1
|
Wintgens S, Müller J, Drees F, Spona D, Bonda L, Hartmann L, Hegemann JH, Schmidt S. Sulfated Glycosaminoglycans as Inhibitors for Chlamydia Infections: Molecular Weight and Sulfation Dependence. Macromol Biosci 2025:e2400443. [PMID: 39838590 DOI: 10.1002/mabi.202400443] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2024] [Revised: 01/10/2025] [Indexed: 01/23/2025]
Abstract
Glycosaminoglycans (GAGs) play a pivotal role in pathogen attachment and entry into host cells, where the interaction with GAGs is critical for a diverse range of bacteria and viruses. This study focuses on elucidating the specific interactions between sulfated GAGs and the adhesin OmcB (Outer membrane complex protein B) of Chlamydia species, examining how structural characteristics of GAGs, such as sulfation degree and molecular weight, influence their binding affinity and thereby affect bacterial infectivity. A surface-based binding assay is established to determine the binding constants of OmcB with various GAGs. It is shown that increased sulfation and higher molecular weight enhance GAG binding to OmcB. These findings are further validated using cell assays, which shows that the addition of sulfated GAGs reduces OmcB-cell binding and inhibits the attachment of C. pneumoniae elementary bodies (EBs), underscoring the pivotal role of specific GAGs in chlamydial infections. Notably, heparin exhibites a stronger inhibitory effect on OmcB compare to GAGs with similar sulfation degrees and molecular weights, suggesting that particular molecular architectures may optimize binding interactions.
Collapse
Affiliation(s)
- Sebastian Wintgens
- Heinrich- Heine- University Düsseldorf, Faculty of Mathematics and Natural Sciences, Institute for Functional Microbial Genomics, 40204, Düsseldorf, Germany
| | - Janita Müller
- Heinrich- Heine- University Düsseldorf, Faculty of Mathematics and Natural Sciences, Institute for Functional Microbial Genomics, 40204, Düsseldorf, Germany
- Heinrich- Heine- University Düsseldorf, Faculty of Mathematics and Natural Sciences, Institute of Organic Chemistry and Macromolecular Chemistry, 40204, Düsseldorf, Germany
| | - Felicitas Drees
- Heinrich- Heine- University Düsseldorf, Faculty of Mathematics and Natural Sciences, Institute of Organic Chemistry and Macromolecular Chemistry, 40204, Düsseldorf, Germany
- Institute for Macromolecular Chemistry, Faculty of Chemistry and Pharmacy, Albert-Ludwigs-Universität Freiburg, 79104, Freiburg, Germany
| | - Dominik Spona
- Heinrich- Heine- University Düsseldorf, Faculty of Mathematics and Natural Sciences, Institute for Functional Microbial Genomics, 40204, Düsseldorf, Germany
| | - Lorand Bonda
- Heinrich- Heine- University Düsseldorf, Faculty of Mathematics and Natural Sciences, Institute of Organic Chemistry and Macromolecular Chemistry, 40204, Düsseldorf, Germany
| | - Laura Hartmann
- Heinrich- Heine- University Düsseldorf, Faculty of Mathematics and Natural Sciences, Institute of Organic Chemistry and Macromolecular Chemistry, 40204, Düsseldorf, Germany
- Institute for Macromolecular Chemistry, Faculty of Chemistry and Pharmacy, Albert-Ludwigs-Universität Freiburg, 79104, Freiburg, Germany
| | - Johannes H Hegemann
- Heinrich- Heine- University Düsseldorf, Faculty of Mathematics and Natural Sciences, Institute for Functional Microbial Genomics, 40204, Düsseldorf, Germany
| | - Stephan Schmidt
- Heinrich- Heine- University Düsseldorf, Faculty of Mathematics and Natural Sciences, Institute of Organic Chemistry and Macromolecular Chemistry, 40204, Düsseldorf, Germany
- Institute for Macromolecular Chemistry, Faculty of Chemistry and Pharmacy, Albert-Ludwigs-Universität Freiburg, 79104, Freiburg, Germany
| |
Collapse
|
2
|
Hao H, Yuan Y, Ito A, Eberand BM, Tjondro H, Cielesh M, Norris N, Moreno CL, Maxwell JWC, Neely GG, Payne RJ, Kebede MA, Urbauer RJB, Passam FH, Larance M, Haltiwanger RS. FUT10 and FUT11 are protein O-fucosyltransferases that modify protein EMI domains. Nat Chem Biol 2025:10.1038/s41589-024-01815-x. [PMID: 39775168 DOI: 10.1038/s41589-024-01815-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2024] [Accepted: 12/04/2024] [Indexed: 01/11/2025]
Abstract
O-Fucosylation plays crucial roles in various essential biological events. Alongside the well-established O-fucosylation of epidermal growth factor-like repeats by protein O-fucosyltransferase 1 (POFUT1) and thrombospondin type 1 repeats by POFUT2, we recently identified a type of O-fucosylation on the elastin microfibril interface (EMI) domain of Multimerin-1 (MMRN1). Here, using AlphaFold2 screens, co-immunoprecipitation, enzymatic assays combined with mass spectrometric analysis and CRISPR-Cas9 knockouts, we demonstrate that FUT10 and FUT11, originally annotated in UniProt as α1,3-fucosyltransferases, are actually POFUTs responsible for modifying EMI domains; thus, we renamed them as POFUT3 and POFUT4, respectively. Like POFUT1/2, POFUT3/4 function in the endoplasmic reticulum, require folded domain structures for modification and participate in a non-canonical endoplasmic reticulum quality control pathway for EMI domain-containing protein secretion. This finding expands the O-fucosylation repertoire and provides an entry point for further exploration in this emerging field of O-fucosylation.
Collapse
Affiliation(s)
- Huilin Hao
- Complex Carbohydrate Research Center, University of Georgia, Athens, GA, USA
| | - Youxi Yuan
- Complex Carbohydrate Research Center, University of Georgia, Athens, GA, USA
| | - Atsuko Ito
- Complex Carbohydrate Research Center, University of Georgia, Athens, GA, USA
- Regional Fish Institute, Ltd., Kyoto, Japan
| | - Benjamin M Eberand
- Charles Perkins Centre, School of Medical Sciences, Faculty of Medicine and Health, The University of Sydney, Sydney, New South Wales, Australia
| | - Harry Tjondro
- Central Clinical School, The University of Sydney, Sydney, New South Wales, Australia
| | - Michelle Cielesh
- Charles Perkins Centre, School of Medical Sciences, Faculty of Medicine and Health, The University of Sydney, Sydney, New South Wales, Australia
| | - Nicholas Norris
- Charles Perkins Centre, School of Medical Sciences, Faculty of Medicine and Health, The University of Sydney, Sydney, New South Wales, Australia
| | - Cesar L Moreno
- Charles Perkins Centre, School of Life and Environmental Sciences, Faculty of Science, The University of Sydney, Sydney, New South Wales, Australia
| | - Joshua W C Maxwell
- School of Chemistry, Faculty of Science, The University of Sydney, Sydney, New South Wales, Australia
- Australian Research Council Centre of Excellence for Innovations in Peptide and Protein Science, The University of Sydney, Sydney, New South Wales, Australia
| | - G Gregory Neely
- Charles Perkins Centre, School of Life and Environmental Sciences, Faculty of Science, The University of Sydney, Sydney, New South Wales, Australia
| | - Richard J Payne
- School of Chemistry, Faculty of Science, The University of Sydney, Sydney, New South Wales, Australia
- Australian Research Council Centre of Excellence for Innovations in Peptide and Protein Science, The University of Sydney, Sydney, New South Wales, Australia
| | - Melkam A Kebede
- Charles Perkins Centre, School of Medical Sciences, Faculty of Medicine and Health, The University of Sydney, Sydney, New South Wales, Australia
| | | | - Freda H Passam
- Central Clinical School, The University of Sydney, Sydney, New South Wales, Australia
| | - Mark Larance
- Charles Perkins Centre, School of Medical Sciences, Faculty of Medicine and Health, The University of Sydney, Sydney, New South Wales, Australia.
| | | |
Collapse
|
3
|
Sultana R, Kamihira M. Bioengineered heparin: Advances in production technology. Biotechnol Adv 2024; 77:108456. [PMID: 39326809 DOI: 10.1016/j.biotechadv.2024.108456] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2024] [Revised: 09/16/2024] [Accepted: 09/18/2024] [Indexed: 09/28/2024]
Abstract
Heparin, a highly sulfated glycosaminoglycan, is considered an indispensable anticoagulant with diverse therapeutic applications and has been a mainstay in medical practice for nearly a century. Its potential extends beyond anticoagulation, showing promise in treating inflammation, cancer, and infectious diseases such as COVID-19. However, its current sourcing from animal tissues poses challenges due to variable structures and adulterations, impacting treatment efficacy and safety. Recent advancements in metabolic engineering and synthetic biology offer alternatives through bioengineered heparin production, albeit with challenges such as controlling molecular weight and sulfonation patterns. This review offers comprehensive insight into recent advancements, encompassing: (i) the metabolic engineering strategies in prokaryotic systems for heparin production; (ii) strides made in the development of bioengineered heparin; and (iii) groundbreaking approaches driving production enhancements in eukaryotic systems. Additionally, it explores the potential of recombinant Chinese hamster ovary cells in heparin synthesis, discussing recent progress, challenges, and future prospects, thereby opening up new avenues in biomedical research.
Collapse
Affiliation(s)
- Razia Sultana
- Department of Chemical Engineering, Faculty of Engineering, Kyushu University, 744 Motooka, Nishi-ku, Fukuoka 819-0395, Japan; Department of Biotechnology and Genetic Engineering, Faculty of Science, Noakhali Science and Technology University, Noakhali 3814, Bangladesh
| | - Masamichi Kamihira
- Department of Chemical Engineering, Faculty of Engineering, Kyushu University, 744 Motooka, Nishi-ku, Fukuoka 819-0395, Japan.
| |
Collapse
|
4
|
Joladarashi D, Thej C, Mallaredy V, Magadum A, Cimini M, Gonzalez C, Truongcao M, Nigro JT, Sethi MK, Gibb AA, Benedict C, Koch WJ, Kishore R. GPC3-mediated metabolic rewiring of diabetic mesenchymal stromal cells enhances their cardioprotective functions via PKM2 activation. iScience 2024; 27:111021. [PMID: 39429777 PMCID: PMC11490746 DOI: 10.1016/j.isci.2024.111021] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2024] [Revised: 08/02/2024] [Accepted: 09/20/2024] [Indexed: 10/22/2024] Open
Abstract
Mesenchymal stromal cells (MSC) are promising stem cell therapy for treating cardiovascular and other degenerative diseases. Diabetes affects the functional capability of MSC and impedes cell-based therapy. Despite numerous studies, the impact of diabetes on MSC myocardial reparative activity, metabolic fingerprint, and the mechanism of dysfunction remains inadequately perceived. We demonstrated that the transplantation of diabetic-MSC (db/db-MSC) into the ischemic myocardium of mice does not confer cardiac benefit post-MI. Metabolomic studies identified defective energy metabolism in db/db-MSC. Furthermore, we found that glypican-3 (GPC3), a heparan sulfate proteoglycan, is highly upregulated in db/db-MSC and is involved in metabolic alterations in db/db-MSC via pyruvate kinase M2 (PKM2) activation. GPC3-knockdown reprogrammed-db/db-MSC restored their energy metabolic rates, immunomodulation, angiogenesis, and cardiac reparative activities. Together, these data indicate that GPC3-metabolic reprogramming in diabetic MSC may represent a strategy to enhance MSC-based therapeutics for myocardial repair in diabetic patients.
Collapse
Affiliation(s)
- Darukeshwara Joladarashi
- Aging and Cardiovascular Discovery Center, Lewis Katz School of Medicine, Temple University, Philadelphia, PA 19140, USA
| | - Charan Thej
- Aging and Cardiovascular Discovery Center, Lewis Katz School of Medicine, Temple University, Philadelphia, PA 19140, USA
| | - Vandana Mallaredy
- Aging and Cardiovascular Discovery Center, Lewis Katz School of Medicine, Temple University, Philadelphia, PA 19140, USA
| | - Ajit Magadum
- Aging and Cardiovascular Discovery Center, Lewis Katz School of Medicine, Temple University, Philadelphia, PA 19140, USA
| | - Maria Cimini
- Aging and Cardiovascular Discovery Center, Lewis Katz School of Medicine, Temple University, Philadelphia, PA 19140, USA
| | - Carolina Gonzalez
- Aging and Cardiovascular Discovery Center, Lewis Katz School of Medicine, Temple University, Philadelphia, PA 19140, USA
| | - May Truongcao
- Aging and Cardiovascular Discovery Center, Lewis Katz School of Medicine, Temple University, Philadelphia, PA 19140, USA
| | - Joseph T. Nigro
- Center for Biomedical Mass Spectrometry, Department of Biochemistry & Cell Biology, Boston University Chobanian and Avedisian School of Medicine, Boston, MA, USA
| | - Manveen K. Sethi
- Center for Biomedical Mass Spectrometry, Department of Biochemistry & Cell Biology, Boston University Chobanian and Avedisian School of Medicine, Boston, MA, USA
| | - Andrew A. Gibb
- Center for Cardiometabolic Science, Christina Lee Brown Envirome Institute, University of Louisville, 580 South Preston Street, Louisville, KY, USA
| | - Cindy Benedict
- Aging and Cardiovascular Discovery Center, Lewis Katz School of Medicine, Temple University, Philadelphia, PA 19140, USA
| | - Walter J. Koch
- Department of Surgery, Duke University School of Medicine, Durham, NC 27710, USA
| | - Raj Kishore
- Aging and Cardiovascular Discovery Center, Lewis Katz School of Medicine, Temple University, Philadelphia, PA 19140, USA
- Department of Cardiovascular Sciences, Lewis Katz School of Medicine, Temple University, Philadelphia, PA 19140, USA
| |
Collapse
|
5
|
McMillan IO, Liang L, Su G, Song X, Drago K, Yang H, Alvarez C, Sood A, Gibson J, Woods RJ, Wang C, Liu J, Zhang F, Brett TJ, Wang L. TREM2 on microglia cell surface binds to and forms functional binary complexes with heparan sulfate modified with 6-O-sulfation and iduronic acid. J Biol Chem 2024; 300:107691. [PMID: 39159814 PMCID: PMC11416269 DOI: 10.1016/j.jbc.2024.107691] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2024] [Revised: 08/07/2024] [Accepted: 08/08/2024] [Indexed: 08/21/2024] Open
Abstract
The triggering receptor expressed on myeloid cells-2 (TREM2), a pivotal innate immune receptor, orchestrates functions such as inflammatory responses, phagocytosis, cell survival, and neuroprotection. TREM2 variants R47H and R62H have been associated with Alzheimer's disease, yet the underlying mechanisms remain elusive. Our previous research established that TREM2 binds to heparan sulfate (HS) and variants R47H and R62H exhibit reduced affinity for HS. Building upon this groundwork, our current study delves into the interplay between TREM2 and HS and its impact on microglial function. We confirm TREM2's binding to cell surface HS and demonstrate that TREM2 interacts with HS, forming HS-TREM2 binary complexes on microglia cell surfaces. Employing various biochemical techniques, including surface plasmon resonance, low molecular weight HS microarray screening, and serial HS mutant cell surface binding assays, we demonstrate TREM2's robust affinity for HS, and the effective binding requires a minimum HS size of approximately 10 saccharide units. Notably, TREM2 selectively binds specific HS structures, with 6-O-sulfation and, to a lesser extent, the iduronic acid residue playing crucial roles. N-sulfation and 2-O-sulfation are dispensable for this interaction. Furthermore, we reveal that 6-O-sulfation is essential for HS-TREM2 ternary complex formation on the microglial cell surface, and HS and its 6-O-sulfation are necessary for TREM2-mediated ApoE3 uptake in microglia. By delineating the interaction between HS and TREM2 on the microglial cell surface and demonstrating its role in facilitating TREM2-mediated ApoE uptake by microglia, our findings provide valuable insights that can inform targeted interventions for modulating microglial functions in Alzheimer's disease.
Collapse
Affiliation(s)
- Ilayda Ozsan McMillan
- Department of Molecular Pharmacology and Physiology, University of South Florida Morsani College of Medicine, Tampa, Florida, USA
| | - Li Liang
- Departments of Chemistry and Chemical Biology, Center for Biotechnology and Interdisciplinary Studies, Rensselaer Polytechnic Institute, Troy, New York, USA; Department of Biological Sciences, Rensselaer Polytechnic Institute, Troy, New York, USA
| | - Guowei Su
- Glycan Therapeutics, Raleigh, North Carolina, USA
| | - Xuehong Song
- Department of Molecular Pharmacology and Physiology, University of South Florida Morsani College of Medicine, Tampa, Florida, USA
| | - Kelly Drago
- Department of Molecular Pharmacology and Physiology, University of South Florida Morsani College of Medicine, Tampa, Florida, USA
| | - Hua Yang
- Department of Molecular Pharmacology and Physiology, University of South Florida Morsani College of Medicine, Tampa, Florida, USA
| | - Claudia Alvarez
- Department of Molecular Pharmacology and Physiology, University of South Florida Morsani College of Medicine, Tampa, Florida, USA
| | - Amika Sood
- Complex Carbohydrate Research Center, University of Georgia, Athens, Georgia, USA
| | - James Gibson
- Departments of Chemistry and Chemical Biology, Center for Biotechnology and Interdisciplinary Studies, Rensselaer Polytechnic Institute, Troy, New York, USA; Department of Biological Sciences, Rensselaer Polytechnic Institute, Troy, New York, USA
| | - Robert J Woods
- Complex Carbohydrate Research Center, University of Georgia, Athens, Georgia, USA
| | - Chunyu Wang
- Departments of Chemistry and Chemical Biology, Center for Biotechnology and Interdisciplinary Studies, Rensselaer Polytechnic Institute, Troy, New York, USA; Department of Biological Sciences, Rensselaer Polytechnic Institute, Troy, New York, USA
| | - Jian Liu
- Division of Chemical Biology and Medicinal Chemistry, University of North Carolina at Chapel Hill, Eshelman School of Pharmacy, Chapel Hill, North Carolina, USA
| | - Fuming Zhang
- Departments of Chemistry and Chemical Biology, Center for Biotechnology and Interdisciplinary Studies, Rensselaer Polytechnic Institute, Troy, New York, USA; Department of Biological Sciences, Rensselaer Polytechnic Institute, Troy, New York, USA
| | - Tom J Brett
- Division of Pulmonary and Critical Care Medicine, Department of Internal Medicine, Washington University School of Medicine, St Louis, Missouri, USA
| | - Lianchun Wang
- Department of Molecular Pharmacology and Physiology, University of South Florida Morsani College of Medicine, Tampa, Florida, USA.
| |
Collapse
|
6
|
Ricard-Blum S, Vivès RR, Schaefer L, Götte M, Merline R, Passi A, Heldin P, Magalhães A, Reis CA, Skandalis SS, Karamanos NK, Perez S, Nikitovic D. A biological guide to glycosaminoglycans: current perspectives and pending questions. FEBS J 2024; 291:3331-3366. [PMID: 38500384 DOI: 10.1111/febs.17107] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2023] [Revised: 01/08/2024] [Accepted: 02/20/2024] [Indexed: 03/20/2024]
Abstract
Mammalian glycosaminoglycans (GAGs), except hyaluronan (HA), are sulfated polysaccharides that are covalently attached to core proteins to form proteoglycans (PGs). This article summarizes key biological findings for the most widespread GAGs, namely HA, chondroitin sulfate/dermatan sulfate (CS/DS), keratan sulfate (KS), and heparan sulfate (HS). It focuses on the major processes that remain to be deciphered to get a comprehensive view of the mechanisms mediating GAG biological functions. They include the regulation of GAG biosynthesis and postsynthetic modifications in heparin (HP) and HS, the composition, heterogeneity, and function of the tetrasaccharide linkage region and its role in disease, the functional characterization of the new PGs recently identified by glycoproteomics, the selectivity of interactions mediated by GAG chains, the display of GAG chains and PGs at the cell surface and their impact on the availability and activity of soluble ligands, and on their move through the glycocalyx layer to reach their receptors, the human GAG profile in health and disease, the roles of GAGs and particular PGs (syndecans, decorin, and biglycan) involved in cancer, inflammation, and fibrosis, the possible use of GAGs and PGs as disease biomarkers, and the design of inhibitors targeting GAG biosynthetic enzymes and GAG-protein interactions to develop novel therapeutic approaches.
