1
|
Gergues MM, Lalani LK, Kheirbek MA. Identifying dysfunctional cell types and circuits in animal models for psychiatric disorders with calcium imaging. Neuropsychopharmacology 2024; 50:274-284. [PMID: 39122815 PMCID: PMC11525937 DOI: 10.1038/s41386-024-01942-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/02/2024] [Revised: 05/30/2024] [Accepted: 07/09/2024] [Indexed: 08/12/2024]
Abstract
A central goal of neuroscience is to understand how the brain transforms external stimuli and internal bodily signals into patterns of activity that underlie cognition, emotional states, and behavior. Understanding how these patterns of activity may be disrupted in mental illness is crucial for developing novel therapeutics. It is well appreciated that psychiatric disorders are complex, circuit-based disorders that arise from dysfunctional activity patterns generated in discrete cell types and their connections. Recent advances in large-scale, cell-type specific calcium imaging approaches have shed new light on the cellular, circuit, and network-level dysfunction in animal models for psychiatric disorders. Here, we highlight a series of recent findings over the last ~10 years from in vivo calcium imaging studies that show how aberrant patterns of activity in discrete cell types and circuits may underlie behavioral deficits in animal models for several psychiatric disorders, including depression, anxiety, autism spectrum disorders, and schizophrenia. These advances in calcium imaging in pre-clinical models demonstrate the power of cell-type-specific imaging tools in understanding the underlying dysfunction in cell types, activity patterns, and neural circuits that may contribute to disease and provide new blueprints for developing more targeted therapeutics and treatment strategies.
Collapse
Affiliation(s)
- Mark M Gergues
- Neuroscience Graduate Program, University of California San Francisco, San Francisco, CA, USA
- Department of Psychiatry and Behavioral Sciences, University of California San Francisco, San Francisco, CA, USA
- Weill Institute for Neurosciences, University of California, San Francisco, San Francisco, CA, USA
| | - Lahin K Lalani
- Neuroscience Graduate Program, University of California San Francisco, San Francisco, CA, USA
- Department of Psychiatry and Behavioral Sciences, University of California San Francisco, San Francisco, CA, USA
- Weill Institute for Neurosciences, University of California, San Francisco, San Francisco, CA, USA
| | - Mazen A Kheirbek
- Neuroscience Graduate Program, University of California San Francisco, San Francisco, CA, USA.
- Department of Psychiatry and Behavioral Sciences, University of California San Francisco, San Francisco, CA, USA.
- Weill Institute for Neurosciences, University of California, San Francisco, San Francisco, CA, USA.
- Kavli Institute for Fundamental Neuroscience, University of California San Francisco, San Francisco, CA, USA.
- Center for Integrative Neuroscience, University of California San Francisco, San Francisco, CA, USA.
| |
Collapse
|
2
|
Gotoh M, Dezawa S, Takashima I, Yamamoto S. Effects of focal cortical cooling on somatosensory evoked potentials in rats. Brain Res 2024; 1840:148995. [PMID: 38735427 DOI: 10.1016/j.brainres.2024.148995] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2024] [Revised: 04/26/2024] [Accepted: 05/08/2024] [Indexed: 05/14/2024]
Abstract
Although the focal brain cooling technique is widely used to examine brain function, the effects of cortical temperature at various levels on sensory information processing and neural mechanisms remain underexplored. To elucidate the mechanisms of temperature modulation in somatosensory processing, this study aimed to examine how P1 and N1 deflections of somatosensory evoked potentials (SEPs) depend on cortical temperature and how excitatory and inhibitory inputs contribute to this temperature dependency. SEPs were generated through electrical stimulation of the contralateral forepaw in anesthetized rats. The SEPs were recorded while cortical temperatures were altered between 17-38 °C either without any antagonists, with a gamma-aminobutyric acid type A (GABAA) receptor antagonist (gabazine), with an aminomethylphosphonic acid (AMPA) receptor antagonist (NBQX), or with an N-Methyl-D-aspartic acid (NMDA) receptor antagonist ([R]-CPP). The effects of different gabazine concentrations (0, 1, and 10 µM) were examined in the 35-38 °C range. The P1/N1 amplitudes and their peak-to-peak differences plotted against cortical temperature showed an inverted U relationship with a maximum at approximately 27.5 °C when no antagonists were administered. The negative correlation between these amplitudes and temperatures of ≥ 27.5 °C plateaued after gabazine administration, which occurred progressively as the gabazine concentration increased. In contrast, the correlation remained negative after the administration of NBQX and (R)-CPP. These results suggest that GABAergic inhibitory inputs contribute to the negative correlation between SEP amplitude and cortical temperature around the physiological cortical temperature.
Collapse
Affiliation(s)
- Mizuho Gotoh
- Department of Information Technology and Human Factors, National Institute of Advanced Industrial Science and Technology (AIST), Tsukuba, Japan; Graduate School of Comprehensive Human Sciences, University of Tsukuba, Tsukuba Japan; Department of Rehabilitation for Brain Functions, Research Institute of National Rehabilitation Center for Persons with Disabilities, Tokorozawa, Japan
| | - Shinnosuke Dezawa
- Department of Information Technology and Human Factors, National Institute of Advanced Industrial Science and Technology (AIST), Tsukuba, Japan; Graduate School of Comprehensive Human Sciences, University of Tsukuba, Tsukuba Japan; Faculty of Medical and Health Sciences, Tsukuba International University, Tsuchiura, Japan
| | - Ichiro Takashima
- Department of Information Technology and Human Factors, National Institute of Advanced Industrial Science and Technology (AIST), Tsukuba, Japan; Graduate School of Comprehensive Human Sciences, University of Tsukuba, Tsukuba Japan; Department of Information, Artificial Intelligence and Data Science, Daiichi Institute of Technology, Tokyo, Japan
| | - Shinya Yamamoto
- Department of Information Technology and Human Factors, National Institute of Advanced Industrial Science and Technology (AIST), Tsukuba, Japan; Graduate School of Comprehensive Human Sciences, University of Tsukuba, Tsukuba Japan.
| |
Collapse
|
3
|
Lee S, Jung WB, Moon H, Im GH, Noh YW, Shin W, Kim YG, Yi JH, Hong SJ, Jung Y, Ahn S, Kim SG, Kim E. Anterior cingulate cortex-related functional hyperconnectivity underlies sensory hypersensitivity in Grin2b-mutant mice. Mol Psychiatry 2024; 29:3195-3207. [PMID: 38704508 PMCID: PMC11449790 DOI: 10.1038/s41380-024-02572-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/10/2023] [Revised: 04/17/2024] [Accepted: 04/18/2024] [Indexed: 05/06/2024]
Abstract
Sensory abnormalities are observed in ~90% of individuals with autism spectrum disorders (ASD), but the underlying mechanisms are poorly understood. GluN2B, an NMDA receptor subunit that regulates long-term depression and circuit refinement during brain development, has been strongly implicated in ASD, but whether GRIN2B mutations lead to sensory abnormalities remains unclear. Here, we report that Grin2b-mutant mice show behavioral sensory hypersensitivity and brain hyperconnectivity associated with the anterior cingulate cortex (ACC). Grin2b-mutant mice with a patient-derived C456Y mutation (Grin2bC456Y/+) show sensory hypersensitivity to mechanical, thermal, and electrical stimuli through supraspinal mechanisms. c-fos and functional magnetic resonance imaging indicate that the ACC is hyperactive and hyperconnected with other brain regions under baseline and stimulation conditions. ACC pyramidal neurons show increased excitatory synaptic transmission. Chemogenetic inhibition of ACC pyramidal neurons normalizes ACC hyperconnectivity and sensory hypersensitivity. These results suggest that GluN2B critically regulates ASD-related cortical connectivity and sensory brain functions.
Collapse
Affiliation(s)
- Soowon Lee
- Graduate School of Medical Science and Engineering, Korea Advanced Institute of Science and Technology (KAIST), Daejeon, 34141, Korea
- Department of Anesthesiology and Pain Medicine, Seoul National University Bundang Hospital, Seongnam, 13620, Korea
| | - Won Beom Jung
- Center for Neuroscience Imaging Research, Institute for Basic Science (IBS), Suwon, 16419, Korea
- Emotion, Cognition & Behavior Research Group, Korea Brain Research Institute (KBRI), Daegu, 41062, Korea
| | - Heera Moon
- Department of Biological Sciences, Korea Advanced Institute of Science and Technology (KAIST), Daejeon, 34141, Korea
| | - Geun Ho Im
- Center for Neuroscience Imaging Research, Institute for Basic Science (IBS), Suwon, 16419, Korea
| | - Young Woo Noh
- Center for Synaptic Brain Dysfunctions, Institute for Basic Science (IBS), Daejeon, 34141, Korea
| | - Wangyong Shin
- Center for Synaptic Brain Dysfunctions, Institute for Basic Science (IBS), Daejeon, 34141, Korea
| | - Yong Gyu Kim
- Center for Synaptic Brain Dysfunctions, Institute for Basic Science (IBS), Daejeon, 34141, Korea
| | - Jee Hyun Yi
- Center for Synaptic Brain Dysfunctions, Institute for Basic Science (IBS), Daejeon, 34141, Korea
| | - Seok Jun Hong
- Center for Neuroscience Imaging Research, Institute for Basic Science (IBS), Suwon, 16419, Korea
- Department of Biomedical Engineering, Sungkyunkwan University, Suwon, 16419, Korea
| | - Yongwhan Jung
- Therapeutics and Biotechnology Division, Korea Research Institute of Chemical Technology (KRICT), Daejeon, 34114, Korea
| | - Sunjoo Ahn
- Therapeutics and Biotechnology Division, Korea Research Institute of Chemical Technology (KRICT), Daejeon, 34114, Korea
| | - Seong-Gi Kim
- Center for Neuroscience Imaging Research, Institute for Basic Science (IBS), Suwon, 16419, Korea.
- Department of Biomedical Engineering, Sungkyunkwan University, Suwon, 16419, Korea.
- Department of Intelligent Precision Healthcare Convergence, Sungkyunkwan University, Suwon, 16419, Korea.
| | - Eunjoon Kim
- Department of Biological Sciences, Korea Advanced Institute of Science and Technology (KAIST), Daejeon, 34141, Korea.
- Center for Synaptic Brain Dysfunctions, Institute for Basic Science (IBS), Daejeon, 34141, Korea.
| |
Collapse
|
4
|
Vaissiere T, Michaelson SD, Creson T, Goins J, Fürth D, Balazsfi D, Rojas C, Golovin R, Meletis K, Miller CA, O’Connor D, Fontolan L, Rumbaugh G. Syngap1 Promotes Cognitive Function through Regulation of Cortical Sensorimotor Dynamics. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2023.09.27.559787. [PMID: 37808765 PMCID: PMC10557642 DOI: 10.1101/2023.09.27.559787] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/10/2023]
Abstract
Perception, a cognitive construct, emerges through sensorimotor integration (SMI). The genetic mechanisms that shape SMI required for perception are unknown. Here, we demonstrate in mice that expression of the autism/intellectual disability gene, Syngap1, in cortical excitatory neurons is required for formation of somatomotor networks that promote SMI-mediated perception. Cortical Syngap1 expression was necessary and sufficient for setting tactile sensitivity, sustaining tactile object exploration, and promoting tactile learning. Mice with deficient Syngap1 expression exhibited impaired neural dynamics induced by exploratory touches within a cortical-thalamic network known to promote attention and perception. Disrupted neuronal dynamics were associated with circuit-specific long-range synaptic connectivity abnormalities. Our data support a model where autonomous Syngap1 expression in cortical excitatory neurons promotes cognitive abilities through assembly of circuits that integrate temporally-overlapping sensory and motor signals, a process that promotes perception and attention. These data provide systems-level insights into the robust association between Syngap1 expression and cognitive ability.
Collapse
Affiliation(s)
- Thomas Vaissiere
- Department of Neuroscience, The Herbert Wertheim UF Scripps Institute for Biomedical Innovation & Technology, Jupiter, FL, USA
| | - Sheldon D. Michaelson
- Department of Neuroscience, The Herbert Wertheim UF Scripps Institute for Biomedical Innovation & Technology, Jupiter, FL, USA
| | - Thomas Creson
- Department of Neuroscience, The Herbert Wertheim UF Scripps Institute for Biomedical Innovation & Technology, Jupiter, FL, USA
| | - Jessie Goins
- Department of Neuroscience, The Herbert Wertheim UF Scripps Institute for Biomedical Innovation & Technology, Jupiter, FL, USA
| | - Daniel Fürth
- SciLifeLab, Department of Immunology, Genetics & Pathology, Uppsala University, Uppsala, Sweden
| | - Diana Balazsfi
- Department of Neuroscience, The Herbert Wertheim UF Scripps Institute for Biomedical Innovation & Technology, Jupiter, FL, USA
| | - Camilo Rojas
- Department of Neuroscience, The Herbert Wertheim UF Scripps Institute for Biomedical Innovation & Technology, Jupiter, FL, USA
| | - Randall Golovin
- Department of Neuroscience, The Herbert Wertheim UF Scripps Institute for Biomedical Innovation & Technology, Jupiter, FL, USA
| | | | - Courtney A. Miller
- Department of Neuroscience, The Herbert Wertheim UF Scripps Institute for Biomedical Innovation & Technology, Jupiter, FL, USA
- Department of Molecular Medicine, UF Scripps Biomedical Research, Jupiter, FL, USA
| | - Daniel O’Connor
- Department of Neuroscience, The Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Lorenzo Fontolan
- Aix-Marseille Université, INSERM, INMED, Turing Centre for Living Systems, Marseille, 13009, France
| | - Gavin Rumbaugh
- Department of Neuroscience, The Herbert Wertheim UF Scripps Institute for Biomedical Innovation & Technology, Jupiter, FL, USA
| |
Collapse
|
5
|
Shi Q, Wu L, Ren B, Guo K, Jiang YH, Zhang YQ, Hu L. Impaired tactile processing in autism-associated Shank3 mutant dogs: neural mechanism and intervention. Sci Bull (Beijing) 2024:S2095-9273(24)00645-5. [PMID: 39294081 DOI: 10.1016/j.scib.2024.09.011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2024] [Revised: 07/02/2024] [Accepted: 09/05/2024] [Indexed: 09/20/2024]
Affiliation(s)
- Qi Shi
- State Key Laboratory for Molecular and Developmental Biology, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100101, China; College of Life Sciences, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Liang Wu
- State Key Laboratory for Molecular and Developmental Biology, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100101, China
| | - Baolong Ren
- State Key Laboratory for Molecular and Developmental Biology, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100101, China; Sino-Danish College, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Kun Guo
- School of Psychology, University of Lincoln, Brayford Pool, Lincoln LN6 7TS, UK
| | - Yong-Hui Jiang
- Department of Genetics, Yale University School of Medicine, New Haven, CT 06510, USA; Department of Neuroscience, Yale University School of Medicine, New Haven, CT 06510, USA; Department of Pediatrics, Yale University School of Medicine, New Haven, CT 06510, USA
| | - Yong Q Zhang
- State Key Laboratory for Molecular and Developmental Biology, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100101, China; College of Life Sciences, University of Chinese Academy of Sciences, Beijing 100049, China; School of Life Sciences, Hubei University, Wuhan 430415, China.
| | - Li Hu
- CAS Key Laboratory of Mental Health, Institute of Psychology, Chinese Academy of Sciences, Beijing 100101, China; Department of Psychology, University of Chinese Academy of Sciences, Beijing 100049, China.
| |
Collapse
|
6
|
Liu J, Ye J, Ji C, Ren W, He Y, Xu F, Wang F. Mapping the Behavioral Signatures of Shank3b Mice in Both Sexes. Neurosci Bull 2024; 40:1299-1314. [PMID: 38900384 PMCID: PMC11365888 DOI: 10.1007/s12264-024-01237-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2023] [Accepted: 11/20/2023] [Indexed: 06/21/2024] Open
Abstract
Autism spectrum disorders (ASD) are characterized by social and repetitive abnormalities. Although the ASD mouse model with Shank3b mutations is widely used in ASD research, the behavioral phenotype of this model has not been fully elucidated. Here, a 3D-motion capture system and linear discriminant analysis were used to comprehensively record and analyze the behavioral patterns of male and female Shank3b mutant mice. It was found that both sexes replicated the core and accompanied symptoms of ASD, with significant sex differences. Further, Shank3b heterozygous knockout mice exhibited distinct autistic behaviors, that were significantly different from those those observed in the wild type and homozygous knockout groups. Our findings provide evidence for the inclusion of both sexes and experimental approaches to efficiently characterize heterozygous transgenic models, which are more clinically relevant in autistic studies.
Collapse
Affiliation(s)
- Jingjing Liu
- NMPA Key Laboratory for Research and Evaluation of Viral Vector Technology in Cell and Gene Therapy Medicinal Products, Shenzhen-Hong Kong Institute of Brain Science, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, 518055, China
- Shenzhen Key Laboratory of Viral Vectors for Biomedicine, Translational Research Center for the Nervous System, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, 518055, China
- Key Laboratory of Quality Control Technology for Virus-Based Therapeutics, Guangdong Provincial Medical Products Administration, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, 518055, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Jialin Ye
- Shenzhen Key Lab of Translational Research for Brain Diseases, Translational Research Center for the Nervous System, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, 518055, China
- Guangdong Provincial Key Laboratory of Brain Connectome and Behavior, the Brain Cognition and Brain Disease Institute, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, 518055, China
- CAS Key Laboratory of Brain Connectome and Manipulation, the Brain Cognition and Brain Disease Institute, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, 518055, China
| | - Chunyuan Ji
- Shenzhen Key Lab of Translational Research for Brain Diseases, Translational Research Center for the Nervous System, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, 518055, China
- Guangdong Provincial Key Laboratory of Brain Connectome and Behavior, the Brain Cognition and Brain Disease Institute, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, 518055, China
- CAS Key Laboratory of Brain Connectome and Manipulation, the Brain Cognition and Brain Disease Institute, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, 518055, China
| | - Wenting Ren
- Shenzhen Key Lab of Translational Research for Brain Diseases, Translational Research Center for the Nervous System, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, 518055, China
- Guangdong Provincial Key Laboratory of Brain Connectome and Behavior, the Brain Cognition and Brain Disease Institute, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, 518055, China
- CAS Key Laboratory of Brain Connectome and Manipulation, the Brain Cognition and Brain Disease Institute, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, 518055, China
| | - Youwei He
- NMPA Key Laboratory for Research and Evaluation of Viral Vector Technology in Cell and Gene Therapy Medicinal Products, Shenzhen-Hong Kong Institute of Brain Science, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, 518055, China
- Shenzhen Key Laboratory of Viral Vectors for Biomedicine, Translational Research Center for the Nervous System, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, 518055, China
- Key Laboratory of Quality Control Technology for Virus-Based Therapeutics, Guangdong Provincial Medical Products Administration, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, 518055, China
| | - Fuqiang Xu
- NMPA Key Laboratory for Research and Evaluation of Viral Vector Technology in Cell and Gene Therapy Medicinal Products, Shenzhen-Hong Kong Institute of Brain Science, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, 518055, China.
- Shenzhen Key Laboratory of Viral Vectors for Biomedicine, Translational Research Center for the Nervous System, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, 518055, China.
- Key Laboratory of Quality Control Technology for Virus-Based Therapeutics, Guangdong Provincial Medical Products Administration, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, 518055, China.
