1
|
Defard T, Desrentes A, Fouillade C, Mueller F. Homebuilt Imaging-Based Spatial Transcriptomics: Tertiary Lymphoid Structures as a Case Example. Methods Mol Biol 2025; 2864:77-105. [PMID: 39527218 DOI: 10.1007/978-1-0716-4184-2_5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2024]
Abstract
Spatial transcriptomics methods provide insight into the cellular heterogeneity and spatial architecture of complex, multicellular systems. Combining molecular and spatial information provides important clues to study tissue architecture in development and disease. Here, we present a comprehensive do-it-yourself (DIY) guide to perform such experiments at reduced costs leveraging open-source approaches. This guide spans the entire life cycle of a project, from its initial definition to experimental choices, wet lab approaches, instrumentation, and analysis. As a concrete example, we focus on tertiary lymphoid structures (TLS), which we use to develop typical questions that can be addressed by these approaches.
Collapse
Affiliation(s)
- Thomas Defard
- Institut Pasteur, Université Paris Cité, Photonic Bio-Imaging, Centre de Ressources et Recherches Technologiques (UTechS-PBI, C2RT), Paris, France
- Institut Pasteur, Université Paris Cité, Imaging and Modeling Unit, Paris, France
- Centre for Computational Biology (CBIO), Mines Paris, PSL University, Paris, France
- Institut Curie, PSL University, Paris, France
- INSERM, U900, Paris, France
| | - Auxence Desrentes
- UMRS1135 Sorbonne University, Paris, France
- INSERM U1135, Paris, France
- Team "Immune Microenvironment and Immunotherapy", Centre for Immunology and Microbial Infections (CIMI), Paris, France
| | - Charles Fouillade
- Institut Curie, Inserm U1021-CNRS UMR 3347, University Paris-Saclay, PSL Research University, Centre Universitaire, Orsay, France
| | - Florian Mueller
- Institut Pasteur, Université Paris Cité, Photonic Bio-Imaging, Centre de Ressources et Recherches Technologiques (UTechS-PBI, C2RT), Paris, France.
- Institut Pasteur, Université Paris Cité, Imaging and Modeling Unit, Paris, France.
| |
Collapse
|
2
|
Liu T, Fang ZY, Zhang Z, Yu Y, Li M, Yin MZ. A comprehensive overview of graph neural network-based approaches to clustering for spatial transcriptomics. Comput Struct Biotechnol J 2024; 23:106-128. [PMID: 38089467 PMCID: PMC10714345 DOI: 10.1016/j.csbj.2023.11.055] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2023] [Revised: 11/24/2023] [Accepted: 11/27/2023] [Indexed: 10/16/2024] Open
Abstract
Spatial transcriptomics technologies enable researchers to accurately quantify and localize messenger ribonucleic acid (mRNA) transcripts at a high resolution while preserving their spatial context. The identification of spatial domains, or the task of spatial clustering, plays a crucial role in investigating data on spatial transcriptomes. One promising approach for classifying spatial domains involves the use of graph neural networks (GNNs) by leveraging gene expressions, spatial locations, and histological images. This study provided a comprehensive overview of the most recent GNN-based methods of spatial clustering methods for the analysis of data on spatial transcriptomics. We extensively evaluated the performance of current methods on prevalent datasets of spatial transcriptomics by considering their accuracy of clustering, robustness, data stabilization, relevant requirements, computational efficiency, and memory use. To this end, we explored 60 clustering scenarios by extending the essential frameworks of spatial clustering for the selection of the GNNs, algorithms of downstream clustering, principal component analysis (PCA)-based reduction, and refined methods of correction. We comparatively analyzed the performance of the methods in terms of spatial clustering to identify their limitations and outline future directions of research in the field. Our survey yielded novel insights, and provided motivation for further investigating spatial transcriptomics.
Collapse
Affiliation(s)
- Teng Liu
- Clinical Research Center (CRC), Clinical Pathology Center (CPC), Cancer Early Detection and Treatment Center (CEDTC) and Translational Medicine Research Center (TMRC), Chongqing University Three Gorges Hospital, Chongqing University, Wanzhou, Chongqing, China
- Chongqing Technical Innovation Center for Quality Evaluation and Identification of Authentic Medicinal Herbs, Chongqing, China
| | - Zhao-Yu Fang
- School of Computer Science and Engineering, Central South University, Changsha 410083, China
| | - Zongbo Zhang
- Clinical Research Center (CRC), Clinical Pathology Center (CPC), Cancer Early Detection and Treatment Center (CEDTC) and Translational Medicine Research Center (TMRC), Chongqing University Three Gorges Hospital, Chongqing University, Wanzhou, Chongqing, China
| | - Yongxiang Yu
- Clinical Research Center (CRC), Clinical Pathology Center (CPC), Cancer Early Detection and Treatment Center (CEDTC) and Translational Medicine Research Center (TMRC), Chongqing University Three Gorges Hospital, Chongqing University, Wanzhou, Chongqing, China
| | - Min Li
- School of Computer Science and Engineering, Central South University, Changsha 410083, China
- Hunan Provincial Engineering Research Center of Intelligent Computing in Biology and Medicine, Central South University, Changsha 410083, China
| | - Ming-Zhu Yin
- Clinical Research Center (CRC), Clinical Pathology Center (CPC), Cancer Early Detection and Treatment Center (CEDTC) and Translational Medicine Research Center (TMRC), Chongqing University Three Gorges Hospital, Chongqing University, Wanzhou, Chongqing, China
- Chongqing Technical Innovation Center for Quality Evaluation and Identification of Authentic Medicinal Herbs, Chongqing, China
| |
Collapse
|
3
|
Liu Y, Yang C. Computational methods for alignment and integration of spatially resolved transcriptomics data. Comput Struct Biotechnol J 2024; 23:1094-1105. [PMID: 38495555 PMCID: PMC10940867 DOI: 10.1016/j.csbj.2024.03.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2024] [Revised: 03/02/2024] [Accepted: 03/04/2024] [Indexed: 03/19/2024] Open
Abstract
Most of the complex biological regulatory activities occur in three dimensions (3D). To better analyze biological processes, it is essential not only to decipher the molecular information of numerous cells but also to understand how their spatial contexts influence their behavior. With the development of spatially resolved transcriptomics (SRT) technologies, SRT datasets are being generated to simultaneously characterize gene expression and spatial arrangement information within tissues, organs or organisms. To fully leverage spatial information, the focus extends beyond individual two-dimensional (2D) slices. Two tasks known as slices alignment and data integration have been introduced to establish correlations between multiple slices, enhancing the effectiveness of downstream tasks. Currently, numerous related methods have been developed. In this review, we first elucidate the details and principles behind several representative methods. Then we report the testing results of these methods on various SRT datasets, and assess their performance in representative downstream tasks. Insights into the strengths and weaknesses of each method and the reasons behind their performance are discussed. Finally, we provide an outlook on future developments. The codes and details of experiments are now publicly available at https://github.com/YangLabHKUST/SRT_alignment_and_integration.
Collapse
Affiliation(s)
- Yuyao Liu
- Department of Automation, School of Information Science and Technology, Tsinghua University, Beijing, China
| | - Can Yang
- Department of Mathematics, The Hong Kong University of Science and Technology, Hong Kong, China
| |
Collapse
|
4
|
Peng W, Zhang Z, Dai W, Ping Z, Fu X, Liu L, Liu L, Yu N. MVCLST: A spatial transcriptome data analysis pipeline for cell type classification based on multi-view comparative learning. Methods 2024:S1046-2023(24)00238-X. [PMID: 39542071 DOI: 10.1016/j.ymeth.2024.11.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2024] [Revised: 11/03/2024] [Accepted: 11/04/2024] [Indexed: 11/17/2024] Open
Abstract
Recent advancements in spatial transcriptomics sequencing technologies can not only provide gene expression within individual cells or cell clusters (spots) in a tissue but also pinpoint the exact location of this expression and generate detailed images of stained tissue sections, which offers invaluable insights into cell type identification and cell function exploration. However, effectively integratingthegene expression data, spatial location information, and tissue images from spatial transcriptomics data presents a significant challenge for computational methodsin cell classification. In this work, we propose MVCLST, a multi-view comparative learningmethod to analyze spatial transcriptomicsdata for accurate cell type classification. MVCLSTconstructs two views based on gene expression profiles, cell coordinates and image features. The multi-view method we proposed can significantly enhance the effectiveness of feature extraction while avoiding the impact of erroneous information in organizing image or gene expression data. The model employs four separate encoders to capture shared and unique features within each view. To ensure consistency and facilitate information exchange between the two views, MVCLST incorporates a contrastive learning loss function. The extracted shared and private features from both views are fused using corresponding decoders. Finally, the model utilizes the Leiden algorithm to clusterthe learned featuresfor cell type identification. Additionally, we establish a framework called MVCLST-CCFS for spatial transcriptomicsdata analysis based on MVCLST and consistent clustering. Our method achieves excellent results in clustering on human dorsolateral prefrontal cortex data and the mouse brain tissue data. Italso outperforms state-of-the-art techniques in the subsequent search for highly variable genes across cell types on the mouse olfactory bulbdata.
Collapse
Affiliation(s)
- Wei Peng
- Faculty of Information Engineering and Automation, Kunming University of Science and Technology, Kunming 650050, PR China; Computer Technology Application Key Lab of Yunnan Province, Kunming University of Science and Technology, Kunming 650050, PR China.
| | - Zhihao Zhang
- Faculty of Information Engineering and Automation, Kunming University of Science and Technology, Kunming 650050, PR China
| | - Wei Dai
- Faculty of Information Engineering and Automation, Kunming University of Science and Technology, Kunming 650050, PR China; Computer Technology Application Key Lab of Yunnan Province, Kunming University of Science and Technology, Kunming 650050, PR China.
| | - Zhihao Ping
- Faculty of Information Engineering and Automation, Kunming University of Science and Technology, Kunming 650050, PR China
| | - Xiaodong Fu
- Faculty of Information Engineering and Automation, Kunming University of Science and Technology, Kunming 650050, PR China; Computer Technology Application Key Lab of Yunnan Province, Kunming University of Science and Technology, Kunming 650050, PR China.
| | - Li Liu
- Faculty of Information Engineering and Automation, Kunming University of Science and Technology, Kunming 650050, PR China; Computer Technology Application Key Lab of Yunnan Province, Kunming University of Science and Technology, Kunming 650050, PR China
| | - Lijun Liu
- Faculty of Information Engineering and Automation, Kunming University of Science and Technology, Kunming 650050, PR China; Computer Technology Application Key Lab of Yunnan Province, Kunming University of Science and Technology, Kunming 650050, PR China
| | - Ning Yu
- State University of New York, The College at Brockport, Department of Computing Sciences, 350 New Campus Drive, Brockport, NY 14422, United States.
| |
Collapse
|
5
|
Zhang F, Shen Z, Huang S, Zhu Y, Yi M. SpaInGNN: Enhanced clustering and integration of spatial transcriptomics based on refined graph neural networks. Methods 2024:S1046-2023(24)00243-3. [PMID: 39542070 DOI: 10.1016/j.ymeth.2024.11.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2024] [Revised: 10/22/2024] [Accepted: 11/07/2024] [Indexed: 11/17/2024] Open
Abstract
Recent developments in spatial transcriptomics (ST) technology have markedly enhanced the proposed capacity to comprehensively characterize gene expression patterns within tissue microenvironments while crucially preserving spatial context. However, the identification of spatial domains at the single-cell level remains a significant challenge in elucidating biological processes. To address this, SpaInGNN was developed, a sophisticated graph neural network (GNN) framework that accurately delineates spatial domains by integrating spatial location data, histological information, and gene expression profiles into low-dimensional latent embeddings. Additionally, to fully leverage spatial coordinate data, spatial integration using graph neural network (SpaInGNN) refines the graph constructed for spatial locations by incorporating both tissue image distance and Euclidean distance, following a pre-clustering of gene expression profiles. This refined graph is then embedded using a self-supervised GNN, which minimizes self-reconfiguration loss. By applying SpaInGNN to refined graphs across multiple consecutive tissue slices, this study mitigates the impact of batch effects in data analysis. The proposed method demonstrates substantial improvements in the accuracy of spatial domain recognition, providing a more faithful representation of the tissue organization in both mouse olfactory bulb and human lateral prefrontal cortex samples.
Collapse
Affiliation(s)
- Fangqin Zhang
- Shool of Mathematics and Physics, China University of Geosciences, Wuhan 430074, China
| | - Zhan Shen
- Shool of Mathematics and Physics, China University of Geosciences, Wuhan 430074, China
| | - Siyi Huang
- Shool of Mathematics and Physics, China University of Geosciences, Wuhan 430074, China
| | - Yuan Zhu
- Shool of Mathematics and Physics, China University of Geosciences, Wuhan 430074, China
| | - Ming Yi
- Shool of Mathematics and Physics, China University of Geosciences, Wuhan 430074, China.
| |
Collapse
|
6
|
Yang J, Wang L, Liu L, Zheng X. GraphPCA: a fast and interpretable dimension reduction algorithm for spatial transcriptomics data. Genome Biol 2024; 25:287. [PMID: 39511664 PMCID: PMC11545739 DOI: 10.1186/s13059-024-03429-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2024] [Accepted: 10/29/2024] [Indexed: 11/15/2024] Open
Abstract
The rapid advancement of spatial transcriptomics technologies has revolutionized our understanding of cell heterogeneity and intricate spatial structures within tissues and organs. However, the high dimensionality and noise in spatial transcriptomic data present significant challenges for downstream data analyses. Here, we develop GraphPCA, an interpretable and quasi-linear dimension reduction algorithm that leverages the strengths of graphical regularization and principal component analysis. Comprehensive evaluations on simulated and multi-resolution spatial transcriptomic datasets generated from various platforms demonstrate the capacity of GraphPCA to enhance downstream analysis tasks including spatial domain detection, denoising, and trajectory inference compared to other state-of-the-art methods.
Collapse
Affiliation(s)
- Jiyuan Yang
- Center for Single-Cell Omics, School of Public Health, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Lu Wang
- Center for Single-Cell Omics, School of Public Health, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- The Guangxi Key Laboratory of Intelligent Precision Medicine, Guangxi Zhuang Autonomous Region, Nanning, China
| | - Lin Liu
- Institute of Natural Sciences, MOE-LSC, School of Mathematical Sciences, CMA-Shanghai, SJTU-Yale Joint Center for Biostatistics and Data Science, Shanghai Jiao Tong University and Shanghai Artificial Intelligence Laboratory, Shanghai, China
| | - Xiaoqi Zheng
- Center for Single-Cell Omics, School of Public Health, Shanghai Jiao Tong University School of Medicine, Shanghai, China.
| |
Collapse
|
7
|
Bartels T, Rowitch DH, Bayraktar OA. Generation of Mammalian Astrocyte Functional Heterogeneity. Cold Spring Harb Perspect Biol 2024; 16:a041351. [PMID: 38692833 PMCID: PMC11529848 DOI: 10.1101/cshperspect.a041351] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/03/2024]
Abstract
Mammalian astrocytes have regional roles within the brain parenchyma. Indeed, the notion that astrocytes are molecularly heterogeneous could help explain how the central nervous system (CNS) retains embryonic positional information through development into specialized regions into adulthood. A growing body of evidence supports the concept of morphological and molecular differences between astrocytes in different brain regions, which might relate to their derivation from regionally patterned radial glia and/or local neuron inductive cues. Here, we review evidence for regionally encoded functions of astrocytes to provide an integrated concept on lineage origins and heterogeneity to understand regional brain organization, as well as emerging technologies to identify and further investigate novel roles for astrocytes.
Collapse
Affiliation(s)
- Theresa Bartels
- Department of Paediatrics and Wellcome-MRC Cambridge Stem Cell Institute, University of Cambridge, Cambridge CB2 0AW, United Kingdom
| | - David H Rowitch
- Department of Paediatrics and Wellcome-MRC Cambridge Stem Cell Institute, University of Cambridge, Cambridge CB2 0AW, United Kingdom
| | - Omer Ali Bayraktar
- Wellcome Sanger Institute, Wellcome Genome Campus, Hinxton, Cambridge CB10 1SA, United Kingdom
| |
Collapse
|
8
|
Han S, Xu Q, Du Y, Tang C, Cui H, Xia X, Zheng R, Sun Y, Shang H. Single-cell spatial transcriptomics in cardiovascular development, disease, and medicine. Genes Dis 2024; 11:101163. [PMID: 39224111 PMCID: PMC11367031 DOI: 10.1016/j.gendis.2023.101163] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2023] [Revised: 10/17/2023] [Accepted: 10/29/2023] [Indexed: 09/04/2024] Open
Abstract
Cardiovascular diseases (CVDs) impose a significant burden worldwide. Despite the elucidation of the etiology and underlying molecular mechanisms of CVDs by numerous studies and recent discovery of effective drugs, their morbidity, disability, and mortality are still high. Therefore, precise risk stratification and effective targeted therapies for CVDs are warranted. Recent improvements in single-cell RNA sequencing and spatial transcriptomics have improved our understanding of the mechanisms and cells involved in cardiovascular phylogeny and CVDs. Single-cell RNA sequencing can facilitate the study of the human heart at remarkably high resolution and cellular and molecular heterogeneity. However, this technique does not provide spatial information, which is essential for understanding homeostasis and disease. Spatial transcriptomics can elucidate intracellular interactions, transcription factor distribution, cell spatial localization, and molecular profiles of mRNA and identify cell populations causing the disease and their underlying mechanisms, including cell crosstalk. Herein, we introduce the main methods of RNA-seq and spatial transcriptomics analysis and highlight the latest advances in cardiovascular research. We conclude that single-cell RNA sequencing interprets disease progression in multiple dimensions, levels, perspectives, and dynamics by combining spatial and temporal characterization of the clinical phenome with multidisciplinary techniques such as spatial transcriptomics. This aligns with the dynamic evolution of CVDs (e.g., "angina-myocardial infarction-heart failure" in coronary artery disease). The study of pathways for disease onset and mechanisms (e.g., age, sex, comorbidities) in different patient subgroups should improve disease diagnosis and risk stratification. This can facilitate precise individualized treatment of CVDs.
