1
|
Câmara AS, Mascher M. Understanding and Simulating the Dynamics of a Polymer-Like Chromatin. Methods Mol Biol 2025; 2873:283-302. [PMID: 39576608 DOI: 10.1007/978-1-0716-4228-3_16] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2024]
Abstract
Chromatin modeling enables the characterization of chromatin architecture at a resolution so far unachievable with experimental techniques. Polymer models fill our knowledge gap on a wide range of structures, from chromatin loops to nuclear compartments. Many physical properties already known for polymers can thus explain the dynamics of chromatin. With molecular simulations, it is possible to probe an ensemble of conformations, which attest to the variability observed in individual cells and the general behavior of a population of cells. In this review, we describe universal characteristics of polymers that chromatin carries. We introduce how these characteristics can be assessed with polymer simulations while also addressing specific aspects of chromatin and its environment. Finally, we give examples of plant chromatin models that, despite their paucity, augur well for the future of polymer simulations to plant chromosome biology.
Collapse
Affiliation(s)
- Amanda Souza Câmara
- Leibniz Institute of Plant Genetics and Crop Plant Research (IPK) Gatersleben, Seeland, Germany.
| | - Martin Mascher
- Leibniz Institute of Plant Genetics and Crop Plant Research (IPK) Gatersleben, Seeland, Germany
- German Centre for Integrative Biodiversity Research (iDiv) Halle-Jena-Leipzig, Leipzig, Germany
| |
Collapse
|
2
|
Chiang M, Brackley CA, Naughton C, Nozawa RS, Battaglia C, Marenduzzo D, Gilbert N. Genome-wide chromosome architecture prediction reveals biophysical principles underlying gene structure. CELL GENOMICS 2024; 4:100698. [PMID: 39591973 DOI: 10.1016/j.xgen.2024.100698] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/14/2023] [Revised: 09/04/2024] [Accepted: 10/28/2024] [Indexed: 11/28/2024]
Abstract
Classical observations suggest a connection between 3D gene structure and function, but testing this hypothesis has been challenging due to technical limitations. To explore this, we developed epigenetic highly predictive heteromorphic polymer (e-HiP-HoP), a model based on genome organization principles to predict the 3D structure of human chromatin. We defined a new 3D structural unit, a "topos," which represents the regulatory landscape around gene promoters. Using GM12878 cells, we predicted the 3D structure of over 10,000 active gene topoi and stored them in the 3DGene database. Data mining revealed folding motifs and their link to Gene Ontology features. We computed a structural diversity score and identified influential nodes-chromatin sites that frequently interact with gene promoters, acting as key regulators. These nodes drive structural diversity and are tied to gene function. e-HiP-HoP provides a framework for modeling high-resolution chromatin structure and a mechanistic basis for chromatin contact networks that link 3D gene structure with function.
Collapse
Affiliation(s)
- Michael Chiang
- SUPA, School of Physics and Astronomy, University of Edinburgh, Peter Guthrie Tait Road, Edinburgh EH9 3FD, UK
| | - Chris A Brackley
- SUPA, School of Physics and Astronomy, University of Edinburgh, Peter Guthrie Tait Road, Edinburgh EH9 3FD, UK
| | - Catherine Naughton
- MRC Human Genetics Unit, Institute of Genetics and Cancer, University of Edinburgh, Crewe Road South, Edinburgh EH4 2XU, UK
| | - Ryu-Suke Nozawa
- MRC Human Genetics Unit, Institute of Genetics and Cancer, University of Edinburgh, Crewe Road South, Edinburgh EH4 2XU, UK; Division of Experimental Pathology, Cancer Institute of the Japanese Foundation for Cancer Research (JFCR), Tokyo, Japan
| | - Cleis Battaglia
- SUPA, School of Physics and Astronomy, University of Edinburgh, Peter Guthrie Tait Road, Edinburgh EH9 3FD, UK
| | - Davide Marenduzzo
- SUPA, School of Physics and Astronomy, University of Edinburgh, Peter Guthrie Tait Road, Edinburgh EH9 3FD, UK.
| | - Nick Gilbert
- MRC Human Genetics Unit, Institute of Genetics and Cancer, University of Edinburgh, Crewe Road South, Edinburgh EH4 2XU, UK.
| |
Collapse
|
3
|
Gupta R, Goswami Y, Yuan L, Roy B, Pereiro E, Shivashankar GV. Correlative light and soft X-ray tomography of in situ mesoscale heterochromatin structure in intact cells. Sci Rep 2024; 14:27706. [PMID: 39532928 PMCID: PMC11557596 DOI: 10.1038/s41598-024-77361-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2024] [Accepted: 10/22/2024] [Indexed: 11/16/2024] Open
Abstract
Heterochromatin organization is critical to many genome-related programs including transcriptional silencing and DNA repair. While super-resolution imaging, electron microscopy, and multiomics methods have provided indirect insights into the heterochromatin organization, a direct measurement of mesoscale heterochromatin ultrastructure is still missing. We use a combination of correlative light microscopy and cryo-soft X-ray tomography (CLXT) to analyze heterochromatin organization in the intact hydrated state of human mammary fibroblast cells. Our analysis reveals that the heterochromatin ultra-structure has a typical mean domain size of approximately 80 nm and a mean separation of approximately 120 nm between domains. Functional perturbations yield further insights into the molecular density and alterations in the mesoscale organization of the heterochromatin regions. Furthermore, our polymer simulations provide a mechanistic basis for the experimentally observed size and separation distributions of the mesoscale chromatin domains. Collectively, our results provide direct, label-free observation of heterochromatin organization in the intact hydrated state of cells.
Collapse
Affiliation(s)
- Rajshikhar Gupta
- Laboratory of Nanoscale Biology, Paul Scherrer Institut, Villigen, Aargau, Switzerland
- Department of Health Sciences and Technology, ETH Zürich, Zürich, Switzerland
| | - Yagyik Goswami
- Laboratory of Nanoscale Biology, Paul Scherrer Institut, Villigen, Aargau, Switzerland
| | - Luezhen Yuan
- Laboratory of Nanoscale Biology, Paul Scherrer Institut, Villigen, Aargau, Switzerland
- Department of Health Sciences and Technology, ETH Zürich, Zürich, Switzerland
| | - Bibhas Roy
- Department of Biological Sciences, BITS Pilani Hyderabad Campus, Secunderabad, India
| | - Eva Pereiro
- ALBA Synchrotron Light Source, Cerdanyola del Vallés, Barcelona, Spain
| | - G V Shivashankar
- Laboratory of Nanoscale Biology, Paul Scherrer Institut, Villigen, Aargau, Switzerland.
- Department of Health Sciences and Technology, ETH Zürich, Zürich, Switzerland.
| |
Collapse
|
4
|
Conte M, Abraham A, Esposito A, Yang L, Gibcus JH, Parsi KM, Vercellone F, Fontana A, Di Pierno F, Dekker J, Nicodemi M. Polymer Physics Models Reveal Structural Folding Features of Single-Molecule Gene Chromatin Conformations. Int J Mol Sci 2024; 25:10215. [PMID: 39337699 PMCID: PMC11432541 DOI: 10.3390/ijms251810215] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2024] [Revised: 09/17/2024] [Accepted: 09/22/2024] [Indexed: 09/30/2024] Open
Abstract
Here, we employ polymer physics models of chromatin to investigate the 3D folding of a 2 Mb wide genomic region encompassing the human LTN1 gene, a crucial DNA locus involved in key cellular functions. Through extensive Molecular Dynamics simulations, we reconstruct in silico the ensemble of single-molecule LTN1 3D structures, which we benchmark against recent in situ Hi-C 2.0 data. The model-derived single molecules are then used to predict structural folding features at the single-cell level, providing testable predictions for super-resolution microscopy experiments.
Collapse
Affiliation(s)
- Mattia Conte
- Dipartimento di Fisica, Università di Napoli Federico II, and INFN Napoli, Complesso Universitario di Monte Sant’Angelo, 80126 Naples, Italy
| | - Alex Abraham
- Dipartimento di Fisica, Università di Napoli Federico II, and INFN Napoli, Complesso Universitario di Monte Sant’Angelo, 80126 Naples, Italy
| | - Andrea Esposito
- Dipartimento di Fisica, Università di Napoli Federico II, and INFN Napoli, Complesso Universitario di Monte Sant’Angelo, 80126 Naples, Italy
| | - Liyan Yang
- Department of Systems Biology, University of Massachusetts Chan Medical School, Worcester, MA 01605, USA
| | - Johan H. Gibcus
- Department of Systems Biology, University of Massachusetts Chan Medical School, Worcester, MA 01605, USA
| | - Krishna M. Parsi
- Diabetes Center of Excellence and Program in Molecular Medicine, University of Massachusetts Chan Medical School, Worcester, MA 01655, USA
| | - Francesca Vercellone
- DIETI, Università di Napoli Federico II, Via Claudio 21, 80125 Naples, Italy
- INFN Napoli, Complesso Universitario di Monte Sant’Angelo, 80126 Naples, Italy
| | - Andrea Fontana
- Dipartimento di Fisica, Università di Napoli Federico II, and INFN Napoli, Complesso Universitario di Monte Sant’Angelo, 80126 Naples, Italy
| | - Florinda Di Pierno
- DIETI, Università di Napoli Federico II, Via Claudio 21, 80125 Naples, Italy
- INFN Napoli, Complesso Universitario di Monte Sant’Angelo, 80126 Naples, Italy
| | - Job Dekker
- Department of Systems Biology, University of Massachusetts Chan Medical School, Worcester, MA 01605, USA
- Howard Hughes Medical Institute, Chevy Chase, MD 20815, USA
| | - Mario Nicodemi
- Dipartimento di Fisica, Università di Napoli Federico II, and INFN Napoli, Complesso Universitario di Monte Sant’Angelo, 80126 Naples, Italy
| |
Collapse
|
5
|
Tortora MMC, Fudenberg G. The physical chemistry of interphase loop extrusion. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.08.23.609419. [PMID: 39229088 PMCID: PMC11370536 DOI: 10.1101/2024.08.23.609419] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/05/2024]
Abstract
Loop extrusion constitutes a universal mechanism of genome organization, whereby structural maintenance of chromosomes (SMC) protein complexes load onto the chromatin fiber and generate DNA loops of increasingly-larger sizes until their eventual release. In mammalian interphase cells, loop extrusion is mediated by the cohesin complex, which is dynamically regulated by the interchange of multiple accessory proteins. Although these regulators bind the core cohesin complex only transiently, their disruption can dramatically alter cohesin dynamics, gene expression, chromosome morphology and contact patterns. Still, a theory of how cohesin regulators and their molecular interplay with the core complex modulate genome folding remains at large. Here we derive a model of cohesin loop extrusion from first principles, based on in vivo measurements of the abundance and dynamics of cohesin regulators. We systematically evaluate potential chemical reaction networks that describe the association of cohesin with its regulators and with the chromatin fiber. Remarkably, experimental observations are consistent with only a single biochemical reaction cycle, which results in a unique minimal model that may be fully parameterized by quantitative protein measurements. We demonstrate how distinct roles for cohesin regulators emerge simply from the structure of the reaction network, and how their dynamic exchange can regulate loop extrusion kinetics over time-scales that far exceed their own chromatin residence times. By embedding our cohesin biochemical reaction network within biophysical chromatin simulations, we evidence how variations in regulatory protein abundance can alter chromatin architecture across multiple length- and time-scales. Predictions from our model are corroborated by biophysical and biochemical assays, optical microscopy observations, and Hi-C conformation capture techniques. More broadly, our theoretical and numerical framework bridges the gap between in vitro observations of extrusion motor dynamics at the molecular scale and their structural consequences at the genome-wide level.
Collapse
Affiliation(s)
- Maxime M C Tortora
- Department of Quantitative and Computational Biology, University of Southern California, Los Angeles, USA
| | - Geoffrey Fudenberg
- Department of Quantitative and Computational Biology, University of Southern California, Los Angeles, USA
| |
Collapse
|
6
|
Sahoo S, Kadam S, Padinhateeri R, Kumar PBS. Nonequilibrium switching of segmental states can influence compaction of chromatin. SOFT MATTER 2024; 20:4621-4632. [PMID: 38819321 DOI: 10.1039/d4sm00274a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/01/2024]
Abstract
Knowledge about the dynamic nature of chromatin organization is essential to understand the regulation of processes like DNA transcription and repair. The existing models of chromatin assume that protein organization and chemical states along chromatin are static and the 3D organization is purely a result of protein-mediated intra-chromatin interactions. Here we present a new hypothesis that certain nonequilibrium processes, such as switching of chemical and physical states due to nucleosome assembly/disassembly or gene repression/activation, can also simultaneously influence chromatin configurations. To understand the implications of this inherent nonequilibrium switching, we present a block copolymer model of chromatin, with switching of its segmental states between two states, mimicking active/repressed or protein unbound/bound states. We show that competition between switching timescale Tt, polymer relaxation timescale τp, and segmental relaxation timescale τs can lead to non-trivial changes in chromatin organization, leading to changes in local compaction and contact probabilities. As a function of the switching timescale, the radius of gyration of chromatin shows a non-monotonic behavior with a prominent minimum when Tt ≈ τp and a maximum when Tt ≈ τs. We find that polymers with a small segment length exhibit a more compact structure than those with larger segment lengths. We also find that the switching can lead to higher contact probability and better mixing of far-away segments. Our study also shows that the nature of the distribution of chromatin clusters varies widely as we change the switching rate.
