1
|
Abram SJ, Tsay JS, Yosef H, Reisman DS, Kim HE. The Detrimental Effect of Stroke on Motor Adaptation. Neurorehabil Neural Repair 2025:15459683241309588. [PMID: 39749767 DOI: 10.1177/15459683241309588] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2025]
Abstract
BACKGROUND While it is evident that stroke impairs motor control, it remains unclear whether stroke impacts motor adaptation-the ability to flexibly modify movements in response to changes in the body and the environment. The mixed results in the literature may be due to differences in participants' brain lesions, sensorimotor tasks, or a combination of both. OBJECTIVE We first sought to better understand the overall impact of stroke on motor adaptation and then to delineate the impact of lesion hemisphere and sensorimotor task on adaptation poststroke. METHODS Following the Preferred Reporting Items for Systematic reviews and Meta-Analyses guidelines, we conducted a systematic review and meta-analysis of 18 studies comparing individuals poststroke to neurotypical controls, with each group consisting of over 200 participants. RESULTS We found that stroke impairs motor adaptation (d = -0.63; 95% confidence interval [-1.02, -0.24]), and that the extent of this impairment did not differ across sensorimotor tasks but may vary with the lesioned hemisphere. Specifically, we observed greater evidence for impaired adaptation in individuals with left hemisphere lesions compared to those with right hemisphere lesions. CONCLUSIONS This review not only clarifies the detrimental effect of stroke on motor adaptation but also underscores the need for finer-grained studies to determine precisely how various sensorimotor learning mechanisms are impacted. The current findings may guide future mechanistic and applied research at the intersection of motor learning and neurorehabilitation.
Collapse
Affiliation(s)
- Sabrina J Abram
- Department of Psychology, University of California, Berkeley, Berkeley, CA, USA
- Helen Wills Neuroscience Institute, University of California, Berkeley, CA, USA
| | - Jonathan S Tsay
- Department of Psychology, Carnegie Mellon University, Pittsburgh, PA, USA
| | - Heran Yosef
- Department of Physical Therapy, University of Delaware, Newark, DE, USA
| | - Darcy S Reisman
- Department of Physical Therapy, University of Delaware, Newark, DE, USA
| | - Hyosub E Kim
- Department of Physical Therapy, University of Delaware, Newark, DE, USA
- School of Kinesiology, The University of British Columbia, Vancouver, BC, Canada
- Graduate Program in Neuroscience, The University of British Columbia, Vancouver, BC, Canada
| |
Collapse
|
2
|
Jasim M, Al-Gburi AJA, Hanif M, Dayo ZA, Ismail MM, Zakaria Z. An extensive review on implantable antennas for biomedical applications: Health considerations, geometries, fabrication techniques, and challenges. ALEXANDRIA ENGINEERING JOURNAL 2025; 112:110-139. [DOI: 10.1016/j.aej.2024.10.105] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/03/2025]
|
3
|
Balbinot G, Milosevic M, Morshead CM, Iwasa SN, Zariffa J, Milosevic L, Valiante TA, Hoffer JA, Popovic MR. The mechanisms of electrical neuromodulation. J Physiol 2024. [PMID: 39740777 DOI: 10.1113/jp286205] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2024] [Accepted: 11/20/2024] [Indexed: 01/02/2025] Open
Abstract
The central and peripheral nervous systems are specialized to conduct electrical currents that underlie behaviour. When this multidimensional electrical system is disrupted by degeneration, damage, or disuse, externally applied electrical currents may act to modulate neural structures and provide therapeutic benefit. The administration of electrical stimulation can exert precise and multi-faceted effects at cellular, circuit and systems levels to restore or enhance the functionality of the central nervous system by providing an access route to target specific cells, fibres of passage, neurotransmitter systems, and/or afferent/efferent communication to enable positive changes in behaviour. Here we examine the neural mechanisms that are thought to underlie the therapeutic effects seen with current neuromodulation technologies. To gain further insights into the mechanisms associated with electrical stimulation, we summarize recent findings from genetic dissection studies conducted in animal models. KEY POINTS: Electricity is everywhere around us and is essential for how our nerves communicate within our bodies. When nerves are damaged or not working properly, using exogenous electricity can help improve their function at distinct levels - inside individual cells, within neural circuits, and across entire systems. This method can be tailored to target specific types of cells, nerve fibres, neurotransmitters and communication pathways, offering significant therapeutic potential. This overview explains how exogenous electricity affects nerve function and its potential benefits, based on research in animal studies. Understanding these effects is important because electrical neuromodulation plays a key role in medical treatments for neurological conditions.
Collapse
Affiliation(s)
- Gustavo Balbinot
- Department of Biomedical Physiology and Kinesiology, Simon Fraser University, Burnaby, BC, Canada
- Institute for Neuroscience and Neurotechnology, Simon Fraser University, Burnaby, BC, Canada
- Center for Advancing Neurotechnological Innovation to Application - CRANIA, University Health Network, Toronto, ON, Canada
| | - Matija Milosevic
- The Miami Project to Cure Paralysis, University of Miami, Miami, FL, USA
- Department of Neurological Surgery, University of Miami, Miami, FL, USA
- Department of Biomedical Engineering, University of Miami, Miami, FL, USA
| | - Cindi M Morshead
- Center for Advancing Neurotechnological Innovation to Application - CRANIA, University Health Network, Toronto, ON, Canada
- KITE Research Institute - University Health Network, Toronto, ON, Canada
- Division of Anatomy, Department of Surgery, University of Toronto, Toronto, ON, Canada
- The Donnelly Centre for Cellular and Biomolecular Research, University of Toronto, Toronto, ON, Canada
- Institute of Biomedical Engineering, University of Toronto, Toronto, ON, Canada
- Rehabilitation Sciences Institute, University of Toronto, Toronto, ON, Canada
| | - Stephanie N Iwasa
- Center for Advancing Neurotechnological Innovation to Application - CRANIA, University Health Network, Toronto, ON, Canada
- KITE Research Institute - University Health Network, Toronto, ON, Canada
| | - Jose Zariffa
- KITE Research Institute - University Health Network, Toronto, ON, Canada
- Institute of Biomedical Engineering, University of Toronto, Toronto, ON, Canada
- Rehabilitation Sciences Institute, University of Toronto, Toronto, ON, Canada
- Edward S. Rogers Sr. Department of Electrical and Computer Engineering, University of Toronto, Toronto, ON, Canada
| | - Luka Milosevic
- Center for Advancing Neurotechnological Innovation to Application - CRANIA, University Health Network, Toronto, ON, Canada
- KITE Research Institute - University Health Network, Toronto, ON, Canada
- Institute of Biomedical Engineering, University of Toronto, Toronto, ON, Canada
- Krembil Research Institute, University Health Network, Toronto, ON, Canada
| | - Taufik A Valiante
- Center for Advancing Neurotechnological Innovation to Application - CRANIA, University Health Network, Toronto, ON, Canada
- KITE Research Institute - University Health Network, Toronto, ON, Canada
- Institute of Biomedical Engineering, University of Toronto, Toronto, ON, Canada
- Edward S. Rogers Sr. Department of Electrical and Computer Engineering, University of Toronto, Toronto, ON, Canada
| | - Joaquín Andrés Hoffer
- Department of Biomedical Physiology and Kinesiology, Simon Fraser University, Burnaby, BC, Canada
| | - Milos R Popovic
- Center for Advancing Neurotechnological Innovation to Application - CRANIA, University Health Network, Toronto, ON, Canada
- KITE Research Institute - University Health Network, Toronto, ON, Canada
- Institute of Biomedical Engineering, University of Toronto, Toronto, ON, Canada
- Rehabilitation Sciences Institute, University of Toronto, Toronto, ON, Canada
- Edward S. Rogers Sr. Department of Electrical and Computer Engineering, University of Toronto, Toronto, ON, Canada
| |
Collapse
|
4
|
King EC, Schauer JM, Prabhakaran S, Wax A, Urday S, Madhavan S, Corcos DM, Stoykov ME. Priming and task-specific training for arm weakness post stroke: A randomized controlled trial. Ann Clin Transl Neurol 2024. [PMID: 39688835 DOI: 10.1002/acn3.52271] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2024] [Revised: 10/25/2024] [Accepted: 11/23/2024] [Indexed: 12/18/2024] Open
Abstract
OBJECTIVE The objective of this work was to evaluate if task-specific training (TST) preceded by bilateral upper limb motor priming (BUMP) reduces upper limb impairment more than TST preceded by control priming ([CP], sham electrical stimulation) in people with chronic stroke. METHODS In this single-blind, randomized controlled trial, 76 adults with moderate to severe upper limb hemiparesis ≥6 months post-stroke were stratified by baseline impairment and randomized to receive either BUMP or CP prior to receiving the same TST protocol. Participants completed 30 h of treatment in 15 days over 6 weeks. The primary outcome was change in Fugl-Meyer upper extremity (FMUE) from baseline to 8-week follow-up. We also report clinically meaningful response rates defined as a change in FMUE score of 6 points or greater. RESULTS In response to treatment, both groups improved to a significant extent at follow-up, exceeding the FMUE minimum clinically important difference. Those in BUMP and CP saw a mean change of 5.68 (SE 0.76, p < 0.001) and 5.87 (SE 0.76, p < 0.001) respectively. There was no significant difference between treatment arms (mean difference of -0.20 (95% CI = [-2.37, 1.97], SE = 1.08, p = 0.86)). A response of ≥6 points was observed in 46% in BUMP and 50% in CP. INTERPRETATION There was no beneficial effect of BUMP. The magnitude of change seen in both groups reflects the largest improvement achieved with just 22.5 h of TST in this population, matching or out-performing more invasive, time-intensive, and costly interventions proposed in recent years.
Collapse
Affiliation(s)
- Erin C King
- Department of Physical Therapy and Human Movement Sciences, Northwestern University Feinberg School of Medicine, Chicago, Illinois, USA
| | - Jacob M Schauer
- Division of Biostatistics, Department of Preventative Medicine, Northwestern University Feinberg School of Medicine, Chicago, Illinois, USA
| | - Shyam Prabhakaran
- Department of Neurology, University of Chicago, Chicago, Illinois, USA
| | | | - Sebastian Urday
- Division of Neurology, Northwestern University Feinberg School of Medicine, Chicago, Illinois, USA
| | - Sangeetha Madhavan
- Department of Physical Therapy, University of Illinois Chicago, Chicago, Illinois, USA
| | - Daniel M Corcos
- Department of Physical Therapy and Human Movement Sciences, Northwestern University Feinberg School of Medicine, Chicago, Illinois, USA
| | - Mary Ellen Stoykov
- Shirley Ryan Ability Lab, Chicago, Illinois, USA
- Department of Physical Medicine and Rehabilitation, Northwestern University Feinberg School of Medicine, Chicago, Illinois, USA
| |
Collapse
|
5
|
He Q, Huo R, Sun Y, Zheng Z, Xu H, Zhao S, Ni Y, Yu Q, Jiao Y, Zhang W, Zhao J, Cao Y. Cerebral vascular malformations: pathogenesis and therapy. MedComm (Beijing) 2024; 5:e70027. [PMID: 39654683 PMCID: PMC11625509 DOI: 10.1002/mco2.70027] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2024] [Revised: 10/30/2024] [Accepted: 11/13/2024] [Indexed: 12/12/2024] Open
Abstract
Cerebral vascular malformations (CVMs), particularly cerebral cavernous malformations and cerebral arteriovenous malformations, pose significant neurological challenges due to their complex etiologies and clinical implications. Traditionally viewed as congenital conditions with structural abnormalities, CVMs have been treated primarily through resection, embolization, and stereotactic radiosurgery. While these approaches offer some efficacy, they often pose risks to neurological integrity due to their invasive nature. Advances in next-generation sequencing, particularly high-depth whole-exome sequencing and bioinformatics, have facilitated the identification of gene variants from neurosurgically resected CVMs samples. These advancements have deepened our understanding of CVM pathogenesis. Somatic mutations in key mechanistic pathways have been identified as causative factors, leading to a paradigm shift in CVM treatment. Additionally, recent progress in noninvasive and minimally invasive techniques, including gene imaging genomics, liquid biopsy, or endovascular biopsies (endovascular sampling of blood vessel lumens), has enabled the identification of gene variants associated with CVMs. These methods, in conjunction with clinical data, offer potential for early detection, dynamic monitoring, and targeted therapies that could be used as monotherapy or adjuncts to surgery. This review highlights advancements in CVM pathogenesis and precision therapies, outlining the future potential of precision medicine in CVM management.
Collapse
Affiliation(s)
- Qiheng He
- Department of NeurosurgeryBeijing Tiantan HospitalCapital Medical UniversityBeijingChina
- Basic and Translational Medicine CenterChina National Clinical Research Center for Neurological DiseasesBeijingChina
| | - Ran Huo
- Department of NeurosurgeryBeijing Tiantan HospitalCapital Medical UniversityBeijingChina
- Basic and Translational Medicine CenterChina National Clinical Research Center for Neurological DiseasesBeijingChina
| | - Yingfan Sun
- Department of NeurosurgeryBeijing Tiantan HospitalCapital Medical UniversityBeijingChina
- Basic and Translational Medicine CenterChina National Clinical Research Center for Neurological DiseasesBeijingChina
| | - Zhiyao Zheng
- Department of NeurosurgeryBeijing Tiantan HospitalCapital Medical UniversityBeijingChina
- Research Unit of Accurate DiagnosisTreatment, and Translational Medicine of Brain Tumors Chinese Academy of Medical Sciences and Peking Union Medical College Beijing ChinaBeijingChina
- Department of Neurosurgery Peking Union Medical College HospitalChinese Academy of Medical Sciences and Peking Union Medical College Beijing ChinaBeijingChina
| | - Hongyuan Xu
- Department of NeurosurgeryBeijing Tiantan HospitalCapital Medical UniversityBeijingChina
- Basic and Translational Medicine CenterChina National Clinical Research Center for Neurological DiseasesBeijingChina
| | - Shaozhi Zhao
- Department of NeurosurgeryBeijing Tiantan HospitalCapital Medical UniversityBeijingChina
- Basic and Translational Medicine CenterChina National Clinical Research Center for Neurological DiseasesBeijingChina
| | - Yang Ni
- Department of NeurosurgeryBeijing Tiantan HospitalCapital Medical UniversityBeijingChina
| | - Qifeng Yu
- Department of NeurosurgeryBeijing Tiantan HospitalCapital Medical UniversityBeijingChina
- Basic and Translational Medicine CenterChina National Clinical Research Center for Neurological DiseasesBeijingChina
| | - Yuming Jiao
- Department of NeurosurgeryBeijing Tiantan HospitalCapital Medical UniversityBeijingChina
- Basic and Translational Medicine CenterChina National Clinical Research Center for Neurological DiseasesBeijingChina
| | - Wenqian Zhang
- Department of NeurosurgeryBeijing Tiantan HospitalCapital Medical UniversityBeijingChina
- Basic and Translational Medicine CenterChina National Clinical Research Center for Neurological DiseasesBeijingChina
| | - Jizong Zhao
- Department of NeurosurgeryBeijing Tiantan HospitalCapital Medical UniversityBeijingChina
- Basic and Translational Medicine CenterChina National Clinical Research Center for Neurological DiseasesBeijingChina
| | - Yong Cao
- Department of NeurosurgeryBeijing Tiantan HospitalCapital Medical UniversityBeijingChina
- Basic and Translational Medicine CenterChina National Clinical Research Center for Neurological DiseasesBeijingChina
- Collaborative Innovation CenterBeijing Institute of Brain DisordersBeijingChina
| |
Collapse
|
6
|
Zhang J, Yang J, Xu Q, Xiao Y, Zuo L, Cai E. Effectiveness of virtual reality-based rehabilitation on the upper extremity motor function of stroke patients: A protocol for systematic review and meta-analysis. PLoS One 2024; 19:e0313296. [PMID: 39509415 PMCID: PMC11542779 DOI: 10.1371/journal.pone.0313296] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2024] [Accepted: 10/18/2024] [Indexed: 11/15/2024] Open
Abstract
INTRODUCTION Upper extremity deficits (UED) is a common and impactful complication among stroke survivors. Virtual reality (VR)-based rehabilitation holds potential for enhancing rehabilitation intensity and engagement by stimulating tasks. While several clinical studies have examined the effectiveness and safety of VR-based rehabilitation, there is a need for further research to improve consistency in outcomes. MATERIALS AND METHODS The study will incorporate randomized controlled trials (RCTs) concerning the effects of VR-based rehabilitation on upper extremity (UE) function in stroke survivors. A comprehensive search of databases including PubMed, Embase, Cochrane Library, Web of Science, Scopus, Cinahl, China National Knowledge Infrastructure (CNKI), Wan-fang, and Chinese Biology Medicine Database will be performed from inception to the start of the study. Primary outcomes will focus on upper limb motor function assessments such as the Fugl-Meyer Upper Extremity (FMUE), Box and Block Test (BBT), Wolf Motor Function Test (WMFT), and Action Research Arm Test (ARAT). Secondary outcomes related to activities of daily living will include the Barthel Index (BI) and Functional Independence Measure (FIM). Research selection, data extraction, and quality assessment will be independently conducted by two researchers. The recently revised Cochrane risk of bias tool will be employed to evaluate study quality. Meta-regression and subgroup analyses will be utilized to identify effective therapy delivery modes and patterns. The assessment, development, and evaluation of recommendations approach will be applied to achieve a robust conclusion. DISCUSSION This study provides a rigorous synthesis to evaluate optimal parameters-specifically intensity and duration-for VR-based rehabilitation interventions aimed at enhancing UE function in stroke survivors. Our secondary objective is to assess the impact of these parameters on rehabilitation outcomes. We anticipate an accurate, transparent, and standardized review process that will yield evidence-based recommendations for integrating VR technology into treating upper extremity dysfunction in stroke patients, offering clinicians effective strategies to enhance upper limb function.
Collapse
Affiliation(s)
- Jiali Zhang
- Kunming Municipal Hospital of Traditional Chinese Medicine, The Third Affiliated Hospital of Yunnan University of Chinese Medicine, Kunming, Yunnan Province, China
| | - Jie Yang
- Kunming Municipal Hospital of Traditional Chinese Medicine, The Third Affiliated Hospital of Yunnan University of Chinese Medicine, Kunming, Yunnan Province, China
| | - Qiuzhu Xu
- Haikou Orthopedic and Diabetes Hospital of Shanghai Sixth People’s Hospital, Haikou, Hainan Province, China
| | - Yan Xiao
- Kunming Municipal Hospital of Traditional Chinese Medicine, The Third Affiliated Hospital of Yunnan University of Chinese Medicine, Kunming, Yunnan Province, China
| | - Liang Zuo
- The Second Affiliated Hospital of Yunnan University of Traditional Chinese Medicine, Kunming, Yunnan Province, China
| | - Enli Cai
- Yunnan University of Traditional Chinese Medicine, Kunming, Yunnan Province, China
| |
Collapse
|
7
|
Lin L, Qing W, Zheng Z, Poon W, Guo S, Zhang S, Hu X. Somatosensory integration in robot-assisted motor restoration post-stroke. Front Aging Neurosci 2024; 16:1491678. [PMID: 39568801 PMCID: PMC11576418 DOI: 10.3389/fnagi.2024.1491678] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2024] [Accepted: 10/24/2024] [Indexed: 11/22/2024] Open
Abstract
Disruption of somatosensorimotor integration (SMI) after stroke is a significant obstacle to achieving precise motor restoration. Integrating somatosensory input into motor relearning to reconstruct SMI is critical during stroke rehabilitation. However, current robotic approaches focus primarily on precise control of repetitive movements and rarely effectively engage and modulate somatosensory responses, which impedes motor rehabilitation that relies on SMI. This article discusses how to effectively regulate somatosensory feedback from target muscles through peripheral and central neuromodulatory stimulations based on quantitatively measured somatosensory responses in real time during robot-assisted rehabilitation after stroke. Further development of standardized recording protocols and diagnostic databases of quantitative neuroimaging features in response to post-stroke somatosensory stimulations for real-time precise detection, and optimized combinations of peripheral somatosensory stimulations with robot assistance and central nervous neuromodulation are needed to enhance the recruitment of targeted ascending neuromuscular pathways in robot-assisted training, aiming to achieve precise muscle control and integrated somatosensorimotor functions, thereby improving long-term neurorehabilitation after stroke.