- University of Chinese Academy of Sciences, Beijing, 100049, China.
| | - Feng Wang
- NMPA Key Laboratory for Research and Evaluation of Viral Vector Technology in Cell and Gene Therapy Medicinal Products, Shenzhen-Hong Kong Institute of Brain Science, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, 518055, China.
- Shenzhen Key Lab of Translational Research for Brain Diseases, Translational Research Center for the Nervous System, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, 518055, China.
- Guangdong Provincial Key Laboratory of Brain Connectome and Behavior, the Brain Cognition and Brain Disease Institute, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, 518055, China.
- CAS Key Laboratory of Brain Connectome and Manipulation, the Brain Cognition and Brain Disease Institute, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, 518055, China.
| |
Collapse
|
7
|
Wang HC, Feldman DE. Degraded tactile coding in the Cntnap2 mouse model of autism. Cell Rep 2024; 43:114612. [PMID: 39110592 PMCID: PMC11396660 DOI: 10.1016/j.celrep.2024.114612] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2023] [Revised: 06/20/2024] [Accepted: 07/24/2024] [Indexed: 09/01/2024] Open
Abstract
Atypical sensory processing is common in autism, but how neural coding is disrupted in sensory cortex is unclear. We evaluate whisker touch coding in L2/3 of somatosensory cortex (S1) in Cntnap2-/- mice, which have reduced inhibition. This classically predicts excess pyramidal cell spiking, but this remains controversial, and other deficits may dominate. We find that c-fos expression is elevated in S1 of Cntnap2-/- mice under spontaneous activity conditions but is comparable to that of control mice after whisker stimulation, suggesting normal sensory-evoked spike rates. GCaMP8m imaging from L2/3 pyramidal cells shows no excess whisker responsiveness, but it does show multiple signs of degraded somatotopic coding. This includes broadened whisker-tuning curves, a blurred whisker map, and blunted whisker point representations. These disruptions are greater in noisy than in sparse sensory conditions. Tuning instability across days is also substantially elevated in Cntnap2-/-. Thus, Cntnap2-/- mice show no excess sensory-evoked activity, but a degraded and unstable tactile code in S1.
Collapse
Affiliation(s)
- Han Chin Wang
- Department of Molecular & Cell Biology and Helen Wills Neuroscience Institute, University of California, Berkeley, Berkeley, CA 94720, USA
| | - Daniel E Feldman
- Department of Molecular & Cell Biology and Helen Wills Neuroscience Institute, University of California, Berkeley, Berkeley, CA 94720, USA.
| |
Collapse
|
8
|
Garcia MF, Retallick-Townsley K, Pruitt A, Davidson E, Dai Y, Fitzpatrick SE, Sen A, Cohen S, Livoti O, Khan S, Dossou G, Cheung J, Deans PJM, Wang Z, Huckins L, Hoffman E, Brennand K. Dynamic convergence of autism disorder risk genes across neurodevelopment. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.08.23.609190. [PMID: 39229156 PMCID: PMC11370590 DOI: 10.1101/2024.08.23.609190] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 09/05/2024]
Abstract
Over a hundred risk genes underlie risk for autism spectrum disorder (ASD) but the extent to which they converge on shared downstream targets to increase ASD risk is unknown. To test the hypothesis that cellular context impacts the nature of convergence, here we apply a pooled CRISPR approach to target 29 ASD loss-of-function genes in human induced pluripotent stem cell (hiPSC)-derived neural progenitor cells, glutamatergic neurons, and GABAergic neurons. Two distinct approaches (gene-level and network-level analyses) demonstrate that convergence is greatest in mature glutamatergic neurons. Convergent effects are dynamic, varying in strength, composition, and biological role between cell types, increasing with functional similarity of the ASD genes examined, and driven by cell-type-specific gene co-expression patterns. Stratification of ASD genes yield targeted drug predictions capable of reversing gene-specific convergent signatures in human cells and ASD-related behaviors in zebrafish. Altogether, convergent networks downstream of ASD risk genes represent novel points of individualized therapeutic intervention.
Collapse
Affiliation(s)
- Meilin Fernandez Garcia
- Departments of Psychiatry and Genetics, Division of Molecular Psychiatry, Department of Genetics, Wu Tsai Institute, Yale University School of Medicine, New Haven, CT 06511
| | - Kayla Retallick-Townsley
- Departments of Psychiatry and Genetics, Division of Molecular Psychiatry, Department of Genetics, Wu Tsai Institute, Yale University School of Medicine, New Haven, CT 06511
- Pamela Sklar Division of Psychiatric Genomics, Department of Genetics and Genomics, Icahn Institute of Genomics and Multiscale Biology, Nash Family Department of Neuroscience, Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, NY 10029
| | - April Pruitt
- Interdepartmental Neuroscience Program, Yale School of Medicine, New Haven, CT 06511
| | - Elizabeth Davidson
- Child Study Center, Yale University School of Medicine, New Haven, CT 06511
| | - Yi Dai
- Child Study Center, Yale University School of Medicine, New Haven, CT 06511
| | - Sarah E Fitzpatrick
- Interdepartmental Neuroscience Program, Yale School of Medicine, New Haven, CT 06511
| | - Annabel Sen
- Departments of Psychiatry and Genetics, Division of Molecular Psychiatry, Department of Genetics, Wu Tsai Institute, Yale University School of Medicine, New Haven, CT 06511
| | - Sophie Cohen
- Departments of Psychiatry and Genetics, Division of Molecular Psychiatry, Department of Genetics, Wu Tsai Institute, Yale University School of Medicine, New Haven, CT 06511
| | - Olivia Livoti
- Departments of Psychiatry and Genetics, Division of Molecular Psychiatry, Department of Genetics, Wu Tsai Institute, Yale University School of Medicine, New Haven, CT 06511
| | - Suha Khan
- Child Study Center, Yale University School of Medicine, New Haven, CT 06511
| | - Grace Dossou
- Child Study Center, Yale University School of Medicine, New Haven, CT 06511
| | - Jen Cheung
- Departments of Psychiatry and Genetics, Division of Molecular Psychiatry, Department of Genetics, Wu Tsai Institute, Yale University School of Medicine, New Haven, CT 06511
| | - P J Michael Deans
- Departments of Psychiatry and Genetics, Division of Molecular Psychiatry, Department of Genetics, Wu Tsai Institute, Yale University School of Medicine, New Haven, CT 06511
| | - Zuoheng Wang
- Child Study Center, Yale University School of Medicine, New Haven, CT 06511
| | - Laura Huckins
- Departments of Psychiatry and Genetics, Division of Molecular Psychiatry, Department of Genetics, Wu Tsai Institute, Yale University School of Medicine, New Haven, CT 06511
- Interdepartmental Neuroscience Program, Yale School of Medicine, New Haven, CT 06511
- Pamela Sklar Division of Psychiatric Genomics, Department of Genetics and Genomics, Icahn Institute of Genomics and Multiscale Biology, Nash Family Department of Neuroscience, Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, NY 10029
| | - Ellen Hoffman
- Interdepartmental Neuroscience Program, Yale School of Medicine, New Haven, CT 06511
- Child Study Center, Yale University School of Medicine, New Haven, CT 06511
| | - Kristen Brennand
- Departments of Psychiatry and Genetics, Division of Molecular Psychiatry, Department of Genetics, Wu Tsai Institute, Yale University School of Medicine, New Haven, CT 06511
- Interdepartmental Neuroscience Program, Yale School of Medicine, New Haven, CT 06511
- Pamela Sklar Division of Psychiatric Genomics, Department of Genetics and Genomics, Icahn Institute of Genomics and Multiscale Biology, Nash Family Department of Neuroscience, Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, NY 10029
| |
Collapse
|
9
|
Davis CN, Toikumo S, Hatoum AS, Khan Y, Pham BK, Pakala SR, Feuer KL, Gelernter J, Sanchez-Roige S, Kember RL, Kranzler HR. Multivariate, Multi-omic Analysis in 799,429 Individuals Identifies 134 Loci Associated with Somatoform Traits. MEDRXIV : THE PREPRINT SERVER FOR HEALTH SCIENCES 2024:2024.07.29.24310991. [PMID: 39132487 PMCID: PMC11312645 DOI: 10.1101/2024.07.29.24310991] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 08/13/2024]
Abstract
Somatoform traits, which manifest as persistent physical symptoms without a clear medical cause, are prevalent and pose challenges to clinical practice. Understanding the genetic basis of these disorders could improve diagnostic and therapeutic approaches. With publicly available summary statistics, we conducted a multivariate genome-wide association study (GWAS) and multi-omic analysis of four somatoform traits-fatigue, irritable bowel syndrome, pain intensity, and health satisfaction-in 799,429 individuals genetically similar to Europeans. Using genomic structural equation modeling, GWAS identified 134 loci significantly associated with a somatoform common factor, including 44 loci not significant in the input GWAS and 8 novel loci for somatoform traits. Gene-property analyses highlighted an enrichment of genes involved in synaptic transmission and enriched gene expression in 12 brain tissues. Six genes, including members of the CD300 family, had putatively causal effects mediated by protein abundance. There was substantial polygenic overlap (76-83%) between the somatoform and externalizing, internalizing, and general psychopathology factors. Somatoform polygenic scores were associated most strongly with obesity, Type 2 diabetes, tobacco use disorder, and mood/anxiety disorders in independent biobanks. Drug repurposing analyses suggested potential therapeutic targets, including MEK inhibitors. Mendelian randomization indicated potentially protective effects of gut microbiota, including Ruminococcus bromii. These biological insights provide promising avenues for treatment development.
Collapse
Affiliation(s)
- Christal N. Davis
- Mental Illness Research, Education, and Clinical Center, Crescenz VAMC, Philadelphia, PA, USA
- Department of Psychiatry, University of Pennsylvania School of Medicine, Philadelphia, PA, USA
| | - Sylvanus Toikumo
- Mental Illness Research, Education, and Clinical Center, Crescenz VAMC, Philadelphia, PA, USA
- Department of Psychiatry, University of Pennsylvania School of Medicine, Philadelphia, PA, USA
| | - Alexander S. Hatoum
- Department of Psychiatry, Washington University School of Medicine, St. Louis, MO, USA
| | - Yousef Khan
- Department of Psychiatry, University of Pennsylvania School of Medicine, Philadelphia, PA, USA
| | - Benjamin K. Pham
- Department of Psychiatry, University of California San Diego, La Jolla, CA, USA
| | - Shreya R. Pakala
- Department of Psychiatry, University of California San Diego, La Jolla, CA, USA
| | - Kyra L. Feuer
- Department of Psychiatry, University of Pennsylvania School of Medicine, Philadelphia, PA, USA
| | - Joel Gelernter
- Department of Psychiatry, Yale School of Medicine, New Haven, CT, USA
- Department of Psychiatry, VA Connecticut Healthcare Center, West Haven, CT, USA
- Departments of Genetics and Neuroscience, Yale School of Medicine, New Haven, CT, USA
| | - Sandra Sanchez-Roige
- Department of Psychiatry, University of California San Diego, La Jolla, CA, USA
- Division of Genetic Medicine, Vanderbilt University Medical Center, Nashville, TN, USA
- Genomic Medicine, University of California San Diego, La Jolla, CA, USA
| | - Rachel L. Kember
- Mental Illness Research, Education, and Clinical Center, Crescenz VAMC, Philadelphia, PA, USA
- Department of Psychiatry, University of Pennsylvania School of Medicine, Philadelphia, PA, USA
| | - Henry R. Kranzler
- Mental Illness Research, Education, and Clinical Center, Crescenz VAMC, Philadelphia, PA, USA
- Department of Psychiatry, University of Pennsylvania School of Medicine, Philadelphia, PA, USA
| |
Collapse
|
10
|
Sun H, Shen Y, Ni P, Liu X, Li Y, Qiu Z, Su J, Wang Y, Wu M, Kong X, Cao JL, Xie W, An S. Autism-associated neuroligin 3 deficiency in medial septum causes social deficits and sleep loss in mice. J Clin Invest 2024; 134:e176770. [PMID: 39058792 PMCID: PMC11444198 DOI: 10.1172/jci176770] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2023] [Accepted: 07/17/2024] [Indexed: 07/28/2024] Open
Abstract
Patients with autism spectrum disorder (ASD) frequently experience sleep disturbance. Genetic mutations in the neuroligin 3 (NLG3) gene are highly correlative with ASD and sleep disturbance. However, the cellular and neural circuit bases of this correlation remain elusive. Here, we found that the conditional knockout of Nlg3 (Nlg3-CKO) in the medial septum (MS) impairs social memory and reduces sleep. Nlg3 CKO in the MS caused hyperactivity of MSGABA neurons during social avoidance and wakefulness. Activation of MSGABA neurons induced social memory deficits and sleep loss in C57BL/6J mice. In contrast, inactivation of these neurons ameliorated social memory deficits and sleep loss in Nlg3-CKO mice. Sleep deprivation led to social memory deficits, while social isolation caused sleep loss, both resulting in a reduction in NLG3 expression and an increase in activity of GABAergic neurons in the MS from C57BL/6J mice. Furthermore, MSGABA-innervated CA2 neurons specifically regulated social memory without impacting sleep, whereas MSGABA-innervating neurons in the preoptic area selectively controlled sleep without affecting social behavior. Together, these findings demonstrate that the hyperactive MSGABA neurons impair social memory and disrupt sleep resulting from Nlg3 CKO in the MS, and achieve the modality specificity through their divergent downstream targets.
Collapse
Affiliation(s)
- Haiyan Sun
- Jiangsu Province Key Laboratory of Anesthesiology and Jiangsu Province Key Laboratory of Anesthesia and Analgesia Application Technology, NMPA Key Laboratory for Research and Evaluation of Narcotic and Psychotropic Drugs, Xuzhou Medical University, Xuzhou, China
| | - Yu Shen
- Jiangsu Province Key Laboratory of Anesthesiology and Jiangsu Province Key Laboratory of Anesthesia and Analgesia Application Technology, NMPA Key Laboratory for Research and Evaluation of Narcotic and Psychotropic Drugs, Xuzhou Medical University, Xuzhou, China
| | - Pengtao Ni
- Jiangsu Province Key Laboratory of Anesthesiology and Jiangsu Province Key Laboratory of Anesthesia and Analgesia Application Technology, NMPA Key Laboratory for Research and Evaluation of Narcotic and Psychotropic Drugs, Xuzhou Medical University, Xuzhou, China
| | - Xin Liu
- Jiangsu Province Key Laboratory of Anesthesiology and Jiangsu Province Key Laboratory of Anesthesia and Analgesia Application Technology, NMPA Key Laboratory for Research and Evaluation of Narcotic and Psychotropic Drugs, Xuzhou Medical University, Xuzhou, China
| | - Yan Li
- Jiangsu Province Key Laboratory of Anesthesiology and Jiangsu Province Key Laboratory of Anesthesia and Analgesia Application Technology, NMPA Key Laboratory for Research and Evaluation of Narcotic and Psychotropic Drugs, Xuzhou Medical University, Xuzhou, China
| | - Zhentong Qiu
- Jiangsu Province Key Laboratory of Anesthesiology and Jiangsu Province Key Laboratory of Anesthesia and Analgesia Application Technology, NMPA Key Laboratory for Research and Evaluation of Narcotic and Psychotropic Drugs, Xuzhou Medical University, Xuzhou, China
| | - Jiawen Su
- Jiangsu Province Key Laboratory of Anesthesiology and Jiangsu Province Key Laboratory of Anesthesia and Analgesia Application Technology, NMPA Key Laboratory for Research and Evaluation of Narcotic and Psychotropic Drugs, Xuzhou Medical University, Xuzhou, China
| | - Yihan Wang
- Jiangsu Province Key Laboratory of Anesthesiology and Jiangsu Province Key Laboratory of Anesthesia and Analgesia Application Technology, NMPA Key Laboratory for Research and Evaluation of Narcotic and Psychotropic Drugs, Xuzhou Medical University, Xuzhou, China
| | - Miao Wu
- The Key Laboratory of Developmental Genes and Human Disease, Ministry of Education, School of Life Science and Technology, Southeast University, Nanjing, China
| | - Xiangxi Kong
- Jiangsu Province Key Laboratory of Anesthesiology and Jiangsu Province Key Laboratory of Anesthesia and Analgesia Application Technology, NMPA Key Laboratory for Research and Evaluation of Narcotic and Psychotropic Drugs, Xuzhou Medical University, Xuzhou, China
| | - Jun-Li Cao
- Jiangsu Province Key Laboratory of Anesthesiology and Jiangsu Province Key Laboratory of Anesthesia and Analgesia Application Technology, NMPA Key Laboratory for Research and Evaluation of Narcotic and Psychotropic Drugs, Xuzhou Medical University, Xuzhou, China
- Department of Anesthesiology, Affiliated Hospital of Xuzhou Medical University, Xuzhou, China
| | - Wei Xie
- The Key Laboratory of Developmental Genes and Human Disease, Ministry of Education, School of Life Science and Technology, Southeast University, Nanjing, China
| | - Shuming An
- Jiangsu Province Key Laboratory of Anesthesiology and Jiangsu Province Key Laboratory of Anesthesia and Analgesia Application Technology, NMPA Key Laboratory for Research and Evaluation of Narcotic and Psychotropic Drugs, Xuzhou Medical University, Xuzhou, China
| |
Collapse
|
11
|
Deister CA, Moore AI, Voigts J, Bechek S, Lichtin R, Brown TC, Moore CI. Neocortical inhibitory imbalance predicts successful sensory detection. Cell Rep 2024; 43:114233. [PMID: 38905102 DOI: 10.1016/j.celrep.2024.114233] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2021] [Revised: 07/17/2023] [Accepted: 04/26/2024] [Indexed: 06/23/2024] Open
Abstract
Perceptual success depends on fast-spiking, parvalbumin-positive interneurons (FS/PVs). However, competing theories of optimal rate and correlation in pyramidal (PYR) firing make opposing predictions regarding the underlying FS/PV dynamics. We addressed this with population calcium imaging of FS/PVs and putative PYR neurons during threshold detection. In primary somatosensory and visual neocortex, a distinct PYR subset shows increased rate and spike-count correlations on detected trials ("hits"), while most show no rate change and decreased correlations. A larger fraction of FS/PVs predicts hits with either rate increases or decreases. Using computational modeling, we found that inhibitory imbalance, created by excitatory "feedback" and interactions between FS/PV pools, can account for the data. Rate-decreasing FS/PVs increase rate and correlation in a PYR subset, while rate-increasing FS/PVs reduce correlations and offset enhanced excitation in PYR neurons. These findings indicate that selection of informative PYR ensembles, through transient inhibitory imbalance, is a common motif of optimal neocortical processing.