Collapse
Affiliation(s)
- Soudamini Sahoo
- Department of Physics, Indian Institute of Technology Palakkad, Palakkad, 678623, India
- Department of Physics and Astronomy, National Institute of Technology Rourkela, Rourkela, 769008, India
| | - Sangram Kadam
- Department of Biosciences and Bioengineering, Indian Institute of Technology Bombay, Powai, Mumbai, 400076, India.
| | - Ranjith Padinhateeri
- Department of Biosciences and Bioengineering, Indian Institute of Technology Bombay, Powai, Mumbai, 400076, India.
| | - P B Sunil Kumar
- Department of Physics, Indian Institute of Technology Palakkad, Palakkad, 678623, India
- Department of Physics, Indian Institute of Technology Madras, Chennai, 600036, India
- Center for Soft and Biological Matter, Indian Institute of Technology Madras, Chennai, 600036, India
| |
Collapse
|
7
|
Sacristan C, Samejima K, Ruiz LA, Deb M, Lambers MLA, Buckle A, Brackley CA, Robertson D, Hori T, Webb S, Kiewisz R, Bepler T, van Kwawegen E, Risteski P, Vukušić K, Tolić IM, Müller-Reichert T, Fukagawa T, Gilbert N, Marenduzzo D, Earnshaw WC, Kops GJPL. Vertebrate centromeres in mitosis are functionally bipartite structures stabilized by cohesin. Cell 2024; 187:3006-3023.e26. [PMID: 38744280 PMCID: PMC11164432 DOI: 10.1016/j.cell.2024.04.014] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2023] [Revised: 01/30/2024] [Accepted: 04/14/2024] [Indexed: 05/16/2024]
Abstract
Centromeres are scaffolds for the assembly of kinetochores that ensure chromosome segregation during cell division. How vertebrate centromeres obtain a three-dimensional structure to accomplish their primary function is unclear. Using super-resolution imaging, capture-C, and polymer modeling, we show that vertebrate centromeres are partitioned by condensins into two subdomains during mitosis. The bipartite structure is found in human, mouse, and chicken cells and is therefore a fundamental feature of vertebrate centromeres. Super-resolution imaging and electron tomography reveal that bipartite centromeres assemble bipartite kinetochores, with each subdomain binding a distinct microtubule bundle. Cohesin links the centromere subdomains, limiting their separation in response to spindle forces and avoiding merotelic kinetochore-spindle attachments. Lagging chromosomes during cancer cell divisions frequently have merotelic attachments in which the centromere subdomains are separated and bioriented. Our work reveals a fundamental aspect of vertebrate centromere biology with implications for understanding the mechanisms that guarantee faithful chromosome segregation.
Collapse
Affiliation(s)
- Carlos Sacristan
- Oncode Institute, Hubrecht Institute, Royal Netherlands Academy of Arts and Sciences (KNAW), and University Medical Center Utrecht, Utrecht, the Netherlands.
| | - Kumiko Samejima
- Wellcome Centre for Cell Biology, Institute of Cell Biology, University of Edinburgh, Edinburgh, UK.
| | - Lorena Andrade Ruiz
- Oncode Institute, Hubrecht Institute, Royal Netherlands Academy of Arts and Sciences (KNAW), and University Medical Center Utrecht, Utrecht, the Netherlands
| | - Moonmoon Deb
- Wellcome Centre for Cell Biology, Institute of Cell Biology, University of Edinburgh, Edinburgh, UK
| | - Maaike L A Lambers
- Oncode Institute, Hubrecht Institute, Royal Netherlands Academy of Arts and Sciences (KNAW), and University Medical Center Utrecht, Utrecht, the Netherlands
| | - Adam Buckle
- MRC Human Genetics Unit, Institute of Genetics & Molecular Medicine, University of Edinburgh, Edinburgh, UK
| | - Chris A Brackley
- SUPA School of Physics and Astronomy, University of Edinburgh, Edinburgh, UK
| | - Daniel Robertson
- Wellcome Centre for Cell Biology, Institute of Cell Biology, University of Edinburgh, Edinburgh, UK
| | - Tetsuya Hori
- Laboratory of Chromosome Biology, Graduate School of Frontier Biosciences, Osaka University, Suita, Osaka, Japan
| | - Shaun Webb
- Wellcome Centre for Cell Biology, Institute of Cell Biology, University of Edinburgh, Edinburgh, UK
| | - Robert Kiewisz
- Simons Machine Learning Center, New York Structural Biology Center, New York, NY 10027, USA; Biocomputing Unit, Centro Nacional de Biotecnologia (CNB-CSIC), Darwin, 3, Campus Universidad Autonoma, Cantoblanco, Madrid 28049, Spain
| | - Tristan Bepler
- Simons Machine Learning Center, New York Structural Biology Center, New York, NY 10027, USA
| | - Eloïse van Kwawegen
- Oncode Institute, Hubrecht Institute, Royal Netherlands Academy of Arts and Sciences (KNAW), and University Medical Center Utrecht, Utrecht, the Netherlands
| | | | | | | | - Thomas Müller-Reichert
- Experimental Center, Faculty of Medicine Carl Gustav Carus, Technische Universität Dresden, Dresden, Germany
| | - Tatsuo Fukagawa
- Laboratory of Chromosome Biology, Graduate School of Frontier Biosciences, Osaka University, Suita, Osaka, Japan
| | - Nick Gilbert
- MRC Human Genetics Unit, Institute of Genetics & Molecular Medicine, University of Edinburgh, Edinburgh, UK
| | - Davide Marenduzzo
- SUPA School of Physics and Astronomy, University of Edinburgh, Edinburgh, UK
| | - William C Earnshaw
- Wellcome Centre for Cell Biology, Institute of Cell Biology, University of Edinburgh, Edinburgh, UK.
| | - Geert J P L Kops
- Oncode Institute, Hubrecht Institute, Royal Netherlands Academy of Arts and Sciences (KNAW), and University Medical Center Utrecht, Utrecht, the Netherlands.
| |
Collapse
|
8
|
Bonato A, Chiang M, Corbett D, Kitaev S, Marenduzzo D, Morozov A, Orlandini E. Combinatorics and topological weights of chromatin loop networks. Phys Rev E 2024; 109:064405. [PMID: 39020930 DOI: 10.1103/physreve.109.064405] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2023] [Accepted: 05/15/2024] [Indexed: 07/20/2024]
Abstract
Polymer physics models suggest that chromatin spontaneously folds into loop networks with transcription units (TUs), such as enhancers and promoters, as anchors. Here we use combinatoric arguments to enumerate the emergent chromatin loop networks, both in the case where TUs are labeled and where they are unlabeled. We then combine these mathematical results with those of computer simulations aimed at finding the inter-TU energy required to form a target loop network. We show that different topologies are vastly different in terms of both their combinatorial weight and energy of formation. We explain the latter result qualitatively by computing the topological weight of a given network-i.e., its partition function in statistical mechanics language-in the approximation where excluded volume interactions are neglected. Our results show that networks featuring local loops are statistically more likely with respect to networks including more nonlocal contacts. We suggest our classification of loop networks, together with our estimate of the combinatorial and topological weight of each network, will be relevant to catalog three-dimensional structures of chromatin fibers around eukaryotic genes, and to estimate their relative frequency in both simulations and experiments.
Collapse
|
9
|
Chiariello AM, Abraham A, Bianco S, Esposito A, Fontana A, Vercellone F, Conte M, Nicodemi M. Multiscale modelling of chromatin 4D organization in SARS-CoV-2 infected cells. Nat Commun 2024; 15:4014. [PMID: 38740770 PMCID: PMC11091192 DOI: 10.1038/s41467-024-48370-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2023] [Accepted: 04/29/2024] [Indexed: 05/16/2024] Open
Abstract
SARS-CoV-2 can re-structure chromatin organization and alter the epigenomic landscape of the host genome, but the mechanisms that produce such changes remain unclear. Here, we use polymer physics to investigate how the chromatin of the host genome is re-organized upon infection with SARS-CoV-2. We show that re-structuring of A/B compartments can be explained by a re-modulation of intra-compartment homo-typic affinities, which leads to the weakening of A-A interactions and the enhancement of A-B mixing. At the TAD level, re-arrangements are physically described by a reduction in the loop extrusion activity coupled with an alteration of chromatin phase-separation properties, resulting in more intermingling between different TADs and a spread in space of the TADs themselves. In addition, the architecture of loci relevant to the antiviral interferon response, such as DDX58 or IFIT, becomes more variable within the 3D single-molecule population of the infected model, suggesting that viral infection leads to a loss of chromatin structural specificity. Analysing the time trajectories of pairwise gene-enhancer and higher-order contacts reveals that this variability derives from increased fluctuations in the chromatin dynamics of infected cells. This suggests that SARS-CoV-2 alters gene regulation by impacting the stability of the contact network in time.
Collapse
Affiliation(s)
- Andrea M Chiariello
- Dipartimento di Fisica, Università degli Studi di Napoli Federico II, and INFN Napoli, Complesso Universitario di Monte Sant'Angelo, 80126, Naples, Italy.
| | - Alex Abraham
- Dipartimento di Fisica, Università degli Studi di Napoli Federico II, and INFN Napoli, Complesso Universitario di Monte Sant'Angelo, 80126, Naples, Italy
| | - Simona Bianco
- Dipartimento di Fisica, Università degli Studi di Napoli Federico II, and INFN Napoli, Complesso Universitario di Monte Sant'Angelo, 80126, Naples, Italy
| | - Andrea Esposito
- Dipartimento di Fisica, Università degli Studi di Napoli Federico II, and INFN Napoli, Complesso Universitario di Monte Sant'Angelo, 80126, Naples, Italy
| | - Andrea Fontana
- Dipartimento di Fisica, Università degli Studi di Napoli Federico II, and INFN Napoli, Complesso Universitario di Monte Sant'Angelo, 80126, Naples, Italy
| | - Francesca Vercellone
- Dipartimento di Ingegneria Elettrica e delle Tecnologie dell'Informazione - DIETI, Università degli Studi di Napoli Federico II, and INFN Napoli, Via Claudio 21, 80125, Naples, Italy
| | - Mattia Conte
- Dipartimento di Fisica, Università degli Studi di Napoli Federico II, and INFN Napoli, Complesso Universitario di Monte Sant'Angelo, 80126, Naples, Italy
| | - Mario Nicodemi
- Dipartimento di Fisica, Università degli Studi di Napoli Federico II, and INFN Napoli, Complesso Universitario di Monte Sant'Angelo, 80126, Naples, Italy.
- Berlin Institute for Medical Systems Biology at the Max Delbruck Center for Molecular Medicine in the Helmholtz Association, Berlin, Germany.
| |
Collapse
|
10
|
Zhang Y, Boninsegna L, Yang M, Misteli T, Alber F, Ma J. Computational methods for analysing multiscale 3D genome organization. Nat Rev Genet 2024; 25:123-141. [PMID: 37673975 PMCID: PMC11127719 DOI: 10.1038/s41576-023-00638-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/12/2023] [Indexed: 09/08/2023]
Abstract
Recent progress in whole-genome mapping and imaging technologies has enabled the characterization of the spatial organization and folding of the genome in the nucleus. In parallel, advanced computational methods have been developed to leverage these mapping data to reveal multiscale three-dimensional (3D) genome features and to provide a more complete view of genome structure and its connections to genome functions such as transcription. Here, we discuss how recently developed computational tools, including machine-learning-based methods and integrative structure-modelling frameworks, have led to a systematic, multiscale delineation of the connections among different scales of 3D genome organization, genomic and epigenomic features, functional nuclear components and genome function. However, approaches that more comprehensively integrate a wide variety of genomic and imaging datasets are still needed to uncover the functional role of 3D genome structure in defining cellular phenotypes in health and disease.
Collapse
Affiliation(s)
- Yang Zhang
- Computational Biology Department, School of Computer Science, Carnegie Mellon University, Pittsburgh, PA, USA
| | - Lorenzo Boninsegna
- Department of Microbiology, Immunology and Molecular Genetics and Institute for Quantitative and Computational Biosciences, University of California Los Angeles, Los Angeles, CA, USA
| | - Muyu Yang
- Computational Biology Department, School of Computer Science, Carnegie Mellon University, Pittsburgh, PA, USA
| | - Tom Misteli
- Center for Cancer Research, National Cancer Institute, Bethesda, MD, USA.
| | - Frank Alber
- Department of Microbiology, Immunology and Molecular Genetics and Institute for Quantitative and Computational Biosciences, University of California Los Angeles, Los Angeles, CA, USA.
| | - Jian Ma
- Computational Biology Department, School of Computer Science, Carnegie Mellon University, Pittsburgh, PA, USA.
| |
Collapse
|
11
|
Feng C, Wang J, Chu X. Large-scale data-driven and physics-based models offer insights into the relationships among the structures, dynamics, and functions of chromosomes. J Mol Cell Biol 2023; 15:mjad042. [PMID: 37365687 PMCID: PMC10782906 DOI: 10.1093/jmcb/mjad042] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2023] [Revised: 03/22/2023] [Accepted: 06/25/2023] [Indexed: 06/28/2023] Open
Abstract
The organized three-dimensional chromosome architecture in the cell nucleus provides scaffolding for precise regulation of gene expression. When the cell changes its identity in the cell-fate decision-making process, extensive rearrangements of chromosome structures occur accompanied by large-scale adaptations of gene expression, underscoring the importance of chromosome dynamics in shaping genome function. Over the last two decades, rapid development of experimental methods has provided unprecedented data to characterize the hierarchical structures and dynamic properties of chromosomes. In parallel, these enormous data offer valuable opportunities for developing quantitative computational models. Here, we review a variety of large-scale polymer models developed to investigate the structures and dynamics of chromosomes. Different from the underlying modeling strategies, these approaches can be classified into data-driven ('top-down') and physics-based ('bottom-up') categories. We discuss their contributions to offering valuable insights into the relationships among the structures, dynamics, and functions of chromosomes and propose the perspective of developing data integration approaches from different experimental technologies and multidisciplinary theoretical/simulation methods combined with different modeling strategies.