Collapse
Affiliation(s)
- Legeng Lin
- Department of Biomedical Engineering, The Hong Kong Polytechnic University, Kowloon, Hong Kong SAR, China
- Research Institute for Smart Ageing (RISA), The Hong Kong Polytechnic University, Kowloon, Hong Kong SAR, China
| | - Wanyi Qing
- Department of Biomedical Engineering, The Hong Kong Polytechnic University, Kowloon, Hong Kong SAR, China
- Research Institute for Smart Ageing (RISA), The Hong Kong Polytechnic University, Kowloon, Hong Kong SAR, China
| | - Zijian Zheng
- Department of Applied Biology and Chemical Technology, The Hong Kong Polytechnic University, Kowloon, Hong Kong SAR, China
| | - Waisang Poon
- Department of Surgery, The Chinese University of Hong Kong, Shatin, Hong Kong SAR, China
| | - Song Guo
- Department of Computer Science and Engineering, The Hong Kong University of Science and Technology, Kowloon, Hong Kong SAR, China
| | - Shaomin Zhang
- Key Laboratory of Biomedical Engineering of Education Ministry, Zhejiang Provincial Key Laboratory of Cardio-Cerebral Vascular Detection Technology and Medicinal Effectiveness Appraisal, Department of Biomedical Engineering, School of Biomedical Engineering and Instrument Science, Zhejiang University, Hangzhou, China
| | - Xiaoling Hu
- Department of Biomedical Engineering, The Hong Kong Polytechnic University, Kowloon, Hong Kong SAR, China
- Research Institute for Smart Ageing (RISA), The Hong Kong Polytechnic University, Kowloon, Hong Kong SAR, China
| |
Collapse
|
8
|
Chin J, Settell ML, Brucker-Hahn MK, Lust D, Zhang J, Upadhye AR, Knudsen B, Deshmukh A, Ludwig KA, Lavrov IA, Crofton AR, Lempka SF, Zhang M, Shoffstall AJ. Quantification of porcine lower thoracic spinal cord morphology with intact dura mater using high-resolution μCT. J Neuroimaging 2024; 34:646-663. [PMID: 39390716 DOI: 10.1111/jon.13239] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2024] [Revised: 09/04/2024] [Accepted: 09/17/2024] [Indexed: 10/12/2024] Open
Abstract
BACKGROUND AND PURPOSE Spinal cord stimulation (SCS) is approved by the Food and Drug Administration for treating chronic intractable pain in the back, trunk, or limbs through stimulation of the dorsal column. Numerous studies have used swine as an analog of the human spinal cord to better understand SCS and further improve its efficacy. We performed high-resolution imaging of the porcine spinal cord with intact dura mater using micro-computed tomography (μCT) to construct detailed 3-dimensional (3D) visualizations of the spinal cord and characterize the morphology of the dorsal and ventral rootlets. METHODS We obtained spinal cords from Yorkshire/Landrace crossbred swine (N = 7), stained samples with osmium tetroxide, and performed μCT imaging of the T12-T15 levels at isotropic voxel resolutions ranging from 3.3 to 50 μm. We measured the anatomical morphology using the 3D volumes and compared our results to measurements previously collected from swine and human spinal cords via microdissection techniques in prior literature. RESULTS While the porcine thoracic-lumbar spinal cord is a popular model for SCS, we highlight multiple notable differences compared to previously published T8-T12 human measurements including rootlet counts (porcine dorsal/ventral: 12.2 ± 2.6, 26.6 ± 3.4; human dorsal/ventral: 5.3 ± 1.3, 4.4 ± 2.4), rootlet angles (porcine ventral-rostral: 161 ± 1°, ventral-caudal: 155 ± 6°, dorsal-rostral: 148 ± 9°, dorsal-caudal: 142 ± 6°; human ventral-rostral: 170 ± 3°, ventral-caudal: 22 ± 10°, dorsal-rostral: 171 ± 3°, dorsal-caudal: 15 ± 7°), and the presence and count of dorsal rootlet bundles. CONCLUSIONS Detailed measurements and highlighted differences between human and porcine spinal cords can inform variations in modeling and electrophysiological experiments between the two species. In contrast to other approaches for measuring the spinal cord and rootlet morphology, our method keeps the dura intact, reducing potential artifacts from dissection.
Collapse
Affiliation(s)
- Justin Chin
- Department of Biomedical Engineering, Case Western Reserve University, Cleveland, Ohio, USA
- Advanced Platform Technology Center, Louis Stokes Cleveland Department of Veteran Affairs Medical Center, Rehabilitation Research and Development, Cleveland, Ohio, USA
| | - Megan L Settell
- Wisconsin Institute for Translational Neuroengineering, Madison, Wisconsin, USA
- Department of Neurosurgery, University of Wisconsin-Madison, Madison, Wisconsin, USA
| | - Meagan K Brucker-Hahn
- Department of Biomedical Engineering, University of Michigan, Ann Arbor, Michigan, USA
- Biointerfaces Institute, University of Michigan, Ann Arbor, Michigan, USA
| | - Daniel Lust
- Department of Biomedical Engineering, Case Western Reserve University, Cleveland, Ohio, USA
- Advanced Platform Technology Center, Louis Stokes Cleveland Department of Veteran Affairs Medical Center, Rehabilitation Research and Development, Cleveland, Ohio, USA
| | - Jichu Zhang
- Department of Biomedical Engineering, Case Western Reserve University, Cleveland, Ohio, USA
| | - Aniruddha R Upadhye
- Department of Biomedical Engineering, Case Western Reserve University, Cleveland, Ohio, USA
- Advanced Platform Technology Center, Louis Stokes Cleveland Department of Veteran Affairs Medical Center, Rehabilitation Research and Development, Cleveland, Ohio, USA
| | - Bruce Knudsen
- Wisconsin Institute for Translational Neuroengineering, Madison, Wisconsin, USA
| | - Ashlesha Deshmukh
- Wisconsin Institute for Translational Neuroengineering, Madison, Wisconsin, USA
- Department of Biomedical Engineering, University of Wisconsin-Madison, Madison, Wisconsin, USA
| | - Kip A Ludwig
- Wisconsin Institute for Translational Neuroengineering, Madison, Wisconsin, USA
- Department of Neurosurgery, University of Wisconsin-Madison, Madison, Wisconsin, USA
- Department of Surgery, University of Wisconsin-Madison, Madison, Wisconsin, USA
| | - Igor A Lavrov
- Department Neurology and Biomedical Engineering, Mayo Clinic, Rochester, Minnesota, USA
| | - Andrew R Crofton
- Department of Anatomy, Case Western Reserve University, Cleveland, Ohio, USA
- Department of Pathology and Cell Biology, University of South Florida, Tampa, Florida, USA
| | - Scott F Lempka
- Department of Biomedical Engineering, University of Michigan, Ann Arbor, Michigan, USA
- Biointerfaces Institute, University of Michigan, Ann Arbor, Michigan, USA
- Department of Anesthesiology, University of Michigan, Ann Arbor, Michigan, USA
| | | | - Andrew J Shoffstall
- Department of Biomedical Engineering, Case Western Reserve University, Cleveland, Ohio, USA
- Advanced Platform Technology Center, Louis Stokes Cleveland Department of Veteran Affairs Medical Center, Rehabilitation Research and Development, Cleveland, Ohio, USA
| |
Collapse
|
9
|
Li X, Xue T, Li Z, Zhang J. Invasive electrical nerve stimulation for post-stroke motor rehabilitation. Chin Med J (Engl) 2024; 137:2495-2497. [PMID: 39252152 PMCID: PMC11479480 DOI: 10.1097/cm9.0000000000003286] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2024] [Indexed: 09/11/2024] Open
Affiliation(s)
- Xianze Li
- Department of Neurosurgery, Beijing Tiantan Hospital, Capital Medical University, Beijing 100070, China
| | - Tao Xue
- Department of Functional Neurosurgery, Beijing Tiantan Hospital, Capital Medical University, Beijing 100070, China
| | - Zixiao Li
- Department of Neurology, Beijing Tiantan Hospital, Capital Medical University, Beijing 100070, China
| | - Jianguo Zhang
- Department of Neurosurgery, Beijing Tiantan Hospital, Capital Medical University, Beijing 100070, China
| |
Collapse
|
10
|
Nierula B, Stephani T, Bailey E, Kaptan M, Pohle LMG, Horn U, Mouraux A, Maess B, Villringer A, Curio G, Nikulin VV, Eippert F. A multichannel electrophysiological approach to noninvasively and precisely record human spinal cord activity. PLoS Biol 2024; 22:e3002828. [PMID: 39480757 PMCID: PMC11527246 DOI: 10.1371/journal.pbio.3002828] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2024] [Accepted: 09/02/2024] [Indexed: 11/02/2024] Open
Abstract
The spinal cord is of fundamental importance for integrative processing in brain-body communication, yet routine noninvasive recordings in humans are hindered by vast methodological challenges. Here, we overcome these challenges by developing an easy-to-use electrophysiological approach based on high-density multichannel spinal recordings combined with multivariate spatial-filtering analyses. These advances enable a spatiotemporal characterization of spinal cord responses and demonstrate a sensitivity that permits assessing even single-trial responses. To furthermore enable the study of integrative processing along the neural processing hierarchy in somatosensation, we expand this approach by simultaneous peripheral, spinal, and cortical recordings and provide direct evidence that bottom-up integrative processing occurs already within the spinal cord and thus after the first synaptic relay in the central nervous system. Finally, we demonstrate the versatility of this approach by providing noninvasive recordings of nociceptive spinal cord responses during heat-pain stimulation. Beyond establishing a new window on human spinal cord function at millisecond timescale, this work provides the foundation to study brain-body communication in its entirety in health and disease.
Collapse
Affiliation(s)
- Birgit Nierula
- Max Planck Research Group Pain Perception, Max Planck Institute for Human Cognitive and Brain Sciences, Leipzig, Germany
| | - Tilman Stephani
- Research Group Neural Interactions and Dynamics, Department of Neurology, Max Planck Institute for Human Cognitive and Brain Sciences, Leipzig, Germany
- Department of Neurology, Max Planck Institute for Human Cognitive and Brain Sciences, Leipzig, Germany
- International Max Planck Research School NeuroCom, Leipzig, Germany
| | - Emma Bailey
- Max Planck Research Group Pain Perception, Max Planck Institute for Human Cognitive and Brain Sciences, Leipzig, Germany
- International Max Planck Research School NeuroCom, Leipzig, Germany
| | - Merve Kaptan
- Max Planck Research Group Pain Perception, Max Planck Institute for Human Cognitive and Brain Sciences, Leipzig, Germany
- International Max Planck Research School NeuroCom, Leipzig, Germany
| | - Lisa-Marie Geertje Pohle
- Max Planck Research Group Pain Perception, Max Planck Institute for Human Cognitive and Brain Sciences, Leipzig, Germany
- International Max Planck Research School NeuroCom, Leipzig, Germany
| | - Ulrike Horn
- Max Planck Research Group Pain Perception, Max Planck Institute for Human Cognitive and Brain Sciences, Leipzig, Germany
| | - André Mouraux
- Institute of Neuroscience, Université Catholique de Louvain, Brussels, Belgium
| | - Burkhard Maess
- Methods and Development Group Brain Networks, Max Planck Institute for Human Cognitive and Brain Sciences, Leipzig, Germany
| | - Arno Villringer
- Department of Neurology, Max Planck Institute for Human Cognitive and Brain Sciences, Leipzig, Germany
| | - Gabriel Curio
- Department of Neurology, Charité University Medicine, Berlin, Germany
| | - Vadim V. Nikulin
- Research Group Neural Interactions and Dynamics, Department of Neurology, Max Planck Institute for Human Cognitive and Brain Sciences, Leipzig, Germany
- Department of Neurology, Max Planck Institute for Human Cognitive and Brain Sciences, Leipzig, Germany
| | - Falk Eippert
- Max Planck Research Group Pain Perception, Max Planck Institute for Human Cognitive and Brain Sciences, Leipzig, Germany
| |
Collapse
|
11
|
Ho JC, Grigsby EM, Damiani A, Liang L, Balaguer JM, Kallakuri S, Tang LW, Barrios-Martinez J, Karapetyan V, Fields D, Gerszten PC, Hitchens TK, Constantine T, Adams GM, Crammond DJ, Capogrosso M, Gonzalez-Martinez JA, Pirondini E. Potentiation of cortico-spinal output via targeted electrical stimulation of the motor thalamus. Nat Commun 2024; 15:8461. [PMID: 39353911 PMCID: PMC11445460 DOI: 10.1038/s41467-024-52477-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2024] [Accepted: 09/05/2024] [Indexed: 10/03/2024] Open
Abstract
Cerebral white matter lesions prevent cortico-spinal descending inputs from effectively activating spinal motoneurons, leading to loss of motor control. However, in most cases, the damage to cortico-spinal axons is incomplete offering a potential target for therapies aimed at improving volitional muscle activation. Here we hypothesize that, by engaging direct excitatory connections to cortico-spinal motoneurons, stimulation of the motor thalamus could facilitate activation of surviving cortico-spinal fibers thereby immediately potentiating motor output. To test this hypothesis, we identify optimal thalamic targets and stimulation parameters that enhance upper-limb motor-evoked potentials and grip forces in anesthetized monkeys. This potentiation persists after white matter lesions. We replicate these results in humans during intra-operative testing. We then design a stimulation protocol that immediately improves strength and force control in a patient with a chronic white matter lesion. Our results show that electrical stimulation targeting surviving neural pathways can improve motor control after white matter lesions.
Collapse
Affiliation(s)
- Jonathan C Ho
- School of Medicine, University of Pittsburgh, Pittsburgh, PA, USA
- Rehab Neural Engineering Labs, University of Pittsburgh, Pittsburgh, PA, USA
| | - Erinn M Grigsby
- Rehab Neural Engineering Labs, University of Pittsburgh, Pittsburgh, PA, USA
- Department of Physical Medicine and Rehabilitation, University of Pittsburgh, Pittsburgh, PA, USA
| | - Arianna Damiani
- Rehab Neural Engineering Labs, University of Pittsburgh, Pittsburgh, PA, USA
- Department of Bioengineering, University of Pittsburgh, Pittsburgh, PA, USA
| | - Lucy Liang
- Rehab Neural Engineering Labs, University of Pittsburgh, Pittsburgh, PA, USA
- Department of Bioengineering, University of Pittsburgh, Pittsburgh, PA, USA
- Center for the Neural Basis of Cognition, Pittsburgh, PA, USA
| | - Josep-Maria Balaguer
- Rehab Neural Engineering Labs, University of Pittsburgh, Pittsburgh, PA, USA
- Department of Bioengineering, University of Pittsburgh, Pittsburgh, PA, USA
- Center for the Neural Basis of Cognition, Pittsburgh, PA, USA
| | - Sridula Kallakuri
- Rehab Neural Engineering Labs, University of Pittsburgh, Pittsburgh, PA, USA
- Department of Neuroscience, University of Pittsburgh, Pittsburgh, PA, USA
| | - Lilly W Tang
- School of Medicine, University of Pittsburgh, Pittsburgh, PA, USA
- Rehab Neural Engineering Labs, University of Pittsburgh, Pittsburgh, PA, USA
| | | | - Vahagn Karapetyan
- Rehab Neural Engineering Labs, University of Pittsburgh, Pittsburgh, PA, USA
- Department of Bioengineering, University of Pittsburgh, Pittsburgh, PA, USA
- Center for the Neural Basis of Cognition, Pittsburgh, PA, USA
| | - Daryl Fields
- Rehab Neural Engineering Labs, University of Pittsburgh, Pittsburgh, PA, USA
- Department of Neurological Surgery, University of Pittsburgh, Pittsburgh, PA, USA
| | - Peter C Gerszten
- Department of Neurological Surgery, University of Pittsburgh, Pittsburgh, PA, USA
| | - T Kevin Hitchens
- Department of Neurobiology, University of Pittsburgh, Pittsburgh, PA, USA
| | - Theodora Constantine
- Department of Neurological Surgery, University of Pittsburgh, Pittsburgh, PA, USA
| | - Gregory M Adams
- Department of Neurological Surgery, University of Pittsburgh, Pittsburgh, PA, USA
| | - Donald J Crammond
- Department of Neurological Surgery, University of Pittsburgh, Pittsburgh, PA, USA
| | - Marco Capogrosso
- Rehab Neural Engineering Labs, University of Pittsburgh, Pittsburgh, PA, USA
- Department of Bioengineering, University of Pittsburgh, Pittsburgh, PA, USA
- Center for the Neural Basis of Cognition, Pittsburgh, PA, USA
- Department of Neurological Surgery, University of Pittsburgh, Pittsburgh, PA, USA
| | - Jorge A Gonzalez-Martinez
- Department of Neurological Surgery, University of Pittsburgh, Pittsburgh, PA, USA
- Department of Neurobiology, University of Pittsburgh, Pittsburgh, PA, USA
| | - Elvira Pirondini
- Rehab Neural Engineering Labs, University of Pittsburgh, Pittsburgh, PA, USA.
- Department of Physical Medicine and Rehabilitation, University of Pittsburgh, Pittsburgh, PA, USA.
- Department of Bioengineering, University of Pittsburgh, Pittsburgh, PA, USA.
- Center for the Neural Basis of Cognition, Pittsburgh, PA, USA.
- University of Pittsburgh Clinical and Translational Science Institute (CTSI), Pittsburgh, PA, USA.
| |
Collapse
|
12
|
Woods JE, Alrashdan F, Chen EC, Tan W, John M, Jaworski L, Bernard D, Post A, Moctezuma-Ramirez A, Elgalad A, Steele AG, Barber SM, Horner PJ, Faraji AH, Sayenko DG, Razavi M, Robinson JT. Scalable networks of wireless bioelectronics using magnetoelectrics. RESEARCH SQUARE 2024:rs.3.rs-5005441. [PMID: 39399673 PMCID: PMC11469518 DOI: 10.21203/rs.3.rs-5005441/v1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/15/2024]
Abstract
Networks of miniature bioelectronic implants would enable precise measurement and manipulation of the complex and distributed physiological systems in the body. For example, sensing and stimulation nodes throughout the heart, brain, or peripheral nervous system would more accurately track and treat disease or support prosthetic technologies with many degrees of freedom. A main challenge to creating this type of in-body bioelectronic network is the fact that wireless power and data transfer are often inefficient when communicating through biological tissues. This challenge is typically compounded as one increases the number of implants within the network. Here, we show that magnetoelectric wireless data and power transfer enable a network of millimeter-sized bioelectronic implants where the power transfer efficiency of the system improves as the number of implanted devices increases. Using this property, we demonstrate networks of wireless battery-free bioelectronics ranging from 1 to 6 implants where the wireless power transfer efficiency for the system increases from 0.2% to 1.3%, with each node in the network receiving 2.2 mW at a distance of 1 cm. We use this system for efficient and robust wireless data and power transfer to demonstrate proof-of-concept networks of miniature spinal cord stimulators and cardiac pacing devices in large animals. The scalability of this network architecture enabled by magnetoelectric wireless power transfer provides a platform for building wireless closed-loop networks of bioelectronic implants for next-generation electronic medicine.