Collapse
Affiliation(s)
- Sylvie Ricard-Blum
- Univ Lyon 1, ICBMS, UMR 5246 University Lyon 1 - CNRS, Villeurbanne cedex, France
| | | | - Liliana Schaefer
- Institute of Pharmacology and Toxicology, Goethe University, Frankfurt, Germany
| | - Martin Götte
- Department of Gynecology and Obstetrics, Münster University Hospital, Germany
| | - Rosetta Merline
- Institute of Pharmacology and Toxicology, Goethe University, Frankfurt, Germany
| | | | - Paraskevi Heldin
- Department of Medical Biochemistry and Microbiology, Uppsala University, Sweden
| | - Ana Magalhães
- Instituto de Investigação e Inovação em Saúde, Universidade do Porto, Portugal
- ICBAS - Instituto de Ciências Biomédicas Abel Salazar, Universidade do Porto, Portugal
| | - Celso A Reis
- Instituto de Investigação e Inovação em Saúde, Universidade do Porto, Portugal
- ICBAS - Instituto de Ciências Biomédicas Abel Salazar, Universidade do Porto, Portugal
| | - Spyros S Skandalis
- Biochemistry, Biochemical Analysis & Matrix Pathobiology Res. Group, Laboratory of Biochemistry, Department of Chemistry, University of Patras, Greece
| | - Nikos K Karamanos
- Biochemistry, Biochemical Analysis & Matrix Pathobiology Res. Group, Laboratory of Biochemistry, Department of Chemistry, University of Patras, Greece
| | - Serge Perez
- Centre de Recherche sur les Macromolécules Végétales, University of Grenoble-Alpes, CNRS, France
| | - Dragana Nikitovic
- Laboratory of Histology-Embryology, School of Medicine, University of Crete, Heraklion, Greece
| |
Collapse
|
7
|
Li Z, Di Vagno L, Chawla H, Ni Cheallaigh A, Critcher M, Sammon D, Briggs DC, Chung N, Chang V, Mahoney KE, Cioce A, Murphy LD, Chen YH, Narimatsu Y, Miller RL, Willems LI, Malaker SA, Huang ML, Miller GJ, Hohenester E, Schumann B. Xylosyltransferase Bump-and-hole Engineering to Chemically Manipulate Proteoglycans in Mammalian Cells. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2023.12.20.572522. [PMID: 38979271 PMCID: PMC11230170 DOI: 10.1101/2023.12.20.572522] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/10/2024]
Abstract
Mammalian cells orchestrate signalling through interaction events on their surfaces. Proteoglycans are an intricate part of these interactions, carrying large glycosaminoglycan polysaccharides that recruit signalling molecules. Despite their importance in development, cancer and neurobiology, a relatively small number of proteoglycans have been identified. In addition to the complexity of glycan extension, biosynthetic redundancy in the first protein glycosylation step by two xylosyltransferase isoenzymes XT1 and XT2 complicates annotation of proteoglycans. Here, we develop a chemical genetic strategy that manipulates the glycan attachment site of cellular proteoglycans. By employing a tactic termed bump- and-hole engineering, we engineer the two isoenzymes XT1 and XT2 to specifically transfer a chemically modified xylose analogue to target proteins. The chemical modification contains a bioorthogonal tag, allowing the ability to visualise and profile target proteins modified by both transferases in mammalian cells. The versatility of our approach allows pinpointing glycosylation sites by tandem mass spectrometry, and exploiting the chemical handle to manufacture proteoglycans with defined GAG chains for cellular applications. Engineered XT enzymes permit a view into proteoglycan biology that is orthogonal to conventional techniques in biochemistry.
Collapse
|
8
|
Damen LAA, Bui TP, van Wessel T, Li Y, Straten BF, Pampiermole R, Daamen WF, Fernig DG, van Kuppevelt TH. Identification of heparin-binding amino acid residues in antibody HS4C3 with the potential to design antibodies against heparan sulfate domains. Glycobiology 2024; 34:cwae046. [PMID: 38963938 PMCID: PMC11231949 DOI: 10.1093/glycob/cwae046] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2024] [Revised: 06/06/2024] [Indexed: 07/06/2024] Open
Abstract
Heparan sulfate (HS) is a linear polysaccharide with high structural and functional diversity. Detection and localization of HS in tissues can be performed using single chain variable fragment (scFv) antibodies. Although several anti-HS antibodies recognizing different sulfation motifs have been identified, little is known about their interaction with HS. In this study the interaction between the scFv antibody HS4C3 and heparin was investigated. Heparin-binding lysine and arginine residues were identified using a protect and label methodology. Site-directed mutagenesis was applied to further identify critical heparin-binding lysine/arginine residues using immunohistochemical and biochemical assays. In addition, computational docking of a heparin tetrasaccharide towards a 3-D homology model of HS4C3 was applied to identify potential heparin-binding sites. Of the 12 lysine and 15 arginine residues within the HS4C3 antibody, 6 and 9, respectively, were identified as heparin-binding. Most of these residues are located within one of the complementarity determining regions (CDR) or in their proximity. All basic amino acid residues in the CDR3 region of the heavy chain were involved in binding. Computational docking showed a heparin tetrasaccharide close to these regions. Mutagenesis of heparin-binding residues reduced or altered reactivity towards HS and heparin. Identification of heparin-binding arginine and lysine residues in HS4C3 allows for better understanding of the interaction with HS and creates a framework to rationally design antibodies targeting specific HS motifs.
Collapse
Affiliation(s)
- Lars A A Damen
- Department of Medical BioSciences, Radboud Institute for Medical Innovation, Radboud University Medical Center, PO Box 9101, Nijmegen 6500 HB, the Netherlands
| | - Thao P Bui
- Department of Biochemistry, Cell and Systems Biology, Institute of Systems, Molecular and Integrated Biology, University of Liverpool, Crown Street, Liverpool L69 7ZB, United Kingdom
| | - Thierry van Wessel
- Department of Medical BioSciences, Radboud Institute for Medical Innovation, Radboud University Medical Center, PO Box 9101, Nijmegen 6500 HB, the Netherlands
| | - Yong Li
- Department of Biochemistry, Cell and Systems Biology, Institute of Systems, Molecular and Integrated Biology, University of Liverpool, Crown Street, Liverpool L69 7ZB, United Kingdom
| | - Bart F Straten
- Department of Medical BioSciences, Radboud Institute for Medical Innovation, Radboud University Medical Center, PO Box 9101, Nijmegen 6500 HB, the Netherlands
| | - Robin Pampiermole
- Department of Medical BioSciences, Radboud Institute for Medical Innovation, Radboud University Medical Center, PO Box 9101, Nijmegen 6500 HB, the Netherlands
| | - Willeke F Daamen
- Department of Medical BioSciences, Radboud Institute for Medical Innovation, Radboud University Medical Center, PO Box 9101, Nijmegen 6500 HB, the Netherlands
| | - David G Fernig
- Department of Biochemistry, Cell and Systems Biology, Institute of Systems, Molecular and Integrated Biology, University of Liverpool, Crown Street, Liverpool L69 7ZB, United Kingdom
| | - Toin H van Kuppevelt
- Department of Medical BioSciences, Radboud Institute for Medical Innovation, Radboud University Medical Center, PO Box 9101, Nijmegen 6500 HB, the Netherlands
| |
Collapse
|
9
|
McMillan IO, Gearing M, Wang L. Vascular Heparan Sulfate and Amyloid-β in Alzheimer's Disease Patients. Int J Mol Sci 2024; 25:3964. [PMID: 38612775 PMCID: PMC11012074 DOI: 10.3390/ijms25073964] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2024] [Revised: 03/18/2024] [Accepted: 04/01/2024] [Indexed: 04/14/2024] Open
Abstract
Alzheimer's disease (AD) is a debilitating neurodegenerative disease characterized by the accumulation of extracellular amyloid-β peptides (Aβ) within the cerebral parenchyma and vasculature, which is known as cerebral amyloid angiopathy (CAA). This study utilized confocal imaging to investigate heparan sulfate (HS) expression within the cerebrovasculature and its associations with Aβ, gender, and ApoE4 genotype in AD. Our investigation revealed elevated levels of HS in the cerebrovasculature of AD patients with severe CAA. Additionally, these patients exhibited higher HS colocalization with Aβ in the cerebrovasculature, including both endothelial and vascular smooth muscle cell compartments. Intriguingly, a reversal in the polarized expression of HS within the cerebrovasculature was detected in AD patients with severe CAA. Furthermore, male patients exhibited lower levels of both parenchymal and cerebrovascular HS. Additionally, ApoE4 carriers displayed heightened cerebrovascular Aβ expression and a tendency of elevated cerebrovascular HS levels in AD patients with severe CAA. Overall, these findings reveal potential intricate interplay between HS, Aβ, ApoE, and vascular pathology in AD, thereby underscoring the potential roles of cerebrovascular HS in CAA development and AD pathology. Further study of the underlying mechanisms may present novel therapeutic avenues for AD treatment.
Collapse
Affiliation(s)
- Ilayda Ozsan McMillan
- Department of Molecular Pharmacology & Physiology, Morsani College of Medicine, University of South Florida, Tampa, FL 33613, USA;
| | - Marla Gearing
- Department of Pathology, Center for Neurodegenerative Disease, Emory University School of Medicine, Atlanta, GA 30307, USA;
| | - Lianchun Wang
- Department of Molecular Pharmacology & Physiology, Morsani College of Medicine, University of South Florida, Tampa, FL 33613, USA;
| |
Collapse
|
10
|
Chen J, Sun T, Lin B, Wu B, Wu J. The Essential Role of Proteoglycans and Glycosaminoglycans in Odontogenesis. J Dent Res 2024; 103:345-358. [PMID: 38407002 DOI: 10.1177/00220345231224228] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/27/2024] Open
Abstract
Tooth development and regeneration are regulated through a complex signaling network. Previous studies have focused on the exploration of intracellular signaling regulatory networks, but the regulatory roles of extracellular networks have only been revealed recently. Proteoglycans, which are essential components of the extracellular matrix (ECM) and pivotal signaling molecules, are extensively involved in the process of odontogenesis. Proteoglycans are composed of core proteins and covalently attached glycosaminoglycan chains (GAGs). The core proteins exhibit spatiotemporal expression patterns during odontogenesis and are pivotal for dental tissue formation and periodontium development. Knockout of core protein genes Biglycan, Decorin, Perlecan, and Fibromodulin has been shown to result in structural defects in enamel and dentin mineralization. They are also closely involved in the development and homeostasis of periodontium by regulating signaling transduction. As the functional component of proteoglycans, GAGs are negatively charged unbranched polysaccharides that consist of repeating disaccharides with various sulfation groups; they provide binding sites for cytokines and growth factors in regulating various cellular processes. In mice, GAG deficiency in dental epithelium leads to the reinitiation of tooth germ development and the formation of supernumerary incisors. Furthermore, GAGs are critical for the differentiation of dental stem cells. Inhibition of GAGs assembly hinders the differentiation of ameloblasts and odontoblasts. In summary, core proteins and GAGs are expressed distinctly and exert different functions at various stages of odontogenesis. Given their unique contributions in odontogenesis, this review summarizes the roles of proteoglycans and GAGs throughout the process of odontogenesis to provide a comprehensive understanding of tooth development.
Collapse
Affiliation(s)
- J Chen
- Department of Stomatology, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong, China
- School of Stomatology, Southern Medical University, Guangzhou, Guangdong, China
| | - T Sun
- Department of Periodontology, Stomatological Hospital, School of Stomatology, Southern Medical University, Guangzhou, Guangdong, China
| | - B Lin
- Department of Stomatology, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong, China
- School of Stomatology, Southern Medical University, Guangzhou, Guangdong, China
| | - B Wu
- Department of Stomatology, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong, China
- School of Stomatology, Southern Medical University, Guangzhou, Guangdong, China
- Southern Medical University-Shenzhen Stomatology Hospital (Pingshan), ShenZhen, China
| | - J Wu
- Center of Oral Implantology, Stomatological Hospital, School of Stomatology, Southern Medical University, Guangzhou, Guangdong, China
| |
Collapse
|
11
|
Sreekumar A, Lu M, Choudhury B, Pan TC, Pant DK, Lawrence-Paul MR, Sterner CJ, Belka GK, Toriumi T, Benz BA, Escobar-Aguirre M, Marino FE, Esko JD, Chodosh LA. B3GALT6 promotes dormant breast cancer cell survival and recurrence by enabling heparan sulfate-mediated FGF signaling. Cancer Cell 2024; 42:52-69.e7. [PMID: 38065100 PMCID: PMC10872305 DOI: 10.1016/j.ccell.2023.11.008] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/10/2023] [Revised: 08/22/2023] [Accepted: 11/14/2023] [Indexed: 01/11/2024]
Abstract
Breast cancer mortality results from incurable recurrences thought to be seeded by dormant, therapy-refractory residual tumor cells (RTCs). Understanding the mechanisms enabling RTC survival is therefore essential for improving patient outcomes. Here, we derive a dormancy-associated RTC signature that mirrors the transcriptional response to neoadjuvant therapy in patients and is enriched for extracellular matrix-related pathways. In vivo CRISPR-Cas9 screening of dormancy-associated candidate genes identifies the galactosyltransferase B3GALT6 as a functional regulator of RTC fitness. B3GALT6 is required for glycosaminoglycan (GAG) linkage to proteins to generate proteoglycans, and its germline loss of function in patients causes skeletal dysplasias. We find that B3GALT6-mediated biosynthesis of heparan sulfate GAGs predicts poor patient outcomes and promotes tumor recurrence by enhancing dormant RTC survival in multiple contexts, and does so via a B3GALT6-heparan sulfate/HS6ST1-heparan 6-O-sulfation/FGF1-FGFR2 signaling axis. These findings implicate B3GALT6 in cancer and nominate FGFR2 inhibition as a promising approach to eradicate dormant RTCs and prevent recurrence.
Collapse
Affiliation(s)
- Amulya Sreekumar
- Department of Cancer Biology, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA 19104, USA; Abramson Family Cancer Research Institute, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Michelle Lu
- Department of Cancer Biology, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA 19104, USA; Abramson Family Cancer Research Institute, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Biswa Choudhury
- Department of Cellular and Molecular Medicine, Glycobiology Research and Training Center, University of California, San Diego, La Jolla, CA 92093, USA
| | - Tien-Chi Pan
- Department of Cancer Biology, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA 19104, USA; Abramson Family Cancer Research Institute, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Dhruv K Pant
- Department of Cancer Biology, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA 19104, USA; Abramson Family Cancer Research Institute, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Matthew R Lawrence-Paul
- Department of Cancer Biology, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA 19104, USA; Abramson Family Cancer Research Institute, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Christopher J Sterner
- Department of Cancer Biology, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA 19104, USA; Abramson Family Cancer Research Institute, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA 19104, USA
| | - George K Belka
- Department of Cancer Biology, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA 19104, USA; Abramson Family Cancer Research Institute, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Takashi Toriumi
- Department of Cancer Biology, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA 19104, USA; Abramson Family Cancer Research Institute, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Brian A Benz
- Department of Cancer Biology, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA 19104, USA; Abramson Family Cancer Research Institute, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Matias Escobar-Aguirre
- Department of Cancer Biology, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA 19104, USA; Abramson Family Cancer Research Institute, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Francesco E Marino
- Department of Cancer Biology, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA 19104, USA; Abramson Family Cancer Research Institute, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Jeffrey D Esko
- Department of Cellular and Molecular Medicine, Glycobiology Research and Training Center, University of California, San Diego, La Jolla, CA 92093, USA
| | - Lewis A Chodosh
- Department of Cancer Biology, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA 19104, USA; Abramson Family Cancer Research Institute, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA 19104, USA; Department of Medicine, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA 19104, USA.
| |
Collapse
|
12
|
Lu L, Varshney S, Yuan Y, Wei HX, Tanwar A, Sundaram S, Nauman M, Haltiwanger RS, Stanley P. In vivo evidence for GDP-fucose transport in the absence of transporter SLC35C1 and putative transporter SLC35C2. J Biol Chem 2023; 299:105406. [PMID: 38270391 PMCID: PMC10709068 DOI: 10.1016/j.jbc.2023.105406] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2023] [Revised: 10/14/2023] [Accepted: 10/18/2023] [Indexed: 01/26/2024] Open
Abstract
Slc35c1 encodes an antiporter that transports GDP-fucose into the Golgi and returns GMP to the cytoplasm. The closely related gene Slc35c2 encodes a putative GDP-fucose transporter and promotes Notch fucosylation and Notch signaling in cultured cells. Here, we show that HEK293T cells lacking SLC35C1 transferred reduced amounts of O-fucose to secreted epidermal growth factor-like repeats from NOTCH1 or secreted thrombospondin type I repeats from thrombospondin 1. However, cells lacking SLC35C2 did not exhibit reduced fucosylation of these epidermal growth factor-like repeats or thrombospondin type I repeats. To investigate SLC35C2 functions in vivo, WW6 embryonic stem cells were targeted for Slc35c2. Slc35c2[-/-] mice were viable and fertile and exhibited no evidence of defective Notch signaling during skeletal or T cell development. By contrast, mice with inactivated Slc35c1 exhibited perinatal lethality and marked skeletal defects in late embryogenesis, typical of defective Notch signaling. Compound Slc35c1[-/-]Slc35c2[-/-] mutants were indistinguishable in skeletal phenotype from Slc35c1[-/-] embryos and neonates. Double mutants did not exhibit the exacerbated skeletal defects predicted if SLC35C2 was functionally important for Notch signaling in vivo. In addition, NOTCH1 immunoprecipitated from Slc35c1[-/-]Slc35c2[-/-] neonatal lung carried fucose detected by binding of Aleuria aurantia lectin. Given that the absence of both SLC35C1, a known GDP-fucose transporter, and SLC35C2, a putative GDP-fucose transporter, did not lead to afucosylated NOTCH1 nor to the severe Notch signaling defects and embryonic lethality expected if all GDP-fucose transport were abrogated, at least one more mechanism of GDP-fucose transport into the secretory pathway must exist in mammals.