Collapse
Affiliation(s)
- Cibo Feng
- Advanced Materials Thrust, Function Hub, The Hong Kong University of Science and Technology (Guangzhou), Guangzhou 511400, China
- Green e Materials Laboratory, The Hong Kong University of Science and Technology (Guangzhou), Guangzhou 511400, China
- College of Physics, Jilin University, Changchun 130012, China
| | - Jin Wang
- Department of Chemistry and Physics, The State University of New York at Stony Brook, Stony Brook, NY 11794, USA
| | - Xiakun Chu
- Advanced Materials Thrust, Function Hub, The Hong Kong University of Science and Technology (Guangzhou), Guangzhou 511400, China
- Green e Materials Laboratory, The Hong Kong University of Science and Technology (Guangzhou), Guangzhou 511400, China
- Division of Life Science, The Hong Kong University of Science and Technology, Hong Kong SAR 999077, China
- Guangzhou Municipal Key Laboratory of Materials Informatics, The Hong Kong University of Science and Technology (Guangzhou), Guangzhou 511400, China
| |
Collapse
|
12
|
Chu X, Wang J. Quantifying the large-scale chromosome structural dynamics during the mitosis-to-G1 phase transition of cell cycle. Open Biol 2023; 13:230175. [PMID: 37907089 PMCID: PMC10618054 DOI: 10.1098/rsob.230175] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2023] [Accepted: 09/27/2023] [Indexed: 11/02/2023] Open
Abstract
Cell cycle is known to be regulated by the underlying gene network. Chromosomes, which serve as the scaffold for gene expressions, undergo significant structural reorganizations during mitosis. Understanding the mechanism of the cell cycle from the chromosome structural perspective remains a grand challenge. In this study, we applied an integrated theoretical approach to investigate large-scale chromosome structural dynamics during the mitosis-to-G1 phase transition. We observed that the chromosome structural expansion and adaptation of the structural asphericity do not occur synchronously and attributed this behaviour to the unique unloading sequence of the two types of condensins. Furthermore, we observed that the coherent motions between the chromosomal loci are primarily enhanced within the topologically associating domains (TADs) as cells progress to the G1 phase, suggesting that TADs can be considered as both structural and dynamical units for organizing the three-dimensional chromosome. Our analysis also reveals that the quantified pathways of chromosome structural reorganization during the mitosis-to-G1 phase transition exhibit high stochasticity at the single-cell level and show nonlinear behaviours in changing TADs and contacts formed at the long-range regions. Our findings offer valuable insights into large-scale chromosome structural dynamics after mitosis.
Collapse
Affiliation(s)
- Xiakun Chu
- Department of Chemistry, State University of New York at Stony Brook, Stony Brook, NY 11794, USA
| | - Jin Wang
- Department of Chemistry, State University of New York at Stony Brook, Stony Brook, NY 11794, USA
- Department of Physics and Astronomy, State University of New York at Stony Brook, Stony Brook, NY 11794, USA
| |
Collapse
|
13
|
Forte G, Buckle A, Boyle S, Marenduzzo D, Gilbert N, Brackley CA. Transcription modulates chromatin dynamics and locus configuration sampling. Nat Struct Mol Biol 2023; 30:1275-1285. [PMID: 37537334 PMCID: PMC10497412 DOI: 10.1038/s41594-023-01059-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2021] [Accepted: 07/07/2023] [Indexed: 08/05/2023]
Abstract
In living cells, the 3D structure of gene loci is dynamic, but this is not revealed by 3C and FISH experiments in fixed samples, leaving a notable gap in our understanding. To overcome these limitations, we applied the highly predictive heteromorphic polymer (HiP-HoP) model to determine chromatin fiber mobility at the Pax6 locus in three mouse cell lines with different transcription states. While transcriptional activity minimally affects movement of 40-kbp regions, we observed that motion of smaller 1-kbp regions depends strongly on local disruption to chromatin fiber structure marked by H3K27 acetylation. This also substantially influenced locus configuration dynamics by modulating protein-mediated promoter-enhancer loops. Importantly, these simulations indicate that chromatin dynamics are sufficiently fast to sample all possible locus conformations within minutes, generating wide dynamic variability within single cells. This combination of simulation and experimental validation provides insight into how transcriptional activity influences chromatin structure and gene dynamics.
Collapse
Affiliation(s)
- Giada Forte
- SUPA, School of Physics and Astronomy, University of Edinburgh, Edinburgh, UK
| | - Adam Buckle
- MRC Human Genetics Unit, Institute of Genetics & Cancer, University of Edinburgh, Western General Hospital, Edinburgh, UK
| | - Shelagh Boyle
- MRC Human Genetics Unit, Institute of Genetics & Cancer, University of Edinburgh, Western General Hospital, Edinburgh, UK
| | - Davide Marenduzzo
- SUPA, School of Physics and Astronomy, University of Edinburgh, Edinburgh, UK
| | - Nick Gilbert
- MRC Human Genetics Unit, Institute of Genetics & Cancer, University of Edinburgh, Western General Hospital, Edinburgh, UK.
| | - Chris A Brackley
- SUPA, School of Physics and Astronomy, University of Edinburgh, Edinburgh, UK.
| |
Collapse
|
14
|
Senapati S, Irshad IU, Sharma AK, Kumar H. Fundamental insights into the correlation between chromosome configuration and transcription. Phys Biol 2023; 20:051002. [PMID: 37467757 DOI: 10.1088/1478-3975/ace8e5] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2023] [Accepted: 07/19/2023] [Indexed: 07/21/2023]
Abstract
Eukaryotic chromosomes exhibit a hierarchical organization that spans a spectrum of length scales, ranging from sub-regions known as loops, which typically comprise hundreds of base pairs, to much larger chromosome territories that can encompass a few mega base pairs. Chromosome conformation capture experiments that involve high-throughput sequencing methods combined with microscopy techniques have enabled a new understanding of inter- and intra-chromosomal interactions with unprecedented details. This information also provides mechanistic insights on the relationship between genome architecture and gene expression. In this article, we review the recent findings on three-dimensional interactions among chromosomes at the compartment, topologically associating domain, and loop levels and the impact of these interactions on the transcription process. We also discuss current understanding of various biophysical processes involved in multi-layer structural organization of chromosomes. Then, we discuss the relationships between gene expression and genome structure from perturbative genome-wide association studies. Furthermore, for a better understanding of how chromosome architecture and function are linked, we emphasize the role of epigenetic modifications in the regulation of gene expression. Such an understanding of the relationship between genome architecture and gene expression can provide a new perspective on the range of potential future discoveries and therapeutic research.
Collapse
Affiliation(s)
- Swayamshree Senapati
- School of Basic Sciences, Indian Institute of Technology, Bhubaneswar, Argul, Odisha 752050, India
| | - Inayat Ullah Irshad
- Department of Physics, Indian Institute of Technology, Jammu, Jammu 181221, India
| | - Ajeet K Sharma
- Department of Physics, Indian Institute of Technology, Jammu, Jammu 181221, India
- Department of Biosciences and Bioengineering, Indian Institute of Technology Jammu, Jammu 181221, India
| | - Hemant Kumar
- School of Basic Sciences, Indian Institute of Technology, Bhubaneswar, Argul, Odisha 752050, India
| |
Collapse
|
15
|
Chiariello AM, Abraham A, Bianco S, Esposito A, Vercellone F, Conte M, Fontana A, Nicodemi M. Multiscale modelling of chromatin 4D organization in SARS-CoV-2 infected cells. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.07.27.550709. [PMID: 37546924 PMCID: PMC10402158 DOI: 10.1101/2023.07.27.550709] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/08/2023]
Abstract
SARS-CoV-2 is able to re-structure chromatin organization and alters the epigenomic landscape of the host genome, though the mechanisms that produce such changes are still poorly understood. Here, we investigate with polymer physics chromatin re-organization of the host genome, in space and time upon SARS-CoV-2 viral infection. We show that re-structuring of A/B compartments is well explained by a re-modulation of intra-compartment homotypic affinities, which leads to the weakening of A-A interactions and enhances A-B mixing. At TAD level, re-arrangements are physically described by a general reduction of the loop extrusion activity coupled with an alteration of chromatin phase-separation properties, resulting in more intermingling between different TADs and spread in space of TADs themselves. In addition, the architecture of loci relevant to the antiviral interferon (IFN) response, such as DDX58 or IFIT, results more variable within the 3D single-molecule population of the infected model, suggesting that viral infection leads to a loss of chromatin structural specificity. Analysis of time trajectories of pairwise gene-enhancer and higher-order contacts reveals that such variability derives from a more fluctuating dynamics in infected case, suggesting that SARS-CoV-2 alters gene regulation by impacting the stability of the contact network in time. Overall, our study provides the first polymer-physics based 4D reconstruction of SARS-CoV-2 infected genome with mechanistic insights on the consequent gene mis-regulation.
Collapse
Affiliation(s)
- Andrea M. Chiariello
- Dipartimento di Fisica, Università degli Studi di Napoli Federico II, and INFN Napoli, Complesso Universitario di Monte Sant'Angelo, 80126 Naples, Italy
| | - Alex Abraham
- Dipartimento di Fisica, Università degli Studi di Napoli Federico II, and INFN Napoli, Complesso Universitario di Monte Sant'Angelo, 80126 Naples, Italy
| | - Simona Bianco
- Dipartimento di Fisica, Università degli Studi di Napoli Federico II, and INFN Napoli, Complesso Universitario di Monte Sant'Angelo, 80126 Naples, Italy
| | - Andrea Esposito
- Dipartimento di Fisica, Università degli Studi di Napoli Federico II, and INFN Napoli, Complesso Universitario di Monte Sant'Angelo, 80126 Naples, Italy
| | - Francesca Vercellone
- Dipartimento di Fisica, Università degli Studi di Napoli Federico II, and INFN Napoli, Complesso Universitario di Monte Sant'Angelo, 80126 Naples, Italy
| | - Mattia Conte
- Dipartimento di Fisica, Università degli Studi di Napoli Federico II, and INFN Napoli, Complesso Universitario di Monte Sant'Angelo, 80126 Naples, Italy
| | - Andrea Fontana
- Dipartimento di Fisica, Università degli Studi di Napoli Federico II, and INFN Napoli, Complesso Universitario di Monte Sant'Angelo, 80126 Naples, Italy
| | - Mario Nicodemi
- Dipartimento di Fisica, Università degli Studi di Napoli Federico II, and INFN Napoli, Complesso Universitario di Monte Sant'Angelo, 80126 Naples, Italy
- Berlin Institute for Medical Systems Biology at the Max Delbruck Center for Molecular Medicine in the Helmholtz Association, Berlin, Germany
| |
Collapse
|
16
|
Li Z, Portillo-Ledesma S, Schlick T. Brownian dynamics simulations of mesoscale chromatin fibers. Biophys J 2023; 122:2884-2897. [PMID: 36116007 PMCID: PMC10397810 DOI: 10.1016/j.bpj.2022.09.013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2022] [Revised: 09/02/2022] [Accepted: 09/13/2022] [Indexed: 11/16/2022] Open
Abstract
The relationship between chromatin architecture and function defines a central problem in biology and medicine. Many computational chromatin models with atomic, coarse-grained, mesoscale, and polymer resolution have been used to shed light onto the mechanisms that dictate genome folding and regulation of gene expression. The associated simulation techniques range from Monte Carlo to molecular, Brownian, and Langevin dynamics. Here, we present an efficient Compute Unified Device Architecture (CUDA) implementation of Brownian dynamics (BD) to simulate chromatin fibers at the nucleosome resolution with our chromatin mesoscale model. With the CUDA implementation for computer architectures with graphic processing units (GPUs), we significantly accelerate compute-intensive hydrodynamic tensor calculations in the BD simulations by massive parallelization, boosting the performance a hundred-fold compared with central processing unit calculations. We validate our BD simulation approach by reproducing experimental trends on fiber diffusion and structure as a function of salt, linker histone binding, and histone-tail composition, as well as Monte Carlo equilibrium sampling results. Our approach proves to be physically accurate with performance that makes feasible the study of chromatin fibers in the range of kb or hundreds of nucleosomes (small gene). Such simulations are essential to advance the study of biological processes such as gene regulation and aberrant genome-structure related diseases.