Collapse
Affiliation(s)
- Joshua E Woods
- Department of Electrical and Computer Engineering, Rice University, Houston, TX, USA
| | - Fatima Alrashdan
- Department of Electrical and Computer Engineering, Rice University, Houston, TX, USA
| | - Ellie C Chen
- Department of Electrical and Computer Engineering, Rice University, Houston, TX, USA
| | - Wendy Tan
- Department of Electrical and Computer Engineering, Rice University, Houston, TX, USA
| | | | | | | | | | | | | | - Alexander G Steele
- Department of Neurosurgery, Houston Methodist, Houston, TX, USA
- Houston Methodist Research Institute, Houston, TX, USA
| | - Sean M Barber
- Department of Neurosurgery, Houston Methodist, Houston, TX, USA
- Houston Methodist Research Institute, Houston, TX, USA
| | - Philip J Horner
- Houston Methodist Research Institute, Houston, TX, USA
- Department of Neuroregeneration, Houston Methodist, Houston, TX, USA
| | - Amir H Faraji
- Department of Electrical and Computer Engineering, Rice University, Houston, TX, USA
- Department of Neurosurgery, Houston Methodist, Houston, TX, USA
- Houston Methodist Research Institute, Houston, TX, USA
| | | | - Mehdi Razavi
- Texas Heart Institute, Houston, TX, USA
- Department of Medicine, Cardiology, Baylor College of Medicine, Houston, TX, USA
| | - Jacob T Robinson
- Department of Electrical and Computer Engineering, Rice University, Houston, TX, USA
- Department of Bioengineering, Rice University, Houston, TX, USA
- Applied Physics Program, Rice University, Houston, TX, USA
- Department of Neuroscience, Baylor College of Medicine, Houston, TX, USA
| |
Collapse
|
13
|
Atkinson C, Lombardi L, Lang M, Keesey R, Hawthorn R, Seitz Z, Leuthardt EC, Brunner P, Seáñez I. Development and evaluation of a non-invasive brain-spine interface using transcutaneous spinal cord stimulation. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.09.16.612897. [PMID: 39345398 PMCID: PMC11429779 DOI: 10.1101/2024.09.16.612897] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/01/2024]
Abstract
Motor rehabilitation is a therapeutic process to facilitate functional recovery in people with spinal cord injury (SCI). However, its efficacy is limited to areas with remaining sensorimotor function. Spinal cord stimulation (SCS) creates a temporary prosthetic effect that may allow further rehabilitation-induced recovery in individuals without remaining sensorimotor function, thereby extending the therapeutic reach of motor rehabilitation to individuals with more severe injuries. In this work, we report our first steps in developing a non-invasive brain-spine interface (BSI) based on electroencephalography (EEG) and transcutaneous spinal cord stimulation (tSCS). The objective of this study was to identify EEG-based neural correlates of lower limb movement in the sensorimotor cortex of unimpaired individuals and to quantify the performance of a linear discriminant analysis (LDA) decoder in detecting movement onset from these neural correlates. Our results show that initiation of knee extension was associated with event-related desynchronization in the central-medial cortical regions at frequency bands between 4-44 Hz. Our neural decoder using µ (8-12 Hz), low β (16-20 Hz), and high β (24-28 Hz) frequency bands achieved an average area under the curve (AUC) of 0.83 ± 0.06 s.d. (n = 7) during a cued movement task offline. Generalization to imagery and uncued movement tasks served as positive controls to verify robustness against movement artifacts and cue-related confounds, respectively. With the addition of real-time decoder-modulated tSCS, the neural decoder performed with an average AUC of 0.81 ± 0.05 s.d. (n = 9) on cued movement and 0.68 ± 0.12 s.d. (n = 9) on uncued movement. Our results suggest that the decrease in decoder performance in uncued movement may be due to differences in underlying cortical strategies between conditions. Furthermore, we explore alternative applications of the BSI system by testing neural decoders trained on uncued movement and imagery tasks. By developing a non-invasive BSI, tSCS can be timed to be delivered only during voluntary effort, which may have implications for improving rehabilitation.
Collapse
|
14
|
Wang L, Liu S, Zhao W, Li J, Zeng H, Kang S, Sheng X, Wang L, Fan Y, Yin L. Recent Advances in Implantable Neural Interfaces for Multimodal Electrical Neuromodulation. Adv Healthc Mater 2024; 13:e2303316. [PMID: 38323711 DOI: 10.1002/adhm.202303316] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2023] [Revised: 01/29/2024] [Indexed: 02/08/2024]
Abstract
Electrical neuromodulation plays a pivotal role in enhancing patient outcomes among individuals suffering from neurological disorders. Implantable neural interfaces are vital components of the electrical neuromodulation system to ensure desirable performance; However, conventional devices are limited to a single function and are constructed with bulky and rigid materials, which often leads to mechanical incompatibility with soft tissue and an inability to adapt to the dynamic and complex 3D structures of biological systems. In addition, current implantable neural interfaces utilized in clinical settings primarily rely on wire-based techniques, which are associated with complications such as increased risk of infection, limited positioning options, and movement restrictions. Here, the state-of-art applications of electrical neuromodulation are presented. Material schemes and device structures that can be employed to develop robust and multifunctional neural interfaces, including flexibility, stretchability, biodegradability, self-healing, self-rolling, or morphing are discussed. Furthermore, multimodal wireless neuromodulation techniques, including optoelectronics, mechano-electrics, magnetoelectrics, inductive coupling, and electrochemically based self-powered devices are reviewed. In the end, future perspectives are given.
Collapse
Affiliation(s)
- Liu Wang
- Key Laboratory of Biomechanics and Mechanobiology of Ministry of Education, Beijing Advanced Innovation Center for Biomedical Engineering, School of Biological Science and Medical Engineering, and with the School of Engineering Medicine, Beihang University, Beijing, 100083, P. R. China
| | - Shengnan Liu
- School of Materials Science and Engineering, The Key Laboratory of Advanced Materials of Ministry of Education, State Key Laboratory of New Ceramics and Fine Processing, Laboratory of Flexible Electronics Technology, Tsinghua University, Beijing, 100084, P. R. China
| | - Wentai Zhao
- Key Laboratory of Biomechanics and Mechanobiology of Ministry of Education, Beijing Advanced Innovation Center for Biomedical Engineering, School of Biological Science and Medical Engineering, and with the School of Engineering Medicine, Beihang University, Beijing, 100083, P. R. China
| | - Jiakun Li
- Key Laboratory of Biomechanics and Mechanobiology of Ministry of Education, Beijing Advanced Innovation Center for Biomedical Engineering, School of Biological Science and Medical Engineering, and with the School of Engineering Medicine, Beihang University, Beijing, 100083, P. R. China
| | - Haoxuan Zeng
- Key Laboratory of Biomechanics and Mechanobiology of Ministry of Education, Beijing Advanced Innovation Center for Biomedical Engineering, School of Biological Science and Medical Engineering, and with the School of Engineering Medicine, Beihang University, Beijing, 100083, P. R. China
| | - Shaoyang Kang
- Key Laboratory of Biomechanics and Mechanobiology of Ministry of Education, Beijing Advanced Innovation Center for Biomedical Engineering, School of Biological Science and Medical Engineering, and with the School of Engineering Medicine, Beihang University, Beijing, 100083, P. R. China
| | - Xing Sheng
- Department of Electronic Engineering, Beijing National Research Center for Information Science and Technology, Institute for Precision Medicine, Laboratory of Flexible Electronics Technology, IDG/McGovern Institute for Brain Research, Tsinghua University, Beijing, 100084, China
| | - Lizhen Wang
- Key Laboratory of Biomechanics and Mechanobiology of Ministry of Education, Beijing Advanced Innovation Center for Biomedical Engineering, School of Biological Science and Medical Engineering, and with the School of Engineering Medicine, Beihang University, Beijing, 100083, P. R. China
| | - Yubo Fan
- Key Laboratory of Biomechanics and Mechanobiology of Ministry of Education, Beijing Advanced Innovation Center for Biomedical Engineering, School of Biological Science and Medical Engineering, and with the School of Engineering Medicine, Beihang University, Beijing, 100083, P. R. China
| | - Lan Yin
- School of Materials Science and Engineering, The Key Laboratory of Advanced Materials of Ministry of Education, State Key Laboratory of New Ceramics and Fine Processing, Laboratory of Flexible Electronics Technology, Tsinghua University, Beijing, 100084, P. R. China
| |
Collapse
|
15
|
Scheffler MS, Martin CA, Dietz V, Faraji AH, Sayenko DG. Synergistic implications of combinatorial rehabilitation approaches using spinal stimulation on therapeutic outcomes in spinal cord injury. Clin Neurophysiol 2024; 165:166-179. [PMID: 39033698 PMCID: PMC11325878 DOI: 10.1016/j.clinph.2024.06.015] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2024] [Revised: 06/07/2024] [Accepted: 06/26/2024] [Indexed: 07/23/2024]
Abstract
OBJECTIVE The objective of this narrative review was to locate and assess recent articles employing a combinatorial approach of transcutaneous spinal cord stimulation or epidural spinal cord stimulation with additional modalities. We sought to provide relevant knowledge of recent literature and advance understanding on outcomes reported, to better equip those working in neurorehabilitation and neuromodulation. METHODS Articles were selected and analyzed based on study approach, stimulation parameters, outcome measures, and presence of neurophysiological data to support findings. RESULTS This narrative review analyzed 44 recent articles employing a combinatorial approach of transcutaneous spinal cord stimulation or epidural spinal cord stimulation with additional modalities. Our findings showed that limited research exists regarding such combinatorial approaches, particularly when considering modalities beyond activity-based training. There is also limited consistency in neurophysiological and quality of life outcomes. CONCLUSION Articles involving transcutaneous spinal cord stimulation or epidural spinal cord stimulation with other modalities are limited in the current body of literature. Authors noted variety in approach, sample size, and use of participant perspective. Opportunities are present to add high quality research to this body of literature. SIGNIFICANCE Transcutaneous spinal cord stimulation and epidural spinal cord stimulation are emerging in research as viable avenues for targeting improvement of function after traumatic spinal cord injury, particularly when combined with activity-based training. This body of literature demonstrates viable areas for growth from both neurophysiological and functional perspectives. Further, exploration of novel combinatorial approaches holds potential to offer enhanced contributions to clinical and neurophysiological rehabilitation and research.
Collapse
Affiliation(s)
- Michelle S Scheffler
- Department of Neurosurgery, Houston Methodist Research Institute, 6670 Bertner Ave, Houston, TX, 77030, USA
| | - Catherine A Martin
- Department of Neurosurgery, Houston Methodist Research Institute, 6670 Bertner Ave, Houston, TX, 77030, USA
| | - Valerie Dietz
- Department of Neurosurgery, Houston Methodist Research Institute, 6670 Bertner Ave, Houston, TX, 77030, USA
| | - Amir H Faraji
- Department of Neurosurgery, Houston Methodist Research Institute, 6670 Bertner Ave, Houston, TX, 77030, USA
| | - Dimitry G Sayenko
- Department of Neurosurgery, Houston Methodist Research Institute, 6670 Bertner Ave, Houston, TX, 77030, USA.
| |
Collapse
|
16
|
Huang Y, Yao K, Zhang Q, Huang X, Chen Z, Zhou Y, Yu X. Bioelectronics for electrical stimulation: materials, devices and biomedical applications. Chem Soc Rev 2024; 53:8632-8712. [PMID: 39132912 DOI: 10.1039/d4cs00413b] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/13/2024]
Abstract
Bioelectronics is a hot research topic, yet an important tool, as it facilitates the creation of advanced medical devices that interact with biological systems to effectively diagnose, monitor and treat a broad spectrum of health conditions. Electrical stimulation (ES) is a pivotal technique in bioelectronics, offering a precise, non-pharmacological means to modulate and control biological processes across molecular, cellular, tissue, and organ levels. This method holds the potential to restore or enhance physiological functions compromised by diseases or injuries by integrating sophisticated electrical signals, device interfaces, and designs tailored to specific biological mechanisms. This review explains the mechanisms by which ES influences cellular behaviors, introduces the essential stimulation principles, discusses the performance requirements for optimal ES systems, and highlights the representative applications. From this review, we can realize the potential of ES based bioelectronics in therapy, regenerative medicine and rehabilitation engineering technologies, ranging from tissue engineering to neurological technologies, and the modulation of cardiovascular and cognitive functions. This review underscores the versatility of ES in various biomedical contexts and emphasizes the need to adapt to complex biological and clinical landscapes it addresses.
Collapse
Affiliation(s)
- Ya Huang
- Department of Biomedical Engineering, City University of Hong Kong, Hong Kong, China
| | - Kuanming Yao
- Department of Biomedical Engineering, City University of Hong Kong, Hong Kong, China
| | - Qiang Zhang
- Department of Biomedical Engineering, City University of Hong Kong, Hong Kong, China
| | - Xingcan Huang
- Department of Biomedical Engineering, City University of Hong Kong, Hong Kong, China
| | - Zhenlin Chen
- Department of Biomedical Engineering, City University of Hong Kong, Hong Kong, China
| | - Yu Zhou
- Department of Electronic and Computer Engineering, The Hong Kong University of Science and Technology, Hong Kong, China.
| | - Xinge Yu
- Department of Biomedical Engineering, City University of Hong Kong, Hong Kong, China
| |
Collapse
|
17
|
Shukla PD, Burke JF, Kunwar N, Presbrey K, Balakid J, Yaroshinsky M, Louie K, Jacques L, Shirvalkar P, Wang DD. Human Cervical Epidural Spinal Electrogram Topographically Maps Distinct Volitional Movements. J Neurosci 2024; 44:e2258232024. [PMID: 38960719 PMCID: PMC11308355 DOI: 10.1523/jneurosci.2258-23.2024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2023] [Revised: 04/22/2024] [Accepted: 06/06/2024] [Indexed: 07/05/2024] Open
Abstract
Little is known about the electrophysiologic activity of the intact human spinal cord during volitional movement. We analyzed epidural spinal recordings from a total of five human subjects of both sexes during a variety of upper extremity movements and found that these spinal epidural electrograms contain spectral information distinguishing periods of movement, rest, and sensation. Cervical epidural electrograms also contained spectral changes time-locked with movement. We found that these changes were primarily associated with increased power in the theta (4-8 Hz) band and feature increased theta phase to gamma amplitude coupling, and this increase in theta power can be used to topographically map distinct upper extremity movements onto the cervical spinal cord in accordance with established myotome maps of the upper extremity. Our findings have implications for the development of neurostimulation protocols and devices focused on motor rehabilitation for the upper extremity, and the approach presented here may facilitate spatiotemporal mapping of naturalistic movements.
Collapse
Affiliation(s)
- Poojan D Shukla
- Department of Neurological Surgery, University of California San Francisco, San Francisco, California 94143
| | - John F Burke
- Department of Neurosurgery, University of Oklahoma, Oklahoma City, Oklahoma 73104
| | - Nikhita Kunwar
- School of Medicine, University of California San Diego, San Diego, California 92093
| | - Kara Presbrey
- Department of Neurological Surgery, University of California San Francisco, San Francisco, California 94143
| | - Jannine Balakid
- Department of Neurological Surgery, University of California San Francisco, San Francisco, California 94143
| | - Maria Yaroshinsky
- Department of Neurological Surgery, University of California San Francisco, San Francisco, California 94143
| | - Kenneth Louie
- Department of Neurological Surgery, University of California San Francisco, San Francisco, California 94143
| | - Line Jacques
- Department of Neurological Surgery, University of California San Francisco, San Francisco, California 94143
| | - Prasad Shirvalkar
- Department of Neurological Surgery, University of California San Francisco, San Francisco, California 94143
- Department of Anesthesia and Pain Management, University of California, San Francisco, California 94143
- Department of Neurology, University of California, San Francisco, San Francisco, California 94143
| | - Doris D Wang
- Department of Neurological Surgery, University of California San Francisco, San Francisco, California 94143
| |
Collapse
|
18
|
Nanivadekar AC, Bose R, Petersen BA, Okorokova EV, Sarma D, Madonna TJ, Barra B, Farooqui J, Dalrymple AN, Levy I, Helm ER, Miele VJ, Boninger ML, Capogrosso M, Bensmaia SJ, Weber DJ, Fisher LE. Restoration of sensory feedback from the foot and reduction of phantom limb pain via closed-loop spinal cord stimulation. Nat Biomed Eng 2024; 8:992-1003. [PMID: 38097809 PMCID: PMC11404213 DOI: 10.1038/s41551-023-01153-8] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2022] [Accepted: 10/27/2023] [Indexed: 12/30/2023]
Abstract
Restoring somatosensory feedback in individuals with lower-limb amputations would reduce the risk of falls and alleviate phantom limb pain. Here we show, in three individuals with transtibial amputation (one traumatic and two owing to diabetic peripheral neuropathy), that sensations from the missing foot, with control over their location and intensity, can be evoked via lateral lumbosacral spinal cord stimulation with commercially available electrodes and by modulating the intensity of stimulation in real time on the basis of signals from a wireless pressure-sensitive shoe insole. The restored somatosensation via closed-loop stimulation improved balance control (with a 19-point improvement in the composite score of the Sensory Organization Test in one individual) and gait stability (with a 5-point improvement in the Functional Gait Assessment in one individual). And over the implantation period of the stimulation leads, the three individuals experienced a clinically meaningful decrease in phantom limb pain (with an average reduction of nearly 70% on a visual analogue scale). Our findings support the further clinical assessment of lower-limb neuroprostheses providing somatosensory feedback.
Collapse
Affiliation(s)
- Ameya C Nanivadekar
- Rehab Neural Engineering Labs, University of Pittsburgh, Pittsburgh, PA, USA
- Department of Bioengineering, University of Pittsburgh, Pittsburgh, PA, USA
- Center for the Neural Basis of Cognition, Pittsburgh, PA, USA
| | - Rohit Bose
- Rehab Neural Engineering Labs, University of Pittsburgh, Pittsburgh, PA, USA
- Department of Bioengineering, University of Pittsburgh, Pittsburgh, PA, USA
- Center for the Neural Basis of Cognition, Pittsburgh, PA, USA
| | - Bailey A Petersen
- Rehab Neural Engineering Labs, University of Pittsburgh, Pittsburgh, PA, USA
- Department of Bioengineering, University of Pittsburgh, Pittsburgh, PA, USA
- Center for the Neural Basis of Cognition, Pittsburgh, PA, USA
| | - Elizaveta V Okorokova
- Department of Organismal Biology and Anatomy, University of Chicago, Chicago, IL, USA
| | - Devapratim Sarma
- Rehab Neural Engineering Labs, University of Pittsburgh, Pittsburgh, PA, USA
- Department of Mechanical Engineering, Carnegie Mellon University, Pittsburgh, PA, USA
| | - Tyler J Madonna
- Rehab Neural Engineering Labs, University of Pittsburgh, Pittsburgh, PA, USA
- Department of Physical Medicine and Rehabilitation, University of Pittsburgh, Pittsburgh, PA, USA
| | - Beatrice Barra
- Rehab Neural Engineering Labs, University of Pittsburgh, Pittsburgh, PA, USA
- Department of Neuroscience and Movement Science, University of Fribourg, Fribourg, Switzerland
| | - Juhi Farooqui
- Rehab Neural Engineering Labs, University of Pittsburgh, Pittsburgh, PA, USA
- Center for the Neural Basis of Cognition, Pittsburgh, PA, USA
| | - Ashley N Dalrymple
- Rehab Neural Engineering Labs, University of Pittsburgh, Pittsburgh, PA, USA
- Department of Mechanical Engineering, Carnegie Mellon University, Pittsburgh, PA, USA
- Department of Biomedical Engineering, University of Utah, Salt Lake City, UT, USA
- Department of Physical Medicine and Rehabilitation, University of Utah, Salt Lake City, UT, USA
| | - Isaiah Levy
- Department of Physical Medicine and Rehabilitation, University of Pittsburgh, Pittsburgh, PA, USA
| | - Eric R Helm
- Department of Physical Medicine and Rehabilitation, University of Pittsburgh, Pittsburgh, PA, USA
| | - Vincent J Miele
- Department of Neurological Surgery, University of Pittsburgh, Pittsburgh, PA, USA
| | - Michael L Boninger
- Rehab Neural Engineering Labs, University of Pittsburgh, Pittsburgh, PA, USA
- Department of Bioengineering, University of Pittsburgh, Pittsburgh, PA, USA
- Center for the Neural Basis of Cognition, Pittsburgh, PA, USA
- Department of Physical Medicine and Rehabilitation, University of Pittsburgh, Pittsburgh, PA, USA
| | - Marco Capogrosso
- Rehab Neural Engineering Labs, University of Pittsburgh, Pittsburgh, PA, USA
- Department of Bioengineering, University of Pittsburgh, Pittsburgh, PA, USA
- Center for the Neural Basis of Cognition, Pittsburgh, PA, USA
- Department of Neurological Surgery, University of Pittsburgh, Pittsburgh, PA, USA
| | - Sliman J Bensmaia
- Department of Organismal Biology and Anatomy, University of Chicago, Chicago, IL, USA
| | - Douglas J Weber
- Rehab Neural Engineering Labs, University of Pittsburgh, Pittsburgh, PA, USA
- Department of Mechanical Engineering, Carnegie Mellon University, Pittsburgh, PA, USA
| | - Lee E Fisher
- Rehab Neural Engineering Labs, University of Pittsburgh, Pittsburgh, PA, USA.