Collapse
Affiliation(s)
- Linchao Lu
- Department Cell Biology, Albert Einstein College of Medicine, New York, New York, USA
| | - Shweta Varshney
- Department Cell Biology, Albert Einstein College of Medicine, New York, New York, USA
| | - Youxi Yuan
- Department of Biochemistry and Molecular Biology, Complex Carbohydrate Research Center, University of Georgia, Athens, Georgia, USA
| | - Hua-Xing Wei
- Department Cell Biology, Albert Einstein College of Medicine, New York, New York, USA
| | - Ankit Tanwar
- Department Cell Biology, Albert Einstein College of Medicine, New York, New York, USA
| | - Subha Sundaram
- Department Cell Biology, Albert Einstein College of Medicine, New York, New York, USA
| | - Mohd Nauman
- Department Cell Biology, Albert Einstein College of Medicine, New York, New York, USA
| | - Robert S Haltiwanger
- Department of Biochemistry and Molecular Biology, Complex Carbohydrate Research Center, University of Georgia, Athens, Georgia, USA
| | - Pamela Stanley
- Department Cell Biology, Albert Einstein College of Medicine, New York, New York, USA.
| |
Collapse
|
13
|
Sammon D, Krueger A, Busse-Wicher M, Morgan RM, Haslam SM, Schumann B, Briggs DC, Hohenester E. Molecular mechanism of decision-making in glycosaminoglycan biosynthesis. Nat Commun 2023; 14:6425. [PMID: 37828045 PMCID: PMC10570366 DOI: 10.1038/s41467-023-42236-z] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2023] [Accepted: 09/27/2023] [Indexed: 10/14/2023] Open
Abstract
Two major glycosaminoglycan types, heparan sulfate (HS) and chondroitin sulfate (CS), control many aspects of development and physiology in a type-specific manner. HS and CS are attached to core proteins via a common linker tetrasaccharide, but differ in their polymer backbones. How core proteins are specifically modified with HS or CS has been an enduring mystery. By reconstituting glycosaminoglycan biosynthesis in vitro, we establish that the CS-initiating N-acetylgalactosaminyltransferase CSGALNACT2 modifies all glycopeptide substrates equally, whereas the HS-initiating N-acetylglucosaminyltransferase EXTL3 is selective. Structure-function analysis reveals that acidic residues in the glycopeptide substrate and a basic exosite in EXTL3 are critical for specifying HS biosynthesis. Linker phosphorylation by the xylose kinase FAM20B accelerates linker synthesis and initiation of both HS and CS, but has no effect on the subsequent polymerisation of the backbone. Our results demonstrate that modification with CS occurs by default and must be overridden by EXTL3 to produce HS.
Collapse
Affiliation(s)
- Douglas Sammon
- Department of Life Sciences, Imperial College London, London, SW7 2AZ, UK
| | - Anja Krueger
- Department of Life Sciences, Imperial College London, London, SW7 2AZ, UK
| | - Marta Busse-Wicher
- Department of Life Sciences, Imperial College London, London, SW7 2AZ, UK
- Abzena, Babraham Research Campus, Cambridge, CB22 3AT, UK
| | - Rhodri Marc Morgan
- Department of Life Sciences, Imperial College London, London, SW7 2AZ, UK
- ZoBio, 2333 CH, Leiden, Netherlands
| | - Stuart M Haslam
- Department of Life Sciences, Imperial College London, London, SW7 2AZ, UK
| | - Benjamin Schumann
- Department of Chemistry, Imperial College London, London, W12 0BZ, UK
- Chemical Glycobiology Laboratory, The Francis Crick Institute, London, NW1 1AT, UK
| | - David C Briggs
- Department of Life Sciences, Imperial College London, London, SW7 2AZ, UK.
- Signalling and Structural Biology Laboratory, The Francis Crick Institute, London, NW1 1AT, UK.
| | - Erhard Hohenester
- Department of Life Sciences, Imperial College London, London, SW7 2AZ, UK.
| |
Collapse
|
14
|
Mah D, Zhu Y, Su G, Zhao J, Canning A, Gibson J, Song X, Stancanelli E, Xu Y, Zhang F, Linhardt RJ, Liu J, Wang L, Wang C. Apolipoprotein E Recognizes Alzheimer's Disease Associated 3-O Sulfation of Heparan Sulfate. Angew Chem Int Ed Engl 2023; 62:e202212636. [PMID: 37014788 PMCID: PMC10430763 DOI: 10.1002/anie.202212636] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2022] [Revised: 03/31/2023] [Accepted: 04/04/2023] [Indexed: 04/05/2023]
Abstract
Apolipoprotein E (ApoE)'s ϵ4 alle is the most important genetic risk factor for late onset Alzheimer's Disease (AD). Cell-surface heparan sulfate (HS) is a cofactor for ApoE/LRP1 interaction and the prion-like spread of tau pathology between cells. 3-O-sulfo (3-O-S) modification of HS has been linked to AD through its interaction with tau, and enhanced levels of 3-O-sulfated HS and 3-O-sulfotransferases in the AD brain. In this study, we characterized ApoE/HS interactions in wildtype ApoE3, AD-linked ApoE4, and AD-protective ApoE2 and ApoE3-Christchurch. Glycan microarray and SPR assays revealed that all ApoE isoforms recognized 3-O-S. NMR titration localized ApoE/3-O-S binding to the vicinity of the canonical HS binding motif. In cells, the knockout of HS3ST1-a major 3-O sulfotransferase-reduced cell surface binding and uptake of ApoE. 3-O-S is thus recognized by both tau and ApoE, suggesting that the interplay between 3-O-sulfated HS, tau and ApoE isoforms may modulate AD risk.
Collapse
Affiliation(s)
- Dylan Mah
- Department of Chemistry and Chemical Biology, Department of Biological Sciences, Rensselaer Polytechnic Institute, Troy, NY 12180, USA
| | - Yanan Zhu
- Department of Molecular Pharmacology and Physiology, University of South Florida, Morsani School of Medicine, Tampa, FL 33620, USA
| | - Guowei Su
- Glycan Therapeutics, Raleigh, NC 27606, USA
| | - Jing Zhao
- Department of Chemistry and Chemical Biology, Department of Biological Sciences, Rensselaer Polytechnic Institute, Troy, NY 12180, USA
- China Agricultural University, Beijing, 100083, China
| | - Ashely Canning
- Department of Chemistry and Chemical Biology, Department of Biological Sciences, Rensselaer Polytechnic Institute, Troy, NY 12180, USA
| | - James Gibson
- Department of Chemistry and Chemical Biology, Department of Biological Sciences, Rensselaer Polytechnic Institute, Troy, NY 12180, USA
| | - Xuehong Song
- Department of Molecular Pharmacology and Physiology, University of South Florida, Morsani School of Medicine, Tampa, FL 33620, USA
| | - Eduardo Stancanelli
- Division of Chemical Biology and Medicinal Chemistry, University of North Carolina at Chapel Hill, Eshelman School of Pharmacy, Chapel Hill, NC 27599, USA
| | - Yongmei Xu
- Division of Chemical Biology and Medicinal Chemistry, University of North Carolina at Chapel Hill, Eshelman School of Pharmacy, Chapel Hill, NC 27599, USA
| | - Fuming Zhang
- Department of Chemistry and Chemical Biology, Department of Biological Sciences, Rensselaer Polytechnic Institute, Troy, NY 12180, USA
| | - Robert J Linhardt
- Department of Chemistry and Chemical Biology, Department of Biological Sciences, Rensselaer Polytechnic Institute, Troy, NY 12180, USA
| | - Jian Liu
- Glycan Therapeutics, Raleigh, NC 27606, USA
- Division of Chemical Biology and Medicinal Chemistry, University of North Carolina at Chapel Hill, Eshelman School of Pharmacy, Chapel Hill, NC 27599, USA
| | - Lianchun Wang
- Department of Molecular Pharmacology and Physiology, University of South Florida, Morsani School of Medicine, Tampa, FL 33620, USA
| | - Chunyu Wang
- Department of Chemistry and Chemical Biology, Department of Biological Sciences, Rensselaer Polytechnic Institute, Troy, NY 12180, USA
| |
Collapse
|
15
|
Wang Z, Patel VN, Song X, Xu Y, Kaminski AM, Doan VU, Su G, Liao Y, Mah D, Zhang F, Pagadala V, Wang C, Pedersen LC, Wang L, Hoffman MP, Gearing M, Liu J. Increased 3- O-sulfated heparan sulfate in Alzheimer's disease brain is associated with genetic risk gene HS3ST1. SCIENCE ADVANCES 2023; 9:eadf6232. [PMID: 37235665 PMCID: PMC10219595 DOI: 10.1126/sciadv.adf6232] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/02/2022] [Accepted: 04/20/2023] [Indexed: 05/28/2023]
Abstract
HS3ST1 is a genetic risk gene associated with Alzheimer's disease (AD) and overexpressed in patients, but how it contributes to the disease progression is unknown. We report the analysis of brain heparan sulfate (HS) from AD and other tauopathies using a LC-MS/MS method. A specific 3-O-sulfated HS displayed sevenfold increase in the AD group (n = 14, P < 0.0005). Analysis of the HS modified by recombinant sulfotransferases and HS from genetic knockout mice revealed that the specific 3-O-sulfated HS is made by 3-O-sulfotransferase isoform 1 (3-OST-1), which is encoded by the HS3ST1 gene. A synthetic tetradecasaccharide (14-mer) carrying the specific 3-O-sulfated domain displayed stronger inhibition for tau internalization than a 14-mer without the domain, suggesting that the 3-O-sulfated HS is used in tau cellular uptake. Our findings suggest that the overexpression of HS3ST1 gene may enhance the spread of tau pathology, uncovering a previously unidentified therapeutic target for AD.
Collapse
Affiliation(s)
- Zhangjie Wang
- Division of Chemical Biology and Medicinal Chemistry, Eshelman School of Pharmacy, University of North Carolina, Chapel Hill, NC 27599, USA
| | - Vaishali N. Patel
- Matrix and Morphogenesis Section, National Institute of Dental and Craniofacial Research, NIH, DHHS, Bethesda, MD 20892, USA
| | - Xuehong Song
- Department of Molecular Pharmacology and Physiology, Byrd Alzheimer’s Center and Research Institute, Morsani College of Medicine, University of South Florida, Tampa, FL 33612 USA
| | - Yongmei Xu
- Division of Chemical Biology and Medicinal Chemistry, Eshelman School of Pharmacy, University of North Carolina, Chapel Hill, NC 27599, USA
| | - Andrea M. Kaminski
- Genome Integrity and Structural Biology Laboratory, National Institute of Environmental Health Sciences, National Institutes of Health, Research Triangle Park, NC 27709, USA
| | - Vivien Uyen Doan
- Division of Chemical Biology and Medicinal Chemistry, Eshelman School of Pharmacy, University of North Carolina, Chapel Hill, NC 27599, USA
| | - Guowei Su
- Glycan Therapeutics Corp., 617 Hutton Street, Raleigh, NC 27606, USA
| | - Yien Liao
- Division of Chemical Biology and Medicinal Chemistry, Eshelman School of Pharmacy, University of North Carolina, Chapel Hill, NC 27599, USA
| | - Dylan Mah
- Department of Biological Sciences, Department of Chemistry and Chemical Biology, Center for Biotechnology and Interdisciplinary Studies, Rensselaer Polytechnic Institute, Troy, NY 12180, USA
| | - Fuming Zhang
- Department of Biological Sciences, Department of Chemistry and Chemical Biology, Center for Biotechnology and Interdisciplinary Studies, Rensselaer Polytechnic Institute, Troy, NY 12180, USA
| | | | - Chunyu Wang
- Department of Biological Sciences, Department of Chemistry and Chemical Biology, Center for Biotechnology and Interdisciplinary Studies, Rensselaer Polytechnic Institute, Troy, NY 12180, USA
| | - Lars C. Pedersen
- Genome Integrity and Structural Biology Laboratory, National Institute of Environmental Health Sciences, National Institutes of Health, Research Triangle Park, NC 27709, USA
| | - Lianchun Wang
- Department of Molecular Pharmacology and Physiology, Byrd Alzheimer’s Center and Research Institute, Morsani College of Medicine, University of South Florida, Tampa, FL 33612 USA
| | - Matthew P. Hoffman
- Matrix and Morphogenesis Section, National Institute of Dental and Craniofacial Research, NIH, DHHS, Bethesda, MD 20892, USA
| | - Marla Gearing
- Department of Pathology and Laboratory Medicine and Department of Neurology, Emory University School of Medicine, Atlanta, GA 30322, USA
| | - Jian Liu
- Division of Chemical Biology and Medicinal Chemistry, Eshelman School of Pharmacy, University of North Carolina, Chapel Hill, NC 27599, USA
| |
Collapse
|
16
|
Li M, Pedersen LC, Xu D. Targeting heparan sulfate-protein interactions with oligosaccharides and monoclonal antibodies. Front Mol Biosci 2023; 10:1194293. [PMID: 37275960 PMCID: PMC10235622 DOI: 10.3389/fmolb.2023.1194293] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2023] [Accepted: 05/10/2023] [Indexed: 06/07/2023] Open
Abstract
Heparan sulfate-binding proteins (HSBPs) are structurally diverse extracellular and membrane attached proteins that interact with HS under normal physiological conditions. Interactions with HS offer an additional level of control over the localization and function of HSBPs, which enables them to behave in a more refined manner. Because all cell signaling events start at the cell membrane, and cell-cell communication relies on translocation of soluble factors across the extracellular matrix, HS occupies an apical position in cellular signal transduction by interacting with hundreds of growth factors, cytokines, chemokines, enzymes, enzyme inhibitors, receptors and adhesion molecules. These extracellular and membrane proteins can play important roles in physiological and pathological conditions. For most HS-binding proteins, the interaction with HS represents an essential element in regulating their normal physiological functions. Such dependence on HS suggests that manipulating HS-protein interactions could be explored as a therapeutic strategy to selectively antagonize/activate HS-binding proteins. In this review, we will discuss current understanding of the diverse nature of HS-HSBP interactions, and the latest advancements in targeting the HS-binding site of HSBPs using structurally-defined HS oligosaccharides and monoclonal antibodies.
Collapse
Affiliation(s)
- Miaomiao Li
- Department of Oral Biology, School of Dental Medicine, University at Buffalo, the State University of New York, Buffalo, NY, United States
| | - Lars C. Pedersen
- Genome Integrity and Structural Biology Laboratory, National Institute of Environmental Health Sciences, National Institutes of Health, Research Triangle Park, NC, United States
| | - Ding Xu
- Department of Oral Biology, School of Dental Medicine, University at Buffalo, the State University of New York, Buffalo, NY, United States
| |
Collapse
|
17
|
Ozsan McMillan I, Li JP, Wang L. Heparan sulfate proteoglycan in Alzheimer's disease: aberrant expression and functions in molecular pathways related to amyloid-β metabolism. Am J Physiol Cell Physiol 2023; 324:C893-C909. [PMID: 36878848 PMCID: PMC10069967 DOI: 10.1152/ajpcell.00247.2022] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2022] [Revised: 02/28/2023] [Accepted: 02/28/2023] [Indexed: 03/08/2023]
Abstract
Alzheimer's disease (AD) is the most common form of dementia. Currently, there is no effective treatment for AD, as its etiology remains poorly understood. Mounting evidence suggests that the accumulation and aggregation of amyloid-β peptides (Aβ), which constitute amyloid plaques in the brain, is critical for initiating and accelerating AD pathogenesis. Considerable efforts have been dedicated to shedding light on the molecular basis and fundamental origins of the impaired Aβ metabolism in AD. Heparan sulfate (HS), a linear polysaccharide of the glycosaminoglycan family, co-deposits with Aβ in plaques in the AD brain, directly binds and accelerates Aβ aggregation, and mediates Aβ internalization and cytotoxicity. Mouse model studies demonstrate that HS regulates Aβ clearance and neuroinflammation in vivo. Previous reviews have extensively explored these discoveries. Here, this review focuses on the recent advancements in understanding abnormal HS expression in the AD brain, the structural aspects of HS-Aβ interaction, and the molecules involved in modulating Aβ metabolism through HS interaction. Furthermore, this review presents a perspective on the potential effects of abnormal HS expression on Aβ metabolism and AD pathogenesis. In addition, the review highlights the importance of conducting further research to differentiate the spatiotemporal components of HS structure and function in the brain and AD pathogenesis.