Collapse
Affiliation(s)
- Christopher A Deister
- Department of Neuroscience and Carney Institute for Brain Sciences, Brown University, Providence, RI, USA
| | - Alexander I Moore
- Department of Neuroscience and Carney Institute for Brain Sciences, Brown University, Providence, RI, USA
| | - Jakob Voigts
- Department of Neuroscience and Carney Institute for Brain Sciences, Brown University, Providence, RI, USA; Janelia Research Campus, Howard Hughes Medical Institute, Ashburn, VA, USA
| | - Sophia Bechek
- Department of Neuroscience and Carney Institute for Brain Sciences, Brown University, Providence, RI, USA
| | - Rebecca Lichtin
- Department of Neuroscience and Carney Institute for Brain Sciences, Brown University, Providence, RI, USA
| | - Tyler C Brown
- Stanley Center for Psychiatric Research, Broad Institute of MIT and Harvard, Cambridge, MA, USA
| | - Christopher I Moore
- Department of Neuroscience and Carney Institute for Brain Sciences, Brown University, Providence, RI, USA.
| |
Collapse
|
12
|
Walker H, Frost NA. Distinct transcriptional programs define a heterogeneous neuronal ensemble for social interaction. iScience 2024; 27:110355. [PMID: 39045099 PMCID: PMC11263963 DOI: 10.1016/j.isci.2024.110355] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2024] [Revised: 05/01/2024] [Accepted: 06/20/2024] [Indexed: 07/25/2024] Open
Abstract
Social interactions are encoded by the coordinated activity of heterogeneous cell types within distributed brain regions including the medial prefrontal cortex (mPFC). However, our understanding of the cell types which comprise the social ensemble has been limited by available mouse lines and reliance on single marker genes. We identified differentially active neuronal populations during social interactions by quantifying immediate-early gene (IEG) expression using snRNA-sequencing. These studies revealed that distinct prefrontal neuron populations composed of heterogeneous cell types are activated by social interaction. Evaluation of IEG expression within these recruited neuronal populations revealed cell-type and region-specific programs, suggesting that reliance on a single molecular marker is insufficient to quantify activation across all cell types. Our findings provide a comprehensive description of cell-type specific transcriptional programs invoked by social interactions and reveal insights into the neuronal populations which compose the social ensemble.
Collapse
Affiliation(s)
- Hailee Walker
- University of Utah, Department of Neurology, Salt Lake City, UT 84132, USA
| | - Nicholas A. Frost
- University of Utah, Department of Neurology, Salt Lake City, UT 84132, USA
| |
Collapse
|
13
|
Ge J, Ren P, Tian B, Li J, Qi C, Huang Q, Ren K, Hu E, Mao H, Zang Y, Wu S, Xue Q, Wang W. Ventral zona incerta parvalbumin neurons modulate sensory-induced and stress-induced self-grooming via input-dependent mechanisms in mice. iScience 2024; 27:110165. [PMID: 38979011 PMCID: PMC11228785 DOI: 10.1016/j.isci.2024.110165] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2023] [Revised: 04/12/2024] [Accepted: 05/29/2024] [Indexed: 07/10/2024] Open
Abstract
Self-grooming is an innate stereotyped behavior influenced by sense and emotion. It is considered an important characteristic in various disease models. However, the neural circuit mechanism underlying sensory-induced and emotion-driven self-grooming remains unclear. We found that the ventral zona incerta (Ziv) was activated during spontaneous self-grooming (SG), corn oil-induced sensory self-grooming (OG), and tail suspension-induced stress self-grooming (TG). Optogenetic excitation of Ziv parvalbumin (PV) neurons increased the duration of SG. Conversely, optogenetic inhibition of ZivPV neurons significantly reduced self-grooming in all three models. Furthermore, glutamatergic inputs from the primary sensory cortex activated the Ziv and contributed to OG. Activation of GABAergic inputs from the central amygdala to the Ziv increased SG, OG, and TG, potentially through local negative regulation of the Ziv. These findings suggest that the Ziv may play a crucial role in processing sensory and emotional information related to self-grooming, making it a potential target for regulating stereotyped behavior.
Collapse
Affiliation(s)
- Junye Ge
- Pain Research Center and Department of Physiology, Zhongshan Medical School, Sun Yat-sen University, 74 Zhongshan Road. 2, Guangzhou 510080, China
- Department of Neurobiology, School of Basic Medicine, Fourth Military Medical University, Xi’an, Shaanxi 710032, China
| | - Pengfei Ren
- Department of Neurobiology, School of Basic Medicine, Fourth Military Medical University, Xi’an, Shaanxi 710032, China
| | - Biqing Tian
- Department of Neurobiology, School of Basic Medicine, Fourth Military Medical University, Xi’an, Shaanxi 710032, China
| | - Jiaqi Li
- School of Life Science and Technology, ShanghaiTech University, Shanghai 201210, China
| | - Chuchu Qi
- Department of Neurobiology, School of Basic Medicine, Fourth Military Medical University, Xi’an, Shaanxi 710032, China
| | - Qiyi Huang
- Department of Neurobiology, School of Basic Medicine, Fourth Military Medical University, Xi’an, Shaanxi 710032, China
| | - Keke Ren
- Department of Neurobiology, School of Basic Medicine, Fourth Military Medical University, Xi’an, Shaanxi 710032, China
| | - Erling Hu
- Department of Neurobiology, School of Basic Medicine, Fourth Military Medical University, Xi’an, Shaanxi 710032, China
| | - Honghui Mao
- Department of Neurobiology, School of Basic Medicine, Fourth Military Medical University, Xi’an, Shaanxi 710032, China
| | - Ying Zang
- Pain Research Center and Department of Physiology, Zhongshan Medical School, Sun Yat-sen University, 74 Zhongshan Road. 2, Guangzhou 510080, China
| | - Shengxi Wu
- Department of Neurobiology, School of Basic Medicine, Fourth Military Medical University, Xi’an, Shaanxi 710032, China
| | - Qian Xue
- Department of Neurobiology, School of Basic Medicine, Fourth Military Medical University, Xi’an, Shaanxi 710032, China
| | - Wenting Wang
- Department of Neurobiology, School of Basic Medicine, Fourth Military Medical University, Xi’an, Shaanxi 710032, China
| |
Collapse
|
14
|
Cui K, Qi X, Liu Z, Sun W, Jiao P, Liu C, Tong J, Sun X, Sun H, Fu S, Wang J, Zheng Y, Liu T, Cui S, Liu F, Mao J, Zheng J, Wan Y, Yi M. Dominant activities of fear engram cells in the dorsal dentate gyrus underlie fear generalization in mice. PLoS Biol 2024; 22:e3002679. [PMID: 38995985 PMCID: PMC11244812 DOI: 10.1371/journal.pbio.3002679] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2023] [Accepted: 05/16/2024] [Indexed: 07/14/2024] Open
Abstract
Over-generalized fear is a maladaptive response to harmless stimuli or situations characteristic of posttraumatic stress disorder (PTSD) and other anxiety disorders. The dorsal dentate gyrus (dDG) contains engram cells that play a crucial role in accurate memory retrieval. However, the coordination mechanism of neuronal subpopulations within the dDG network during fear generalization is not well understood. Here, with the Tet-off system combined with immunostaining and two-photon calcium imaging, we report that dDG fear engram cells labeled in the conditioned context constitutes a significantly higher proportion of dDG neurons activated in a similar context where mice show generalized fear. The activation of these dDG fear engram cells encoding the conditioned context is both sufficient and necessary for inducing fear generalization in the similar context. Activities of mossy cells in the ventral dentate gyrus (vMCs) are significantly suppressed in mice showing fear generalization in a similar context, and activating the vMCs-dDG pathway suppresses generalized but not conditioned fear. Finally, modifying fear memory engrams in the dDG with "safety" signals effectively rescues fear generalization. These findings reveal that the competitive advantage of dDG engram cells underlies fear generalization, which can be rescued by activating the vMCs-dDG pathway or modifying fear memory engrams, and provide novel insights into the dDG network as the neuronal basis of fear generalization.
Collapse
Affiliation(s)
- Kun Cui
- Neuroscience Research Institute and Department of Neurobiology, School of Basic Medical Sciences, Peking University, Beijing, China
- Beijing Life Science Academy, Beijing, China
| | - Xuetao Qi
- Neuroscience Research Institute and Department of Neurobiology, School of Basic Medical Sciences, Peking University, Beijing, China
| | - Zilong Liu
- Neuroscience Research Institute and Department of Neurobiology, School of Basic Medical Sciences, Peking University, Beijing, China
| | - Weiqi Sun
- Neuroscience Research Institute and Department of Neurobiology, School of Basic Medical Sciences, Peking University, Beijing, China
| | - Peijie Jiao
- Neuroscience Research Institute and Department of Neurobiology, School of Basic Medical Sciences, Peking University, Beijing, China
| | - Chang Liu
- Beijing Life Science Academy, Beijing, China
| | - Jifu Tong
- Neuroscience Research Institute and Department of Neurobiology, School of Basic Medical Sciences, Peking University, Beijing, China
| | - Xiaoyan Sun
- Neuroscience Research Institute and Department of Neurobiology, School of Basic Medical Sciences, Peking University, Beijing, China
| | - Haojie Sun
- Neuroscience Research Institute and Department of Neurobiology, School of Basic Medical Sciences, Peking University, Beijing, China
- UCL School of Pharmacy, University College London, London, United Kingdom
| | - Su Fu
- Neuroscience Research Institute and Department of Neurobiology, School of Basic Medical Sciences, Peking University, Beijing, China
| | - Jiaxin Wang
- Neuroscience Research Institute and Department of Neurobiology, School of Basic Medical Sciences, Peking University, Beijing, China
| | - Yawen Zheng
- Neuroscience Research Institute and Department of Neurobiology, School of Basic Medical Sciences, Peking University, Beijing, China
| | - Tianyu Liu
- Department of Anesthesiology, Peking University People's Hospital, Beijing, China
| | - Shuang Cui
- Neuroscience Research Institute and Department of Neurobiology, School of Basic Medical Sciences, Peking University, Beijing, China
- Key Laboratory for Neuroscience, Ministry of Education/National Health Commission, Peking University, Beijing, China
| | - Fengyu Liu
- Neuroscience Research Institute and Department of Neurobiology, School of Basic Medical Sciences, Peking University, Beijing, China
- Key Laboratory for Neuroscience, Ministry of Education/National Health Commission, Peking University, Beijing, China
| | - Jian Mao
- Beijing Life Science Academy, Beijing, China
| | - Jie Zheng
- Neuroscience Research Institute and Department of Neurobiology, School of Basic Medical Sciences, Peking University, Beijing, China
- Key Laboratory for Neuroscience, Ministry of Education/National Health Commission, Peking University, Beijing, China
| | - You Wan
- Neuroscience Research Institute and Department of Neurobiology, School of Basic Medical Sciences, Peking University, Beijing, China
- Beijing Life Science Academy, Beijing, China
- Key Laboratory for Neuroscience, Ministry of Education/National Health Commission, Peking University, Beijing, China
- Co-innovation Center of Neuroregeneration, Nantong University, Nantong, China
| | - Ming Yi
- Neuroscience Research Institute and Department of Neurobiology, School of Basic Medical Sciences, Peking University, Beijing, China
- Key Laboratory for Neuroscience, Ministry of Education/National Health Commission, Peking University, Beijing, China
| |
Collapse
|
15
|
Chung M, Imanaka K, Huang Z, Watarai A, Wang MY, Tao K, Ejima H, Aida T, Feng G, Okuyama T. Conditional knockout of Shank3 in the ventral CA1 by quantitative in vivo genome-editing impairs social memory in mice. Nat Commun 2024; 15:4531. [PMID: 38866749 PMCID: PMC11169449 DOI: 10.1038/s41467-024-48430-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2022] [Accepted: 04/26/2024] [Indexed: 06/14/2024] Open
Abstract
Individuals with autism spectrum disorder (ASD) have a higher prevalence of social memory impairment. A series of our previous studies revealed that hippocampal ventral CA1 (vCA1) neurons possess social memory engram and that the neurophysiological representation of social memory in the vCA1 neurons is disrupted in ASD-associated Shank3 knockout mice. However, whether the dysfunction of Shank3 in vCA1 causes the social memory impairment observed in ASD remains unclear. In this study, we found that vCA1-specific Shank3 conditional knockout (cKO) by the adeno-associated virus (AAV)- or specialized extracellular vesicle (EV)- mediated in vivo gene editing was sufficient to recapitulate the social memory impairment in male mice. Furthermore, the utilization of EV-mediated Shank3-cKO allowed us to quantitatively examine the role of Shank3 in social memory. Our results suggested that there is a certain threshold for the proportion of Shank3-cKO neurons required for social memory disruption. Thus, our study provides insight into the population coding of social memory in vCA1, as well as the pathological mechanisms underlying social memory impairment in ASD.
Collapse
Affiliation(s)
- Myung Chung
- Laboratory of Behavioral Neuroscience, Institute for Quantitative Biosciences, The University of Tokyo, Tokyo, Japan
- Graduate School of Medicine, The University of Tokyo, Tokyo, Japan
| | - Katsutoshi Imanaka
- Laboratory of Behavioral Neuroscience, Institute for Quantitative Biosciences, The University of Tokyo, Tokyo, Japan
- Graduate School of Medicine, The University of Tokyo, Tokyo, Japan
| | - Ziyan Huang
- Laboratory of Behavioral Neuroscience, Institute for Quantitative Biosciences, The University of Tokyo, Tokyo, Japan
- Graduate School of Medicine, The University of Tokyo, Tokyo, Japan
| | - Akiyuki Watarai
- Laboratory of Behavioral Neuroscience, Institute for Quantitative Biosciences, The University of Tokyo, Tokyo, Japan
| | - Mu-Yun Wang
- Laboratory of Behavioral Neuroscience, Institute for Quantitative Biosciences, The University of Tokyo, Tokyo, Japan
| | - Kentaro Tao
- Laboratory of Behavioral Neuroscience, Institute for Quantitative Biosciences, The University of Tokyo, Tokyo, Japan
| | - Hirotaka Ejima
- Department of Materials Engineering, School of Engineering, The University of Tokyo, Tokyo, Japan
| | - Tomomi Aida
- McGovern Institute for Brain Research, Department of Brain and Cognitive Sciences, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Guoping Feng
- McGovern Institute for Brain Research, Department of Brain and Cognitive Sciences, Massachusetts Institute of Technology, Cambridge, MA, USA
- Stanley Center for Psychiatric Research, Broad Institute of MIT and Harvard, Cambridge, MA, USA
| | - Teruhiro Okuyama
- Laboratory of Behavioral Neuroscience, Institute for Quantitative Biosciences, The University of Tokyo, Tokyo, Japan.
- Graduate School of Medicine, The University of Tokyo, Tokyo, Japan.
| |
Collapse
|
16
|
Clayton KK, McGill M, Awwad B, Stecyk KS, Kremer C, Skerleva D, Narayanan DP, Zhu J, Hancock KE, Kujawa SG, Kozin ED, Polley DB. Cortical determinants of loudness perception and auditory hypersensitivity. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.05.30.596691. [PMID: 38853938 PMCID: PMC11160727 DOI: 10.1101/2024.05.30.596691] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2024]
Abstract
Parvalbumin-expressing inhibitory neurons (PVNs) stabilize cortical network activity, generate gamma rhythms, and regulate experience-dependent plasticity. Here, we observed that activation or inactivation of PVNs functioned like a volume knob in the mouse auditory cortex (ACtx), turning neural and behavioral classification of sound level up or down over a 20dB range. PVN loudness adjustments were "sticky", such that a single bout of 40Hz PVN stimulation sustainably suppressed ACtx sound responsiveness, potentiated feedforward inhibition, and behaviorally desensitized mice to loudness. Sensory sensitivity is a cardinal feature of autism, aging, and peripheral neuropathy, prompting us to ask whether PVN stimulation can persistently desensitize mice with ACtx hyperactivity, PVN hypofunction, and loudness hypersensitivity triggered by cochlear sensorineural damage. We found that a single 16-minute bout of 40Hz PVN stimulation session restored normal loudness perception for one week, showing that perceptual deficits triggered by irreversible peripheral injuries can be reversed through targeted cortical circuit interventions.
Collapse
Affiliation(s)
- Kameron K Clayton
- Eaton-Peabody Laboratories, Massachusetts Eye and Ear, Boston MA 02114
| | - Matthew McGill
- Eaton-Peabody Laboratories, Massachusetts Eye and Ear, Boston MA 02114
| | - Bshara Awwad
- Eaton-Peabody Laboratories, Massachusetts Eye and Ear, Boston MA 02114
| | - Kamryn S Stecyk
- Eaton-Peabody Laboratories, Massachusetts Eye and Ear, Boston MA 02114
| | - Caroline Kremer
- Eaton-Peabody Laboratories, Massachusetts Eye and Ear, Boston MA 02114
| | | | - Divya P Narayanan
- Eaton-Peabody Laboratories, Massachusetts Eye and Ear, Boston MA 02114
| | - Jennifer Zhu
- Eaton-Peabody Laboratories, Massachusetts Eye and Ear, Boston MA 02114
| | - Kenneth E Hancock
- Eaton-Peabody Laboratories, Massachusetts Eye and Ear, Boston MA 02114
| | - Sharon G Kujawa
- Eaton-Peabody Laboratories, Massachusetts Eye and Ear, Boston MA 02114
| | - Elliott D Kozin
- Eaton-Peabody Laboratories, Massachusetts Eye and Ear, Boston MA 02114
| | - Daniel B Polley
- Eaton-Peabody Laboratories, Massachusetts Eye and Ear, Boston MA 02114
| |
Collapse
|
17
|
Guo B, Liu T, Choi S, Mao H, Wang W, Xi K, Jones C, Hartley ND, Feng D, Chen Q, Liu Y, Wimmer RD, Xie Y, Zhao N, Ou J, Arias-Garcia MA, Malhotra D, Liu Y, Lee S, Pasqualoni S, Kast RJ, Fleishman M, Halassa MM, Wu S, Fu Z. Restoring thalamocortical circuit dysfunction by correcting HCN channelopathy in Shank3 mutant mice. Cell Rep Med 2024; 5:101534. [PMID: 38670100 PMCID: PMC11149412 DOI: 10.1016/j.xcrm.2024.101534] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2023] [Revised: 12/11/2023] [Accepted: 04/04/2024] [Indexed: 04/28/2024]
Abstract
Thalamocortical (TC) circuits are essential for sensory information processing. Clinical and preclinical studies of autism spectrum disorders (ASDs) have highlighted abnormal thalamic development and TC circuit dysfunction. However, mechanistic understanding of how TC dysfunction contributes to behavioral abnormalities in ASDs is limited. Here, our study on a Shank3 mouse model of ASD reveals TC neuron hyperexcitability with excessive burst firing and a temporal mismatch relationship with slow cortical rhythms during sleep. These TC electrophysiological alterations and the consequent sensory hypersensitivity and sleep fragmentation in Shank3 mutant mice are causally linked to HCN2 channelopathy. Restoring HCN2 function early in postnatal development via a viral approach or lamotrigine (LTG) ameliorates sensory and sleep problems. A retrospective case series also supports beneficial effects of LTG treatment on sensory behavior in ASD patients. Our study identifies a clinically relevant circuit mechanism and proposes a targeted molecular intervention for ASD-related behavioral impairments.