- Department of Bioengineering, University of Pittsburgh, Pittsburgh, PA, USA.
- Center for the Neural Basis of Cognition, Pittsburgh, PA, USA.
- Department of Physical Medicine and Rehabilitation, University of Pittsburgh, Pittsburgh, PA, USA.
| |
Collapse
|
19
|
Losanno E, Ceradini M, Agnesi F, Righi G, Del Popolo G, Shokur S, Micera S. A Virtual Reality-Based Protocol to Determine the Preferred Control Strategy for Hand Neuroprostheses in People With Paralysis. IEEE Trans Neural Syst Rehabil Eng 2024; 32:2261-2269. [PMID: 38865234 DOI: 10.1109/tnsre.2024.3413192] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/14/2024]
Abstract
Hand neuroprostheses restore voluntary movement in people with paralysis through neuromodulation protocols. There are a variety of strategies to control hand neuroprostheses, which can be based on residual body movements or brain activity. There is no universally superior solution, rather the best approach may vary from patient to patient. Here, we propose a protocol based on an immersive virtual reality (VR) environment that simulates the use of a hand neuroprosthesis to allow patients to experience and familiarize themselves with various control schemes in clinically relevant tasks and choose the preferred one. We used our VR environment to compare two alternative control strategies over 5 days of training in four patients with C6 spinal cord injury: (a) control via the ipsilateral wrist, (b) control via the contralateral shoulder. We did not find a one-fits-all solution but rather a subject-specific preference that could not be predicted based only on a general clinical assessment. The main results were that the VR simulation allowed participants to experience the pros and cons of the proposed strategies and make an educated choice, and that there was a longitudinal improvement. This shows that our VR-based protocol is a useful tool for personalization and training of the control strategy of hand neuroprostheses, which could help to promote user comfort and thus acceptance.
Collapse
|
20
|
Bakare AO, Stephens K, Sanchez KR, Liu V, Zheng L, Goel V, Guan Y, Sivanesan E. Spinal cord stimulation attenuates paclitaxel-induced gait impairment and mechanical hypersensitivity via peripheral neuroprotective mechanisms in tumor-bearing rats. Reg Anesth Pain Med 2024:rapm-2024-105433. [PMID: 38844412 PMCID: PMC11645439 DOI: 10.1136/rapm-2024-105433] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2024] [Accepted: 05/28/2024] [Indexed: 06/16/2024]
Abstract
BACKGROUND Taxanes such as paclitaxel (PTX) induce dose-dependent chemotherapy-induced peripheral neuropathy (CIPN), which is associated with debilitating chronic pain and gait impairment. Increased macrophage-related proinflammatory activities have been reported to mediate the development and maintenance of neuropathic pain. While spinal cord stimulation (SCS) has been used for a number of pain conditions, the mechanisms supporting its use for CIPN remain to be elucidated. Thus, we aimed to examine whether SCS can attenuate Schwann cell-mediated and macrophage-mediated neuroinflammation in the sciatic nerve of Rowlette Nude (RNU) rats with PTX-induced gait impairment and mechanical hypersensitivity. METHODS Adult male tumor-bearing RNU rats were used for this study examining PTX treatment and SCS. Gait and mechanical hypersensitivity were assessed weekly. Cytokines, gene expression, macrophage infiltration and polarization, nerve morphology and Schwann cells were examined in sciatic nerves using multiplex immunoassay, bulk RNA sequencing, histochemistry and immunohistochemistry techniques. RESULTS SCS (50 Hz, 0.2 milliseconds, 80% motor threshold) attenuated the development of mechanical hypersensitivity (20.93±0.80 vs 12.23±2.71 grams, p<0.0096) and temporal gait impairment [swing (90.41±7.03 vs 117.27±9.71%, p<0.0076), and single stance times (94.92±3.62 vs 112.75±7.27%, p<0.0245)] induced by PTX (SCS+PTX+Tumor vs Sham SCS+PTX+Tumor). SCS also attenuated the reduction in Schwann cells, myelin thickness and increased the concentration of anti-inflammatory cytokine interleukin (IL)-10. Bulk RNA sequencing revealed differential gene expression after SCS, with 607 (59.2%) genes upregulated while 418 (40.8%) genes were downregulated. Notably, genes related to anti-inflammatory cytokines and neuronal growth were upregulated, while genes related to proinflammatory-promoting genes, increased M2γ polarization and decreased macrophage infiltration and Schwann cell loss were downregulated. CONCLUSION SCS may attenuate PTX-induced pain and temporal gait impairment, which may be partly attributed to decreases in Schwann cell loss and macrophage-mediated neuroinflammation in sciatic nerves.
Collapse
Affiliation(s)
- Ahmed Olalekan Bakare
- Department of Anesthesiology and Critical Care Medicine, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - Kimberly Stephens
- Arkansas Children's Research Institute, Little Rock, Arkansas, USA
- Department of Pediatrics, University of Arkansas for Medical Sciences, Little Rock, Arkansas, USA
| | - Karla R Sanchez
- Department of Anesthesiology and Critical Care Medicine, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - Vivian Liu
- Department of Computer Science, Johns Hopkins Whiting School of Engineering, Baltimore, Maryland, USA
| | - Lei Zheng
- Department of Oncology, The Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - Vasudha Goel
- Department of Anesthesiology, University of Minnesota, Minneapolis, Minnesota, USA
| | - Yun Guan
- Department of Anesthesiology and Critical Care Medicine, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
- Department of Neurological Surgery, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - Eellan Sivanesan
- Department of Anesthesiology and Critical Care Medicine, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| |
Collapse
|
21
|
Mahrous AA, Chardon M, Johnson M, Miller J, Heckman CJ. A NEW POSTURAL MOTOR RESPONSE TO SPINAL CORD STIMULATION: POST-STIMULATION REBOUND EXTENSION. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.06.13.598885. [PMID: 38915687 PMCID: PMC11195294 DOI: 10.1101/2024.06.13.598885] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/26/2024]
Abstract
Spinal cord stimulation (SCS) has emerged as a therapeutic tool for improving motor function following spinal cord injury. While many studies focus on restoring locomotion, little attention is paid to enabling standing which is a prerequisite of walking. In this study, we fully characterize a new type of response to SCS, a long extension activated post-stimulation (LEAP). LEAP is primarily directed to ankle extensors and hence has great clinical potential to assist postural movements. To characterize this new response, we used the decerebrate cat model to avoid the suppressive effects of anesthesia, and combined EMG and force measurement in the hindlimb with intracellular recordings in the lumbar spinal cord. Stimulation was delivered as five-second trains via bipolar electrodes placed on the cord surface, and multiple combinations of stimulation locations (L4 to S2), amplitudes (50-600 uA), and frequencies (10-40 Hz) were tested. While the optimum stimulation location and frequency differed slightly among animals, the stimulation amplitude was key for controlling LEAP duration and amplitude. To study the mechanism of LEAP, we performed in vivo intracellular recordings of motoneurons. In 70% of motoneurons, LEAP increased at hyperpolarized membrane potentials indicating a synaptic origin. Furthermore, spinal interneurons exhibited changes in firing during LEAP, confirming the circuit origin of this behavior. Finally, to identify the type of afferents involved in generating LEAP, we used shorter stimulation pulses (more selective for proprioceptive afferents), as well as peripheral stimulation of the sural nerve (cutaneous afferents). The data indicates that LEAP primarily relies on proprioceptive afferents and has major differences from pain or withdrawal reflexes mediated by cutaneous afferents. Our study has thus identified and characterized a novel postural motor response to SCS which has the potential to expand the applications of SCS for patients with motor disorders.
Collapse
|
22
|
McIntosh JR, Joiner EF, Goldberg JL, Greenwald P, Dionne AC, Murray LM, Thuet E, Modik O, Shelkov E, Lombardi JM, Sardar ZM, Lehman RA, Chan AK, Riew KD, Harel NY, Virk MS, Mandigo C, Carmel JB. Timing-dependent synergies between motor cortex and posterior spinal stimulation in humans. J Physiol 2024; 602:2961-2983. [PMID: 38758005 PMCID: PMC11178459 DOI: 10.1113/jp286183] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2023] [Accepted: 04/04/2024] [Indexed: 05/18/2024] Open
Abstract
Volitional movement requires descending input from the motor cortex and sensory feedback through the spinal cord. We previously developed a paired brain and spinal electrical stimulation approach in rats that relies on convergence of the descending motor and spinal sensory stimuli in the cervical cord. This approach strengthened sensorimotor circuits and improved volitional movement through associative plasticity. In humans, it is not known whether posterior epidural spinal cord stimulation targeted at the sensorimotor interface or anterior epidural spinal cord stimulation targeted within the motor system is effective at facilitating brain evoked responses. In 59 individuals undergoing elective cervical spine decompression surgery, the motor cortex was stimulated with scalp electrodes and the spinal cord was stimulated with epidural electrodes, with muscle responses being recorded in arm and leg muscles. Spinal electrodes were placed either posteriorly or anteriorly, and the interval between cortex and spinal cord stimulation was varied. Pairing stimulation between the motor cortex and spinal sensory (posterior) but not spinal motor (anterior) stimulation produced motor evoked potentials that were over five times larger than brain stimulation alone. This strong augmentation occurred only when descending motor and spinal afferent stimuli were timed to converge in the spinal cord. Paired stimulation also increased the selectivity of muscle responses relative to unpaired brain or spinal cord stimulation. Finally, clinical signs suggest that facilitation was observed in both injured and uninjured segments of the spinal cord. The large effect size of this paired stimulation makes it a promising candidate for therapeutic neuromodulation. KEY POINTS: Pairs of stimuli designed to alter nervous system function typically target the motor system, or one targets the sensory system and the other targets the motor system for convergence in cortex. In humans undergoing clinically indicated surgery, we tested paired brain and spinal cord stimulation that we developed in rats aiming to target sensorimotor convergence in the cervical cord. Arm and hand muscle responses to paired sensorimotor stimulation were more than five times larger than brain or spinal cord stimulation alone when applied to the posterior but not anterior spinal cord. Arm and hand muscle responses to paired stimulation were more selective for targeted muscles than the brain- or spinal-only conditions, especially at latencies that produced the strongest effects of paired stimulation. Measures of clinical evidence of compression were only weakly related to the paired stimulation effect, suggesting that it could be applied as therapy in people affected by disorders of the central nervous system.
Collapse
Affiliation(s)
- James R McIntosh
- Department of Neurology, Columbia University, New York, NY, USA
- Department of Orthopedic Surgery, Columbia University, New York, NY, USA
- Department of Neurological Surgery, Weill Cornell Medicine - New York Presbyterian, Och Spine, New York, NY, USA
| | - Evan F Joiner
- Department of Neurological Surgery, Columbia University, New York, NY, USA
| | - Jacob L Goldberg
- Department of Neurological Surgery, Weill Cornell Medicine - New York Presbyterian, Och Spine, New York, NY, USA
| | - Phoebe Greenwald
- Department of Neurological Surgery, Columbia University, New York, NY, USA
| | - Alexandra C Dionne
- Department of Orthopedic Surgery, Columbia University, New York, NY, USA
| | - Lynda M Murray
- Rehabilitation and Human Performance, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- James J. Peters VA Med. Ctr., Bronx, NY, USA
| | - Earl Thuet
- New York Presbyterian, The Och Spine Hospital, New York, NY, USA
| | - Oleg Modik
- Department of Neurology, Weill Cornell Medicine - New York Presbyterian, Och Spine, New York, NY, USA
| | - Evgeny Shelkov
- Department of Neurology, Weill Cornell Medicine - New York Presbyterian, Och Spine, New York, NY, USA
| | - Joseph M Lombardi
- Department of Orthopedic Surgery, Columbia University, New York, NY, USA
- New York Presbyterian, The Och Spine Hospital, New York, NY, USA
| | - Zeeshan M Sardar
- Department of Orthopedic Surgery, Columbia University, New York, NY, USA
- New York Presbyterian, The Och Spine Hospital, New York, NY, USA
| | - Ronald A Lehman
- Department of Orthopedic Surgery, Columbia University, New York, NY, USA
- New York Presbyterian, The Och Spine Hospital, New York, NY, USA
| | - Andrew K Chan
- Department of Neurological Surgery, Columbia University, New York, NY, USA
- New York Presbyterian, The Och Spine Hospital, New York, NY, USA
| | - K Daniel Riew
- Department of Neurological Surgery, Weill Cornell Medicine - New York Presbyterian, Och Spine, New York, NY, USA
- New York Presbyterian, The Och Spine Hospital, New York, NY, USA
| | - Noam Y Harel
- Rehabilitation and Human Performance, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- James J. Peters VA Med. Ctr., Bronx, NY, USA
- Department of Neurology, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Michael S Virk
- Department of Neurological Surgery, Weill Cornell Medicine - New York Presbyterian, Och Spine, New York, NY, USA
| | - Christopher Mandigo
- Department of Neurological Surgery, Columbia University, New York, NY, USA
- New York Presbyterian, The Och Spine Hospital, New York, NY, USA
| | - Jason B Carmel
- Department of Neurology, Columbia University, New York, NY, USA
- Department of Orthopedic Surgery, Columbia University, New York, NY, USA
- Department of Neurological Surgery, Weill Cornell Medicine - New York Presbyterian, Och Spine, New York, NY, USA
| |
Collapse
|
23
|
Patel J, Deschler E, Galang E. Spinal cord stimulation for the symptomatic treatment of rigidity and painful spasm in a case of stiff person syndrome. Pain Pract 2024; 24:798-804. [PMID: 38185725 DOI: 10.1111/papr.13340] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2024]
Abstract
BACKGROUND Stiff person syndrome (SPS) is a rare neuroimmunological disorder characterized by rigidity and painful spasm primarily affecting the truncal and paraspinal musculature due to autoimmune-mediated neuronal hyperexcitability. Spinal cord stimulation (SCS) is an approved therapy for managing painful neuropathic conditions, including diabetic peripheral neuropathy and refractory angina pectoris. We describe the novel use of SCS for the treatment of spasm and rigidity in a 49-year-old man with seropositive stiff person syndrome (SPS). The patient was treated with intravenous immunoglobulin (IVIG) and oral medications over a 13-month period with minimal improvement, prompting consideration of SCS. To our knowledge, this is the first report of the successful use of SCS in SPS with the demonstration of multifaceted clinical improvement. METHODS Following a successful temporary SCS trial, permanent implantation was performed. Spasm/stiffness (Distribution of Stiffness Index; Heightened Sensitivity Scale; Penn Spasm Frequency Scale, PSFS), disability (Oswestry Disability Index, ODI; Pain Disability Index, PDI), depression (Patient Health Questionnaire-9, PHQ-9), sleep (Pittsburgh Sleep Quality Index, PSQI), fatigue (Fatigue Severity Scale, FSS), pain (Numerical Pain Rating Scale, NPRS), quality of life (EuroQoL 5 Dimension 5 Level, EQ-5D-5L), and medication usage were assessed at baseline, 6-month, and 10-month postimplantation. RESULTS ODI, PHQ-9, FSS, NPRS, PSQI, and EQ-5D-5L scores showed a notable change from baseline and surpassed the defined minimal clinically important difference (MCID) at 6-month and 10-month follow-up. Oral medication dosages were reduced. CONCLUSIONS The novel use of SCS therapy in seropositive SPS resulted in functional improvement and attenuation of symptoms. We present possible mechanisms by which SCS may produce clinical response in patients with SPS and aim to demonstrate proof-of-concept for a future comprehensive pilot study evaluating SCS-mediated response in SPS.
Collapse
Affiliation(s)
- Janus Patel
- Department of Anesthesiology, Wake Forest University School of Medicine, Winston-Salem, North Carolina, USA
| | - Emily Deschler
- Department of Anesthesiology, Wake Forest University School of Medicine, Winston-Salem, North Carolina, USA
| | - Enrique Galang
- Department of Anesthesiology, Wake Forest University School of Medicine, Winston-Salem, North Carolina, USA
| |
Collapse
|
24
|
Urbin MA. Adaptation in the spinal cord after stroke: Implications for restoring cortical control over the final common pathway. J Physiol 2024. [PMID: 38787922 DOI: 10.1113/jp285563] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2024] [Accepted: 04/29/2024] [Indexed: 05/26/2024] Open
Abstract
Control of voluntary movement is predicated on integration between circuits in the brain and spinal cord. Although damage is often restricted to supraspinal or spinal circuits in cases of neurological injury, both spinal motor neurons and axons linking these cells to the cortical origins of descending motor commands begin showing changes soon after the brain is injured by stroke. The concept of 'transneuronal degeneration' is not new and has been documented in histological, imaging and electrophysiological studies dating back over a century. Taken together, evidence from these studies agrees more with a system attempting to survive rather than one passively surrendering to degeneration. There tends to be at least some preservation of fibres at the brainstem origin and along the spinal course of the descending white matter tracts, even in severe cases. Myelin-associated proteins are observed in the spinal cord years after stroke onset. Spinal motor neurons remain morphometrically unaltered. Skeletal muscle fibres once innervated by neurons that lose their source of trophic input receive collaterals from adjacent neurons, causing spinal motor units to consolidate and increase in size. Although some level of excitability within the distributed brain network mediating voluntary movement is needed to facilitate recovery, minimal structural connectivity between cortical and spinal motor neurons can support meaningful distal limb function. Restoring access to the final common pathway via the descending input that remains in the spinal cord therefore represents a viable target for directed plasticity, particularly in light of recent advances in rehabilitation medicine.
Collapse
Affiliation(s)
- Michael A Urbin
- Human Engineering Research Laboratories, VA RR&D Center of Excellence, VA Pittsburgh Healthcare System, Pittsburgh, Pennsylvania, USA
| |
Collapse
|
25
|
Moritz C, Field-Fote EC, Tefertiller C, van Nes I, Trumbower R, Kalsi-Ryan S, Purcell M, Janssen TWJ, Krassioukov A, Morse LR, Zhao KD, Guest J, Marino RJ, Murray LM, Wecht JM, Rieger M, Pradarelli J, Turner A, D'Amico J, Squair JW, Courtine G. Non-invasive spinal cord electrical stimulation for arm and hand function in chronic tetraplegia: a safety and efficacy trial. Nat Med 2024; 30:1276-1283. [PMID: 38769431 PMCID: PMC11108781 DOI: 10.1038/s41591-024-02940-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2023] [Accepted: 03/22/2024] [Indexed: 05/22/2024]
Abstract
Cervical spinal cord injury (SCI) leads to permanent impairment of arm and hand functions. Here we conducted a prospective, single-arm, multicenter, open-label, non-significant risk trial that evaluated the safety and efficacy of ARCEX Therapy to improve arm and hand functions in people with chronic SCI. ARCEX Therapy involves the delivery of externally applied electrical stimulation over the cervical spinal cord during structured rehabilitation. The primary endpoints were safety and efficacy as measured by whether the majority of participants exhibited significant improvement in both strength and functional performance in response to ARCEX Therapy compared to the end of an equivalent period of rehabilitation alone. Sixty participants completed the protocol. No serious adverse events related to ARCEX Therapy were reported, and the primary effectiveness endpoint was met. Seventy-two percent of participants demonstrated improvements greater than the minimally important difference criteria for both strength and functional domains. Secondary endpoint analysis revealed significant improvements in fingertip pinch force, hand prehension and strength, upper extremity motor and sensory abilities and self-reported increases in quality of life. These results demonstrate the safety and efficacy of ARCEX Therapy to improve hand and arm functions in people living with cervical SCI. ClinicalTrials.gov identifier: NCT04697472 .