Collapse
Affiliation(s)
- Songjie Han
- Key Laboratory of Chinese Internal Medicine of Ministry of Education, Dongzhimen Hospital, Beijing University of Chinese Medicine, Beijing 100700, China
| | - Qianqian Xu
- Key Laboratory of Chinese Internal Medicine of Ministry of Education, Dongzhimen Hospital, Beijing University of Chinese Medicine, Beijing 100700, China
| | - Yawen Du
- Key Laboratory of Chinese Internal Medicine of Ministry of Education, Dongzhimen Hospital, Beijing University of Chinese Medicine, Beijing 100700, China
| | - Chuwei Tang
- Key Laboratory of Chinese Internal Medicine of Ministry of Education, Dongzhimen Hospital, Beijing University of Chinese Medicine, Beijing 100700, China
| | - Herong Cui
- Key Laboratory of Chinese Internal Medicine of Ministry of Education, Dongzhimen Hospital, Beijing University of Chinese Medicine, Beijing 100700, China
- School of Life Sciences, Beijing University of Chinese Medicine, Beijing 102488, China
| | - Xiaofeng Xia
- Key Laboratory of Chinese Internal Medicine of Ministry of Education, Dongzhimen Hospital, Beijing University of Chinese Medicine, Beijing 100700, China
| | - Rui Zheng
- Key Laboratory of Chinese Internal Medicine of Ministry of Education, Dongzhimen Hospital, Beijing University of Chinese Medicine, Beijing 100700, China
| | - Yang Sun
- Key Laboratory of Chinese Internal Medicine of Ministry of Education, Dongzhimen Hospital, Beijing University of Chinese Medicine, Beijing 100700, China
| | - Hongcai Shang
- Key Laboratory of Chinese Internal Medicine of Ministry of Education, Dongzhimen Hospital, Beijing University of Chinese Medicine, Beijing 100700, China
| |
Collapse
|
9
|
Xiu YH, Sun SL, Zhou BW, Wan Y, Tang H, Long HX. DGSIST: Clustering spatial transcriptome data based on deep graph structure Infomax. Methods 2024; 231:226-236. [PMID: 39413889 DOI: 10.1016/j.ymeth.2024.10.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2024] [Revised: 09/26/2024] [Accepted: 10/04/2024] [Indexed: 10/18/2024] Open
Abstract
Although spatial transcriptomics data provide valuable insights into gene expression profiles and the spatial structure of tissues, most studies rely solely on gene expression information, underutilizing the spatial data. To fully leverage the potential of spatial transcriptomics and graph neural networks, the DGSI (Deep Graph Structure Infomax) model is proposed. This innovative graph data processing model uses graph convolutional neural networks and employs an unsupervised learning approach. It maximizes the mutual information between graph-level and node-level representations, emphasizing flexible sampling and aggregation of nodes and their neighbors. This effectively captures and incorporates local information from nodes into the overall graph structure. Additionally, this paper developed the DGSIST framework, an unsupervised cell clustering method that integrates the DGSI model, SVD dimensionality reduction algorithm, and k-means++ clustering algorithm. This aims to identify cell types accurately. DGSIST fully uses spatial transcriptomics data and outperforms existing methods in accuracy. Demonstrations of DGSIST's capability across various tissue types and technological platforms have shown its effectiveness in accurately identifying spatial domains in multiple tissue sections. Compared to other spatial clustering methods, DGSIST excels in cell clustering and effectively eliminates batch effects without needing batch correction. DGSIST excels in spatial clustering analysis, spatial variation identification, and differential gene expression detection and directly applies to graph analysis tasks, such as node classification, link prediction, or graph clustering. Anticipation lies in the contribution of the DGSIST framework to a deeper understanding of the spatial organizational structures of diseases such as cancer.
Collapse
Affiliation(s)
- Yu-Han Xiu
- College of Information Science Technology, Hainan Normal University, HaiKou City 571158, China; Key Laboratory of Data Science and Smart Education, Ministry of Education, Hainan Normal University, HaiKou City 571158, China
| | - Si-Lin Sun
- College of Information Science Technology, Hainan Normal University, HaiKou City 571158, China; Key Laboratory of Data Science and Smart Education, Ministry of Education, Hainan Normal University, HaiKou City 571158, China
| | - Bing-Wei Zhou
- College of Information Science Technology, Hainan Normal University, HaiKou City 571158, China; Key Laboratory of Data Science and Smart Education, Ministry of Education, Hainan Normal University, HaiKou City 571158, China
| | - Ying Wan
- School of Basic Medical Sciences, Southwest Medical University, Luzhou 646000, China
| | - Hua Tang
- School of Basic Medical Sciences, Southwest Medical University, Luzhou 646000, China; Medical Engineering & Medical Informatics Integration and Transformational Medicine Key Laboratory of Luzhou City, Luzhou 646000, China.
| | - Hai-Xia Long
- College of Information Science Technology, Hainan Normal University, HaiKou City 571158, China; Key Laboratory of Data Science and Smart Education, Ministry of Education, Hainan Normal University, HaiKou City 571158, China.
| |
Collapse
|
10
|
Cui T, Li YY, Li BL, Zhang H, Yu TT, Zhang JN, Qian FC, Yin MX, Fang QL, Hu ZH, Yan YX, Wang QY, Li CQ, Shang DS. SpatialRef: a reference of spatial omics with known spot annotation. Nucleic Acids Res 2024:gkae892. [PMID: 39417483 DOI: 10.1093/nar/gkae892] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2024] [Revised: 09/19/2024] [Accepted: 09/26/2024] [Indexed: 10/19/2024] Open
Abstract
Spatial omics technologies have enabled the creation of intricate spatial maps that capture molecular features and tissue morphology, providing valuable insights into the spatial associations and functional organization of tissues. Accurate annotation of spot or domain types is essential for downstream spatial omics analyses, but this remains challenging. Therefore, this study aimed to develop a manually curated spatial omics database (SpatialRef, https://bio.liclab.net/spatialref/), to provide comprehensive and high-quality spatial omics data with known spot labels across multiple species. The current version of SpatialRef aggregates >9 million manually annotated spots across 17 Human, Mouse and Drosophila tissue types through extensive review and strict quality control, covering multiple spatial sequencing technologies and >400 spot/domain types from original studies. Furthermore, SpatialRef supports various spatial omics analyses about known spot types, including differentially expressed genes, spatially variable genes, Gene Ontology (GO)/KEGG annotation, spatial communication and spatial trajectories. With a user-friendly interface, SpatialRef facilitates querying, browsing and visualizing, thereby aiding in elucidating the functional relevance of spatial domains within the tissue and uncovering potential biological effects.
Collapse
Affiliation(s)
- Ting Cui
- The First Affiliated Hospital & National Health Commission Key Laboratory of Birth Defect Research and Prevention, Hengyang Medical School, University of South China, Hengyang, Hunan 421001, China
- Insititute of Biochemistry and Molecular Biology, Hengyang Medical College, University of South China, Hengyang, Hunan 421001, China
- The First Affiliated Hospital, Cardiovascular Lab of Big Data and Imaging Artificial Intelligence, Hengyang Medical School, University of South China, Hengyang, Hunan 421001, China
| | - Yan-Yu Li
- The First Affiliated Hospital & National Health Commission Key Laboratory of Birth Defect Research and Prevention, Hengyang Medical School, University of South China, Hengyang, Hunan 421001, China
- Insititute of Biochemistry and Molecular Biology, Hengyang Medical College, University of South China, Hengyang, Hunan 421001, China
- Hunan Provincial Key Laboratory of Multi-omics And Artificial Intelligence of Cardiovascular Diseases, University of South China, Hengyang, Hunan 421001, China
- School of Computer, University of South China, Hengyang, Hunan 421001, China
- The First Affiliated Hospital, Cardiovascular Lab of Big Data and Imaging Artificial Intelligence, Hengyang Medical School, University of South China, Hengyang, Hunan 421001, China
- The First Affiliated Hospital, Institute of Cardiovascular Disease, Hengyang Medical School, University of South China, Hengyang, Hunan 421001, China
| | - Bing-Long Li
- The First Affiliated Hospital & National Health Commission Key Laboratory of Birth Defect Research and Prevention, Hengyang Medical School, University of South China, Hengyang, Hunan 421001, China
- Insititute of Biochemistry and Molecular Biology, Hengyang Medical College, University of South China, Hengyang, Hunan 421001, China
- The First Affiliated Hospital, Cardiovascular Lab of Big Data and Imaging Artificial Intelligence, Hengyang Medical School, University of South China, Hengyang, Hunan 421001, China
| | - Han Zhang
- School of Computer, University of South China, Hengyang, Hunan 421001, China
- The First Affiliated Hospital, Cardiovascular Lab of Big Data and Imaging Artificial Intelligence, Hengyang Medical School, University of South China, Hengyang, Hunan 421001, China
| | - Ting-Ting Yu
- School of Computer, University of South China, Hengyang, Hunan 421001, China
- The First Affiliated Hospital, Cardiovascular Lab of Big Data and Imaging Artificial Intelligence, Hengyang Medical School, University of South China, Hengyang, Hunan 421001, China
| | - Jia-Ning Zhang
- The First Affiliated Hospital & National Health Commission Key Laboratory of Birth Defect Research and Prevention, Hengyang Medical School, University of South China, Hengyang, Hunan 421001, China
- Insititute of Biochemistry and Molecular Biology, Hengyang Medical College, University of South China, Hengyang, Hunan 421001, China
- Hunan Provincial Key Laboratory of Multi-omics And Artificial Intelligence of Cardiovascular Diseases, University of South China, Hengyang, Hunan 421001, China
- The First Affiliated Hospital, Cardiovascular Lab of Big Data and Imaging Artificial Intelligence, Hengyang Medical School, University of South China, Hengyang, Hunan 421001, China
| | - Feng-Cui Qian
- The First Affiliated Hospital & National Health Commission Key Laboratory of Birth Defect Research and Prevention, Hengyang Medical School, University of South China, Hengyang, Hunan 421001, China
- Insititute of Biochemistry and Molecular Biology, Hengyang Medical College, University of South China, Hengyang, Hunan 421001, China
- Hunan Provincial Key Laboratory of Multi-omics And Artificial Intelligence of Cardiovascular Diseases, University of South China, Hengyang, Hunan 421001, China
- School of Computer, University of South China, Hengyang, Hunan 421001, China
- The First Affiliated Hospital, Cardiovascular Lab of Big Data and Imaging Artificial Intelligence, Hengyang Medical School, University of South China, Hengyang, Hunan 421001, China
- The First Affiliated Hospital, Institute of Cardiovascular Disease, Hengyang Medical School, University of South China, Hengyang, Hunan 421001, China
| | - Ming-Xue Yin
- The First Affiliated Hospital & National Health Commission Key Laboratory of Birth Defect Research and Prevention, Hengyang Medical School, University of South China, Hengyang, Hunan 421001, China
- Insititute of Biochemistry and Molecular Biology, Hengyang Medical College, University of South China, Hengyang, Hunan 421001, China
- The First Affiliated Hospital, Cardiovascular Lab of Big Data and Imaging Artificial Intelligence, Hengyang Medical School, University of South China, Hengyang, Hunan 421001, China
| | - Qiao-Li Fang
- School of Computer, University of South China, Hengyang, Hunan 421001, China
- The First Affiliated Hospital, Cardiovascular Lab of Big Data and Imaging Artificial Intelligence, Hengyang Medical School, University of South China, Hengyang, Hunan 421001, China
| | - Zi-Hao Hu
- School of Computer, University of South China, Hengyang, Hunan 421001, China
- The First Affiliated Hospital, Cardiovascular Lab of Big Data and Imaging Artificial Intelligence, Hengyang Medical School, University of South China, Hengyang, Hunan 421001, China
| | - Yu-Xiang Yan
- School of Computer, University of South China, Hengyang, Hunan 421001, China
- The First Affiliated Hospital, Cardiovascular Lab of Big Data and Imaging Artificial Intelligence, Hengyang Medical School, University of South China, Hengyang, Hunan 421001, China
| | - Qiu-Yu Wang
- The First Affiliated Hospital & National Health Commission Key Laboratory of Birth Defect Research and Prevention, Hengyang Medical School, University of South China, Hengyang, Hunan 421001, China
- Insititute of Biochemistry and Molecular Biology, Hengyang Medical College, University of South China, Hengyang, Hunan 421001, China
- Hunan Provincial Key Laboratory of Multi-omics And Artificial Intelligence of Cardiovascular Diseases, University of South China, Hengyang, Hunan 421001, China
- School of Computer, University of South China, Hengyang, Hunan 421001, China
- The First Affiliated Hospital, Cardiovascular Lab of Big Data and Imaging Artificial Intelligence, Hengyang Medical School, University of South China, Hengyang, Hunan 421001, China
- The First Affiliated Hospital, Institute of Cardiovascular Disease, Hengyang Medical School, University of South China, Hengyang, Hunan 421001, China
| | - Chun-Quan Li
- The First Affiliated Hospital & National Health Commission Key Laboratory of Birth Defect Research and Prevention, Hengyang Medical School, University of South China, Hengyang, Hunan 421001, China
- Insititute of Biochemistry and Molecular Biology, Hengyang Medical College, University of South China, Hengyang, Hunan 421001, China
- Hunan Provincial Key Laboratory of Multi-omics And Artificial Intelligence of Cardiovascular Diseases, University of South China, Hengyang, Hunan 421001, China
- School of Computer, University of South China, Hengyang, Hunan 421001, China
- The First Affiliated Hospital, Cardiovascular Lab of Big Data and Imaging Artificial Intelligence, Hengyang Medical School, University of South China, Hengyang, Hunan 421001, China
- Key Laboratory of Rare Pediatric Diseases, Ministry of Education, University of South China, Hengyang, Hunan 421001, China
- The First Affiliated Hospital, Institute of Cardiovascular Disease, Hengyang Medical School, University of South China, Hengyang, Hunan 421001, China
| | - De-Si Shang
- The First Affiliated Hospital & National Health Commission Key Laboratory of Birth Defect Research and Prevention, Hengyang Medical School, University of South China, Hengyang, Hunan 421001, China
- Insititute of Biochemistry and Molecular Biology, Hengyang Medical College, University of South China, Hengyang, Hunan 421001, China
- Hunan Provincial Key Laboratory of Multi-omics And Artificial Intelligence of Cardiovascular Diseases, University of South China, Hengyang, Hunan 421001, China
- School of Computer, University of South China, Hengyang, Hunan 421001, China
- The First Affiliated Hospital, Cardiovascular Lab of Big Data and Imaging Artificial Intelligence, Hengyang Medical School, University of South China, Hengyang, Hunan 421001, China
- The First Affiliated Hospital, Institute of Cardiovascular Disease, Hengyang Medical School, University of South China, Hengyang, Hunan 421001, China
| |
Collapse
|
11
|
Nie W, Yu Y, Wang X, Wang R, Li SC. Spatially Informed Graph Structure Learning Extracts Insights from Spatial Transcriptomics. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2024:e2403572. [PMID: 39382177 DOI: 10.1002/advs.202403572] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/05/2024] [Revised: 08/04/2024] [Indexed: 10/10/2024]
Abstract
Embeddings derived from cell graphs hold significant potential for exploring spatial transcriptomics (ST) datasets. Nevertheless, existing methodologies rely on a graph structure defined by spatial proximity, which inadequately represents the diversity inherent in cell-cell interactions (CCIs). This study introduces STAGUE, an innovative framework that concurrently learns a cell graph structure and a low-dimensional embedding from ST data. STAGUE employs graph structure learning to parameterize and refine a cell graph adjacency matrix, enabling the generation of learnable graph views for effective contrastive learning. The derived embeddings and cell graph improve spatial clustering accuracy and facilitate the discovery of novel CCIs. Experimental benchmarks across 86 real and simulated ST datasets show that STAGUE outperforms 15 comparison methods in clustering performance. Additionally, STAGUE delineates the heterogeneity in human breast cancer tissues, revealing the activation of epithelial-to-mesenchymal transition and PI3K/AKT signaling in specific sub-regions. Furthermore, STAGUE identifies CCIs with greater alignment to established biological knowledge than those ascertained by existing graph autoencoder-based methods. STAGUE also reveals the regulatory genes that participate in these CCIs, including those enriched in neuropeptide signaling and receptor tyrosine kinase signaling pathways, thereby providing insights into the underlying biological processes.
Collapse
Affiliation(s)
- Wan Nie
- Department of Computer Science, City University of Hong Kong, Hong Kong SAR, China
| | - Yingying Yu
- Department of Computer Science, City University of Hong Kong, Hong Kong SAR, China
| | - Xueying Wang
- Department of Computer Science, City University of Hong Kong, Hong Kong SAR, China
- City University of Hong Kong (Dongguan), Dongguan, 523000, China
| | - Ruohan Wang
- Department of Computer Science, City University of Hong Kong, Hong Kong SAR, China
| | - Shuai Cheng Li
- Department of Computer Science, City University of Hong Kong, Hong Kong SAR, China
| |
Collapse
|
12
|
Zeng Y, Song Y, Zhang C, Li H, Zhao Y, Yu W, Zhang S, Zhang H, Dai Z, Yang Y. Imputing spatial transcriptomics through gene network constructed from protein language model. Commun Biol 2024; 7:1271. [PMID: 39369061 PMCID: PMC11455941 DOI: 10.1038/s42003-024-06964-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2024] [Accepted: 09/25/2024] [Indexed: 10/07/2024] Open
Abstract
Image-based spatial transcriptomic sequencing technologies have enabled the measurement of gene expression at single-cell resolution, but with a limited number of genes. Current computational approaches attempt to overcome these limitations by imputing missing genes, but face challenges regarding prediction accuracy and identification of cell populations due to the neglect of gene-gene relationships. In this context, we present stImpute, a method to impute spatial transcriptomics according to reference scRNA-seq data based on the gene network constructed from the protein language model ESM-2. Specifically, stImpute employs an autoencoder to create gene expression embeddings for both spatial transcriptomics and scRNA-seq data, which are used to identify the nearest neighboring cells between scRNA-seq and spatial transcriptomics datasets. According to the neighbored cells, the gene expressions of spatial transcriptomics cells are imputed through a graph neural network, where nodes are genes, and edges are based on cosine similarity between the ESM-2 embeddings of the gene-encoding proteins. The gene prediction uncertainty is further measured through a deep learning model. stImpute was shown to consistently outperform state-of-the-art methods across multiple datasets concerning imputation and clustering. stImpute also demonstrates robustness in producing consistent results that are insensitive to model parameters.