Collapse
Affiliation(s)
- Baolin Guo
- Department of Neurobiology, School of Basic Medicine, Fourth Military Medical University, Xi'an 710032, China; Stanley Center for Psychiatric Research, Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA
| | - Tiaotiao Liu
- School of Biomedical Engineering and Technology, Tianjin Medical University, Tianjin 300070, China
| | - Soonwook Choi
- Stanley Center for Psychiatric Research, Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA; McGovern Institute for Brain Research, Department of Brain and Cognitive Sciences, MIT, Cambridge, MA 02139, USA
| | - Honghui Mao
- Department of Neurobiology, School of Basic Medicine, Fourth Military Medical University, Xi'an 710032, China
| | - Wenting Wang
- Department of Neurobiology, School of Basic Medicine, Fourth Military Medical University, Xi'an 710032, China
| | - Kaiwen Xi
- Department of Neurobiology, School of Basic Medicine, Fourth Military Medical University, Xi'an 710032, China
| | - Carter Jones
- Stanley Center for Psychiatric Research, Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA
| | - Nolan D Hartley
- Stanley Center for Psychiatric Research, Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA; McGovern Institute for Brain Research, Department of Brain and Cognitive Sciences, MIT, Cambridge, MA 02139, USA
| | - Dayun Feng
- Department of Neurobiology, School of Basic Medicine, Fourth Military Medical University, Xi'an 710032, China
| | - Qian Chen
- McGovern Institute for Brain Research, Department of Brain and Cognitive Sciences, MIT, Cambridge, MA 02139, USA
| | - Yingying Liu
- Department of Neurobiology, School of Basic Medicine, Fourth Military Medical University, Xi'an 710032, China
| | - Ralf D Wimmer
- McGovern Institute for Brain Research, Department of Brain and Cognitive Sciences, MIT, Cambridge, MA 02139, USA
| | - Yuqiao Xie
- Department of Neurobiology, School of Basic Medicine, Fourth Military Medical University, Xi'an 710032, China
| | - Ningxia Zhao
- Xi'an TCM Hospital of Encephalopathy, Shaanxi University of Chinese Medicine, Xi'an 710032, China
| | - Jianjun Ou
- Department of Psychiatry, The Second Xiangya Hospital of Central South University, National Clinical Research Center for Mental Disorders, Changsha 410011, China
| | - Mario A Arias-Garcia
- Stanley Center for Psychiatric Research, Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA
| | - Diya Malhotra
- Stanley Center for Psychiatric Research, Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA
| | - Yang Liu
- Department of Neurobiology, School of Basic Medicine, Fourth Military Medical University, Xi'an 710032, China
| | - Sihak Lee
- Stanley Center for Psychiatric Research, Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA
| | - Sammuel Pasqualoni
- Stanley Center for Psychiatric Research, Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA
| | - Ryan J Kast
- Stanley Center for Psychiatric Research, Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA; McGovern Institute for Brain Research, Department of Brain and Cognitive Sciences, MIT, Cambridge, MA 02139, USA
| | - Morgan Fleishman
- Stanley Center for Psychiatric Research, Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA
| | - Michael M Halassa
- McGovern Institute for Brain Research, Department of Brain and Cognitive Sciences, MIT, Cambridge, MA 02139, USA
| | - Shengxi Wu
- Department of Neurobiology, School of Basic Medicine, Fourth Military Medical University, Xi'an 710032, China.
| | - Zhanyan Fu
- Stanley Center for Psychiatric Research, Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA; McGovern Institute for Brain Research, Department of Brain and Cognitive Sciences, MIT, Cambridge, MA 02139, USA.
| |
Collapse
|
18
|
Mattioni L, Barbieri A, Grigoli A, Balasco L, Bozzi Y, Provenzano G. Alterations of Perineuronal Net Expression and Abnormal Social Behavior and Whisker-dependent Texture Discrimination in Mice Lacking the Autism Candidate Gene Engrailed 2. Neuroscience 2024; 546:63-74. [PMID: 38537894 DOI: 10.1016/j.neuroscience.2024.03.023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2023] [Revised: 02/27/2024] [Accepted: 03/19/2024] [Indexed: 04/06/2024]
Abstract
GABAergic interneurons and perineuronal nets (PNNs) are important regulators of plasticity throughout life and their dysfunction has been implicated in the pathogenesis of several neuropsychiatric conditions, including autism spectrum disorders (ASD). PNNs are condensed portions of the extracellular matrix (ECM) that are crucial for neural development and proper formation of synaptic connections. We previously showed a reduced expression of GABAergic interneuron markers in the hippocampus and somatosensory cortex of adult mice lacking the Engrailed2 gene (En2-/- mice), a mouse model of ASD. Since alterations in PNNs have been proposed as a possible pathogenic mechanism in ASD, we hypothesized that the PNN dysfunction may contribute to the neural and behavioral abnormalities of En2-/- mice. Here, we show an increase in the PNN fluorescence intensity, evaluated by Wisteria floribunda agglutinin, in brain regions involved in social behavior and somatosensory processing. In addition, we found that En2-/- mice exhibit altered texture discrimination through whiskers and display a marked decrease in the preference for social novelty. Our results raise the possibility that altered expression of PNNs, together with defects of GABAergic interneurons, might contribute to the pathogenesis of social and sensory behavioral abnormalities.
Collapse
Affiliation(s)
- Lorenzo Mattioni
- Department of Cellular, Computational, and Integrative Biology (CIBIO), University of Trento, via Sommarive 9, 38123 Trento, Italy.
| | - Anna Barbieri
- Department of Cellular, Computational, and Integrative Biology (CIBIO), University of Trento, via Sommarive 9, 38123 Trento, Italy
| | - Andrea Grigoli
- Department of Cellular, Computational, and Integrative Biology (CIBIO), University of Trento, via Sommarive 9, 38123 Trento, Italy
| | - Luigi Balasco
- CIMeC - Center for Mind/Brain Sciences, University of Trento, Piazza della Manifattura 1, 38068 Rovereto, Trento, Italy
| | - Yuri Bozzi
- CIMeC - Center for Mind/Brain Sciences, University of Trento, Piazza della Manifattura 1, 38068 Rovereto, Trento, Italy; CNR Neuroscience Institute, via Moruzzi 1, 56124 Pisa, Italy
| | - Giovanni Provenzano
- Department of Cellular, Computational, and Integrative Biology (CIBIO), University of Trento, via Sommarive 9, 38123 Trento, Italy.
| |
Collapse
|
19
|
Wang C, Derderian KD, Hamada E, Zhou X, Nelson AD, Kyoung H, Ahituv N, Bouvier G, Bender KJ. Impaired cerebellar plasticity hypersensitizes sensory reflexes in SCN2A-associated ASD. Neuron 2024; 112:1444-1455.e5. [PMID: 38412857 PMCID: PMC11065582 DOI: 10.1016/j.neuron.2024.01.029] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2023] [Revised: 01/03/2024] [Accepted: 01/29/2024] [Indexed: 02/29/2024]
Abstract
Children diagnosed with autism spectrum disorder (ASD) commonly present with sensory hypersensitivity or abnormally strong reactions to sensory stimuli. Such hypersensitivity can be overwhelming, causing high levels of distress that contribute markedly to the negative aspects of the disorder. Here, we identify a mechanism that underlies hypersensitivity in a sensorimotor reflex found to be altered in humans and in mice with loss of function in the ASD risk-factor gene SCN2A. The cerebellum-dependent vestibulo-ocular reflex (VOR), which helps maintain one's gaze during movement, was hypersensitized due to deficits in cerebellar synaptic plasticity. Heterozygous loss of SCN2A-encoded NaV1.2 sodium channels in granule cells impaired high-frequency transmission to Purkinje cells and long-term potentiation, a form of synaptic plasticity important for modulating VOR gain. VOR plasticity could be rescued in mice via a CRISPR-activator approach that increases Scn2a expression, demonstrating that evaluation of a simple reflex can be used to assess and quantify successful therapeutic intervention.
Collapse
Affiliation(s)
- Chenyu Wang
- Neuroscience Graduate Program, University of California, San Francisco, San Francisco, CA, USA; Department of Neurology, University of California, San Francisco, San Francisco, CA, USA; Weill Institute for Neurosciences, University of California, San Francisco, San Francisco, CA, USA
| | - Kimberly D Derderian
- Department of Neurology, University of California, San Francisco, San Francisco, CA, USA
| | - Elizabeth Hamada
- Department of Neurology, University of California, San Francisco, San Francisco, CA, USA
| | - Xujia Zhou
- Department of Bioengineering and Therapeutic Sciences, University of California, San Francisco, San Francisco, CA, USA
| | - Andrew D Nelson
- Department of Neurology, University of California, San Francisco, San Francisco, CA, USA; Weill Institute for Neurosciences, University of California, San Francisco, San Francisco, CA, USA
| | - Henry Kyoung
- Department of Neurology, University of California, San Francisco, San Francisco, CA, USA
| | - Nadav Ahituv
- Weill Institute for Neurosciences, University of California, San Francisco, San Francisco, CA, USA; Department of Bioengineering and Therapeutic Sciences, University of California, San Francisco, San Francisco, CA, USA; Institute for Human Genetics, University of California, San Francisco, San Francisco, CA, USA
| | - Guy Bouvier
- Department of Physiology, University of California, San Francisco, San Francisco, CA, USA; Université Paris-Saclay, CNRS, Institut des Neurosciences Paris-Saclay, 91400 Saclay, France.
| | - Kevin J Bender
- Department of Neurology, University of California, San Francisco, San Francisco, CA, USA; Weill Institute for Neurosciences, University of California, San Francisco, San Francisco, CA, USA.
| |
Collapse
|
20
|
郭 乃, 王 瑜. [Recent advances in the virtual reality technology for treating children with autism spectrum disorder]. ZHONGGUO DANG DAI ER KE ZA ZHI = CHINESE JOURNAL OF CONTEMPORARY PEDIATRICS 2024; 26:414-419. [PMID: 38660907 PMCID: PMC11057304 DOI: 10.7499/j.issn.1008-8830.2310142] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Subscribe] [Scholar Register] [Received: 10/30/2023] [Accepted: 02/26/2024] [Indexed: 04/26/2024]
Abstract
Autism spectrum disorder (ASD) is one of the neurodevelopmental disorders in children, and there are currently no specific treatments, with the main interventions focusing on educational training and behavioral correction. Virtual reality, as an emerging technology, is a computer-based environmental simulation system that achieves interactive dynamics and immersive experiences by integrating information from multiple sources. In recent years, it has been gradually applied in intervention training for children with ASD. This paper reviews the recent studies on the effects of virtual reality intervention on emotional cognition, social skills, daily living skills, motor skills, and specific phobias in children with ASD, offering a new direction for ASD intervention training.
Collapse
|
21
|
Mihalj D, Borbelyova V, Pirnik Z, Bacova Z, Ostatnikova D, Bakos J. Shank3 Deficiency Results in a Reduction in GABAergic Postsynaptic Puncta in the Olfactory Brain Areas. Neurochem Res 2024; 49:1008-1016. [PMID: 38183586 PMCID: PMC10902016 DOI: 10.1007/s11064-023-04097-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2023] [Revised: 12/23/2023] [Accepted: 12/27/2023] [Indexed: 01/08/2024]
Abstract
Dysfunctional sensory systems, including altered olfactory function, have recently been reported in patients with autism spectrum disorder (ASD). Disturbances in olfactory processing can potentially result from gamma-aminobutyric acid (GABA)ergic synaptic abnormalities. The specific molecular mechanism by which GABAergic transmission affects the olfactory system in ASD remains unclear. Therefore, the present study aimed to evaluate selected components of the GABAergic system in olfactory brain regions and primary olfactory neurons isolated from Shank3-deficient (-/-) mice, which are known for their autism-like behavioral phenotype. Shank3 deficiency led to a significant reduction in GEPHYRIN/GABAAR colocalization in the piriform cortex and in primary neurons isolated from the olfactory bulb, while no change of cell morphology was observed. Gene expression analysis revealed a significant reduction in the mRNA levels of GABA transporter 1 in the olfactory bulb and Collybistin in the frontal cortex of the Shank3-/- mice compared to WT mice. A similar trend of reduction was observed in the expression of Somatostatin in the frontal cortex of Shank3-/- mice. The analysis of the expression of other GABAergic neurotransmission markers did not yield statistically significant results. Overall, it appears that Shank3 deficiency leads to changes in GABAergic synapses in the brain regions that are important for olfactory information processing, which may represent basis for understanding functional impairments in autism.
Collapse
Affiliation(s)
- Denisa Mihalj
- Institute of Experimental Endocrinology, Biomedical Research Center, Slovak Academy of Sciences, Dubravska cesta 9, Bratislava, 845 05, Slovakia
| | - Veronika Borbelyova
- Institute of Molecular Biomedicine, Faculty of Medicine, Comenius University, Bratislava, Slovakia
| | - Zdeno Pirnik
- Institute of Experimental Endocrinology, Biomedical Research Center, Slovak Academy of Sciences, Dubravska cesta 9, Bratislava, 845 05, Slovakia
- Institute of Physiology, Faculty of Medicine, Comenius University, Bratislava, Slovakia
- Institute of Organic Chemistry and Biochemistry, Czech Academy of Sciences, Prague, Czech Republic
| | - Zuzana Bacova
- Institute of Experimental Endocrinology, Biomedical Research Center, Slovak Academy of Sciences, Dubravska cesta 9, Bratislava, 845 05, Slovakia
| | - Daniela Ostatnikova
- Institute of Physiology, Faculty of Medicine, Comenius University, Bratislava, Slovakia
| | - Jan Bakos
- Institute of Experimental Endocrinology, Biomedical Research Center, Slovak Academy of Sciences, Dubravska cesta 9, Bratislava, 845 05, Slovakia.
- Institute of Physiology, Faculty of Medicine, Comenius University, Bratislava, Slovakia.
| |
Collapse
|
22
|
Cody P, Kumar M, Tzounopoulos T. Cortical Zinc Signaling Is Necessary for Changes in Mouse Pupil Diameter That Are Evoked by Background Sounds with Different Contrasts. J Neurosci 2024; 44:e0939232024. [PMID: 38242698 PMCID: PMC10941062 DOI: 10.1523/jneurosci.0939-23.2024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2023] [Revised: 12/29/2023] [Accepted: 01/14/2024] [Indexed: 01/21/2024] Open
Abstract
Luminance-independent changes in pupil diameter (PD) during wakefulness influence and are influenced by neuromodulatory, neuronal, and behavioral responses. However, it is unclear whether changes in neuromodulatory activity in a specific brain area are necessary for the associated changes in PD or whether some different mechanisms cause parallel fluctuations in both PD and neuromodulation. To answer this question, we simultaneously recorded PD and cortical neuronal activity in male and female mice. Namely, we measured PD and neuronal activity during adaptation to sound contrast, which is a well-described adaptation conserved in many species and brain areas. In the primary auditory cortex (A1), increases in the variability of sound level (contrast) induce a decrease in the slope of the neuronal input-output relationship, neuronal gain, which depends on cortical neuromodulatory zinc signaling. We found a previously unknown modulation of PD by changes in background sensory context: high stimulus contrast sounds evoke larger increases in evoked PD compared with low-contrast sounds. To explore whether these changes in evoked PD are controlled by cortical neuromodulatory zinc signaling, we imaged single-cell neural activity in A1, manipulated zinc signaling in the cortex, and assessed PD in the same awake mouse. We found that cortical synaptic zinc signaling is necessary for increases in PD during high-contrast background sounds compared with low-contrast sounds. This finding advances our knowledge about how cortical neuromodulatory activity affects PD changes and thus advances our understanding of the brain states, circuits, and neuromodulatory mechanisms that can be inferred from pupil size fluctuations.
Collapse
Affiliation(s)
- Patrick Cody
- Department of Otolaryngology, Pittsburgh Hearing Research Center, University of Pittsburgh, Pittsburgh, Pennsylvania 15261
- Department of Bioengineering, University of Pittsburgh, Pittsburgh, Pennsylvania 15260
- Center for the Neural Basis of Cognition, University of Pittsburgh, Pittsburgh, Pennsylvania 15213
| | - Manoj Kumar
- Department of Otolaryngology, Pittsburgh Hearing Research Center, University of Pittsburgh, Pittsburgh, Pennsylvania 15261
| | - Thanos Tzounopoulos
- Department of Otolaryngology, Pittsburgh Hearing Research Center, University of Pittsburgh, Pittsburgh, Pennsylvania 15261
- Center for the Neural Basis of Cognition, University of Pittsburgh, Pittsburgh, Pennsylvania 15213
| |
Collapse
|
23
|
Juan CX, Mao Y, Han X, Qian HY, Chu KK. EGR1 Regulates SHANK3 Transcription at Different Stages of Brain Development. Neuroscience 2024; 540:27-37. [PMID: 38218401 DOI: 10.1016/j.neuroscience.2024.01.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2023] [Revised: 01/04/2024] [Accepted: 01/09/2024] [Indexed: 01/15/2024]
Abstract
The expression levels of SHANK3 are associated with autism spectrum disorder (ASD). The dynamic changes in SHANK3 expression during different stages of brain development may impact the progression of ASD. However, no studies or detailed analyses exploring the upstream mechanisms that regulate SHANK3 expression have been reported. In this study, we employed immunofluorescence to examine the expression of SHANK3 in brain organoids at various stages. Our results revealed elevated levels of SHANK3 expression in brain-like organoids at Day 60. Additionally, we utilized bioinformatics software to predict and analyze the SHANK3 gene's transcription start site. Through the dual luciferase reporter gene technique, we identified core transcription elements within the SHANK3 promoter. Site-directed mutations were used to identify specific transcription sites of SHANK3. To determine the physical binding of potential transcription factors to the SHANK3 promoter, we employed electrophoretic mobility shift assay (EMSA) and chromatin immunoprecipitation (ChIP). Our findings demonstrated that the transcription factor EGR1 regulates SHANK3 expression by binding to the transcription site of the SHANK3 promoter. Although this study did not investigate the pathological phenotypes of human brain organoids or animal model brains with EGR1 deficiency, which could potentially substantiate the findings observed for SHANK3 mutants, our findings provide valuable insights into the relationship between the transcription factor, EGR1, and SHANK3. This study contributes to the molecular understanding of ASD and offers potential foundations for precise targeted therapy.
Collapse
Affiliation(s)
- Chen-Xia Juan
- Jiangsu Province Hospital of Chinese Medicine, Affiliated Hospital of Nanjing University of Chinese Medicine, Nanjing 210004, China; Child Mental Health Research Center, Affiliated Nanjing Brain Hospital, Nanjing Medical University, Nanjing 210029, China
| | - Yan Mao
- Jiangsu Province Hospital of Chinese Medicine, Affiliated Hospital of Nanjing University of Chinese Medicine, Nanjing 210004, China
| | - Xiao Han
- Institute for Stem Cell and Neural Regeneration, School of Pharmacy, State Key Laboratory of Reproductive Medicine, Nanjing Medical University, Nanjing 211166, China
| | - Hua-Ying Qian
- Child Mental Health Research Center, Affiliated Nanjing Brain Hospital, Nanjing Medical University, Nanjing 210029, China
| | - Kang-Kang Chu
- Child Mental Health Research Center, Affiliated Nanjing Brain Hospital, Nanjing Medical University, Nanjing 210029, China.
| |
Collapse
|
24
|
Merola C, Caioni G, Bertolucci C, Lucon-Xiccato T, Savaşçı BB, Tait S, Casella M, Camerini S, Benedetti E, Perugini M. Embryonic and larval exposure to propylparaben induces developmental and long-term neurotoxicity in zebrafish model. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 912:168925. [PMID: 38040379 DOI: 10.1016/j.scitotenv.2023.168925] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/08/2023] [Revised: 11/23/2023] [Accepted: 11/25/2023] [Indexed: 12/03/2023]
Abstract
Parabens are preservatives found in cosmetics, processed foods, and medications. The harmful repercussions on the central nervous system by one of the most common parabens, propylparaben (PrP), are yet unknown, especially during development. In this study, the neurodevelopmental effects of PrP and long-term neurotoxicity were investigated in the zebrafish model, using an integrated approach. Zebrafish embryos were exposed to two different concentrations of PrP (10 and 1000 μg/L), then larvae were examined for their behavioral phenotypes (open-field behavior, startle response, and circadian rhythmicity) and relevant brain markers (cyp19a1b, pax6a, shank3a, and gad1b). Long-term behavioral and cognitive impacts on sociability, cerebral functional asymmetry and thigmotaxis were also examined on juveniles at 30 dpf and 60 dpf. Moreover, proteomics and gene expression analysis were assessed in brains of 60 dpf zebrafish. Interestingly, thigmotaxis was decreased by the high dose in larvae and increased by the low dose in juveniles. The expression of shank3a and gad1b genes was repressed by both PrP concentrations pointing to possible effects of PrP on neurodevelopment and synaptogenesis. Proteomics analysis evidenced alterations related to brain development and lipid metabolism. Overall, the results demonstrated that early-life exposure to PrP promotes developmental and persistent neurobehavioral alterations in the zebrafish model, affecting genes and protein levels possibly associated with brain diseases.