Collapse
Affiliation(s)
- Chet Moritz
- Departments of Rehabilitation Medicine, Electrical & Computer Engineering, Physiology & Biophysics and Center for Neurotechnology, University of Washington, Seattle, WA, USA
| | - Edelle C Field-Fote
- Shepherd Center, Crawford Research Institute and Department of Rehabilitation Medicine, Emory University School of Medicine, Atlanta, GA, USA
| | | | - Ilse van Nes
- Sint Maartenskliniek, Revalidatiegeneeskunde, Nijmegen, The Netherlands
| | - Randy Trumbower
- Department of Physical Medicine and Rehabilitation, Harvard Medical School, Boston, MA, USA
- Spaulding Rehabilitation Hospital, Charlestown, MA, USA
| | - Sukhvinder Kalsi-Ryan
- KITE Research Institute|Toronto Rehab, University Health Network, Toronto, Ontario, Canada
| | - Mariel Purcell
- Scottish Centre for Innovation in Spinal Cord Injury, Queen Elizabeth National Spinal Injuries Unit, Queen Elizabeth University Hospital, Glasgow, UK
| | - Thomas W J Janssen
- Amsterdam Rehabilitation Research Center | Reade, Amsterdam, The Netherlands
- Faculty of Behavioral and Movement Sciences, Vrije Universiteit Amsterdam, Amsterdam Movement Sciences, Amsterdam, The Netherlands
| | - Andrei Krassioukov
- ICORD and Division of Physical Medicine and Rehabilitation, University of British Columbia, Vancouver, British Columbia, Canada
| | - Leslie R Morse
- Department of Rehabilitation Medicine, University of Minnesota School of Medicine, Minneapolis, MN, USA
| | - Kristin D Zhao
- Department of Physical Medicine and Rehabilitation, Rehabilitation Medicine Research Center, Mayo Clinic, Rochester, MN, USA
| | - James Guest
- Department of Neurological Surgery, Miller School of Medicine, University of Miami, Miami, FL, USA
- Miami Project to Cure Paralysis, Miami, FL, USA
| | - Ralph J Marino
- Thomas Jefferson University Hospital, Philadelphia, PA, USA
| | - Lynda M Murray
- Departments of Rehabilitation and Human Performance and Medicine, James J. Peters VA Medical Center, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Department of Research and Development, James J. Peters VA Medical Center, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Jill M Wecht
- Department of Research and Development, James J. Peters VA Medical Center, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | | | | | | | - Jessica D'Amico
- ONWARD Medical, Lausanne, Switzerland
- Glenrose Rehabilitation Hospital, Alberta Health Services, Edmonton, Alberta, Canada
- Department of Medicine, University of Alberta, Edmonton, Alberta, Canada
| | - Jordan W Squair
- NeuroX Institute and Brain Mind Institute, School of Life Sciences, Swiss Federal Institute of Technology (EPFL), Geneva, Switzerland
- Department of Clinical Neuroscience, Lausanne University Hospital (CHUV) and University of Lausanne (UNIL), Lausanne, Switzerland
- Defitech Center for Interventional Neurotherapies (NeuroRestore), EPFL/CHUV/UNIL, Lausanne, Switzerland
- NeuroRestore, NeuroX Institute, School of Life Sciences, Swiss Federal Institute of Technology (EPFL), Lausanne, Switzerland
| | - Gregoire Courtine
- NeuroX Institute and Brain Mind Institute, School of Life Sciences, Swiss Federal Institute of Technology (EPFL), Geneva, Switzerland.
- Department of Clinical Neuroscience, Lausanne University Hospital (CHUV) and University of Lausanne (UNIL), Lausanne, Switzerland.
- Defitech Center for Interventional Neurotherapies (NeuroRestore), EPFL/CHUV/UNIL, Lausanne, Switzerland.
- NeuroRestore, NeuroX Institute, School of Life Sciences, Swiss Federal Institute of Technology (EPFL), Lausanne, Switzerland.
| |
Collapse
|
26
|
Boys AJ. There and Back Again: Building Systems That Integrate, Interface, and Interact with the Human Body. Adv Biol (Weinh) 2024; 8:e2300366. [PMID: 38400703 DOI: 10.1002/adbi.202300366] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2023] [Revised: 01/31/2024] [Indexed: 02/25/2024]
Abstract
Since Dr. Theodor Schwann posed the extension of Cell Theory to mammals in 1839, scientists have dreamt up ways to interface with and influence the cells. Recently, considerable ground in this area is gained, particularly in the scope of bioelectronics. New advances in this area have provided with a means to record electrical activity from cells, examining neural firing or epithelial barrier integrity, and stimulate cells through applied electrical fields. Many of these applications utilize invasive implantation systems to perform this interaction in close proximity to the cells in question. Traditionally, the body's immune system fights back against these systems through the foreign body response, limiting the efficacy of long-term interactions. New technologies in tissue engineering, biomaterials science, and bioelectronics offer the potential to circumvent the foreign body response and create stable long-term biological interfaces. Looking ahead, the next advancements in the biomedical sciences can truly integrate, interface, and interact with the human body.
Collapse
Affiliation(s)
- Alexander J Boys
- Department of Chemical Engineering and Biotechnology, University of Cambridge, Cambridge, CB3 0AS, UK
| |
Collapse
|
27
|
Dawson J, Abdul-Rahim AH, Kimberley TJ. Neurostimulation for treatment of post-stroke impairments. Nat Rev Neurol 2024; 20:259-268. [PMID: 38570705 DOI: 10.1038/s41582-024-00953-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 02/29/2024] [Indexed: 04/05/2024]
Abstract
Neurostimulation, the use of electrical stimulation to modulate the activity of the nervous system, is now commonly used for the treatment of chronic pain, movement disorders and epilepsy. Many neurostimulation techniques have now shown promise for the treatment of physical impairments in people with stroke. In 2021, vagus nerve stimulation was approved by the FDA as an adjunct to intensive rehabilitation therapy for the treatment of chronic upper extremity deficits after ischaemic stroke. In 2024, pharyngeal electrical stimulation was conditionally approved by the UK National Institute for Health and Care Excellence for neurogenic dysphagia in people with stroke who have a tracheostomy. Many other approaches have also been tested in pivotal device trials and a number of approaches are in early-phase study. Typically, neurostimulation techniques aim to increase neuroplasticity in response to training and rehabilitation, although the putative mechanisms of action differ and are not fully understood. Neurostimulation techniques offer a number of practical advantages for use after stroke, such as precise dosing and timing, but can be invasive and costly to implement. This Review focuses on neurostimulation techniques that are now in clinical use or that have reached the stage of pivotal trials and show considerable promise for the treatment of post-stroke impairments.
Collapse
Affiliation(s)
- Jesse Dawson
- School of Cardiovascular and Metabolic Health, College of Medical, Veterinary and Life Sciences, University of Glasgow, Glasgow, UK.
| | - Azmil H Abdul-Rahim
- Liverpool Centre for Cardiovascular Science at University of Liverpool, Liverpool John Moores University and Liverpool Heart & Chest Hospital, Liverpool, UK
- Cardiovascular and Metabolic Medicine, Institute of Life Course and Medical Sciences, University of Liverpool, Liverpool, UK
| | - Teresa J Kimberley
- Department of Physical Therapy, School of Health and Rehabilitation Sciences, Institute of Health Professions, Massachusetts General Hospital, Boston, MA, USA
| |
Collapse
|
28
|
Latifi S, Carmichael ST. The emergence of multiscale connectomics-based approaches in stroke recovery. Trends Neurosci 2024; 47:303-318. [PMID: 38402008 DOI: 10.1016/j.tins.2024.01.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2023] [Revised: 12/31/2023] [Accepted: 01/21/2024] [Indexed: 02/26/2024]
Abstract
Stroke is a leading cause of adult disability. Understanding stroke damage and recovery requires deciphering changes in complex brain networks across different spatiotemporal scales. While recent developments in brain readout technologies and progress in complex network modeling have revolutionized current understanding of the effects of stroke on brain networks at a macroscale, reorganization of smaller scale brain networks remains incompletely understood. In this review, we use a conceptual framework of graph theory to define brain networks from nano- to macroscales. Highlighting stroke-related brain connectivity studies at multiple scales, we argue that multiscale connectomics-based approaches may provide new routes to better evaluate brain structural and functional remapping after stroke and during recovery.
Collapse
Affiliation(s)
- Shahrzad Latifi
- Department of Neurology, David Geffen School of Medicine, University of California, Los Angeles, CA 90095, USA; Department of Neuroscience, Rockefeller Neuroscience Institute, West Virginia University, Morgantown, WV 26506, USA
| | - S Thomas Carmichael
- Department of Neurology, David Geffen School of Medicine, University of California, Los Angeles, CA 90095, USA.
| |
Collapse
|
29
|
Moon Y, Yang C, Veit NC, McKenzie KA, Kim J, Aalla S, Yingling L, Buchler K, Hunt J, Jenz S, Shin SY, Kishta A, Edgerton VR, Gerasimenko YP, Roth EJ, Lieber RL, Jayaraman A. Noninvasive spinal stimulation improves walking in chronic stroke survivors: a proof-of-concept case series. Biomed Eng Online 2024; 23:38. [PMID: 38561821 PMCID: PMC10986021 DOI: 10.1186/s12938-024-01231-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2024] [Accepted: 03/21/2024] [Indexed: 04/04/2024] Open
Abstract
BACKGROUND After stroke, restoring safe, independent, and efficient walking is a top rehabilitation priority. However, in nearly 70% of stroke survivors asymmetrical walking patterns and reduced walking speed persist. This case series study aims to investigate the effectiveness of transcutaneous spinal cord stimulation (tSCS) in enhancing walking ability of persons with chronic stroke. METHODS Eight participants with hemiparesis after a single, chronic stroke were enrolled. Each participant was assigned to either the Stim group (N = 4, gait training + tSCS) or Control group (N = 4, gait training alone). Each participant in the Stim group was matched to a participant in the Control group based on age, time since stroke, and self-selected gait speed. For the Stim group, tSCS was delivered during gait training via electrodes placed on the skin between the spinous processes of C5-C6, T11-T12, and L1-L2. Both groups received 24 sessions of gait training over 8 weeks with a physical therapist providing verbal cueing for improved gait symmetry. Gait speed (measured from 10 m walk test), endurance (measured from 6 min walk test), spatiotemporal gait symmetries (step length and swing time), as well as the neurophysiological outcomes (muscle synergy, resting motor thresholds via spinal motor evoked responses) were collected without tSCS at baseline, completion, and 3 month follow-up. RESULTS All four Stim participants sustained spatiotemporal symmetry improvements at the 3 month follow-up (step length: 17.7%, swing time: 10.1%) compared to the Control group (step length: 1.1%, swing time 3.6%). Additionally, 3 of 4 Stim participants showed increased number of muscle synergies and/or lowered resting motor thresholds compared to the Control group. CONCLUSIONS This study provides promising preliminary evidence that using tSCS as a therapeutic catalyst to gait training may increase the efficacy of gait rehabilitation in individuals with chronic stroke. Trial registration NCT03714282 (clinicaltrials.gov), registration date: 2018-10-18.
Collapse
Affiliation(s)
- Yaejin Moon
- Shirley Ryan AbilityLab, 355 E. Erie St, Chicago, IL, 60611, USA
- Feinberg School of Medicine, Northwestern University, Chicago, IL, 60611, USA
- Department of Exercise Science, Syracuse University, Syracuse, NY, 13057, USA
| | - Chen Yang
- Shirley Ryan AbilityLab, 355 E. Erie St, Chicago, IL, 60611, USA
- Feinberg School of Medicine, Northwestern University, Chicago, IL, 60611, USA
| | - Nicole C Veit
- Shirley Ryan AbilityLab, 355 E. Erie St, Chicago, IL, 60611, USA
- Biomedical Engineering Department, McCormick School of Engineering, Northwestern University, Evanston, IL, 60208, USA
| | - Kelly A McKenzie
- Shirley Ryan AbilityLab, 355 E. Erie St, Chicago, IL, 60611, USA
| | - Jay Kim
- Shirley Ryan AbilityLab, 355 E. Erie St, Chicago, IL, 60611, USA
| | - Shreya Aalla
- Shirley Ryan AbilityLab, 355 E. Erie St, Chicago, IL, 60611, USA
| | - Lindsey Yingling
- Shirley Ryan AbilityLab, 355 E. Erie St, Chicago, IL, 60611, USA
| | - Kristine Buchler
- Shirley Ryan AbilityLab, 355 E. Erie St, Chicago, IL, 60611, USA
| | - Jasmine Hunt
- Shirley Ryan AbilityLab, 355 E. Erie St, Chicago, IL, 60611, USA
| | - Sophia Jenz
- Feinberg School of Medicine, Northwestern University, Chicago, IL, 60611, USA
| | - Sung Yul Shin
- Shirley Ryan AbilityLab, 355 E. Erie St, Chicago, IL, 60611, USA
- Feinberg School of Medicine, Northwestern University, Chicago, IL, 60611, USA
| | - Ameen Kishta
- Shirley Ryan AbilityLab, 355 E. Erie St, Chicago, IL, 60611, USA
| | - V Reggie Edgerton
- Rancho Los Amigos National Rehabilitation Center, Broccoli Impossible-to-Possible Lab, Rancho Research Institute, Downy, CA, 90242, USA
- Neurorestoration Center, Keck School of Medicine, University of Southern California, Los Angeles, CA, 90033, USA
| | - Yury P Gerasimenko
- Kentucky Spinal Cord Injury Research Center, University of Louisville, Louisville, KY, 40202, USA
- Pavlov Institute of Physiology, St. Petersburg, Russia
| | - Elliot J Roth
- Shirley Ryan AbilityLab, 355 E. Erie St, Chicago, IL, 60611, USA
- Feinberg School of Medicine, Northwestern University, Chicago, IL, 60611, USA
| | - Richard L Lieber
- Shirley Ryan AbilityLab, 355 E. Erie St, Chicago, IL, 60611, USA
- Feinberg School of Medicine, Northwestern University, Chicago, IL, 60611, USA
- Hines VA Medical Center, Maywood, IL, 60141, USA
| | - Arun Jayaraman
- Shirley Ryan AbilityLab, 355 E. Erie St, Chicago, IL, 60611, USA.
- Feinberg School of Medicine, Northwestern University, Chicago, IL, 60611, USA.
| |
Collapse
|
30
|
Huang XL, Wu MY, Wu CC, Yan LC, He MH, Chen YC, Tsai ST. Neuromodulation techniques in poststroke motor impairment recovery: Efficacy, challenges, and future directions. Tzu Chi Med J 2024; 36:136-141. [PMID: 38645790 PMCID: PMC11025597 DOI: 10.4103/tcmj.tcmj_247_23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2023] [Revised: 11/16/2023] [Accepted: 12/19/2023] [Indexed: 04/23/2024] Open
Abstract
Cerebrovascular accidents, also known as strokes, represent a major global public health challenge and contribute to substantial mortality, disability, and socioeconomic burden. Multidisciplinary approaches for poststroke therapies are crucial for recovering lost functions and adapting to new limitations. This review discusses the potential of neuromodulation techniques, repetitive transcranial magnetic stimulation (rTMS), transcranial direct current stimulation, spinal cord stimulation (SCS), vagus nerve stimulation (VNS), and deep brain stimulation (DBS), as innovative strategies for facilitating poststroke recovery. Neuromodulation is an emerging adjunct to conventional therapies that target neural plasticity to restore lost function and compensate for damaged brain areas. The techniques discussed in this review have different efficacies in enhancing neural plasticity, optimizing motor recovery, and mitigating poststroke impairments. Specifically, rTMS has shown significant promise in enhancing motor function, whereas SCS has shown potential in improving limb movement and reducing disability. Similarly, VNS, typically used to treat epilepsy, has shown promise in enhancing poststroke motor recovery, while DBS may be used to improve poststroke motor recovery and symptom mitigation. Further studies with standardized protocols are warranted to elucidate the efficacy of these methods and integrate them into mainstream clinical practice to optimize poststroke care.
Collapse
Affiliation(s)
- Xiang-Ling Huang
- Department of Neurosurgery, Hualien Tzu Chi Hospital, Buddhist Tzu Chi Medical Foundation, Hualien, Taiwan
- Department of Nursing, Hualien Tzu Chi Hospital, Buddhist Tzu Chi Medical Foundation, Hualien, Taiwan
- School of Medicine, Tzu Chi University, Hualien, Taiwan
| | - Ming-Yung Wu
- Department of Neurosurgery, Hualien Tzu Chi Hospital, Buddhist Tzu Chi Medical Foundation, Hualien, Taiwan
| | - Ciou-Chan Wu
- Department of Neurosurgery, Hualien Tzu Chi Hospital, Buddhist Tzu Chi Medical Foundation, Hualien, Taiwan
- School of Medicine, Tzu Chi University, Hualien, Taiwan
| | - Lian-Cing Yan
- Department of Neurosurgery, Hualien Tzu Chi Hospital, Buddhist Tzu Chi Medical Foundation, Hualien, Taiwan
| | - Mei-Huei He
- Department of Neurosurgery, Hualien Tzu Chi Hospital, Buddhist Tzu Chi Medical Foundation, Hualien, Taiwan
| | - Yu-Chen Chen
- Department of Neurosurgery, Hualien Tzu Chi Hospital, Buddhist Tzu Chi Medical Foundation, Hualien, Taiwan
- Department of Medical Informatics, Tzu Chi University, Hualien, Taiwan
| | - Sheng-Tzung Tsai
- Department of Neurosurgery, Hualien Tzu Chi Hospital, Buddhist Tzu Chi Medical Foundation, Hualien, Taiwan
- School of Medicine, Tzu Chi University, Hualien, Taiwan
| |
Collapse
|
31
|
Zhang J, Wang M, Alam M, Zheng YP, Ye F, Hu X. Effects of non-invasive cervical spinal cord neuromodulation by trans-spinal electrical stimulation on cortico-muscular descending patterns in upper extremity of chronic stroke. Front Bioeng Biotechnol 2024; 12:1372158. [PMID: 38576448 PMCID: PMC10991759 DOI: 10.3389/fbioe.2024.1372158] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2024] [Accepted: 03/11/2024] [Indexed: 04/06/2024] Open
Abstract
Background: Trans-spinal electrical stimulation (tsES) to the intact spinal cord poststroke may modulate the cortico-muscular control in stroke survivors with diverse lesions in the brain. This work aimed to investigate the immediate effects of tsES on the cortico-muscular descending patterns during voluntary upper extremity (UE) muscle contractions by analyzing cortico-muscular coherence (CMCoh) and electromyography (EMG) in people with chronic stroke. Methods: Twelve chronic stroke participants were recruited to perform wrist-hand extension and flexion tasks at submaximal levels of voluntary contraction for the corresponding agonist flexors and extensors. During the tasks, the tsES was delivered to the cervical spinal cord with rectangular biphasic pulses. Electroencephalography (EEG) data were collected from the sensorimotor cortex, and the EMG data were recorded from both distal and proximal UE muscles. The CMCoh, laterality index (LI) of the peak CMCoh, and EMG activation level parameters under both non-tsES and tsES conditions were compared to evaluate the immediate effects of tsES on the cortico-muscular descending pathway. Results: The CMCoh and LI of peak CMCoh in the agonist distal muscles showed significant increases (p < 0.05) during the wrist-hand extension and flexion tasks with the application of tsES. The EMG activation levels of the antagonist distal muscle during wrist-hand extension were significantly decreased (p < 0.05) with tsES. Additionally, the proximal UE muscles exhibited significant decreases (p < 0.05) in peak CMCoh and EMG activation levels by applying tsES. There was a significant increase (p < 0.05) in LI of peak CMCoh of proximal UE muscles during tsES. Conclusion: The cervical spinal cord neuromodulation via tsES enhanced the residual descending excitatory control, activated the local inhibitory circuits within the spinal cord, and reduced the cortical and proximal muscular compensatory effects. These results suggested the potential of tsES as a supplementary input for improving UE motor functions in stroke rehabilitation.