Collapse
Affiliation(s)
- Yuansong Zeng
- School of Big Data and Software Engineering, Chongqing University, Chongqing, China
- School of Computer Science and Engineering, Sun Yat-sen University, Guangzhou, China
- Jinfeng Laboratory, Chongqing, China
| | - Yujie Song
- School of Computer Science and Engineering, Sun Yat-sen University, Guangzhou, China
| | - Chengyang Zhang
- School of Computer Science and Engineering, Sun Yat-sen University, Guangzhou, China
| | - Haoxuan Li
- School of Big Data and Software Engineering, Chongqing University, Chongqing, China
| | - Yongkang Zhao
- School of Big Data and Software Engineering, Chongqing University, Chongqing, China
| | - Weijiang Yu
- School of Computer Science and Engineering, Sun Yat-sen University, Guangzhou, China
| | - Shiqi Zhang
- School of Big Data and Software Engineering, Chongqing University, Chongqing, China
| | - Hongyu Zhang
- School of Big Data and Software Engineering, Chongqing University, Chongqing, China
| | - Zhiming Dai
- School of Computer Science and Engineering, Sun Yat-sen University, Guangzhou, China.
| | - Yuedong Yang
- School of Computer Science and Engineering, Sun Yat-sen University, Guangzhou, China.
| |
Collapse
|
13
|
Wang N, Hong W, Wu Y, Chen Z, Bai M, Wang W, Zhu J. Next-generation spatial transcriptomics: unleashing the power to gear up translational oncology. MedComm (Beijing) 2024; 5:e765. [PMID: 39376738 PMCID: PMC11456678 DOI: 10.1002/mco2.765] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2024] [Revised: 08/30/2024] [Accepted: 09/03/2024] [Indexed: 10/09/2024] Open
Abstract
The growing advances in spatial transcriptomics (ST) stand as the new frontier bringing unprecedented influences in the realm of translational oncology. This has triggered systemic experimental design, analytical scope, and depth alongside with thorough bioinformatics approaches being constantly developed in the last few years. However, harnessing the power of spatial biology and streamlining an array of ST tools to achieve designated research goals are fundamental and require real-world experiences. We present a systemic review by updating the technical scope of ST across different principal basis in a timeline manner hinting on the generally adopted ST techniques used within the community. We also review the current progress of bioinformatic tools and propose in a pipelined workflow with a toolbox available for ST data exploration. With particular interests in tumor microenvironment where ST is being broadly utilized, we summarize the up-to-date progress made via ST-based technologies by narrating studies categorized into either mechanistic elucidation or biomarker profiling (translational oncology) across multiple cancer types and their ways of deploying the research through ST. This updated review offers as a guidance with forward-looking viewpoints endorsed by many high-resolution ST tools being utilized to disentangle biological questions that may lead to clinical significance in the future.
Collapse
Affiliation(s)
- Nan Wang
- Cosmos Wisdom Biotech Co. LtdHangzhouChina
| | - Weifeng Hong
- Department of Radiation OncologyZhejiang Cancer HospitalHangzhouChina
- Hangzhou Institute of Medicine (HIM)Chinese Academy of SciencesHangzhouChina
- Zhejiang Key Laboratory of Radiation OncologyHangzhouChina
| | - Yixing Wu
- Department of Pulmonary and Critical Care MedicineZhongshan HospitalFudan UniversityShanghaiChina
| | - Zhe‐Sheng Chen
- Department of Pharmaceutical SciencesCollege of Pharmacy and Health SciencesInstitute for BiotechnologySt. John's UniversityQueensNew YorkUSA
| | - Minghua Bai
- Department of Radiation OncologyZhejiang Cancer HospitalHangzhouChina
- Hangzhou Institute of Medicine (HIM)Chinese Academy of SciencesHangzhouChina
- Zhejiang Key Laboratory of Radiation OncologyHangzhouChina
| | | | - Ji Zhu
- Department of Radiation OncologyZhejiang Cancer HospitalHangzhouChina
- Hangzhou Institute of Medicine (HIM)Chinese Academy of SciencesHangzhouChina
- Zhejiang Key Laboratory of Radiation OncologyHangzhouChina
| |
Collapse
|
14
|
Keller MS, Gold I, McCallum C, Manz T, Kharchenko PV, Gehlenborg N. Vitessce: integrative visualization of multimodal and spatially resolved single-cell data. Nat Methods 2024:10.1038/s41592-024-02436-x. [PMID: 39333268 DOI: 10.1038/s41592-024-02436-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2023] [Accepted: 08/16/2024] [Indexed: 09/29/2024]
Abstract
Multiomics technologies with single-cell and spatial resolution make it possible to measure thousands of features across millions of cells. However, visual analysis of high-dimensional transcriptomic, proteomic, genome-mapped and imaging data types simultaneously remains a challenge. Here we describe Vitessce, an interactive web-based visualization framework for exploration of multimodal and spatially resolved single-cell data. We demonstrate integrative visualization of millions of data points, including cell-type annotations, gene expression quantities, spatially resolved transcripts and cell segmentations, across multiple coordinated views. The open-source software is available at http://vitessce.io .
Collapse
Affiliation(s)
- Mark S Keller
- Department of Biomedical Informatics, Harvard Medical School, Boston, MA, USA
| | - Ilan Gold
- Department of Biomedical Informatics, Harvard Medical School, Boston, MA, USA
| | - Chuck McCallum
- Department of Biomedical Informatics, Harvard Medical School, Boston, MA, USA
| | - Trevor Manz
- Department of Biomedical Informatics, Harvard Medical School, Boston, MA, USA
| | - Peter V Kharchenko
- Department of Biomedical Informatics, Harvard Medical School, Boston, MA, USA
- Broad Institute of MIT and Harvard, Cambridge, MA, USA
- Altos Labs, San Diego, CA, USA
| | - Nils Gehlenborg
- Department of Biomedical Informatics, Harvard Medical School, Boston, MA, USA.
| |
Collapse
|
15
|
Shen R, Cheng M, Wang W, Fan Q, Yan H, Wen J, Yuan Z, Yao J, Li Y, Yuan J. Graph domain adaptation-based framework for gene expression enhancement and cell type identification in large-scale spatially resolved transcriptomics. Brief Bioinform 2024; 25:bbae576. [PMID: 39508445 PMCID: PMC11541786 DOI: 10.1093/bib/bbae576] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2024] [Revised: 09/25/2024] [Accepted: 10/29/2024] [Indexed: 11/15/2024] Open
Abstract
Spatially resolved transcriptomics (SRT) technologies facilitate gene expression profiling with spatial resolution in a naïve state. Nevertheless, current SRT technologies exhibit limitations, manifesting as either low transcript detection sensitivity or restricted gene throughput. These constraints result in diminished precision and coverage in gene measurement. In response, we introduce SpaGDA, a sophisticated deep learning-based graph domain adaptation framework for both scenarios of gene expression imputation and cell type identification in spatially resolved transcriptomics data by impartially transferring knowledge from reference scRNA-seq data. Systematic benchmarking analyses across several SRT datasets generated from different technologies have demonstrated SpaGDA's superior effectiveness compared to state-of-the-art methods in both scenarios. Further applied to three SRT datasets of different biological contexts, SpaGDA not only better recovers the well-established knowledge sourced from public atlases and existing scientific literature but also yields a more informative spatial expression pattern of genes. Together, these results demonstrate that SpaGDA can be used to overcome the challenges of current SRT data and provide more accurate insights into biological processes or disease development. The SpaGDA is available in https://github.com/shenrb/SpaGDA.
Collapse
Affiliation(s)
- Rongbo Shen
- GMU-GIBH Joint School of Life Sciences, The Guangdong-Hong Kong-Macau Joint Laboratory for Cell Fate Regulation and Diseases, Guangzhou Medical University, No. 1 Xinzao Road, Xinzao Town, Panyu District, Guangzhou 510005, China
- Guangzhou National Laboratory, No. 9 XingDaoHuanBei Road, Guangzhou International Bio Island, Guangzhou 510005, Guangdong Province, China
- Tencent AI Lab, Shenzhen 518000, China
| | - Meiling Cheng
- Guangzhou National Laboratory, No. 9 XingDaoHuanBei Road, Guangzhou International Bio Island, Guangzhou 510005, Guangdong Province, China
- Key Laboratory of Molecular Biophysics of the Ministry of Education, Hubei Key Laboratory of Bioinformatics and Molecular Imaging, Center for Artificial Intelligence Biology, Department of Bioinformatics and Systems Biology, College of Life Science and Technology, Huazhong University of Science and Technology, Luoyu Road 1037, Wuhan 430074, China
| | - Wencang Wang
- Guangzhou National Laboratory, No. 9 XingDaoHuanBei Road, Guangzhou International Bio Island, Guangzhou 510005, Guangdong Province, China
| | - Qi Fan
- Guangzhou National Laboratory, No. 9 XingDaoHuanBei Road, Guangzhou International Bio Island, Guangzhou 510005, Guangdong Province, China
| | - Huan Yan
- Guangzhou National Laboratory, No. 9 XingDaoHuanBei Road, Guangzhou International Bio Island, Guangzhou 510005, Guangdong Province, China
| | - Jiayue Wen
- Guangzhou National Laboratory, No. 9 XingDaoHuanBei Road, Guangzhou International Bio Island, Guangzhou 510005, Guangdong Province, China
| | - Zhiyuan Yuan
- Institute of Science and Technology for Brain-Inspired Intelligence, Fudan University, Handan Road, Shanghai 200433, China
| | | | - Yixue Li
- GMU-GIBH Joint School of Life Sciences, The Guangdong-Hong Kong-Macau Joint Laboratory for Cell Fate Regulation and Diseases, Guangzhou Medical University, No. 1 Xinzao Road, Xinzao Town, Panyu District, Guangzhou 510005, China
- Guangzhou National Laboratory, No. 9 XingDaoHuanBei Road, Guangzhou International Bio Island, Guangzhou 510005, Guangdong Province, China
| | - Jiao Yuan
- GMU-GIBH Joint School of Life Sciences, The Guangdong-Hong Kong-Macau Joint Laboratory for Cell Fate Regulation and Diseases, Guangzhou Medical University, No. 1 Xinzao Road, Xinzao Town, Panyu District, Guangzhou 510005, China
- Guangzhou National Laboratory, No. 9 XingDaoHuanBei Road, Guangzhou International Bio Island, Guangzhou 510005, Guangdong Province, China
| |
Collapse
|
16
|
Coullomb A, Monsarrat P, Pancaldi V. mosna reveals different types of cellular interactions predictive of response to immunotherapies and survival in cancer. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2023.03.16.532947. [PMID: 36993595 PMCID: PMC10055099 DOI: 10.1101/2023.03.16.532947] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 06/19/2023]
Abstract
Spatially resolved omics enable the discovery of tissue organization of biological or clinical importance. Despite the existence of several methods, performing a rational analysis including multiple algorithms while integrating different conditions such as clinical data is still not trivial. To make such investigations more accessible, we developed mosna, a Python package to analyze spatial omics data with respect to clinical or biological data and to gain insight on cell interaction patterns or tissue architecture of biological relevance. mosna is compatible with all spatial omics methods, it leverages tysserand to build accurate spatial networks, and is compatible with Squidpy. It proposes an analysis pipeline, in which increasingly complex features computed at each step can be explored in integration with clinical data, either with easy-to-use descriptive statistics and data visualization, or by seamlessly training machine learning models and identifying variables with the most predictive power. mosna can take as input any dataset produced by spatial omics methods, including sub-cellular resolved transcriptomics (MERFISH, seqFISH) and proteomics (CODEX, MIBI-TOF, low-plex immuno-fluorescence), as well as spot-based spatial transcriptomics (10x Visium). Integration with experimental metadata or clinical data is adapted to binary conditions, such as biological treatments or response status of patients, and to survival data. We demonstrate the proposed analysis pipeline on two spatially resolved proteomic datasets containing either binary response to immunotherapy or survival data. mosna identifies features describing cellular composition and spatial distribution that can provide biological insight regarding factors that affect response to immunotherapies or survival.
Collapse
Affiliation(s)
- Alexis Coullomb
- CRCT, Université de Toulouse, Inserm, CNRS, Université Toulouse III-Paul Sabatier, Centre de Recherches en Cancérologie de Toulouse, Toulouse, France
- RESTORE Research Center, Université de Toulouse, INSERM 1301, CNRS 5070, EFS, ENVT, Toulouse, France
| | - Paul Monsarrat
- RESTORE Research Center, Université de Toulouse, INSERM 1301, CNRS 5070, EFS, ENVT, Toulouse, France
- Oral Medicine Department and Hospital of Toulouse - Toulouse Institute of Oral Medicine and Science, CHU de Toulouse, Toulouse, France
- Artificial and Natural Intelligence Toulouse Institute ANITI, Toulouse, France
| | - Vera Pancaldi
- CRCT, Université de Toulouse, Inserm, CNRS, Université Toulouse III-Paul Sabatier, Centre de Recherches en Cancérologie de Toulouse, Toulouse, France
| |
Collapse
|
17
|
Liu W, Wang B, Bai Y, Liang X, Xue L, Luo J. SpaGIC: graph-informed clustering in spatial transcriptomics via self-supervised contrastive learning. Brief Bioinform 2024; 25:bbae578. [PMID: 39541189 DOI: 10.1093/bib/bbae578] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2024] [Revised: 09/30/2024] [Accepted: 10/29/2024] [Indexed: 11/16/2024] Open
Abstract
Spatial transcriptomics technologies enable the generation of gene expression profiles while preserving spatial context, providing the potential for in-depth understanding of spatial-specific tissue heterogeneity. Leveraging gene and spatial data effectively is fundamental to accurately identifying spatial domains in spatial transcriptomics analysis. However, many existing methods have not yet fully exploited the local neighborhood details within spatial information. To address this issue, we introduce SpaGIC, a novel graph-based deep learning framework integrating graph convolutional networks and self-supervised contrastive learning techniques. SpaGIC learns meaningful latent embeddings of spots by maximizing both edge-wise and local neighborhood-wise mutual information of graph structures, as well as minimizing the embedding distance between spatially adjacent spots. We evaluated SpaGIC on seven spatial transcriptomics datasets across various technology platforms. The experimental results demonstrated that SpaGIC consistently outperformed existing state-of-the-art methods in several tasks, such as spatial domain identification, data denoising, visualization, and trajectory inference. Additionally, SpaGIC is capable of performing joint analyses of multiple slices, further underscoring its versatility and effectiveness in spatial transcriptomics research.
Collapse
Affiliation(s)
- Wei Liu
- College of Computer Science and Electronic Engineering, Hunan University, Changsha 410083, China
| | - Bo Wang
- College of Computer Science and Electronic Engineering, Hunan University, Changsha 410083, China
| | - Yuting Bai
- College of Computer Science and Electronic Engineering, Hunan University, Changsha 410083, China
| | - Xiao Liang
- College of Computer Science and Electronic Engineering, Hunan University, Changsha 410083, China
| | - Li Xue
- College of Computer Science and Electronic Engineering, Hunan University, Changsha 410083, China
| | - Jiawei Luo
- College of Computer Science and Electronic Engineering, Hunan University, Changsha 410083, China
| |
Collapse
|
18
|
Samaran J, Peyré G, Cantini L. scConfluence: single-cell diagonal integration with regularized Inverse Optimal Transport on weakly connected features. Nat Commun 2024; 15:7762. [PMID: 39237488 PMCID: PMC11377776 DOI: 10.1038/s41467-024-51382-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2024] [Accepted: 08/06/2024] [Indexed: 09/07/2024] Open
Abstract
The abundance of unpaired multimodal single-cell data has motivated a growing body of research into the development of diagonal integration methods. However, the state-of-the-art suffers from the loss of biological information due to feature conversion and struggles with modality-specific populations. To overcome these crucial limitations, we here introduce scConfluence, a method for single-cell diagonal integration. scConfluence combines uncoupled autoencoders on the complete set of features with regularized Inverse Optimal Transport on weakly connected features. We extensively benchmark scConfluence in several single-cell integration scenarios proving that it outperforms the state-of-the-art. We then demonstrate the biological relevance of scConfluence in three applications. We predict spatial patterns for Scgn, Synpr and Olah in scRNA-smFISH integration. We improve the classification of B cells and Monocytes in highly heterogeneous scRNA-scATAC-CyTOF integration. Finally, we reveal the joint contribution of Fezf2 and apical dendrite morphology in Intra Telencephalic neurons, based on morphological images and scRNA.
Collapse
Affiliation(s)
- Jules Samaran
- Institut Pasteur, Université Paris Cité, CNRS UMR 3738, Machine Learning for Integrative Genomics Group, Paris, France
| | - Gabriel Peyré
- CNRS and DMA de l'Ecole Normale Supérieure, CNRS, Ecole Normale Supérieure, Université PSL, Paris, France
| | - Laura Cantini
- Institut Pasteur, Université Paris Cité, CNRS UMR 3738, Machine Learning for Integrative Genomics Group, Paris, France.
| |
Collapse
|
19
|
Duan H, Zhang Q, Cui F, Zou Q, Zhang Z. MVST: Identifying spatial domains of spatial transcriptomes from multiple views using multi-view graph convolutional networks. PLoS Comput Biol 2024; 20:e1012409. [PMID: 39235988 PMCID: PMC11376559 DOI: 10.1371/journal.pcbi.1012409] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2024] [Accepted: 08/09/2024] [Indexed: 09/07/2024] Open
Abstract
Spatial transcriptome technology can parse transcriptomic data at the spatial level to detect high-throughput gene expression and preserve information regarding the spatial structure of tissues. Identifying spatial domains, that is identifying regions with similarities in gene expression and histology, is the most basic and critical aspect of spatial transcriptome data analysis. Most current methods identify spatial domains only through a single view, which may obscure certain important information and thus fail to make full use of the information embedded in spatial transcriptome data. Therefore, we propose an unsupervised clustering framework based on multiview graph convolutional networks (MVST) to achieve accurate spatial domain recognition by the learning graph embedding features of neighborhood graphs constructed from gene expression information, spatial location information, and histopathological image information through multiview graph convolutional networks. By exploring spatial transcriptomes from multiple views, MVST enables data from all parts of the spatial transcriptome to be comprehensively and fully utilized to obtain more accurate spatial expression patterns. We verified the effectiveness of MVST on real spatial transcriptome datasets, the robustness of MVST on some simulated datasets, and the reasonableness of the framework structure of MVST in ablation experiments, and from the experimental results, it is clear that MVST can achieve a more accurate spatial domain identification compared with the current more advanced methods. In conclusion, MVST is a powerful tool for spatial transcriptome research with improved spatial domain recognition.