Collapse
Affiliation(s)
- Zilong Li
- Department of Chemistry, New York University, New York, New York
| | | | - Tamar Schlick
- Department of Chemistry, New York University, New York, New York; Courant Institute of Mathematical Sciences, New York University, New York, New York; New York University-East China Normal University Center for Computational Chemistry, New York University Shanghai, Shanghai, China; Simons Center for Computational Physical Chemistry, New York University, New York, New York.
| |
Collapse
|
17
|
Kadam S, Kumari K, Manivannan V, Dutta S, Mitra MK, Padinhateeri R. Predicting scale-dependent chromatin polymer properties from systematic coarse-graining. Nat Commun 2023; 14:4108. [PMID: 37433821 PMCID: PMC10336007 DOI: 10.1038/s41467-023-39907-2] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2022] [Accepted: 06/30/2023] [Indexed: 07/13/2023] Open
Abstract
Simulating chromatin is crucial for predicting genome organization and dynamics. Although coarse-grained bead-spring polymer models are commonly used to describe chromatin, the relevant bead dimensions, elastic properties, and the nature of inter-bead potentials are unknown. Using nucleosome-resolution contact probability (Micro-C) data, we systematically coarse-grain chromatin and predict quantities essential for polymer representation of chromatin. We compute size distributions of chromatin beads for different coarse-graining scales, quantify fluctuations and distributions of bond lengths between neighboring regions, and derive effective spring constant values. Unlike the prevalent notion, our findings argue that coarse-grained chromatin beads must be considered as soft particles that can overlap, and we derive an effective inter-bead soft potential and quantify an overlap parameter. We also compute angle distributions giving insights into intrinsic folding and local bendability of chromatin. While the nucleosome-linker DNA bond angle naturally emerges from our work, we show two populations of local structural states. The bead sizes, bond lengths, and bond angles show different mean behavior at Topologically Associating Domain (TAD) boundaries and TAD interiors. We integrate our findings into a coarse-grained polymer model and provide quantitative estimates of all model parameters, which can serve as a foundational basis for all future coarse-grained chromatin simulations.
Collapse
Affiliation(s)
- Sangram Kadam
- Department of Biosciences and Bioengineering, Indian Institute of Technology Bombay, Mumbai, 400076, India.
| | - Kiran Kumari
- Department of Biosciences and Bioengineering, Indian Institute of Technology Bombay, Mumbai, 400076, India
| | - Vinoth Manivannan
- Department of Biosciences and Bioengineering, Indian Institute of Technology Bombay, Mumbai, 400076, India
| | - Shuvadip Dutta
- Department of Physics, Indian Institute of Technology Bombay, Mumbai, 400076, India
| | - Mithun K Mitra
- Department of Physics, Indian Institute of Technology Bombay, Mumbai, 400076, India
| | - Ranjith Padinhateeri
- Department of Biosciences and Bioengineering, Indian Institute of Technology Bombay, Mumbai, 400076, India.
- Sunita Sanghi Centre of Aging and Neurodegenerative Diseases, Indian Institute of Technology Bombay, Mumbai, 400076, India.
| |
Collapse
|
18
|
Brückner DB, Chen H, Barinov L, Zoller B, Gregor T. Stochastic motion and transcriptional dynamics of pairs of distal DNA loci on a compacted chromosome. Science 2023; 380:1357-1362. [PMID: 37384691 PMCID: PMC10439308 DOI: 10.1126/science.adf5568] [Citation(s) in RCA: 32] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2022] [Accepted: 05/31/2023] [Indexed: 07/01/2023]
Abstract
Chromosomes in the eukaryotic nucleus are highly compacted. However, for many functional processes, including transcription initiation, the pairwise motion of distal chromosomal elements such as enhancers and promoters is essential and necessitates dynamic fluidity. Here, we used a live-imaging assay to simultaneously measure the positions of pairs of enhancers and promoters and their transcriptional output while systematically varying the genomic separation between these two DNA loci. Our analysis reveals the coexistence of a compact globular organization and fast subdiffusive dynamics. These combined features cause an anomalous scaling of polymer relaxation times with genomic separation leading to long-ranged correlations. Thus, encounter times of DNA loci are much less dependent on genomic distance than predicted by existing polymer models, with potential consequences for eukaryotic gene expression.
Collapse
Affiliation(s)
- David B. Brückner
- Institute of Science and Technology, Am Campus 1, 3400 Klosterneuburg, Austria
| | - Hongtao Chen
- School of Life Science and Technology, ShanghaiTech University, Shanghai, China
- Lewis-Sigler Institute for Integrative Genomics, Princeton University, Princeton, NJ, USA
| | - Lev Barinov
- Lewis-Sigler Institute for Integrative Genomics, Princeton University, Princeton, NJ, USA
- Memorial Sloan Kettering Cancer Center, New York, New York, USA
| | - Benjamin Zoller
- Joseph Henry Laboratories of Physics, Princeton University, Princeton, NJ, USA
- Department of Developmental and Stem Cell Biology, CNRS UMR3738 Paris Cité, Institut Pasteur, Paris, France
| | - Thomas Gregor
- Lewis-Sigler Institute for Integrative Genomics, Princeton University, Princeton, NJ, USA
- Joseph Henry Laboratories of Physics, Princeton University, Princeton, NJ, USA
- Department of Developmental and Stem Cell Biology, CNRS UMR3738 Paris Cité, Institut Pasteur, Paris, France
| |
Collapse
|
19
|
Chen LF, Long HK, Park M, Swigut T, Boettiger AN, Wysocka J. Structural elements promote architectural stripe formation and facilitate ultra-long-range gene regulation at a human disease locus. Mol Cell 2023; 83:1446-1461.e6. [PMID: 36996812 DOI: 10.1016/j.molcel.2023.03.009] [Citation(s) in RCA: 27] [Impact Index Per Article: 13.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2022] [Revised: 02/15/2023] [Accepted: 03/07/2023] [Indexed: 03/31/2023]
Abstract
Enhancer clusters overlapping disease-associated mutations in Pierre Robin sequence (PRS) patients regulate SOX9 expression at genomic distances over 1.25 Mb. We applied optical reconstruction of chromatin architecture (ORCA) imaging to trace 3D locus topology during PRS-enhancer activation. We observed pronounced changes in locus topology between cell types. Subsequent analysis of single-chromatin fiber traces revealed that these ensemble-average differences arise through changes in the frequency of commonly sampled topologies. We further identified two CTCF-bound elements, internal to the SOX9 topologically associating domain, which promote stripe formation, are positioned near the domain's 3D geometric center, and bridge enhancer-promoter contacts in a series of chromatin loops. Ablation of these elements results in diminished SOX9 expression and altered domain-wide contacts. Polymer models with uniform loading across the domain and frequent cohesin collisions recapitulate this multi-loop, centrally clustered geometry. Together, we provide mechanistic insights into architectural stripe formation and gene regulation over ultra-long genomic ranges.
Collapse
Affiliation(s)
- Liang-Fu Chen
- Department of Chemical and Systems Biology, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Hannah Katherine Long
- Department of Chemical and Systems Biology, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Minhee Park
- Department of Developmental Biology, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Tomek Swigut
- Department of Chemical and Systems Biology, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Alistair Nicol Boettiger
- Department of Developmental Biology, Stanford University School of Medicine, Stanford, CA 94305, USA.
| | - Joanna Wysocka
- Department of Chemical and Systems Biology, Stanford University School of Medicine, Stanford, CA 94305, USA; Department of Developmental Biology, Stanford University School of Medicine, Stanford, CA 94305, USA; Institute of Stem Cell Biology and Regenerative Medicine, Stanford University School of Medicine, Stanford, CA 94305, USA; Howard Hughes Medical Institute, Stanford University School of Medicine, Stanford, CA 94305, USA.
| |
Collapse
|
20
|
Kamat K, Lao Z, Qi Y, Wang Y, Ma J, Zhang B. Compartmentalization with nuclear landmarks yields random, yet precise, genome organization. Biophys J 2023; 122:1376-1389. [PMID: 36871158 PMCID: PMC10111368 DOI: 10.1016/j.bpj.2023.03.003] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2022] [Revised: 02/19/2023] [Accepted: 03/01/2023] [Indexed: 03/06/2023] Open
Abstract
The 3D organization of eukaryotic genomes plays an important role in genome function. While significant progress has been made in deciphering the folding mechanisms of individual chromosomes, the principles of the dynamic large-scale spatial arrangement of all chromosomes inside the nucleus are poorly understood. We use polymer simulations to model the diploid human genome compartmentalization relative to nuclear bodies such as nuclear lamina, nucleoli, and speckles. We show that a self-organization process based on a cophase separation between chromosomes and nuclear bodies can capture various features of genome organization, including the formation of chromosome territories, phase separation of A/B compartments, and the liquid property of nuclear bodies. The simulated 3D structures quantitatively reproduce both sequencing-based genomic mapping and imaging assays that probe chromatin interaction with nuclear bodies. Importantly, our model captures the heterogeneous distribution of chromosome positioning across cells while simultaneously producing well-defined distances between active chromatin and nuclear speckles. Such heterogeneity and preciseness of genome organization can coexist due to the nonspecificity of phase separation and the slow chromosome dynamics. Together, our work reveals that the cophase separation provides a robust mechanism for us to produce functionally important 3D contacts without requiring thermodynamic equilibration that can be difficult to achieve.
Collapse
Affiliation(s)
- Kartik Kamat
- Department of Chemistry, Massachusetts Institute of Technology, Cambridge, Massachusetts
| | - Zhuohan Lao
- Department of Chemistry, Massachusetts Institute of Technology, Cambridge, Massachusetts
| | - Yifeng Qi
- Department of Chemistry, Massachusetts Institute of Technology, Cambridge, Massachusetts
| | - Yuchuan Wang
- Computational Biology Department, School of Computer Science, Carnegie Mellon University, Pittsburgh, Pennsylvania
| | - Jian Ma
- Computational Biology Department, School of Computer Science, Carnegie Mellon University, Pittsburgh, Pennsylvania
| | - Bin Zhang
- Department of Chemistry, Massachusetts Institute of Technology, Cambridge, Massachusetts.
| |
Collapse
|
21
|
Tian R, Li K, Lin Y, Lu C, Duan X. Characterization Techniques of Polymer Aging: From Beginning to End. Chem Rev 2023; 123:3007-3088. [PMID: 36802560 DOI: 10.1021/acs.chemrev.2c00750] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/22/2023]
Abstract
Polymers have been widely applied in various fields in the daily routines and the manufacturing. Despite the awareness of the aggressive and inevitable aging for the polymers, it still remains a challenge to choose an appropriate characterization strategy for evaluating the aging behaviors. The difficulties lie in the fact that the polymer features from the different aging stages require different characterization methods. In this review, we present an overview of the characterization strategies preferable for the initial, accelerated, and late stages during polymer aging. The optimum strategies have been discussed to characterize the generation of radicals, variation of functional groups, substantial chain scission, formation of low-molecular products, and deterioration in the polymers' macro-performances. In view of the advantages and the limitations of these characterization techniques, their utilization in a strategic approach is considered. In addition, we highlight the structure-property relationship for the aged polymers and provide available guidance for lifetime prediction. This review could allow the readers to be knowledgeable of the features for the polymers in the different aging stages and provide access to choose the optimum characterization techniques. We believe that this review will attract the communities dedicated to materials science and chemistry.
Collapse
Affiliation(s)
- Rui Tian
- State Key Laboratory of Chemical Resource Engineering, Beijing University of Chemical Technology, Beijing 100029, China
| | - Kaitao Li
- State Key Laboratory of Chemical Resource Engineering, Beijing University of Chemical Technology, Beijing 100029, China
| | - Yanjun Lin
- State Key Laboratory of Chemical Resource Engineering, Beijing University of Chemical Technology, Beijing 100029, China
- School of Chemical Engineering, Qinghai University, Xining 810016, China
| | - Chao Lu
- State Key Laboratory of Chemical Resource Engineering, Beijing University of Chemical Technology, Beijing 100029, China
- Green Catalysis Center, College of Chemistry, Zhengzhou University, Zhengzhou 450001, China
| | - Xue Duan
- State Key Laboratory of Chemical Resource Engineering, Beijing University of Chemical Technology, Beijing 100029, China
| |
Collapse
|
22
|
Brückner DB, Chen H, Barinov L, Zoller B, Gregor T. Stochastic motion and transcriptional dynamics of pairs of distal DNA loci on a compacted chromosome. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.01.18.524527. [PMID: 36711618 PMCID: PMC9882297 DOI: 10.1101/2023.01.18.524527] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
Abstract
Chromosomes in the eukaryotic nucleus are highly compacted. However, for many functional processes, including transcription initiation, the 3D pair-wise motion of distal chromosomal elements, such as enhancers and promoters, is essential and necessitates dynamic fluidity. Therefore, the interplay of chromosome organization and dynamics is crucial for gene regulation. Here, we use a live imaging assay to simultaneously measure the positions of pairs of enhancers and promoters and their transcriptional output in the developing fly embryo while systematically varying the genomic separation between these two DNA loci. Our analysis reveals a combination of a compact globular organization and fast subdiffusive dynamics. These combined features cause an anomalous scaling of polymer relaxation times with genomic separation and lead to long-ranged correlations compared to existing polymer models. This scaling implies that encounter times of DNA loci are much less dependent on genomic separation than predicted by existing polymer models, with potentially significant consequences for eukaryotic gene expression.