Collapse
Affiliation(s)
- Carmine Merola
- Department of Bioscience and Agro-Food and Environmental Technology, University of Teramo, Teramo, Italy.
| | - Giulia Caioni
- Department of Life, Health and Environmental Sciences, University of L'Aquila, L'Aquila, Italy.
| | - Cristiano Bertolucci
- Department of Life Sciences and Biotechnology, University of Ferrara, Ferrara, Italy.
| | - Tyrone Lucon-Xiccato
- Department of Life Sciences and Biotechnology, University of Ferrara, Ferrara, Italy.
| | - Beste Başak Savaşçı
- Department of Life Sciences and Biotechnology, University of Ferrara, Ferrara, Italy; Unit of Evolutionary Biology/Systematic Zoology, Institute for Biochemistry and Biology, University of Potsdam, Potsdam, Germany.
| | - Sabrina Tait
- Gender-specific prevention and health Unit, Center for Gender-Specific Medicine, Istituto Superiore di Sanità, Rome, Italy.
| | - Marialuisa Casella
- Mass Spectrometry Unit, Core Facilities, Istituto Superiore di Sanità, Rome, Italy.
| | - Serena Camerini
- Mass Spectrometry Unit, Core Facilities, Istituto Superiore di Sanità, Rome, Italy.
| | - Elisabetta Benedetti
- Department of Life, Health and Environmental Sciences, University of L'Aquila, L'Aquila, Italy.
| | - Monia Perugini
- Department of Bioscience and Agro-Food and Environmental Technology, University of Teramo, Teramo, Italy.
| |
Collapse
|
25
|
Mayes WP, Gentle J, Ivanova M, Violante IR. Audio-visual multisensory integration and haptic perception are altered in adults with developmental coordination disorder. Hum Mov Sci 2024; 93:103180. [PMID: 38266441 DOI: 10.1016/j.humov.2024.103180] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2023] [Revised: 12/06/2023] [Accepted: 01/13/2024] [Indexed: 01/26/2024]
Abstract
Developmental Coordination Disorder (DCD) is a movement disorder in which atypical sensory processing may underly movement atypicality. However, whether altered sensory processing is domain-specific or global in nature, are unanswered questions. Here, we measured for the first time, different aspects of sensory processing and spatiotemporal integration in the same cohort of adult participants with DCD (N = 16), possible DCD (pDCD, N = 12) and neurotypical adults (NT, N = 28). Haptic perception was reduced in both DCD and the extended DCD + pDCD groups when compared to NT adults. Audio-visual integration, measured using the sound-induced double flash illusion, was reduced only in DCD participants, and not the DCD + pDCD extended group. While low-level sensory processing was altered in DCD, the more cognitive, higher-level ability to infer temporal dimensions from spatial information, and vice-versa, as assessed with Tau-Kappa effects, was intact in DCD (and extended DCD + pDCD) participants. Both audio-visual integration and haptic perception difficulties correlated with the degree of self-reported DCD symptoms and were most apparent when comparing DCD and NT groups directly, instead of the expanded DCD + pDCD group. The association of sensory difficulties with DCD symptoms suggests that perceptual differences play a role in motor difficulties in DCD via an underlying internal modelling mechanism.
Collapse
Affiliation(s)
- William P Mayes
- School of Psychology, University of Surrey, Stag Hill, Surrey GU2 7XH, UK.
| | - Judith Gentle
- School of Psychology, University of Surrey, Stag Hill, Surrey GU2 7XH, UK.
| | - Mirela Ivanova
- School of Psychology, University of Surrey, Stag Hill, Surrey GU2 7XH, UK
| | - Ines R Violante
- School of Psychology, University of Surrey, Stag Hill, Surrey GU2 7XH, UK.
| |
Collapse
|
26
|
Savage MC, Bliss G, Buxbaum JD, Farrell JS, Levin AR, Srivastava S, Berry-Kravis E, Holder JL, Sahin M. A roadmap for SHANK3-related Epilepsy Research: recommendations from the 2023 strategic planning workshop. THERAPEUTIC ADVANCES IN RARE DISEASE 2024; 5:26330040241273464. [PMID: 39295819 PMCID: PMC11409305 DOI: 10.1177/26330040241273464] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/30/2024] [Accepted: 07/10/2024] [Indexed: 09/21/2024]
Abstract
On September 27, 2023, the CureSHANK nonprofit foundation sponsored a conference in Boston, Massachusetts, to identify gaps in knowledge surrounding SHANK3-related epilepsy with the goal of determining future research priorities and recommendations. In addition to patient families and members of the CureSHANK community, participants in the conference included a broad cross-section of preclinical and clinical researchers and clinicians with expertise in SHANK3-related epilepsy as well as representatives from the pharmaceutical industry. Here we summarize the outcomes from comprehensive premeeting deliberations and the final conference recommendations, including (1) gaps in knowledge related to clinical science, (2) gaps in knowledge related to preclinical science, and (3) research priorities moving forward.
Collapse
Affiliation(s)
| | | | - Joseph D Buxbaum
- Seaver Autism Center for Research and Treatment, Department of Psychiatry, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Jordan S Farrell
- Department of Neurology, Harvard Medical School, Boston, MA, USA
- Rosamund Stone Zander Translational Neuroscience Center, Boston Children's Hospital, Boston, MA, USA
- Kirby Neurobiology Center, Boston Children's Hospital, Boston, MA, USA
| | - April R Levin
- Department of Neurology, Harvard Medical School, Boston, MA, USA
| | | | - Elizabeth Berry-Kravis
- Departments of Pediatrics, Neurological Sciences, Anatomy and Cell Biology, Rush Medical Center, Chicago, IL, USA
| | - J Lloyd Holder
- Department of Pediatrics, Baylor College of Medicine and Texas Children's Hospital, Houston, TX, USA
| | - Mustafa Sahin
- Department of Neurology, Harvard Medical School, Boston, MA, USA
- Rosamund Stone Zander Translational Neuroscience Center, Boston Children's Hospital, Boston, MA, USA
- Kirby Neurobiology Center, Boston Children's Hospital, 300 Longwood Avenue, Boston, MA 02115, USA
| |
Collapse
|
27
|
Walker H, Frost NA. Distinct transcriptional programs define a heterogeneous neuronal ensemble for social interaction. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.12.22.573153. [PMID: 38187723 PMCID: PMC10769355 DOI: 10.1101/2023.12.22.573153] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/09/2024]
Abstract
Reliable representations of information regarding complex behaviors including social interactions require the coordinated activity of heterogeneous cell types within distributed brain regions. Activity in the medial prefrontal cortex is critical in regulating social behavior, but our understanding of the specific cell types which comprise the social ensemble has been limited by available mouse lines and molecular tagging strategies which rely on the expression of a single marker gene. Here we sought to quantify the heterogeneous neuronal populations which are recruited during social interaction in parallel in a non-biased manner and determine how distinct cell types are differentially active during social interactions. We identify distinct populations of prefrontal neurons activated by social interaction by quantification of immediate early gene (IEG) expression in transcriptomically clustered neurons. This approach revealed variability in the recruitment of different excitatory and inhibitory populations within the medial prefrontal cortex. Furthermore, evaluation of the populations of IEGs recruited following social interaction revealed both cell-type and region-specific transcriptional programs, suggesting that reliance on a single molecular marker is insufficient to quantify activation across all cell types. Our findings provide a comprehensive description of cell-type specific transcriptional programs invoked by social interactions and reveal new insights into the heterogeneous neuronal populations which compose the social ensemble.
Collapse
|
28
|
Zhang L, Lin C, Zhu J, He Y, Zhan M, Xia X, Yang N, Yang K, Wang B, Zhong Z, Wang Y, Ding W, Yang Y. Restoring prefrontal cortical excitation-inhibition balance with cannabidiol ameliorates neurobehavioral abnormalities in a mouse model of neurodevelopmental disorders. Neuropharmacology 2023; 240:109715. [PMID: 37716533 DOI: 10.1016/j.neuropharm.2023.109715] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2023] [Revised: 09/07/2023] [Accepted: 09/08/2023] [Indexed: 09/18/2023]
Abstract
Maternal immune activation (MIA) resulting from viral infections during pregnancy is linked to increased rates of neurodevelopmental disorders in offspring. However, the mechanisms underlying MIA-induced neurobehavioral abnormalities remain unclear. Here, we used a poly (I:C)-induced MIA mouse model to demonstrate the presence of multiple behavioral deficits in male offspring. Through RNA sequencing (RNA-seq), we identified significant upregulation of genes involved in axonogenesis, synaptogenesis, and glutamatergic synaptic neurotransmission in the mPFC of MIA mice. Electrophysiological analyses further revealed an excitatory-inhibitory (E/I) synaptic imbalance in mPFC pyramidal neurons, leading to hyperactivity in this brain region. Cannabidiol (CBD) effectively alleviated the behavioral abnormalities observed in MIA offspring by reducing glutamatergic transmission and enhancing GABAergic neurotransmission of mPFC pyramidal neurons. Activation of GPR55 by lipid lysophosphatidylinositol (LPI), an endogenous GPR55 agonist, specifically in the mPFC of healthy animals led to MIA-associated behavioral phenotypes, which CBD could effectively reverse. Moreover, we found that a GPR55 antagonist can mimic CBD's beneficial effects, indicating that CBD's therapeutic effects are mediated via the LPI-GPR55 signaling pathway. Therefore, we identified mPFC as a primary node of a neural network that mediates MIA-induced behavioral abnormalities in offspring. Our work provides insights into the mechanisms underlying the developmental consequences of MIA and identifies CBD as a promising therapeutic approach to alleviate these effects.
Collapse
Affiliation(s)
- Lu Zhang
- School of Basic Medical Sciences, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, China
| | - Chunqiao Lin
- School of Basic Medical Sciences, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, China
| | - Jiushuang Zhu
- School of Basic Medical Sciences, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, China
| | - Yan He
- School of Basic Medical Sciences, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, China
| | - Meng Zhan
- School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, China
| | - Xiuwen Xia
- School of Basic Medical Sciences, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, China
| | - Ni Yang
- School of Basic Medical Sciences, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, China
| | - Kun Yang
- School of Basic Medical Sciences, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, China
| | - Baojia Wang
- School of Basic Medical Sciences, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, China
| | - Zhanqion Zhong
- School of Basic Medical Sciences, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, China
| | - Yili Wang
- Innovative Institute of Chinese Medicine and Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, PR China
| | - Weijun Ding
- School of Basic Medical Sciences, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, China.
| | - Youjun Yang
- School of Basic Medical Sciences, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, China.
| |
Collapse
|
29
|
Johnson AJ, Shankland E, Richards T, Corrigan N, Shusterman D, Edden R, Estes A, St John T, Dager S, Kleinhans NM. Relationships between GABA, glutamate, and GABA/glutamate and social and olfactory processing in children with autism spectrum disorder. Psychiatry Res Neuroimaging 2023; 336:111745. [PMID: 37956467 PMCID: PMC10841920 DOI: 10.1016/j.pscychresns.2023.111745] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/11/2023] [Revised: 10/16/2023] [Accepted: 10/19/2023] [Indexed: 11/15/2023]
Abstract
Theories of altered inhibitory/excitatory signaling in autism spectrum disorder (ASD) suggest that gamma amino butyric acid (GABA) and glutamate (Glu) abnormalities may underlie social and sensory challenges in ASD. Magnetic resonance spectroscopy was used to measure Glu and GABA+ levels in the amygdala-hippocampus region and cerebellum in autistic children (n = 30), a clinical control group with sensory abnormalities (SA) but not ASD (n = 30), and children with typical development (n = 37). All participants were clinically assessed using the Autism Diagnostic Interview-Revised, the Autism Diagnostic Observation Scale-2, and the Child Sensory Profile-2. The Social Responsiveness Scale-2, Sniffin Sticks Threshold Test, and the University of Pennsylvania Smell Identification Test were administered to assess social impairment and olfactory processing. Overall, autistic children showed increased cerebellar Glu levels compared to TYP children. Evidence for altered excitatory/inhibitory signaling in the cerebellum was more clear-cut when analyses were restricted to male participants. Further, lower cerebellar GABA+/Glu ratios were correlated to more severe social impairment in both autistic and SA males, suggesting that the cerebellum may play a transdiagnostic role in social impairment. Future studies of inhibitory/excitatory neural markers, powered to investigate the role of sex, may aid in parsing out disorder-specific neurochemical profiles.
Collapse
Affiliation(s)
- Allegra J Johnson
- Department of Radiology, University of Washington, USA; Integrated Brain Imaging Center (IBIC), University of Washington, Box 357115, 1959 NE Pacific St, Seattle, WA 98195, USA
| | | | - Todd Richards
- Department of Radiology, University of Washington, USA; Integrated Brain Imaging Center (IBIC), University of Washington, Box 357115, 1959 NE Pacific St, Seattle, WA 98195, USA
| | - Neva Corrigan
- Institute on Human Development and Disability (IHDD), University of Washington, USA
| | - Dennis Shusterman
- Department of Medicine, University of California, San Francisco, USA
| | - Richard Edden
- Russell H. Morgan Department of Radiology and Radiological Science, Johns Hopkins University School of Medicine, USA; F.M. Kirby Center for Functional MRI, Kennedy Krieger Institute, USA
| | - Annette Estes
- Institute on Human Development and Disability (IHDD), University of Washington, USA; Department of Speech and Hearing Sciences, University of Washington, USA; University of Washington Autism Center, USA
| | - Tanya St John
- University of Washington Autism Center, USA; Department of Medicine, University of California, San Francisco, USA
| | - Stephen Dager
- Department of Radiology, University of Washington, USA; Institute on Human Development and Disability (IHDD), University of Washington, USA; Department of Biomedical Engineering, University of Washington, USA
| | - Natalia M Kleinhans
- Department of Radiology, University of Washington, USA; Integrated Brain Imaging Center (IBIC), University of Washington, Box 357115, 1959 NE Pacific St, Seattle, WA 98195, USA; Institute on Human Development and Disability (IHDD), University of Washington, USA.
| |
Collapse
|
30
|
Wang J, Lin J, Chen Y, Liu J, Zheng Q, Deng M, Wang R, Zhang Y, Feng S, Xu Z, Ye W, Hu Y, Duan J, Lin Y, Dai J, Chen Y, Li Y, Luo T, Chen Q, Lu Z. An ultra-compact promoter drives widespread neuronal expression in mouse and monkey brains. Cell Rep 2023; 42:113348. [PMID: 37910509 DOI: 10.1016/j.celrep.2023.113348] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2022] [Revised: 07/11/2023] [Accepted: 10/10/2023] [Indexed: 11/03/2023] Open
Abstract
Promoters are essential tools for basic and translational neuroscience research. An ideal promoter should possess the shortest possible DNA sequence with cell-type selectivity. However, whether ultra-compact promoters can offer neuron-specific expression is unclear. Here, we report the development of an extremely short promoter that enables selective gene expression in neurons, but not glial cells, in the brain. The promoter sequence originates from the human CALM1 gene and is only 120 bp in size. The CALM1 promoter (pCALM1) embedded in an adeno-associated virus (AAV) genome directed broad reporter expression in excitatory and inhibitory neurons in mouse and monkey brains. Moreover, pCALM1, when inserted into an all-in-one AAV vector expressing SpCas9 and sgRNA, drives constitutive and conditional in vivo gene editing in neurons and elicits functional alterations. These data demonstrate the ability of pCALM1 to conduct restricted neuronal gene expression, illustrating the feasibility of ultra-miniature promoters for targeting brain-cell subtypes.
Collapse
Affiliation(s)
- Jingyi Wang
- Department of Anesthesiology, Peking University Shenzhen Hospital, Shenzhen 518034, China; Shenzhen Technological Research Center for Primate Translational Medicine, Shenzhen Key Laboratory for Molecular Biology of Neural Development, Shenzhen-Hong Kong Institute of Brain Science, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Jianbang Lin
- Shenzhen Technological Research Center for Primate Translational Medicine, Shenzhen Key Laboratory for Molecular Biology of Neural Development, Shenzhen-Hong Kong Institute of Brain Science, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Yefei Chen
- Shenzhen Technological Research Center for Primate Translational Medicine, Shenzhen Key Laboratory for Molecular Biology of Neural Development, Shenzhen-Hong Kong Institute of Brain Science, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, China
| | - Jing Liu
- Shenzhen Technological Research Center for Primate Translational Medicine, Shenzhen Key Laboratory for Molecular Biology of Neural Development, Shenzhen-Hong Kong Institute of Brain Science, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, China; Department of Anesthesiology, Affiliated Shenzhen Maternity & Child Healthcare Hospital, Southern Medical University, Shenzhen 518027, China
| | - Qiongping Zheng
- Shenzhen Technological Research Center for Primate Translational Medicine, Shenzhen Key Laboratory for Molecular Biology of Neural Development, Shenzhen-Hong Kong Institute of Brain Science, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, China
| | - Mao Deng
- Zhongshan Institute for Drug Discovery, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Zhongshan 528400, China
| | - Ruiqi Wang
- Shenzhen Technological Research Center for Primate Translational Medicine, Shenzhen Key Laboratory for Molecular Biology of Neural Development, Shenzhen-Hong Kong Institute of Brain Science, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, China
| | - Yujing Zhang
- Shenzhen Technological Research Center for Primate Translational Medicine, Shenzhen Key Laboratory for Molecular Biology of Neural Development, Shenzhen-Hong Kong Institute of Brain Science, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, China
| | - Shijing Feng
- Shenzhen Technological Research Center for Primate Translational Medicine, Shenzhen Key Laboratory for Molecular Biology of Neural Development, Shenzhen-Hong Kong Institute of Brain Science, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, China
| | - Zhenyan Xu
- Shenzhen Technological Research Center for Primate Translational Medicine, Shenzhen Key Laboratory for Molecular Biology of Neural Development, Shenzhen-Hong Kong Institute of Brain Science, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, China
| | - Weiyi Ye
- Zhongshan Institute for Drug Discovery, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Zhongshan 528400, China
| | - Yu Hu
- Shenzhen Technological Research Center for Primate Translational Medicine, Shenzhen Key Laboratory for Molecular Biology of Neural Development, Shenzhen-Hong Kong Institute of Brain Science, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, China
| | - Jiamei Duan
- Zhongshan Institute for Drug Discovery, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Zhongshan 528400, China; School of Pharmaceutical Sciences, Southern Medical University, Guangzhou 510515, China
| | - Yunping Lin
- Shenzhen Technological Research Center for Primate Translational Medicine, Shenzhen Key Laboratory for Molecular Biology of Neural Development, Shenzhen-Hong Kong Institute of Brain Science, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Ji Dai
- Shenzhen Technological Research Center for Primate Translational Medicine, Shenzhen Key Laboratory for Molecular Biology of Neural Development, Shenzhen-Hong Kong Institute of Brain Science, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, China; University of Chinese Academy of Sciences, Beijing 100049, China; Guangdong Provincial Key Laboratory of Brain Connectome and Behavior, CAS Key Laboratory of Brain Connectome and Manipulation, The Brain Cognition and Brain Disease Institute, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, China
| | - Yu Chen
- Shenzhen Technological Research Center for Primate Translational Medicine, Shenzhen Key Laboratory for Molecular Biology of Neural Development, Shenzhen-Hong Kong Institute of Brain Science, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, China; University of Chinese Academy of Sciences, Beijing 100049, China; Guangdong Provincial Key Laboratory of Brain Connectome and Behavior, CAS Key Laboratory of Brain Connectome and Manipulation, The Brain Cognition and Brain Disease Institute, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, China
| | - Yuantao Li
- Department of Anesthesiology, Affiliated Shenzhen Maternity & Child Healthcare Hospital, Southern Medical University, Shenzhen 518027, China; Biomedical Research Institute, Hubei University of Medicine, Shiyan 442000, China
| | - Tao Luo
- Department of Anesthesiology, Peking University Shenzhen Hospital, Shenzhen 518034, China
| | - Qian Chen
- University of Chinese Academy of Sciences, Beijing 100049, China; Zhongshan Institute for Drug Discovery, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Zhongshan 528400, China; School of Pharmaceutical Sciences, Southern Medical University, Guangzhou 510515, China; Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China.