Collapse
Affiliation(s)
- Hao Duan
- School of Computer Science and Technology, Hainan University, Haikou, China
| | - Qingchen Zhang
- School of Computer Science and Technology, Hainan University, Haikou, China
| | - Feifei Cui
- School of Computer Science and Technology, Hainan University, Haikou, China
| | - Quan Zou
- Institute of Fundamental and Frontier Sciences, University of Electronic Science and Technology of China, Chengdu, China
- Yangtze Delta Region Institute (Quzhou), University of Electronic Science and Technology of China, Quzhou, China
| | - Zilong Zhang
- School of Computer Science and Technology, Hainan University, Haikou, China
| |
Collapse
|
20
|
Andersson A, Behanova A, Avenel C, Windhager J, Malmberg F, Wählby C. Points2Regions: Fast, interactive clustering of imaging-based spatial transcriptomics data. Cytometry A 2024; 105:677-687. [PMID: 38958502 DOI: 10.1002/cyto.a.24884] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2024] [Revised: 05/30/2024] [Accepted: 06/13/2024] [Indexed: 07/04/2024]
Abstract
Imaging-based spatial transcriptomics techniques generate data in the form of spatial points belonging to different mRNA classes. A crucial part of analyzing the data involves the identification of regions with similar composition of mRNA classes. These biologically interesting regions can manifest at different spatial scales. For example, the composition of mRNA classes on a cellular scale corresponds to cell types, whereas compositions on a millimeter scale correspond to tissue-level structures. Traditional techniques for identifying such regions often rely on complementary data, such as pre-segmented cells, or lengthy optimization. This limits their applicability to tasks on a particular scale, restricting their capabilities in exploratory analysis. This article introduces "Points2Regions," a computational tool for identifying regions with similar mRNA compositions. The tool's novelty lies in its rapid feature extraction by rasterizing points (representing mRNAs) onto a pyramidal grid and its efficient clustering using a combination of hierarchical and k -means clustering. This enables fast and efficient region discovery across multiple scales without relying on additional data, making it a valuable resource for exploratory analysis. Points2Regions has demonstrated performance similar to state-of-the-art methods on two simulated datasets, without relying on segmented cells, while being several times faster. Experiments on real-world datasets show that regions identified by Points2Regions are similar to those identified in other studies, confirming that Points2Regions can be used to extract biologically relevant regions. The tool is shared as a Python package integrated into TissUUmaps and a Napari plugin, offering interactive clustering and visualization, significantly enhancing user experience in data exploration.
Collapse
Affiliation(s)
- Axel Andersson
- Department of IT and SciLifeLab BioImage Informatics Facility, Uppsala University, Uppsala, Sweden
| | - Andrea Behanova
- Department of IT and SciLifeLab BioImage Informatics Facility, Uppsala University, Uppsala, Sweden
| | - Christophe Avenel
- Department of IT and SciLifeLab BioImage Informatics Facility, Uppsala University, Uppsala, Sweden
| | - Jonas Windhager
- Department of IT and SciLifeLab BioImage Informatics Facility, Uppsala University, Uppsala, Sweden
| | - Filip Malmberg
- Department of IT and SciLifeLab BioImage Informatics Facility, Uppsala University, Uppsala, Sweden
| | - Carolina Wählby
- Department of IT and SciLifeLab BioImage Informatics Facility, Uppsala University, Uppsala, Sweden
| |
Collapse
|
21
|
Liu L, Chen A, Li Y, Mulder J, Heyn H, Xu X. Spatiotemporal omics for biology and medicine. Cell 2024; 187:4488-4519. [PMID: 39178830 DOI: 10.1016/j.cell.2024.07.040] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2024] [Revised: 07/05/2024] [Accepted: 07/23/2024] [Indexed: 08/26/2024]
Abstract
The completion of the Human Genome Project has provided a foundational blueprint for understanding human life. Nonetheless, understanding the intricate mechanisms through which our genetic blueprint is involved in disease or orchestrates development across temporal and spatial dimensions remains a profound scientific challenge. Recent breakthroughs in cellular omics technologies have paved new pathways for understanding the regulation of genomic elements and the relationship between gene expression, cellular functions, and cell fate determination. The advent of spatial omics technologies, encompassing both imaging and sequencing-based methodologies, has enabled a comprehensive understanding of biological processes from a cellular ecosystem perspective. This review offers an updated overview of how spatial omics has advanced our understanding of the translation of genetic information into cellular heterogeneity and tissue structural organization and their dynamic changes over time. It emphasizes the discovery of various biological phenomena, related to organ functionality, embryogenesis, species evolution, and the pathogenesis of diseases.
Collapse
Affiliation(s)
| | - Ao Chen
- BGI Research, Shenzhen 518083, China
| | | | - Jan Mulder
- Department of Neuroscience, Karolinska Institute, Stockholm, Sweden
| | - Holger Heyn
- Centro Nacional de Análisis Genómico (CNAG), Barcelona, Spain
| | - Xun Xu
- BGI Research, Hangzhou 310030, China; BGI Research, Shenzhen 518083, China.
| |
Collapse
|
22
|
Kumaran G, Carroll L, Muirhead N, Bottomley MJ. How Can Spatial Transcriptomic Profiling Advance Our Understanding of Skin Diseases? J Invest Dermatol 2024:S0022-202X(24)01926-2. [PMID: 39177547 DOI: 10.1016/j.jid.2024.07.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2024] [Revised: 05/23/2024] [Accepted: 07/04/2024] [Indexed: 08/24/2024]
Abstract
Spatial transcriptomic (ST) profiling is the mapping of gene expression within cell populations with preservation of positional context and represents an exciting new approach to develop our understanding of local and regional influences upon skin biology in health and disease. With the ability to probe from a few hundred transcripts to the entire transcriptome, multiple ST approaches are now widely available. In this paper, we review the ST field and discuss its application to dermatology. Its potential to advance our understanding of skin biology in health and disease is highlighted through the illustrative examples of 3 research areas: cutaneous aging, tumorigenesis, and psoriasis.
Collapse
Affiliation(s)
- Girishkumar Kumaran
- Chinese Academy of Medical Sciences Oxford Institute, Nuffield Department of Medicine, University of Oxford, Oxford, United Kingdom
| | - Liam Carroll
- Chinese Academy of Medical Sciences Oxford Institute, Nuffield Department of Medicine, University of Oxford, Oxford, United Kingdom
| | | | - Matthew J Bottomley
- Chinese Academy of Medical Sciences Oxford Institute, Nuffield Department of Medicine, University of Oxford, Oxford, United Kingdom.
| |
Collapse
|
23
|
Poovathingal S, Davie K, Borm LE, Vandepoel R, Poulvellarie N, Verfaillie A, Corthout N, Aerts S. Nova-ST: Nano-patterned ultra-dense platform for spatial transcriptomics. CELL REPORTS METHODS 2024; 4:100831. [PMID: 39111312 PMCID: PMC11384075 DOI: 10.1016/j.crmeth.2024.100831] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/09/2024] [Revised: 06/07/2024] [Accepted: 07/11/2024] [Indexed: 08/22/2024]
Abstract
Spatial transcriptomics workflows using barcoded capture arrays are commonly used for resolving gene expression in tissues. However, existing techniques are either limited by capture array density or are cost prohibitive for large-scale atlasing. We present Nova-ST, a dense nano-patterned spatial transcriptomics technique derived from randomly barcoded Illumina sequencing flow cells. Nova-ST enables customized, low-cost, flexible, and high-resolution spatial profiling of large tissue sections. Benchmarking on mouse brain sections demonstrates significantly higher sensitivity compared to existing methods at a reduced cost.
Collapse
Affiliation(s)
- Suresh Poovathingal
- VIB Center for AI & Computational Biology (VIB.AI), 3000 Leuven, Belgium; VIB-KU Leuven Center for Brain & Disease Research, CBD Technologies, Single Cell & Microfluidics Expertise Unit, 3000 Leuven, Belgium; Aligning Science Across Parkinson's (ASAP) Collaborative Research Network, Chevy Chase, MD 20815, USA.
| | - Kristofer Davie
- VIB Center for AI & Computational Biology (VIB.AI), 3000 Leuven, Belgium; VIB-KU Leuven Center for Brain & Disease Research, CBD Technologies, Single Cell Bioinformatics Expertise Unit, 3000 Leuven, Belgium
| | - Lars E Borm
- VIB Center for AI & Computational Biology (VIB.AI), 3000 Leuven, Belgium; VIB-KU Leuven Center for Brain & Disease Research, 3000 Leuven, Belgium; Department of Human Genetics, KU Leuven, 3000 Leuven, Belgium
| | - Roel Vandepoel
- VIB Center for AI & Computational Biology (VIB.AI), 3000 Leuven, Belgium; VIB-KU Leuven Center for Brain & Disease Research, 3000 Leuven, Belgium; Department of Human Genetics, KU Leuven, 3000 Leuven, Belgium
| | - Nicolas Poulvellarie
- VIB-KU Leuven Center for Brain & Disease Research, CBD Technologies, Neuroengineering Expertise Unit, 3000 Leuven, Belgium
| | | | - Nikky Corthout
- Bio Imaging Core, VIB-KU Leuven Center for Brain & Disease Research, 3000 Leuven, Belgium
| | - Stein Aerts
- VIB Center for AI & Computational Biology (VIB.AI), 3000 Leuven, Belgium; VIB-KU Leuven Center for Brain & Disease Research, 3000 Leuven, Belgium; Aligning Science Across Parkinson's (ASAP) Collaborative Research Network, Chevy Chase, MD 20815, USA; Department of Human Genetics, KU Leuven, 3000 Leuven, Belgium.
| |
Collapse
|
24
|
Yang W, Wang P, Xu S, Wang T, Luo M, Cai Y, Xu C, Xue G, Que J, Ding Q, Jin X, Yang Y, Pang F, Pang B, Lin Y, Nie H, Xu Z, Ji Y, Jiang Q. Deciphering cell-cell communication at single-cell resolution for spatial transcriptomics with subgraph-based graph attention network. Nat Commun 2024; 15:7101. [PMID: 39155292 PMCID: PMC11330978 DOI: 10.1038/s41467-024-51329-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2024] [Accepted: 08/01/2024] [Indexed: 08/20/2024] Open
Abstract
The inference of cell-cell communication (CCC) is crucial for a better understanding of complex cellular dynamics and regulatory mechanisms in biological systems. However, accurately inferring spatial CCCs at single-cell resolution remains a significant challenge. To address this issue, we present a versatile method, called DeepTalk, to infer spatial CCC at single-cell resolution by integrating single-cell RNA sequencing (scRNA-seq) data and spatial transcriptomics (ST) data. DeepTalk utilizes graph attention network (GAT) to integrate scRNA-seq and ST data, which enables accurate cell-type identification for single-cell ST data and deconvolution for spot-based ST data. Then, DeepTalk can capture the connections among cells at multiple levels using subgraph-based GAT, and further achieve spatially resolved CCC inference at single-cell resolution. DeepTalk achieves excellent performance in discovering meaningful spatial CCCs on multiple cross-platform datasets, which demonstrates its superior ability to dissect cellular behavior within intricate biological processes.
Collapse
Affiliation(s)
- Wenyi Yang
- Center for Bioinformatics, School of Life Science and Technology, Harbin Institute of Technology, Harbin, China
| | - Pingping Wang
- School of Interdisciplinary Medicine and Engineering, Harbin Medical University, Harbin, China
| | - Shouping Xu
- Department of Breast Cancer, Harbin Medical University Cancer Hospital, Harbin, China
| | - Tao Wang
- School of Computer Science, Northwestern Polytechnical University, Xi'an, China
| | - Meng Luo
- Center for Bioinformatics, School of Life Science and Technology, Harbin Institute of Technology, Harbin, China
| | - Yideng Cai
- Center for Bioinformatics, School of Life Science and Technology, Harbin Institute of Technology, Harbin, China
| | - Chang Xu
- Center for Bioinformatics, School of Life Science and Technology, Harbin Institute of Technology, Harbin, China
| | - Guangfu Xue
- Center for Bioinformatics, School of Life Science and Technology, Harbin Institute of Technology, Harbin, China
| | - Jinhao Que
- Center for Bioinformatics, School of Life Science and Technology, Harbin Institute of Technology, Harbin, China
| | - Qian Ding
- Center for Bioinformatics, School of Life Science and Technology, Harbin Institute of Technology, Harbin, China
| | - Xiyun Jin
- School of Interdisciplinary Medicine and Engineering, Harbin Medical University, Harbin, China
| | - Yuexin Yang
- Center for Bioinformatics, School of Life Science and Technology, Harbin Institute of Technology, Harbin, China
| | - Fenglan Pang
- Center for Bioinformatics, School of Life Science and Technology, Harbin Institute of Technology, Harbin, China
| | - Boran Pang
- Center for Difficult and Complicated Abdominal Surgery, Shanghai Tenth People's Hospital, Tongji University School of Medicine, Shanghai, China
| | - Yi Lin
- School of Interdisciplinary Medicine and Engineering, Harbin Medical University, Harbin, China
| | - Huan Nie
- Center for Bioinformatics, School of Life Science and Technology, Harbin Institute of Technology, Harbin, China
| | - Zhaochun Xu
- School of Interdisciplinary Medicine and Engineering, Harbin Medical University, Harbin, China.
| | - Yong Ji
- State Key Laboratory of Frigid Zone Cardiovascular Diseases (SKLFZCD), Harbin Medical University, Harbin, China.
| | - Qinghua Jiang
- Center for Bioinformatics, School of Life Science and Technology, Harbin Institute of Technology, Harbin, China.
- School of Interdisciplinary Medicine and Engineering, Harbin Medical University, Harbin, China.
| |
Collapse
|
25
|
Kumar R, Kolloli A, Subbian S, Kaushal D, Shi L, Tyagi S. Imaging the Architecture of Granulomas Induced by Mycobacterium tuberculosis Infection with Single-molecule Fluorescence In Situ Hybridization. JOURNAL OF IMMUNOLOGY (BALTIMORE, MD. : 1950) 2024; 213:526-537. [PMID: 38912840 PMCID: PMC11407750 DOI: 10.4049/jimmunol.2300068] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/25/2023] [Accepted: 05/30/2024] [Indexed: 06/25/2024]
Abstract
Granulomas are an important hallmark of Mycobacterium tuberculosis infection. They are organized and dynamic structures created when immune cells assemble around the sites of infection in the lungs that locally restrict M. tuberculosis growth and the host's inflammatory responses. The cellular architecture of granulomas is traditionally studied by immunofluorescence labeling of surface markers on the host cells. However, very few Abs are available for model animals used in tuberculosis research, such as nonhuman primates and rabbits, and secreted immunological markers such as cytokines cannot be imaged in situ using Abs. Furthermore, traditional phenotypic surface markers do not provide sufficient resolution for the detection of the many subtypes and differentiation states of immune cells. Using single-molecule fluorescence in situ hybridization (smFISH) and its derivatives, amplified smFISH and iterative smFISH, we developed a platform for imaging mRNAs encoding immune markers in rabbit and macaque tuberculosis granulomas. Multiplexed imaging for several mRNA and protein markers was followed by quantitative measurement of the expression of these markers in single cells. An analysis of the combinatorial expressions of these markers allowed us to classify the cells into several subtypes, and to chart their densities within granulomas. For one mRNA target, hypoxia-inducible factor-1α, we imaged its mRNA and protein in the same cells, demonstrating the specificity of the probes. This method paves the way for defining granular differentiation states and cell subtypes from transcriptomic data, identifying key mRNA markers for these cell subtypes, and then locating the cells in the spatial context of granulomas.
Collapse
Affiliation(s)
| | | | - Selvakumar Subbian
- Public Health Research Institute
- Department of Medicine, New Jersey Medical School, Rutgers University, Newark, NJ
| | - Deepak Kaushal
- Southwest National Primate Research Center, Texas Biomedical Research Institute, San Antonio, TX
| | - Lanbo Shi
- Public Health Research Institute
- Department of Medicine, New Jersey Medical School, Rutgers University, Newark, NJ
| | - Sanjay Tyagi
- Public Health Research Institute
- Department of Medicine, New Jersey Medical School, Rutgers University, Newark, NJ
| |
Collapse
|
26
|
Lee H, Langseth CM, Salas SM, Sariyar S, Metousis A, Rueda-Alaña E, Bekiari C, Lundberg E, Garcı A-Moreno F, Grillo M, Nilsson M. Open-source, high-throughput targeted in situ transcriptomics for developmental and tissue biology. Development 2024; 151:dev202448. [PMID: 39099456 PMCID: PMC11385644 DOI: 10.1242/dev.202448] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2023] [Accepted: 07/19/2024] [Indexed: 08/06/2024]
Abstract
Multiplexed spatial profiling of mRNAs has recently gained traction as a tool to explore the cellular diversity and the architecture of tissues. We propose a sensitive, open-source, simple and flexible method for the generation of in situ expression maps of hundreds of genes. We use direct ligation of padlock probes on mRNAs, coupled with rolling circle amplification and hybridization-based in situ combinatorial barcoding, to achieve high detection efficiency, high-throughput and large multiplexing. We validate the method across a number of species and show its use in combination with orthogonal methods such as antibody staining, highlighting its potential value for developmental and tissue biology studies. Finally, we provide an end-to-end computational workflow that covers the steps of probe design, image processing, data extraction, cell segmentation, clustering and annotation of cell types. By enabling easier access to high-throughput spatially resolved transcriptomics, we hope to encourage a diversity of applications and the exploration of a wide range of biological questions.