Collapse
Affiliation(s)
- Ilayda Ozsan McMillan
- Department of Molecular Pharmacology & Physiology, Morsani College of Medicine, University of South Florida, Tampa, Florida, United States
- Byrd Alzheimer's Research Institute, Morsani College of Medicine, University of South Florida, Tampa, Florida, United States
| | - Jin-Ping Li
- Department of Medical Biochemistry and Microbiology & The Biomedical Center, University of Uppsala, Uppsala, Sweden
- SciLifeLab Uppsala, University of Uppsala, Uppsala, Sweden
| | - Lianchun Wang
- Department of Molecular Pharmacology & Physiology, Morsani College of Medicine, University of South Florida, Tampa, Florida, United States
- Byrd Alzheimer's Research Institute, Morsani College of Medicine, University of South Florida, Tampa, Florida, United States
| |
Collapse
|
18
|
Chen Z, Cui Y, Yao Y, Liu B, Yunis J, Gao X, Wang N, Cañete PF, Tuong ZK, Sun H, Wang H, Yang S, Wang R, Leong YA, Simon Davis D, Qin J, Liang K, Deng J, Wang CK, Huang YH, Roco JA, Nettelfield S, Zhu H, Xu H, Yu Z, Craik D, Liu Z, Qi H, Parish C, Yu D. Heparan sulfate regulates IL-21 bioavailability and signal strength that control germinal center B cell selection and differentiation. Sci Immunol 2023; 8:eadd1728. [PMID: 36800411 DOI: 10.1126/sciimmunol.add1728] [Citation(s) in RCA: 26] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/19/2023]
Abstract
In antibody responses, mutated germinal center B (BGC) cells are positively selected for reentry or differentiation. As the products from GCs, memory B cells and antibody-secreting cells (ASCs) support high-affinity and long-lasting immunity. Positive selection of BGC cells is controlled by signals received through the B cell receptor (BCR) and follicular helper T (TFH) cell-derived signals, in particular costimulation through CD40. Here, we demonstrate that the TFH cell effector cytokine interleukin-21 (IL-21) joins BCR and CD40 in supporting BGC selection and reveal that strong IL-21 signaling prioritizes ASC differentiation in vivo. BGC cells, compared with non-BGC cells, show significantly reduced IL-21 binding and attenuated signaling, which is mediated by low cellular heparan sulfate (HS) sulfation. Mechanistically, N-deacetylase and N-sulfotransferase 1 (Ndst1)-mediated N-sulfation of HS in B cells promotes IL-21 binding and signal strength. Ndst1 is down-regulated in BGC cells and up-regulated in ASC precursors, suggesting selective desensitization to IL-21 in BGC cells. Thus, specialized biochemical regulation of IL-21 bioavailability and signal strength sets a balance between the stringency and efficiency of GC selection.
Collapse
Affiliation(s)
- Zhian Chen
- Frazer Institute, Faculty of Medicine, University of Queensland, Brisbane, QLD, Australia.,John Curtin School of Medical Research, Australian National University, Canberra, ACT, Australia
| | - Yanfang Cui
- Key Laboratory of Pesticide and Chemical Biology, Ministry of Education, Central China Normal University, Wuhan, China
| | - Yin Yao
- Frazer Institute, Faculty of Medicine, University of Queensland, Brisbane, QLD, Australia.,John Curtin School of Medical Research, Australian National University, Canberra, ACT, Australia.,Department of Otolaryngology-Head and Neck Surgery, Tongji Medical College, Tongji Hospital, Huazhong University of Science and Technology, Wuhan, China
| | - Bo Liu
- Tsinghua-Peking Center for Life Sciences, Laboratory of Dynamic Immunobiology, School of Medicine, Tsinghua University, Beijing, China
| | - Joseph Yunis
- Frazer Institute, Faculty of Medicine, University of Queensland, Brisbane, QLD, Australia.,John Curtin School of Medical Research, Australian National University, Canberra, ACT, Australia
| | - Xin Gao
- John Curtin School of Medical Research, Australian National University, Canberra, ACT, Australia
| | - Naiqi Wang
- Frazer Institute, Faculty of Medicine, University of Queensland, Brisbane, QLD, Australia
| | - Pablo F Cañete
- Frazer Institute, Faculty of Medicine, University of Queensland, Brisbane, QLD, Australia
| | - Zewen Kelvin Tuong
- Molecular Immunity Unit, Department of Medicine, University of Cambridge, Cambridge, UK.,Wellcome Sanger Institute, Wellcome Genome Campus, Cambridge, UK
| | - Hongjian Sun
- Frazer Institute, Faculty of Medicine, University of Queensland, Brisbane, QLD, Australia
| | - Hao Wang
- John Curtin School of Medical Research, Australian National University, Canberra, ACT, Australia
| | - Siling Yang
- Frazer Institute, Faculty of Medicine, University of Queensland, Brisbane, QLD, Australia
| | - Runli Wang
- John Curtin School of Medical Research, Australian National University, Canberra, ACT, Australia
| | - Yew Ann Leong
- Centre for Inflammatory Diseases, Department of Medicine, School of Clinical Sciences at Monash Health, Monash University, Melbourne, VIC, Australia
| | - David Simon Davis
- John Curtin School of Medical Research, Australian National University, Canberra, ACT, Australia
| | - Jiahuan Qin
- China-Australia Centre for Personalised Immunology, Renji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Kaili Liang
- China-Australia Centre for Personalised Immunology, Renji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Jun Deng
- China-Australia Centre for Personalised Immunology, Renji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Conan K Wang
- Institute for Molecular Bioscience, University of Queensland, Brisbane, QLD, Australia.,Australian Research Council Centre of Excellence for Innovations in Peptide and Protein Science, University of Queensland, Brisbane, QLD, Australia
| | - Yen-Hua Huang
- Institute for Molecular Bioscience, University of Queensland, Brisbane, QLD, Australia
| | - Jonathan A Roco
- John Curtin School of Medical Research, Australian National University, Canberra, ACT, Australia
| | - Sam Nettelfield
- Frazer Institute, Faculty of Medicine, University of Queensland, Brisbane, QLD, Australia
| | - Huaming Zhu
- Department of Otolaryngology-Head and Neck Surgery, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai, China.,Shanghai Key Laboratory of Sleep Disordered Breathing, Shanghai, China
| | - Huajun Xu
- Department of Otolaryngology-Head and Neck Surgery, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai, China.,Shanghai Key Laboratory of Sleep Disordered Breathing, Shanghai, China
| | - Zhijia Yu
- John Curtin School of Medical Research, Australian National University, Canberra, ACT, Australia
| | - David Craik
- Institute for Molecular Bioscience, University of Queensland, Brisbane, QLD, Australia.,Australian Research Council Centre of Excellence for Innovations in Peptide and Protein Science, University of Queensland, Brisbane, QLD, Australia
| | - Zheng Liu
- Department of Otolaryngology-Head and Neck Surgery, Tongji Medical College, Tongji Hospital, Huazhong University of Science and Technology, Wuhan, China
| | - Hai Qi
- Tsinghua-Peking Center for Life Sciences, Laboratory of Dynamic Immunobiology, School of Medicine, Tsinghua University, Beijing, China
| | - Christopher Parish
- John Curtin School of Medical Research, Australian National University, Canberra, ACT, Australia
| | - Di Yu
- Frazer Institute, Faculty of Medicine, University of Queensland, Brisbane, QLD, Australia.,John Curtin School of Medical Research, Australian National University, Canberra, ACT, Australia.,Ian Frazer Centre for Children's Immunotherapy Research, Child Health Research Centre, Faculty of Medicine, University of Queensland, Brisbane, QLD, Australia
| |
Collapse
|
19
|
Yang H, Wang L. Heparan sulfate proteoglycans in cancer: Pathogenesis and therapeutic potential. Adv Cancer Res 2023; 157:251-291. [PMID: 36725112 DOI: 10.1016/bs.acr.2022.08.001] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
The heparan sulfate proteoglycans (HSPGs) are glycoproteins that consist of a proteoglycan "core" protein and covalently attached heparan sulfate (HS) chain. HSPGs are ubiquitously expressed in mammalian cells on the cell surface and in the extracellular matrix (ECM) and secretory vesicles. Within HSPGs, the protein cores determine when and where HSPG expression takes place, and the HS chains mediate most of HSPG's biological roles through binding various protein ligands, including cytokines, chemokines, growth factors and receptors, morphogens, proteases, protease inhibitors, and ECM proteins. Through these interactions, HSPGs modulate cell proliferation, adhesion, migration, invasion, and angiogenesis to display essential functions in physiology and pathology. Under physiological conditions, the expression and localization of HSPGs are finely regulated to orchestrate their physiological functions, and this is disrupted in cancer. The HSPG dysregulation elicits multiple oncogenic signaling, including growth factor signaling, ECM and Integrin signaling, chemokine and immune signaling, cancer stem cell, cell differentiation, apoptosis, and senescence, to prompt cell transformation, proliferation, tumor invasion and metastasis, tumor angiogenesis and inflammation, and immunotolerance. These oncogenic roles make HSPGs an attractive pharmacological target for anti-cancer therapy. Several therapeutic strategies have been under development, including anti-HSPG antibodies, peptides and HS mimetics, synthetic xylosides, and heparinase inhibitors, and shown promising anti-cancer efficacy. Therefore, much progress has been made in this line of study. However, it needs to bear in mind that the roles of HSPGs in cancer can be either oncogenic or tumor-suppressive, depending on the HSPG and the cancer cell type with the underlying mechanisms that remain obscure. Further studies need to address these to fill the knowledge gap and rationalize more efficient therapeutic targeting.
Collapse
Affiliation(s)
- Hua Yang
- Department of Molecular Pharmacology & Physiology, Morsani College of Medicine, University of South Florida, Tampa, FL, United States
| | - Lianchun Wang
- Department of Molecular Pharmacology & Physiology, Morsani College of Medicine, University of South Florida, Tampa, FL, United States; Bryd Alzheimer's Research Institute, Morsani College of Medicine, University of South Florida, Tampa, FL, United States.
| |
Collapse
|
20
|
HS, an Ancient Molecular Recognition and Information Storage Glycosaminoglycan, Equips HS-Proteoglycans with Diverse Matrix and Cell-Interactive Properties Operative in Tissue Development and Tissue Function in Health and Disease. Int J Mol Sci 2023; 24:ijms24021148. [PMID: 36674659 PMCID: PMC9867265 DOI: 10.3390/ijms24021148] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2022] [Revised: 12/23/2022] [Accepted: 12/27/2022] [Indexed: 01/11/2023] Open
Abstract
Heparan sulfate is a ubiquitous, variably sulfated interactive glycosaminoglycan that consists of repeating disaccharides of glucuronic acid and glucosamine that are subject to a number of modifications (acetylation, de-acetylation, epimerization, sulfation). Variable heparan sulfate chain lengths and sequences within the heparan sulfate chains provide structural diversity generating interactive oligosaccharide binding motifs with a diverse range of extracellular ligands and cellular receptors providing instructional cues over cellular behaviour and tissue homeostasis through the regulation of essential physiological processes in development, health, and disease. heparan sulfate and heparan sulfate-PGs are integral components of the specialized glycocalyx surrounding cells. Heparan sulfate is the most heterogeneous glycosaminoglycan, in terms of its sequence and biosynthetic modifications making it a difficult molecule to fully characterize, multiple ligands also make an elucidation of heparan sulfate functional properties complicated. Spatio-temporal presentation of heparan sulfate sulfate groups is an important functional determinant in tissue development and in cellular control of wound healing and extracellular remodelling in pathological tissues. The regulatory properties of heparan sulfate are mediated via interactions with chemokines, chemokine receptors, growth factors and morphogens in cell proliferation, differentiation, development, tissue remodelling, wound healing, immune regulation, inflammation, and tumour development. A greater understanding of these HS interactive processes will improve therapeutic procedures and prognoses. Advances in glycosaminoglycan synthesis and sequencing, computational analytical carbohydrate algorithms and advanced software for the evaluation of molecular docking of heparan sulfate with its molecular partners are now available. These advanced analytic techniques and artificial intelligence offer predictive capability in the elucidation of heparan sulfate conformational effects on heparan sulfate-ligand interactions significantly aiding heparan sulfate therapeutics development.
Collapse
|
21
|
Zhu Y, Gandy L, Zhang F, Liu J, Wang C, Blair LJ, Linhardt RJ, Wang L. Heparan Sulfate Proteoglycans in Tauopathy. Biomolecules 2022; 12:1792. [PMID: 36551220 PMCID: PMC9776397 DOI: 10.3390/biom12121792] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2022] [Revised: 11/28/2022] [Accepted: 11/28/2022] [Indexed: 12/03/2022] Open
Abstract
Tauopathies are a class of neurodegenerative diseases, including Alzheimer's disease, and are characterized by intraneuronal tau inclusion in the brain and the patient's cognitive decline with obscure pathogenesis. Heparan sulfate proteoglycans, a major type of extracellular matrix, have been believed to involve in tauopathies. The heparan sulfate proteoglycans co-deposit with tau in Alzheimer's patient brain, directly bind to tau and modulate tau secretion, internalization, and aggregation. This review summarizes the current understanding of the functions and the modulated molecular pathways of heparan sulfate proteoglycans in tauopathies, as well as the implication of dysregulated heparan sulfate proteoglycan expression in tau pathology and the potential of targeting heparan sulfate proteoglycan-tau interaction as a novel therapeutic option.
Collapse
Affiliation(s)
- Yanan Zhu
- Department of Molecular Pharmacology & Physiology, Byrd Alzheimer’s Research Institute, Morsani College of Medicine, University of South Florida, Tampa, FL 33612, USA
| | - Lauren Gandy
- Center for Biotechnology and Interdisciplinary Studies, Department of Chemistry and Chemical Biology, Department of Biological Sciences, Rensselaer Polytechnic Institute, Troy, NY 12180, USA
| | - Fuming Zhang
- Center for Biotechnology and Interdisciplinary Studies, Department of Chemistry and Chemical Biology, Department of Biological Sciences, Rensselaer Polytechnic Institute, Troy, NY 12180, USA
| | - Jian Liu
- Eshelman School of Pharmacy, The University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| | - Chunyu Wang
- Center for Biotechnology and Interdisciplinary Studies, Department of Chemistry and Chemical Biology, Department of Biological Sciences, Rensselaer Polytechnic Institute, Troy, NY 12180, USA
| | - Laura J. Blair
- Department of Molecular Medicine, Byrd Alzheimer’s Research Institute, Morsani College of Medicine, University of South Florida, Tampa, FL 33613, USA
| | - Robert J. Linhardt
- Center for Biotechnology and Interdisciplinary Studies, Department of Chemistry and Chemical Biology, Department of Biological Sciences, Rensselaer Polytechnic Institute, Troy, NY 12180, USA
| | - Lianchun Wang
- Department of Molecular Pharmacology & Physiology, Byrd Alzheimer’s Research Institute, Morsani College of Medicine, University of South Florida, Tampa, FL 33612, USA
| |
Collapse
|
22
|
Yang Y, Ahn J, Edwards NJ, Benicky J, Rozeboom AM, Davidson B, Karamboulas C, Nixon KCJ, Ailles L, Goldman R. Extracellular Heparan 6- O-Endosulfatases SULF1 and SULF2 in Head and Neck Squamous Cell Carcinoma and Other Malignancies. Cancers (Basel) 2022; 14:cancers14225553. [PMID: 36428645 PMCID: PMC9688903 DOI: 10.3390/cancers14225553] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2022] [Revised: 11/05/2022] [Accepted: 11/09/2022] [Indexed: 11/16/2022] Open
Abstract
Pan-cancer analysis of TCGA and CPTAC (proteomics) data shows that SULF1 and SULF2 are oncogenic in a number of human malignancies and associated with poor survival outcomes. Our studies document a consistent upregulation of SULF1 and SULF2 in HNSC which is associated with poor survival outcomes. These heparan sulfate editing enzymes were considered largely functional redundant but single-cell RNAseq (scRNAseq) shows that SULF1 is secreted by cancer-associated fibroblasts in contrast to the SULF2 derived from tumor cells. Our RNAScope and patient-derived xenograft (PDX) analysis of the HNSC tissues fully confirm the stromal source of SULF1 and explain the uniform impact of this enzyme on the biology of multiple malignancies. In summary, SULF2 expression increases in multiple malignancies but less consistently than SULF1, which uniformly increases in the tumor tissues and negatively impacts survival in several types of cancer even though its expression in cancer cells is low. This paradigm is common to multiple malignancies and suggests a potential for diagnostic and therapeutic targeting of the heparan sulfatases in cancer diseases.
Collapse
Affiliation(s)
- Yang Yang
- Department of Biochemistry and Molecular & Cell Biology, Georgetown University, Washington, DC 20057, USA
| | - Jaeil Ahn
- Department of Biostatistics, Bioinformatics and Biomathematics, Georgetown University, Washington, DC 20057, USA
| | - Nathan J. Edwards
- Department of Biochemistry and Molecular & Cell Biology, Georgetown University, Washington, DC 20057, USA
- Clinical and Translational Glycoscience Research Center, Georgetown University, Washington, DC 20057, USA
| | - Julius Benicky
- Clinical and Translational Glycoscience Research Center, Georgetown University, Washington, DC 20057, USA
- Department of Oncology, Lombardi Comprehensive Cancer Center, Georgetown University, Washington, DC 20057, USA
| | - Aaron M. Rozeboom
- Department of Oncology, Lombardi Comprehensive Cancer Center, Georgetown University, Washington, DC 20057, USA
| | - Bruce Davidson
- Department of Otolaryngology-Head and Neck Surgery, MedStar Georgetown University Hospital, Washington, DC 20057, USA
| | - Christina Karamboulas
- Princess Margaret Cancer Centre, University Health Network, Toronto, ON M5G 2C1, Canada
| | - Kevin C. J. Nixon
- Princess Margaret Cancer Centre, University Health Network, Toronto, ON M5G 2C1, Canada
| | - Laurie Ailles
- Princess Margaret Cancer Centre, University Health Network, Toronto, ON M5G 2C1, Canada
- Department of Medical Biophysics, University of Toronto, Toronto, ON M5G 1L7, Canada
| | - Radoslav Goldman
- Department of Biochemistry and Molecular & Cell Biology, Georgetown University, Washington, DC 20057, USA
- Clinical and Translational Glycoscience Research Center, Georgetown University, Washington, DC 20057, USA
- Department of Oncology, Lombardi Comprehensive Cancer Center, Georgetown University, Washington, DC 20057, USA
- Correspondence: ; Tel.: +1-202-687-9868
| |
Collapse
|
23
|
Chen M, Vincent J, Ezeanii A, Wakade S, Yerigenahally S, Mor DE. Heparan sulfate proteoglycans mediate prion-like α-synuclein toxicity in Parkinson's in vivo models. Life Sci Alliance 2022; 5:5/11/e202201366. [PMID: 35790300 PMCID: PMC9259873 DOI: 10.26508/lsa.202201366] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2022] [Revised: 06/20/2022] [Accepted: 06/22/2022] [Indexed: 11/24/2022] Open
Abstract
This study offers new Caenorhabditis elegans models in which feeding with α-synuclein pre-formed fibrils results in prion-like aggregation of host α-synuclein and dopamine neuron degeneration, and these disease phenotypes are regulated by the heparan sulfate proteoglycan pathway. Parkinson’s disease (PD) is a debilitating neurodegenerative disorder characterized by progressive motor decline and the aggregation of α-synuclein protein. Growing evidence suggests that α-synuclein aggregates may spread from neurons of the digestive tract to the central nervous system in a prion-like manner, yet the mechanisms of α-synuclein transmission and neurotoxicity remain poorly understood. Animal models that are amenable to high-throughput investigations are needed to facilitate the discovery of disease mechanisms. Here we describe the first Caenorhabditis elegans models in which feeding with α-synuclein preformed fibrils (PFFs) induces dopaminergic neurodegeneration, prion-like seeding of aggregation of human α-synuclein expressed in the host, and an associated motor decline. RNAi-mediated knockdown of the C. elegans syndecan sdn-1, or other enzymes involved in heparan sulfate proteoglycan synthesis, protected against PFF-induced α-synuclein aggregation, motor dysfunction, and dopamine neuron degeneration. This work offers new models by which to investigate gut-derived α-synuclein spreading and propagation of disease.
