collapse
|
32
|
Xiao W, Chen YL, Du LY, Wu J, Wang Z, Mao B, Wen FQ, Gibson PG, McDonald VM, Yu H, Fu JJ. Bacterial interactome disturbance in chronic obstructive pulmonary disease clinical stability and exacerbations. Respir Res 2024; 25:173. [PMID: 38643126 PMCID: PMC11032604 DOI: 10.1186/s12931-024-02802-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2023] [Accepted: 04/03/2024] [Indexed: 04/22/2024] Open
Abstract
RATIONALE Our understanding of airway dysbiosis in chronic obstructive pulmonary disease (COPD) remains incomplete, which may be improved by unraveling the complexity in microbial interactome. OBJECTIVES To characterize reproducible features of airway bacterial interactome in COPD at clinical stability and during exacerbation, and evaluate their associations with disease phenotypes. METHODS We performed weighted ensemble-based co-occurrence network analysis of 1742 sputum microbiomes from published and new microbiome datasets, comprising two case-control studies of stable COPD versus healthy control, two studies of COPD stability versus exacerbation, and one study with exacerbation-recovery time series data. RESULTS Patients with COPD had reproducibly lower degree of negative bacterial interactions, i.e. total number of negative interactions as a proportion of total interactions, in their airway microbiome compared with healthy controls. Evaluation of the Haemophilus interactome showed that the antagonistic interaction networks of this established pathogen rather than its abundance consistently changed in COPD. Interactome dynamic analysis revealed reproducibly reduced antagonistic interactions but not diversity loss during COPD exacerbation, which recovered after treatment. In phenotypic analysis, unsupervised network clustering showed that loss of antagonistic interactions was associated with worse clinical symptoms (dyspnea), poorer lung function, exaggerated neutrophilic inflammation, and higher exacerbation risk. Furthermore, the frequent exacerbators (≥ 2 exacerbations per year) had significantly reduced antagonistic bacterial interactions while exhibiting subtle compositional changes in their airway microbiota. CONCLUSIONS Bacterial interactome disturbance characterized by reduced antagonistic interactions, rather than change in pathogen abundance or diversity, is a reproducible feature of airway dysbiosis in COPD clinical stability and exacerbations, which suggests that we may target interactome rather than pathogen alone for disease treatment.
Collapse
Affiliation(s)
- Wei Xiao
- Division of Pulmonary Medicine, Department of Internal Medicine, Institute of Integrated Traditional Chinese and Western Medicine, West China Hospital of Sichuan University, No. 37, Guoxue Lane, Wuhou District, Chengdu, 610041, China
- Divison of Pulmonary diseases, State Key Laboratory of Biotherapy, West China Hospital of Sichuan University, Chengdu, China
| | - Yi-Long Chen
- West China Biomedical Big Data Center, West China Hospital of Sichuan University, Chengdu, China
- Med-X Center for Informatics, Sichuan University, Chengdu, China
| | - Long-Yi Du
- Division of Pulmonary Medicine, Department of Internal Medicine, Institute of Integrated Traditional Chinese and Western Medicine, West China Hospital of Sichuan University, No. 37, Guoxue Lane, Wuhou District, Chengdu, 610041, China
| | - Jiqiu Wu
- West China Biomedical Big Data Center, West China Hospital of Sichuan University, Chengdu, China
- Department of Genetics, University Medical Center Groningen, University of Groningen, Groningen, The Netherlands
| | - Zhang Wang
- Institute of Ecological Sciences, School of Life Sciences, South China Normal University, Guangzhou, China
| | - Bing Mao
- Division of Pulmonary Medicine, Department of Internal Medicine, Institute of Integrated Traditional Chinese and Western Medicine, West China Hospital of Sichuan University, No. 37, Guoxue Lane, Wuhou District, Chengdu, 610041, China
| | - Fu-Qiang Wen
- Divison of Pulmonary diseases, State Key Laboratory of Biotherapy, West China Hospital of Sichuan University, Chengdu, China
- Department of Respiratory and Critical Care Medicine, West China Hospital of Sichuan University, Chengdu, China
| | - Peter Gerard Gibson
- Priority Research Centre for Healthy Lungs, The University of Newcastle, Newcastle, NSW, Australia
| | - Vanessa M McDonald
- Priority Research Centre for Healthy Lungs, The University of Newcastle, Newcastle, NSW, Australia
| | - Haopeng Yu
- West China Biomedical Big Data Center, West China Hospital of Sichuan University, Chengdu, China
- Med-X Center for Informatics, Sichuan University, Chengdu, China
| | - Juan-Juan Fu
- Division of Pulmonary Medicine, Department of Internal Medicine, Institute of Integrated Traditional Chinese and Western Medicine, West China Hospital of Sichuan University, No. 37, Guoxue Lane, Wuhou District, Chengdu, 610041, China.
- Divison of Pulmonary diseases, State Key Laboratory of Biotherapy, West China Hospital of Sichuan University, Chengdu, China.
| |
Collapse
|
33
|
Rosenboom I, Thavarasa A, Richardson H, Long MB, Wiehlmann L, Davenport CF, Shoemark A, Chalmers JD, Tümmler B. Sputum metagenomics of people with bronchiectasis. ERJ Open Res 2024; 10:01008-2023. [PMID: 38444657 PMCID: PMC10910388 DOI: 10.1183/23120541.01008-2023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2023] [Accepted: 01/08/2024] [Indexed: 03/07/2024] Open
Abstract
Background The microbiota in the sputum of people with bronchiectasis has repeatedly been investigated in cohorts of different geographic origin, but so far has not been studied to the species level in comparison to control populations including healthy adults and smokers without lung disease. Methods The microbial metagenome from sputa of 101 European Bronchiectasis Registry (EMBARC) study participants was examined by using whole-genome shotgun sequencing. Results Our analysis of the metagenome of people with bronchiectasis revealed four clusters characterised by a predominance of Haemophilus influenzae, Pseudomonas aeruginosa or polymicrobial communities with varying compositions of nonpathogenic commensals and opportunistic pathogens. The metagenomes of the severely affected patients showed individual profiles characterised by low alpha diversity. Importantly, nearly 50% of patients with severe disease were grouped in a cluster characterised by commensals. Comparisons with the sputum metagenomes of healthy smokers and healthy nonsmokers revealed a gradient of depletion of taxa in bronchiectasis, most often Neisseria subflava, Fusobacterium periodonticum and Eubacterium sulci. Conclusion The gradient of depletion of commensal taxa found in healthy airways is a key feature of bronchiectasis associated with disease severity.
Collapse
Affiliation(s)
- Ilona Rosenboom
- Department of Paediatric Pneumology, Allergology and Neonatology, Hannover Medical School, Hannover, Germany
| | - Ajith Thavarasa
- Department of Paediatric Pneumology, Allergology and Neonatology, Hannover Medical School, Hannover, Germany
| | - Hollian Richardson
- Division of Molecular and Clinical Medicine, University of Dundee, Dundee, UK
| | - Merete B. Long
- Division of Molecular and Clinical Medicine, University of Dundee, Dundee, UK
| | - Lutz Wiehlmann
- Research Core Unit Genomics, Hannover Medical School, Hannover, Germany
| | | | - Amelia Shoemark
- Division of Molecular and Clinical Medicine, University of Dundee, Dundee, UK
| | - James D. Chalmers
- Division of Molecular and Clinical Medicine, University of Dundee, Dundee, UK
| | - Burkhard Tümmler
- Department of Paediatric Pneumology, Allergology and Neonatology, Hannover Medical School, Hannover, Germany
- Biomedical Research in Endstage and Obstructive Lung Disease (BREATH), German Centre for Lung Research, Hannover, Germany
| |
Collapse
|
34
|
Mac Aogáin M, Tiew PY, Jaggi TK, Narayana JK, Singh S, Hansbro PM, Segal LN, Chotirmall SH. Targeting respiratory microbiomes in COPD and bronchiectasis. Expert Rev Respir Med 2024; 18:111-125. [PMID: 38743428 DOI: 10.1080/17476348.2024.2355155] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2024] [Accepted: 05/10/2024] [Indexed: 05/16/2024]
Abstract
INTRODUCTION This review summarizes our current understanding of the respiratory microbiome in COPD and Bronchiectasis. We explore the interplay between microbial communities, host immune responses, disease pathology, and treatment outcomes. AREAS COVERED We detail the dynamics of the airway microbiome, its influence on chronic respiratory diseases, and analytical challenges. Relevant articles from PubMed and Medline (January 2010-March 2024) were retrieved and summarized. We examine clinical correlations of the microbiome in COPD and bronchiectasis, assessing how current therapies impact upon it. The potential of emerging immunotherapies, antiinflammatories and antimicrobial strategies is discussed, with focus on the pivotal role of commensal taxa in maintaining respiratory health and the promising avenue of microbiome remodeling for disease management. EXPERT OPINION Given the heterogeneity in microbiome composition and its pivotal role in disease development and progression, a shift toward microbiome-directed therapeutics is appealing. This transition, from traditional 'pathogencentric' diagnostic and treatment modalities to those acknowledging the microbiome, can be enabled by evolving crossdisciplinary platforms which have the potential to accelerate microbiome-based interventions into routine clinical practice. Bridging the gap between comprehensive microbiome analysis and clinical application, however, remains challenging, necessitating continued innovation in research, diagnostics, trials, and therapeutic development pipelines.