Collapse
Affiliation(s)
- David B. Brückner
- Institute of Science and Technology, Am Campus 1, 3400 Klosterneuburg, Austria
| | - Hongtao Chen
- Lewis-Sigler Institute for Integrative Genomics, Princeton University, Princeton, NJ, USA
| | - Lev Barinov
- Lewis-Sigler Institute for Integrative Genomics, Princeton University, Princeton, NJ, USA
| | - Benjamin Zoller
- Joseph Henry Laboratories of Physics, Princeton University, Princeton, NJ, USA
- Department of Developmental and Stem Cell Biology, CNRS UMR3738, Institut Pasteur, Paris, France
| | - Thomas Gregor
- Lewis-Sigler Institute for Integrative Genomics, Princeton University, Princeton, NJ, USA
- Joseph Henry Laboratories of Physics, Princeton University, Princeton, NJ, USA
- Department of Developmental and Stem Cell Biology, CNRS UMR3738, Institut Pasteur, Paris, France
| |
Collapse
|
23
|
Unveiling the Machinery behind Chromosome Folding by Polymer Physics Modeling. Int J Mol Sci 2023; 24:ijms24043660. [PMID: 36835064 PMCID: PMC9967178 DOI: 10.3390/ijms24043660] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2023] [Revised: 02/06/2023] [Accepted: 02/09/2023] [Indexed: 02/16/2023] Open
Abstract
Understanding the mechanisms underlying the complex 3D architecture of mammalian genomes poses, at a more fundamental level, the problem of how two or multiple genomic sites can establish physical contacts in the nucleus of the cells. Beyond stochastic and fleeting encounters related to the polymeric nature of chromatin, experiments have revealed specific, privileged patterns of interactions that suggest the existence of basic organizing principles of folding. In this review, we focus on two major and recently proposed physical processes of chromatin organization: loop-extrusion and polymer phase-separation, both supported by increasing experimental evidence. We discuss their implementation into polymer physics models, which we test against available single-cell super-resolution imaging data, showing that both mechanisms can cooperate to shape chromatin structure at the single-molecule level. Next, by exploiting the comprehension of the underlying molecular mechanisms, we illustrate how such polymer models can be used as powerful tools to make predictions in silico that can complement experiments in understanding genome folding. To this aim, we focus on recent key applications, such as the prediction of chromatin structure rearrangements upon disease-associated mutations and the identification of the putative chromatin organizing factors that orchestrate the specificity of DNA regulatory contacts genome-wide.
Collapse
|
24
|
Portillo-Ledesma S, Li Z, Schlick T. Genome modeling: From chromatin fibers to genes. Curr Opin Struct Biol 2023; 78:102506. [PMID: 36577295 PMCID: PMC9908845 DOI: 10.1016/j.sbi.2022.102506] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2022] [Revised: 11/01/2022] [Accepted: 11/06/2022] [Indexed: 12/27/2022]
Abstract
The intricacies of the 3D hierarchical organization of the genome have been approached by many creative modeling studies. The specific model/simulation technique combination defines and restricts the system and phenomena that can be investigated. We present the latest modeling developments and studies of the genome, involving models ranging from nucleosome systems and small polynucleosome arrays to chromatin fibers in the kb-range, chromosomes, and whole genomes, while emphasizing gene folding from first principles. Clever combinations allow the exploration of many interesting phenomena involved in gene regulation, such as nucleosome structure and dynamics, nucleosome-nucleosome stacking, polynucleosome array folding, protein regulation of chromatin architecture, mechanisms of gene folding, loop formation, compartmentalization, and structural transitions at the chromosome and genome levels. Gene-level modeling with full details on nucleosome positions, epigenetic factors, and protein binding, in particular, can in principle be scaled up to model chromosomes and cells to study fundamental biological regulation.
Collapse
Affiliation(s)
- Stephanie Portillo-Ledesma
- Department of Chemistry, New York University, 100 Washington Square East, Silver Building, New York, 10003, NY, USA
| | - Zilong Li
- Department of Chemistry, New York University, 100 Washington Square East, Silver Building, New York, 10003, NY, USA
| | - Tamar Schlick
- Department of Chemistry, New York University, 100 Washington Square East, Silver Building, New York, 10003, NY, USA; Courant Institute of Mathematical Sciences, New York University, 251 Mercer St., New York, 10012, NY, USA; New York University-East China Normal University Center for Computational Chemistry, New York University Shanghai, Room 340, Geography Building, 3663 North Zhongshan Road, Shanghai, 200122, China; Simons Center for Computational Physical Chemistry, 24 Waverly Place, Silver Building, New York University, New York, 10003, NY, USA.
| |
Collapse
|
25
|
Roh S, Lee T, Cheong DY, Kim Y, Oh S, Lee G. Direct observation of surface charge and stiffness of human metaphase chromosomes. NANOSCALE ADVANCES 2023; 5:368-377. [PMID: 36756276 PMCID: PMC9846444 DOI: 10.1039/d2na00620k] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/13/2022] [Accepted: 12/17/2022] [Indexed: 06/18/2023]
Abstract
Metaphase chromosomes in which both polynucleotides and proteins are condensed with hierarchies are closely related to life phenomena such as cell division, cancer development, and cellular senescence. Nevertheless, their nature is rarely revealed, owing to their structural complexity and technical limitations in analytical methods. In this study, we used surface potential and nanomechanics mapping technology based on atomic force microscopy to measure the surface charge and intrinsic stiffness of metaphase chromosomes. We found that extra materials covering the chromosomes after the extraction process were positively charged. With the covering materials, the chromosomes were positively charged (ca. 44.9 ± 16.48 mV) and showed uniform stiffness (ca. 6.23 ± 1.98 MPa). In contrast, after getting rid of the extra materials through treatment with RNase and protease, the chromosomes were strongly negatively charged (ca. -197.4 ± 77.87 mV) and showed relatively non-uniform and augmented stiffness (ca. 36.87 ± 17.56 MPa). The results suggested undulating but compact coordination of condensed chromosomes. Additionally, excessive treatment with RNase and protease could destroy the chromosomal structure, providing an exceptional opportunity for multiscale stiffness mapping of polynucleotides, nucleosomes, chromatin fibers, and chromosomes in a single image. Our approach offers a new horizon in terms of an analytical technique for studying chromosome-related diseases.
Collapse
Affiliation(s)
- Seokbeom Roh
- Department of Biotechnology and Bioinformatics, Korea University Sejong 30019 Korea
- Interdisciplinary Graduate Program for Artificial Intelligence Smart Convergence Technology, Korea University Sejong 30019 Korea
| | - Taeha Lee
- Department of Biotechnology and Bioinformatics, Korea University Sejong 30019 Korea
- Interdisciplinary Graduate Program for Artificial Intelligence Smart Convergence Technology, Korea University Sejong 30019 Korea
| | - Da Yeon Cheong
- Department of Biotechnology and Bioinformatics, Korea University Sejong 30019 Korea
- Interdisciplinary Graduate Program for Artificial Intelligence Smart Convergence Technology, Korea University Sejong 30019 Korea
| | - Yeonjin Kim
- Department of Biotechnology and Bioinformatics, Korea University Sejong 30019 Korea
| | - Soohwan Oh
- College of Pharmacy, Korea University Sejong 30019 Korea
| | - Gyudo Lee
- Department of Biotechnology and Bioinformatics, Korea University Sejong 30019 Korea
- Interdisciplinary Graduate Program for Artificial Intelligence Smart Convergence Technology, Korea University Sejong 30019 Korea
| |
Collapse
|
26
|
Chu X, Wang J. Insights into the cell fate decision-making processes from chromosome structural reorganizations. BIOPHYSICS REVIEWS 2022; 3:041402. [PMID: 38505520 PMCID: PMC10914134 DOI: 10.1063/5.0107663] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/06/2022] [Accepted: 11/25/2022] [Indexed: 03/21/2024]
Abstract
The cell fate decision-making process, which provides the capability of a cell transition to a new cell type, involves the reorganizations of 3D genome structures. Currently, the high temporal resolution picture of how the chromosome structural rearrangements occur and further influence the gene activities during the cell-state transition is still challenging to acquire. Here, we study the chromosome structural reorganizations during the cell-state transitions among the pluripotent embryonic stem cell, the terminally differentiated normal cell, and the cancer cell using a nonequilibrium landscape-switching model implemented in the molecular dynamics simulation. We quantify the chromosome (de)compaction pathways during the cell-state transitions and find that the two pathways having the same destinations can merge prior to reaching the final states. The chromosomes at the merging states have similar structural geometries but can differ in long-range compartment segregation and spatial distribution of the chromosomal loci and genes, leading to cell-type-specific transition mechanisms. We identify the irreversible pathways of chromosome structural rearrangements during the forward and reverse transitions connecting the same pair of cell states, underscoring the critical roles of nonequilibrium dynamics in the cell-state transitions. Our results contribute to the understanding of the cell fate decision-making processes from the chromosome structural perspective.
Collapse
Affiliation(s)
- Xiakun Chu
- Advanced Materials Thrust, Function Hub, The Hong Kong University of Science and Technology (Guangzhou), Nansha, Guangzhou, Guangdong 511400, China
| | - Jin Wang
- Department of Chemistry and Physics, State University of New York at Stony Brook, Stony Brook, New York 11794, USA
| |
Collapse
|
27
|
Chakraborty A, Wang JG, Ay F. dcHiC detects differential compartments across multiple Hi-C datasets. Nat Commun 2022; 13:6827. [PMID: 36369226 PMCID: PMC9652325 DOI: 10.1038/s41467-022-34626-6] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2022] [Accepted: 11/01/2022] [Indexed: 11/13/2022] Open
Abstract
The compartmental organization of mammalian genomes and its changes play important roles in distinct biological processes. Here, we introduce dcHiC, which utilizes a multivariate distance measure to identify significant changes in compartmentalization among multiple contact maps. Evaluating dcHiC on four collections of bulk and single-cell contact maps from in vitro mouse neural differentiation (n = 3), mouse hematopoiesis (n = 10), human LCLs (n = 20) and post-natal mouse brain development (n = 3 stages), we show its effectiveness and sensitivity in detecting biologically relevant changes, including those orthogonally validated. dcHiC reported regions with dynamically regulated genes associated with cell identity, along with correlated changes in chromatin states, subcompartments, replication timing and lamin association. With its efficient implementation, dcHiC enables high-resolution compartment analysis as well as standalone browser visualization, differential interaction identification and time-series clustering. dcHiC is an essential addition to the Hi-C analysis toolbox for the ever-growing number of bulk and single-cell contact maps. Available at: https://github.com/ay-lab/dcHiC .
Collapse
Affiliation(s)
- Abhijit Chakraborty
- Centers for Autoimmunity, Inflammation and Cancer Immunotherapy, La Jolla Institute for Immunology, La Jolla, CA, 92037, USA.
| | - Jeffrey G Wang
- Centers for Autoimmunity, Inflammation and Cancer Immunotherapy, La Jolla Institute for Immunology, La Jolla, CA, 92037, USA
- The Bishop's School, La Jolla, CA, 92037, USA
- Harvard College, Cambridge, MA, 02138, USA
| | - Ferhat Ay
- Centers for Autoimmunity, Inflammation and Cancer Immunotherapy, La Jolla Institute for Immunology, La Jolla, CA, 92037, USA.
- Bioinformatics and Systems Biology Program, University of California San Diego, La Jolla, CA, 92093, USA.
- Department of Pediatrics, University of California San Diego, La Jolla, CA, 92093, USA.
| |
Collapse
|
28
|
Chu X, Wang J. Quantifying Chromosome Structural Reorganizations during Differentiation, Reprogramming, and Transdifferentiation. PHYSICAL REVIEW LETTERS 2022; 129:068102. [PMID: 36018639 DOI: 10.1103/physrevlett.129.068102] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/21/2021] [Accepted: 06/08/2022] [Indexed: 06/15/2023]
Abstract
We developed a nonequilibrium model to study chromosome structural reorganizations within a simplified cell developmental system. From the chromosome structural perspective, we predicted that the neural progenitor cell is on the neural developmental path and very close to the transdifferentiation path from the fibroblast to the neuron cell. We identified an early bifurcation of stem cell differentiation processes and the cell-of-origin-specific reprogramming pathways. Our theoretical results are in good agreement with available experimental evidence, promoting future applications of our approach.
Collapse
Affiliation(s)
- Xiakun Chu
- Advanced Materials Thrust, The Hong Kong University of Science and Technology (Guangzhou), Nansha, Guangzhou, Guangdong 511400, China
- Department of Chemistry and Physics, State University of New York at Stony Brook, Stony Brook, New York 11794, USA
| | - Jin Wang
- Center for Theoretical Interdisciplinary Sciences, Wenzhou Institute, University of Chinese Academy of Sciences, Wenzhou, Zhejiang 325001, China
- Department of Chemistry and Physics, State University of New York at Stony Brook, Stony Brook, New York 11794, USA
| |
Collapse
|
29
|
Rico D, Kent D, Karataraki N, Mikulasova A, Berlinguer-Palmini R, Walker BA, Javierre BM, Russell LJ, Brackley CA. High-resolution simulations of chromatin folding at genomic rearrangements in malignant B cells provide mechanistic insights into proto-oncogene deregulation. Genome Res 2022; 32:1355-1366. [PMID: 35863900 PMCID: PMC9341513 DOI: 10.1101/gr.276028.121] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2021] [Accepted: 05/26/2022] [Indexed: 11/30/2022]
Abstract
Genomic rearrangements are known to result in proto-oncogene deregulation in many cancers, but the link to 3D genome structure remains poorly understood. Here, we used the highly predictive heteromorphic polymer (HiP-HoP) model to predict chromatin conformations at the proto-oncogene CCND1 in healthy and malignant B cells. After confirming that the model gives good predictions of Hi-C data for the nonmalignant human B cell-derived cell line GM12878, we generated predictions for two cancer cell lines, U266 and Z-138. These possess genome rearrangements involving CCND1 and the immunoglobulin heavy locus (IGH), which we mapped using targeted genome sequencing. Our simulations showed that a rearrangement in U266 cells where a single IGH super-enhancer is inserted next to CCND1 leaves the local topologically associated domain (TAD) structure intact. We also observed extensive changes in enhancer-promoter interactions within the TAD, suggesting that it is the downstream chromatin remodeling which gives rise to the oncogene activation, rather than the presence of the inserted super-enhancer DNA sequence per se. Simulations of the IGH-CCND1 reciprocal translocation in Z-138 cells revealed that an oncogenic fusion TAD is created, encompassing CCND1 and the IGH super-enhancers. We predicted how the structure and expression of CCND1 changes in these different cell lines, validating this using qPCR and fluorescence in situ hybridization microscopy. Our work demonstrates the power of polymer simulations to predict differences in chromatin interactions and gene expression for different translocation breakpoints.