Collapse
Affiliation(s)
- Merry Chen
- Department of Neuroscience and Regenerative Medicine, Medical College of Georgia at Augusta University, Augusta, GA, USA
| | - Julie Vincent
- Department of Neuroscience and Regenerative Medicine, Medical College of Georgia at Augusta University, Augusta, GA, USA
| | - Alexis Ezeanii
- Department of Neuroscience and Regenerative Medicine, Medical College of Georgia at Augusta University, Augusta, GA, USA
| | - Saurabh Wakade
- College of Sciences, Georgia Institute of Technology, Atlanta, GA, USA
| | - Shobha Yerigenahally
- Department of Neuroscience and Regenerative Medicine, Medical College of Georgia at Augusta University, Augusta, GA, USA
| | - Danielle E Mor
- Department of Neuroscience and Regenerative Medicine, Medical College of Georgia at Augusta University, Augusta, GA, USA
| |
Collapse
|
24
|
Griffin ME, Hsieh-Wilson LC. Tools for mammalian glycoscience research. Cell 2022; 185:2657-2677. [PMID: 35809571 PMCID: PMC9339253 DOI: 10.1016/j.cell.2022.06.016] [Citation(s) in RCA: 24] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2022] [Revised: 06/08/2022] [Accepted: 06/08/2022] [Indexed: 10/17/2022]
Abstract
Cellular carbohydrates or glycans are critical mediators of biological function. Their remarkably diverse structures and varied activities present exciting opportunities for understanding many areas of biology. In this primer, we discuss key methods and recent breakthrough technologies for identifying, monitoring, and manipulating glycans in mammalian systems.
Collapse
Affiliation(s)
- Matthew E Griffin
- Department of Chemistry, University of California, Irvine, Irvine, CA 92697, USA; Department of Microbiology and Immunology, Scripps Research, La Jolla, CA 92037, USA
| | - Linda C Hsieh-Wilson
- Division of Chemistry and Chemical Engineering, California Institute of Technology, Pasadena, CA 91125, USA.
| |
Collapse
|
25
|
Critcher M, Huang ML. Excavating proteoglycan structure-function relationships: Modern approaches to capture the interactions of ancient biomolecules. Am J Physiol Cell Physiol 2022; 323:C415-C422. [PMID: 35759439 PMCID: PMC9359657 DOI: 10.1152/ajpcell.00222.2022] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Proteoglycans are now well regarded as key facilitators of cell biology. While a majority of their interactions and functions are attributed to the decorating glycosaminoglycan chains, there is a growing appreciation for the roles of the proteoglycan core protein and for considering proteoglycans as replete protein-glycan conjugates. This appreciation, seeded by early work in proteoglycan biology, is now being advanced and exalted by modern approaches in chemical glycobiology. In this review, we discuss up-and-coming methods to unearth the fine-scale architecture of proteoglycans that modulate their functions and interactions. Crucial to these efforts is the production of chemically defined materials, including semi-synthetic proteoglycans and the in situ capture of interacting proteins. Together, the integration of chemical biology approaches promises to expedite the dissection of the structural heterogeneity of proteoglycans and deliver refined insight into their functions.
Collapse
Affiliation(s)
- Meg Critcher
- Skaggs Graduate School of Chemical and Biological Sciences, Scripps Research, La Jolla, CA.,Department of Molecular Medicine, Scripps Research, La Jolla, CA
| | - Mia L Huang
- Skaggs Graduate School of Chemical and Biological Sciences, Scripps Research, La Jolla, CA.,Department of Molecular Medicine, Scripps Research, La Jolla, CA.,Department of Chemistry, Scripps Research, La Jolla, CA
| |
Collapse
|
26
|
Glycosaminoglycan interaction networks and databases. Curr Opin Struct Biol 2022; 74:102355. [DOI: 10.1016/j.sbi.2022.102355] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2021] [Revised: 02/02/2022] [Accepted: 02/04/2022] [Indexed: 12/14/2022]
|
27
|
O'Leary TR, Critcher M, Stephenson TN, Yang X, Hassan AA, Bartfield NM, Hawkins R, Huang ML. Chemical editing of proteoglycan architecture. Nat Chem Biol 2022; 18:634-642. [PMID: 35551261 PMCID: PMC9205196 DOI: 10.1038/s41589-022-01023-5] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2021] [Accepted: 03/29/2022] [Indexed: 12/21/2022]
Abstract
Proteoglycans are heterogeneous macromolecular glycoconjugates that orchestrate many important cellular processes. While much attention has focused on the poly-sulfated glycosaminoglycan chains that decorate proteoglycans, other important elements of their architecture, such as core proteins and membrane localization, have garnered less emphasis. Hence, comprehensive structure-function relationships that consider the replete proteoglycan architecture as glycoconjugates are limited. Here we present an extensive approach to study proteoglycan structure and biology by fabricating defined semisynthetic modular proteoglycans that can be tailored for cell surface display. The expression of proteoglycan core proteins with unnatural amino acids permits bioorthogonal click chemistry with functionalized glycosaminoglycans for methodical dissection of the parameters required for optimal binding and function of various proteoglycan-binding proteins. We demonstrate that these sophisticated materials can recapitulate the functions of native proteoglycan ectodomains in mouse embryonic stem cell differentiation and cancer cell spreading while permitting the analysis of the contributing architectural elements toward function.
Collapse
Affiliation(s)
- Timothy R O'Leary
- Department of Molecular Medicine, Scripps Research, Jupiter, FL, USA
| | - Meg Critcher
- Department of Molecular Medicine, Scripps Research, Jupiter, FL, USA
- Skaggs Graduate School of Chemical and Biological Sciences, Scripps Research, La Jolla, CA, USA
| | | | - Xueyi Yang
- Department of Molecular Medicine, Scripps Research, Jupiter, FL, USA
- Skaggs Graduate School of Chemical and Biological Sciences, Scripps Research, La Jolla, CA, USA
| | - Abdullah A Hassan
- Department of Molecular Medicine, Scripps Research, Jupiter, FL, USA
| | - Noah M Bartfield
- Department of Molecular Medicine, Scripps Research, Jupiter, FL, USA
| | - Richard Hawkins
- Department of Molecular Medicine, Scripps Research, Jupiter, FL, USA
| | - Mia L Huang
- Department of Molecular Medicine, Scripps Research, Jupiter, FL, USA.
- Skaggs Graduate School of Chemical and Biological Sciences, Scripps Research, La Jolla, CA, USA.
- Department of Molecular Medicine, Scripps Research, La Jolla, CA, USA.
| |
Collapse
|
28
|
Zeng J, Meng Y, Chen SY, Zhao G, Wang L, Zhang EX, Qiu H. Structural characteristics of Heparan sulfate required for the binding with the virus processing Enzyme Furin. Glycoconj J 2022; 39:315-325. [PMID: 34699015 PMCID: PMC8546381 DOI: 10.1007/s10719-021-10018-8] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2021] [Revised: 07/08/2021] [Accepted: 08/07/2021] [Indexed: 11/19/2022]
Abstract
Furin is one of the nine-member proprotein convertase family. Furin cleaves proteins with polybasic residues, which includes many viral glycoproteins such as SARS-Cov-2 spike protein. The cleavage is required for the activation of the proteins. Currently, the mechanisms that regulate Furin activity remain largely unknown. Here we demonstrated that Furin is a novel heparin/heparan sulfate binding protein by the use of biochemical and genetic assays. The KD is 9.78 nM based on the biolayer interferometry assay. Moreover, we found that sulfation degree, site-specific sulfation (N-sulfation and 3-O-sulfation), and iduronic acid are the major structural determinants for the binding. Furthermore, we found that heparin inhibits the enzymatic activity of Furin when pre-mixes heparin with either Furin or Furin substrate. We also found that the Furin binds with cells of different origin and the binding with the cells of lung origin is the strongest one. These data could advance our understanding of the working mechanism of Furin and will benefit the Furin based drug discovery such as inhibitors targeting the interaction between heparan sulfate and Furin for inhibition of viral infection.
Collapse
Affiliation(s)
- Jiaxin Zeng
- The First Affiliated Hospital of Guangzhou University of Chinese Medicine, No. 16 Jichang Road, Guangdong Province, 510405, Guangzhou, China
- Carbohydrate-Based Drug Research Center, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, 555 Zuchongzhi Road, Shanghai, 200031, China
- School of Pharmacy, University of Chinese Academy of Sciences, No. 19A Yuquan Road, Beijing, 100049, China
| | - Yuan Meng
- Carbohydrate-Based Drug Research Center, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, 555 Zuchongzhi Road, Shanghai, 200031, China
| | - Shi-Yi Chen
- Carbohydrate-Based Drug Research Center, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, 555 Zuchongzhi Road, Shanghai, 200031, China
- Nanjing University of Chinese Medicine, 138 Xianlin Road, Nanjing, 210023, China
- School of Pharmacy, University of Chinese Academy of Sciences, No. 19A Yuquan Road, Beijing, 100049, China
| | - Gaofeng Zhao
- Carbohydrate-Based Drug Research Center, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, 555 Zuchongzhi Road, Shanghai, 200031, China
- School of Pharmacy, University of Chinese Academy of Sciences, No. 19A Yuquan Road, Beijing, 100049, China
| | - Lianchun Wang
- Department of Molecular Pharmacology and Physiology, Morsani College of Medicine, University of South Florida Health, Tampa, FL, USA
| | - En-Xin Zhang
- The First Affiliated Hospital of Guangzhou University of Chinese Medicine, No. 16 Jichang Road, Guangdong Province, 510405, Guangzhou, China.
| | - Hong Qiu
- Carbohydrate-Based Drug Research Center, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, 555 Zuchongzhi Road, Shanghai, 200031, China.
- Nanjing University of Chinese Medicine, 138 Xianlin Road, Nanjing, 210023, China.
- School of Pharmacy, University of Chinese Academy of Sciences, No. 19A Yuquan Road, Beijing, 100049, China.
| |
Collapse
|
29
|
Stancanelli E, Liu W, Wander R, Li J, Wang Z, Arnold K, Su G, Kanack A, Pham TQ, Pagadala V, Padmanabhan A, Xu Y, Liu J. Chemoenzymatic Synthesis of Homogeneous Heparan Sulfate and Chondroitin Sulfate Chimeras. ACS Chem Biol 2022; 17:1207-1214. [PMID: 35420777 DOI: 10.1021/acschembio.2c00146] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Heparan sulfate (HS) and chondroitin sulfate (CS) are two structurally distinct natural polysaccharides. Here, we report the synthesis of a library of seven structurally homogeneous HS and CS chimeric dodecasaccharides (12-mers). The synthesis was accomplished using six HS biosynthetic enzymes and four CS biosynthetic enzymes. The chimeras contain a CS domain on the reducing end and a HS domain on the nonreducing end. The synthesized chimeras display anticoagulant activity as measured by both in vitro and ex vivo experiments. Furthermore, the anticoagulant activity of H/C 12-mer 5 is reversible by protamine, a U.S. Food and Drug Administration-approved polypeptide to neutralize anticoagulant drug heparin. Our findings demonstrate the synthesis of unnatural HS-CS chimeric oligosaccharides using natural biosynthetic enzymes, offering a new class of glycan molecules for biological research.
Collapse
Affiliation(s)
- Eduardo Stancanelli
- Division of Chemical Biology and Medicinal Chemistry, Eshelman School of Pharmacy, University of North Carolina, Chapel Hill, North Carolina 27599, United States
| | - Wei Liu
- Jiangsu Key Laboratory of Druggability of Biopharmaceuticals, State Key Laboratory of Natural Medicines, School of Life Science and Technology, China Pharmaceutical University, Nanjing 211198, PR China
| | - Rylee Wander
- Division of Chemical Biology and Medicinal Chemistry, Eshelman School of Pharmacy, University of North Carolina, Chapel Hill, North Carolina 27599, United States
| | - Jine Li
- Division of Chemical Biology and Medicinal Chemistry, Eshelman School of Pharmacy, University of North Carolina, Chapel Hill, North Carolina 27599, United States
- State Key Laboratory of Microbial Resources, Institute of Microbiology, Chinese Academy of Sciences, Beijing 100101, China
| | - Zhangjie Wang
- Division of Chemical Biology and Medicinal Chemistry, Eshelman School of Pharmacy, University of North Carolina, Chapel Hill, North Carolina 27599, United States
| | - Katelyn Arnold
- Division of Chemical Biology and Medicinal Chemistry, Eshelman School of Pharmacy, University of North Carolina, Chapel Hill, North Carolina 27599, United States
| | - Guowei Su
- Glycan Therapeutics, 617 Hutton Street, Raleigh, North Carolina 27606, United States
| | - Adam Kanack
- Department of Laboratory Medicine and Pathology, Mayo Clinic, Rochester, Minnesota 55904, United States
| | - Truong Quang Pham
- Glycan Therapeutics, 617 Hutton Street, Raleigh, North Carolina 27606, United States
| | - Vijayakanth Pagadala
- Glycan Therapeutics, 617 Hutton Street, Raleigh, North Carolina 27606, United States
| | - Anand Padmanabhan
- Department of Laboratory Medicine and Pathology, Mayo Clinic, Rochester, Minnesota 55904, United States
| | - Yongmei Xu
- Division of Chemical Biology and Medicinal Chemistry, Eshelman School of Pharmacy, University of North Carolina, Chapel Hill, North Carolina 27599, United States
| | - Jian Liu
- Division of Chemical Biology and Medicinal Chemistry, Eshelman School of Pharmacy, University of North Carolina, Chapel Hill, North Carolina 27599, United States
| |
Collapse
|
30
|
Porell RN, Follmar JL, Purcell SC, Timm B, Laubach LK, Kozirovskiy D, Thacker BE, Glass CA, Gordts PLSM, Godula K. Biologically Derived Neoproteoglycans for Profiling Protein-Glycosaminoglycan Interactions. ACS Chem Biol 2022; 17:1534-1542. [PMID: 35574759 DOI: 10.1021/acschembio.2c00205] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Glycosaminoglycans (GAGs) are a class of highly negatively charged membrane-associated and extracellular matrix polysaccharides involved in the regulation of myriad biological functions, including cell adhesion, migration, signaling, and differentiation, among others. GAGs are typically attached to core proteins, termed proteoglycans (PGs), and can engage >500 binding proteins, making them prominent relays for sensing external stimuli and transducing cellular responses. However, their unique substructural protein-recognition domains that confer their binding specificity remain elusive. While the emergence of glycan arrays has rapidly enabled the profiling of ligand specificities of a range of glycan-binding proteins, their adaptation for the analysis of GAG-binding proteins has been considerably more challenging. Current GAG microarrays primarily employ synthetically defined oligosaccharides, which capture only a fraction of the structural diversity of native GAG polysaccharides. Augmenting existing array platforms to include GAG structures purified from tissues or produced in cells with engineered glycan biosynthetic pathways may significantly advance the understanding of structure-activity relationships in GAG-protein interactions. Here, we demonstrate an efficient and tunable strategy to mimic cellular proteoglycan architectures by conjugating biologically derived GAG chains to a protein scaffold, defined as neoproteoglycans (neoPGs). The use of a reactive fluorogenic linker enabled real-time monitoring of the conjugation reaction efficiency and tuning of the neoPG valency. Immobilization of the reagents on a 96-well array platform allowed for efficient probing of ligand binding and enzyme-substrate specificity, including growth factors and the human sulfatase 1. The neoPGs can also be used directly as soluble probes to evaluate GAG-dependent growth factor signaling in cells.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Bryan E. Thacker
- TEGA Therapeutics, Inc., 3550 General Atomics Court, G02-102, San Diego, California 92121, United States
| | - Charles A. Glass
- TEGA Therapeutics, Inc., 3550 General Atomics Court, G02-102, San Diego, California 92121, United States
| | | | | |
Collapse
|
31
|
Xiao W, Pinilla-Baquero A, Faulkner J, Song X, Prabhakar P, Qiu H, Moremen KW, Ludwig A, Dempsey PJ, Azadi P, Wang L. Robo4 is constitutively shed by ADAMs from endothelial cells and the shed Robo4 functions to inhibit Slit3-induced angiogenesis. Sci Rep 2022; 12:4352. [PMID: 35288626 PMCID: PMC8921330 DOI: 10.1038/s41598-022-08227-8] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2020] [Accepted: 03/03/2022] [Indexed: 11/19/2022] Open
Abstract
Roundabout 4 (Robo4) is a transmembrane receptor that expresses specifically in endothelial cells. Soluble Robo4 was reported in the human plasma and mouse serum and is inhibitory towards FGF- and VEGF-induced angiogenesis. It remains unknown how soluble Robo4 is generated and if soluble Robo4 regulates additional angiogenic signaling. Here, we report soluble Robo4 is the product of constitutive ectodomain shedding of endothelial cell surface Robo4 by disintegrin metalloproteinases ADAM10 and ADAM17 and acts to inhibit angiogenic Slit3 signaling. Meanwhile, the ligand Slit3 induces cell surface receptor Robo4 endocytosis to shield Robo4 from shedding, showing Slit3 inhibits Robo4 shedding to enhance Robo4 signaling. Our study delineated ADAM10 and ADAM17 are Robo4 sheddases, and ectodomain shedding, including negative regulation by its ligand Slit3, represents a novel control mechanism of Robo4 signaling in angiogenesis.