Collapse
Affiliation(s)
- Hower Lee
- Science for Life Laboratory, Department of Biochemistry and Biophysics, Stockholm University, 171 65 Solna, Sweden
| | | | - Sergio Marco Salas
- Science for Life Laboratory, Department of Biochemistry and Biophysics, Stockholm University, 171 65 Solna, Sweden
| | - Sanem Sariyar
- Science for Life Laboratory, Department of Protein Science, KTH - Royal Institute of Technology, 17165Stockholm, Sweden
| | - Andreas Metousis
- Science for Life Laboratory, Department of Biochemistry and Biophysics, Stockholm University, 171 65 Solna, Sweden
| | - Eneritz Rueda-Alaña
- Achucarro Basque Center for Neuroscience, Scientific Park of the University of the Basque Country (UPV/EHU), 48940 Leioa, Spain
- Department of Neuroscience, Faculty of Medicine and Odontology, UPV/EHU, Barrio Sarriena s/n, 48940 Leioa, Bizkaia, Spain
| | - Christina Bekiari
- Science for Life Laboratory, Department of Biochemistry and Biophysics, Stockholm University, 171 65 Solna, Sweden
| | - Emma Lundberg
- Science for Life Laboratory, Department of Protein Science, KTH - Royal Institute of Technology, 17165Stockholm, Sweden
- Department of Bioengineering, Stanford University, Stanford, CA 94305, USA
- Department of Pathology, Stanford University, Stanford, CA 94305, USA
| | - Fernando Garcı A-Moreno
- Achucarro Basque Center for Neuroscience, Scientific Park of the University of the Basque Country (UPV/EHU), 48940 Leioa, Spain
- Department of Neuroscience, Faculty of Medicine and Odontology, UPV/EHU, Barrio Sarriena s/n, 48940 Leioa, Bizkaia, Spain
- IKERBASQUE Foundation, María Díaz de Haro 3, 6th Floor, 48013 BilbaoSpain
| | - Marco Grillo
- Science for Life Laboratory, Department of Biochemistry and Biophysics, Stockholm University, 171 65 Solna, Sweden
| | - Mats Nilsson
- Science for Life Laboratory, Department of Biochemistry and Biophysics, Stockholm University, 171 65 Solna, Sweden
| |
Collapse
|
27
|
Li Y, Luo Y. STdGCN: spatial transcriptomic cell-type deconvolution using graph convolutional networks. Genome Biol 2024; 25:206. [PMID: 39103939 DOI: 10.1186/s13059-024-03353-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2023] [Accepted: 07/26/2024] [Indexed: 08/07/2024] Open
Abstract
Spatially resolved transcriptomics integrates high-throughput transcriptome measurements with preserved spatial cellular organization information. However, many technologies cannot reach single-cell resolution. We present STdGCN, a graph model leveraging single-cell RNA sequencing (scRNA-seq) as reference for cell-type deconvolution in spatial transcriptomic (ST) data. STdGCN incorporates expression profiles from scRNA-seq and spatial localization from ST data for deconvolution. Extensive benchmarking on multiple datasets demonstrates that STdGCN outperforms 17 state-of-the-art models. In a human breast cancer Visium dataset, STdGCN delineates stroma, lymphocytes, and cancer cells, aiding tumor microenvironment analysis. In human heart ST data, STdGCN identifies changes in endothelial-cardiomyocyte communications during tissue development.
Collapse
Affiliation(s)
- Yawei Li
- Department of Preventive Medicine, Feinberg School of Medicine, Northwestern University, Chicago, IL, 60611, USA
- Center for Collaborative AI in Healthcare, Feinberg School of Medicine, Northwestern University, Chicago, IL, 60611, USA
| | - Yuan Luo
- Department of Preventive Medicine, Feinberg School of Medicine, Northwestern University, Chicago, IL, 60611, USA.
- Center for Collaborative AI in Healthcare, Feinberg School of Medicine, Northwestern University, Chicago, IL, 60611, USA.
| |
Collapse
|
28
|
Yao D, Binan L, Bezney J, Simonton B, Freedman J, Frangieh CJ, Dey K, Geiger-Schuller K, Eraslan B, Gusev A, Regev A, Cleary B. Scalable genetic screening for regulatory circuits using compressed Perturb-seq. Nat Biotechnol 2024; 42:1282-1295. [PMID: 37872410 PMCID: PMC11035494 DOI: 10.1038/s41587-023-01964-9] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2023] [Accepted: 08/22/2023] [Indexed: 10/25/2023]
Abstract
Pooled CRISPR screens with single-cell RNA sequencing readout (Perturb-seq) have emerged as a key technique in functional genomics, but they are limited in scale by cost and combinatorial complexity. In this study, we modified the design of Perturb-seq by incorporating algorithms applied to random, low-dimensional observations. Compressed Perturb-seq measures multiple random perturbations per cell or multiple cells per droplet and computationally decompresses these measurements by leveraging the sparse structure of regulatory circuits. Applied to 598 genes in the immune response to bacterial lipopolysaccharide, compressed Perturb-seq achieves the same accuracy as conventional Perturb-seq with an order of magnitude cost reduction and greater power to learn genetic interactions. We identified known and novel regulators of immune responses and uncovered evolutionarily constrained genes with downstream targets enriched for immune disease heritability, including many missed by existing genome-wide association studies. Our framework enables new scales of interrogation for a foundational method in functional genomics.
Collapse
Affiliation(s)
- Douglas Yao
- Program in Systems, Synthetic, and Quantitative Biology, Harvard University, Cambridge, MA, USA
| | - Loic Binan
- Klarman Cell Observatory, Broad Institute of Harvard and MIT, Cambridge, MA, USA
| | - Jon Bezney
- Klarman Cell Observatory, Broad Institute of Harvard and MIT, Cambridge, MA, USA
- Department of Genetics, Stanford University School of Medicine, Stanford, CA, USA
| | - Brooke Simonton
- Klarman Cell Observatory, Broad Institute of Harvard and MIT, Cambridge, MA, USA
| | - Jahanara Freedman
- Klarman Cell Observatory, Broad Institute of Harvard and MIT, Cambridge, MA, USA
| | - Chris J Frangieh
- Klarman Cell Observatory, Broad Institute of Harvard and MIT, Cambridge, MA, USA
- Department of Electrical Engineering and Computer Science, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Kushal Dey
- Harvard T.H. Chan School of Public Health, Boston, MA, USA
- Computational and Systems Biology Program, Sloan Kettering Institute, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | | | | | - Alexander Gusev
- Klarman Cell Observatory, Broad Institute of Harvard and MIT, Cambridge, MA, USA
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA, USA
- Division of Genetics, Brigham and Women's Hospital, Boston, MA, USA
| | - Aviv Regev
- Klarman Cell Observatory, Broad Institute of Harvard and MIT, Cambridge, MA, USA
- Computational and Systems Biology Program, Sloan Kettering Institute, Memorial Sloan Kettering Cancer Center, New York, NY, USA
- Genentech, South San Francisco, CA, USA
| | - Brian Cleary
- Faculty of Computing and Data Sciences, Boston University, Boston, MA, USA.
- Department of Biology, Boston University, Boston, MA, USA.
- Department of Biomedical Engineering, Boston University, Boston, MA, USA.
- Program in Bioinformatics, Boston University, Boston, MA, USA.
- Biological Design Center, Boston University, Boston, MA, USA.
| |
Collapse
|
29
|
Zhang M, Zhang W, Ma X. ST-SCSR: identifying spatial domains in spatial transcriptomics data via structure correlation and self-representation. Brief Bioinform 2024; 25:bbae437. [PMID: 39228303 PMCID: PMC11372132 DOI: 10.1093/bib/bbae437] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2024] [Revised: 07/31/2024] [Accepted: 08/20/2024] [Indexed: 09/05/2024] Open
Abstract
Recent advances in spatial transcriptomics (ST) enable measurements of transcriptome within intact biological tissues by preserving spatial information, offering biologists unprecedented opportunities to comprehensively understand tissue micro-environment, where spatial domains are basic units of tissues. Although great efforts are devoted to this issue, they still have many shortcomings, such as ignoring local information and relations of spatial domains, requiring alternatives to solve these problems. Here, a novel algorithm for spatial domain identification in Spatial Transcriptomics data with Structure Correlation and Self-Representation (ST-SCSR), which integrates local information, global information, and similarity of spatial domains. Specifically, ST-SCSR utilzes matrix tri-factorization to simultaneously decompose expression profiles and spatial network of spots, where expressional and spatial features of spots are fused via the shared factor matrix that interpreted as similarity of spatial domains. Furthermore, ST-SCSR learns affinity graph of spots by manipulating expressional and spatial features, where local preservation and sparse constraints are employed, thereby enhancing the quality of graph. The experimental results demonstrate that ST-SCSR not only outperforms state-of-the-art algorithms in terms of accuracy, but also identifies many potential interesting patterns.
Collapse
Affiliation(s)
- Min Zhang
- School of Computer Science and Technology, Xidian University, No. 2 South Taibai Road, 710071 Xi'an Shaanxi, China
- Key Laboratory of Smart Human-Computer Interaction and Wearable Technology of Shaanxi Province, Xidian University, No. 2 South Taibai Road, 710071 Xi'an Shaanxi, China
| | - Wensheng Zhang
- School of Computer Science and Cyber Engineering, GuangZhou University, No. 230 Wai Huan Xi Road,Guangzhou Higher Education Mega Center, 510006 Guangzhou Guangdong, China
| | - Xiaoke Ma
- School of Computer Science and Technology, Xidian University, No. 2 South Taibai Road, 710071 Xi'an Shaanxi, China
- Key Laboratory of Smart Human-Computer Interaction and Wearable Technology of Shaanxi Province, Xidian University, No. 2 South Taibai Road, 710071 Xi'an Shaanxi, China
| |
Collapse
|
30
|
Mo J, Bae J, Saqib J, Hwang D, Jin Y, Park B, Park J, Kim J. Current computational methods for spatial transcriptomics in cancer biology. Adv Cancer Res 2024; 163:71-106. [PMID: 39271268 DOI: 10.1016/bs.acr.2024.06.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/15/2024]
Abstract
Cells in multicellular organisms constitute a self-organizing society by interacting with their neighbors. Cancer originates from malfunction of cellular behavior in the context of such a self-organizing system. The identities or characteristics of individual tumor cells can be represented by the hallmark of gene expression or transcriptome, which can be addressed using single-cell dissociation followed by RNA sequencing. However, the dissociation process of single cells results in losing the cellular address in tissue or neighbor information of each tumor cell, which is critical to understanding the malfunctioning cellular behavior in the microenvironment. Spatial transcriptomics technology enables measuring the transcriptome which is tagged by the address within a tissue. However, to understand cellular behavior in a self-organizing society, we need to apply mathematical or statistical methods. Here, we provide a review on current computational methods for spatial transcriptomics in cancer biology.
Collapse
Affiliation(s)
- Jaewoo Mo
- School of Systems Biomedical Science, Soongsil University, Dongjak-Gu, Seoul, Republic of Korea
| | - Junseong Bae
- Interdisciplinary Program of Genomic Data Science, Pusan National University, Yangsan, Republic of Korea; Graduate School of Medical AI, Pusan National University, Yangsan, Republic of Korea
| | - Jahanzeb Saqib
- School of Systems Biomedical Science, Soongsil University, Dongjak-Gu, Seoul, Republic of Korea
| | - Dohyun Hwang
- Department of Information Convergence Engineering, Pusan National University, Yangsan, Republic of Korea
| | - Yunjung Jin
- School of Systems Biomedical Science, Soongsil University, Dongjak-Gu, Seoul, Republic of Korea
| | - Beomsu Park
- School of Systems Biomedical Science, Soongsil University, Dongjak-Gu, Seoul, Republic of Korea
| | - Jeongbin Park
- Interdisciplinary Program of Genomic Data Science, Pusan National University, Yangsan, Republic of Korea; Department of Information Convergence Engineering, Pusan National University, Yangsan, Republic of Korea; School of Biomedical Convergence Engineering, Pusan National University, Yangsan, Republic of Korea.
| | - Junil Kim
- School of Systems Biomedical Science, Soongsil University, Dongjak-Gu, Seoul, Republic of Korea.
| |
Collapse
|
31
|
Sun F, Li H, Sun D, Fu S, Gu L, Shao X, Wang Q, Dong X, Duan B, Xing F, Wu J, Xiao M, Zhao F, Han JDJ, Liu Q, Fan X, Li C, Wang C, Shi T. Single-cell omics: experimental workflow, data analyses and applications. SCIENCE CHINA. LIFE SCIENCES 2024:10.1007/s11427-023-2561-0. [PMID: 39060615 DOI: 10.1007/s11427-023-2561-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/07/2023] [Accepted: 04/18/2024] [Indexed: 07/28/2024]
Abstract
Cells are the fundamental units of biological systems and exhibit unique development trajectories and molecular features. Our exploration of how the genomes orchestrate the formation and maintenance of each cell, and control the cellular phenotypes of various organismsis, is both captivating and intricate. Since the inception of the first single-cell RNA technology, technologies related to single-cell sequencing have experienced rapid advancements in recent years. These technologies have expanded horizontally to include single-cell genome, epigenome, proteome, and metabolome, while vertically, they have progressed to integrate multiple omics data and incorporate additional information such as spatial scRNA-seq and CRISPR screening. Single-cell omics represent a groundbreaking advancement in the biomedical field, offering profound insights into the understanding of complex diseases, including cancers. Here, we comprehensively summarize recent advances in single-cell omics technologies, with a specific focus on the methodology section. This overview aims to guide researchers in selecting appropriate methods for single-cell sequencing and related data analysis.
Collapse
Affiliation(s)
- Fengying Sun
- Department of Clinical Laboratory, the Affiliated Wuhu Hospital of East China Normal University (The Second People's Hospital of Wuhu City), Wuhu, 241000, China
| | - Haoyan Li
- Pharmaceutical Informatics Institute, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, 310058, China
| | - Dongqing Sun
- Key Laboratory of Spine and Spinal Cord Injury Repair and Regeneration (Tongji University), Ministry of Education, Orthopaedic Department, Tongji Hospital, Bioinformatics Department, School of Life Sciences and Technology, Tongji University, Shanghai, 200082, China
- Frontier Science Center for Stem Cells, School of Life Sciences and Technology, Tongji University, Shanghai, 200092, China
| | - Shaliu Fu
- Key Laboratory of Spine and Spinal Cord Injury Repair and Regeneration (Tongji University), Ministry of Education, Orthopaedic Department, Tongji Hospital, Bioinformatics Department, School of Life Sciences and Technology, Tongji University, Shanghai, 200082, China
- Translational Medical Center for Stem Cell Therapy and Institute for Regenerative Medicine, Shanghai East Hospital, Bioinformatics Department, School of Life Sciences and Technology, Tongji University, Shanghai, 200082, China
- Research Institute of Intelligent Computing, Zhejiang Lab, Hangzhou, 311121, China
- Shanghai Research Institute for Intelligent Autonomous Systems, Shanghai, 201210, China
| | - Lei Gu
- Center for Single-cell Omics, School of Public Health, Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, China
| | - Xin Shao
- Pharmaceutical Informatics Institute, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, 310058, China
- National Key Laboratory of Chinese Medicine Modernization, Innovation Center of Yangtze River Delta, Zhejiang University, Jiaxing, 314103, China
| | - Qinqin Wang
- Center for Single-cell Omics, School of Public Health, Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, China
| | - Xin Dong
- Key Laboratory of Spine and Spinal Cord Injury Repair and Regeneration (Tongji University), Ministry of Education, Orthopaedic Department, Tongji Hospital, Bioinformatics Department, School of Life Sciences and Technology, Tongji University, Shanghai, 200082, China
- Frontier Science Center for Stem Cells, School of Life Sciences and Technology, Tongji University, Shanghai, 200092, China
| | - Bin Duan
- Key Laboratory of Spine and Spinal Cord Injury Repair and Regeneration (Tongji University), Ministry of Education, Orthopaedic Department, Tongji Hospital, Bioinformatics Department, School of Life Sciences and Technology, Tongji University, Shanghai, 200082, China
- Translational Medical Center for Stem Cell Therapy and Institute for Regenerative Medicine, Shanghai East Hospital, Bioinformatics Department, School of Life Sciences and Technology, Tongji University, Shanghai, 200082, China
- Research Institute of Intelligent Computing, Zhejiang Lab, Hangzhou, 311121, China
- Shanghai Research Institute for Intelligent Autonomous Systems, Shanghai, 201210, China
| | - Feiyang Xing
- Key Laboratory of Spine and Spinal Cord Injury Repair and Regeneration (Tongji University), Ministry of Education, Orthopaedic Department, Tongji Hospital, Bioinformatics Department, School of Life Sciences and Technology, Tongji University, Shanghai, 200082, China
- Frontier Science Center for Stem Cells, School of Life Sciences and Technology, Tongji University, Shanghai, 200092, China
| | - Jun Wu
- Center for Bioinformatics and Computational Biology, Shanghai Key Laboratory of Regulatory Biology, the Institute of Biomedical Sciences and School of Life Sciences, East China Normal University, Shanghai, 200241, China
| | - Minmin Xiao
- Department of Clinical Laboratory, the Affiliated Wuhu Hospital of East China Normal University (The Second People's Hospital of Wuhu City), Wuhu, 241000, China.
| | - Fangqing Zhao
- Beijing Institutes of Life Science, Chinese Academy of Sciences, Beijing, 100101, China.
| | - Jing-Dong J Han
- Peking-Tsinghua Center for Life Sciences, Academy for Advanced Interdisciplinary Studies, Center for Quantitative Biology (CQB), Peking University, Beijing, 100871, China.
| | - Qi Liu
- Key Laboratory of Spine and Spinal Cord Injury Repair and Regeneration (Tongji University), Ministry of Education, Orthopaedic Department, Tongji Hospital, Bioinformatics Department, School of Life Sciences and Technology, Tongji University, Shanghai, 200082, China.
- Translational Medical Center for Stem Cell Therapy and Institute for Regenerative Medicine, Shanghai East Hospital, Bioinformatics Department, School of Life Sciences and Technology, Tongji University, Shanghai, 200082, China.
- Research Institute of Intelligent Computing, Zhejiang Lab, Hangzhou, 311121, China.
- Shanghai Research Institute for Intelligent Autonomous Systems, Shanghai, 201210, China.
| | - Xiaohui Fan
- Pharmaceutical Informatics Institute, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, 310058, China.