Collapse
Affiliation(s)
- Jianing Zhang
- Department of Biomedical Engineering, The Hong Kong Polytechnic University, Kowloon, China
| | - Maner Wang
- Department of Biomedical Engineering, The Hong Kong Polytechnic University, Kowloon, China
| | - Monzurul Alam
- Department of Biomedical Engineering, The Hong Kong Polytechnic University, Kowloon, China
| | - Yong-Ping Zheng
- Department of Biomedical Engineering, The Hong Kong Polytechnic University, Kowloon, China
| | - Fuqiang Ye
- Department of Biomedical Engineering, The Hong Kong Polytechnic University, Kowloon, China
| | - Xiaoling Hu
- Department of Biomedical Engineering, The Hong Kong Polytechnic University, Kowloon, China
- Research Institute for Smart Ageing (RISA), Hong Kong SAR, China
- Research Centre of Data Science and Artificial Intelligence (RC-DSAI), Hong Kong SAR, China
- Joint Research Centre for Biosensing and Precision Theranostics, Hong Kong SAR, China
- University Research Facility in Behavioral and Systems Neuroscience (UBSN), The Hong Kong Polytechnic University, Hong Kong SAR, China
| |
Collapse
|
32
|
Jung Y, Breitbart S, Malvea A, Bhatia A, Ibrahim GM, Gorodetsky C. Epidural Spinal Cord Stimulation for Spasticity: a Systematic Review of the Literature. World Neurosurg 2024; 183:227-238.e5. [PMID: 38181878 DOI: 10.1016/j.wneu.2023.12.158] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2023] [Revised: 12/29/2023] [Accepted: 12/30/2023] [Indexed: 01/07/2024]
Abstract
OBJECTIVE Spasticity is a form of muscle hypertonia secondary to various diseases, including traumatic brain injury, spinal cord injury, cerebral palsy, and multiple sclerosis. Medical treatments are available; however, these often result in insufficient clinical response. This review evaluates the role of epidural spinal cord stimulation (SCS) in the treatment of spasticity and associated functional outcomes. METHODS A systematic review of the literature was performed using the Embase, CENTRAL, and MEDLINE databases. We included studies that used epidural SCS to treat spasticity. Studies investigating functional electric stimulation, transcutaneous SCS, and animal models of spasticity were excluded. We also excluded studies that used SCS to treat other symptoms such as pain. RESULTS Thirty-four studies were included in the final analysis. The pooled rate of subjective improvement in spasticity was 78% (95% confidence interval, 64%-91%; I2 = 77%), 40% (95% confidence interval, 7%-73%; I2 = 88%) for increased H-reflex threshold or decreased Hoffman reflex/muscle response wave ratio, and 73% (65%-80%; I2 = 50%) for improved ambulation. Patients with spinal causes had better outcomes compared with patients with cerebral causes. Up to 10% of patients experienced complications including infections and hardware malfunction. CONCLUSIONS Our review of the literature suggests that SCS may be a safe and useful tool for the management of spasticity; however, there is significant heterogeneity among studies. The quality of studies is also low. Further studies are needed to fully evaluate the usefulness of this technology, including various stimulation paradigms across different causes of spasticity.
Collapse
Affiliation(s)
- Youngkyung Jung
- Division of Neurosurgery, University of Toronto, Toronto, Ontario, Canada.
| | - Sara Breitbart
- Division of Neurosurgery, Hospital for Sick Children, Toronto, Ontario, Canada
| | - Anahita Malvea
- Division of Neurosurgery, University of Toronto, Toronto, Ontario, Canada
| | - Anuj Bhatia
- Department of Anesthesia and Pain Medicine, University of Toronto and Toronto Western Hospital, Toronto, Ontario, Canada; Institute of Health Policy, Management, and Evaluation, University of Toronto, Toronto, Ontario, Canada
| | - George M Ibrahim
- Division of Neurosurgery, University of Toronto, Toronto, Ontario, Canada; Division of Neurosurgery, Hospital for Sick Children, Toronto, Ontario, Canada; Institute of Biomedical Engineering, University of Toronto, Toronto, Ontario, Canada; Institute of Medical Science, University of Toronto, Toronto, Ontario, Canada
| | - Carolina Gorodetsky
- Division of Neurology, The Hospital for Sick Children, Toronto, Ontario, Canada; Department of Pediatrics, University of Toronto, Toronto, Ontario, Canada
| |
Collapse
|
33
|
Allen JR, Karri SR, Yang C, Stoykov ME. Spinal Cord Stimulation for Poststroke Hemiparesis: A Scoping Review. Am J Occup Ther 2024; 78:7802180220. [PMID: 38477681 PMCID: PMC11017736 DOI: 10.5014/ajot.2024.050533] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/14/2024] Open
Abstract
IMPORTANCE Spinal cord stimulation (SCS) is a neuromodulation technique that can improve paresis in individuals with spinal cord injury. SCS is emerging as a technique that can address upper and lower limb hemiparesis. Little is understood about its effectiveness with the poststroke population. OBJECTIVE To summarize the evidence for SCS after stroke and any changes in upper extremity and lower extremity motor function. DATA SOURCES PubMed, Web of Science, Embase, and CINAHL. The reviewers used hand searches and reference searches of retrieved articles. There were no limitations regarding publication year. STUDY SELECTION AND DATA COLLECTION This review followed the Preferred Reporting Items for Systematic reviews and Meta-Analyses extension for Scoping Reviews (PRISMA-ScR) checklist. The inclusion and exclusion criteria included a broad range of study characteristics. Studies were excluded if the intervention did not meet the definition of SCS intervention, used only animals or healthy participants, did not address upper or lower limb motor function, or examined neurological conditions other than stroke. FINDINGS Fourteen articles met the criteria for this review. Seven studies found a significant improvement in motor function in groups receiving SCS. CONCLUSIONS AND RELEVANCE Results indicate that SCS may provide an alternative means to improve motor function in the poststroke population. Plain-Language Summary: The results of this study show that spinal cord stimulation may provide an alternative way to improve motor function after stroke. Previous neuromodulation methods have targeted the impaired supraspinal circuitry after stroke. Although downregulated, spinal cord circuitry is largely intact and offers new possibilities for motor recovery.
Collapse
Affiliation(s)
- Jonathan R Allen
- Jonathan R. Allen, OTD, OTR/L, is Occupational Therapist, Corewell Health, Grand Rapids, MI. At the time of the study, Allen was Doctoral Student, Department of Occupational Therapy, College of Health Sciences, University of Michigan-Flint;
| | - Swathi R Karri
- Swathi R. Karri, is Osteopathic Medical Student II, Chicago College of Osteopathic Medicine, Midwestern University, Downers Grove, IL
| | - Chen Yang
- Chen Yang, PhD, is Postdoctoral Fellow, Max Näder Lab for Rehabilitation Technologies and Outcomes Research, Shirley Ryan AbilityLab, Chicago, IL, and Postdoctoral Fellow, Physical Medicine & Rehabilitation, Feinberg School of Medicine, Northwestern University, Chicago, IL
| | - Mary Ellen Stoykov
- Mary Ellen Stoykov, PhD, OTR/L, is Research Scientist, Arms + Hands Lab, Shirley Ryan AbilityLab, Chicago, IL, and Research Associate Professor, Physical Medicine and Rehabilitation, Feinberg School of Medicine, Northwestern University, Chicago, IL
| |
Collapse
|
34
|
Katic Secerovic N, Balaguer JM, Gorskii O, Pavlova N, Liang L, Ho J, Grigsby E, Gerszten PC, Karal-Ogly D, Bulgin D, Orlov S, Pirondini E, Musienko P, Raspopovic S, Capogrosso M. Neural population dynamics reveals disruption of spinal circuits' responses to proprioceptive input during electrical stimulation of sensory afferents. Cell Rep 2024; 43:113695. [PMID: 38245870 PMCID: PMC10962447 DOI: 10.1016/j.celrep.2024.113695] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2023] [Revised: 11/08/2023] [Accepted: 01/06/2024] [Indexed: 01/23/2024] Open
Abstract
While neurostimulation technologies are rapidly approaching clinical applications for sensorimotor disorders, the impact of electrical stimulation on network dynamics is still unknown. Given the high degree of shared processing in neural structures, it is critical to understand if neurostimulation affects functions that are related to, but not targeted by, the intervention. Here, we approach this question by studying the effects of electrical stimulation of cutaneous afferents on unrelated processing of proprioceptive inputs. We recorded intraspinal neural activity in four monkeys while generating proprioceptive inputs from the radial nerve. We then applied continuous stimulation to the radial nerve cutaneous branch and quantified the impact of the stimulation on spinal processing of proprioceptive inputs via neural population dynamics. Proprioceptive pulses consistently produce neural trajectories that are disrupted by concurrent cutaneous stimulation. This disruption propagates to the somatosensory cortex, suggesting that electrical stimulation can perturb natural information processing across the neural axis.
Collapse
Affiliation(s)
- Natalija Katic Secerovic
- School of Electrical Engineering, University of Belgrade, 11000 Belgrade, Serbia; The Mihajlo Pupin Institute, University of Belgrade, 11060 Belgrade, Serbia; Laboratory for Neuroengineering, Institute for Robotics and Intelligent Systems, ETH Zürich, 8092 Zürich, Switzerland
| | - Josep-Maria Balaguer
- Rehab and Neural Engineering Labs, University of Pittsburgh, Pittsburgh, PA 15213, USA; Department of Bioengineering, University of Pittsburgh, Pittsburgh, PA 15213, USA; Center for Neural Basis of Cognition, Pittsburgh, PA, USA
| | - Oleg Gorskii
- Institute of Translational Biomedicine, Saint-Petersburg State University, 199034 Saint-Petersburg, Russia; Pavlov Institute of Physiology, Russian Academy of Sciences, 199034 Saint-Petersburg, Russia; National University of Science and Technology "MISIS," 4 Leninskiy Pr., 119049 Moscow, Russia
| | - Natalia Pavlova
- Institute of Translational Biomedicine, Saint-Petersburg State University, 199034 Saint-Petersburg, Russia
| | - Lucy Liang
- Rehab and Neural Engineering Labs, University of Pittsburgh, Pittsburgh, PA 15213, USA; Department of Bioengineering, University of Pittsburgh, Pittsburgh, PA 15213, USA; Center for Neural Basis of Cognition, Pittsburgh, PA, USA
| | - Jonathan Ho
- Rehab and Neural Engineering Labs, University of Pittsburgh, Pittsburgh, PA 15213, USA; Department of Physical Medicine and Rehabilitation, University of Pittsburgh, Pittsburgh, PA 15213, USA
| | - Erinn Grigsby
- Rehab and Neural Engineering Labs, University of Pittsburgh, Pittsburgh, PA 15213, USA; Department of Physical Medicine and Rehabilitation, University of Pittsburgh, Pittsburgh, PA 15213, USA
| | - Peter C Gerszten
- Department of Neurological Surgery, University of Pittsburgh, Pittsburgh, PA 15213, USA
| | - Dzhina Karal-Ogly
- National Research Centre "Kurchatov Institute," 123098 Moscow, Russia
| | - Dmitry Bulgin
- National Research Centre "Kurchatov Institute," 123098 Moscow, Russia; Sirius University of Science and Technology, 354340 Sochi, Russia
| | - Sergei Orlov
- National Research Centre "Kurchatov Institute," 123098 Moscow, Russia
| | - Elvira Pirondini
- Rehab and Neural Engineering Labs, University of Pittsburgh, Pittsburgh, PA 15213, USA; Department of Bioengineering, University of Pittsburgh, Pittsburgh, PA 15213, USA; Center for Neural Basis of Cognition, Pittsburgh, PA, USA; Department of Physical Medicine and Rehabilitation, University of Pittsburgh, Pittsburgh, PA 15213, USA; Department of Neurological Surgery, University of Pittsburgh, Pittsburgh, PA 15213, USA; Department of Neurobiology, University of Pittsburgh, Pittsburgh, PA 15213, USA
| | - Pavel Musienko
- Institute of Translational Biomedicine, Saint-Petersburg State University, 199034 Saint-Petersburg, Russia; Sirius University of Science and Technology, 354340 Sochi, Russia; Life Improvement by Future Technologies Center "LIFT," 143025 Moscow, Russia
| | - Stanisa Raspopovic
- Laboratory for Neuroengineering, Institute for Robotics and Intelligent Systems, ETH Zürich, 8092 Zürich, Switzerland.
| | - Marco Capogrosso
- Rehab and Neural Engineering Labs, University of Pittsburgh, Pittsburgh, PA 15213, USA; Department of Bioengineering, University of Pittsburgh, Pittsburgh, PA 15213, USA; Center for Neural Basis of Cognition, Pittsburgh, PA, USA; Department of Physical Medicine and Rehabilitation, University of Pittsburgh, Pittsburgh, PA 15213, USA; Department of Neurological Surgery, University of Pittsburgh, Pittsburgh, PA 15213, USA.
| |
Collapse
|
35
|
González-González MA, Conde SV, Latorre R, Thébault SC, Pratelli M, Spitzer NC, Verkhratsky A, Tremblay MÈ, Akcora CG, Hernández-Reynoso AG, Ecker M, Coates J, Vincent KL, Ma B. Bioelectronic Medicine: a multidisciplinary roadmap from biophysics to precision therapies. Front Integr Neurosci 2024; 18:1321872. [PMID: 38440417 PMCID: PMC10911101 DOI: 10.3389/fnint.2024.1321872] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2023] [Accepted: 01/10/2024] [Indexed: 03/06/2024] Open
Abstract
Bioelectronic Medicine stands as an emerging field that rapidly evolves and offers distinctive clinical benefits, alongside unique challenges. It consists of the modulation of the nervous system by precise delivery of electrical current for the treatment of clinical conditions, such as post-stroke movement recovery or drug-resistant disorders. The unquestionable clinical impact of Bioelectronic Medicine is underscored by the successful translation to humans in the last decades, and the long list of preclinical studies. Given the emergency of accelerating the progress in new neuromodulation treatments (i.e., drug-resistant hypertension, autoimmune and degenerative diseases), collaboration between multiple fields is imperative. This work intends to foster multidisciplinary work and bring together different fields to provide the fundamental basis underlying Bioelectronic Medicine. In this review we will go from the biophysics of the cell membrane, which we consider the inner core of neuromodulation, to patient care. We will discuss the recently discovered mechanism of neurotransmission switching and how it will impact neuromodulation design, and we will provide an update on neuronal and glial basis in health and disease. The advances in biomedical technology have facilitated the collection of large amounts of data, thereby introducing new challenges in data analysis. We will discuss the current approaches and challenges in high throughput data analysis, encompassing big data, networks, artificial intelligence, and internet of things. Emphasis will be placed on understanding the electrochemical properties of neural interfaces, along with the integration of biocompatible and reliable materials and compliance with biomedical regulations for translational applications. Preclinical validation is foundational to the translational process, and we will discuss the critical aspects of such animal studies. Finally, we will focus on the patient point-of-care and challenges in neuromodulation as the ultimate goal of bioelectronic medicine. This review is a call to scientists from different fields to work together with a common endeavor: accelerate the decoding and modulation of the nervous system in a new era of therapeutic possibilities.
Collapse
Affiliation(s)
- María Alejandra González-González
- Jan and Dan Duncan Neurological Research Institute, Texas Children’s Hospital, Houston, TX, United States
- Department of Pediatric Neurology, Baylor College of Medicine, Houston, TX, United States
| | - Silvia V. Conde
- iNOVA4Health, NOVA Medical School, Faculdade de Ciências Médicas, NOVA University, Lisbon, Portugal
| | - Ramon Latorre
- Centro Interdisciplinario de Neurociencia de Valparaíso, Facultad de Ciencias, Universidad de Valparaíso, Valparaíso, Chile
| | - Stéphanie C. Thébault
- Laboratorio de Investigación Traslacional en salud visual (D-13), Instituto de Neurobiología, Universidad Nacional Autónoma de México (UNAM), Querétaro, Mexico
| | - Marta Pratelli
- Neurobiology Department, Kavli Institute for Brain and Mind, UC San Diego, La Jolla, CA, United States
| | - Nicholas C. Spitzer
- Neurobiology Department, Kavli Institute for Brain and Mind, UC San Diego, La Jolla, CA, United States
| | - Alexei Verkhratsky
- Faculty of Biology, Medicine and Health, The University of Manchester, Manchester, United Kingdom
- Achucarro Centre for Neuroscience, IKERBASQUE, Basque Foundation for Science, Bilbao, Spain
- Department of Forensic Analytical Toxicology, School of Forensic Medicine, China Medical University, Shenyang, China
- International Collaborative Center on Big Science Plan for Purinergic Signaling, Chengdu University of Traditional Chinese Medicine, Chengdu, China
- Department of Stem Cell Biology, State Research Institute Centre for Innovative Medicine, Vilnius, Lithuania
| | - Marie-Ève Tremblay
- Division of Medical Sciences, University of Victoria, Victoria, BC, Canada
- Department of Neurology and Neurosurgery, McGill University, Montreal, QC, Canada
- Department of Molecular Medicine, Université Laval, Québec City, QC, Canada
- Department of Biochemistry and Molecular Biology, The University of British Columbia, Vancouver, BC, Canada
| | - Cuneyt G. Akcora
- Department of Computer Science, University of Central Florida, Orlando, FL, United States
| | | | - Melanie Ecker
- Department of Biomedical Engineering, University of North Texas, Denton, TX, United States
| | | | - Kathleen L. Vincent
- Department of Obstetrics and Gynecology, University of Texas Medical Branch, Galveston, TX, United States
| | - Brandy Ma
- Stanley H. Appel Department of Neurology, Houston Methodist Hospital, Houston, TX, United States
| |
Collapse
|
36
|
Barra B, Kumar R, Gopinath C, Mirzakhalili E, Lempka SF, Gaunt RA, Fisher LE. High-frequency amplitude-modulated sinusoidal stimulation induces desynchronized yet controllable neural firing. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.02.14.580219. [PMID: 38405798 PMCID: PMC10888888 DOI: 10.1101/2024.02.14.580219] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/27/2024]
Abstract
Regaining sensory feedback is pivotal for people living with limb amputation. Electrical stimulation of sensory fibers in peripheral nerves has been shown to restore focal percepts in the missing limb. However, conventional rectangular current pulses induce sensations often described as unnatural. This is likely due to the synchronous and periodic nature of activity evoked by these pulses. Here we introduce a fast-oscillating amplitude-modulated sinusoidal (FAMS) stimulation waveform that desynchronizes evoked neural activity. We used a computational model to show that sinusoidal waveforms evoke asynchronous and irregular firing and that firing patterns are frequency dependent. We designed the FAMS waveform to leverage both low- and high-frequency effects and found that membrane non-linearities enhance neuron-specific differences when exposed to FAMS. We implemented this waveform in a feline model of peripheral nerve stimulation and demonstrated that FAMS-evoked activity is more asynchronous than activity evoked by rectangular pulses, while being easily controllable with simple stimulation parameters. These results represent an important step towards biomimetic stimulation strategies useful for clinical applications to restore sensory feedback.