Collapse
Affiliation(s)
- Micheál Mac Aogáin
- Department of Biochemistry, St. James's Hospital, Dublin, Ireland
- School of Medicine, Trinity College Dublin, Dublin, Ireland
| | - Pei Yee Tiew
- Lee Kong Chian School of Medicine, Nanyang Technological University, Singapore
- Department of Respiratory and Critical Care Medicine, Singapore General Hospital, Singapore, Singapore
- Duke-NUS Medical School, Singapore, Singapore
| | - Tavleen Kaur Jaggi
- Lee Kong Chian School of Medicine, Nanyang Technological University, Singapore
| | | | - Shivani Singh
- Division of Pulmonary Critical Care & Sleep Medicine, Department of Medicine, New York University School of Medicine, New York, NY, USA
| | - Philip M Hansbro
- Centre for Inflammation, Centenary Institute and University of Technology Sydney, Faculty of Science, School of Life Sciences, Sydney, Australia
| | - Leopoldo N Segal
- Division of Pulmonary Critical Care & Sleep Medicine, Department of Medicine, New York University School of Medicine, New York, NY, USA
| | - Sanjay H Chotirmall
- Lee Kong Chian School of Medicine, Nanyang Technological University, Singapore
- Department of Respiratory and Critical Care Medicine, Tan Tock Seng Hospital, Singapore
| |
Collapse
|
35
|
Taylor SL, Rogers GB. The evolving focus of cystic fibrosis microbiome research. J Cyst Fibros 2024; 23:185-186. [PMID: 38604888 DOI: 10.1016/j.jcf.2024.03.014] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2024] [Accepted: 03/29/2024] [Indexed: 04/13/2024]
Affiliation(s)
- Steven L Taylor
- Microbiome and Host Health Program, South Australian Health and Medical Research Institute, Adelaide, SA, Australia; Infection and Immunity, Flinders Health and Medical Research Institute, College of Medicine and Public Health, Flinders University, Bedford Park, SA, Australia
| | - Geraint B Rogers
- Microbiome and Host Health Program, South Australian Health and Medical Research Institute, Adelaide, SA, Australia; Infection and Immunity, Flinders Health and Medical Research Institute, College of Medicine and Public Health, Flinders University, Bedford Park, SA, Australia.
| |
Collapse
|
36
|
Xu C, Jiang H, Feng LJ, Jiang MZ, Wang YL, Liu SJ. Christensenella minuta interacts with multiple gut bacteria. Front Microbiol 2024; 15:1301073. [PMID: 38440147 PMCID: PMC10910051 DOI: 10.3389/fmicb.2024.1301073] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2023] [Accepted: 01/30/2024] [Indexed: 03/06/2024] Open
Abstract
Introduction Gut microbes form complex networks that significantly influence host health and disease treatment. Interventions with the probiotic bacteria on the gut microbiota have been demonstrated to improve host well-being. As a representative of next-generation probiotics, Christensenella minuta (C. minuta) plays a critical role in regulating energy balance and metabolic homeostasis in human bodies, showing potential in treating metabolic disorders and reducing inflammation. However, interactions of C. minuta with the members of the networked gut microbiota have rarely been explored. Methods In this study, we investigated the impact of C. minuta on fecal microbiota via metagenomic sequencing, focusing on retrieving bacterial strains and coculture assays of C. minuta with associated microbial partners. Results Our results showed that C. minuta intervention significantly reduced the diversity of fecal microorganisms, but specifically enhanced some groups of bacteria, such as Lactobacillaceae. C. minuta selectively enriched bacterial pathways that compensated for its metabolic defects on vitamin B1, B12, serine, and glutamate synthesis. Meanwhile, C. minuta cross-feeds Faecalibacterium prausnitzii and other bacteria via the production of arginine, branched-chain amino acids, fumaric acids and short-chain fatty acids (SCFAs), such as acetic. Both metagenomic data analysis and culture experiments revealed that C. minuta negatively correlated with Klebsiella pneumoniae and 14 other bacterial taxa, while positively correlated with F. prausnitzii. Our results advance our comprehension of C. minuta's in modulating the gut microbial network. Conclusions C. minuta disrupts the composition of the fecal microbiota. This disturbance is manifested through cross-feeding, nutritional competition, and supplementation of its own metabolic deficiencies, resulting in the specific enrichment or inhibition of the growth of certain bacteria. This study will shed light on the application of C. minuta as a probiotic for effective interventions on gut microbiomes and improvement of host health.
Collapse
Affiliation(s)
- Chang Xu
- State Key Laboratory of Microbial Technology, Shandong University, Qingdao, China
| | - He Jiang
- State Key Laboratory of Microbial Technology, Shandong University, Qingdao, China
| | - Li-Juan Feng
- State Key Laboratory of Microbial Technology, Shandong University, Qingdao, China
| | - Min-Zhi Jiang
- State Key Laboratory of Microbial Technology, Shandong University, Qingdao, China
| | - Yu-Lin Wang
- State Key Laboratory of Microbial Technology, Shandong University, Qingdao, China
| | - Shuang-Jiang Liu
- State Key Laboratory of Microbial Technology, Shandong University, Qingdao, China
- State Key Laboratory of Microbial Resources, Institute of Microbiology, Chinese Academy of Sciences, Beijing, China
| |
Collapse
|
37
|
Yang X, Zeng Q, Gou S, Wu Y, Ma X, Zou H, Zhao K. Phenotypic heterogeneity unveils a negative correlation between antibiotic resistance and quorum sensing in Pseudomonas aeruginosa clinical isolates. Front Microbiol 2024; 15:1327675. [PMID: 38410387 PMCID: PMC10895058 DOI: 10.3389/fmicb.2024.1327675] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2023] [Accepted: 01/29/2024] [Indexed: 02/28/2024] Open
Abstract
Colonization of Pseudomonas aeruginosa in the lung environments frequently leads to the enrichment of strains displaying enhanced antibiotic resistance and reduced production of quorum-sensing (QS) controlled products. However, the relationship between the emergence of QS deficient variants and antibiotic resistance remains less understood. In this study, 67 P. aeruginosa strains were isolated from the lungs of 14 patients with chronic obstructive pulmonary disease, followed by determining their genetic relationship, QS-related phenotypes and resistance to commonly used antibiotics. The integrity of P. aeruginosa QS system was checked by DNA sequencing. The relationship between the QS system and antibiotic resistance was then assessed by correlation analyses. The function of the LasR protein and bacterial virulence were evaluated through homology modeling and nematode-infection assay. The influence of antibiotic on the development of extracellular protease production ability of P. aeruginosa was tested by an evolutionary experiment. The results showed that P. aeruginosa clinical strains displayed abundant diversity in phenotype and genotype. The production of extracellular proteases was significantly negatively correlated with antibiotic resistance. The strains with enhanced antibiotic resistance also showed a notable overlap with the mutation of lasR gene, which is the core regulatory gene of P. aeruginosa QS system. Molecular docking and Caenorhabditis elegans infection assays further suggested that P. aeruginosa with impaired LasR protein could also have varying pathogenicity. Moreover, in vitro evolution experiments demonstrated that antibiotic-mediated selective pressure, particularly from Levofloxacin contributed to the emergence of extracellular protease-negative strains. Therefore, this study provides evidence for the connection of P. aeruginosa QS system and antibiotic resistance, and holds significance for developing targeted strategies to address antibiotic resistance and improving the management of antibiotic-resistant infections in chronic respiratory diseases.