- National Key Laboratory of Chinese Medicine Modernization, Innovation Center of Yangtze River Delta, Zhejiang University, Jiaxing, 314103, China.
- Zhejiang Key Laboratory of Precision Diagnosis and Therapy for Major Gynecological Diseases, Women's Hospital, Zhejiang University School of Medicine, Hangzhou, 310006, China.
| | - Chen Li
- Center for Single-cell Omics, School of Public Health, Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, China.
| | - Chenfei Wang
- Key Laboratory of Spine and Spinal Cord Injury Repair and Regeneration (Tongji University), Ministry of Education, Orthopaedic Department, Tongji Hospital, Bioinformatics Department, School of Life Sciences and Technology, Tongji University, Shanghai, 200082, China.
- Frontier Science Center for Stem Cells, School of Life Sciences and Technology, Tongji University, Shanghai, 200092, China.
| | - Tieliu Shi
- Department of Clinical Laboratory, the Affiliated Wuhu Hospital of East China Normal University (The Second People's Hospital of Wuhu City), Wuhu, 241000, China.
- Center for Bioinformatics and Computational Biology, Shanghai Key Laboratory of Regulatory Biology, the Institute of Biomedical Sciences and School of Life Sciences, East China Normal University, Shanghai, 200241, China.
- Key Laboratory of Advanced Theory and Application in Statistics and Data Science-MOE, School of Statistics, East China Normal University, Shanghai, 200062, China.
| |
Collapse
|
32
|
Defard T, Laporte H, Ayan M, Soulier J, Curras-Alonso S, Weber C, Massip F, Londoño-Vallejo JA, Fouillade C, Mueller F, Walter T. A point cloud segmentation framework for image-based spatial transcriptomics. Commun Biol 2024; 7:823. [PMID: 38971915 PMCID: PMC11227573 DOI: 10.1038/s42003-024-06480-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2023] [Accepted: 06/20/2024] [Indexed: 07/08/2024] Open
Abstract
Recent progress in image-based spatial RNA profiling enables to spatially resolve tens to hundreds of distinct RNA species with high spatial resolution. It presents new avenues for comprehending tissue organization. In this context, the ability to assign detected RNA transcripts to individual cells is crucial for downstream analyses, such as in-situ cell type calling. Yet, accurate cell segmentation can be challenging in tissue data, in particular in the absence of a high-quality membrane marker. To address this issue, we introduce ComSeg, a segmentation algorithm that operates directly on single RNA positions and that does not come with implicit or explicit priors on cell shape. ComSeg is applicable in complex tissues with arbitrary cell shapes. Through comprehensive evaluations on simulated and experimental datasets, we show that ComSeg outperforms existing state-of-the-art methods for in-situ single-cell RNA profiling and in-situ cell type calling. ComSeg is available as a documented and open source pip package at https://github.com/fish-quant/ComSeg .
Collapse
Affiliation(s)
- Thomas Defard
- Centre for Computational Biology (CBIO), Mines Paris, PSL University, 75006, Paris, France
- Institut Curie, PSL University, 75005, Paris, France
- INSERM, U900, 75005, Paris, France
- Institut Pasteur, Université Paris Cité, Imaging and Modeling Unit, F-75015, Paris, France
- Institut Pasteur, Université Paris Cité, Photonic Bio-Imaging, Centre de Ressources et Recherches Technologiques (UTechS-PBI, C2RT), F-75015, Paris, France
| | - Hugo Laporte
- Institut Curie, Inserm U1021-CNRS UMR 3347, University Paris-Saclay, PSL Research University, Centre Universitaire, Orsay, Cedex, France
- Institute of Cell Biology (Cancer Research), University Hospital Essen, Essen, Germany
| | - Mallick Ayan
- Institut Curie, Inserm U1021-CNRS UMR 3347, University Paris-Saclay, PSL Research University, Centre Universitaire, Orsay, Cedex, France
| | - Juliette Soulier
- Institut Curie, Inserm U1021-CNRS UMR 3347, University Paris-Saclay, PSL Research University, Centre Universitaire, Orsay, Cedex, France
| | - Sandra Curras-Alonso
- Institut Curie, Inserm U1021-CNRS UMR 3347, University Paris-Saclay, PSL Research University, Centre Universitaire, Orsay, Cedex, France
| | - Christian Weber
- Institut Pasteur, Université Paris Cité, Imaging and Modeling Unit, F-75015, Paris, France
- Institut Pasteur, Université Paris Cité, Photonic Bio-Imaging, Centre de Ressources et Recherches Technologiques (UTechS-PBI, C2RT), F-75015, Paris, France
| | - Florian Massip
- Centre for Computational Biology (CBIO), Mines Paris, PSL University, 75006, Paris, France
- Institut Curie, PSL University, 75005, Paris, France
- INSERM, U900, 75005, Paris, France
| | - José-Arturo Londoño-Vallejo
- Institut Curie, Inserm U1021-CNRS UMR 3347, University Paris-Saclay, PSL Research University, Centre Universitaire, Orsay, Cedex, France
| | - Charles Fouillade
- Institut Curie, Inserm U1021-CNRS UMR 3347, University Paris-Saclay, PSL Research University, Centre Universitaire, Orsay, Cedex, France
| | - Florian Mueller
- Institut Pasteur, Université Paris Cité, Imaging and Modeling Unit, F-75015, Paris, France.
- Institut Pasteur, Université Paris Cité, Photonic Bio-Imaging, Centre de Ressources et Recherches Technologiques (UTechS-PBI, C2RT), F-75015, Paris, France.
| | - Thomas Walter
- Centre for Computational Biology (CBIO), Mines Paris, PSL University, 75006, Paris, France.
- Institut Curie, PSL University, 75005, Paris, France.
- INSERM, U900, 75005, Paris, France.
| |
Collapse
|
33
|
Liu Y, Chen J, Lin C, Ke R. Multiplexed in situ RNA imaging by combFISH. Anal Bioanal Chem 2024; 416:3765-3774. [PMID: 38775954 DOI: 10.1007/s00216-024-05327-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2024] [Revised: 04/28/2024] [Accepted: 04/30/2024] [Indexed: 06/18/2024]
Abstract
Multiplexed in situ RNA imaging offers new opportunities for gene expression profiling by providing high-throughput spatial information. In this work, we present a cyclic combinatorial fluorescent in situ hybridization (combFISH) assay to achieve multiplexed detection of RNA in cell cultures and tissues. Specifically, multiplexing is achieved through cyclic interrogation of barcode sequences on the rolling circle amplicons generated from the padlock probe assay by using sets of combinatorial detection probes. Theoretically, combFISH can detect 64 genes in three hybridization cycles by combinatorial barcoding using 12 fluorescently labeled detection probes. Our method eliminates sequencing-by-ligation (SBL) chemistry in the in situ sequencing protocol and directly uses RNA as targets for ligation, making it more straightforward. We showed that our method works in fresh-frozen and formalin-fixed paraffin-embedded tissue sections. With its straightforward protocols, we expect our method to be adopted by the scientific community and extended to clinical settings.
Collapse
Affiliation(s)
- Yanxiu Liu
- School of Medicine, Huaqiao University, Xiamen, 361021, Fujian, China
- School of Biomedical Sciences, Huaqiao University, Xiamen, 361021, Fujian, China
| | - Jiayu Chen
- School of Medicine, Huaqiao University, Xiamen, 361021, Fujian, China
- School of Biomedical Sciences, Huaqiao University, Xiamen, 361021, Fujian, China
| | - Chen Lin
- School of Medicine, Huaqiao University, Xiamen, 361021, Fujian, China.
- School of Biomedical Sciences, Huaqiao University, Xiamen, 361021, Fujian, China.
| | - Rongqin Ke
- School of Medicine, Huaqiao University, Xiamen, 361021, Fujian, China.
- School of Biomedical Sciences, Huaqiao University, Xiamen, 361021, Fujian, China.
| |
Collapse
|
34
|
Sun ED, Ma R, Zou J. SPRITE: improving spatial gene expression imputation with gene and cell networks. Bioinformatics 2024; 40:i521-i528. [PMID: 38940132 PMCID: PMC11211834 DOI: 10.1093/bioinformatics/btae253] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/29/2024] Open
Abstract
MOTIVATION Spatially resolved single-cell transcriptomics have provided unprecedented insights into gene expression in situ, particularly in the context of cell interactions or organization of tissues. However, current technologies for profiling spatial gene expression at single-cell resolution are generally limited to the measurement of a small number of genes. To address this limitation, several algorithms have been developed to impute or predict the expression of additional genes that were not present in the measured gene panel. Current algorithms do not leverage the rich spatial and gene relational information in spatial transcriptomics. To improve spatial gene expression predictions, we introduce Spatial Propagation and Reinforcement of Imputed Transcript Expression (SPRITE) as a meta-algorithm that processes predictions obtained from existing methods by propagating information across gene correlation networks and spatial neighborhood graphs. RESULTS SPRITE improves spatial gene expression predictions across multiple spatial transcriptomics datasets. Furthermore, SPRITE predicted spatial gene expression leads to improved clustering, visualization, and classification of cells. SPRITE can be used in spatial transcriptomics data analysis to improve inferences based on predicted gene expression. AVAILABILITY AND IMPLEMENTATION The SPRITE software package is available at https://github.com/sunericd/SPRITE. Code for generating experiments and analyses in the manuscript is available at https://github.com/sunericd/sprite-figures-and-analyses.
Collapse
Affiliation(s)
- Eric D Sun
- Department of Biomedical Data Science, Stanford University, Stanford, CA 94305, United States
| | - Rong Ma
- Department of Biostatistics, Harvard T.H. Chan School of Public Health, Boston, MA 02115, United States
| | - James Zou
- Department of Biomedical Data Science, Stanford University, Stanford, CA 94305, United States
| |
Collapse
|
35
|
Jin Y, Zuo Y, Li G, Liu W, Pan Y, Fan T, Fu X, Yao X, Peng Y. Advances in spatial transcriptomics and its applications in cancer research. Mol Cancer 2024; 23:129. [PMID: 38902727 PMCID: PMC11188176 DOI: 10.1186/s12943-024-02040-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2024] [Accepted: 06/10/2024] [Indexed: 06/22/2024] Open
Abstract
Malignant tumors have increasing morbidity and high mortality, and their occurrence and development is a complicate process. The development of sequencing technologies enabled us to gain a better understanding of the underlying genetic and molecular mechanisms in tumors. In recent years, the spatial transcriptomics sequencing technologies have been developed rapidly and allow the quantification and illustration of gene expression in the spatial context of tissues. Compared with the traditional transcriptomics technologies, spatial transcriptomics technologies not only detect gene expression levels in cells, but also inform the spatial location of genes within tissues, cell composition of biological tissues, and interaction between cells. Here we summarize the development of spatial transcriptomics technologies, spatial transcriptomics tools and its application in cancer research. We also discuss the limitations and challenges of current spatial transcriptomics approaches, as well as future development and prospects.
Collapse
Affiliation(s)
- Yang Jin
- Laboratory of Molecular Oncology, Frontiers Science Center for Disease-related Molecular Network, State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, Chengdu, 610041, China
| | - Yuanli Zuo
- Laboratory of Molecular Oncology, Frontiers Science Center for Disease-related Molecular Network, State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, Chengdu, 610041, China
| | - Gang Li
- Department of Thoracic Surgery, The Public Health Clinical Center of Chengdu, Chengdu, 610061, China
| | - Wenrong Liu
- Laboratory of Molecular Oncology, Frontiers Science Center for Disease-related Molecular Network, State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, Chengdu, 610041, China
| | - Yitong Pan
- Laboratory of Molecular Oncology, Frontiers Science Center for Disease-related Molecular Network, State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, Chengdu, 610041, China
| | - Ting Fan
- Laboratory of Molecular Oncology, Frontiers Science Center for Disease-related Molecular Network, State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, Chengdu, 610041, China
| | - Xin Fu
- Laboratory of Molecular Oncology, Frontiers Science Center for Disease-related Molecular Network, State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, Chengdu, 610041, China
| | - Xiaojun Yao
- Department of Thoracic Surgery, The Public Health Clinical Center of Chengdu, Chengdu, 610061, China.
| | - Yong Peng
- Laboratory of Molecular Oncology, Frontiers Science Center for Disease-related Molecular Network, State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, Chengdu, 610041, China.
- Frontier Medical Center, Tianfu Jincheng Laboratory, Chengdu, 610212, China.
| |
Collapse
|
36
|
Rahimi A, Vale-Silva LA, Fälth Savitski M, Tanevski J, Saez-Rodriguez J. DOT: a flexible multi-objective optimization framework for transferring features across single-cell and spatial omics. Nat Commun 2024; 15:4994. [PMID: 38862466 PMCID: PMC11167014 DOI: 10.1038/s41467-024-48868-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2023] [Accepted: 05/14/2024] [Indexed: 06/13/2024] Open
Abstract
Single-cell transcriptomics and spatially-resolved imaging/sequencing technologies have revolutionized biomedical research. However, they suffer from lack of spatial information and a trade-off of resolution and gene coverage, respectively. We propose DOT, a multi-objective optimization framework for transferring cellular features across these data modalities, thus integrating their complementary information. DOT uses genes beyond those common to the data modalities, exploits the local spatial context, transfers spatial features beyond cell-type information, and infers absolute/relative abundance of cell populations at tissue locations. Thus, DOT bridges single-cell transcriptomics data with both high- and low-resolution spatially-resolved data. Moreover, DOT combines practical aspects related to cell composition, heterogeneity, technical effects, and integration of prior knowledge. Our fast implementation based on the Frank-Wolfe algorithm achieves state-of-the-art or improved performance in localizing cell features in high- and low-resolution spatial data and estimating the expression of unmeasured genes in low-coverage spatial data.
Collapse
Affiliation(s)
- Arezou Rahimi
- Institute for Computational Biomedicine, Heidelberg University & Heidelberg University Hospital, Heidelberg, Germany
- Cellzome GmbH, GlaxoSmithKline, Heidelberg, Germany
| | | | | | - Jovan Tanevski
- Institute for Computational Biomedicine, Heidelberg University & Heidelberg University Hospital, Heidelberg, Germany.
- Department of Knowledge Technologies, Jožef Stefan Institute, Ljubljana, Slovenia.
| | - Julio Saez-Rodriguez
- Institute for Computational Biomedicine, Heidelberg University & Heidelberg University Hospital, Heidelberg, Germany.
| |
Collapse
|
37
|
Ma Y, Liu L, Zhao Y, Hang B, Zhang Y. HyperGCN: an effective deep representation learning framework for the integrative analysis of spatial transcriptomics data. BMC Genomics 2024; 25:566. [PMID: 38840049 PMCID: PMC11155133 DOI: 10.1186/s12864-024-10469-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2024] [Accepted: 05/29/2024] [Indexed: 06/07/2024] Open
Abstract
BACKGROUND Advances of spatial transcriptomics technologies enabled simultaneously profiling gene expression and spatial locations of cells from the same tissue. Computational tools and approaches for integration of transcriptomics data and spatial context information are urgently needed to comprehensively explore the underlying structure patterns. In this manuscript, we propose HyperGCN for the integrative analysis of gene expression and spatial information profiled from the same tissue. HyperGCN enables data visualization and clustering, and facilitates downstream analysis, including domain segmentation, the characterization of marker genes for the specific domain structure and GO enrichment analysis. RESULTS Extensive experiments are implemented on four real datasets from different tissues (including human dorsolateral prefrontal cortex, human positive breast tumors, mouse brain, mouse olfactory bulb tissue and Zabrafish melanoma) and technologies (including 10X visium, osmFISH, seqFISH+, 10X Xenium and Stereo-seq) with different spatial resolutions. The results show that HyperGCN achieves superior clustering performance and produces good domain segmentation effects while identifies biologically meaningful spatial expression patterns. This study provides a flexible framework to analyze spatial transcriptomics data with high geometric complexity. CONCLUSIONS HyperGCN is an unsupervised method based on hypergraph induced graph convolutional network, where it assumes that there existed disjoint tissues with high geometric complexity, and models the semantic relationship of cells through hypergraph, which better tackles the high-order interactions of cells and levels of noise in spatial transcriptomics data.
Collapse
Affiliation(s)
- Yuanyuan Ma
- School of Computer Engineering, Hubei University of Arts and Science, Xiangyang, China.
- Hubei Key Laboratory of Power System Design and Test for Electrical Vehicle, Hubei University of Arts and Science, Xiangyang, China.
| | - Lifang Liu
- School of Physics and Electronic Engineering, Hubei University of Arts and Science, Xiangyang, China
| | - Yongbiao Zhao
- School of Computer Engineering, Hubei University of Arts and Science, Xiangyang, China
- School of Computer, Central China Normal University, Wuhan, China
| | - Bo Hang
- School of Computer Engineering, Hubei University of Arts and Science, Xiangyang, China
| | - Yanduo Zhang
- School of Computer Engineering, Hubei University of Arts and Science, Xiangyang, China
| |
Collapse
|
38
|
Adnane M, de Almeida AM, Chapwanya A. Unveiling the power of proteomics in advancing tropical animal health and production. Trop Anim Health Prod 2024; 56:182. [PMID: 38825622 DOI: 10.1007/s11250-024-04037-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2024] [Accepted: 05/20/2024] [Indexed: 06/04/2024]
Abstract
Proteomics, the large-scale study of proteins in biological systems has emerged as a pivotal tool in the field of animal and veterinary sciences, mainly for investigating local and rustic breeds. Proteomics provides valuable insights into biological processes underlying animal growth, reproduction, health, and disease. In this review, we highlight the key proteomics technologies, methodologies, and their applications in domestic animals, particularly in the tropical context. We also discuss advances in proteomics research, including integration of multi-omics data, single-cell proteomics, and proteogenomics, all of which are promising for improving animal health, adaptation, welfare, and productivity. However, proteomics research in domestic animals faces challenges, such as sample preparation variation, data quality control, privacy and ethical considerations relating to animal welfare. We also provide recommendations for overcoming these challenges, emphasizing the importance of following best practices in sample preparation, data quality control, and ethical compliance. We therefore aim for this review to harness the full potential of proteomics in advancing our understanding of animal biology and ultimately improve animal health and productivity in local breeds of diverse animal species in a tropical context.