Collapse
Affiliation(s)
- Daniel Rico
- Biosciences Institute, Newcastle University, Newcastle upon Tyne NE2 4HH, United Kingdom
| | - Daniel Kent
- Biosciences Institute, Newcastle University, Newcastle upon Tyne NE2 4HH, United Kingdom
- Translational and Clinical Research Institute, Newcastle University, Newcastle upon Tyne NE2 4HH, United Kingdom
| | - Nefeli Karataraki
- Biosciences Institute, Newcastle University, Newcastle upon Tyne NE2 4HH, United Kingdom
- Translational and Clinical Research Institute, Newcastle University, Newcastle upon Tyne NE2 4HH, United Kingdom
| | - Aneta Mikulasova
- Biosciences Institute, Newcastle University, Newcastle upon Tyne NE2 4HH, United Kingdom
| | | | - Brian A Walker
- Melvin and Bren Simon Comprehensive Cancer Center, Division of Hematology Oncology, Indiana University, Indianapolis, Indiana 46202, USA
| | - Biola M Javierre
- Josep Carreras Leukaemia Research Institute (IJC), IJC Building, Campus ICO-Germans Trias i Pujol, Ctra de Can Ruti, 08916 Badalona, Barcelona, Spain
| | - Lisa J Russell
- Biosciences Institute, Newcastle University, Newcastle upon Tyne NE2 4HH, United Kingdom
- Translational and Clinical Research Institute, Newcastle University, Newcastle upon Tyne NE2 4HH, United Kingdom
| | - Chris A Brackley
- SUPA, School of Physics and Astronomy, University of Edinburgh, Edinburgh EH9 3FD, United Kingdom
| |
Collapse
|
30
|
Michieletto D, Marenda M. Rheology and Viscoelasticity of Proteins and Nucleic Acids Condensates. JACS AU 2022; 2:1506-1521. [PMID: 35911447 PMCID: PMC9326828 DOI: 10.1021/jacsau.2c00055] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
Phase separation is as familiar as watching vinegar separating from oil in vinaigrette. The observation that phase separation of proteins and nucleic acids is widespread in living cells has opened an entire field of research into the biological significance and the biophysical mechanisms of phase separation and protein condensation in biology. Recent evidence indicates that certain proteins and nucleic acids condensates are not simple liquids and instead display both viscous and elastic behaviors, which in turn may have biological significance. The aim of this Perspective is to review the state-of-the-art of this quickly emerging field focusing on the material and rheological properties of protein condensates. Finally, we discuss the different techniques that can be employed to quantify the viscoelasticity of condensates and highlight potential future directions and opportunities for interdisciplinary cross-talk between chemists, physicists, and biologists.
Collapse
Affiliation(s)
- Davide Michieletto
- School
of Physics and Astronomy, University of
Edinburgh, Peter Guthrie
Tait Road, Edinburgh EH9
3FD, U.K.
- MRC
Human Genetics Unit, Institute of Genetics and Cancer, University of Edinburgh, Edinburgh EH4 2XU, U.K.
| | - Mattia Marenda
- School
of Physics and Astronomy, University of
Edinburgh, Peter Guthrie
Tait Road, Edinburgh EH9
3FD, U.K.
- MRC
Human Genetics Unit, Institute of Genetics and Cancer, University of Edinburgh, Edinburgh EH4 2XU, U.K.
| |
Collapse
|
31
|
Kumari K, Ravi Prakash J, Padinhateeri R. Heterogeneous interactions and polymer entropy decide organization and dynamics of chromatin domains. Biophys J 2022; 121:2794-2812. [PMID: 35672951 PMCID: PMC9382282 DOI: 10.1016/j.bpj.2022.06.008] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2022] [Revised: 04/28/2022] [Accepted: 06/01/2022] [Indexed: 11/02/2022] Open
Abstract
Chromatin is known to be organized into multiple domains of varying sizes and compaction. While these domains are often imagined as static structures, they are highly dynamic and show cell-to-cell variability. Since processes such as gene regulation and DNA replication occur in the context of these domains, it is important to understand their organization, fluctuation, and dynamics. To simulate chromatin domains, one requires knowledge of interaction strengths among chromatin segments. Here, we derive interaction-strength parameters from experimentally known contact maps and use them to predict chromatin organization and dynamics. Taking two domains on the human chromosome as examples, we investigate its three-dimensional organization, size/shape fluctuations, and dynamics of different segments within a domain, accounting for hydrodynamic effects. Considering different cell types, we quantify changes in interaction strengths and chromatin shape fluctuations in different epigenetic states. Perturbing the interaction strengths systematically, we further investigate how epigenetic-like changes can alter the spatio-temporal nature of the domains. Our results show that heterogeneous weak interactions are crucial in determining the organization of the domains. Computing effective stiffness and relaxation times, we investigate how perturbations in interactions affect the solid- and liquid-like nature of chromatin domains. Quantifying dynamics of chromatin segments within a domain, we show how the competition between polymer entropy and interaction energy influence the timescales of loop formation and maintenance of stable loops.
Collapse
Affiliation(s)
- Kiran Kumari
- IITB-Monash Research Academy, Indian Institute of Technology Bombay, Mumbai, Maharashtra, 400076, India; Department of Biosciences and Bioengineering, Indian Institute of Technology Bombay, Mumbai, Maharashtra 400076, India; Department of Chemical Engineering, Monash University, Melbourne, VIC 3800, Australia.
| | - J Ravi Prakash
- Department of Chemical Engineering, Monash University, Melbourne, VIC 3800, Australia.
| | - Ranjith Padinhateeri
- Department of Biosciences and Bioengineering, Indian Institute of Technology Bombay, Mumbai, Maharashtra 400076, India.
| |
Collapse
|
32
|
Yildirim A, Boninsegna L, Zhan Y, Alber F. Uncovering the Principles of Genome Folding by 3D Chromatin Modeling. Cold Spring Harb Perspect Biol 2022; 14:a039693. [PMID: 34400556 PMCID: PMC9248826 DOI: 10.1101/cshperspect.a039693] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
Our understanding of how genomic DNA is tightly packed inside the nucleus, yet is still accessible for vital cellular processes, has grown dramatically over recent years with advances in microscopy and genomics technologies. Computational methods have played a pivotal role in the structural interpretation of experimental data, which helped unravel some organizational principles of genome folding. Here, we give an overview of current computational efforts in mechanistic and data-driven 3D chromatin structure modeling. We discuss strengths and limitations of different methods and evaluate the added value and benefits of computational approaches to infer the 3D structural and dynamic properties of the genome and its underlying mechanisms at different scales and resolution, ranging from the dynamic formation of chromatin loops and topological associated domains to nuclear compartmentalization of chromatin and nuclear bodies.
Collapse
Affiliation(s)
- Asli Yildirim
- Institute for Quantitative and Computational Biosciences, Department of Microbiology, Immunology and Molecular Genetics, University of California Los Angeles, Los Angeles, California 90095, USA
| | - Lorenzo Boninsegna
- Institute for Quantitative and Computational Biosciences, Department of Microbiology, Immunology and Molecular Genetics, University of California Los Angeles, Los Angeles, California 90095, USA
| | - Yuxiang Zhan
- Institute for Quantitative and Computational Biosciences, Department of Microbiology, Immunology and Molecular Genetics, University of California Los Angeles, Los Angeles, California 90095, USA
- Quantitative and Computational Biology, Department of Biological Sciences, University of Southern California, Los Angeles, California 90089, USA
| | - Frank Alber
- Institute for Quantitative and Computational Biosciences, Department of Microbiology, Immunology and Molecular Genetics, University of California Los Angeles, Los Angeles, California 90095, USA
- Quantitative and Computational Biology, Department of Biological Sciences, University of Southern California, Los Angeles, California 90089, USA
| |
Collapse
|
33
|
Huertas J, Woods EJ, Collepardo-Guevara R. Multiscale modelling of chromatin organisation: Resolving nucleosomes at near-atomistic resolution inside genes. Curr Opin Cell Biol 2022; 75:102067. [DOI: 10.1016/j.ceb.2022.02.001] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2021] [Revised: 01/24/2022] [Accepted: 02/04/2022] [Indexed: 12/15/2022]
|
34
|
Rippe K, Papantonis A. Functional organization of RNA polymerase II in nuclear subcompartments. Curr Opin Cell Biol 2022; 74:88-96. [PMID: 35217398 DOI: 10.1016/j.ceb.2022.01.005] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2021] [Revised: 01/08/2022] [Accepted: 01/14/2022] [Indexed: 12/22/2022]
Abstract
Distinct clusters of RNA polymerase II are responsible for gene transcription inside eukaryotic cell nuclei. Despite the functional implications of such subnuclear organization, the attributes of these clusters and the mechanisms underlying their formation remain only partially understood. Recently, the concept of proteins and RNA phase-separating into liquid-like droplets was proposed to drive the formation of transcriptionally-active subcompartments. Here, we attempt to reconcile previous with more recent findings, and discuss how the different ways of assembling the active RNA polymerase II transcriptional machinery relate to nuclear compartmentalization.
Collapse
Affiliation(s)
- Karsten Rippe
- Division of Chromatin Networks, German Cancer Research Center (DKFZ) and Bioquant, Heidelberg, Germany.
| | - Argyris Papantonis
- Translational Epigenetics Group, Institute of Pathology, University Medical Center Göttingen, Göttingen, Germany.
| |
Collapse
|
35
|
Laghmach R, Di Pierro M, Potoyan D. A Liquid State Perspective on Dynamics of Chromatin Compartments. Front Mol Biosci 2022; 8:781981. [PMID: 35096966 PMCID: PMC8793688 DOI: 10.3389/fmolb.2021.781981] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2021] [Accepted: 12/22/2021] [Indexed: 12/11/2022] Open
Abstract
The interior of the eukaryotic cell nucleus has a crowded and heterogeneous environment packed with chromatin polymers, regulatory proteins, and RNA molecules. Chromatin polymer, assisted by epigenetic modifications, protein and RNA binders, forms multi-scale compartments which help regulate genes in response to cellular signals. Furthermore, chromatin compartments are dynamic and tend to evolve in size and composition in ways that are not fully understood. The latest super-resolution imaging experiments have revealed a much more dynamic and stochastic nature of chromatin compartments than was appreciated before. An emerging mechanism explaining chromatin compartmentalization dynamics is the phase separation of protein and nucleic acids into membraneless liquid condensates. Consequently, concepts and ideas from soft matter and polymer systems have been rapidly entering the lexicon of cell biology. In this respect, the role of computational models is crucial for establishing a rigorous and quantitative foundation for the new concepts and disentangling the complex interplay of forces that contribute to the emergent patterns of chromatin dynamics and organization. Several multi-scale models have emerged to address various aspects of chromatin dynamics, ranging from equilibrium polymer simulations, hybrid non-equilibrium simulations coupling protein binding and chromatin folding, and mesoscopic field-theoretic models. Here, we review these emerging theoretical paradigms and computational models with a particular focus on chromatin’s phase separation and liquid-like properties as a basis for nuclear organization and dynamics.
Collapse
Affiliation(s)
- Rabia Laghmach
- Department of Chemistry, Iowa State University, Ames, IA, United States
| | - Michele Di Pierro
- Department of Physics, Northeastern University, Boston, MA, United States
| | - Davit Potoyan
- Department of Chemistry, Iowa State University, Ames, IA, United States
- *Correspondence: Davit Potoyan,
| |
Collapse
|
36
|
Boninsegna L, Yildirim A, Zhan Y, Alber F. Integrative approaches in genome structure analysis. Structure 2022; 30:24-36. [PMID: 34963059 PMCID: PMC8959402 DOI: 10.1016/j.str.2021.12.003] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2021] [Revised: 11/13/2021] [Accepted: 12/01/2021] [Indexed: 12/17/2022]
Abstract
New technological advances in integrated imaging, sequencing-based assays, and computational analysis have revolutionized our view of genomes in terms of their structure and dynamics in space and time. These advances promise a deeper understanding of genome functions and mechanistic insights into how the nucleus is spatially organized and functions. These wide arrays of complementary data provide an opportunity to produce quantitative integrative models of nuclear organization. In this article, we highlight recent key developments and discuss the outlook for these fields.