Collapse
Affiliation(s)
- Xiting Yang
- Antibiotics Research and Re-evaluation Key Laboratory of Sichuan Province, School of Pharmacy, Chengdu University, Chengdu, Sichuan, China
| | - Qianglin Zeng
- Affiliated Hospital of Chengdu University, Chengdu University, Chengdu, Sichuan, China
| | - Shiyi Gou
- Antibiotics Research and Re-evaluation Key Laboratory of Sichuan Province, School of Pharmacy, Chengdu University, Chengdu, Sichuan, China
| | - Yi Wu
- Antibiotics Research and Re-evaluation Key Laboratory of Sichuan Province, School of Pharmacy, Chengdu University, Chengdu, Sichuan, China
| | - Xiaoling Ma
- Antibiotics Research and Re-evaluation Key Laboratory of Sichuan Province, School of Pharmacy, Chengdu University, Chengdu, Sichuan, China
| | - Hang Zou
- Antibiotics Research and Re-evaluation Key Laboratory of Sichuan Province, School of Pharmacy, Chengdu University, Chengdu, Sichuan, China
| | - Kelei Zhao
- Antibiotics Research and Re-evaluation Key Laboratory of Sichuan Province, School of Pharmacy, Chengdu University, Chengdu, Sichuan, China
| |
Collapse
|
38
|
Cohen R, Shteinberg M. Unravelling the "frequent exacerbator" phenotype in cystic fibrosis. Eur Respir J 2024; 63:2400068. [PMID: 38388000 DOI: 10.1183/13993003.00068-2024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2024] [Accepted: 01/12/2024] [Indexed: 02/24/2024]
Affiliation(s)
- Raya Cohen
- Pulmonology Institute and CF center, Carmel Medical Center, Haifa, Israel
- The B. Rappaport Faculty of Medicine, Technion - Israel Institute of Technology Haifa, Haifa, Israel
| | - Michal Shteinberg
- Pulmonology Institute and CF center, Carmel Medical Center, Haifa, Israel
- The B. Rappaport Faculty of Medicine, Technion - Israel Institute of Technology Haifa, Haifa, Israel
| |
Collapse
|
39
|
Wang J, Ren J, Li X, Wang J, Chang C, Sun L, Sun Y. Symptoms and medical resource utilization of patients with bronchiectasis after SARS-CoV-2 infection. Front Med (Lausanne) 2024; 10:1276763. [PMID: 38264053 PMCID: PMC10804846 DOI: 10.3389/fmed.2023.1276763] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2023] [Accepted: 12/11/2023] [Indexed: 01/25/2024] Open
Abstract
Background The impact of COVID-19 caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) on patients with bronchiectasis in terms of symptoms, self-management and medical resource utilization was unknown. Objective To describe the impact of infection by SARS-CoV-2 on fluctuation of symptoms, self-management and medical resource utilization of patients with bronchiectasis during the pandemic of COVID-19. Methods This was a single-center cross-sectional questionnaire study performed in Peking University Third Hospital. An online questionnaire investigation addressing the impact of SARS-CoV-2 infection on respiratory symptoms, self-management and medical resource utilization was conducted among patients with bronchiectasis during the COVID-19 surge in December 2022 in Beijing, China. Results Five hundred patients with bronchiectasis, with 285 (57%) females, and a mean (± S D ) age of 57.9 ± 15.1 years, completed the telephone questionnaire. The reported prevalence of COVID-19 was 81.2% (406/500). Of the 406 COVID-19 patients, 89.2% experienced fever lasting mostly for no more than 3 days, 70.6 and 61.8% reported exacerbated cough and sputum production respectively, and 17.7% reported worsened dyspnea. Notable 37.4% of the patients with COVID-19 experienced symptoms consistent with the definition of an acute exacerbation of bronchiectasis. However, 76.6% (311/406) of the infected patients did not seek medical care but managed at home. Of the patients who visited hospitals, 26.3% (25/95) needed hospitalization and 2.1% (2/95) needed ICU admission. Multi-factors logistic regression analysis showed that younger age (p = 0.012) and not using a bronchodilator agent(p = 0.022) were independently associated with SARS-CoV-2 infection, while a history of exacerbation of bronchiectasis in the past year (p = 0.006) and daily use of expectorants (p = 0.002) were associated with emergency visit and/or hospitalization for patients with bronchiectasis after SARS-CoV-2 infection. Conclusion During the COVID-19 surge, the infection rate of SARS-CoV-2 in patients with bronchiectasis was high, and most of the patients experienced new-onset or exacerbated respiratory symptoms, but only a minority needed medical visits. Our survey results further underscore the importance of patients' disease awareness and self-management skills during a pandemic like COVID-19.
Collapse
Affiliation(s)
| | | | | | | | | | - Lina Sun
- Department of Respiratory and Critical Care Medicine, Peking University Third Hospital. Research Center for Chronic Airway Diseases, Peking University Health Science Center, Beijing, China
| | - Yongchang Sun
- Department of Respiratory and Critical Care Medicine, Peking University Third Hospital. Research Center for Chronic Airway Diseases, Peking University Health Science Center, Beijing, China
| |
Collapse
|
40
|
Gao YH, Lu HW, Zheng HZ, Cao C, Chu DJ, Fan H, Fan XY, Gu HY, Guan WJ, Jie ZJ, Jin Y, Li W, Li YP, Li YY, Liu L, Liu XD, Luo H, Lv XD, Mo WQ, Song YL, Wang DX, Wang LW, Wang CZ, Xie M, Zhang M, Zheng CX, Mao B, Chotirmall SH, Chalmers JD, Qu JM, Xu JF. A phase 4 multicentre, 2×2 factorial randomised, double-blind, placebo-controlled trial to investigate the efficacy and safety of tobramycin inhalation solution for Pseudomonas aeruginosa eradication in bronchiectasis: ERASE. ERJ Open Res 2024; 10:00938-2023. [PMID: 38410702 PMCID: PMC10895435 DOI: 10.1183/23120541.00938-2023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2023] [Accepted: 01/05/2024] [Indexed: 02/28/2024] Open
Abstract
Chronic Pseudomonas aeruginosa (PA) infection significantly contributes to morbidity and mortality in bronchiectasis patients. Initiating antibiotics early may lead to the eradication of PA. Here we outline the design of a trial (ERASE; NCT06093191) assessing the efficacy and safety of inhaled tobramycin, alone or with oral ciprofloxacin, in bronchiectasis patients with a new isolation of PA. This multicentre, 2×2 factorial randomised, double-blind, placebo-controlled, parallel-group trial includes a 2-week screening period, a 12-week treatment phase (with a combination of ciprofloxacin or a placebo at initial 2 weeks) and a 24-week follow-up. 364 adults with bronchiectasis and a new PA isolation will be randomly assigned to one of four groups: placebo (inhaled saline and ciprofloxacin placebo twice daily), ciprofloxacin alone (750 mg ciprofloxacin and inhaled saline twice daily), inhaled tobramycin alone (inhaled 300 mg tobramycin and ciprofloxacin placebo twice daily) or a combination of both drugs (inhaled 300 mg tobramycin and 750 mg ciprofloxacin twice daily). The primary objective of this study is to assess the proportion of patients successfully eradicating PA in each group by the end of the study. Efficacy will be evaluated based on the eradication rate of PA at other time points (12, 24 and 36 weeks), the occurrence of exacerbations and hospitalisations, time to first pulmonary exacerbations, patient-reported outcomes, symptom measures, pulmonary function tests and the cost of hospitalisations. To date no randomised trial has evaluated the benefit of different PA eradication strategies in bronchiectasis patients. The ERASE trial will therefore generate crucial data to inform future clinical guidelines.