Collapse
Affiliation(s)
- Mounir Adnane
- Department of Biomedicine, Institute of Veterinary Sciences, University of Tiaret, Tiaret, 14000, Algeria.
| | - André M de Almeida
- LEAF-Linking Landscape, Environment, Agriculture and Food Research Center, Associate Laboratory TERRA, Instituto Superior de Agronomia, Universidade de Lisboa, Tapada da Ajuda, Lisboa, 1349-017, Portugal
| | - Aspinas Chapwanya
- Department of Clinical Sciences, Ross University School of Veterinary Medicine, Basseterre, 00265, Saint Kitts and Nevis
| |
Collapse
|
39
|
Li Y, Lac L, Liu Q, Hu P. ST-CellSeg: Cell segmentation for imaging-based spatial transcriptomics using multi-scale manifold learning. PLoS Comput Biol 2024; 20:e1012254. [PMID: 38935799 PMCID: PMC11236102 DOI: 10.1371/journal.pcbi.1012254] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2023] [Revised: 07/10/2024] [Accepted: 06/16/2024] [Indexed: 06/29/2024] Open
Abstract
Spatial transcriptomics has gained popularity over the past decade due to its ability to evaluate transcriptome data while preserving spatial information. Cell segmentation is a crucial step in spatial transcriptomic analysis, as it enables the avoidance of unpredictable tissue disentanglement steps. Although high-quality cell segmentation algorithms can aid in the extraction of valuable data, traditional methods are frequently non-spatial, do not account for spatial information efficiently, and perform poorly when confronted with the problem of spatial transcriptome cell segmentation with varying shapes. In this study, we propose ST-CellSeg, an image-based machine learning method for spatial transcriptomics that uses manifold for cell segmentation and is novel in its consideration of multi-scale information. We first construct a fully connected graph which acts as a spatial transcriptomic manifold. Using multi-scale data, we then determine the low-dimensional spatial probability distribution representation for cell segmentation. Using the adjusted Rand index (ARI), normalized mutual information (NMI), and Silhouette coefficient (SC) as model performance measures, the proposed algorithm significantly outperforms baseline models in selected datasets and is efficient in computational complexity.
Collapse
Affiliation(s)
- Youcheng Li
- Department of Biochemistry, Schulich School of Medicine & Dentistry, Western University, London, Ontario, Canada
- Department of Computer Science, Western University, London, Ontario, Canada
- Department of Computer Science, University of Manitoba, Winnipeg, Manitoba, Canada
| | - Leann Lac
- Department of Computer Science, University of Manitoba, Winnipeg, Manitoba, Canada
- Department of Statistics, University of Manitoba, Winnipeg, Manitoba, Canada
| | - Qian Liu
- Department of Applied Computer Science, University of Winnipeg, Winnipeg, Manitoba, Canada
| | - Pingzhao Hu
- Department of Biochemistry, Schulich School of Medicine & Dentistry, Western University, London, Ontario, Canada
- Department of Computer Science, Western University, London, Ontario, Canada
- Department of Computer Science, University of Manitoba, Winnipeg, Manitoba, Canada
- Department of Epidemiology and Biostatistics, Schulich School of Medicine & Dentistry, Western University, London, Ontario, Canada
- Department of Oncology, Schulich School of Medicine & Dentistry, Western University, London, Ontario, Canada
- The Children's Health Research Institute, Lawson Health Research Institute, London, Ontario, Canada
| |
Collapse
|
40
|
Valihrach L, Zucha D, Abaffy P, Kubista M. A practical guide to spatial transcriptomics. Mol Aspects Med 2024; 97:101276. [PMID: 38776574 DOI: 10.1016/j.mam.2024.101276] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2023] [Revised: 04/30/2024] [Accepted: 05/10/2024] [Indexed: 05/25/2024]
Abstract
Spatial transcriptomics is revolutionizing modern biology, offering researchers an unprecedented ability to unravel intricate gene expression patterns within tissues. From pioneering techniques to newly commercialized platforms, the field of spatial transcriptomics has evolved rapidly, ushering in a new era of understanding across various disciplines, from developmental biology to disease research. This dynamic expansion is reflected in the rapidly growing number of technologies and data analysis techniques developed and introduced. However, the expanding landscape presents a considerable challenge for researchers, especially newcomers to the field, as staying informed about these advancements becomes increasingly complex. To address this challenge, we have prepared an updated review with a particular focus on technologies that have reached commercialization and are, therefore, accessible to a broad spectrum of potential new users. In this review, we present the fundamental principles of spatial transcriptomic methods, discuss the challenges in data analysis, provide insights into experimental considerations, offer information about available resources for spatial transcriptomics, and conclude with a guide for method selection and a forward-looking perspective. Our aim is to serve as a guiding resource for both experienced users and newcomers navigating the complex realm of spatial transcriptomics in this era of rapid development. We intend to equip researchers with the necessary knowledge to make informed decisions and contribute to the cutting-edge research that spatial transcriptomics offers.
Collapse
Affiliation(s)
- Lukas Valihrach
- Laboratory of Gene Expression, Institute of Biotechnology of the Czech Academy of Sciences, Vestec, Czech Republic; Department of Cellular Neurophysiology, Institute of Experimental Medicine of the Czech Academy of Sciences, Prague, Czech Republic.
| | - Daniel Zucha
- Laboratory of Gene Expression, Institute of Biotechnology of the Czech Academy of Sciences, Vestec, Czech Republic; Department of Informatics and Chemistry, Faculty of Chemical Technology, University of Chemistry and Technology, Prague, Czech Republic
| | - Pavel Abaffy
- Laboratory of Gene Expression, Institute of Biotechnology of the Czech Academy of Sciences, Vestec, Czech Republic
| | - Mikael Kubista
- Laboratory of Gene Expression, Institute of Biotechnology of the Czech Academy of Sciences, Vestec, Czech Republic.
| |
Collapse
|
41
|
Tao Q, Xu Y, He Y, Luo T, Li X, Han L. Benchmarking mapping algorithms for cell-type annotating in mouse brain by integrating single-nucleus RNA-seq and Stereo-seq data. Brief Bioinform 2024; 25:bbae250. [PMID: 38796691 PMCID: PMC11128029 DOI: 10.1093/bib/bbae250] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2024] [Revised: 04/17/2024] [Accepted: 05/08/2024] [Indexed: 05/28/2024] Open
Abstract
Limited gene capture efficiency and spot size of spatial transcriptome (ST) data pose significant challenges in cell-type characterization. The heterogeneity and complexity of cell composition in the mammalian brain make it more challenging to accurately annotate ST data from brain. Many algorithms attempt to characterize subtypes of neuron by integrating ST data with single-nucleus RNA sequencing (snRNA-seq) or single-cell RNA sequencing. However, assessing the accuracy of these algorithms on Stereo-seq ST data remains unresolved. Here, we benchmarked 9 mapping algorithms using 10 ST datasets from four mouse brain regions in two different resolutions and 24 pseudo-ST datasets from snRNA-seq. Both actual ST data and pseudo-ST data were mapped using snRNA-seq datasets from the corresponding brain regions as reference data. After comparing the performance across different areas and resolutions of the mouse brain, we have reached the conclusion that both robust cell-type decomposition and SpatialDWLS demonstrated superior robustness and accuracy in cell-type annotation. Testing with publicly available snRNA-seq data from another sequencing platform in the cortex region further validated our conclusions. Altogether, we developed a workflow for assessing suitability of mapping algorithm that fits for ST datasets, which can improve the efficiency and accuracy of spatial data annotation.
Collapse
Affiliation(s)
- Quyuan Tao
- College of Life Sciences, University of Chinese Academy of Sciences, Beijing 100049, China
- BGI Research, Hangzhou 310012, China
| | - Yiheng Xu
- Department of Neurobiology and Department of Neurology of Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310058, China
- NHC and CAMS Key Laboratory of Medical Neurobiology, MOE Frontier Center of Brain Science and Brain-machine Integration, School of Brain Science and Brain Medicine, Zhejiang University, Hangzhou 310058, China
| | - Youzhe He
- College of Life Sciences, University of Chinese Academy of Sciences, Beijing 100049, China
- BGI Research, Hangzhou 310012, China
| | - Ting Luo
- BGI Research, Hangzhou 310012, China
- BGI Research, Shenzhen 518103, China
| | - Xiaoming Li
- Department of Neurobiology and Department of Neurology of Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310058, China
- NHC and CAMS Key Laboratory of Medical Neurobiology, MOE Frontier Center of Brain Science and Brain-machine Integration, School of Brain Science and Brain Medicine, Zhejiang University, Hangzhou 310058, China
- Research Units for Emotion and Emotion disorders, Chinese Academy of Medical Sciences, Beijing 100730, China
| | - Lei Han
- BGI Research, Hangzhou 310012, China
- BGI Research, Shenzhen 518103, China
| |
Collapse
|
42
|
Wang Y, Liu Z, Ma X. MNMST: topology of cell networks leverages identification of spatial domains from spatial transcriptomics data. Genome Biol 2024; 25:133. [PMID: 38783355 PMCID: PMC11112797 DOI: 10.1186/s13059-024-03272-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2023] [Accepted: 05/09/2024] [Indexed: 05/25/2024] Open
Abstract
Advances in spatial transcriptomics provide an unprecedented opportunity to reveal the structure and function of biology systems. However, current algorithms fail to address the heterogeneity and interpretability of spatial transcriptomics data. Here, we present a multi-layer network model for identifying spatial domains in spatial transcriptomics data with joint learning. We demonstrate that spatial domains can be precisely characterized and discriminated by the topological structure of cell networks, facilitating identification and interpretability of spatial domains, which outperforms state-of-the-art baselines. Furthermore, we prove that network model offers an effective and efficient strategy for integrative analysis of spatial transcriptomics data from various platforms.
Collapse
Affiliation(s)
- Yu Wang
- School of Computer Science and Technology, Xidian University, No.2 South Taibai Road, Xi'an, 710071, Shaanxi, China
- Key Laboratory of Smart Human-Computer Interaction and Wearable Technology of Shaanxi Province, Xidian University, No.2 South Taibai Road, Xi'an, 710071, Shaanxi, China
| | - Zaiyi Liu
- Department of Radiology, Guangdong Provincial People's Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, 106 Zhongshan Er Road, Guangzhou, 510080, Guangdong, China
- Guangdong Provincial Key Laboratory of Artificial Intelligence in Medical Image Analysis and Application, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, 106 Zhongshan Er Road, Guangzhou, 510080, Guangdong, China
| | - Xiaoke Ma
- School of Computer Science and Technology, Xidian University, No.2 South Taibai Road, Xi'an, 710071, Shaanxi, China.
- Key Laboratory of Smart Human-Computer Interaction and Wearable Technology of Shaanxi Province, Xidian University, No.2 South Taibai Road, Xi'an, 710071, Shaanxi, China.
| |
Collapse
|
43
|
Si Z, Li H, Shang W, Zhao Y, Kong L, Long C, Zuo Y, Feng Z. SpaNCMG: improving spatial domains identification of spatial transcriptomics using neighborhood-complementary mixed-view graph convolutional network. Brief Bioinform 2024; 25:bbae259. [PMID: 38811360 PMCID: PMC11136618 DOI: 10.1093/bib/bbae259] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2024] [Revised: 05/10/2024] [Accepted: 05/16/2024] [Indexed: 05/31/2024] Open
Abstract
The advancement of spatial transcriptomics (ST) technology contributes to a more profound comprehension of the spatial properties of gene expression within tissues. However, due to challenges of high dimensionality, pronounced noise and dynamic limitations in ST data, the integration of gene expression and spatial information to accurately identify spatial domains remains challenging. This paper proposes a SpaNCMG algorithm for the purpose of achieving precise spatial domain description and localization based on a neighborhood-complementary mixed-view graph convolutional network. The algorithm enables better adaptation to ST data at different resolutions by integrating the local information from KNN and the global structure from r-radius into a complementary neighborhood graph. It also introduces an attention mechanism to achieve adaptive fusion of different reconstructed expressions, and utilizes KPCA method for dimensionality reduction. The application of SpaNCMG on five datasets from four sequencing platforms demonstrates superior performance to eight existing advanced methods. Specifically, the algorithm achieved highest ARI accuracies of 0.63 and 0.52 on the datasets of the human dorsolateral prefrontal cortex and mouse somatosensory cortex, respectively. It accurately identified the spatial locations of marker genes in the mouse olfactory bulb tissue and inferred the biological functions of different regions. When handling larger datasets such as mouse embryos, the SpaNCMG not only identified the main tissue structures but also explored unlabeled domains. Overall, the good generalization ability and scalability of SpaNCMG make it an outstanding tool for understanding tissue structure and disease mechanisms. Our codes are available at https://github.com/ZhihaoSi/SpaNCMG.
Collapse
Affiliation(s)
- Zhihao Si
- College of Sciences, Inner Mongolia University of Technology, Hohhot 010051, China
| | - Hanshuang Li
- State Key Laboratory of Reproductive Regulation and Breeding of Grassland Livestock, Institutes of Biomedical Sciences, College of Life Sciences, Inner Mongolia University, Hohhot 010070, China
| | - Wenjing Shang
- College of Sciences, Inner Mongolia University of Technology, Hohhot 010051, China
| | - Yanan Zhao
- College of Sciences, Inner Mongolia University of Technology, Hohhot 010051, China
| | - Lingjiao Kong
- College of Sciences, Inner Mongolia University of Technology, Hohhot 010051, China
| | - Chunshen Long
- State Key Laboratory of Reproductive Regulation and Breeding of Grassland Livestock, Institutes of Biomedical Sciences, College of Life Sciences, Inner Mongolia University, Hohhot 010070, China
| | - Yongchun Zuo
- State Key Laboratory of Reproductive Regulation and Breeding of Grassland Livestock, Institutes of Biomedical Sciences, College of Life Sciences, Inner Mongolia University, Hohhot 010070, China
| | - Zhenxing Feng
- College of Sciences, Inner Mongolia University of Technology, Hohhot 010051, China
| |
Collapse
|
44
|
Wang T, Shu H, Hu J, Wang Y, Chen J, Peng J, Shang X. Accurately deciphering spatial domains for spatially resolved transcriptomics with stCluster. Brief Bioinform 2024; 25:bbae329. [PMID: 38975895 DOI: 10.1093/bib/bbae329] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2023] [Revised: 06/16/2024] [Accepted: 06/24/2024] [Indexed: 07/09/2024] Open
Abstract
Spatial transcriptomics provides valuable insights into gene expression within the native tissue context, effectively merging molecular data with spatial information to uncover intricate cellular relationships and tissue organizations. In this context, deciphering cellular spatial domains becomes essential for revealing complex cellular dynamics and tissue structures. However, current methods encounter challenges in seamlessly integrating gene expression data with spatial information, resulting in less informative representations of spots and suboptimal accuracy in spatial domain identification. We introduce stCluster, a novel method that integrates graph contrastive learning with multi-task learning to refine informative representations for spatial transcriptomic data, consequently improving spatial domain identification. stCluster first leverages graph contrastive learning technology to obtain discriminative representations capable of recognizing spatially coherent patterns. Through jointly optimizing multiple tasks, stCluster further fine-tunes the representations to be able to capture complex relationships between gene expression and spatial organization. Benchmarked against six state-of-the-art methods, the experimental results reveal its proficiency in accurately identifying complex spatial domains across various datasets and platforms, spanning tissue, organ, and embryo levels. Moreover, stCluster can effectively denoise the spatial gene expression patterns and enhance the spatial trajectory inference. The source code of stCluster is freely available at https://github.com/hannshu/stCluster.
Collapse
Affiliation(s)
- Tao Wang
- School of Computer Science, Northwestern Polytechnical University, 1 Dongxiang Rd., Xi'an 710072, China
- Key Laboratory of Big Data Storage and Management, Ministry of Industry and Information Technology, Northwestern Polytechnical University, 1 Dongxiang Rd., Xi'an 710072, China
| | - Han Shu
- School of Computer Science, Northwestern Polytechnical University, 1 Dongxiang Rd., Xi'an 710072, China
- Key Laboratory of Big Data Storage and Management, Ministry of Industry and Information Technology, Northwestern Polytechnical University, 1 Dongxiang Rd., Xi'an 710072, China
| | - Jialu Hu
- School of Computer Science, Northwestern Polytechnical University, 1 Dongxiang Rd., Xi'an 710072, China
- Key Laboratory of Big Data Storage and Management, Ministry of Industry and Information Technology, Northwestern Polytechnical University, 1 Dongxiang Rd., Xi'an 710072, China
| | - Yongtian Wang
- School of Computer Science, Northwestern Polytechnical University, 1 Dongxiang Rd., Xi'an 710072, China
- Key Laboratory of Big Data Storage and Management, Ministry of Industry and Information Technology, Northwestern Polytechnical University, 1 Dongxiang Rd., Xi'an 710072, China
| | - Jing Chen
- School of Computer Science and Engineering, Xi'an University of Technology, No.5 South Jinhua rd., Xi'an 710048, China
| | - Jiajie Peng
- School of Computer Science, Northwestern Polytechnical University, 1 Dongxiang Rd., Xi'an 710072, China
- Key Laboratory of Big Data Storage and Management, Ministry of Industry and Information Technology, Northwestern Polytechnical University, 1 Dongxiang Rd., Xi'an 710072, China
| | - Xuequn Shang
- School of Computer Science, Northwestern Polytechnical University, 1 Dongxiang Rd., Xi'an 710072, China
- Key Laboratory of Big Data Storage and Management, Ministry of Industry and Information Technology, Northwestern Polytechnical University, 1 Dongxiang Rd., Xi'an 710072, China
| |
Collapse
|
45
|
Laubscher E, Wang X, Razin N, Dougherty T, Xu RJ, Ombelets L, Pao E, Graf W, Moffitt JR, Yue Y, Van Valen D. Accurate single-molecule spot detection for image-based spatial transcriptomics with weakly supervised deep learning. Cell Syst 2024; 15:475-482.e6. [PMID: 38754367 DOI: 10.1016/j.cels.2024.04.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2023] [Revised: 02/05/2024] [Accepted: 04/18/2024] [Indexed: 05/18/2024]
Abstract
Image-based spatial transcriptomics methods enable transcriptome-scale gene expression measurements with spatial information but require complex, manually tuned analysis pipelines. We present Polaris, an analysis pipeline for image-based spatial transcriptomics that combines deep-learning models for cell segmentation and spot detection with a probabilistic gene decoder to quantify single-cell gene expression accurately. Polaris offers a unifying, turnkey solution for analyzing spatial transcriptomics data from multiplexed error-robust FISH (MERFISH), sequential fluorescence in situ hybridization (seqFISH), or in situ RNA sequencing (ISS) experiments. Polaris is available through the DeepCell software library (https://github.com/vanvalenlab/deepcell-spots) and https://www.deepcell.org.