| | - Zhonghua Lu
- Shenzhen Technological Research Center for Primate Translational Medicine, Shenzhen Key Laboratory for Molecular Biology of Neural Development, Shenzhen-Hong Kong Institute of Brain Science, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, China; University of Chinese Academy of Sciences, Beijing 100049, China; Guangdong Provincial Key Laboratory of Brain Connectome and Behavior, CAS Key Laboratory of Brain Connectome and Manipulation, The Brain Cognition and Brain Disease Institute, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, China; Biomedical Imaging Science and System Key Laboratory, Chinese Academy of Sciences, Shenzhen 518055, China.
| |
Collapse
|
31
|
Shih YC, Nelson L, Janeček M, Peixoto RT. Late onset and regional heterogeneity of synaptic deficits in cortical PV interneurons of Shank3B -/- mice. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.11.23.568500. [PMID: 38045377 PMCID: PMC10690261 DOI: 10.1101/2023.11.23.568500] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/05/2023]
Abstract
Epilepsy and epileptiform patterns of cortical activity are highly prevalent in autism spectrum disorders (ASDs), but the neural substrates and pathophysiological mechanisms underlying the onset of cortical dysfunction in ASD remains elusive. Reduced cortical expression of Parvalbumin (PV) has been widely observed in ASD mouse models and human postmortem studies, suggesting a crucial role of PV interneurons (PVINs) in ASD pathogenesis. Shank3B -/- mice carrying a Δ13-16 deletion in SHANK3 exhibit cortical hyperactivity during postnatal development and reduced sensory responses in cortical GABAergic interneurons in adulthood. However, whether these phenotypes are associated with PVIN dysfunction is unknown. Using whole-cell electrophysiology and a viral-based strategy to label PVINs during postnatal development, we performed a developmental characterization of AMPAR miniature excitatory postsynaptic currents (mEPSCs) in PVINs and pyramidal (PYR) neurons of layer (L) 2/3 mPFC in Shank3B -/- mice. Surprisingly, reduced mEPSC frequency was observed in both PYR and PVIN populations, but only in adulthood. At P15, when cortical hyperactivity is already observed, both neuron types exhibited normal mEPSC amplitude and frequency, suggesting that glutamatergic connectivity deficits in these neurons emerge as compensatory mechanisms. Additionally, we found normal mEPSCs in adult PVINs of L2/3 somatosensory cortex, revealing region-specific phenotypic differences of cortical PVINs in Shank3B -/- mice. Together, these results demonstrate that loss of Shank3 alters PVIN function but suggest that PVIN glutamatergic synapses are a suboptimal therapeutic target for normalizing early cortical imbalances in SHANK3-associated disorders. More broadly, these findings underscore the complexity of interneuron dysfunction in ASDs, prompting further exploration of region and developmental stage specific phenotypes for understanding and developing effective interventions.
Collapse
|
32
|
Ryndych D, Sebold A, Strassburg A, Li Y, Ramos RL, Otazu GH. Haploinsufficiency of Shank3 in Mice Selectively Impairs Target Odor Recognition in Novel Background Odors. J Neurosci 2023; 43:7799-7811. [PMID: 37739796 PMCID: PMC10648539 DOI: 10.1523/jneurosci.0255-23.2023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2023] [Revised: 07/30/2023] [Accepted: 09/13/2023] [Indexed: 09/24/2023] Open
Abstract
Individuals with mutations in a single copy of the SHANK3 gene present with social interaction deficits. Although social behavior in mice depends on olfaction, mice with mutations in a single copy of the Shank3 gene do not have olfactory deficits in simple odor identification tasks (Drapeau et al., 2018). Here, we tested olfaction in mice with mutations in a single copy of the Shank3 gene (Peça et al., 2011) using a complex odor task and imaging in awake mice. Average glomerular responses in the olfactory bulb of Shank3B +/- were correlated with WT mice. However, there was increased trial-to-trial variability in the odor responses for Shank3B +/- mice. Simulations demonstrated that this increased variability could affect odor detection in novel environments. To test whether performance was affected by the increased variability, we tested target odor recognition in the presence of novel background odors using a recently developed task (Li et al., 2023). Head-fixed mice were trained to detect target odors in the presence of known background odors. Performance was tested using catch trials where the known background odors were replaced by novel background odors. We compared the performance of eight Shank3B +/- mice (five males, three females) on this task with six WT mice (three males, three females). Performance for known background odors and learning rates were similar between Shank3B +/- and WT mice. However, when tested with novel background odors, the performance of Shank3B +/- mice dropped to almost chance levels. Thus, haploinsufficiency of the Shank3 gene causes a specific deficit in odor detection in novel environments. Our results are discussed in the context of other Shank3 mouse models and have implications for understanding olfactory function in neurodevelopmental disorders.SIGNIFICANCE STATEMENT People and mice with mutations in a single copy in the synaptic gene Shank3 show features seen in autism spectrum disorders, including social interaction deficits. Although mice social behavior uses olfaction, mice with mutations in a single copy of Shank3 have so far not shown olfactory deficits when tested using simple tasks. Here, we used a recently developed task to show that these mice could identify odors in the presence of known background odors as well as wild-type mice. However, their performance fell below that of wild-type mice when challenged with novel background odors. This deficit was also previously reported in the Cntnap2 mouse model of autism, suggesting that odor detection in novel backgrounds is a general deficit across mouse models of autism.
Collapse
Affiliation(s)
- Darya Ryndych
- Department of Biomedical Sciences, New York Institute of Technology College of Osteopathic Medicine, Old Westbury, New York 11568
| | - Alison Sebold
- Department of Biomedical Sciences, New York Institute of Technology College of Osteopathic Medicine, Old Westbury, New York 11568
| | - Alyssa Strassburg
- Department of Biomedical Sciences, New York Institute of Technology College of Osteopathic Medicine, Old Westbury, New York 11568
| | - Yan Li
- Department of Biomedical Sciences, New York Institute of Technology College of Osteopathic Medicine, Old Westbury, New York 11568
| | - Raddy L Ramos
- Department of Biomedical Sciences, New York Institute of Technology College of Osteopathic Medicine, Old Westbury, New York 11568
| | - Gonzalo H Otazu
- Department of Biomedical Sciences, New York Institute of Technology College of Osteopathic Medicine, Old Westbury, New York 11568
| |
Collapse
|
33
|
Mount RA, Athif M, O’Connor M, Saligrama A, Tseng HA, Sridhar S, Zhou C, Bortz E, San Antonio E, Kramer MA, Man HY, Han X. The autism spectrum disorder risk gene NEXMIF over-synchronizes hippocampal CA1 network and alters neuronal coding. Front Neurosci 2023; 17:1277501. [PMID: 37965217 PMCID: PMC10641898 DOI: 10.3389/fnins.2023.1277501] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2023] [Accepted: 10/10/2023] [Indexed: 11/16/2023] Open
Abstract
Mutations in autism spectrum disorder (ASD) risk genes disrupt neural network dynamics that ultimately lead to abnormal behavior. To understand how ASD-risk genes influence neural circuit computation during behavior, we analyzed the hippocampal network by performing large-scale cellular calcium imaging from hundreds of individual CA1 neurons simultaneously in transgenic mice with total knockout of the X-linked ASD-risk gene NEXMIF (neurite extension and migration factor). As NEXMIF knockout in mice led to profound learning and memory deficits, we examined the CA1 network during voluntary locomotion, a fundamental component of spatial memory. We found that NEXMIF knockout does not alter the overall excitability of individual neurons but exaggerates movement-related neuronal responses. To quantify network functional connectivity changes, we applied closeness centrality analysis from graph theory to our large-scale calcium imaging datasets, in addition to using the conventional pairwise correlation analysis. Closeness centrality analysis considers both the number of connections and the connection strength between neurons within a network. We found that in wild-type mice the CA1 network desynchronizes during locomotion, consistent with increased network information coding during active behavior. Upon NEXMIF knockout, CA1 network is over-synchronized regardless of behavioral state and fails to desynchronize during locomotion, highlighting how perturbations in ASD-implicated genes create abnormal network synchronization that could contribute to ASD-related behaviors.
Collapse
Affiliation(s)
- Rebecca A. Mount
- Department of Biomedical Engineering, Boston University, Boston, MA, United States
| | - Mohamed Athif
- Department of Biomedical Engineering, Boston University, Boston, MA, United States
| | | | - Amith Saligrama
- Department of Biomedical Engineering, Boston University, Boston, MA, United States
- Commonwealth School, Boston, MA, United States
| | - Hua-an Tseng
- Department of Biomedical Engineering, Boston University, Boston, MA, United States
| | - Sudiksha Sridhar
- Department of Biomedical Engineering, Boston University, Boston, MA, United States
| | - Chengqian Zhou
- Department of Biomedical Engineering, Boston University, Boston, MA, United States
| | - Emma Bortz
- Department of Biomedical Engineering, Boston University, Boston, MA, United States
| | - Erynne San Antonio
- Department of Biomedical Engineering, Boston University, Boston, MA, United States
| | - Mark A. Kramer
- Department of Mathematics, Boston University, Boston, MA, United States
| | - Heng-Ye Man
- Department of Biology, Boston University, Boston, MA, United States
| | - Xue Han
- Department of Biomedical Engineering, Boston University, Boston, MA, United States
| |
Collapse
|
34
|
Huang Q, Velthuis H, Pereira AC, Ahmad J, Cooke SF, Ellis CL, Ponteduro FM, Puts NAJ, Dimitrov M, Batalle D, Wong NML, Kowalewski L, Ivin G, Daly E, Murphy DGM, McAlonan GM. Exploratory evidence for differences in GABAergic regulation of auditory processing in autism spectrum disorder. Transl Psychiatry 2023; 13:320. [PMID: 37852957 PMCID: PMC10584846 DOI: 10.1038/s41398-023-02619-8] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/15/2023] [Revised: 09/28/2023] [Accepted: 10/03/2023] [Indexed: 10/20/2023] Open
Abstract
Altered reactivity and responses to auditory input are core to the diagnosis of autism spectrum disorder (ASD). Preclinical models implicate ϒ-aminobutyric acid (GABA) in this process. However, the link between GABA and auditory processing in humans (with or without ASD) is largely correlational. As part of a study of potential biosignatures of GABA function in ASD to inform future clinical trials, we evaluated the role of GABA in auditory repetition suppression in 66 adults (n = 28 with ASD). Neurophysiological responses (temporal and frequency domains) to repetitive standard tones and novel deviants presented in an oddball paradigm were compared after double-blind, randomized administration of placebo, 15 or 30 mg of arbaclofen (STX209), a GABA type B (GABAB) receptor agonist. We first established that temporal mismatch negativity was comparable between participants with ASD and those with typical development (TD). Next, we showed that temporal and spectral responses to repetitive standards were suppressed relative to responses to deviants in the two groups, but suppression was significantly weaker in individuals with ASD at baseline. Arbaclofen reversed weaker suppression of spectral responses in ASD but disrupted suppression in TD. A post hoc analysis showed that arbaclofen-elicited shift in suppression was correlated with autistic symptomatology measured using the Autism Quotient across the entire group, though not in the smaller sample of the ASD and TD group when examined separately. Thus, our results confirm: GABAergic dysfunction contributes to the neurophysiology of auditory sensory processing alterations in ASD, and can be modulated by targeting GABAB activity. These GABA-dependent sensory differences may be upstream of more complex autistic phenotypes.
Collapse
Affiliation(s)
- Qiyun Huang
- Department of Forensic and Neurodevelopmental Sciences, Institute of Psychiatry, Psychology & Neuroscience, King's College London, London, UK.
- Institute for Translational Neurodevelopment, Institute of Psychiatry, Psychology & Neuroscience, King's College London, London, UK.
- Research Center for Brain-Computer Interface, Pazhou Lab, Guangzhou, China.
| | - Hester Velthuis
- Department of Forensic and Neurodevelopmental Sciences, Institute of Psychiatry, Psychology & Neuroscience, King's College London, London, UK
- Institute for Translational Neurodevelopment, Institute of Psychiatry, Psychology & Neuroscience, King's College London, London, UK
| | - Andreia C Pereira
- Department of Forensic and Neurodevelopmental Sciences, Institute of Psychiatry, Psychology & Neuroscience, King's College London, London, UK
- Institute for Translational Neurodevelopment, Institute of Psychiatry, Psychology & Neuroscience, King's College London, London, UK
- Institute for Nuclear Sciences Applied to Health (ICNAS), Coimbra Institute for Biomedical Imaging and Translational Research (CIBIT), University of Coimbra, Coimbra, Portugal
| | - Jumana Ahmad
- School of Human Sciences, University of Greenwich, London, UK
| | - Samuel F Cooke
- Department of Basic and Clinical Neuroscience, Institute of Psychiatry, Psychology & Neuroscience, King's College London, London, UK
- MRC Centre for Neurodevelopmental Disorders, King's College London, London, UK
| | - Claire L Ellis
- Department of Forensic and Neurodevelopmental Sciences, Institute of Psychiatry, Psychology & Neuroscience, King's College London, London, UK
- Institute for Translational Neurodevelopment, Institute of Psychiatry, Psychology & Neuroscience, King's College London, London, UK
| | - Francesca M Ponteduro
- Department of Forensic and Neurodevelopmental Sciences, Institute of Psychiatry, Psychology & Neuroscience, King's College London, London, UK
- Institute for Translational Neurodevelopment, Institute of Psychiatry, Psychology & Neuroscience, King's College London, London, UK
| | - Nicolaas A J Puts
- Department of Forensic and Neurodevelopmental Sciences, Institute of Psychiatry, Psychology & Neuroscience, King's College London, London, UK
- Institute for Translational Neurodevelopment, Institute of Psychiatry, Psychology & Neuroscience, King's College London, London, UK
- MRC Centre for Neurodevelopmental Disorders, King's College London, London, UK
| | - Mihail Dimitrov
- Department of Forensic and Neurodevelopmental Sciences, Institute of Psychiatry, Psychology & Neuroscience, King's College London, London, UK
- Institute for Translational Neurodevelopment, Institute of Psychiatry, Psychology & Neuroscience, King's College London, London, UK
| | - Dafnis Batalle
- Department of Forensic and Neurodevelopmental Sciences, Institute of Psychiatry, Psychology & Neuroscience, King's College London, London, UK
- Institute for Translational Neurodevelopment, Institute of Psychiatry, Psychology & Neuroscience, King's College London, London, UK
| | - Nichol M L Wong
- Department of Forensic and Neurodevelopmental Sciences, Institute of Psychiatry, Psychology & Neuroscience, King's College London, London, UK
- Institute for Translational Neurodevelopment, Institute of Psychiatry, Psychology & Neuroscience, King's College London, London, UK
- Department of Psychology, The Education University of Hong Kong, Hong Kong, China
| | - Lukasz Kowalewski
- Department of Forensic and Neurodevelopmental Sciences, Institute of Psychiatry, Psychology & Neuroscience, King's College London, London, UK
- Institute for Translational Neurodevelopment, Institute of Psychiatry, Psychology & Neuroscience, King's College London, London, UK
| | - Glynis Ivin
- South London and Maudsley NHS Foundation Trust Pharmacy, London, UK
| | - Eileen Daly
- Department of Forensic and Neurodevelopmental Sciences, Institute of Psychiatry, Psychology & Neuroscience, King's College London, London, UK
- Institute for Translational Neurodevelopment, Institute of Psychiatry, Psychology & Neuroscience, King's College London, London, UK
| | - Declan G M Murphy
- Department of Forensic and Neurodevelopmental Sciences, Institute of Psychiatry, Psychology & Neuroscience, King's College London, London, UK
- Institute for Translational Neurodevelopment, Institute of Psychiatry, Psychology & Neuroscience, King's College London, London, UK
- MRC Centre for Neurodevelopmental Disorders, King's College London, London, UK
| | - Gráinne M McAlonan
- Department of Forensic and Neurodevelopmental Sciences, Institute of Psychiatry, Psychology & Neuroscience, King's College London, London, UK.
- Institute for Translational Neurodevelopment, Institute of Psychiatry, Psychology & Neuroscience, King's College London, London, UK.
- MRC Centre for Neurodevelopmental Disorders, King's College London, London, UK.
| |
Collapse
|
35
|
Wang HC, Feldman DE. Degraded tactile coding in the Cntnap2 mouse model of autism. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.09.29.560240. [PMID: 37808857 PMCID: PMC10557772 DOI: 10.1101/2023.09.29.560240] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/10/2023]
Abstract
Atypical sensory processing in autism involves altered neural circuit function and neural coding in sensory cortex, but the nature of coding disruption is poorly understood. We characterized neural coding in L2/3 of whisker somatosensory cortex (S1) of Cntnap2-/- mice, an autism model with pronounced hypofunction of parvalbumin (PV) inhibitory circuits. We tested for both excess spiking, which is often hypothesized in autism models with reduced inhibition, and alterations in somatotopic coding, using c-fos immunostaining and 2-photon calcium imaging in awake mice. In Cntnap2-/- mice, c-fos-(+) neuron density was elevated in L2/3 of S1 under spontaneous activity conditions, but comparable to control mice after whisker stimulation, suggesting that sensory-evoked spiking was relatively normal. 2-photon GCaMP8m imaging in L2/3 pyramidal cells revealed no increase in whisker-evoked response magnitude, but instead showed multiple signs of degraded somatotopic coding. These included broadening of whisker tuning curves, blurring of the whisker map, and blunting of the point representation of each whisker. These altered properties were more pronounced in noisy than sparse sensory conditions. Tuning instability, assessed over 2-3 weeks of longitudinal imaging, was also significantly increased in Cntnap2-/- mice. Thus, Cntnap2-/- mice show no excess spiking, but a degraded and unstable tactile code in S1.