Collapse
Affiliation(s)
- Yong-Hua Gao
- Department of Respiratory and Critical Care Medicine, Shanghai Pulmonary Hospital, School of Medicine, Tongji University, Shanghai, China
- Institute of Respiratory Medicine, School of Medicine, Tongji University, Shanghai, China
- These authors contributed equally as first authors
| | - Hai-Wen Lu
- Department of Respiratory and Critical Care Medicine, Shanghai Pulmonary Hospital, School of Medicine, Tongji University, Shanghai, China
- Institute of Respiratory Medicine, School of Medicine, Tongji University, Shanghai, China
- These authors contributed equally as first authors
| | - Hui-Zhen Zheng
- Department of Respiratory and Critical Care Medicine, Shanghai Pulmonary Hospital, School of Medicine, Tongji University, Shanghai, China
- Institute of Respiratory Medicine, School of Medicine, Tongji University, Shanghai, China
- These authors contributed equally as first authors
| | - Chao Cao
- Department of Respiratory Medicine, The Affiliated Hospital of School of Medicine, Ningbo University, Ningbo, China
| | - De-Jie Chu
- Department of Respiratory Medicine, The Eighth People's Hospital of Shanghai, Shanghai, China
| | - Hong Fan
- Department of Respiratory and Critical Care Medicine, West China Hospital, Sichuan University, Chengdu, China
| | - Xiao-Yun Fan
- Department of Geriatric Respiratory and Critical Care, The First Affiliated Hospital of Anhui Medical University, Hefei, China
| | - Hong-Yan Gu
- Department of Pulmonary and Critical Care Medicine, The Sixth People's Hospital of Nantong, Nantong, China
| | - Wei-Jie Guan
- State Key Laboratory of Respiratory Disease, National Clinical Research Center for Respiratory Disease, Guangzhou Institute of Respiratory Health, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
| | - Zhi-Jun Jie
- Department of Respiratory and Critical Care Medicine, Shanghai Fifth People's Hospital, Fudan University, Shanghai, China
| | - Yang Jin
- Department of Respiratory and Critical Care Medicine, NHC Key Laboratory of Pulmonary Diseases, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Wen Li
- Key Laboratory of Respiratory Disease of Zhejiang Province, Department of Respiratory and Critical Care Medicine, Second Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou, China
| | - Yu-Ping Li
- Department of Pulmonary and Critical Care Medicine, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, China
| | - Yuan-Yuan Li
- Department of Respiratory Medicine, Branch of National Clinical Research Center for Respiratory Disease, National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, China
| | - Lin Liu
- Department of Respiratory Medicine, Guizhou Provincial People Hospital, Guiyang City, China
| | | | - Hong Luo
- Department of Pulmonary and Critical Care Medicine, Second Xiangya Hospital, Central South University, Changsha, China
| | - Xiao-Dong Lv
- Department of Respiration, The First Hospital of Jiaxing, Jiaxing, China
| | - Wei-Qiang Mo
- Department of Respiration, The Second Affiliated Hospital of Jiaxing University, Jiaxing, China
| | - Yuan-Lin Song
- Department of Pulmonary and Critical Care Medicine, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Dao-Xin Wang
- Department of Pulmonary and Critical Care Medicine, The Second Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Ling-Wei Wang
- Pulmonary and Critical Care Department, Shenzhen People's Hospital, Shenzhen Institute of Respiratory Diseases, Shenzhen, China
| | - Chang-Zheng Wang
- Department of Respiratory Medicine, The Third Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Min Xie
- Department of Respiratory and Critical Care Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Min Zhang
- Department of Respiratory and Critical Care Medicine, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Cui-Xia Zheng
- Department of Respiratory Medicine, Shanghai Yangpu District Central Hospital, Tongji University, Shanghai, China
| | - Bei Mao
- Department of Respiratory and Critical Care Medicine, Shanghai Pulmonary Hospital, School of Medicine, Tongji University, Shanghai, China
- Institute of Respiratory Medicine, School of Medicine, Tongji University, Shanghai, China
| | - Sanjay H Chotirmall
- Lee Kong Chian School of Medicine, Nanyang Technological University, Singapore, Singapore
- Department of Respiratory and Critical Care Medicine, Tan Tock Seng Hospital, Singapore, Singapore
| | - James D Chalmers
- Division of Molecular and Clinical Medicine, University of Dundee, Dundee, UK
- These authors contributed equally as senior authors
| | - Jie-Ming Qu
- Department of Respiratory and Critical Care Medicine, Ruijin Hospital Affiliated Shanghai Jiao Tong University School of Medicine, Shanghai, China
- Institute of Respiratory Diseases, School of Medicine, Shanghai Jiaotong University, Shanghai, China
- These authors contributed equally as senior authors
| | - Jin-Fu Xu
- Department of Respiratory and Critical Care Medicine, Shanghai Pulmonary Hospital, School of Medicine, Tongji University, Shanghai, China
- Institute of Respiratory Medicine, School of Medicine, Tongji University, Shanghai, China
| |
Collapse
|
41
|
Atto B, Anteneh Y, Bialasiewicz S, Binks MJ, Hashemi M, Hill J, Thornton RB, Westaway J, Marsh RL. The Respiratory Microbiome in Paediatric Chronic Wet Cough: What Is Known and Future Directions. J Clin Med 2023; 13:171. [PMID: 38202177 PMCID: PMC10779485 DOI: 10.3390/jcm13010171] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2023] [Revised: 12/13/2023] [Accepted: 12/17/2023] [Indexed: 01/12/2024] Open
Abstract
Chronic wet cough for longer than 4 weeks is a hallmark of chronic suppurative lung diseases (CSLD), including protracted bacterial bronchitis (PBB), and bronchiectasis in children. Severe lower respiratory infection early in life is a major risk factor of PBB and paediatric bronchiectasis. In these conditions, failure to clear an underlying endobronchial infection is hypothesised to drive ongoing inflammation and progressive tissue damage that culminates in irreversible bronchiectasis. Historically, the microbiology of paediatric chronic wet cough has been defined by culture-based studies focused on the detection and eradication of specific bacterial pathogens. Various 'omics technologies now allow for a more nuanced investigation of respiratory pathobiology and are enabling development of endotype-based models of care. Recent years have seen substantial advances in defining respiratory endotypes among adults with CSLD; however, less is understood about diseases affecting children. In this review, we explore the current understanding of the airway microbiome among children with chronic wet cough related to the PBB-bronchiectasis diagnostic continuum. We explore concepts emerging from the gut-lung axis and multi-omic studies that are expected to influence PBB and bronchiectasis endotyping efforts. We also consider how our evolving understanding of the airway microbiome is translating to new approaches in chronic wet cough diagnostics and treatments.
Collapse
Affiliation(s)
- Brianna Atto
- School of Health Sciences, University of Tasmania, Launceston, TAS 7248, Australia;
| | - Yitayal Anteneh
- Child and Maternal Health Division, Menzies School of Health Research, Charles Darwin University, Darwin, NT 0811, Australia; (Y.A.); (M.J.B.); (J.W.)
| | - Seweryn Bialasiewicz
- Australian Centre for Ecogenomics, School of Chemistry and Molecular Biosciences, The University of Queensland, St. Lucia, QLD 4072, Australia;
| | - Michael J. Binks
- Child and Maternal Health Division, Menzies School of Health Research, Charles Darwin University, Darwin, NT 0811, Australia; (Y.A.); (M.J.B.); (J.W.)
- SAHMRI Women and Kids, South Australian Health and Medical Research Institute, Adelaide, SA 5000, Australia
| | - Mostafa Hashemi
- Department of Chemical and Biological Engineering, The University of British Columbia, Vancouver, BC V6T 1Z3, Canada; (M.H.); (J.H.)
| | - Jane Hill
- Department of Chemical and Biological Engineering, The University of British Columbia, Vancouver, BC V6T 1Z3, Canada; (M.H.); (J.H.)
- Spire Health Technology, PBC, Seattle, WA 98195, USA
| | - Ruth B. Thornton
- Centre for Child Health Research, University of Western Australia, Perth, WA 6009, Australia;
- Wesfarmers Centre of Vaccines and Infectious Diseases, Telethon Kids Institute, Perth, WA 6009, Australia
| | - Jacob Westaway
- Child and Maternal Health Division, Menzies School of Health Research, Charles Darwin University, Darwin, NT 0811, Australia; (Y.A.); (M.J.B.); (J.W.)