Collapse
Affiliation(s)
- Wenyuan Xiao
- Department of Molecular Pharmacology & Physiology, Byrd Alzheimer's Research Institute, University of South Florida, 4001 E. Fletcher Ave., Tampa, FL33613, USA
- Complex Carbohydrate Research Center, and Department of Biochemistry and Molecular Biology, University of Georgia, Athens, GA, 30602, USA
| | - Alejandro Pinilla-Baquero
- Department of Molecular Pharmacology & Physiology, Byrd Alzheimer's Research Institute, University of South Florida, 4001 E. Fletcher Ave., Tampa, FL33613, USA
| | - John Faulkner
- Department of Molecular Pharmacology & Physiology, Byrd Alzheimer's Research Institute, University of South Florida, 4001 E. Fletcher Ave., Tampa, FL33613, USA
| | - Xuehong Song
- Department of Molecular Pharmacology & Physiology, Byrd Alzheimer's Research Institute, University of South Florida, 4001 E. Fletcher Ave., Tampa, FL33613, USA
| | - Pradeep Prabhakar
- Complex Carbohydrate Research Center, and Department of Biochemistry and Molecular Biology, University of Georgia, Athens, GA, 30602, USA
| | - Hong Qiu
- Complex Carbohydrate Research Center, and Department of Biochemistry and Molecular Biology, University of Georgia, Athens, GA, 30602, USA
| | - Kelley W Moremen
- Complex Carbohydrate Research Center, and Department of Biochemistry and Molecular Biology, University of Georgia, Athens, GA, 30602, USA
| | - Andreas Ludwig
- Institute for Molecular Pharmacology, RWTH Aachen University, Aachen, Germany
| | - Peter J Dempsey
- Department of Pediatrics, University of Colorado Medical School, Aurora, CO, USA
| | - Parastoo Azadi
- Complex Carbohydrate Research Center, and Department of Biochemistry and Molecular Biology, University of Georgia, Athens, GA, 30602, USA
| | - Lianchun Wang
- Department of Molecular Pharmacology & Physiology, Byrd Alzheimer's Research Institute, University of South Florida, 4001 E. Fletcher Ave., Tampa, FL33613, USA.
- Complex Carbohydrate Research Center, and Department of Biochemistry and Molecular Biology, University of Georgia, Athens, GA, 30602, USA.
| |
Collapse
|
32
|
Michalak AL, Trieger GW, Trieger KA, Godula K. Stem Cell Microarrays for Assessing Growth Factor Signaling in Engineered Glycan Microenvironments. Adv Healthc Mater 2022; 11:e2101232. [PMID: 34541824 PMCID: PMC8854331 DOI: 10.1002/adhm.202101232] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2021] [Revised: 08/19/2021] [Indexed: 02/03/2023]
Abstract
Extracellular glycans, such as glycosaminoglycans (GAGs), provide an essential regulatory component during the development and maintenance of tissues. GAGs, which harbor binding sites for a range of growth factors (GFs) and other morphogens, help establish gradients of these molecules in the extracellular matrix (ECM) and promote the formation of active signaling complexes when presented at the cell surface. As such, GAGs have been pursued as biologically active components for the development of biomaterials for cell-based regenerative therapies. However, their structural complexity and compositional heterogeneity make establishing structure-function relationships for this class of glycans difficult. Here, a stem cell array platform is described, in which chemically modified heparan sulfate (HS) GAG polysaccharides are conjugated to a gelatin matrix and introduced into a polyacrylamide hydrogel network. This array allowed for direct analysis of HS contributions to the signaling via the FGF2-dependent mitogen activated protein kinase (MAPK) pathway in mouse embryonic stem cells. With the recent emergence of powerful synthetic and recombinant technologies to produce well-defined GAG structures, a platform for analyzing both growth factor binding and signaling in response to the presence of these biomolecules will provide a powerful tool for integrating glycans into biomaterials to advance their biological properties and applications.
Collapse
Affiliation(s)
- Austen L. Michalak
- Deparment of Chemistry and Biochemistry, University of California San Diego, 9500 Gilman Drive, La Jolla CA 92093, USA
| | - Greg W. Trieger
- Deparment of Chemistry and Biochemistry, University of California San Diego, 9500 Gilman Drive, La Jolla CA 92093, USA
| | - Kelsey A. Trieger
- Deparment of Chemistry and Biochemistry, University of California San Diego, 9500 Gilman Drive, La Jolla CA 92093, USA
| | - Kamil Godula
- Deparment of Chemistry and Biochemistry, University of California San Diego, 9500 Gilman Drive, La Jolla CA 92093, USA,Glycobiology Research and Training Center, University of California San Diego, 9500 Gilman Drive, La Jolla CA 92093, USA
| |
Collapse
|
33
|
Joladarashi D, Zhu Y, Willman M, Nash K, Cimini M, Thandavarayan RA, Youker KA, Song X, Ren D, Li J, Kishore R, Krishnamurthy P, Wang L. STK35 Gene Therapy Attenuates Endothelial Dysfunction and Improves Cardiac Function in Diabetes. Front Cardiovasc Med 2022; 8:798091. [PMID: 35097018 PMCID: PMC8792894 DOI: 10.3389/fcvm.2021.798091] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2021] [Accepted: 12/22/2021] [Indexed: 11/25/2022] Open
Abstract
Diabetic cardiomyopathy (DCM) is characterized by microvascular pathology and interstitial fibrosis that leads to progressive heart failure. The mechanisms underlying DCM pathogenesis remain obscure, and no effective treatments for the disease have been available. In the present study, we observed that STK35, a novel kinase, is decreased in the diabetic human heart. High glucose treatment, mimicking hyperglycemia in diabetes, downregulated STK35 expression in mouse cardiac endothelial cells (MCEC). Knockdown of STK35 attenuated MCEC proliferation, migration, and tube formation, whereas STK35 overexpression restored the high glucose-suppressed MCEC migration and tube formation. Angiogenesis gene PCR array analysis revealed that HG downregulated the expression of several angiogenic genes, and this suppression was fully restored by STK35 overexpression. Intravenous injection of AAV9-STK35 viral particles successfully overexpressed STK35 in diabetic mouse hearts, leading to increased vascular density, suppression of fibrosis in the heart, and amelioration of left ventricular function. Altogether, our results suggest that hyperglycemia downregulates endothelial STK35 expression, leading to microvascular dysfunction in diabetic hearts, representing a novel mechanism underlying DCM pathogenesis. Our study also emerges STK35 is a novel gene therapeutic target for preventing and treating DCM.
Collapse
Affiliation(s)
- Darukeshwara Joladarashi
- Department of Molecular Pharmacology & Physiology, Morsani College of Medicine, Bryd Alzheimer's Research Institute, University of South Florida, Tampa, FL, United States
- Center for Translational Medicine, Lewis Katz School of Medicine, Temple University, Philadelphia, PA, United States
| | - Yanan Zhu
- Department of Molecular Pharmacology & Physiology, Morsani College of Medicine, Bryd Alzheimer's Research Institute, University of South Florida, Tampa, FL, United States
| | - Matthew Willman
- Department of Molecular Pharmacology & Physiology, Morsani College of Medicine, Bryd Alzheimer's Research Institute, University of South Florida, Tampa, FL, United States
| | - Kevin Nash
- Department of Molecular Pharmacology & Physiology, Morsani College of Medicine, Bryd Alzheimer's Research Institute, University of South Florida, Tampa, FL, United States
| | - Maria Cimini
- Center for Translational Medicine, Lewis Katz School of Medicine, Temple University, Philadelphia, PA, United States
| | | | - Keith A. Youker
- Houston Methodist DeBakey Heart & Vascular Center, Houston, TX, United States
| | - Xuehong Song
- Department of Molecular Pharmacology & Physiology, Morsani College of Medicine, Bryd Alzheimer's Research Institute, University of South Florida, Tampa, FL, United States
| | - Di Ren
- Department of Surgery, Morsani College of Medicine, University of South Florida, Tampa, FL, United States
| | - Ji Li
- Department of Surgery, Morsani College of Medicine, University of South Florida, Tampa, FL, United States
| | - Raj Kishore
- Center for Translational Medicine, Lewis Katz School of Medicine, Temple University, Philadelphia, PA, United States
| | - Prasanna Krishnamurthy
- Department of Biomedical Engineering, The University of Alabama at Birmingham, Birmingham, AL, United States
| | - Lianchun Wang
- Department of Molecular Pharmacology & Physiology, Morsani College of Medicine, Bryd Alzheimer's Research Institute, University of South Florida, Tampa, FL, United States
| |
Collapse
|
34
|
Karlsson R, Chopra P, Joshi A, Yang Z, Vakhrushev SY, Clausen TM, Painter CD, Szekeres GP, Chen YH, Sandoval DR, Hansen L, Esko JD, Pagel K, Dyer DP, Turnbull JE, Clausen H, Boons GJ, Miller RL. Dissecting structure-function of 3-O-sulfated heparin and engineered heparan sulfates. SCIENCE ADVANCES 2021; 7:eabl6026. [PMID: 34936441 PMCID: PMC8694587 DOI: 10.1126/sciadv.abl6026] [Citation(s) in RCA: 31] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/24/2021] [Accepted: 11/08/2021] [Indexed: 06/01/2023]
Abstract
Heparan sulfate (HS) polysaccharides are master regulators of diverse biological processes via sulfated motifs that can recruit specific proteins. 3-O-sulfation of HS/heparin is crucial for anticoagulant activity, but despite emerging evidence for roles in many other functions, a lack of tools for deciphering structure-function relationships has hampered advances. Here, we describe an approach integrating synthesis of 3-O-sulfated standards, comprehensive HS disaccharide profiling, and cell engineering to address this deficiency. Its application revealed previously unseen differences in 3-O-sulfated profiles of clinical heparins and 3-O-sulfotransferase (HS3ST)–specific variations in cell surface HS profiles. The latter correlated with functional differences in anticoagulant activity and binding to platelet factor 4 (PF4), which underlies heparin-induced thrombocytopenia, a known side effect of heparin. Unexpectedly, cells expressing the HS3ST4 isoenzyme generated HS with potent anticoagulant activity but weak PF4 binding. The data provide new insights into 3-O-sulfate structure-function and demonstrate proof of concept for tailored cell-based synthesis of next-generation heparins.
Collapse
Affiliation(s)
- Richard Karlsson
- Copenhagen Center for Glycomics, Department of Cellular and Molecular Medicine, Faculty of Health Sciences, University of Copenhagen, Blegdamsvej 3, DK-2200 Copenhagen N, Denmark
| | - Pradeep Chopra
- Complex Carbohydrate Research Center, University of Georgia, Athens, GA 30602, USA
| | - Apoorva Joshi
- Complex Carbohydrate Research Center, University of Georgia, Athens, GA 30602, USA
- Department of Chemistry, University of Georgia, Athens, GA 30602, USA
| | - Zhang Yang
- Copenhagen Center for Glycomics, Department of Cellular and Molecular Medicine, Faculty of Health Sciences, University of Copenhagen, Blegdamsvej 3, DK-2200 Copenhagen N, Denmark
- GlycoDisplay ApS, Blegdamsvej 3, DK-2200 Copenhagen N, Denmark
| | - Sergey Y. Vakhrushev
- Copenhagen Center for Glycomics, Department of Cellular and Molecular Medicine, Faculty of Health Sciences, University of Copenhagen, Blegdamsvej 3, DK-2200 Copenhagen N, Denmark
| | - Thomas Mandel Clausen
- Department of Cellular and Molecular Medicine, University of California, San Diego, La Jolla, CA 92093, USA
| | - Chelsea D. Painter
- Department of Cellular and Molecular Medicine, University of California, San Diego, La Jolla, CA 92093, USA
| | - Gergo P. Szekeres
- Freie Universitaet Berlin, Institute of Chemistry and Biochemistry, Arnimallee 22, 14195 Berlin, Germany
- Fritz Haber Institute of the Max Planck Society, Faradayweg 4-6, 14195 Berlin, Germany
| | - Yen-Hsi Chen
- Copenhagen Center for Glycomics, Department of Cellular and Molecular Medicine, Faculty of Health Sciences, University of Copenhagen, Blegdamsvej 3, DK-2200 Copenhagen N, Denmark
- GlycoDisplay ApS, Blegdamsvej 3, DK-2200 Copenhagen N, Denmark
| | - Daniel R. Sandoval
- Department of Cellular and Molecular Medicine, University of California, San Diego, La Jolla, CA 92093, USA
| | - Lars Hansen
- Copenhagen Center for Glycomics, Department of Cellular and Molecular Medicine, Faculty of Health Sciences, University of Copenhagen, Blegdamsvej 3, DK-2200 Copenhagen N, Denmark
| | - Jeffrey D. Esko
- Department of Cellular and Molecular Medicine, University of California, San Diego, La Jolla, CA 92093, USA
- Glycobiology Research and Training Center, University of California, San Diego, La Jolla, CA 92093, USA
| | - Kevin Pagel
- Freie Universitaet Berlin, Institute of Chemistry and Biochemistry, Arnimallee 22, 14195 Berlin, Germany
- Fritz Haber Institute of the Max Planck Society, Faradayweg 4-6, 14195 Berlin, Germany
| | - Douglas P. Dyer
- Wellcome Centre for Cell-Matrix Research, Geoffrey Jefferson Brain Research Centre, Lydia Becker Institute of Immunology and Inflammation, Faculty of Biology, Medicine and Health, Manchester Academic Health Science Centre, University of Manchester, Manchester, UK
| | - Jeremy E. Turnbull
- Copenhagen Center for Glycomics, Department of Cellular and Molecular Medicine, Faculty of Health Sciences, University of Copenhagen, Blegdamsvej 3, DK-2200 Copenhagen N, Denmark
- Centre for Glycobiology, Department of Biochemistry and Systems Biology, Institute of Systems, Molecular & Integrative Biology, University of Liverpool, Liverpool, UK
| | - Henrik Clausen
- Copenhagen Center for Glycomics, Department of Cellular and Molecular Medicine, Faculty of Health Sciences, University of Copenhagen, Blegdamsvej 3, DK-2200 Copenhagen N, Denmark
| | - Geert-Jan Boons
- Complex Carbohydrate Research Center, University of Georgia, Athens, GA 30602, USA
- Department of Chemistry, University of Georgia, Athens, GA 30602, USA
- Department of Chemical Biology and Drug Discovery, Utrecht Institute for Pharmaceutical Science, and Bijvoet Center for Biomolecular Research, Utrecht University, Universiteitsweg 99, 3584 CG Utrecht, Netherlands
| | - Rebecca L. Miller
- Copenhagen Center for Glycomics, Department of Cellular and Molecular Medicine, Faculty of Health Sciences, University of Copenhagen, Blegdamsvej 3, DK-2200 Copenhagen N, Denmark
| |
Collapse
|
35
|
Chen J, Sun T, You Y, Wu B, Wang X, Wu J. Proteoglycans and Glycosaminoglycans in Stem Cell Homeostasis and Bone Tissue Regeneration. Front Cell Dev Biol 2021; 9:760532. [PMID: 34917612 PMCID: PMC8669051 DOI: 10.3389/fcell.2021.760532] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2021] [Accepted: 10/25/2021] [Indexed: 12/20/2022] Open
Abstract
Stem cells maintain a subtle balance between self-renewal and differentiation under the regulatory network supported by both intracellular and extracellular components. Proteoglycans are large glycoproteins present abundantly on the cell surface and in the extracellular matrix where they play pivotal roles in facilitating signaling transduction and maintaining stem cell homeostasis. In this review, we outline distinct proteoglycans profiles and their functions in the regulation of stem cell homeostasis, as well as recent progress and prospects of utilizing proteoglycans/glycosaminoglycans as a novel glycomics carrier or bio-active molecules in bone regeneration.
Collapse
Affiliation(s)
- Jiawen Chen
- School of Stomatology, Southern Medical University, Guangzhou, China
| | - Tianyu Sun
- Department of Periodontology, Stomatological Hospital, Southern Medical University, Guangzhou, China
| | - Yan You
- School of Stomatology, Southern Medical University, Guangzhou, China
| | - Buling Wu
- School of Stomatology, Southern Medical University, Guangzhou, China.,Department of Endodontics, Shenzhen Stomatology Hospital, Southern Medical University, Shenzhen, China
| | - Xiaofang Wang
- Department of Biomedical Sciences, Texas A&M University College of Dentistry, Dallas, TX, United states
| | - Jingyi Wu
- Center of Oral Implantology, Stomatological Hospital, Southern Medical University, Guangzhou, China
| |
Collapse
|
36
|
Marques C, Reis CA, Vivès RR, Magalhães A. Heparan Sulfate Biosynthesis and Sulfation Profiles as Modulators of Cancer Signalling and Progression. Front Oncol 2021; 11:778752. [PMID: 34858858 PMCID: PMC8632541 DOI: 10.3389/fonc.2021.778752] [Citation(s) in RCA: 46] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2021] [Accepted: 10/15/2021] [Indexed: 12/17/2022] Open
Abstract
Heparan Sulfate Proteoglycans (HSPGs) are important cell surface and Extracellular Matrix (ECM) maestros involved in the orchestration of multiple cellular events in physiology and pathology. These glycoconjugates bind to various bioactive proteins via their Heparan Sulfate (HS) chains, but also through the protein backbone, and function as scaffolds for protein-protein interactions, modulating extracellular ligand gradients, cell signalling networks and cell-cell/cell-ECM interactions. The structural features of HS chains, including length and sulfation patterns, are crucial for the biological roles displayed by HSPGs, as these features determine HS chains binding affinities and selectivity. The large HS structural diversity results from a tightly controlled biosynthetic pathway that is differently regulated in different organs, stages of development and pathologies, including cancer. This review addresses the regulatory mechanisms underlying HS biosynthesis, with a particular focus on the catalytic activity of the enzymes responsible for HS glycan sequences and sulfation motifs, namely D-Glucuronyl C5-Epimerase, N- and O-Sulfotransferases. Moreover, we provide insights on the impact of different HS structural epitopes over HSPG-protein interactions and cell signalling, as well as on the effects of deregulated expression of HS modifying enzymes in the development and progression of cancer. Finally, we discuss the clinical potential of HS biosynthetic enzymes as novel targets for therapy, and highlight the importance of developing new HS-based tools for better patients' stratification and cancer treatment.