Collapse
Affiliation(s)
- Han Chin Wang
- Department of Molecular & Cell Biology, and Helen Wills Neuroscience Institute, University of California Berkeley, Berkeley, California 94720, USA
| | - Daniel E. Feldman
- Department of Molecular & Cell Biology, and Helen Wills Neuroscience Institute, University of California Berkeley, Berkeley, California 94720, USA
| |
Collapse
|
36
|
Toudji I, Toumi A, Chamberland É, Rossignol E. Interneuron odyssey: molecular mechanisms of tangential migration. Front Neural Circuits 2023; 17:1256455. [PMID: 37779671 PMCID: PMC10538647 DOI: 10.3389/fncir.2023.1256455] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2023] [Accepted: 08/21/2023] [Indexed: 10/03/2023] Open
Abstract
Cortical GABAergic interneurons are critical components of neural networks. They provide local and long-range inhibition and help coordinate network activities involved in various brain functions, including signal processing, learning, memory and adaptative responses. Disruption of cortical GABAergic interneuron migration thus induces profound deficits in neural network organization and function, and results in a variety of neurodevelopmental and neuropsychiatric disorders including epilepsy, intellectual disability, autism spectrum disorders and schizophrenia. It is thus of paramount importance to elucidate the specific mechanisms that govern the migration of interneurons to clarify some of the underlying disease mechanisms. GABAergic interneurons destined to populate the cortex arise from multipotent ventral progenitor cells located in the ganglionic eminences and pre-optic area. Post-mitotic interneurons exit their place of origin in the ventral forebrain and migrate dorsally using defined migratory streams to reach the cortical plate, which they enter through radial migration before dispersing to settle in their final laminar allocation. While migrating, cortical interneurons constantly change their morphology through the dynamic remodeling of actomyosin and microtubule cytoskeleton as they detect and integrate extracellular guidance cues generated by neuronal and non-neuronal sources distributed along their migratory routes. These processes ensure proper distribution of GABAergic interneurons across cortical areas and lamina, supporting the development of adequate network connectivity and brain function. This short review summarizes current knowledge on the cellular and molecular mechanisms controlling cortical GABAergic interneuron migration, with a focus on tangential migration, and addresses potential avenues for cell-based interneuron progenitor transplants in the treatment of neurodevelopmental disorders and epilepsy.
Collapse
Affiliation(s)
- Ikram Toudji
- Centre Hospitalier Universitaire (CHU) Sainte-Justine Research Center, Montréal, QC, Canada
- Department of Neurosciences, Université de Montréal, Montréal, QC, Canada
| | - Asmaa Toumi
- Centre Hospitalier Universitaire (CHU) Sainte-Justine Research Center, Montréal, QC, Canada
- Department of Biochemistry and Molecular Medicine, Université de Montréal, Montréal, QC, Canada
| | - Émile Chamberland
- Centre Hospitalier Universitaire (CHU) Sainte-Justine Research Center, Montréal, QC, Canada
- Department of Neurosciences, Université de Montréal, Montréal, QC, Canada
| | - Elsa Rossignol
- Centre Hospitalier Universitaire (CHU) Sainte-Justine Research Center, Montréal, QC, Canada
- Department of Neurosciences, Université de Montréal, Montréal, QC, Canada
- Department of Pediatrics, Université de Montréal, Montréal, QC, Canada
| |
Collapse
|
37
|
Monday HR, Wang HC, Feldman DE. Circuit-level theories for sensory dysfunction in autism: convergence across mouse models. Front Neurol 2023; 14:1254297. [PMID: 37745660 PMCID: PMC10513044 DOI: 10.3389/fneur.2023.1254297] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2023] [Accepted: 08/14/2023] [Indexed: 09/26/2023] Open
Abstract
Individuals with autism spectrum disorder (ASD) exhibit a diverse range of behavioral features and genetic backgrounds, but whether different genetic forms of autism involve convergent pathophysiology of brain function is unknown. Here, we analyze evidence for convergent deficits in neural circuit function across multiple transgenic mouse models of ASD. We focus on sensory areas of neocortex, where circuit differences may underlie atypical sensory processing, a central feature of autism. Many distinct circuit-level theories for ASD have been proposed, including increased excitation-inhibition (E-I) ratio and hyperexcitability, hypofunction of parvalbumin (PV) interneuron circuits, impaired homeostatic plasticity, degraded sensory coding, and others. We review these theories and assess the degree of convergence across ASD mouse models for each. Behaviorally, our analysis reveals that innate sensory detection behavior is heightened and sensory discrimination behavior is impaired across many ASD models. Neurophysiologically, PV hypofunction and increased E-I ratio are prevalent but only rarely generate hyperexcitability and excess spiking. Instead, sensory tuning and other aspects of neural coding are commonly degraded and may explain impaired discrimination behavior. Two distinct phenotypic clusters with opposing neural circuit signatures are evident across mouse models. Such clustering could suggest physiological subtypes of autism, which may facilitate the development of tailored therapeutic approaches.
Collapse
Affiliation(s)
- Hannah R. Monday
- Department of Molecular and Cell Biology, Helen Wills Neuroscience Institute, University of California, Berkeley, Berkeley, CA, United States
| | | | - Daniel E. Feldman
- Department of Molecular and Cell Biology, Helen Wills Neuroscience Institute, University of California, Berkeley, Berkeley, CA, United States
| |
Collapse
|
38
|
Xu D, Zhi Y, Liu X, Guan L, Yu J, Zhang D, Zhang W, Wang Y, Tao W, Xu Z. WDR62-deficiency Causes Autism-like Behaviors Independent of Microcephaly in Mice. Neurosci Bull 2023; 39:1333-1347. [PMID: 36571716 PMCID: PMC10465473 DOI: 10.1007/s12264-022-00997-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2022] [Accepted: 07/19/2022] [Indexed: 12/27/2022] Open
Abstract
Brain size abnormality is correlated with an increased frequency of autism spectrum disorder (ASD) in offspring. Genetic analysis indicates that heterozygous mutations of the WD repeat domain 62 (WDR62) are associated with ASD. However, biological evidence is still lacking. Our study showed that Wdr62 knockout (KO) led to reduced brain size with impaired learning and memory, as well as ASD-like behaviors in mice. Interestingly, Wdr62 Nex-cKO mice (depletion of WDR62 in differentiated neurons) had a largely normal brain size but with aberrant social interactions and repetitive behaviors. WDR62 regulated dendritic spinogenesis and excitatory synaptic transmission in cortical pyramidal neurons. Finally, we revealed that retinoic acid gavages significantly alleviated ASD-like behaviors in mice with WDR62 haploinsufficiency, probably by complementing the expression of ASD and synapse-related genes. Our findings provide a new perspective on the relationship between the microcephaly gene WDR62 and ASD etiology that will benefit clinical diagnosis and intervention of ASD.
Collapse
Affiliation(s)
- Dan Xu
- Fujian Key Laboratory of Molecular Neurology, Institute of Neuroscience, Fujian Medical University, Fuzhou, 350005, China.
| | - Yiqiang Zhi
- College of Biological Science and Engineering, Institute of Life Sciences, Fuzhou University, Fuzhou, 350108, China
| | - Xinyi Liu
- University of Chinese Academy of Sciences, Beijing, 100101, China
- State Key Laboratory of Molecular Developmental Biology, CAS Center for Excellence in Brain Science and Intelligence Technology, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, 100101, China
| | - Le Guan
- Key Laboratory of Brain Aging and Neurodegenerative Diseases, School of Basic Medical Sciences, Fujian Medical University, Fuzhou, 350108, China
| | - Jurui Yu
- College of Biological Science and Engineering, Institute of Life Sciences, Fuzhou University, Fuzhou, 350108, China
| | - Dan Zhang
- University of Chinese Academy of Sciences, Beijing, 100101, China
- State Key Laboratory of Molecular Developmental Biology, CAS Center for Excellence in Brain Science and Intelligence Technology, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, 100101, China
| | - Weiya Zhang
- University of Chinese Academy of Sciences, Beijing, 100101, China
- State Key Laboratory of Molecular Developmental Biology, CAS Center for Excellence in Brain Science and Intelligence Technology, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, 100101, China
| | - Yaqing Wang
- State Key Laboratory of Molecular Developmental Biology, CAS Center for Excellence in Brain Science and Intelligence Technology, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, 100101, China
| | - Wucheng Tao
- Key Laboratory of Brain Aging and Neurodegenerative Diseases, School of Basic Medical Sciences, Fujian Medical University, Fuzhou, 350108, China.
| | - Zhiheng Xu
- State Key Laboratory of Molecular Developmental Biology, CAS Center for Excellence in Brain Science and Intelligence Technology, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, 100101, China.
| |
Collapse
|
39
|
Zhao M, Kwon SE. Interneuron-Targeted Disruption of SYNGAP1 Alters Sensory Representations in the Neocortex and Impairs Sensory Learning. J Neurosci 2023; 43:6212-6226. [PMID: 37558489 PMCID: PMC10476640 DOI: 10.1523/jneurosci.1997-22.2023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2022] [Revised: 07/18/2023] [Accepted: 07/20/2023] [Indexed: 08/11/2023] Open
Abstract
SYNGAP1 haploinsufficiency in humans leads to severe neurodevelopmental disorders characterized by intellectual disability, autism, epilepsy, and sensory processing deficits. However, the circuit mechanisms underlying these disorders are not well understood. In mice, a decrease of SynGAP levels results in cognitive deficits by interfering with the development of excitatory glutamatergic connections. Recent evidence suggests that SynGAP also plays a crucial role in the development and function of GABAergic inhibitory interneurons. Nevertheless, it remains uncertain whether and to what extent the expression of SYNGAP1 in inhibitory interneurons contributes to cortical circuit function and related behaviors. The activity of cortical neurons has not been measured simultaneously with behavior. To address these gaps, we recorded from layer 2/3 neurons in the primary whisker somatosensory cortex (wS1) of mice while they learned to perform a whisker tactile detection task. Our results demonstrate that mice with interneuron-specific SYNGAP1 haploinsufficiency exhibit learning deficits characterized by heightened behavioral responses in the absence of relevant sensory input and premature responses to unrelated sensory stimuli not associated with reward acquisition. These behavioral deficits are accompanied by specific circuit abnormalities within wS1. Interneuron-specific SYNGAP1 haploinsufficiency increases detrimental neuronal correlations directly related to task performance and enhances responses to irrelevant sensory stimuli unrelated to the reward acquisition. In summary, our findings indicate that a reduction of SynGAP in inhibitory interneurons impairs sensory representation in the primary sensory cortex by disrupting neuronal correlations, which likely contributes to the observed cognitive deficits in mice with pan-neuronal SYNGAP1 haploinsufficiency.SIGNIFICANCE STATEMENT SYNGAP1 haploinsufficiency leads to severe neurodevelopmental disorders. The exact nature of neural circuit dysfunction caused by SYNGAP1 haploinsufficiency remains poorly understood. SynGAP plays a critical role in the function of GABAergic inhibitory interneurons as well as glutamatergic pyramidal neurons in the neocortex. Whether and how decreasing SYNGAP1 level in inhibitory interneurons disrupts a behaviorally relevant circuit remains unclear. We measure neural activity and behavior in mice learning a perceptual task. Mice with interneuron-targeted disruption of SYNGAP1 display increased detrimental neuronal correlations and elevated responses to irrelevant sensory inputs, which are related to impaired task performance. These results show that cortical interneuron dysfunction contributes to sensory deficits in SYNGAP1 haploinsufficiency with important implications for identifying therapeutic targets.
Collapse
Affiliation(s)
- Meiling Zhao
- Department of Molecular, Cellular, and Developmental Biology, University of Michigan, Ann Arbor, Michigan 48109
| | - Sung Eun Kwon
- Department of Molecular, Cellular, and Developmental Biology, University of Michigan, Ann Arbor, Michigan 48109
| |
Collapse
|
40
|
Pagano J, Landi S, Stefanoni A, Nardi G, Albanesi M, Bauer HF, Pracucci E, Schön M, Ratto GM, Boeckers TM, Sala C, Verpelli C. Shank3 deletion in PV neurons is associated with abnormal behaviors and neuronal functions that are rescued by increasing GABAergic signaling. Mol Autism 2023; 14:28. [PMID: 37528484 PMCID: PMC10394945 DOI: 10.1186/s13229-023-00557-2] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2022] [Accepted: 06/27/2023] [Indexed: 08/03/2023] Open
Abstract
BACKGROUND Phelan-McDermid syndrome (PMS) is a neurodevelopmental disorder characterized by developmental delay, intellectual disability, and autistic-like behaviors and is primarily caused by haploinsufficiency of SHANK3 gene. Currently, there is no specific treatment for PMS, highlighting the need for a better understanding of SHANK3 functions and the underlying pathophysiological mechanisms in the brain. We hypothesize that SHANK3 haploinsufficiency may lead to alterations in the inhibitory system, which could be linked to the excitatory/inhibitory imbalance observed in models of autism spectrum disorder (ASD). Investigation of these neuropathological features may shed light on the pathogenesis of PMS and potential therapeutic interventions. METHODS We recorded local field potentials and visual evoked responses in the visual cortex of Shank3∆11-/- mice. Then, to understand the impact of Shank3 in inhibitory neurons, we generated Pv-cre+/- Shank3Fl/Wt conditional mice, in which Shank3 was deleted in parvalbumin-positive neurons. We characterized the phenotype of this murine model and we compared this phenotype before and after ganaxolone administration. RESULTS We found, in the primary visual cortex, an alteration of the gain control of Shank3 KO compared with Wt mice, indicating a deficit of inhibition on pyramidal neurons. This alteration was rescued after the potentiation of GABAA receptor activity by Midazolam. Behavioral analysis showed an impairment in grooming, memory, and motor coordination of Pv-cre+/- Shank3Fl/Wt compared with Pv-cre+/- Shank3Wt/Wt mice. These deficits were rescued with ganaxolone, a positive modulator of GABAA receptors. Furthermore, we demonstrated that treatment with ganaxolone also ameliorated evocative memory deficits and repetitive behavior of Shank3 KO mice. LIMITATIONS Despite the significant findings of our study, some limitations remain. Firstly, the neurobiological mechanisms underlying the link between Shank3 deletion in PV neurons and behavioral alterations need further investigation. Additionally, the impact of Shank3 on other classes of inhibitory neurons requires further exploration. Finally, the pharmacological activity of ganaxolone needs further characterization to improve our understanding of its potential therapeutic effects. CONCLUSIONS Our study provides evidence that Shank3 deletion leads to an alteration in inhibitory feedback on cortical pyramidal neurons, resulting in cortical hyperexcitability and ASD-like behavioral problems. Specifically, cell type-specific deletion of Shank3 in PV neurons was associated with these behavioral deficits. Our findings suggest that ganaxolone may be a potential pharmacological approach for treating PMS, as it was able to rescue the behavioral deficits in Shank3 KO mice. Overall, our study highlights the importance of investigating the role of inhibitory neurons and potential therapeutic interventions in neurodevelopmental disorders such as PMS.
Collapse
Affiliation(s)
- Jessica Pagano
- CNR, Neuroscience Institute, Via Follereau 3, 20854, Vedano al Lambro, Milan, Italy
| | - Silvia Landi
- CNR, Neuroscience Institute, Pisa, Italy
- NEST, Istituto Nanoscienze-CNR and Scuola Normale Superiore, Pisa, Italy
| | - Alessia Stefanoni
- CNR, Neuroscience Institute, Via Follereau 3, 20854, Vedano al Lambro, Milan, Italy
| | - Gabriele Nardi
- NEST, Istituto Nanoscienze-CNR and Scuola Normale Superiore, Pisa, Italy
| | - Marica Albanesi
- NEST, Istituto Nanoscienze-CNR and Scuola Normale Superiore, Pisa, Italy
| | - Helen F Bauer
- Institute for Anatomy and Cell Biology, Ulm University, Ulm, Germany
| | - Enrico Pracucci
- NEST, Istituto Nanoscienze-CNR and Scuola Normale Superiore, Pisa, Italy
| | - Michael Schön
- Institute for Anatomy and Cell Biology, Ulm University, Ulm, Germany
| | - Gian Michele Ratto
- CNR, Neuroscience Institute, Pisa, Italy
- NEST, Istituto Nanoscienze-CNR and Scuola Normale Superiore, Pisa, Italy
- Padova Neuroscience Center, Università degli Studi di Padova, Padua, Italy
| | - Tobias M Boeckers
- Institute for Anatomy and Cell Biology, Ulm University, Ulm, Germany
- DZNE, Ulm Site, Ulm, Germany
| | - Carlo Sala
- CNR, Neuroscience Institute, Via Follereau 3, 20854, Vedano al Lambro, Milan, Italy
| | - Chiara Verpelli
- CNR, Neuroscience Institute, Via Follereau 3, 20854, Vedano al Lambro, Milan, Italy.
| |
Collapse
|
41
|
Kumar M, Handy G, Kouvaros S, Zhao Y, Brinson LL, Wei E, Bizup B, Doiron B, Tzounopoulos T. Cell-type-specific plasticity of inhibitory interneurons in the rehabilitation of auditory cortex after peripheral damage. Nat Commun 2023; 14:4170. [PMID: 37443148 PMCID: PMC10345144 DOI: 10.1038/s41467-023-39732-7] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2022] [Accepted: 06/21/2023] [Indexed: 07/15/2023] Open
Abstract
Peripheral sensory organ damage leads to compensatory cortical plasticity that is associated with a remarkable recovery of cortical responses to sound. The precise mechanisms that explain how this plasticity is implemented and distributed over a diverse collection of excitatory and inhibitory cortical neurons remain unknown. After noise trauma and persistent peripheral deficits, we found recovered sound-evoked activity in mouse A1 excitatory principal neurons (PNs), parvalbumin- and vasoactive intestinal peptide-expressing neurons (PVs and VIPs), but reduced activity in somatostatin-expressing neurons (SOMs). This cell-type-specific recovery was also associated with cell-type-specific intrinsic plasticity. These findings, along with our computational modelling results, are consistent with the notion that PV plasticity contributes to PN stability, SOM plasticity allows for increased PN and PV activity, and VIP plasticity enables PN and PV recovery by inhibiting SOMs.
Collapse
Affiliation(s)
- Manoj Kumar
- Pittsburgh Hearing Research Center, Department of Otolaryngology, University of Pittsburgh, Pittsburgh, PA, 15261, USA.
| | - Gregory Handy
- Departments of Neurobiology and Statistics, University of Chicago, Chicago, IL, 60637, USA
| | - Stylianos Kouvaros
- Pittsburgh Hearing Research Center, Department of Otolaryngology, University of Pittsburgh, Pittsburgh, PA, 15261, USA
| | - Yanjun Zhao
- Pittsburgh Hearing Research Center, Department of Otolaryngology, University of Pittsburgh, Pittsburgh, PA, 15261, USA
| | - Lovisa Ljungqvist Brinson
- Pittsburgh Hearing Research Center, Department of Otolaryngology, University of Pittsburgh, Pittsburgh, PA, 15261, USA
| | - Eric Wei
- Pittsburgh Hearing Research Center, Department of Otolaryngology, University of Pittsburgh, Pittsburgh, PA, 15261, USA
| | - Brandon Bizup
- Pittsburgh Hearing Research Center, Department of Otolaryngology, University of Pittsburgh, Pittsburgh, PA, 15261, USA
| | - Brent Doiron
- Departments of Neurobiology and Statistics, University of Chicago, Chicago, IL, 60637, USA
| | - Thanos Tzounopoulos
- Pittsburgh Hearing Research Center, Department of Otolaryngology, University of Pittsburgh, Pittsburgh, PA, 15261, USA.
| |
Collapse
|
42
|
Molloy CJ, Cooke J, Gatford NJF, Rivera-Olvera A, Avazzadeh S, Homberg JR, Grandjean J, Fernandes C, Shen S, Loth E, Srivastava DP, Gallagher L. Bridging the translational gap: what can synaptopathies tell us about autism? Front Mol Neurosci 2023; 16:1191323. [PMID: 37441676 PMCID: PMC10333541 DOI: 10.3389/fnmol.2023.1191323] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2023] [Accepted: 05/24/2023] [Indexed: 07/15/2023] Open
Abstract
Multiple molecular pathways and cellular processes have been implicated in the neurobiology of autism and other neurodevelopmental conditions. There is a current focus on synaptic gene conditions, or synaptopathies, which refer to clinical conditions associated with rare genetic variants disrupting genes involved in synaptic biology. Synaptopathies are commonly associated with autism and developmental delay and may be associated with a range of other neuropsychiatric outcomes. Altered synaptic biology is suggested by both preclinical and clinical studies in autism based on evidence of differences in early brain structural development and altered glutamatergic and GABAergic neurotransmission potentially perturbing excitatory and inhibitory balance. This review focusses on the NRXN-NLGN-SHANK pathway, which is implicated in the synaptic assembly, trans-synaptic signalling, and synaptic functioning. We provide an overview of the insights from preclinical molecular studies of the pathway. Concentrating on NRXN1 deletion and SHANK3 mutations, we discuss emerging understanding of cellular processes and electrophysiology from induced pluripotent stem cells (iPSC) models derived from individuals with synaptopathies, neuroimaging and behavioural findings in animal models of Nrxn1 and Shank3 synaptic gene conditions, and key findings regarding autism features, brain and behavioural phenotypes from human clinical studies of synaptopathies. The identification of molecular-based biomarkers from preclinical models aims to advance the development of targeted therapeutic treatments. However, it remains challenging to translate preclinical animal models and iPSC studies to interpret human brain development and autism features. We discuss the existing challenges in preclinical and clinical synaptopathy research, and potential solutions to align methodologies across preclinical and clinical research. Bridging the translational gap between preclinical and clinical studies will be necessary to understand biological mechanisms, to identify targeted therapies, and ultimately to progress towards personalised approaches for complex neurodevelopmental conditions such as autism.