- Centre for Tropical Bioinformatics and Molecular Biology, James Cook University, Cairns, QLD 4811, Australia
| | - Robyn L. Marsh
- School of Health Sciences, University of Tasmania, Launceston, TAS 7248, Australia;
- Child and Maternal Health Division, Menzies School of Health Research, Charles Darwin University, Darwin, NT 0811, Australia; (Y.A.); (M.J.B.); (J.W.)
| |
Collapse
|
42
|
Lu D, Li C, Zhong Z, Abudouaini M, Amar A, Wu H, Wei X. Changes in the airway microbiome in patients with bronchiectasis. Medicine (Baltimore) 2023; 102:e36519. [PMID: 38115299 PMCID: PMC10727580 DOI: 10.1097/md.0000000000036519] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/13/2023] [Revised: 11/06/2023] [Accepted: 11/16/2023] [Indexed: 12/21/2023] Open
Abstract
This study used metagenomic next-generation sequencing (mNGS) technology to explore the changes of the microbial characteristics in the lower respiratory tract in patients with acute exacerbations of bronchiectasis (noncystic fibrosis) to guide clinical treatment and improve patients' quality of life and prognosis. This prospective study included 54 patients with acute exacerbation and 46 clinically stable patients admitted to the Respiratory and Critical Care Medicine Center of the People's Hospital of Xinjiang Uygur Autonomous Region from January 2020 to July 2022. Sputum was subjected to routine microbiological tests, and bronchoalveolar lavage fluid (BALF) samples were subjected to microbiological tests and mNGS of BALF before empirical antibiotic therapy. Serum inflammatory markers (white blood cell count, interleukin-6, procalcitonin, and C-reactive protein) were measured. In addition, we evaluated the pathogen of mNGS and compared the airway microbiome composition of patients with acute exacerbation and control patients. The mean age of our cohort was 56 ± 15.2 years. Eighty-nine patients had positive results by mNGS. There was a significant difference in the detection of viruses between the groups (χ2 = 6.954, P < .01). The fungal species Candida albicans, Pneumocystis jirovecii, and Aspergillus fumigatus were significantly more common in patients with acute exacerbations (χ2 = 5.98, P = .014). The bacterial species Acinetobacter baumannii, Mycobacterium tuberculosis, Haemophilus influenzae, Haemophilus parahaemolyticus, Abiotrophia defectiva, and Micromonas micros were significantly more prevalent in patients with acute exacerbations (χ2 = 4.065, P = .044). The most common bacterial species isolated from the sputum and BALF samples of patients with acute exacerbation was A. baumannii. Chlamydia psittaci was found in 4 patients. In addition, of 77 patients with negative sputum culture, 66 had positive results by mNGS, demonstrating the increased sensitivity and accuracy of mNGS. Patients with acute exacerbation of bronchiectasis tend to have mixed infections in the lower respiratory tract. The frequency of viruses, fungi, and Mycoplasma was higher in these patients. Our findings suggest that mNGS could be used to identify pathogenic microorganisms in these patients, increasing the effectiveness of antibiotic therapy.
Collapse
Affiliation(s)
- Dongmei Lu
- Division of Respiratory and Critical Care Medicine, People’s Hospital of Xinjiang Uygur Autonomous Region, Urumqi, Xinjiang Uygur Autonomous Region, China
| | - Chenxi Li
- Department of Oral and Maxillofacial Oncology Surgery, the First Affiliated Hospital of Xinjiang Medical University, School/Hospital of Stomatology, Xinjiang Medical University, Stomatological Research Institute of Xinjiang Uygur Autonomous Region, Urumqi, Xinjiang Uygur Autonomous Region, China
| | - Zhiwei Zhong
- Division of Respiratory and Critical Care Medicine, People’s Hospital of Xinjiang Uygur Autonomous Region, Urumqi, Xinjiang Uygur Autonomous Region, China
- Graduate School, Xinjiang Medical University, Urumqi, Xinjiang Uygur Autonomous Region, China
| | - Maidina Abudouaini
- Division of Respiratory and Critical Care Medicine, People’s Hospital of Xinjiang Uygur Autonomous Region, Urumqi, Xinjiang Uygur Autonomous Region, China
- Graduate School, Xinjiang Medical University, Urumqi, Xinjiang Uygur Autonomous Region, China
| | - Aynazar Amar
- Division of Respiratory and Critical Care Medicine, People’s Hospital of Xinjiang Uygur Autonomous Region, Urumqi, Xinjiang Uygur Autonomous Region, China
- Graduate School, Xinjiang Medical University, Urumqi, Xinjiang Uygur Autonomous Region, China
| | - Hongtao Wu
- Division of Respiratory and Critical Care Medicine, People’s Hospital of Xinjiang Uygur Autonomous Region, Urumqi, Xinjiang Uygur Autonomous Region, China
| | - Xuemei Wei
- Division of Respiratory and Critical Care Medicine, People’s Hospital of Xinjiang Uygur Autonomous Region, Urumqi, Xinjiang Uygur Autonomous Region, China
| |
Collapse
|
43
|
Zhou W, Guo Z, Chen J, Chen Y, He C, Lu A, Qian L. Airway microbiota correlated with pulmonary exacerbation in primary ciliary dyskinesia patients. Microbiol Spectr 2023; 11:e0221323. [PMID: 37796006 PMCID: PMC10715216 DOI: 10.1128/spectrum.02213-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2023] [Accepted: 08/16/2023] [Indexed: 10/06/2023] Open
Abstract
IMPORTANCE PCD is a rare disease characterized by productive cough, rhinitis, and recurrent infections of the upper and lower airways. Because the diagnosis of PCD is often delayed, patients receive more antibiotics, experience a heavier financial burden, and have a worse prognosis; thus, it is very important to identify the pathogeny and use the correct antibiotic. In this large single-center study of PCD microbiota, we identified an outline of the bacterial microbes from the respiratory tract; furthermore, we found that the microbiota diversity in pediatric sputum was richer than that in pediatric BALF through sequencing, indicating a heterogeneous community structure. The microbiota diversity and richness were lower during pulmonary exacerbation than during pulmonary stabilization. A significantly higher abundance of Pseudomonas had a moderate distinguishing effect for lung exacerbation, which attracted more attention for the study of Pseudomonas therapy in pediatric patients with PCD.
Collapse
Affiliation(s)
- Weitao Zhou
- Department of Respiratory Medicine, Children’s Hospital of Fudan University, Shanghai, China
| | - Zhuoyao Guo
- Department of Respiratory Medicine, Children’s Hospital of Fudan University, Shanghai, China
| | - Jinglong Chen
- Department of Respiratory Medicine, Children’s Hospital of Fudan University, Shanghai, China
| | - Yao Chen
- Department of Respiratory Medicine, Children’s Hospital of Fudan University, Shanghai, China
| | - Chen He
- Department of Respiratory Medicine, Children’s Hospital of Fudan University, Shanghai, China
| | - Aizhen Lu
- Department of Respiratory Medicine, Children’s Hospital of Fudan University, Shanghai, China
| | - Liling Qian
- Department of Respiratory Medicine, Children’s Hospital of Fudan University, Shanghai, China
| |
Collapse
|
44
|
Huang Y, Chen CL, Cen LJ, Li HM, Lin ZH, Zhu SY, Duan CY, Zhang RL, Pan CX, Zhang XF, Zhang XX, He ZF, Shi MX, Zhong NS, Guan WJ. Sputum pathogen spectrum and clinical outcomes of upper respiratory tract infection in bronchiectasis exacerbation: a prospective cohort study. Emerg Microbes Infect 2023; 12:2202277. [PMID: 37038356 PMCID: PMC10167879 DOI: 10.1080/22221751.2023.2202277] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2022] [Accepted: 04/07/2023] [Indexed: 04/12/2023]
Abstract
Upper respiratory tract infection (URTI) is common in humans. We sought to profile sputum pathogen spectrum and impact of URTI on acute exacerbation of bronchiectasis (AE). Between March 2017 and December 2021, we prospectively collected sputum from adults with bronchiectasis. We stratified AEs into events related (URTI-AE) and unrelated to URTI (non-URTI-AE). We captured URTI without onset of AE (URTI-non-AE). We did bacterial culture and viral detection with polymerase chain reaction, and explored the pathogen spectrum and clinical impacts of URTI-AE via longitudinal follow-up. Finally, we collected 479 non-AE samples (113 collected at URTI-non-AE and 225 collected at clinically stable) and 170 AE samples (89 collected at URTI-AE and 81 collect at non-URTI-AE). The viral detection rate was significantly higher in URTI-AE (46.1%) than in non-URTI-AE (4.9%) and URTI-non-AE (11.5%) (both P < 0.01). Rhinovirus [odds ratio (OR): 5.00, 95% confidence interval (95%CI): 1.06-23.56, P = 0.03] detection was independently associated with URTI-AE compared with non-URTI-AE. URTI-AE tended to yield higher viral load and detection rate of rhinovirus, metapneumovirus and bacterial shifting compared with URTI-non-AE. URTI-AE was associated with higher initial viral loads (esp. rhinovirus, metapneumovirus), greater symptom burden (higher scores of three validated questionnaires) and prolonged recovery compared to those without. Having experienced URTI-AE predicted a greater risk of future URTI-AE (OR: 10.90, 95%CI: 3.60-33.05). In summary, URTI is associated with a distinct pathogen spectrum and aggravates bronchiectasis exacerbation, providing the scientific rationale for the prevention of URTI to hinder bronchiectasis progression.