Collapse
Affiliation(s)
- Catarina Marques
- Instituto de Investigação e Inovação em Saúde (i3S), Universidade do Porto, Porto, Portugal.,Instituto de Patologia e Imunologia Molecular da Universidade do Porto (IPATIMUP), Porto, Portugal.,Programa Doutoral em Biologia Molecular e Celular (MCbiology), Instituto de Ciências Biomédicas Abel Salazar (ICBAS), Universidade do Porto, Porto, Portugal
| | - Celso A Reis
- Instituto de Investigação e Inovação em Saúde (i3S), Universidade do Porto, Porto, Portugal.,Instituto de Patologia e Imunologia Molecular da Universidade do Porto (IPATIMUP), Porto, Portugal.,Instituto de Ciências Biomédicas Abel Salazar (ICBAS), Universidade do Porto, Porto, Portugal.,Faculdade de Medicina da Universidade do Porto (FMUP), Porto, Portugal
| | | | - Ana Magalhães
- Instituto de Investigação e Inovação em Saúde (i3S), Universidade do Porto, Porto, Portugal.,Instituto de Patologia e Imunologia Molecular da Universidade do Porto (IPATIMUP), Porto, Portugal.,Instituto de Ciências Biomédicas Abel Salazar (ICBAS), Universidade do Porto, Porto, Portugal
| |
Collapse
|
37
|
Rai S, Alsaidan OA, Yang H, Cai H, Wang L. Heparan sulfate inhibits transforming growth factor β signaling and functions in cis and in trans to regulate prostate stem/progenitor cell activities. Glycobiology 2021; 30:381-395. [PMID: 31829419 DOI: 10.1093/glycob/cwz103] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2019] [Revised: 11/25/2019] [Accepted: 11/27/2019] [Indexed: 12/15/2022] Open
Abstract
Prostate stem/progenitor cells (PrSCs) are responsible for adult prostate tissue homeostasis and regeneration. However, the related regulatory mechanisms are not completely understood. In this study, we examined the role of heparan sulfate (HS) in PrSC self-renewal and prostate regeneration. Using an in vitro prostate sphere formation assay, we found that deletion of the glycosyltransferase exostosin 1 (Ext1) abolished HS expression in PrSCs and disrupted their ability to self-renew. In associated studies, we observed that HS loss inhibited p63 and CK5 expression, reduced the number of p63+- or CK5+-expressing stem/progenitor cells, elevated CK8+ expression and the number of differentiated CK8+ luminal cells and arrested the spheroid cells in the G1/G0 phase of cell cycle. Mechanistically, HS expressed by PrSCs (in cis) or by neighboring cells (in trans) could maintain sphere formation. Furthermore, HS deficiency upregulated transforming growth factor β (TGFβ) signaling and inhibiting TGFβ signaling partially restored the sphere-formation activity of the HS-deficient PrSCs. In an in vivo prostate regeneration assay, simultaneous loss of HS in both epithelial cell and stromal cell compartments attenuated prostate tissue regeneration, whereas the retention of HS expression in either of the two cellular compartments was sufficient to sustain prostate tissue regeneration. We conclude that HS preserves self-renewal of adult PrSCs by inhibiting TGFβ signaling and functions both in cis and in trans to maintain prostate homeostasis and to support prostate regeneration.
Collapse
Affiliation(s)
- Sumit Rai
- Department of Biochemistry and Molecular Biology, Complex Carbohydrate Research Center, University of Georgia, Athens, GA 30602, USA
| | - Omar Awad Alsaidan
- Department of Pharmaceutical and Biomedical Sciences, College of Pharmacy, University of Georgia, Athens, GA 30602, USA
| | - Hua Yang
- Department of Molecular Pharmacology and Physiology, Byrd Alzheimer's Institute, University of South Florida, Tampa, FL 33613, USA
| | - Houjian Cai
- Department of Pharmaceutical and Biomedical Sciences, College of Pharmacy, University of Georgia, Athens, GA 30602, USA
| | - Lianchun Wang
- Department of Biochemistry and Molecular Biology, Complex Carbohydrate Research Center, University of Georgia, Athens, GA 30602, USA.,Department of Molecular Pharmacology and Physiology, Byrd Alzheimer's Institute, University of South Florida, Tampa, FL 33613, USA
| |
Collapse
|
38
|
Mitra D, Hasan MH, Bates JT, Bierdeman MA, Ederer DR, Parmar RC, Fassero LA, Liang Q, Qiu H, Tiwari V, Zhang F, Linhardt RJ, Sharp JS, Wang L, Tandon R. The degree of polymerization and sulfation patterns in heparan sulfate are critical determinants of cytomegalovirus entry into host cells. PLoS Pathog 2021; 17:e1009803. [PMID: 34352038 PMCID: PMC8384199 DOI: 10.1371/journal.ppat.1009803] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2021] [Revised: 08/24/2021] [Accepted: 07/15/2021] [Indexed: 01/10/2023] Open
Abstract
Several enveloped viruses, including herpesviruses attach to host cells by initially interacting with cell surface heparan sulfate (HS) proteoglycans followed by specific coreceptor engagement which culminates in virus-host membrane fusion and virus entry. Interfering with HS-herpesvirus interactions has long been known to result in significant reduction in virus infectivity indicating that HS play important roles in initiating virus entry. In this study, we provide a series of evidence to prove that specific sulfations as well as the degree of polymerization (dp) of HS govern human cytomegalovirus (CMV) binding and infection. First, purified CMV extracellular virions preferentially bind to sulfated longer chain HS on a glycoarray compared to a variety of unsulfated glycosaminoglycans including unsulfated shorter chain HS. Second, the fraction of glycosaminoglycans (GAG) displaying higher dp and sulfation has a larger impact on CMV titers compared to other fractions. Third, cell lines deficient in specific glucosaminyl sulfotransferases produce significantly reduced CMV titers compared to wild-type cells and virus entry is compromised in these mutant cells. Finally, purified glycoprotein B shows strong binding to heparin, and desulfated heparin analogs compete poorly with heparin for gB binding. Taken together, these results highlight the significance of HS chain length and sulfation patterns in CMV attachment and infectivity.
Collapse
Affiliation(s)
- Dipanwita Mitra
- Department of Microbiology and Immunology, University of Mississippi Medical Center, Jackson, Mississippi, United States of America
| | - Mohammad H. Hasan
- Department of Microbiology and Immunology, University of Mississippi Medical Center, Jackson, Mississippi, United States of America
| | - John T. Bates
- Department of Microbiology and Immunology, University of Mississippi Medical Center, Jackson, Mississippi, United States of America
- Department of Medicine, University of Mississippi Medical Center, Jackson, Mississippi, United States of America
| | - Michael A. Bierdeman
- Department of Medicine, University of Mississippi Medical Center, Jackson, Mississippi, United States of America
| | - Dallas R. Ederer
- Department of Microbiology and Immunology, University of Mississippi Medical Center, Jackson, Mississippi, United States of America
| | - Rinkuben C. Parmar
- Department of Microbiology and Immunology, University of Mississippi Medical Center, Jackson, Mississippi, United States of America
| | - Lauren A. Fassero
- Department of Microbiology and Immunology, University of Mississippi Medical Center, Jackson, Mississippi, United States of America
| | - Quntao Liang
- Biomolecular Sciences, School of Pharmacy, University of Mississippi, Oxford, Mississippi, United States of America
- College of Biological Science and Engineering, University of Fuzhou, Fujian, China
| | - Hong Qiu
- Complex Carbohydrate Research Center, University of Georgia, Athens, Georgia, United States of America
| | - Vaibhav Tiwari
- Department of Microbiology and Immunology, Midwestern University, Downers Grove, Illinois, United States of America
| | - Fuming Zhang
- Center for Biotechnology and Interdisciplinary Studies, Rensselaer Polytechnic Institute, Troy, New York, United States of America
| | - Robert J. Linhardt
- Center for Biotechnology and Interdisciplinary Studies, Rensselaer Polytechnic Institute, Troy, New York, United States of America
| | - Joshua S. Sharp
- Biomolecular Sciences, School of Pharmacy, University of Mississippi, Oxford, Mississippi, United States of America
| | - Lianchun Wang
- Department of Molecular Pharmacology and Physiology, University of South Florida, Tampa, Florida, United States of America
| | - Ritesh Tandon
- Department of Microbiology and Immunology, University of Mississippi Medical Center, Jackson, Mississippi, United States of America
- Department of Medicine, University of Mississippi Medical Center, Jackson, Mississippi, United States of America
- Biomolecular Sciences, School of Pharmacy, University of Mississippi, Oxford, Mississippi, United States of America
| |
Collapse
|
39
|
Moon S, Zhao YT. Spatial, temporal, and cell-type-specific expression profiles of genes encoding heparan sulfate biosynthesis enzymes and proteoglycan core proteins. Glycobiology 2021; 31:1308-1318. [PMID: 34132783 DOI: 10.1093/glycob/cwab054] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2021] [Revised: 05/28/2021] [Accepted: 06/09/2021] [Indexed: 12/22/2022] Open
Abstract
Heparan sulfate (HS) is a linear polysaccharide found in almost all animal cells and plays an important role in various biological processes. HS functions mainly via covalently binding to core proteins to form HS proteoglycans (HSPGs), which are heterogeneous in the lengths of the HS chain, the modifications on HS, and the core proteins. The molecular mechanisms underlying HSPG heterogeneity, although widely studied, are not yet fully defined. The expression profiles of HS biosynthesis enzymes and HSPG core proteins likely contribute to the HSPG heterogeneity, but these expression profiles remain poorly characterized. To investigate the expression profiles of genes encoding HS biosynthesis enzymes and HSPG core proteins, we systematically integrated the publicly available RNA sequencing data in mice. To reveal the spatial expression of these genes, we analyzed their expression in 21 mouse tissues. To reveal the temporal expression of these genes, we analyzed their expression at 17 time points during the mouse forebrain development. To determine the cell-type-specific expression of these genes, we obtained their expression profiles in 23 cell types in the mouse cerebral cortex by integrating single nucleus RNA sequencing data. Our findings demonstrate the spatial, temporal, and cell-type-specific expression of genes encoding HS biosynthesis enzymes and HSPG core proteins and represent a valuable resource to the HS research community.
Collapse
Affiliation(s)
- Sohyun Moon
- Department of Biomedical Sciences, New York Institute of Technology College of Osteopathic Medicine, Old Westbury, NY, 11568, USA
| | - Ying-Tao Zhao
- Department of Biomedical Sciences, New York Institute of Technology College of Osteopathic Medicine, Old Westbury, NY, 11568, USA
| |
Collapse
|
40
|
Yue J, Jin W, Yang H, Faulkner J, Song X, Qiu H, Teng M, Azadi P, Zhang F, Linhardt RJ, Wang L. Heparan Sulfate Facilitates Spike Protein-Mediated SARS-CoV-2 Host Cell Invasion and Contributes to Increased Infection of SARS-CoV-2 G614 Mutant and in Lung Cancer. Front Mol Biosci 2021; 8:649575. [PMID: 34179075 PMCID: PMC8231436 DOI: 10.3389/fmolb.2021.649575] [Citation(s) in RCA: 36] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2021] [Accepted: 04/06/2021] [Indexed: 12/15/2022] Open
Abstract
The severe acute respiratory syndrome (SARS)-like coronavirus disease (COVID-19) is caused by SARS-CoV-2 and has been a serious threat to global public health with limited treatment. Cellular heparan sulfate (HS) has been found to bind SARS-CoV-2 spike protein (SV2-S) and co-operate with cell surface receptor angiotensin-converting enzyme 2 (ACE2) to mediate SARS-CoV-2 infection of host cells. In this study, we determined that host cell surface SV2-S binding depends on and correlates with host cell surface HS expression. This binding is required for SARS-Cov-2 virus to infect host cells and can be blocked by heparin lyase, HS antagonist surfen, heparin, and heparin derivatives. The binding of heparin/HS to SV2-S is mainly determined by its overall sulfation with potential, minor contribution of specific SV2-S binding motifs. The higher binding affinity of SV2-S G614 mutant to heparin and upregulated HS expression may be one of the mechanisms underlying the higher infectivity of the SARS-CoV-2 G614 variant and the high vulnerability of lung cancer patients to SARS-CoV-2 infection, respectively. The higher host cell infection by SARS-CoV-2 G614 variant pseudovirus and the increased infection caused by upregulated HS expression both can be effectively blocked by heparin lyase and heparin, and possibly surfen and heparin derivatives too. Our findings support blocking HS-SV2-S interaction may provide one addition to achieve effective prevention and/treatment of COVID-19.
Collapse
Affiliation(s)
- Jingwen Yue
- Department of Molecular Pharmacology and Physiology, Morsani College of Medicine, University of South Florida Health, Tampa, FL, United States
- Complex Carbohydrate Research Center, University of Georgia, Athens, GA, United States
- Department of Biochemistry and Molecular Biology, University of Georgia, Athens, GA, United States
| | - Weihua Jin
- Department of Chemistry and Chemical Biology, Center for Biotechnology and Interdisciplinary Studies, Rensselaer Polytechnic Institute, Troy, NY, United States
- Department of Chemical and Biological Engineering, Center for Biotechnology and Interdisciplinary Studies, Rensselaer Polytechnic Institute, Troy, NY, United States
- Department of Biomedical Engineering, Center for Biotechnology and Interdisciplinary Studies, Rensselaer Polytechnic Institute, Troy, NY, United States
| | - Hua Yang
- Department of Molecular Pharmacology and Physiology, Morsani College of Medicine, University of South Florida Health, Tampa, FL, United States
| | - John Faulkner
- Department of Molecular Pharmacology and Physiology, Morsani College of Medicine, University of South Florida Health, Tampa, FL, United States
| | - Xuehong Song
- Department of Molecular Pharmacology and Physiology, Morsani College of Medicine, University of South Florida Health, Tampa, FL, United States
| | - Hong Qiu
- Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, China
| | - Michael Teng
- Division of Allergy and Immunology, Department of Internal Medicine, Morsani College of Medicine, University of South Florida, Tampa, FL, United States
| | - Parastoo Azadi
- Complex Carbohydrate Research Center, University of Georgia, Athens, GA, United States
| | - Fuming Zhang
- Department of Chemistry and Chemical Biology, Center for Biotechnology and Interdisciplinary Studies, Rensselaer Polytechnic Institute, Troy, NY, United States
- Department of Chemical and Biological Engineering, Center for Biotechnology and Interdisciplinary Studies, Rensselaer Polytechnic Institute, Troy, NY, United States
- Department of Biomedical Engineering, Center for Biotechnology and Interdisciplinary Studies, Rensselaer Polytechnic Institute, Troy, NY, United States
| | - Robert J. Linhardt
- Department of Chemistry and Chemical Biology, Center for Biotechnology and Interdisciplinary Studies, Rensselaer Polytechnic Institute, Troy, NY, United States
- Department of Chemical and Biological Engineering, Center for Biotechnology and Interdisciplinary Studies, Rensselaer Polytechnic Institute, Troy, NY, United States
- Department of Biomedical Engineering, Center for Biotechnology and Interdisciplinary Studies, Rensselaer Polytechnic Institute, Troy, NY, United States
| | - Lianchun Wang
- Department of Molecular Pharmacology and Physiology, Morsani College of Medicine, University of South Florida Health, Tampa, FL, United States
| |
Collapse
|
41
|
Naticchia MR, Laubach LK, Honigfort DJ, Purcell SC, Godula K. Spatially controlled glycocalyx engineering for growth factor patterning in embryoid bodies. Biomater Sci 2021; 9:1652-1659. [PMID: 33409513 DOI: 10.1039/d0bm01434f] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Growth factor (GF) patterning in stem cell spheroids, such as embryoid bodies (EBs), has been sought to guide their differentiation and organization into functional 3D tissue models and organoids. Current approaches relying on exposure of EBs to gradients of GFs suffer from poor molecular transport in the spheroid microenvironment and from high cost of production and low stability of recombinant GFs. We have developed an alternative method for establishing GF gradients in EBs utilizing stem cell surface engineering with membrane-targeting heparan sulfate-glycomimetic co-receptors for GFs. We have capitalized on the ability of amphiphilic lipid-functionalized glycopolymers with affinity for FGF2 to assemble into nanoscale vesicles with tunable dimensions and extracellular matrix penetrance. Upon size-dependent diffusion into EBs, the vesicles fused with the plasma membranes of stem cells, giving rise to concentric gradients of cells with enhanced FGF2-binding. The extracellular matrix-assisted cell surface remodeling process described is the first example of spatially-targeted glycocalyx engineering in multicellular systems to control GF localization. The glycopolymer structure, vesicle dimensions, and remodeling conditions determine the level of FGF2 adhesion and gradient slope. The increased chemical and thermal stability of the synthetic glycomimetics and the tunability of their GF-binding profile, which is defined by their glycosylation and may be extended to other recombinant or endogenous morphogens beyond FGF2, further increase the versatility of this method.
Collapse
Affiliation(s)
- Matthew R Naticchia
- Department of Chemistry and Biochemistry and Glycobiology Research and Training Center, University of California San Diego, 9500 Gilman Drive, La Jolla, CA 92093-0358, USA.
| | - Logan K Laubach
- Department of Chemistry and Biochemistry and Glycobiology Research and Training Center, University of California San Diego, 9500 Gilman Drive, La Jolla, CA 92093-0358, USA.
| | - Daniel J Honigfort
- Department of Chemistry and Biochemistry and Glycobiology Research and Training Center, University of California San Diego, 9500 Gilman Drive, La Jolla, CA 92093-0358, USA.
| | - Sean C Purcell
- Department of Chemistry and Biochemistry and Glycobiology Research and Training Center, University of California San Diego, 9500 Gilman Drive, La Jolla, CA 92093-0358, USA.
| | - Kamil Godula
- Department of Chemistry and Biochemistry and Glycobiology Research and Training Center, University of California San Diego, 9500 Gilman Drive, La Jolla, CA 92093-0358, USA. and Glycobiology Research and Training Center, University of California San Diego, 9500 Gilman Drive, La Jolla, CA 92093-0358, USA
| |
Collapse
|
42
|
Syndecan-1 (CD138), Carcinomas and EMT. Int J Mol Sci 2021; 22:ijms22084227. [PMID: 33921767 PMCID: PMC8072910 DOI: 10.3390/ijms22084227] [Citation(s) in RCA: 38] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2021] [Accepted: 04/14/2021] [Indexed: 12/16/2022] Open
Abstract
Cell surface proteoglycans are known to be important regulators of many aspects of cell behavior. The principal family of transmembrane proteoglycans is the syndecans, of which there are four in mammals. Syndecan-1 is mostly restricted to epithelia, and bears heparan sulfate chains that are capable of interacting with a large array of polypeptides, including extracellular matrix components and potent mediators of proliferation, adhesion and migration. For this reason, it has been studied extensively with respect to carcinomas and tumor progression. Frequently, but not always, syndecan-1 levels decrease as tumor grade, stage and invasiveness and dedifferentiation increase. This parallels experiments that show depletion of syndecan-1 can be accompanied by loss of cadherin-mediated adhesion. However, in some tumors, levels of syndecan-1 increase, but the characterization of its distribution is relevant. There can be loss of membrane staining, but acquisition of cytoplasmic and/or nuclear staining that is abnormal. Moreover, the appearance of syndecan-1 in the tumor stroma, either associated with its cellular component or the collagenous matrix, is nearly always a sign of poor prognosis. Given its relevance to myeloma progression, syndecan-1-directed antibody—toxin conjugates are being tested in clinical and preclinical trials, and may have future relevance to some carcinomas.