Collapse
Affiliation(s)
- Lorenzo Boninsegna
- Institute for Quantitative and Computational Biosciences, University of California Los Angeles, Los Angeles, CA 90095, USA; Department of Microbiology, Immunology and Molecular Genetics, University of California Los Angeles, Los Angeles, CA 90095, USA
| | - Asli Yildirim
- Institute for Quantitative and Computational Biosciences, University of California Los Angeles, Los Angeles, CA 90095, USA; Department of Microbiology, Immunology and Molecular Genetics, University of California Los Angeles, Los Angeles, CA 90095, USA
| | - Yuxiang Zhan
- Institute for Quantitative and Computational Biosciences, University of California Los Angeles, Los Angeles, CA 90095, USA; Department of Microbiology, Immunology and Molecular Genetics, University of California Los Angeles, Los Angeles, CA 90095, USA; Department of Quantitative and Computational Biology, University of Southern California, Los Angeles, CA 90089, USA
| | - Frank Alber
- Institute for Quantitative and Computational Biosciences, University of California Los Angeles, Los Angeles, CA 90095, USA; Department of Microbiology, Immunology and Molecular Genetics, University of California Los Angeles, Los Angeles, CA 90095, USA; Department of Quantitative and Computational Biology, University of Southern California, Los Angeles, CA 90089, USA.
| |
Collapse
|
37
|
Chiang M, Brackley CA, Marenduzzo D, Gilbert N. Predicting genome organisation and function with mechanistic modelling. Trends Genet 2021; 38:364-378. [PMID: 34857425 DOI: 10.1016/j.tig.2021.11.001] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2021] [Revised: 10/11/2021] [Accepted: 11/01/2021] [Indexed: 12/14/2022]
Abstract
Fitting-free mechanistic models based on polymer simulations predict chromatin folding in 3D by focussing on the underlying biophysical mechanisms. This class of models has been increasingly used in conjunction with experiments to study the spatial organisation of eukaryotic chromosomes. Feedback from experiments to models leads to successive model refinement and has previously led to the discovery of new principles for genome organisation. Here, we review the basis of mechanistic polymer simulations, explain some of the more recent approaches and the contexts in which they have been useful to explain chromosome biology, and speculate on how they might be used in the future.
Collapse
Affiliation(s)
- Michael Chiang
- SUPA, School of Physics and Astronomy, University of Edinburgh, Peter Guthrie Tait Road, Edinburgh, EH9 3FD, UK
| | - Chris A Brackley
- SUPA, School of Physics and Astronomy, University of Edinburgh, Peter Guthrie Tait Road, Edinburgh, EH9 3FD, UK
| | - Davide Marenduzzo
- SUPA, School of Physics and Astronomy, University of Edinburgh, Peter Guthrie Tait Road, Edinburgh, EH9 3FD, UK
| | - Nick Gilbert
- MRC Human Genetics Unit, Institute of Genetics and Cancer, University of Edinburgh, Western General Hospital, Crewe Road South, Edinburgh, EH4 2XU, UK.
| |
Collapse
|
38
|
Four-dimensional chromosome reconstruction elucidates the spatiotemporal reorganization of the mammalian X chromosome. Proc Natl Acad Sci U S A 2021; 118:2107092118. [PMID: 34645712 DOI: 10.1073/pnas.2107092118] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/27/2021] [Indexed: 12/14/2022] Open
Abstract
Chromosomes are segmented into domains and compartments, but how these structures are spatially related in three dimensions (3D) is unclear. Here, we developed tools that directly extract 3D information from Hi-C experiments and integrate the data across time. With our "4DHiC" method, we use X chromosome inactivation (XCI) as a model to examine the time evolution of 3D chromosome architecture during large-scale changes in gene expression. Our modeling resulted in several insights. Both A/B and S1/S2 compartments divide the X chromosome into hemisphere-like structures suggestive of a spatial phase-separation. During the XCI, the X chromosome transits through A/B, S1/S2, and megadomain structures by undergoing only partial mixing to assume new structures. Interestingly, when an active X chromosome (Xa) is reorganized into an inactive X chromosome (Xi), original underlying compartment structures are not fully eliminated within the Xi superstructure. Our study affirms slow mixing dynamics in the inner chromosome core and faster dynamics near the surface where escapees reside. Once established, the Xa and Xi resemble glassy polymers where mixing no longer occurs. Finally, Xist RNA molecules initially reside within the A compartment but transition to the interface between the A and B hemispheres and then spread between hemispheres via both surface and core to establish the Xi.
Collapse
|
39
|
Ryu JK, Hwang DE, Choi JM. Current Understanding of Molecular Phase Separation in Chromosomes. Int J Mol Sci 2021; 22:10736. [PMID: 34639077 PMCID: PMC8509192 DOI: 10.3390/ijms221910736] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2021] [Revised: 09/28/2021] [Accepted: 09/29/2021] [Indexed: 12/12/2022] Open
Abstract
Biomolecular phase separation denotes the demixing of a specific set of intracellular components without membrane encapsulation. Recent studies have found that biomolecular phase separation is involved in a wide range of cellular processes. In particular, phase separation is involved in the formation and regulation of chromosome structures at various levels. Here, we review the current understanding of biomolecular phase separation related to chromosomes. First, we discuss the fundamental principles of phase separation and introduce several examples of nuclear/chromosomal biomolecular assemblies formed by phase separation. We also briefly explain the experimental and computational methods used to study phase separation in chromosomes. Finally, we discuss a recent phase separation model, termed bridging-induced phase separation (BIPS), which can explain the formation of local chromosome structures.
Collapse
Affiliation(s)
- Je-Kyung Ryu
- Department of Biological Sciences, KAIST, Daejeon 34141, Korea
| | - Da-Eun Hwang
- Department of Chemistry, Pusan National University, Busan 46241, Korea;
| | - Jeong-Mo Choi
- Department of Chemistry, Pusan National University, Busan 46241, Korea;
| |
Collapse
|
40
|
Liang J, Perez-Rathke A. Minimalistic 3D chromatin models: Sparse interactions in single cells drive the chromatin fold and form many-body units. Curr Opin Struct Biol 2021; 71:200-214. [PMID: 34399301 DOI: 10.1016/j.sbi.2021.06.017] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2021] [Revised: 06/27/2021] [Accepted: 06/29/2021] [Indexed: 11/26/2022]
Abstract
Computational three-dimensional chromatin modeling has helped uncover principles of genome organization. Here, we discuss methods for modeling three-dimensional chromatin structures, with focus on a minimalistic polymer model which inverts population Hi-C into single-cell conformations. Utilizing only basic physical properties, this model reveals that a few specific Hi-C interactions can fold chromatin into conformations consistent with single-cell imaging, Dip-C, and FISH measurements. Aggregated single-cell chromatin conformations also reproduce Hi-C frequencies. This approach allows quantification of structural heterogeneity and discovery of many-body interaction units and has revealed additional insights, including (1) topologically associating domains as a byproduct of folding driven by specific interactions, (2) cell subpopulations with different structural scaffolds are developmental stage dependent, and (3) the functional landscape of many-body units within enhancer-rich regions. We also discuss these findings in relation to the genome structure-function relationship.
Collapse
Affiliation(s)
- Jie Liang
- Center for Bioinformatics and Quantitative Biology & Richard and Loan Hill Department of Bioengineering, University of Illinois at Chicago, Chicago, IL, 60612, USA.
| | - Alan Perez-Rathke
- Center for Bioinformatics and Quantitative Biology & Richard and Loan Hill Department of Bioengineering, University of Illinois at Chicago, Chicago, IL, 60612, USA
| |
Collapse
|
41
|
Wei J, Tian H, Zhou R, Shao Y, Song F, Gao YQ. Topological Constraints with Optimal Length Promote the Formation of Chromosomal Territories at Weakened Degree of Phase Separation. J Phys Chem B 2021; 125:9092-9101. [PMID: 34351763 DOI: 10.1021/acs.jpcb.1c03523] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
It is generally agreed that the nuclei of eukaryotic cells at interphase are partitioned into disjointed territories, with distinct regions occupied by certain chromosomes. However, the underlying mechanism for such territorialization is still under debate. Here we model chromosomes as coarse-grained block copolymers and to investigate the effect of loop domains (LDs) on the formation of compartments and territories based on dissipative particle dynamics. A critical length of LDs, which depends sensitively on the length of polymeric blocks, is obtained to minimize the degree of phase separation. This also applies to the two-polymer system: The critical length not only maximizes the degree of territorialization but also minimizes the degree of phase separation. Interestingly, by comparing with experimental data, we find the critical length for LDs and the corresponding length of blocks to be respectively very close to the mean length of topologically associating domains (TADs) and chromosomal segments with different densities of CpG islands for human chromosomes. The results indicate that topological constraints with optimal length can contribute to the formation of territories by weakening the degree of phase separation, which likely promotes the chromosomal flexibility in response to genetic regulations.
Collapse
Affiliation(s)
- Jiachen Wei
- State Key Laboratory of Nonlinear Mechanics and Beijing Key Laboratory of Engineered Construction and Mechanobiology, Institute of Mechanics, Chinese Academy of Sciences, Beijing 100190, China.,Shenzhen Bay Laboratory, 5F, No. 9 Duxue Road, Nanshan District, 518055 Shenzhen, Guangdong, China
| | - Hao Tian
- Beijing National Laboratory for Molecular Sciences, College of Chemistry and Molecular Engineering, Peking University, Beijing 100871, China.,Biomedical Pioneering Innovation Center (BIOPIC), Peking University, Beijing 100871, China.,Beijing Advanced Innovation Center for Genomics (ICG), Peking University, Beijing 100871, China
| | - Rui Zhou
- Beijing National Laboratory for Molecular Sciences, College of Chemistry and Molecular Engineering, Peking University, Beijing 100871, China.,Biomedical Pioneering Innovation Center (BIOPIC), Peking University, Beijing 100871, China.,Beijing Advanced Innovation Center for Genomics (ICG), Peking University, Beijing 100871, China
| | - Yingfeng Shao
- State Key Laboratory of Nonlinear Mechanics and Beijing Key Laboratory of Engineered Construction and Mechanobiology, Institute of Mechanics, Chinese Academy of Sciences, Beijing 100190, China.,School of Engineering Science, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Fan Song
- State Key Laboratory of Nonlinear Mechanics and Beijing Key Laboratory of Engineered Construction and Mechanobiology, Institute of Mechanics, Chinese Academy of Sciences, Beijing 100190, China.,School of Engineering Science, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Yi Qin Gao
- Shenzhen Bay Laboratory, 5F, No. 9 Duxue Road, Nanshan District, 518055 Shenzhen, Guangdong, China.,Beijing National Laboratory for Molecular Sciences, College of Chemistry and Molecular Engineering, Peking University, Beijing 100871, China.,Biomedical Pioneering Innovation Center (BIOPIC), Peking University, Beijing 100871, China.,Beijing Advanced Innovation Center for Genomics (ICG), Peking University, Beijing 100871, China
| |
Collapse
|
42
|
Lin X, Qi Y, Latham AP, Zhang B. Multiscale modeling of genome organization with maximum entropy optimization. J Chem Phys 2021; 155:010901. [PMID: 34241389 PMCID: PMC8253599 DOI: 10.1063/5.0044150] [Citation(s) in RCA: 39] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2021] [Accepted: 04/28/2021] [Indexed: 12/15/2022] Open
Abstract
Three-dimensional (3D) organization of the human genome plays an essential role in all DNA-templated processes, including gene transcription, gene regulation, and DNA replication. Computational modeling can be an effective way of building high-resolution genome structures and improving our understanding of these molecular processes. However, it faces significant challenges as the human genome consists of over 6 × 109 base pairs, a system size that exceeds the capacity of traditional modeling approaches. In this perspective, we review the progress that has been made in modeling the human genome. Coarse-grained models parameterized to reproduce experimental data via the maximum entropy optimization algorithm serve as effective means to study genome organization at various length scales. They have provided insight into the principles of whole-genome organization and enabled de novo predictions of chromosome structures from epigenetic modifications. Applications of these models at a near-atomistic resolution further revealed physicochemical interactions that drive the phase separation of disordered proteins and dictate chromatin stability in situ. We conclude with an outlook on the opportunities and challenges in studying chromosome dynamics.
Collapse
Affiliation(s)
- Xingcheng Lin
- Department of Chemistry, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, USA
| | - Yifeng Qi
- Department of Chemistry, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, USA
| | - Andrew P. Latham
- Department of Chemistry, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, USA
| | - Bin Zhang
- Department of Chemistry, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, USA
| |
Collapse
|
43
|
Zhang Y, Yu J, Wang X, Durachko DM, Zhang S, Cosgrove DJ. Molecular insights into the complex mechanics of plant epidermal cell walls. Science 2021; 372:706-711. [PMID: 33986175 DOI: 10.1126/science.abf2824] [Citation(s) in RCA: 129] [Impact Index Per Article: 32.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2020] [Accepted: 03/29/2021] [Indexed: 12/26/2022]
Abstract
Plants have evolved complex nanofibril-based cell walls to meet diverse biological and physical constraints. How strength and extensibility emerge from the nanoscale-to-mesoscale organization of growing cell walls has long been unresolved. We sought to clarify the mechanical roles of cellulose and matrix polysaccharides by developing a coarse-grained model based on polymer physics that recapitulates aspects of assembly and tensile mechanics of epidermal cell walls. Simple noncovalent binding interactions in the model generate bundled cellulose networks resembling that of primary cell walls and possessing stress-dependent elasticity, stiffening, and plasticity beyond a yield threshold. Plasticity originates from fibril-fibril sliding in aligned cellulose networks. This physical model provides quantitative insight into fundamental questions of plant mechanobiology and reveals design principles of biomaterials that combine stiffness with yielding and extensibility.