Collapse
Affiliation(s)
- Yan Huang
- State Key Laboratory of Respiratory Disease, National Clinical Research Center for Respiratory Disease, Guangzhou Institute for Respiratory Health, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, People’s Republic of China
- Department of Geriatrics, National Key Clinical Specialty, Guangzhou First People's Hospital, South China University of Technology, Guangzhou, People’s Republic of China
| | - Chun-lan Chen
- Department of Respiratory and Critical Care Medicine, Guangdong Provincial People’s Hospital, Guangdong Academy of Medical Sciences, Guangzhou, People’s Republic of China
| | - Lai-jian Cen
- State Key Laboratory of Respiratory Disease, National Clinical Research Center for Respiratory Disease, Guangzhou Institute for Respiratory Health, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, People’s Republic of China
| | - Hui-min Li
- State Key Laboratory of Respiratory Disease, National Clinical Research Center for Respiratory Disease, Guangzhou Institute for Respiratory Health, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, People’s Republic of China
| | - Zhen-hong Lin
- State Key Laboratory of Respiratory Disease, National Clinical Research Center for Respiratory Disease, Guangzhou Institute for Respiratory Health, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, People’s Republic of China
| | - Si-yu Zhu
- Department of Biostatistics, School of Public Health, Southern Medical University, Guangzhou, People’s Republic of China
| | - Chong-yang Duan
- Department of Biostatistics, School of Public Health, Southern Medical University, Guangzhou, People’s Republic of China
| | - Ri-lan Zhang
- State Key Laboratory of Respiratory Disease, National Clinical Research Center for Respiratory Disease, Guangzhou Institute for Respiratory Health, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, People’s Republic of China
| | - Cui-xia Pan
- State Key Laboratory of Respiratory Disease, National Clinical Research Center for Respiratory Disease, Guangzhou Institute for Respiratory Health, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, People’s Republic of China
| | - Xiao-fen Zhang
- State Key Laboratory of Respiratory Disease, National Clinical Research Center for Respiratory Disease, Guangzhou Institute for Respiratory Health, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, People’s Republic of China
| | - Xiao-xian Zhang
- State Key Laboratory of Respiratory Disease, National Clinical Research Center for Respiratory Disease, Guangzhou Institute for Respiratory Health, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, People’s Republic of China
| | - Zhen-feng He
- State Key Laboratory of Respiratory Disease, National Clinical Research Center for Respiratory Disease, Guangzhou Institute for Respiratory Health, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, People’s Republic of China
| | - Ming-xin Shi
- State Key Laboratory of Respiratory Disease, National Clinical Research Center for Respiratory Disease, Guangzhou Institute for Respiratory Health, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, People’s Republic of China
| | - Nan-shan Zhong
- State Key Laboratory of Respiratory Disease, National Clinical Research Center for Respiratory Disease, Guangzhou Institute for Respiratory Health, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, People’s Republic of China
| | - Wei-jie Guan
- State Key Laboratory of Respiratory Disease, National Clinical Research Center for Respiratory Disease, Guangzhou Institute for Respiratory Health, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, People’s Republic of China
- Department of Thoracic Surgery, Guangzhou Institute for Respiratory Health, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, People’s Republic of China
- Department of Respiratory and Critical Care Medicine, Foshan Second People's Hospital, Affiliated Foshan Hospital of Southern Medical University, Foshan, People’s Republic of China
| |
Collapse
|
45
|
Choi H, Ryu S, Keir HR, Giam YH, Dicker AJ, Perea L, Richardson H, Huang JTJ, Cant E, Blasi F, Pollock J, Shteinberg M, Finch S, Aliberti S, Sibila O, Shoemark A, Chalmers JD. Inflammatory Molecular Endotypes in Bronchiectasis: A European Multicenter Cohort Study. Am J Respir Crit Care Med 2023; 208:1166-1176. [PMID: 37769155 DOI: 10.1164/rccm.202303-0499oc] [Citation(s) in RCA: 21] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2023] [Accepted: 09/27/2023] [Indexed: 09/30/2023] Open
Abstract
Rationale: Although inflammation and infection are key disease drivers in bronchiectasis, few studies have integrated host inflammatory and microbiome data to guide precision medicine. Objectives: To identify clusters among patients with bronchiectasis on the basis of inflammatory markers and to assess the association between inflammatory endotypes, microbiome characteristics, and exacerbation risk. Methods: Patients with stable bronchiectasis were enrolled at three European centers, and cluster analysis was used to stratify the patients according to the levels of 33 sputum and serum inflammatory markers. Clusters were compared in terms of microbiome composition (16S ribosomal RNA sequencing) and exacerbation risk over a 12-month follow-up. Measurements and Main Results: A total of 199 patients were enrolled (109 [54.8%] female; median age, 69 yr). Four clusters of patients were defined according to their inflammatory profiles: cluster 1, milder neutrophilic inflammation; cluster 2, mixed-neutrophilic and type 2; cluster 3, most severe neutrophilic; and cluster 4, mixed-epithelial and type 2. Lower microbiome diversity was associated with more severe inflammatory clusters (P < 0.001), and β-diversity analysis demonstrated distinct microbiome profiles associated with each inflammatory cluster (P = 0.001). Proteobacteria and Pseudomonas at phylum and genus levels, respectively, were more enriched in clusters 2 and 3 than in clusters 1 and 4. Furthermore, patients in cluster 2 (rate ratio [RR], 1.49; 95% confidence interval [CI], 1.16-1.92) and cluster 3 (RR, 1.61; 95% CI, 1.12-2.32) were at higher risk of exacerbation over a 12-month follow-up compared with cluster 1, even after adjustment for prior exacerbation history. Conclusions: Bronchiectasis inflammatory endotypes are associated with distinct microbiome profiles and future exacerbation risk.
Collapse
Affiliation(s)
- Hayoung Choi
- Division of Molecular and Clinical Medicine and
- Division of Pulmonary, Allergy, and Critical Care Medicine, Department of Internal Medicine, Hallym University Kangnam Sacred Heart Hospital, Seoul, Republic of Korea
| | - Soorack Ryu
- Biostatistical Consulting and Research Lab, Medical Research Collaborating Center, Hanyang University, Seoul, Republic of Korea
| | | | | | | | - Lidia Perea
- Division of Molecular and Clinical Medicine and
| | | | - Jeffrey T J Huang
- Division of Systems Medicine, University of Dundee, Ninewells Hospital and Medical School, Dundee, United Kingdom
| | - Erin Cant
- Division of Molecular and Clinical Medicine and
| | - Francesco Blasi
- Department of Pathophysiology and Transplantation, University of Milan, Milan, Italy
- Fondazione IRCCS Ca' Granda Ospedale Maggiore Policlinico, Milan, Italy
| | | | - Michal Shteinberg
- Pulmonology Institute and CF Center, Carmel Medical Center and the Technion-Israel Institute of Technology, Haifa, Israel
| | - Simon Finch
- Division of Molecular and Clinical Medicine and
| | - Stefano Aliberti
- Department of Biomedical Sciences, Humanitas University, Milan, Italy
- Respiratory Unit, IRCCS Humanitas Research Hospital, Milan, Italy; and
| | - Oriol Sibila
- Respiratory Department, Hospital Clínic, IDIBAPS, CIBERES, Universitat de Barcelona, Barcelona, Spain
| | | | | |
Collapse
|
46
|
Cheng WY, Liu WX, Ding Y, Wang G, Shi Y, Chu ESH, Wong S, Sung JJY, Yu J. High Sensitivity of Shotgun Metagenomic Sequencing in Colon Tissue Biopsy by Host DNA Depletion. GENOMICS, PROTEOMICS & BIOINFORMATICS 2023; 21:1195-1205. [PMID: 36174929 PMCID: PMC11082407 DOI: 10.1016/j.gpb.2022.09.003] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/08/2021] [Revised: 08/29/2022] [Accepted: 09/19/2022] [Indexed: 06/16/2023]
Abstract
The high host genetic background of tissue biopsies hinders the application of shotgun metagenomic sequencing in characterizing the tissue microbiota. We proposed an optimized method that removed host DNA from colon biopsies and examined the effect on metagenomic analysis. Human or mouse colon biopsies were divided into two groups, with one group undergoing host DNA depletion and the other serving as the control. Host DNA was removed through differential lysis of mammalian and bacterial cells before sequencing. The impact of host DNA depletion on microbiota was compared based on phylogenetic diversity analyses and regression analyses. Removing host DNA enhanced bacterial sequencing depth and improved species discovery, increasing bacterial reads by 2.46 ± 0.20 folds while reducing host reads by 6.80% ± 1.06%. Moreover, 2.40 times more of bacterial species were detected after host DNA depletion. This was confirmed from mouse colon tissues, increasing bacterial reads by 5.46 ± 0.42 folds while decreasing host reads by 10.2% ± 0.83%. Similarly, significantly more bacterial species were detected in the mouse colon tissue upon host DNA depletion (P < 0.001). Furthermore, an increased microbial richness was evident in the host DNA-depleted samples compared with non-depleted controls in human colon biopsies and mouse colon tissues (P < 0.001). Our optimized method of host DNA depletion improves the sensitivity of shotgun metagenomic sequencing in bacteria detection in the biopsy, which may yield a more accurate taxonomic profile of the tissue microbiota and identify bacteria that are important for disease initiation or progression.