Collapse
Affiliation(s)
- Emily Laubscher
- Division of Chemistry and Chemical Engineering, Caltech, Pasadena, CA 91125, USA
| | - Xuefei Wang
- Division of Biology and Biological Engineering, Caltech, Pasadena, CA 91125, USA
| | - Nitzan Razin
- Division of Biology and Biological Engineering, Caltech, Pasadena, CA 91125, USA
| | - Tom Dougherty
- Division of Biology and Biological Engineering, Caltech, Pasadena, CA 91125, USA
| | - Rosalind J Xu
- Program in Cellular and Molecular Medicine, Boston Children's Hospital, Boston, MA 02115, USA; Department of Microbiology, Blavatnik Institute, Harvard Medical School, Boston, MA 02115, USA; Department of Chemistry and Chemical Biology, Harvard University, Cambridge, MA 02115, USA
| | - Lincoln Ombelets
- Division of Chemistry and Chemical Engineering, Caltech, Pasadena, CA 91125, USA
| | - Edward Pao
- Division of Biology and Biological Engineering, Caltech, Pasadena, CA 91125, USA
| | - William Graf
- Division of Biology and Biological Engineering, Caltech, Pasadena, CA 91125, USA
| | - Jeffrey R Moffitt
- Program in Cellular and Molecular Medicine, Boston Children's Hospital, Boston, MA 02115, USA; Department of Microbiology, Blavatnik Institute, Harvard Medical School, Boston, MA 02115, USA; Broad Institute of Harvard and MIT, Cambridge, MA, USA
| | - Yisong Yue
- Division of Computational and Mathematical Sciences, Caltech, Pasadena, CA 91125, USA
| | - David Van Valen
- Division of Biology and Biological Engineering, Caltech, Pasadena, CA 91125, USA; Howard Hughes Medical Institute, Chevy Chase, MD 20815, USA.
| |
Collapse
|
46
|
Hu X, van Sluijs B, García-Blay Ó, Stepanov Y, Rietrae K, Huck WTS, Hansen MMK. ARTseq-FISH reveals position-dependent differences in gene expression of micropatterned mESCs. Nat Commun 2024; 15:3918. [PMID: 38724524 PMCID: PMC11082235 DOI: 10.1038/s41467-024-48107-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2023] [Accepted: 04/19/2024] [Indexed: 05/12/2024] Open
Abstract
Differences in gene-expression profiles between individual cells can give rise to distinct cell fate decisions. Yet how localisation on a micropattern impacts initial changes in mRNA, protein, and phosphoprotein abundance remains unclear. To identify the effect of cellular position on gene expression, we developed a scalable antibody and mRNA targeting sequential fluorescence in situ hybridisation (ARTseq-FISH) method capable of simultaneously profiling mRNAs, proteins, and phosphoproteins in single cells. We studied 67 (phospho-)protein and mRNA targets in individual mouse embryonic stem cells (mESCs) cultured on circular micropatterns. ARTseq-FISH reveals relative changes in both abundance and localisation of mRNAs and (phospho-)proteins during the first 48 hours of exit from pluripotency. We confirm these changes by conventional immunofluorescence and time-lapse microscopy. Chemical labelling, immunofluorescence, and single-cell time-lapse microscopy further show that cells closer to the edge of the micropattern exhibit increased proliferation compared to cells at the centre. Together these data suggest that while gene expression is still highly heterogeneous position-dependent differences in mRNA and protein levels emerge as early as 12 hours after LIF withdrawal.
Collapse
Affiliation(s)
- Xinyu Hu
- Institute for Molecules and Materials, Radboud University, Heyendaalseweg 135, 6525 AJ, Nijmegen, the Netherlands
- Oncode Institute, Nijmegen, The Netherlands
| | - Bob van Sluijs
- Institute for Molecules and Materials, Radboud University, Heyendaalseweg 135, 6525 AJ, Nijmegen, the Netherlands
| | - Óscar García-Blay
- Institute for Molecules and Materials, Radboud University, Heyendaalseweg 135, 6525 AJ, Nijmegen, the Netherlands
- Oncode Institute, Nijmegen, The Netherlands
| | - Yury Stepanov
- Institute for Molecules and Materials, Radboud University, Heyendaalseweg 135, 6525 AJ, Nijmegen, the Netherlands
| | - Koen Rietrae
- Institute for Molecules and Materials, Radboud University, Heyendaalseweg 135, 6525 AJ, Nijmegen, the Netherlands
| | - Wilhelm T S Huck
- Institute for Molecules and Materials, Radboud University, Heyendaalseweg 135, 6525 AJ, Nijmegen, the Netherlands.
| | - Maike M K Hansen
- Institute for Molecules and Materials, Radboud University, Heyendaalseweg 135, 6525 AJ, Nijmegen, the Netherlands.
- Oncode Institute, Nijmegen, The Netherlands.
| |
Collapse
|
47
|
Yeo S, Schrader AW, Lee J, Asadian M, Han HS. Spot-Based Global Registration for Subpixel Stitching of Single-Molecule Resolution Images for Tissue-Scale Spatial Transcriptomics. Anal Chem 2024; 96:6517-6522. [PMID: 38621224 PMCID: PMC11076048 DOI: 10.1021/acs.analchem.3c05686] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/17/2024]
Abstract
Single-molecule imaging at the tissue scale has revolutionized our understanding of biology by providing unprecedented insight into the molecular expression of individual cells and their spatial organization within tissues. However, achieving precise image stitching at the single-molecule level remains a challenge, primarily due to heterogeneous background signals and dim labeling signals in single-molecule images. This paper introduces Spot-Based Global Registration (SBGR), a novel strategy that shifts the focus from raw images to identified molecular spots for high-resolution image alignment. The use of spot-based data enables straightforward and robust evaluation of the credibility of estimated translations and stitching performance. The method outperforms existing image-based stitching methods, achieving subpixel accuracy (83 ± 36 nm) with exceptional consistency. Furthermore, SBGR incorporates a mechanism to surgically remove duplicate spots in overlapping regions, maximizing information recovery from duplicate measurements. In conclusion, SBGR emerges as a robust and accurate solution for stitching single-molecule resolution images in tissue-scale spatial transcriptomics, offering versatility and potential for high-resolution spatial analysis.
Collapse
Affiliation(s)
- Seokjin Yeo
- Department of Bioengineering, University of Illinois Urbana-Champaign, Urbana, IL, 61801, USA
- Department of Chemistry, University of Illinois Urbana-Champaign, Urbana, IL, 61801, USA
| | - Alex W Schrader
- Department of Chemistry, University of Illinois Urbana-Champaign, Urbana, IL, 61801, USA
| | - Juyeon Lee
- Department of Chemistry, University of Illinois Urbana-Champaign, Urbana, IL, 61801, USA
| | - Marisa Asadian
- Department of Chemistry, University of Illinois Urbana-Champaign, Urbana, IL, 61801, USA
| | - Hee-Sun Han
- Department of Bioengineering, University of Illinois Urbana-Champaign, Urbana, IL, 61801, USA
- Department of Chemistry, University of Illinois Urbana-Champaign, Urbana, IL, 61801, USA
- Carl R. Woese Institute for Genomic Biology, University of Illinois Urbana-Champaign, Urbana, IL, 61801, USA
| |
Collapse
|
48
|
Luo SH, Zhao XJ, Cao MF, Xu J, Wang WL, Lu XY, Huang QT, Yue XX, Liu GK, Yang L, Ren B, Tian ZQ. Signal2signal: Pushing the Spatiotemporal Resolution to the Limit by Single Chemical Hyperspectral Imaging. Anal Chem 2024; 96:6550-6557. [PMID: 38642045 DOI: 10.1021/acs.analchem.3c04609] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/22/2024]
Abstract
There is growing interest in developing a high-performance self-supervised denoising algorithm for real-time chemical hyperspectral imaging. With a good understanding of the working function of the zero-shot Noise2Noise-based denoising algorithm, we developed a self-supervised Signal2Signal (S2S) algorithm for real-time denoising with a single chemical hyperspectral image. Owing to the accurate distinction and capture of the weak signal from the random fluctuating noise, S2S displays excellent denoising performance, even for the hyperspectral image with a spectral signal-to-noise ratio (SNR) as low as 1.12. Under this condition, both the image clarity and the spatial resolution could be significantly improved and present an almost identical pattern with a spectral SNR of 7.87. The feasibility of real-time denoising during imaging was well demonstrated, and S2S was applied to monitor the photoinduced exfoliation of transition metal dichalcogenide, which is hard to accomplish by confocal Raman spectroscopy. In general, the real-time denoising capability of S2S offers an easy way toward in situ/in vivo/operando research with much improved spatial and temporal resolution. S2S is open-source at https://github.com/3331822w/Signal2signal and will be accessible online at https://ramancloud.xmu.edu.cn/tutorial.
Collapse
Affiliation(s)
- Si-Heng Luo
- State Key Laboratory for Physical Chemistry of Solid Surfaces, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, China
- State Key Laboratory of Marine Environmental Science, Fujian Provincial Key Laboratory for Coastal Ecology and Environmental Studies, Center for Marine Environmental Chemistry & Toxicology, College of the Environment and Ecology, Xiamen University, Xiamen 361102, China
| | - Xiao-Jiao Zhao
- State Key Laboratory for Physical Chemistry of Solid Surfaces, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, China
| | - Mao-Feng Cao
- State Key Laboratory for Physical Chemistry of Solid Surfaces, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, China
| | - Jing Xu
- State Key Laboratory of Marine Environmental Science, Fujian Provincial Key Laboratory for Coastal Ecology and Environmental Studies, Center for Marine Environmental Chemistry & Toxicology, College of the Environment and Ecology, Xiamen University, Xiamen 361102, China
| | - Wei-Li Wang
- State Key Laboratory of Marine Environmental Science, Fujian Provincial Key Laboratory for Coastal Ecology and Environmental Studies, Center for Marine Environmental Chemistry & Toxicology, College of the Environment and Ecology, Xiamen University, Xiamen 361102, China
| | - Xin-Yu Lu
- State Key Laboratory for Physical Chemistry of Solid Surfaces, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, China
| | - Qiu-Ting Huang
- State Key Laboratory of Marine Environmental Science, Fujian Provincial Key Laboratory for Coastal Ecology and Environmental Studies, Center for Marine Environmental Chemistry & Toxicology, College of the Environment and Ecology, Xiamen University, Xiamen 361102, China
| | - Xia-Xia Yue
- State Key Laboratory for Physical Chemistry of Solid Surfaces, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, China
| | - Guo-Kun Liu
- State Key Laboratory of Marine Environmental Science, Fujian Provincial Key Laboratory for Coastal Ecology and Environmental Studies, Center for Marine Environmental Chemistry & Toxicology, College of the Environment and Ecology, Xiamen University, Xiamen 361102, China
| | - Liu Yang
- State Key Laboratory for Physical Chemistry of Solid Surfaces, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, China
| | - Bin Ren
- State Key Laboratory for Physical Chemistry of Solid Surfaces, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, China
| | - Zhong-Qun Tian
- State Key Laboratory for Physical Chemistry of Solid Surfaces, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, China
| |
Collapse
|
49
|
Daly AC, Cambuli F, Äijö T, Lötstedt B, Marjanovic N, Kuksenko O, Smith-Erb M, Fernandez S, Domovic D, Van Wittenberghe N, Drokhlyansky E, Griffin GK, Phatnani H, Bonneau R, Regev A, Vickovic S. Tissue and cellular spatiotemporal dynamics in colon aging. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.04.22.590125. [PMID: 38712088 PMCID: PMC11071407 DOI: 10.1101/2024.04.22.590125] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/08/2024]
Abstract
Tissue structure and molecular circuitry in the colon can be profoundly impacted by systemic age-related effects, but many of the underlying molecular cues remain unclear. Here, we built a cellular and spatial atlas of the colon across three anatomical regions and 11 age groups, encompassing ~1,500 mouse gut tissues profiled by spatial transcriptomics and ~400,000 single nucleus RNA-seq profiles. We developed a new computational framework, cSplotch, which learns a hierarchical Bayesian model of spatially resolved cellular expression associated with age, tissue region, and sex, by leveraging histological features to share information across tissue samples and data modalities. Using this model, we identified cellular and molecular gradients along the adult colonic tract and across the main crypt axis, and multicellular programs associated with aging in the large intestine. Our multi-modal framework for the investigation of cell and tissue organization can aid in the understanding of cellular roles in tissue-level pathology.
Collapse
Affiliation(s)
- Aidan C. Daly
- New York Genome Center, New York, NY, USA
- Center for Computational Biology, Flatiron Institute, New York, NY, USA
| | | | - Tarmo Äijö
- Center for Computational Biology, Flatiron Institute, New York, NY, USA
| | - Britta Lötstedt
- New York Genome Center, New York, NY, USA
- Klarman Cell Observatory Broad Institute of MIT and Harvard, Cambridge, MA, USA
- Science for Life Laboratory, Department of Gene Technology, KTH Royal Institute of Technology, Stockholm, Sweden
| | - Nemanja Marjanovic
- Klarman Cell Observatory Broad Institute of MIT and Harvard, Cambridge, MA, USA
- Department of Biology, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Olena Kuksenko
- Klarman Cell Observatory Broad Institute of MIT and Harvard, Cambridge, MA, USA
- Department of Neurology, Columbia University Irving Medical Center, New York, NY, USA
| | | | | | | | | | - Eugene Drokhlyansky
- Klarman Cell Observatory Broad Institute of MIT and Harvard, Cambridge, MA, USA
| | - Gabriel K Griffin
- Klarman Cell Observatory Broad Institute of MIT and Harvard, Cambridge, MA, USA
- Department of Pathology, Brigham and Women’s Hospital, Boston, MA, USA
| | - Hemali Phatnani
- New York Genome Center, New York, NY, USA
- Department of Neurology, Columbia University Irving Medical Center, New York, NY, USA
| | - Richard Bonneau
- Center for Computational Biology, Flatiron Institute, New York, NY, USA
- Center for Data Science, New York University, New York, NY, USA
- Current address: Genentech, 1 DNA Way, South San Francisco, CA, USA
| | - Aviv Regev
- Klarman Cell Observatory Broad Institute of MIT and Harvard, Cambridge, MA, USA
- Department of Biology, Massachusetts Institute of Technology, Cambridge, MA, USA
- Current address: Genentech, 1 DNA Way, South San Francisco, CA, USA
| | - Sanja Vickovic
- New York Genome Center, New York, NY, USA
- Klarman Cell Observatory Broad Institute of MIT and Harvard, Cambridge, MA, USA
- Department of Biomedical Engineering and Herbert Irving Institute for Cancer Dynamics, Columbia University, New York, NY, USA
- Science for Life Laboratory, Department of Immunology, Genetics and Pathology, Beijer Laboratory for Gene and Neuro Research, Uppsala University, Uppsala, Sweden
| |
Collapse
|
50
|
Chen X, Fischer S, Rue MCP, Zhang A, Mukherjee D, Kanold PO, Gillis J, Zador AM. Whole-cortex in situ sequencing reveals input-dependent area identity. Nature 2024:10.1038/s41586-024-07221-6. [PMID: 38658747 DOI: 10.1038/s41586-024-07221-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2022] [Accepted: 02/22/2024] [Indexed: 04/26/2024]
Abstract
The cerebral cortex is composed of neuronal types with diverse gene expression that are organized into specialized cortical areas. These areas, each with characteristic cytoarchitecture1,2, connectivity3,4 and neuronal activity5,6, are wired into modular networks3,4,7. However, it remains unclear whether these spatial organizations are reflected in neuronal transcriptomic signatures and how such signatures are established in development. Here we used BARseq, a high-throughput in situ sequencing technique, to interrogate the expression of 104 cell-type marker genes in 10.3 million cells, including 4,194,658 cortical neurons over nine mouse forebrain hemispheres, at cellular resolution. De novo clustering of gene expression in single neurons revealed transcriptomic types consistent with previous single-cell RNA sequencing studies8,9. The composition of transcriptomic types is highly predictive of cortical area identity. Moreover, areas with similar compositions of transcriptomic types, which we defined as cortical modules, overlap with areas that are highly connected, suggesting that the same modular organization is reflected in both transcriptomic signatures and connectivity. To explore how the transcriptomic profiles of cortical neurons depend on development, we assessed cell-type distributions after neonatal binocular enucleation. Notably, binocular enucleation caused the shifting of the cell-type compositional profiles of visual areas towards neighbouring cortical areas within the same module, suggesting that peripheral inputs sharpen the distinct transcriptomic identities of areas within cortical modules. Enabled by the high throughput, low cost and reproducibility of BARseq, our study provides a proof of principle for the use of large-scale in situ sequencing to both reveal brain-wide molecular architecture and understand its development.
Collapse
Affiliation(s)
- Xiaoyin Chen
- Allen Institute for Brain Science, Seattle, WA, USA.
| | - Stephan Fischer
- Institut Pasteur, Université Paris Cité, Bioinformatics and Biostatistics Hub, Paris, France
| | - Mara C P Rue
- Allen Institute for Brain Science, Seattle, WA, USA
| | - Aixin Zhang
- Allen Institute for Brain Science, Seattle, WA, USA
| | - Didhiti Mukherjee
- Department of Biomedical Engineering, Johns Hopkins University, Baltimore, MD, USA
| | - Patrick O Kanold
- Department of Biomedical Engineering, Johns Hopkins University, Baltimore, MD, USA
- Kavli Neuroscience Discovery Institute, Johns Hopkins University, Baltimore, MD, USA
| | - Jesse Gillis
- Department of Physiology, University of Toronto, Toronto, Ontario, Canada.
| | | |
Collapse
|