Collapse
|
43
|
Wu J, Chopra P, Boons GJ, Zaia J. Influence of saccharide modifications on heparin lyase III substrate specificities. Glycobiology 2021; 32:208-217. [PMID: 33822051 DOI: 10.1093/glycob/cwab023] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2021] [Revised: 03/01/2021] [Accepted: 03/08/2021] [Indexed: 12/25/2022] Open
Abstract
A library of 23 synthetic heparan sulfate (HS) oligosaccharides, varying in chain length, types and positions of modifications, was used to analyze the substrate specificities of heparin lyase III enzymes from both Flavobacterium heparinum and Bacteroides eggerthii. The influence of specific modifications, including N-substitution, 2-O sulfation, 6-O sulfation and 3-O sulfation on lyase III digestion was examined systematically. It was demonstrated that lyase III from both sources can completely digest oligosaccharides lacking O-sulfates. 2-O Sulfation completely blocked cleavage at the corresponding site; 6-O and 3-O sulfation on glucosamine residues inhibited enzyme activity. We also observed that there are differences in substrate specificities between the two lyase III enzymes for highly sulfated oligosaccharides. These findings will facilitate obtaining and analyzing the functional sulfated domains from large HS polymer, to better understand their structure/function relationships in biological processes.
Collapse
Affiliation(s)
- Jiandong Wu
- Department of Biochemistry, Center for Biomedical Mass Spectrometry, Boston University School of Medicine, Boston, MA 02118, USA
| | - Pradeep Chopra
- Complex Carbohydrate Research Center, University of Georgia, Athens, Georgia 30602, USA
| | - Geert-Jan Boons
- Complex Carbohydrate Research Center, University of Georgia, Athens, Georgia 30602, USA.,Department of Chemistry, University of Georgia, Athens, Georgia 30602, USA.,Department of Chemical Biology and Drug Discovery, Utrecht Institute for Pharmaceutical Sciences and Bijvoet Center for Biomolecular Research, Utrecht University, Utrecht 3584 CG, The Netherlands
| | - Joseph Zaia
- Department of Biochemistry, Center for Biomedical Mass Spectrometry, Boston University School of Medicine, Boston, MA 02118, USA
| |
Collapse
|
44
|
Glycoengineering: scratching the surface. Biochem J 2021; 478:703-719. [DOI: 10.1042/bcj20200612] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2020] [Revised: 12/22/2020] [Accepted: 01/19/2021] [Indexed: 12/11/2022]
Abstract
At the surface of many cells is a compendium of glycoconjugates that form an interface between the cell and its surroundings; the glycocalyx. The glycocalyx serves several functions that have captivated the interest of many groups. Given its privileged residence, this meshwork of sugar-rich biomolecules is poised to transmit signals across the cellular membrane, facilitating communication with the extracellular matrix and mediating important signalling cascades. As a product of the glycan biosynthetic machinery, the glycocalyx can serve as a partial mirror that reports on the cell's glycosylation status. The glycocalyx can also serve as an information-rich barrier, withholding the entry of pathogens into the underlying plasma membrane through glycan-rich molecular messages. In this review, we provide an overview of the different approaches devised to engineer glycans at the cell surface, highlighting considerations of each, as well as illuminating the grand challenges that face the next era of ‘glyco-engineers’. While we have learned much from these techniques, it is evident that much is left to be unearthed.
Collapse
|
45
|
Gopal S, Arokiasamy S, Pataki C, Whiteford JR, Couchman JR. Syndecan receptors: pericellular regulators in development and inflammatory disease. Open Biol 2021; 11:200377. [PMID: 33561383 PMCID: PMC8061687 DOI: 10.1098/rsob.200377] [Citation(s) in RCA: 31] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2020] [Accepted: 01/19/2021] [Indexed: 02/06/2023] Open
Abstract
The syndecans are the major family of transmembrane proteoglycans, usually bearing multiple heparan sulfate chains. They are present on virtually all nucleated cells of vertebrates and are also present in invertebrates, indicative of a long evolutionary history. Genetic models in both vertebrates and invertebrates have shown that syndecans link to the actin cytoskeleton and can fine-tune cell adhesion, migration, junction formation, polarity and differentiation. Although often associated as co-receptors with other classes of receptors (e.g. integrins, growth factor and morphogen receptors), syndecans can nonetheless signal to the cytoplasm in discrete ways. Syndecan expression levels are upregulated in development, tissue repair and an array of human diseases, which has led to the increased appreciation that they may be important in pathogenesis not only as diagnostic or prognostic agents, but also as potential targets. Here, their functions in development and inflammatory diseases are summarized, including their potential roles as conduits for viral pathogen entry into cells.
Collapse
Affiliation(s)
- Sandeep Gopal
- Development and Stem Cells Program, Monash Biomedicine Discovery Institute and Department of Anatomy and Developmental Biology, Monash University, Melbourne, Victoria 3800, Australia
| | - Samantha Arokiasamy
- William Harvey Research Institute, Barts and the London School of Medicine and Dentistry, Queen Mary University of London, Charterhouse Square, London EC1M 6BQ, UK
| | - Csilla Pataki
- Biotech Research and Innovation Centre, University of Copenhagen, Biocentre 1.3.16, Ole Maaløes Vej 5, 2200 Copenhagen N, Denmark
| | - James R. Whiteford
- William Harvey Research Institute, Barts and the London School of Medicine and Dentistry, Queen Mary University of London, Charterhouse Square, London EC1M 6BQ, UK
| | - John R. Couchman
- Biotech Research and Innovation Centre, University of Copenhagen, Biocentre 1.3.16, Ole Maaløes Vej 5, 2200 Copenhagen N, Denmark
| |
Collapse
|
46
|
Yang Y, Ahn J, Raghunathan R, Kallakury BV, Davidson B, Kennedy ZB, Zaia J, Goldman R. Expression of the Extracellular Sulfatase SULF2 Affects Survival of Head and Neck Squamous Cell Carcinoma Patients. Front Oncol 2021; 10:582827. [PMID: 33585200 PMCID: PMC7873738 DOI: 10.3389/fonc.2020.582827] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2020] [Accepted: 11/24/2020] [Indexed: 12/21/2022] Open
Abstract
Sulfation of heparan sulfate proteoglycans (HSPG) regulates signaling of growth factor receptors via specific interactions with the sulfate groups. 6-O-Sulfation of HSPG is an impactful modification regulated by the activities of dedicated extracellular endosulfatases. Specifically, extracellular sulfatase Sulf-2 (SULF2) removes 6-O-sulfate from HS chains, modulates affinity of carrier HSPG to their ligands, and thereby influences activity of the downstream signaling pathway. In this study, we explored the effect of SULF2 expression on HSPG sulfation and its relationship to clinical outcomes of patients with head and neck squamous cell carcinoma (HNSCC). We found a significant overexpression of SULF2 in HNSCC tumor tissues which differs by tumor location and etiology. Expression of SULF2 mRNA in tumors associated with human papillomavirus (HPV) infection was two-fold lower than in tumors associated with a history of tobacco and alcohol consumption. High SULF2 mRNA expression is significantly correlated with poor progression-free interval and overall survival of patients (n = 499). Among all HS-related enzymes, SULF2 expression had the highest hazard ratio in overall survival after adjusting for clinical characteristics. SULF2 protein expression (n = 124), determined by immunohistochemical analysis, showed a similar trend. The content of 6-O-sulfated HSPG, measured by staining with the HS3A8 antibody, was higher in adjacent mucosa compared to tumor tissue but revealed no difference based on SULF2 staining. LC-MS/MS analysis showed low abundance of N-sulfation and O-sulfation in HS but no significant difference between SULF2-positive and SULF2-negative tumors. Levels of enzymes modifying 6-O-sulfation, measured by RT-qPCR in HNSCC tumor tissues, suggest that HSPG sulfation is carried out by the co-regulated activities of multiple genes. Imbalance of the HS modifying enzymes in HNSCC tumors modifies the overall sulfation pattern, but the alteration of 6-O-sulfate is likely non-uniform and occurs in specific domains of the HS chains. These findings demonstrate that SULF2 expression correlates with survival of HNSCC patients and could potentially serve as a prognostic factor or target of therapeutic interventions.
Collapse
Affiliation(s)
- Yang Yang
- Department of Biochemistry and Molecular & Cellular Biology, Georgetown University, Washington, DC, United States
| | - Jaeil Ahn
- Department of Biostatistics, Bioinformatics, and Biomathematics, Georgetown University, Washington, DC, United States
| | - Rekha Raghunathan
- Department of Biochemistry, Center for Biomedical Mass Spectrometry, Boston University School of Medicine, Boston, MA, United States
| | - Bhaskar V Kallakury
- Department of Pathology, Lombardi Comprehensive Cancer Center, Georgetown University, Washington, DC, United States
| | - Bruce Davidson
- Department of Otolaryngology-Head and Neck Surgery, Medstar Georgetown University Hospital, Washington, DC, United States
| | - Zuzana Brnakova Kennedy
- Department of Oncology and Clinical and Translational Glycoscience Research Center, Georgetown University, Washington, DC, United States
| | - Joseph Zaia
- Department of Biochemistry, Center for Biomedical Mass Spectrometry, Boston University School of Medicine, Boston, MA, United States
| | - Radoslav Goldman
- Department of Biochemistry and Molecular & Cellular Biology, Georgetown University, Washington, DC, United States.,Department of Oncology and Clinical and Translational Glycoscience Research Center, Georgetown University, Washington, DC, United States
| |
Collapse
|
47
|
Narimatsu Y, Büll C, Chen YH, Wandall HH, Yang Z, Clausen H. Genetic glycoengineering in mammalian cells. J Biol Chem 2021; 296:100448. [PMID: 33617880 PMCID: PMC8042171 DOI: 10.1016/j.jbc.2021.100448] [Citation(s) in RCA: 58] [Impact Index Per Article: 14.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2020] [Revised: 02/17/2021] [Accepted: 02/18/2021] [Indexed: 02/06/2023] Open
Abstract
Advances in nuclease-based gene-editing technologies have enabled precise, stable, and systematic genetic engineering of glycosylation capacities in mammalian cells, opening up a plethora of opportunities for studying the glycome and exploiting glycans in biomedicine. Glycoengineering using chemical, enzymatic, and genetic approaches has a long history, and precise gene editing provides a nearly unlimited playground for stable engineering of glycosylation in mammalian cells to explore and dissect the glycome and its many biological functions. Genetic engineering of glycosylation in cells also brings studies of the glycome to the single cell level and opens up wider use and integration of data in traditional omics workflows in cell biology. The last few years have seen new applications of glycoengineering in mammalian cells with perspectives for wider use in basic and applied glycosciences, and these have already led to discoveries of functions of glycans and improved designs of glycoprotein therapeutics. Here, we review the current state of the art of genetic glycoengineering in mammalian cells and highlight emerging opportunities.
Collapse
Affiliation(s)
- Yoshiki Narimatsu
- Department of Cellular and Molecular Medicine, Faculty of Health Sciences, Copenhagen Center for Glycomics, University of Copenhagen, Copenhagen, Denmark; GlycoDisplay ApS, Copenhagen, Denmark.
| | - Christian Büll
- Department of Cellular and Molecular Medicine, Faculty of Health Sciences, Copenhagen Center for Glycomics, University of Copenhagen, Copenhagen, Denmark.
| | | | - Hans H Wandall
- Department of Cellular and Molecular Medicine, Faculty of Health Sciences, Copenhagen Center for Glycomics, University of Copenhagen, Copenhagen, Denmark
| | - Zhang Yang
- Department of Cellular and Molecular Medicine, Faculty of Health Sciences, Copenhagen Center for Glycomics, University of Copenhagen, Copenhagen, Denmark; GlycoDisplay ApS, Copenhagen, Denmark
| | - Henrik Clausen
- Department of Cellular and Molecular Medicine, Faculty of Health Sciences, Copenhagen Center for Glycomics, University of Copenhagen, Copenhagen, Denmark.
| |
Collapse
|
48
|
Wang W, Han N, Xu Y, Zhao Y, Shi L, Filmus J, Li F. Assembling custom side chains on proteoglycans to interrogate their function in living cells. Nat Commun 2020; 11:5915. [PMID: 33219207 PMCID: PMC7679400 DOI: 10.1038/s41467-020-19765-y] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2020] [Accepted: 10/29/2020] [Indexed: 12/12/2022] Open
Abstract
Proteoglycans (PGs) are composed of a core protein and one or more chains of glycosaminoglycans (GAGs). The highly heterogeneous GAG chains play an irreplaceable role in the functions of PGs. However, the lack of an approach to control the exact structure of GAG chains conjugated to PGs tremendously hinders functional studies of PGs. Herein, by using glypican-3 as a model, we establish an aldehyde tag-based approach to assemble PGs with specific GAG chains on the surface of living cells. We show that the engineered glypican-3 can regulate Wnt and Hedgehog signaling like the wild type. Furthermore, we also present a method for studying the interaction of PGs with their target glycoproteins by combining the assembly of PGs carrying specific GAG chains with metabolic glycan labeling, and most importantly, we obtain evidence of GPC3 directly interacting with Frizzled. In conclusion, this study provides a very useful platform for structural and functional studies of PGs with specific GAG chains. Currently, it is not possible to generate proteoglycans displaying glycosaminoglycan chains with specific structures. Here the authors show that by using an aldehyde tag-based methodology it is possible to insert these specific chains onto proteoglycans expressed on the cell surface.
Collapse
Affiliation(s)
- Wenshuang Wang
- National Glycoengineering Research Center and Shandong Provincial Key Laboratory of Carbohydrate Chemistry and Glycobiology, Shandong University, Qingdao, China
| | - Naihan Han
- National Glycoengineering Research Center and Shandong Provincial Key Laboratory of Carbohydrate Chemistry and Glycobiology, Shandong University, Qingdao, China.,Shandong Police College, Jinan, China
| | - Yingying Xu
- National Glycoengineering Research Center and Shandong Provincial Key Laboratory of Carbohydrate Chemistry and Glycobiology, Shandong University, Qingdao, China
| | - Yunxue Zhao
- Department of Pharmacology, School of Basic Medical Sciences, Shandong University, Jinan, China
| | - Liran Shi
- National Glycoengineering Research Center and Shandong Provincial Key Laboratory of Carbohydrate Chemistry and Glycobiology, Shandong University, Qingdao, China
| | - Jorge Filmus
- Sunnybrook Health Science Centre, University of Toronto, Toronto, Ontario, Canada
| | - Fuchuan Li
- National Glycoengineering Research Center and Shandong Provincial Key Laboratory of Carbohydrate Chemistry and Glycobiology, Shandong University, Qingdao, China.
| |
Collapse
|
49
|
A sustainable and nondestructive method to high-throughput decolor Lycium barbarum L. polysaccharides by graphene-based nano-decoloration. Food Chem 2020; 338:127749. [PMID: 32805690 DOI: 10.1016/j.foodchem.2020.127749] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2020] [Revised: 06/12/2020] [Accepted: 07/31/2020] [Indexed: 01/19/2023]
Abstract
Lycium barbarum L. polysaccharides (LBPs) with outstanding biological activities are of increasing interest. Traditional purification approaches are time-consuming and often involve toxic solvents that destroy the functionality and structure of polysaccharides. Herein, we report a sustainable and nondestructive strategy for purifying LBPs using graphene-based nano-decoloration. The amination of graphene oxide (GO) enables the resulted aminated reduced GO (NH2-rGO) with abundant sp2-hybridized carbon domains, displaying high adsorption capacity toward pigments in crude polysaccharides. As such, within 5 min, NH2-rGO can highly effectively and fast to decolor LBPs, with a high decoloration ratio of 98.72% and a high polysaccharides retention ratio of 95.62%. Importantly, compared with traditional decoloration methods, NH2-rGO is nondestructive toward LBPs and has good reusability. Moreover, it exhibited widespread-use decoloration performance to decolor several common plant species. Overall, our proposed nano-decoloration approach is a general-purpose, sustainable, and nondestructive method to purify LBPs.
Collapse
|
50
|
Hussein RK, Mencio CP, Katagiri Y, Brake AM, Geller HM. Role of Chondroitin Sulfation Following Spinal Cord Injury. Front Cell Neurosci 2020; 14:208. [PMID: 32848612 PMCID: PMC7419623 DOI: 10.3389/fncel.2020.00208] [Citation(s) in RCA: 30] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2020] [Accepted: 06/12/2020] [Indexed: 12/15/2022] Open
Abstract
Traumatic spinal cord injury produces long-term neurological damage, and presents a significant public health problem with nearly 18,000 new cases per year in the U.S. The injury results in both acute and chronic changes in the spinal cord, ultimately resulting in the production of a glial scar, consisting of multiple cells including fibroblasts, macrophages, microglia, and reactive astrocytes. Within the scar, there is an accumulation of extracellular matrix (ECM) molecules—primarily tenascins and chondroitin sulfate proteoglycans (CSPGs)—which are considered to be inhibitory to axonal regeneration. In this review article, we discuss the role of CSPGs in the injury response, especially how sulfated glycosaminoglycan (GAG) chains act to inhibit plasticity and regeneration. This includes how sulfation of GAG chains influences their biological activity and interactions with potential receptors. Comprehending the role of CSPGs in the inhibitory properties of the glial scar provides critical knowledge in the much-needed production of new therapies.
Collapse
Affiliation(s)
- Rowan K Hussein
- Laboratory of Developmental Neurobiology, Cell and Developmental Biology Center, National Heart, Lung, and Blood Institute, US National Institutes of Health, Bethesda, MD, United States
| | - Caitlin P Mencio
- Laboratory of Developmental Neurobiology, Cell and Developmental Biology Center, National Heart, Lung, and Blood Institute, US National Institutes of Health, Bethesda, MD, United States
| | - Yasuhiro Katagiri
- Laboratory of Developmental Neurobiology, Cell and Developmental Biology Center, National Heart, Lung, and Blood Institute, US National Institutes of Health, Bethesda, MD, United States
| | - Alexis M Brake
- Laboratory of Developmental Neurobiology, Cell and Developmental Biology Center, National Heart, Lung, and Blood Institute, US National Institutes of Health, Bethesda, MD, United States
| | - Herbert M Geller
- Laboratory of Developmental Neurobiology, Cell and Developmental Biology Center, National Heart, Lung, and Blood Institute, US National Institutes of Health, Bethesda, MD, United States
| |
Collapse
|