Collapse
Affiliation(s)
- Wing Yin Cheng
- State Key Laboratory of Digestive Disease, Institute of Digestive Disease and The Department of Medicine and Therapeutics, Li Ka Shing Institute of Health Sciences, Shenzhen Research Institute, The Chinese University of Hong Kong, Hong Kong Special Administrative Region 999077, China
| | - Wei-Xin Liu
- State Key Laboratory of Digestive Disease, Institute of Digestive Disease and The Department of Medicine and Therapeutics, Li Ka Shing Institute of Health Sciences, Shenzhen Research Institute, The Chinese University of Hong Kong, Hong Kong Special Administrative Region 999077, China
| | - Yanqiang Ding
- State Key Laboratory of Digestive Disease, Institute of Digestive Disease and The Department of Medicine and Therapeutics, Li Ka Shing Institute of Health Sciences, Shenzhen Research Institute, The Chinese University of Hong Kong, Hong Kong Special Administrative Region 999077, China
| | - Guoping Wang
- State Key Laboratory of Digestive Disease, Institute of Digestive Disease and The Department of Medicine and Therapeutics, Li Ka Shing Institute of Health Sciences, Shenzhen Research Institute, The Chinese University of Hong Kong, Hong Kong Special Administrative Region 999077, China
| | - Yu Shi
- State Key Laboratory of Digestive Disease, Institute of Digestive Disease and The Department of Medicine and Therapeutics, Li Ka Shing Institute of Health Sciences, Shenzhen Research Institute, The Chinese University of Hong Kong, Hong Kong Special Administrative Region 999077, China
| | - Eagle S H Chu
- State Key Laboratory of Digestive Disease, Institute of Digestive Disease and The Department of Medicine and Therapeutics, Li Ka Shing Institute of Health Sciences, Shenzhen Research Institute, The Chinese University of Hong Kong, Hong Kong Special Administrative Region 999077, China
| | - Sunny Wong
- State Key Laboratory of Digestive Disease, Institute of Digestive Disease and The Department of Medicine and Therapeutics, Li Ka Shing Institute of Health Sciences, Shenzhen Research Institute, The Chinese University of Hong Kong, Hong Kong Special Administrative Region 999077, China
| | - Joseph J Y Sung
- State Key Laboratory of Digestive Disease, Institute of Digestive Disease and The Department of Medicine and Therapeutics, Li Ka Shing Institute of Health Sciences, Shenzhen Research Institute, The Chinese University of Hong Kong, Hong Kong Special Administrative Region 999077, China; Lee Kong Chian School of Medicine, Nanyang Technology University, Singapore 639798, Singapore
| | - Jun Yu
- State Key Laboratory of Digestive Disease, Institute of Digestive Disease and The Department of Medicine and Therapeutics, Li Ka Shing Institute of Health Sciences, Shenzhen Research Institute, The Chinese University of Hong Kong, Hong Kong Special Administrative Region 999077, China.
| |
Collapse
|
47
|
McShane PJ. Investigation and Management of Bronchiectasis in Nontuberculous Mycobacterial Pulmonary Disease. Clin Chest Med 2023; 44:731-742. [PMID: 37890912 DOI: 10.1016/j.ccm.2023.07.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/29/2023]
Abstract
Patients with nontuberculous mycobacterial (NTM) lung infection require life-long attention to their bronchiectasis, whether or not their NTM infection has been cured. The identification of the cause of bronchiectasis and/or coexisting diseases is important because it may affect therapeutic strategies. Airway clearance is the mainstay of bronchiectasis management. It can include multiple breathing techniques, devices, and mucoactive agents. The exact airway clearance regimen should be customized to each individual patient. Chronic pathogenic airway bacteria, such as Pseudomonas aeruginosa, may warrant consideration of eradication therapy and/or chronic use of maintenance inhaled antibiotics.
Collapse
Affiliation(s)
- Pamela J McShane
- Department of Medicine, University of Texas Health Science Center at Tyler, 11937 Hwy 271, Tyler, TX 75708, USA.
| |
Collapse
|
48
|
Mugunthan S, Wong LL, Winnerdy FR, Summers S, Bin Ismail MH, Foo YH, Jaggi TK, Meldrum OW, Tiew PY, Chotirmall SH, Rice SA, Phan AT, Kjelleberg S, Seviour T. RNA is a key component of extracellular DNA networks in Pseudomonas aeruginosa biofilms. Nat Commun 2023; 14:7772. [PMID: 38012164 PMCID: PMC10682433 DOI: 10.1038/s41467-023-43533-3] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2022] [Accepted: 11/13/2023] [Indexed: 11/29/2023] Open
Abstract
The extracellular matrix of bacterial biofilms consists of diverse components including polysaccharides, proteins and DNA. Extracellular RNA (eRNA) can also be present, contributing to the structural integrity of biofilms. However, technical difficulties related to the low stability of RNA make it difficult to understand the precise roles of eRNA in biofilms. Here, we show that eRNA associates with extracellular DNA (eDNA) to form matrix fibres in Pseudomonas aeruginosa biofilms, and the eRNA is enriched in certain bacterial RNA transcripts. Degradation of eRNA associated with eDNA led to a loss of eDNA fibres and biofilm viscoelasticity. Compared with planktonic and biofilm cells, the biofilm matrix was enriched in specific mRNA transcripts, including lasB (encoding elastase). The mRNA transcripts colocalised with eDNA fibres in the biofilm matrix, as shown by single molecule inexpensive FISH microscopy (smiFISH). The lasB mRNA was also observed in eDNA fibres in a clinical sputum sample positive for P. aeruginosa. Thus, our results indicate that the interaction of specific mRNAs with eDNA facilitates the formation of viscoelastic networks in the matrix of Pseudomonas aeruginosa biofilms.
Collapse
Affiliation(s)
- Sudarsan Mugunthan
- Singapore Centre for Environmental Life Sciences Engineering, Nanyang Technological University, Singapore, 637551, Singapore
| | - Lan Li Wong
- Singapore Centre for Environmental Life Sciences Engineering, Nanyang Technological University, Singapore, 637551, Singapore
| | | | - Stephen Summers
- Singapore Centre for Environmental Life Sciences Engineering, Nanyang Technological University, Singapore, 637551, Singapore
- St John's Island National Marine Laboratory c/o Tropical Marine Science Institute, National University of Singapore, 119227, Singapore
| | | | - Yong Hwee Foo
- Singapore Centre for Environmental Life Sciences Engineering, Nanyang Technological University, Singapore, 637551, Singapore
- Institute for Digital Molecular Analytics and Science (IDMxS), Nanyang Technological University, Singapore, 636921, Singapore
| | - Tavleen Kaur Jaggi
- Lee Kong Chian School of Medicine, Nanyang Technological University, Singapore, 636921, Singapore
| | - Oliver W Meldrum
- Lee Kong Chian School of Medicine, Nanyang Technological University, Singapore, 636921, Singapore
| | - Pei Yee Tiew
- Department of Respiratory and Critical Care Medicine, Singapore General Hospital, Singapore, Singapore
| | - Sanjay H Chotirmall
- Lee Kong Chian School of Medicine, Nanyang Technological University, Singapore, 636921, Singapore
- Department of Respiratory and Critical Care Medicine, Tan Tock Seng Hospital, Singapore, Singapore
| | - Scott A Rice
- Singapore Centre for Environmental Life Sciences Engineering, Nanyang Technological University, Singapore, 637551, Singapore
- The iThree Institute, University of Technology Sydney, Sydney, 2007, Australia
- CSIRO, Agriculture and Food, Westmead and Microbiomes for One Systems Health, Canberra, Australia
| | - Anh Tuân Phan
- School of Physical & Mathematical Sciences, Nanyang Technological University, Singapore, 637371, Singapore
| | - Staffan Kjelleberg
- Singapore Centre for Environmental Life Sciences Engineering, Nanyang Technological University, Singapore, 637551, Singapore.