Collapse
Affiliation(s)
- Yao Zhang
- Department of Biology, Pennsylvania State University, University Park, PA 16802, USA
| | - Jingyi Yu
- Department of Biology, Pennsylvania State University, University Park, PA 16802, USA
| | - Xuan Wang
- Department of Biology, Pennsylvania State University, University Park, PA 16802, USA
| | - Daniel M Durachko
- Department of Biology, Pennsylvania State University, University Park, PA 16802, USA
| | - Sulin Zhang
- Department of Engineering Science and Mechanics and Department of Biomedical Engineering, Pennsylvania State University, University Park, PA 16802, USA.
| | - Daniel J Cosgrove
- Department of Biology, Pennsylvania State University, University Park, PA 16802, USA.
| |
Collapse
|
44
|
Farr SE, Woods EJ, Joseph JA, Garaizar A, Collepardo-Guevara R. Nucleosome plasticity is a critical element of chromatin liquid-liquid phase separation and multivalent nucleosome interactions. Nat Commun 2021; 12:2883. [PMID: 34001913 PMCID: PMC8129070 DOI: 10.1038/s41467-021-23090-3] [Citation(s) in RCA: 84] [Impact Index Per Article: 21.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2020] [Accepted: 03/23/2021] [Indexed: 12/19/2022] Open
Abstract
Liquid-liquid phase separation (LLPS) is an important mechanism that helps explain the membraneless compartmentalization of the nucleus. Because chromatin compaction and LLPS are collective phenomena, linking their modulation to the physicochemical features of nucleosomes is challenging. Here, we develop an advanced multiscale chromatin model-integrating atomistic representations, a chemically-specific coarse-grained model, and a minimal model-to resolve individual nucleosomes within sub-Mb chromatin domains and phase-separated systems. To overcome the difficulty of sampling chromatin at high resolution, we devise a transferable enhanced-sampling Debye-length replica-exchange molecular dynamics approach. We find that nucleosome thermal fluctuations become significant at physiological salt concentrations and destabilize the 30-nm fiber. Our simulations show that nucleosome breathing favors stochastic folding of chromatin and promotes LLPS by simultaneously boosting the transient nature and heterogeneity of nucleosome-nucleosome contacts, and the effective nucleosome valency. Our work puts forward the intrinsic plasticity of nucleosomes as a key element in the liquid-like behavior of nucleosomes within chromatin, and the regulation of chromatin LLPS.
Collapse
Affiliation(s)
- Stephen E Farr
- Maxwell Centre, Cavendish Laboratory, Department of Physics, University of Cambridge, Cambridge, UK
| | - Esmae J Woods
- Maxwell Centre, Cavendish Laboratory, Department of Physics, University of Cambridge, Cambridge, UK
| | - Jerelle A Joseph
- Maxwell Centre, Cavendish Laboratory, Department of Physics, University of Cambridge, Cambridge, UK
- Yusuf Hamied Department of Chemistry, University of Cambridge, Cambridge, UK
- Department of Genetics, University of Cambridge, Cambridge, UK
| | - Adiran Garaizar
- Maxwell Centre, Cavendish Laboratory, Department of Physics, University of Cambridge, Cambridge, UK
| | - Rosana Collepardo-Guevara
- Maxwell Centre, Cavendish Laboratory, Department of Physics, University of Cambridge, Cambridge, UK.
- Yusuf Hamied Department of Chemistry, University of Cambridge, Cambridge, UK.
- Department of Genetics, University of Cambridge, Cambridge, UK.
| |
Collapse
|
45
|
Turowski TW, Boguta M. Specific Features of RNA Polymerases I and III: Structure and Assembly. Front Mol Biosci 2021; 8:680090. [PMID: 34055890 PMCID: PMC8160253 DOI: 10.3389/fmolb.2021.680090] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2021] [Accepted: 04/16/2021] [Indexed: 12/22/2022] Open
Abstract
RNA polymerase I (RNAPI) and RNAPIII are multi-heterogenic protein complexes that specialize in the transcription of highly abundant non-coding RNAs, such as ribosomal RNA (rRNA) and transfer RNA (tRNA). In terms of subunit number and structure, RNAPI and RNAPIII are more complex than RNAPII that synthesizes thousands of different mRNAs. Specific subunits of the yeast RNAPI and RNAPIII form associated subcomplexes that are related to parts of the RNAPII initiation factors. Prior to their delivery to the nucleus where they function, RNAP complexes are assembled at least partially in the cytoplasm. Yeast RNAPI and RNAPIII share heterodimer Rpc40-Rpc19, a functional equivalent to the αα homodimer which initiates assembly of prokaryotic RNAP. In the process of yeast RNAPI and RNAPIII biogenesis, Rpc40 and Rpc19 form the assembly platform together with two small, bona fide eukaryotic subunits, Rpb10 and Rpb12. We propose that this assembly platform is co-translationally seeded while the Rpb10 subunit is synthesized by cytoplasmic ribosome machinery. The translation of Rpb10 is stimulated by Rbs1 protein, which binds to the 3′-untranslated region of RPB10 mRNA and hypothetically brings together Rpc19 and Rpc40 subunits to form the αα-like heterodimer. We suggest that such a co-translational mechanism is involved in the assembly of RNAPI and RNAPIII complexes.
Collapse
Affiliation(s)
- Tomasz W Turowski
- Wellcome Trust Centre for Cell Biology, University of Edinburgh, Edinburgh, United Kingdom.,Institute of Biochemistry and Biophysics, Polish Academy of Sciences, Warsaw, Poland
| | - Magdalena Boguta
- Institute of Biochemistry and Biophysics, Polish Academy of Sciences, Warsaw, Poland
| |
Collapse
|
46
|
Using computational modelling to reveal mechanisms of epigenetic Polycomb control. Biochem Soc Trans 2021; 49:71-77. [PMID: 33616630 PMCID: PMC7925002 DOI: 10.1042/bst20190955] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2020] [Revised: 01/29/2021] [Accepted: 02/01/2021] [Indexed: 11/17/2022]
Abstract
The Polycomb system is essential for stable gene silencing in many organisms. This regulation is achieved in part through addition of the histone modifications H3K27me2/me3 by Polycomb Repressive Complex 2 (PRC2). These modifications are believed to be the causative epigenetic memory elements of PRC2-mediated silencing. As these marks are stored locally in the chromatin, PRC2-based memory is a cis-acting system. A key feature of stable epigenetic memory in cis is PRC2-mediated, self-reinforcing feedback from K27-methylated histones onto nearby histones in a read-write paradigm. However, it was not clear under what conditions such feedback can lead to stable memory, able, for example, to survive the perturbation of histone dilution at DNA replication. In this context, computational modelling has allowed a rigorous exploration of possible underlying memory mechanisms and has also greatly accelerated our understanding of switching between active and silenced states. Specifically, modelling has predicted that switching and memory at Polycomb loci is digital, with a locus being either active or inactive, rather than possessing intermediate, smoothly varying levels of activation. Here, we review recent advances in models of Polycomb control, focusing on models of epigenetic switching through nucleation and spreading of H3K27me2/me3. We also examine models that incorporate transcriptional feedback antagonism and those including bivalent chromatin states. With more quantitative experimental data on histone modification kinetics, as well as single-cell resolution data on transcription and protein levels for PRC2 targets, we anticipate an expanded need for modelling to help dissect increasingly interconnected and complex memory mechanisms.
Collapse
|
47
|
Loop competition and extrusion model predicts CTCF interaction specificity. Nat Commun 2021; 12:1046. [PMID: 33594051 PMCID: PMC7886907 DOI: 10.1038/s41467-021-21368-0] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2020] [Accepted: 01/22/2021] [Indexed: 12/20/2022] Open
Abstract
Three-dimensional chromatin looping interactions play an important role in constraining enhancer–promoter interactions and mediating transcriptional gene regulation. CTCF is thought to play a critical role in the formation of these loops, but the specificity of which CTCF binding events form loops and which do not is difficult to predict. Loops often have convergent CTCF binding site motif orientation, but this constraint alone is only weakly predictive of genome-wide interaction data. Here we present an easily interpretable and simple mathematical model of CTCF mediated loop formation which is consistent with Cohesin extrusion and can predict ChIA-PET CTCF looping interaction measurements with high accuracy. Competition between overlapping loops is a critical determinant of loop specificity. We show that this model is consistent with observed chromatin interaction frequency changes induced by CTCF binding site deletion, inversion, and mutation, and is also consistent with observed constraints on validated enhancer–promoter interactions. Boundaries of topologically associated domains in genomes are marked by CTCF and cohesin binding. Here the authors predict CTCF interaction specificity by building a simple mathematical model with features including loop competition and extrusion.
Collapse
|
48
|
Birnie A, Dekker C. Genome-in-a-Box: Building a Chromosome from the Bottom Up. ACS NANO 2021; 15:111-124. [PMID: 33347266 PMCID: PMC7844827 DOI: 10.1021/acsnano.0c07397] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/02/2020] [Accepted: 12/16/2020] [Indexed: 05/24/2023]
Abstract
Chromosome structure and dynamics are essential for life, as the way that our genomes are spatially organized within cells is crucial for gene expression, differentiation, and genome transfer to daughter cells. There is a wide variety of methods available to study chromosomes, ranging from live-cell studies to single-molecule biophysics, which we briefly review. While these technologies have yielded a wealth of data, such studies still leave a significant gap between top-down experiments on live cells and bottom-up in vitro single-molecule studies of DNA-protein interactions. Here, we introduce "genome-in-a-box" (GenBox) as an alternative in vitro approach to build and study chromosomes, which bridges this gap. The concept is to assemble a chromosome from the bottom up by taking deproteinated genome-sized DNA isolated from live cells and subsequently add purified DNA-organizing elements, followed by encapsulation in cell-sized containers using microfluidics. Grounded in the rationale of synthetic cell research, the approach would enable to experimentally study emergent effects at the global genome level that arise from the collective action of local DNA-structuring elements. We review the various DNA-structuring elements present in nature, from nucleoid-associated proteins and SMC complexes to phase separation and macromolecular crowders. Finally, we discuss how GenBox can contribute to several open questions on chromosome structure and dynamics.
Collapse
Affiliation(s)
- Anthony Birnie
- Department of Bionanoscience, Kavli
Institute of Nanoscience Delft, Delft University
of Technology, Van der Maasweg 9, 2629 HZ Delft, The Netherlands
| | - Cees Dekker
- Department of Bionanoscience, Kavli
Institute of Nanoscience Delft, Delft University
of Technology, Van der Maasweg 9, 2629 HZ Delft, The Netherlands
| |
Collapse
|
49
|
Belokopytova P, Fishman V. Predicting Genome Architecture: Challenges and Solutions. Front Genet 2021; 11:617202. [PMID: 33552135 PMCID: PMC7862721 DOI: 10.3389/fgene.2020.617202] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2020] [Accepted: 12/15/2020] [Indexed: 12/22/2022] Open
Abstract
Genome architecture plays a pivotal role in gene regulation. The use of high-throughput methods for chromatin profiling and 3-D interaction mapping provide rich experimental data sets describing genome organization and dynamics. These data challenge development of new models and algorithms connecting genome architecture with epigenetic marks. In this review, we describe how chromatin architecture could be reconstructed from epigenetic data using biophysical or statistical approaches. We discuss the applicability and limitations of these methods for understanding the mechanisms of chromatin organization. We also highlight the emergence of new predictive approaches for scoring effects of structural variations in human cells.
Collapse
Affiliation(s)
- Polina Belokopytova
- Natural Sciences Department, Novosibirsk State University, Novosibirsk, Russia
- Institute of Cytology and Genetics Siberian Branch of Russian Academy of Sciences (SB RAS), Novosibirsk, Russia
| | - Veniamin Fishman
- Natural Sciences Department, Novosibirsk State University, Novosibirsk, Russia
- Institute of Cytology and Genetics Siberian Branch of Russian Academy of Sciences (SB RAS), Novosibirsk, Russia
| |
Collapse
|
50
|
Johnstone CP, Wang NB, Sevier SA, Galloway KE. Understanding and Engineering Chromatin as a Dynamical System across Length and Timescales. Cell Syst 2020; 11:424-448. [PMID: 33212016 DOI: 10.1016/j.cels.2020.09.011] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2020] [Revised: 09/22/2020] [Accepted: 09/29/2020] [Indexed: 12/20/2022]
Abstract
Connecting the molecular structure and function of chromatin across length and timescales remains a grand challenge to understanding and engineering cellular behaviors. Across five orders of magnitude, dynamic processes constantly reshape chromatin structures, driving spaciotemporal patterns of gene expression and cell fate. Through the interplay of structure and function, the genome operates as a highly dynamic feedback control system. Recent experimental techniques have provided increasingly detailed data that revise and augment the relatively static, hierarchical view of genomic architecture with an understanding of how dynamic processes drive organization. Here, we review how novel technologies from sequencing, imaging, and synthetic biology refine our understanding of chromatin structure and function and enable chromatin engineering. Finally, we discuss opportunities to use these tools to enhance understanding of the dynamic interrelationship of chromatin structure and function.
Collapse
Affiliation(s)
| | - Nathan B Wang
- Department of Chemical Engineering, MIT, 25 Ames St., Cambridge, MA 02139, USA
| | - Stuart A Sevier
- Department of Systems Biology, Harvard Medical School, Boston, MA, USA; Department of Data Sciences, Dana-Farber Cancer Institute, Boston, MA, USA.
| | - Kate E Galloway
- Department of Chemical Engineering, MIT, 25 Ames St., Cambridge, MA 02139, USA.
| |
Collapse
|