Collapse
Affiliation(s)
- Beatrice Barra
- Rehab Neural Engineering Labs, University of Pittsburgh, Pittsburgh, PA, USA
- Neuroscience Institute, New York University Langone Health, New York, USA
| | - Ritesh Kumar
- Rehab Neural Engineering Labs, University of Pittsburgh, Pittsburgh, PA, USA
- Department of Bioengineering, University of Pittsburgh, Pittsburgh, USA
| | - Chaitanya Gopinath
- Rehab Neural Engineering Labs, University of Pittsburgh, Pittsburgh, PA, USA
| | - Ehsan Mirzakhalili
- Department of Biomedical Engineering, University of Michigan, Ann Arbor, MI, USA
- Biointerfaces Institute, University of Michigan, Ann Arbor, MI, USA
- Department of Neurosurgery, University of Pennsylvania, Philadelphia, USA
| | - Scott F. Lempka
- Department of Biomedical Engineering, University of Michigan, Ann Arbor, MI, USA
- Biointerfaces Institute, University of Michigan, Ann Arbor, MI, USA
- Department of Anesthesiology, University of Michigan, Ann Arbor, MI, USA
| | - Robert A. Gaunt
- Rehab Neural Engineering Labs, University of Pittsburgh, Pittsburgh, PA, USA
- Department of Bioengineering, University of Pittsburgh, Pittsburgh, USA
- Department of Physical Medicine & Rehabilitation, University of Pittsburgh, Pittsburgh, USA
| | - Lee E Fisher
- Rehab Neural Engineering Labs, University of Pittsburgh, Pittsburgh, PA, USA
- Department of Bioengineering, University of Pittsburgh, Pittsburgh, USA
- Department of Physical Medicine & Rehabilitation, University of Pittsburgh, Pittsburgh, USA
| |
Collapse
|
37
|
Oquita R, Cuello V, Uppati S, Mannuru S, Salinas D, Dobbs M, Potter-Baker KA. Moving toward elucidating alternative motor pathway structures post-stroke: the value of spinal cord neuroimaging. Front Neurol 2024; 15:1282685. [PMID: 38419695 PMCID: PMC10899520 DOI: 10.3389/fneur.2024.1282685] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2023] [Accepted: 01/29/2024] [Indexed: 03/02/2024] Open
Abstract
Stroke results in varying levels of motor and sensory disability that have been linked to the neurodegeneration and neuroinflammation that occur in the infarct and peri-infarct regions within the brain. Specifically, previous research has identified a key role of the corticospinal tract in motor dysfunction and motor recovery post-stroke. Of note, neuroimaging studies have utilized magnetic resonance imaging (MRI) of the brain to describe the timeline of neurodegeneration of the corticospinal tract in tandem with motor function following a stroke. However, research has suggested that alternate motor pathways may also underlie disease progression and the degree of functional recovery post-stroke. Here, we assert that expanding neuroimaging techniques beyond the brain could expand our knowledge of alternate motor pathway structure post-stroke. In the present work, we will highlight findings that suggest that alternate motor pathways contribute to post-stroke motor dysfunction and recovery, such as the reticulospinal and rubrospinal tract. Then we review imaging and electrophysiological techniques that evaluate alternate motor pathways in populations of stroke and other neurodegenerative disorders. We will then outline and describe spinal cord neuroimaging techniques being used in other neurodegenerative disorders that may provide insight into alternate motor pathways post-stroke.
Collapse
Affiliation(s)
- Ramiro Oquita
- School of Medicine, University of Texas Rio Grande Valley, Edinburg, TX, United States
| | - Victoria Cuello
- School of Medicine, University of Texas Rio Grande Valley, Edinburg, TX, United States
| | - Sarvani Uppati
- School of Medicine, University of Texas Rio Grande Valley, Edinburg, TX, United States
| | - Sravani Mannuru
- School of Medicine, University of Texas Rio Grande Valley, Edinburg, TX, United States
| | - Daniel Salinas
- Department of Neuroscience, School of Medicine, University of Texas Rio Grande Valley, Edinburg, TX, United States
| | - Michael Dobbs
- Department of Clinical Neurosciences, College of Medicine, Florida Atlantic University, Boca Raton, FL, United States
| | - Kelsey A. Potter-Baker
- Department of Neuroscience, School of Medicine, University of Texas Rio Grande Valley, Edinburg, TX, United States
| |
Collapse
|
38
|
Malik RN, Samejima S, Shackleton C, Miller T, Pedrocchi ALG, Rabchevsky AG, Moritz CT, Darrow D, Field-Fote EC, Guanziroli E, Ambrosini E, Molteni F, Gad P, Mushahwar VK, Sachdeva R, Krassioukov AV. REPORT-SCS: minimum reporting standards for spinal cord stimulation studies in spinal cord injury. J Neural Eng 2024; 21:016019. [PMID: 38271712 DOI: 10.1088/1741-2552/ad2290] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2023] [Accepted: 01/25/2024] [Indexed: 01/27/2024]
Abstract
Objective.Electrical spinal cord stimulation (SCS) has emerged as a promising therapy for recovery of motor and autonomic dysfunctions following spinal cord injury (SCI). Despite the rise in studies using SCS for SCI complications, there are no standard guidelines for reporting SCS parameters in research publications, making it challenging to compare, interpret or reproduce reported effects across experimental studies.Approach.To develop guidelines for minimum reporting standards for SCS parameters in pre-clinical and clinical SCI research, we gathered an international panel of expert clinicians and scientists. Using a Delphi approach, we developed guideline items and surveyed the panel on their level of agreement for each item.Main results.There was strong agreement on 26 of the 29 items identified for establishing minimum reporting standards for SCS studies. The guidelines encompass three major SCS categories: hardware, configuration and current parameters, and the intervention.Significance.Standardized reporting of stimulation parameters will ensure that SCS studies can be easily analyzed, replicated, and interpreted by the scientific community, thereby expanding the SCS knowledge base and fostering transparency in reporting.
Collapse
Affiliation(s)
- Raza N Malik
- International Collaboration on Repair Discoveries, Department of Medicine, University of British Columbia, Vancouver, British Columbia, Canada
- Division of Physical Medicine and Rehabilitation, Department of Medicine, University of British Columbia, Vancouver, British Columbia, Canada
| | - Soshi Samejima
- International Collaboration on Repair Discoveries, Department of Medicine, University of British Columbia, Vancouver, British Columbia, Canada
- Division of Physical Medicine and Rehabilitation, Department of Medicine, University of British Columbia, Vancouver, British Columbia, Canada
| | - Claire Shackleton
- International Collaboration on Repair Discoveries, Department of Medicine, University of British Columbia, Vancouver, British Columbia, Canada
- Division of Physical Medicine and Rehabilitation, Department of Medicine, University of British Columbia, Vancouver, British Columbia, Canada
| | - Tiev Miller
- International Collaboration on Repair Discoveries, Department of Medicine, University of British Columbia, Vancouver, British Columbia, Canada
- Division of Physical Medicine and Rehabilitation, Department of Medicine, University of British Columbia, Vancouver, British Columbia, Canada
| | - Alessandra Laura Giulia Pedrocchi
- Nearlab, Department di Electronics, Information and Bioengineering, and We-Cobot Laboratory, Polo Territoriale di Lecco, Politecnico di Milano, Piazza Leonardo da Vinci 32, 20133 Milan, Italy
| | - Alexander G Rabchevsky
- Spinal Cord & Brain Injury Research Center, Department of Physiology, University of Kentucky, Lexington, KY, United States of America
| | - Chet T Moritz
- Departments of Electrical & Computer Engineering, Rehabilitation Medicine, and Physiology & Biophysics, and the Center for Neurotechnology, University of Washington, Seattle, WA, United States of America
| | - David Darrow
- Department of Neurosurgery, University of Minnesota, Minneapolis, MN, United States of America
- Department of Neurosurgery, Hennepin County Medical Center, Minneapolis, MN, United States of America
| | - Edelle C Field-Fote
- Shepherd Center, Crawford Research Institute, Atlanta, Georgia, United States of America
- Emory University School of Medicine, Division of Physical Therapy, Atlanta, Georgia, United States of America
- Georgia Institute of Technology, School of Biological Sciences, Program in Applied Physiology, Atlanta, Georgia, United States of America
| | - Eleonora Guanziroli
- Villa Beretta Rehabilitation Center, Valduce Hospital, Costa Masnaga, Lecco, Italy
| | - Emilia Ambrosini
- Nearlab, Department di Electronics, Information and Bioengineering, and We-Cobot Laboratory, Polo Territoriale di Lecco, Politecnico di Milano, Piazza Leonardo da Vinci 32, 20133 Milan, Italy
| | - Franco Molteni
- Villa Beretta Rehabilitation Center, Valduce Hospital, Costa Masnaga, Lecco, Italy
| | - Parag Gad
- SpineX Inc., Los Angeles, Los Angeles, CA, United States of America
| | - Vivian K Mushahwar
- Department of Medicine and Sensory Motor Adaptive Rehabilitation Technology (SMART) Network, University of Alberta, Edmonton, Alberta, Canada
| | - Rahul Sachdeva
- International Collaboration on Repair Discoveries, Department of Medicine, University of British Columbia, Vancouver, British Columbia, Canada
- Division of Physical Medicine and Rehabilitation, Department of Medicine, University of British Columbia, Vancouver, British Columbia, Canada
| | - Andrei V Krassioukov
- International Collaboration on Repair Discoveries, Department of Medicine, University of British Columbia, Vancouver, British Columbia, Canada
- Division of Physical Medicine and Rehabilitation, Department of Medicine, University of British Columbia, Vancouver, British Columbia, Canada
- Spinal Cord Research Program, G.F. Strong Rehabilitation Centre, Vancouver Coastal Health, Vancouver, British Columbia, Canada
| |
Collapse
|
39
|
Hamzei F, Ritter A, Pohl K, Stäps P, Wieduwild E. Different Effect Sizes of Motor Skill Training Combined with Repetitive Transcranial versus Trans-Spinal Magnetic Stimulation in Healthy Subjects. Brain Sci 2024; 14:165. [PMID: 38391739 PMCID: PMC10887384 DOI: 10.3390/brainsci14020165] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2023] [Revised: 01/14/2024] [Accepted: 01/31/2024] [Indexed: 02/24/2024] Open
Abstract
Repetitive transcranial magnetic stimulation (rTMS) is used to enhance motor training (MT) performance. The use of rTMS is limited under certain conditions, such as after a stroke with severe damage to the corticospinal tract. This raises the question as to whether repetitive trans-spinal magnetic stimulation (rSMS) can also be used to improve MT. A direct comparison of the effect size between rTMS and rSMS on the same MT is still lacking. Before conducting the study in patients, we determined the effect sizes of different stimulation approaches combined with the same motor training in healthy subjects. Two experiments (E1 and E2) with 96 subjects investigated the effect size of combining magnetic stimulation with the same MT. In E1, high-frequency rTMS, rSMS, and spinal sham stimulation (sham-spinal) were applied once in combination with MT, while one group only received the same MT (without stimulation). In E2, rTMS, rSMS, and sham-spinal were applied in combination with MT over several days. In all subjects, motor tests and motor-evoked potentials were evaluated before and after the intervention period. rTMS had the greatest effect on MT, followed by rSMS and then sham-spinal. Daily stimulation resulted in additional training gains. This study suggests that rSMS increases excitability and also enhances MT performance. This current study provides a basis for further research to discover whether patients who cannot be treated effectively with rTMS would benefit from rSMS.
Collapse
Affiliation(s)
- Farsin Hamzei
- Section of Neurological Rehabilitation, Hans-Berger-Hospital of Neurology, Jena University Hospital, Am Klinikum 1, 07747 Jena, Germany
- Department of Neurology, Moritz Klinik, Hermann-Sachse-Straße 46, 07639 Bad Klosterlausnitz, Germany
| | - Alexander Ritter
- Section of Neurological Rehabilitation, Hans-Berger-Hospital of Neurology, Jena University Hospital, Am Klinikum 1, 07747 Jena, Germany
| | - Kristin Pohl
- Section of Neurological Rehabilitation, Hans-Berger-Hospital of Neurology, Jena University Hospital, Am Klinikum 1, 07747 Jena, Germany
- Department of Neurology, Moritz Klinik, Hermann-Sachse-Straße 46, 07639 Bad Klosterlausnitz, Germany
| | - Peggy Stäps
- Department of Neurology, Moritz Klinik, Hermann-Sachse-Straße 46, 07639 Bad Klosterlausnitz, Germany
| | - Eric Wieduwild
- Section of Neurological Rehabilitation, Hans-Berger-Hospital of Neurology, Jena University Hospital, Am Klinikum 1, 07747 Jena, Germany
- Department of Neurology, Moritz Klinik, Hermann-Sachse-Straße 46, 07639 Bad Klosterlausnitz, Germany
| |
Collapse
|
40
|
Donati E, Valle G. Neuromorphic hardware for somatosensory neuroprostheses. Nat Commun 2024; 15:556. [PMID: 38228580 PMCID: PMC10791662 DOI: 10.1038/s41467-024-44723-3] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2022] [Accepted: 01/03/2024] [Indexed: 01/18/2024] Open
Abstract
In individuals with sensory-motor impairments, missing limb functions can be restored using neuroprosthetic devices that directly interface with the nervous system. However, restoring the natural tactile experience through electrical neural stimulation requires complex encoding strategies. Indeed, they are presently limited in effectively conveying or restoring tactile sensations by bandwidth constraints. Neuromorphic technology, which mimics the natural behavior of neurons and synapses, holds promise for replicating the encoding of natural touch, potentially informing neurostimulation design. In this perspective, we propose that incorporating neuromorphic technologies into neuroprostheses could be an effective approach for developing more natural human-machine interfaces, potentially leading to advancements in device performance, acceptability, and embeddability. We also highlight ongoing challenges and the required actions to facilitate the future integration of these advanced technologies.
Collapse
Affiliation(s)
- Elisa Donati
- Institute of Neuroinformatics, University of Zurich and ETH Zurich, Zurich, Switzerland.
| | - Giacomo Valle
- Department of Organismal Biology and Anatomy, University of Chicago, Chicago, IL, USA.
| |
Collapse
|
41
|
Pedrocchiguest A, Guanziroli E. Guest Editorial Special Section on Functional Recovery and Brain Plasticity. IEEE OPEN JOURNAL OF ENGINEERING IN MEDICINE AND BIOLOGY 2024; 4:275-277. [PMID: 38196974 PMCID: PMC10776091 DOI: 10.1109/ojemb.2023.3339954] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2023] [Accepted: 12/04/2023] [Indexed: 01/11/2024] Open
Abstract
The aim of rehabilitation after neurological damage is functional recovery, which includes motor, sensory, and cognitive aspects, which are closely interrelated [22].
Collapse
Affiliation(s)
- Alessandra Pedrocchiguest
- NEARLAB, Neuroengineering and Medical Robotics Laboratory, AND WE-COBOT, Wearable Collaborative Laboratory, Department of Electronics, Information and BioengineeringPolitecnico di MilanoMilanItaly
| | | |
Collapse
|
42
|
Ali R, Schwalb JM. History and Future of Spinal Cord Stimulation. Neurosurgery 2024; 94:20-28. [PMID: 37681953 DOI: 10.1227/neu.0000000000002654] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2023] [Accepted: 06/27/2023] [Indexed: 09/09/2023] Open
Abstract
Spinal cord stimulation (SCS) is a surgical treatment for chronic neuropathic pain refractory to medical management. An SCS system comprised one or more leads implanted in the epidural space, typically connected to an implantable pulse generator. This review discusses the history, indications, surgical technique, technological advances, and future directions of SCS.
Collapse
Affiliation(s)
- Rushna Ali
- Department of Neurological Surgery, Mayo Clinic, Rochester , Minnesota , USA
| | - Jason M Schwalb
- Department of Neurological Surgery, Henry Ford Medical Group, West Bloomfield , Michigan , USA
| |
Collapse
|
43
|
Zou S, Zheng Y, Jiang X, Lan YL, Chen Z, Xu C. Shed a New Light on Spinal Cord Injury-induced Permanent Paralysis with the Brain-spine Interface. Neurosci Bull 2023; 39:1898-1900. [PMID: 37768518 PMCID: PMC10661654 DOI: 10.1007/s12264-023-01127-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2023] [Accepted: 08/21/2023] [Indexed: 09/29/2023] Open
Affiliation(s)
- Shuang Zou
- Xinhua Hospital of Zhejiang Province, The Second Affiliated Hospital of Zhejiang Chinese Medical University, Key Laboratory of Neuropharmacology and Translational Medicine of Zhejiang Province, School of Pharmaceutical Science, Zhejiang Chinese Medical University, Hangzhou, 310053, China
| | - Yang Zheng
- Xinhua Hospital of Zhejiang Province, The Second Affiliated Hospital of Zhejiang Chinese Medical University, Key Laboratory of Neuropharmacology and Translational Medicine of Zhejiang Province, School of Pharmaceutical Science, Zhejiang Chinese Medical University, Hangzhou, 310053, China
- Department of Neurology, Zhejiang Provincial Hospital of Chinese Medicine, The First Affiliated Hospital of Zhejiang Chinese Medical University, Hangzhou, 310060, China
| | - Xuhong Jiang
- Xinhua Hospital of Zhejiang Province, The Second Affiliated Hospital of Zhejiang Chinese Medical University, Key Laboratory of Neuropharmacology and Translational Medicine of Zhejiang Province, School of Pharmaceutical Science, Zhejiang Chinese Medical University, Hangzhou, 310053, China
- Department of Neurology, Zhejiang Provincial Hospital of Chinese Medicine, The First Affiliated Hospital of Zhejiang Chinese Medical University, Hangzhou, 310060, China
| | - Yu-Long Lan
- Department of Neurosurgery, Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, 310000, China
| | - Zhong Chen
- Xinhua Hospital of Zhejiang Province, The Second Affiliated Hospital of Zhejiang Chinese Medical University, Key Laboratory of Neuropharmacology and Translational Medicine of Zhejiang Province, School of Pharmaceutical Science, Zhejiang Chinese Medical University, Hangzhou, 310053, China.
| | - Cenglin Xu
- Xinhua Hospital of Zhejiang Province, The Second Affiliated Hospital of Zhejiang Chinese Medical University, Key Laboratory of Neuropharmacology and Translational Medicine of Zhejiang Province, School of Pharmaceutical Science, Zhejiang Chinese Medical University, Hangzhou, 310053, China.
| |
Collapse
|
44
|
Balaguer JM, Prat-Ortega G, Verma N, Yadav P, Sorensen E, de Freitas R, Ensel S, Borda L, Donadio S, Liang L, Ho J, Damiani A, Grigsby E, Fields DP, Gonzalez-Martinez JA, Gerszten PC, Fisher LE, Weber DJ, Pirondini E, Capogrosso M. SUPRASPINAL CONTROL OF MOTONEURONS AFTER PARALYSIS ENABLED BY SPINAL CORD STIMULATION. MEDRXIV : THE PREPRINT SERVER FOR HEALTH SCIENCES 2023:2023.11.29.23298779. [PMID: 38076797 PMCID: PMC10705627 DOI: 10.1101/2023.11.29.23298779] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/19/2023]
Abstract
Spinal cord stimulation (SCS) restores motor control after spinal cord injury (SCI) and stroke. This evidence led to the hypothesis that SCS facilitates residual supraspinal inputs to spinal motoneurons. Instead, here we show that SCS does not facilitate residual supraspinal inputs but directly triggers motoneurons action potentials. However, supraspinal inputs can shape SCS-mediated activity, mimicking volitional control of motoneuron firing. Specifically, by combining simulations, intraspinal electrophysiology in monkeys and single motor unit recordings in humans with motor paralysis, we found that residual supraspinal inputs transform subthreshold SCS-induced excitatory postsynaptic potentials into suprathreshold events. We then demonstrated that only a restricted set of stimulation parameters enables volitional control of motoneuron firing and that lesion severity further restricts the set of effective parameters. Our results explain the facilitation of voluntary motor control during SCS while predicting the limitations of this neurotechnology in cases of severe loss of supraspinal axons.