- School of Biological Sciences, Nanyang Technological University, Singapore, 637551, Singapore.
- School of Biological, Earth and Environmental Sciences, University of New South Wales, Sydney, 2052, Australia.
| | - Thomas Seviour
- Singapore Centre for Environmental Life Sciences Engineering, Nanyang Technological University, Singapore, 637551, Singapore.
- Centre for Water Technology (WATEC), Department of Biological and Chemical Engineering, Aarhus University, Aarhus, 8000, Denmark.
| |
Collapse
|
49
|
Pan S, Jiang X, Zhang K. WSGMB: weight signed graph neural network for microbial biomarker identification. Brief Bioinform 2023; 25:bbad448. [PMID: 38084923 PMCID: PMC10714318 DOI: 10.1093/bib/bbad448] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2023] [Revised: 11/07/2023] [Accepted: 11/14/2023] [Indexed: 12/18/2023] Open
Abstract
The stability of the gut microenvironment is inextricably linked to human health, with the onset of many diseases accompanied by dysbiosis of the gut microbiota. It has been reported that there are differences in the microbial community composition between patients and healthy individuals, and many microbes are considered potential biomarkers. Accurately identifying these biomarkers can lead to more precise and reliable clinical decision-making. To improve the accuracy of microbial biomarker identification, this study introduces WSGMB, a computational framework that uses the relative abundance of microbial taxa and health status as inputs. This method has two main contributions: (1) viewing the microbial co-occurrence network as a weighted signed graph and applying graph convolutional neural network techniques for graph classification; (2) designing a new architecture to compute the role transitions of each microbial taxon between health and disease networks, thereby identifying disease-related microbial biomarkers. The weighted signed graph neural network enhances the quality of graph embeddings; quantifying the importance of microbes in different co-occurrence networks better identifies those microbes critical to health. Microbes are ranked according to their importance change scores, and when this score exceeds a set threshold, the microbe is considered a biomarker. This framework's identification performance is validated by comparing the biomarkers identified by WSGMB with actual microbial biomarkers associated with specific diseases from public literature databases. The study tests the proposed computational framework using actual microbial community data from colorectal cancer and Crohn's disease samples. It compares it with the most advanced microbial biomarker identification methods. The results show that the WSGMB method outperforms similar approaches in the accuracy of microbial biomarker identification.
Collapse
Affiliation(s)
- Shuheng Pan
- Institute of Data and Information, Tsinghua Shenzhen International Graduate School, Tsinghua University, Shenzhen 518005, China
| | - Xinyi Jiang
- Institute of Data and Information, Tsinghua Shenzhen International Graduate School, Tsinghua University, Shenzhen 518005, China
| | - Kai Zhang
- Institute of Data and Information, Tsinghua Shenzhen International Graduate School, Tsinghua University, Shenzhen 518005, China
| |
Collapse
|
50
|
Yi XZ, Yang JH, Huang Y, Han XR, Li HM, Cen LJ, Lin ZH, Pan CX, Wang Z, Guan WJ. Differential airway resistome and its correlations with clinical characteristics in Haemophilus- or Pseudomonas-predominant microbial subtypes of bronchiectasis. Respir Res 2023; 24:264. [PMID: 37919749 PMCID: PMC10623730 DOI: 10.1186/s12931-023-02562-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2023] [Accepted: 10/11/2023] [Indexed: 11/04/2023] Open
Abstract
The prevalence and clinical correlates of antibiotic resistance genes (ARGs) in bronchiectasis are not entirely clear. We aimed to profile the ARGs in sputum from adults with bronchiectasis, and explore the association with airway microbiome and disease severity and subtypes. In this longitudinal study, we prospectively collected 118 sputum samples from stable and exacerbation visits of 82 bronchiectasis patients and 19 healthy subjects. We profiled ARGs with shotgun metagenomic sequencing, and linked these to sputum microbiome and clinical characteristics, followed by validation in an international cohort. We compared ARG profiles in bronchiectasis according to disease severity, blood and sputum inflammatory subtypes. Unsupervised clustering revealed a Pseudomonas predominant subgroup (n = 16), Haemophilus predominant subgroup (n = 48), and balanced microbiome subgroup (N = 54). ARGs of multi-drug resistance were over-dominant in the Pseudomonas-predominant subgroup, while ARGs of beta-lactam resistance were most abundant in the Haemophilus-predominant subgroup. Pseudomonas-predominant subgroup yielded the highest ARG diversity and total abundance, while Haemophilus-predominant subgroup and balanced microbiota subgroup were lowest in ARG diversity and total abundance. PBP-1A, ksgA and emrB (multidrug) were most significantly enriched in Haemophilus-predominant subtype. ARGs generally correlated positively with Bronchiectasis Severity Index, fluoroquinolone use, and modified Reiff score. 68.6% of the ARG-clinical correlations could be validated in an independent international cohort. In conclusion, ARGs are differentially associated with the dominant microbiome and clinical characteristics in bronchiectasis.
Collapse
Affiliation(s)
- Xin-Zhu Yi
- Institute of Ecological Sciences, School of Life Sciences, South China Normal University, 55 Zhongshan Boulevard West, Guangzhou, China
| | - Jun-Hao Yang
- Institute of Ecological Sciences, School of Life Sciences, South China Normal University, 55 Zhongshan Boulevard West, Guangzhou, China
| | - Yan Huang
- State Key Laboratory of Respiratory Disease, National Clinical Research Center for Respiratory Disease, Guangzhou Institute of Respiratory Health, The First Affiliated Hospital of Guangzhou Medical University, 151 Yanjiang Road, Guangzhou, Guangdong, China
- Department of Geriatrics, National Key Clinical Specialty, Guangzhou First People's Hospital, South China University of Technology, Guangzhou, China
| | - Xiao-Rong Han
- Department of Pulmonary and Critical Care Medicine, The Second Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
| | - Hui-Min Li
- Institute of Ecological Sciences, School of Life Sciences, South China Normal University, 55 Zhongshan Boulevard West, Guangzhou, China
| | - Lai-Jian Cen
- State Key Laboratory of Respiratory Disease, National Clinical Research Center for Respiratory Disease, Guangzhou Institute of Respiratory Health, The First Affiliated Hospital of Guangzhou Medical University, 151 Yanjiang Road, Guangzhou, Guangdong, China
| | - Zhen-Hong Lin
- State Key Laboratory of Respiratory Disease, National Clinical Research Center for Respiratory Disease, Guangzhou Institute of Respiratory Health, The First Affiliated Hospital of Guangzhou Medical University, 151 Yanjiang Road, Guangzhou, Guangdong, China
| | - Cui-Xia Pan
- State Key Laboratory of Respiratory Disease, National Clinical Research Center for Respiratory Disease, Guangzhou Institute of Respiratory Health, The First Affiliated Hospital of Guangzhou Medical University, 151 Yanjiang Road, Guangzhou, Guangdong, China
| | - Zhang Wang
- Institute of Ecological Sciences, School of Life Sciences, South China Normal University, 55 Zhongshan Boulevard West, Guangzhou, China.
| | - Wei-Jie Guan
- State Key Laboratory of Respiratory Disease, National Clinical Research Center for Respiratory Disease, Guangzhou Institute of Respiratory Health, The First Affiliated Hospital of Guangzhou Medical University, 151 Yanjiang Road, Guangzhou, Guangdong, China.
- Department of Thoracic Surgery, Guangzhou Institute of Respiratory Disease, First Affiliated Hospital of Guangzhou Medical University, Guangzhou, Guangdong, China.
| |
Collapse
|