Collapse
Affiliation(s)
- Josep-Maria Balaguer
- Rehab and Neural Engineering Labs, University of Pittsburgh, Pittsburgh, US
- Dept. of Bioengineering, University of Pittsburgh, Pittsburgh, US
| | - Genis Prat-Ortega
- Rehab and Neural Engineering Labs, University of Pittsburgh, Pittsburgh, US
- Dept. of Neurological Surgery, University of Pittsburgh, Pittsburgh, US
| | - Nikhil Verma
- Dept. of Mechanical Engineering, Carnegie Mellon University, Pittsburgh, US
| | - Prakarsh Yadav
- Dept. of Mechanical Engineering, Carnegie Mellon University, Pittsburgh, US
| | - Erynn Sorensen
- Rehab and Neural Engineering Labs, University of Pittsburgh, Pittsburgh, US
- Dept. of Bioengineering, University of Pittsburgh, Pittsburgh, US
| | - Roberto de Freitas
- Rehab and Neural Engineering Labs, University of Pittsburgh, Pittsburgh, US
- Dept. of Neurological Surgery, University of Pittsburgh, Pittsburgh, US
| | - Scott Ensel
- Rehab and Neural Engineering Labs, University of Pittsburgh, Pittsburgh, US
- Dept. of Bioengineering, University of Pittsburgh, Pittsburgh, US
| | - Luigi Borda
- Dept. of Mechanical Engineering, Carnegie Mellon University, Pittsburgh, US
| | - Serena Donadio
- Rehab and Neural Engineering Labs, University of Pittsburgh, Pittsburgh, US
| | - Lucy Liang
- Rehab and Neural Engineering Labs, University of Pittsburgh, Pittsburgh, US
- Dept. of Bioengineering, University of Pittsburgh, Pittsburgh, US
| | - Jonathan Ho
- Rehab and Neural Engineering Labs, University of Pittsburgh, Pittsburgh, US
- School of Medicine, University of Pittsburgh, Pittsburgh, US
| | - Arianna Damiani
- Rehab and Neural Engineering Labs, University of Pittsburgh, Pittsburgh, US
- Dept. of Bioengineering, University of Pittsburgh, Pittsburgh, US
| | - Erinn Grigsby
- Rehab and Neural Engineering Labs, University of Pittsburgh, Pittsburgh, US
- Dept. of Physical Medicine and Rehabilitation, University of Pittsburgh, Pittsburgh, US
| | - Daryl P. Fields
- Rehab and Neural Engineering Labs, University of Pittsburgh, Pittsburgh, US
- Dept. of Neurological Surgery, University of Pittsburgh, Pittsburgh, US
| | | | - Peter C. Gerszten
- Dept. of Neurological Surgery, University of Pittsburgh, Pittsburgh, US
| | - Lee E. Fisher
- Rehab and Neural Engineering Labs, University of Pittsburgh, Pittsburgh, US
- Dept. of Bioengineering, University of Pittsburgh, Pittsburgh, US
- Dept. of Physical Medicine and Rehabilitation, University of Pittsburgh, Pittsburgh, US
- Dept. of Biomedical Engineering, Carnegie Mellon University, Pittsburgh, US
| | - Douglas J. Weber
- Dept. of Mechanical Engineering, Carnegie Mellon University, Pittsburgh, US
- Neuroscience Institute, Carnegie Mellon University, Pittsburgh, US
| | - Elvira Pirondini
- Rehab and Neural Engineering Labs, University of Pittsburgh, Pittsburgh, US
- Dept. of Bioengineering, University of Pittsburgh, Pittsburgh, US
- Dept. of Physical Medicine and Rehabilitation, University of Pittsburgh, Pittsburgh, US
| | - Marco Capogrosso
- Rehab and Neural Engineering Labs, University of Pittsburgh, Pittsburgh, US
- Dept. of Bioengineering, University of Pittsburgh, Pittsburgh, US
- Dept. of Neurological Surgery, University of Pittsburgh, Pittsburgh, US
| |
Collapse
|
45
|
Affiliation(s)
- Laureen D Hachem
- Division of Genetics and Development, Krembil Research Institute, University Health Network, Toronto, ON, Canada
- Division of Neurosurgery, Department of Surgery, University of Toronto, Toronto, ON, Canada
| | - Gustavo Balbinot
- Division of Genetics and Development, Krembil Research Institute, University Health Network, Toronto, ON, Canada
| | - Michael G Fehlings
- Division of Genetics and Development, Krembil Research Institute, University Health Network, Toronto, ON, Canada.
- Division of Neurosurgery, Department of Surgery, University of Toronto, Toronto, ON, Canada.
| |
Collapse
|
46
|
Xia X, Dong X, Huo H, Zhang Y, Song J, Wang D. Clinical study of low-frequency acupoint electrical stimulation to improve thumb-to-finger movements after stroke: A randomized controlled trial. Medicine (Baltimore) 2023; 102:e35755. [PMID: 38013325 PMCID: PMC10681496 DOI: 10.1097/md.0000000000035755] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/28/2023] [Accepted: 10/02/2023] [Indexed: 11/29/2023] Open
Abstract
OBJECTIVE To examine the effect of low-frequency acupoint electrical stimulation (LFES) on the surface electromyographic (sEMG) signals of the thumb-to-finger movement muscles in stroke patients, and to evaluate the clinical efficacy of LFES on hand function recovery after stroke. METHODS Sixty patients who met the inclusion criteria were randomly assigned to a LFES group or an electroacupuncture (EA) group, with 30 patients in each group. Both groups received conventional treatment, and the EA group was treated with acupoints from the book of Acupuncture and Moxibustion, while the LFES group was treated with acupoints from a previous study. The sEMG characteristic values (maximum value and RMS), Chinese Stroke Clinical Neurological Deficit Scale (CSS), Brunnstrom Motor Function Evaluation, Modified Ashworth Scale (MAS), Lindmark Hand Function Score and Lovett Muscle Strength Classification were measured before and after treatment. RESULTS After treatment, both groups showed improvement in sEMG characteristic values, Brunnstrom motor function score, Lindmark hand function score, and Lovett muscle strength classification compared with before treatment, and the improvement in the LFES group was significantly better than that in the EA group (P < .05). The CSS score and MAS classification of both groups decreased compared with before treatment, and the decrease in the LFES group was significantly better than that in the EA group (P < .05). The total effective rate of the LFES group was 92.86%, and that of the EA group was 79.31%. The difference between the 2 groups was statistically significant (P < .05). CONCLUSION Both LFES and EA were effective in restoring thumb-to-finger movement function after stroke, as evidenced by the increased maximum value and root mean square values of the first dorsal interosseous muscle and the extensor pollicis brevis muscle, the decreased CSS score, the increased Brunnstrom motor function score, the decreased MAS classification, the increased Lindmark hand function score, and the increased Lovett muscle strength classification. However, LFES showed more obvious improvement and better efficacy than EA, which is worthy of clinical promotion.
Collapse
Affiliation(s)
- Xue Xia
- Heilongjiang University of Chinese Medicine, Harbin, China
| | - Xu Dong
- Second Affiliated Hospital of Heilongjiang University of Chinese medicine, Harbin, China
| | - Hong Huo
- Second Affiliated Hospital of Heilongjiang University of Chinese medicine, Harbin, China
| | - Ying Zhang
- Heilongjiang University of Chinese Medicine, Harbin, China
- Second Affiliated Hospital of Heilongjiang University of Chinese medicine, Harbin, China
| | - Jing Song
- Second Affiliated Hospital of Heilongjiang University of Chinese medicine, Harbin, China
| | - Dongyan Wang
- Heilongjiang University of Chinese Medicine, Harbin, China
- Second Affiliated Hospital of Heilongjiang University of Chinese medicine, Harbin, China
| |
Collapse
|
47
|
Rizzoglio F, Altan E, Ma X, Bodkin KL, Dekleva BM, Solla SA, Kennedy A, Miller LE. From monkeys to humans: observation-basedEMGbrain-computer interface decoders for humans with paralysis. J Neural Eng 2023; 20:056040. [PMID: 37844567 PMCID: PMC10618714 DOI: 10.1088/1741-2552/ad038e] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2023] [Revised: 10/02/2023] [Accepted: 10/16/2023] [Indexed: 10/18/2023]
Abstract
Objective. Intracortical brain-computer interfaces (iBCIs) aim to enable individuals with paralysis to control the movement of virtual limbs and robotic arms. Because patients' paralysis prevents training a direct neural activity to limb movement decoder, most iBCIs rely on 'observation-based' decoding in which the patient watches a moving cursor while mentally envisioning making the movement. However, this reliance on observed target motion for decoder development precludes its application to the prediction of unobservable motor output like muscle activity. Here, we ask whether recordings of muscle activity from a surrogate individual performing the same movement as the iBCI patient can be used as target for an iBCI decoder.Approach. We test two possible approaches, each using data from a human iBCI user and a monkey, both performing similar motor actions. In one approach, we trained a decoder to predict the electromyographic (EMG) activity of a monkey from neural signals recorded from a human. We then contrast this to a second approach, based on the hypothesis that the low-dimensional 'latent' neural representations of motor behavior, known to be preserved across time for a given behavior, might also be preserved across individuals. We 'transferred' an EMG decoder trained solely on monkey data to the human iBCI user after using Canonical Correlation Analysis to align the human latent signals to those of the monkey.Main results. We found that both direct and transfer decoding approaches allowed accurate EMG predictions between two monkeys and from a monkey to a human.Significance. Our findings suggest that these latent representations of behavior are consistent across animals and even primate species. These methods are an important initial step in the development of iBCI decoders that generate EMG predictions that could serve as signals for a biomimetic decoder controlling motion and impedance of a prosthetic arm, or even muscle force directly through functional electrical stimulation.
Collapse
Affiliation(s)
- Fabio Rizzoglio
- Department of Neuroscience, Northwestern University, Chicago, IL, United States of America
| | - Ege Altan
- Department of Neuroscience, Northwestern University, Chicago, IL, United States of America
- Department of Biomedical Engineering, Northwestern University, Evanston, IL, United States of America
| | - Xuan Ma
- Department of Neuroscience, Northwestern University, Chicago, IL, United States of America
| | - Kevin L Bodkin
- Department of Neuroscience, Northwestern University, Chicago, IL, United States of America
| | - Brian M Dekleva
- Rehab Neural Engineering Labs, Department of Physical Medicine and Rehabilitation, University of Pittsburgh, Pittsburgh, PA, United States of America
| | - Sara A Solla
- Department of Neuroscience, Northwestern University, Chicago, IL, United States of America
- Department of Physics and Astronomy, Northwestern University, Evanston, IL, United States of America
| | - Ann Kennedy
- Department of Neuroscience, Northwestern University, Chicago, IL, United States of America
| | - Lee E Miller
- Department of Neuroscience, Northwestern University, Chicago, IL, United States of America
- Department of Biomedical Engineering, Northwestern University, Evanston, IL, United States of America
- Shirley Ryan AbilityLab, Chicago, IL, United States of America
- Department of Physical Medicine and Rehabilitation, Northwestern University, Chicago, IL, United States of America
| |
Collapse
|
48
|
Mirzakhalili E, Rogers ER, Lempka SF. An optimization framework for targeted spinal cord stimulation. J Neural Eng 2023; 20:056026. [PMID: 37647885 PMCID: PMC10535048 DOI: 10.1088/1741-2552/acf522] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2023] [Revised: 08/14/2023] [Accepted: 08/30/2023] [Indexed: 09/01/2023]
Abstract
Objective. Spinal cord stimulation (SCS) is a common neurostimulation therapy to manage chronic pain. Technological advances have produced new neurostimulation systems with expanded capabilities in an attempt to improve the clinical outcomes associated with SCS. However, these expanded capabilities have dramatically increased the number of possible stimulation parameters and made it intractable to efficiently explore this large parameter space within the context of standard clinical programming procedures. Therefore, in this study, we developed an optimization approach to define the optimal current amplitudes or fractions across individual contacts in an SCS electrode array(s).Approach. We developed an analytic method using the Lagrange multiplier method along with smoothing approximations. To test our optimization framework, we used a hybrid computational modeling approach that consisted of a finite element method model and multi-compartment models of axons and cells within the spinal cord. Moreover, we extended our approach to multi-objective optimization to explore the trade-off between activating regions of interest (ROIs) and regions of avoidance (ROAs).Main results. For simple ROIs, our framework suggested optimized configurations that resembled simple bipolar configurations. However, when we considered multi-objective optimization, our framework suggested nontrivial stimulation configurations that could be selected from Pareto fronts to target multiple ROIs or avoid ROAs.Significance. We developed an optimization framework for targeted SCS. Our method is analytic, which allows for the fast calculation of optimal solutions. For the first time, we provided a multi-objective approach for selective SCS. Through this approach, we were able to show that novel configurations can provide neural recruitment profiles that are not possible with conventional stimulation configurations (e.g. bipolar stimulation). Most importantly, once integrated with computational models that account for sources of interpatient variability (e.g. anatomy, electrode placement), our optimization framework can be utilized to provide stimulation settings tailored to the needs of individual patients.
Collapse
Affiliation(s)
- Ehsan Mirzakhalili
- Department of Biomedical Engineering, University of Michigan, Ann Arbor, MI, United States of America
- Biointerfaces Institute, University of Michigan, Ann Arbor, MI, United States of America
| | - Evan R Rogers
- Department of Biomedical Engineering, University of Michigan, Ann Arbor, MI, United States of America
- Biointerfaces Institute, University of Michigan, Ann Arbor, MI, United States of America
| | - Scott F Lempka
- Department of Biomedical Engineering, University of Michigan, Ann Arbor, MI, United States of America
- Biointerfaces Institute, University of Michigan, Ann Arbor, MI, United States of America
- Department of Anesthesiology, University of Michigan, Ann Arbor, MI, United States of America
| |
Collapse
|
49
|
Mondello SE, Young L, Dang V, Fischedick AE, Tolley NM, Wang T, Bravo MA, Lee D, Tucker B, Knoernschild M, Pedigo BD, Horner PJ, Moritz CT. Optogenetic spinal stimulation promotes new axonal growth and skilled forelimb recovery in rats with sub-chronic cervical spinal cord injury. J Neural Eng 2023; 20:056005. [PMID: 37524080 PMCID: PMC10496592 DOI: 10.1088/1741-2552/acec13] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2022] [Revised: 07/17/2023] [Accepted: 07/31/2023] [Indexed: 08/02/2023]
Abstract
Objective.Spinal cord injury (SCI) leads to debilitating sensorimotor deficits that greatly limit quality of life. This work aims to develop a mechanistic understanding of how to best promote functional recovery following SCI. Electrical spinal stimulation is one promising approach that is effective in both animal models and humans with SCI. Optogenetic stimulation is an alternative method of stimulating the spinal cord that allows for cell-type-specific stimulation. The present work investigates the effects of preferentially stimulating neurons within the spinal cord and not glial cells, termed 'neuron-specific' optogenetic spinal stimulation. We examined forelimb recovery, axonal growth, and vasculature after optogenetic or sham stimulation in rats with cervical SCI.Approach.Adult female rats received a moderate cervical hemicontusion followed by the injection of a neuron-specific optogenetic viral vector ipsilateral and caudal to the lesion site. Animals then began rehabilitation on the skilled forelimb reaching task. At four weeks post-injury, rats received a micro-light emitting diode (µLED) implant to optogenetically stimulate the caudal spinal cord. Stimulation began at six weeks post-injury and occurred in conjunction with activities to promote use of the forelimbs. Following six weeks of stimulation, rats were perfused, and tissue stained for GAP-43, laminin, Nissl bodies and myelin. Location of viral transduction and transduced cell types were also assessed.Main Results.Our results demonstrate that neuron-specific optogenetic spinal stimulation significantly enhances recovery of skilled forelimb reaching. We also found significantly more GAP-43 and laminin labeling in the optogenetically stimulated groups indicating stimulation promotes axonal growth and angiogenesis.Significance.These findings indicate that optogenetic stimulation is a robust neuromodulator that could enable future therapies and investigations into the role of specific cell types, pathways, and neuronal populations in supporting recovery after SCI.
Collapse
Affiliation(s)
- Sarah E Mondello
- Department of Rehabilitation Medicine, University of Washington, Seattle, WA 98195, United States of America
- Center for Neurotechnology, Seattle, WA 98195, United States of America
| | - Lisa Young
- Department of Rehabilitation Medicine, University of Washington, Seattle, WA 98195, United States of America
| | - Viet Dang
- Department of Rehabilitation Medicine, University of Washington, Seattle, WA 98195, United States of America
| | - Amanda E Fischedick
- Department of Rehabilitation Medicine, University of Washington, Seattle, WA 98195, United States of America
| | - Nicholas M Tolley
- Department of Rehabilitation Medicine, University of Washington, Seattle, WA 98195, United States of America
- Center for Neurotechnology, Seattle, WA 98195, United States of America
| | - Tian Wang
- Department of Rehabilitation Medicine, University of Washington, Seattle, WA 98195, United States of America
| | - Madison A Bravo
- Department of Rehabilitation Medicine, University of Washington, Seattle, WA 98195, United States of America
- Center for Neurotechnology, Seattle, WA 98195, United States of America
| | - Dalton Lee
- Department of Rehabilitation Medicine, University of Washington, Seattle, WA 98195, United States of America
| | - Belinda Tucker
- Department of Rehabilitation Medicine, University of Washington, Seattle, WA 98195, United States of America
| | - Megan Knoernschild
- Department of Rehabilitation Medicine, University of Washington, Seattle, WA 98195, United States of America
| | - Benjamin D Pedigo
- Department of Rehabilitation Medicine, University of Washington, Seattle, WA 98195, United States of America
- Center for Neurotechnology, Seattle, WA 98195, United States of America
| | - Philip J Horner
- Center for Neuroregeneration, Department of Neurological Surgery, Houston Methodist Research Institute, Houston, TX 77030, United States of America
| | - Chet T Moritz
- Department of Rehabilitation Medicine, University of Washington, Seattle, WA 98195, United States of America
- Center for Neurotechnology, Seattle, WA 98195, United States of America
- Department of Electrical and Computer Engineering, University of Washington, Seattle, WA 98195, United States of America
- Department of Physiology and Biophysics, University of Washington, Seattle, WA 98195, United States of America
| |
Collapse
|
50
|
Bryson N, Lombardi L, Hawthorn R, Fei J, Keesey R, Peiffer J, Seáñez I. Enhanced selectivity of transcutaneous spinal cord stimulation by multielectrode configuration. J Neural Eng 2023; 20:10.1088/1741-2552/ace552. [PMID: 37419109 PMCID: PMC10481387 DOI: 10.1088/1741-2552/ace552] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2023] [Accepted: 07/07/2023] [Indexed: 07/09/2023]
Abstract
Objective.Transcutaneous spinal cord stimulation (tSCS) has been gaining momentum as a non-invasive rehabilitation approach to restore movement to paralyzed muscles after spinal cord injury (SCI). However, its low selectivity limits the types of movements that can be enabled and, thus, its potential applications in rehabilitation.Approach.In this cross-over study design, we investigated whether muscle recruitment selectivity of individual muscles could be enhanced by multielectrode configurations of tSCS in 16 neurologically intact individuals. We hypothesized that due to the segmental innervation of lower limb muscles, we could identify muscle-specific optimal stimulation locations that would enable improved recruitment selectivity over conventional tSCS. We elicited leg muscle responses by delivering biphasic pulses of electrical stimulation to the lumbosacral enlargement using conventional and multielectrode tSCS.Results.Analysis of recruitment curve responses confirmed that multielectrode configurations could improve the rostrocaudal and lateral selectivity of tSCS. To investigate whether motor responses elicited by spatially selective tSCS were mediated by posterior root-muscle reflexes, each stimulation event was a paired pulse with a conditioning-test interval of 33.3 ms. Muscle responses to the second stimulation pulse were significantly suppressed, a characteristic of post-activation depression suggesting that spatially selective tSCS recruits proprioceptive fibers that reflexively activate muscle-specific motor neurons in the spinal cord. Moreover, the combination of leg muscle recruitment probability and segmental innervation maps revealed a stereotypical spinal activation map in congruence with each electrode's position.Significance. Improvements in muscle recruitment selectivity could be essential for the effective translation into stimulation protocols that selectively enhance single-joint movements in neurorehabilitation.
Collapse
Affiliation(s)
- Noah Bryson
- Biomedical Engineering, Washington University in St. Louis
- Division of Neurotechnology, Washington University School of Medicine in St. Louis
| | - Lorenzo Lombardi
- Biomedical Engineering, Washington University in St. Louis
- Division of Neurotechnology, Washington University School of Medicine in St. Louis
| | - Rachel Hawthorn
- Biomedical Engineering, Washington University in St. Louis
- Division of Neurotechnology, Washington University School of Medicine in St. Louis
| | - Jie Fei
- Biomedical Engineering, Washington University in St. Louis
- Division of Neurotechnology, Washington University School of Medicine in St. Louis
| | - Rodolfo Keesey
- Biomedical Engineering, Washington University in St. Louis
- Division of Neurotechnology, Washington University School of Medicine in St. Louis
| | - J.D. Peiffer
- Biomedical Engineering, Washington University in St. Louis
- Division of Neurotechnology, Washington University School of Medicine in St. Louis
- Biomedical Engineering, Northwestern University
| | - Ismael Seáñez
- Biomedical Engineering, Washington University in St. Louis
- Division of Neurotechnology, Washington University School of Medicine in St. Louis
- Neurosurgery, Washington University School of Medicine in St. Louis
| |
Collapse
|