Collapse
Affiliation(s)
- Ciara J. Molloy
- Department of Psychiatry, School of Medicine, Trinity College Dublin, Dublin, Ireland
| | - Jennifer Cooke
- Forensic and Neurodevelopmental Sciences, Institute of Psychiatry, Psychology and Neuroscience, King’s College London, London, United Kingdom
| | - Nicholas J. F. Gatford
- Kavli Institute for Nanoscience Discovery, Nuffield Department of Clinical Neurosciences, University of Oxford, Medical Sciences Division, Oxford, United Kingdom
| | - Alejandro Rivera-Olvera
- Donders Institute for Brain, Cognition, and Behaviour, Radboud University Medical Centre, Nijmegen, Netherlands
| | - Sahar Avazzadeh
- Physiology and Cellular Physiology Research Laboratory, CÚRAM SFI Centre for Research in Medical Devices, School of Medicine, Human Biology Building, University of Galway, Galway, Ireland
| | - Judith R. Homberg
- Donders Institute for Brain, Cognition, and Behaviour, Radboud University Medical Centre, Nijmegen, Netherlands
| | - Joanes Grandjean
- Physiology and Cellular Physiology Research Laboratory, CÚRAM SFI Centre for Research in Medical Devices, School of Medicine, Human Biology Building, University of Galway, Galway, Ireland
- Department of Medical Imaging, Radboud University Medical Centre, Nijmegen, Netherlands
| | - Cathy Fernandes
- Social, Genetic and Developmental Psychiatry Centre, Institute of Psychiatry, Psychology and Neuroscience, King’s College London, London, United Kingdom
- MRC Centre for Neurodevelopmental Disorders, Institute of Psychiatry, Psychology and Neuroscience, King’s College London, London, United Kingdom
| | - Sanbing Shen
- Regenerative Medicine Institute, School of Medicine, University of Galway, Galway, Ireland
- FutureNeuro, The SFI Research Centre for Chronic and Rare Neurological Diseases, Royal College of Surgeons, Dublin, Ireland
| | - Eva Loth
- Forensic and Neurodevelopmental Sciences, Institute of Psychiatry, Psychology and Neuroscience, King’s College London, London, United Kingdom
| | - Deepak P. Srivastava
- MRC Centre for Neurodevelopmental Disorders, Institute of Psychiatry, Psychology and Neuroscience, King’s College London, London, United Kingdom
- Department of Basic and Clinical Neuroscience, Institute of Psychiatry, Psychology and Neuroscience, King’s College London, London, United Kingdom
| | - Louise Gallagher
- Department of Psychiatry, School of Medicine, Trinity College Dublin, Dublin, Ireland
- The Hospital for SickKids, Toronto, ON, Canada
- The Peter Gilgan Centre for Research and Learning, SickKids Research Institute, Toronto, ON, Canada
- The Centre for Addiction and Mental Health, Toronto, ON, Canada
- Department of Psychiatry, Temerty Faculty of Medicine, University of Toronto, Toronto, ON, Canada
| |
Collapse
|
43
|
Oh H, Lee S, Oh Y, Kim S, Kim YS, Yang Y, Choi W, Yoo YE, Cho H, Lee S, Yang E, Koh W, Won W, Kim R, Lee CJ, Kim H, Kang H, Kim JY, Ku T, Paik SB, Kim E. Kv7/KCNQ potassium channels in cortical hyperexcitability and juvenile seizure-related death in Ank2-mutant mice. Nat Commun 2023; 14:3547. [PMID: 37321992 PMCID: PMC10272139 DOI: 10.1038/s41467-023-39203-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2022] [Accepted: 06/01/2023] [Indexed: 06/17/2023] Open
Abstract
Autism spectrum disorders (ASD) represent neurodevelopmental disorders characterized by social deficits, repetitive behaviors, and various comorbidities, including epilepsy. ANK2, which encodes a neuronal scaffolding protein, is frequently mutated in ASD, but its in vivo functions and disease-related mechanisms are largely unknown. Here, we report that mice with Ank2 knockout restricted to cortical and hippocampal excitatory neurons (Ank2-cKO mice) show ASD-related behavioral abnormalities and juvenile seizure-related death. Ank2-cKO cortical neurons show abnormally increased excitability and firing rate. These changes accompanied decreases in the total level and function of the Kv7.2/KCNQ2 and Kv7.3/KCNQ3 potassium channels and the density of these channels in the enlengthened axon initial segment. Importantly, the Kv7 agonist, retigabine, rescued neuronal excitability, juvenile seizure-related death, and hyperactivity in Ank2-cKO mice. These results suggest that Ank2 regulates neuronal excitability by regulating the length of and Kv7 density in the AIS and that Kv7 channelopathy is involved in Ank2-related brain dysfunctions.
Collapse
Affiliation(s)
- Hyoseon Oh
- Department of Biological Sciences, Korea Advanced Institute for Science and Technology (KAIST), Daejeon, 34141, Korea
- Center for Synaptic Brain Dysfunctions, Institute for Basic Science (IBS), Daejeon, 34141, Korea
| | - Suho Lee
- Center for Synaptic Brain Dysfunctions, Institute for Basic Science (IBS), Daejeon, 34141, Korea
| | - Yusang Oh
- Department of Biological Sciences, Korea Advanced Institute for Science and Technology (KAIST), Daejeon, 34141, Korea
- Department of Bio and Brain Engineering, KAIST, Daejeon, 34141, Korea
| | - Seongbin Kim
- Department of Biological Sciences, Korea Advanced Institute for Science and Technology (KAIST), Daejeon, 34141, Korea
| | - Young Seo Kim
- Graduate School of Medical Science and Engineering, KAIST, Daejeon, 34141, Korea
| | - Yeji Yang
- Department of Biological Sciences, Korea Advanced Institute for Science and Technology (KAIST), Daejeon, 34141, Korea
- Research Center for Bioconvergence Analysis, Korea Basic Science Institute, 162 Yeongudanjiro, Ochang, Cheongju, Chungbuk, 28119, Korea
| | - Woochul Choi
- Department of Bio and Brain Engineering, KAIST, Daejeon, 34141, Korea
| | - Ye-Eun Yoo
- Center for Synaptic Brain Dysfunctions, Institute for Basic Science (IBS), Daejeon, 34141, Korea
| | - Heejin Cho
- Center for Synaptic Brain Dysfunctions, Institute for Basic Science (IBS), Daejeon, 34141, Korea
| | - Seungjoon Lee
- Center for Synaptic Brain Dysfunctions, Institute for Basic Science (IBS), Daejeon, 34141, Korea
| | - Esther Yang
- Department of Anatomy and Brain Korea 21 Graduate Program, Biomedical Science, College of Medicine, Korea University, Seoul, 02841, Korea
| | - Wuhyun Koh
- Center for Cognition and Sociality, IBS, Daejeon, 34126, Korea
| | - Woojin Won
- Center for Cognition and Sociality, IBS, Daejeon, 34126, Korea
| | - Ryunhee Kim
- Center for Synaptic Brain Dysfunctions, Institute for Basic Science (IBS), Daejeon, 34141, Korea
| | - C Justin Lee
- Center for Cognition and Sociality, IBS, Daejeon, 34126, Korea
| | - Hyun Kim
- Department of Anatomy and Brain Korea 21 Graduate Program, Biomedical Science, College of Medicine, Korea University, Seoul, 02841, Korea
| | - Hyojin Kang
- Division of National Supercomputing, Korea Institute of Science and Technology Information, Daejeon, 34141, Korea
| | - Jin Young Kim
- Research Center for Bioconvergence Analysis, Korea Basic Science Institute, 162 Yeongudanjiro, Ochang, Cheongju, Chungbuk, 28119, Korea
| | - Taeyun Ku
- Graduate School of Medical Science and Engineering, KAIST, Daejeon, 34141, Korea
| | - Se-Bum Paik
- Department of Bio and Brain Engineering, KAIST, Daejeon, 34141, Korea
| | - Eunjoon Kim
- Department of Biological Sciences, Korea Advanced Institute for Science and Technology (KAIST), Daejeon, 34141, Korea.
- Center for Synaptic Brain Dysfunctions, Institute for Basic Science (IBS), Daejeon, 34141, Korea.
| |
Collapse
|
44
|
Ding W, Yang L, Chen Q, Hu K, Liu Y, Bao E, Wang C, Mao J, Shen S. Foramen lacerum impingement of trigeminal nerve root as a rodent model for trigeminal neuralgia. JCI Insight 2023; 8:e168046. [PMID: 37159265 PMCID: PMC10393239 DOI: 10.1172/jci.insight.168046] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2022] [Accepted: 05/03/2023] [Indexed: 05/10/2023] Open
Abstract
Trigeminal neuralgia (TN) is a classic neuralgic pain condition with distinct clinical characteristics. Modeling TN in rodents is challenging. Recently, we found that a foramen in the rodent skull base, the foramen lacerum, provides direct access to the trigeminal nerve root. Using this access, we developed a foramen lacerum impingement of trigeminal nerve root (FLIT) model and observed distinct pain-like behaviors in rodents, including paroxysmal asymmetric facial grimaces, head tilt when eating, avoidance of solid chow, and lack of wood chewing. The FLIT model recapitulated key clinical features of TN, including lancinating pain-like behavior and dental pain-like behavior. Importantly, when compared with a trigeminal neuropathic pain model (infraorbital nerve chronic constriction injury [IoN-CCI]), the FLIT model was associated with significantly higher numbers of c-Fos-positive cells in the primary somatosensory cortex (S1), unraveling robust cortical activation in the FLIT model. On intravital 2-photon calcium imaging, synchronized S1 neural dynamics were present in the FLIT but not the IoN-CCI model, revealing differential implication of cortical activation in different pain models. Taken together, our results indicate that FLIT is a clinically relevant rodent model of TN that could facilitate pain research and therapeutics development.
Collapse
Affiliation(s)
- Weihua Ding
- Department of Anesthesia, Critical Care and Pain Medicine, Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts, USA
| | - Liuyue Yang
- Department of Anesthesia, Critical Care and Pain Medicine, Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts, USA
| | - Qian Chen
- McGovern Institute for Brain Research and Department of Brain and Cognitive Sciences, Massachusetts Institute of Technology, Cambridge, Massachusetts, USA
| | - Kun Hu
- Department of Pathology, Tuft University School of Medicine, Boston, Massachusetts, USA
| | - Yan Liu
- Martinos Center for Biomedical Imaging, Department of Radiology, Massachusetts General Hospital, Boston, Massachusetts, USA
| | - Eric Bao
- Brooks School, North Andover, Massachusetts, USA
| | - Changning Wang
- Martinos Center for Biomedical Imaging, Department of Radiology, Massachusetts General Hospital, Boston, Massachusetts, USA
| | - Jianren Mao
- Department of Anesthesia, Critical Care and Pain Medicine, Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts, USA
| | - Shiqian Shen
- Department of Anesthesia, Critical Care and Pain Medicine, Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts, USA
| |
Collapse
|
45
|
Wang C, Derderian KD, Hamada E, Zhou X, Nelson AD, Kyoung H, Ahituv N, Bouvier G, Bender KJ. Impaired cerebellar plasticity hypersensitizes sensory reflexes in SCN2A-associated ASD. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.06.05.543814. [PMID: 37333267 PMCID: PMC10274749 DOI: 10.1101/2023.06.05.543814] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/20/2023]
Abstract
Children diagnosed with autism spectrum disorder (ASD) commonly present with sensory hypersensitivity, or abnormally strong reactions to sensory stimuli. Such hypersensitivity can be overwhelming, causing high levels of distress that contribute markedly to the negative aspects of the disorder. Here, we identify the mechanisms that underlie hypersensitivity in a sensorimotor reflex found to be altered in humans and in mice with loss-of-function in the ASD risk-factor gene SCN2A. The cerebellum-dependent vestibulo-ocular reflex (VOR), which helps maintain one's gaze during movement, was hypersensitized due to deficits in cerebellar synaptic plasticity. Heterozygous loss of SCN2A-encoded NaV1.2 sodium channels in granule cells impaired high-frequency transmission to Purkinje cells and long-term potentiation, a form of synaptic plasticity important for modulating VOR gain. VOR plasticity could be rescued in adolescent mice via a CRISPR-activator approach that increases Scn2a expression, highlighting how evaluation of simple reflexes can be used as quantitative readout of therapeutic interventions.
Collapse
Affiliation(s)
- Chenyu Wang
- Neuroscience Graduate Program, University of California, San Francisco, San Francisco, CA, USA
| | - Kimberly D. Derderian
- Department of Neurology, University of California, San Francisco, San Francisco, CA, USA
| | - Elizabeth Hamada
- Department of Neurology, University of California, San Francisco, San Francisco, CA, USA
| | - Xujia Zhou
- Department of Bioengineering and Therapeutic Sciences, University of California, San Francisco, San Francisco, CA, USA
| | - Andrew D. Nelson
- Department of Neurology, University of California, San Francisco, San Francisco, CA, USA
| | - Henry Kyoung
- Department of Neurology, University of California, San Francisco, San Francisco, CA, USA
| | - Nadav Ahituv
- Weill Institute for Neurosciences, University of California, San Francisco, San Francisco, CA, USA
- Department of Bioengineering and Therapeutic Sciences, University of California, San Francisco, San Francisco, CA, USA
- Institute for Human Genetics, University of California, San Francisco, San Francisco, CA, USA
| | - Guy Bouvier
- Department of Physiology, University of California, San Francisco, San Francisco, CA, USA
| | - Kevin J Bender
- Department of Neurology, University of California, San Francisco, San Francisco, CA, USA
- Weill Institute for Neurosciences, University of California, San Francisco, San Francisco, CA, USA
| |
Collapse
|
46
|
Ding W, Fischer L, Chen Q, Li Z, Yang L, You Z, Hu K, Wu X, Zhou X, Chao W, Hu P, Dagnew TM, Dubreuil DM, Wang S, Xia S, Bao C, Zhu S, Chen L, Wang C, Wainger B, Jin P, Mao J, Feng G, Harnett MT, Shen S. Highly synchronized cortical circuit dynamics mediate spontaneous pain in mice. J Clin Invest 2023; 133:e166408. [PMID: 36602876 PMCID: PMC9974100 DOI: 10.1172/jci166408] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2022] [Accepted: 12/22/2022] [Indexed: 01/06/2023] Open
Abstract
Cortical neural dynamics mediate information processing for the cerebral cortex, which is implicated in fundamental biological processes such as vision and olfaction, in addition to neurological and psychiatric diseases. Spontaneous pain is a key feature of human neuropathic pain. Whether spontaneous pain pushes the cortical network into an aberrant state and, if so, whether it can be brought back to a "normal" operating range to ameliorate pain are unknown. Using a clinically relevant mouse model of neuropathic pain with spontaneous pain-like behavior, we report that orofacial spontaneous pain activated a specific area within the primary somatosensory cortex (S1), displaying synchronized neural dynamics revealed by intravital two-photon calcium imaging. This synchronization was underpinned by local GABAergic interneuron hypoactivity. Pain-induced cortical synchronization could be attenuated by manipulating local S1 networks or clinically effective pain therapies. Specifically, both chemogenetic inhibition of pain-related c-Fos-expressing neurons and selective activation of GABAergic interneurons significantly attenuated S1 synchronization. Clinically effective pain therapies including carbamazepine and nerve root decompression could also dampen S1 synchronization. More important, restoring a "normal" range of neural dynamics through attenuation of pain-induced S1 synchronization alleviated pain-like behavior. These results suggest that spontaneous pain pushed the S1 regional network into a synchronized state, whereas reversal of this synchronization alleviated pain.
Collapse
Affiliation(s)
- Weihua Ding
- Department of Anesthesia, Critical Care and Pain Medicine, Massachusetts General Hospital (MGH), Harvard Medical School, Boston, Massachusetts, USA
| | - Lukas Fischer
- McGovern Institute for Brain Research and Department of Brain and Cognitive Sciences, Massachusetts Institute of Technology, Cambridge, Massachusetts, USA
| | - Qian Chen
- McGovern Institute for Brain Research and Department of Brain and Cognitive Sciences, Massachusetts Institute of Technology, Cambridge, Massachusetts, USA
| | - Ziyi Li
- Department of Biostatistics, The University of Texas MD Anderson Cancer Center, Houston, Texas, USA
| | - Liuyue Yang
- Department of Anesthesia, Critical Care and Pain Medicine, Massachusetts General Hospital (MGH), Harvard Medical School, Boston, Massachusetts, USA
| | - Zerong You
- Department of Anesthesia, Critical Care and Pain Medicine, Massachusetts General Hospital (MGH), Harvard Medical School, Boston, Massachusetts, USA
| | - Kun Hu
- Department of Pathology, Tufts University School of Medicine, Medford, Massachusetts, USA
| | - Xinbo Wu
- Department of Anesthesia, Critical Care and Pain Medicine, Massachusetts General Hospital (MGH), Harvard Medical School, Boston, Massachusetts, USA
| | - Xue Zhou
- Department of Anesthesia, Critical Care and Pain Medicine, Massachusetts General Hospital (MGH), Harvard Medical School, Boston, Massachusetts, USA
| | - Wei Chao
- Department of Anesthesiology, Center for Shock, Trauma and Anesthesiology Research, University of Maryland School of Medicine, Baltimore, Maryland, USA
| | - Peter Hu
- Department of Anesthesiology, Center for Shock, Trauma and Anesthesiology Research, University of Maryland School of Medicine, Baltimore, Maryland, USA
| | - Tewodros Mulugeta Dagnew
- MGH/HST Martinos Center for Biomedical Imaging, Department of Radiology, MGH, Harvard Medical School, Boston, Massachusetts, USA
| | - Daniel M. Dubreuil
- Department of Anesthesia, Critical Care and Pain Medicine, Massachusetts General Hospital (MGH), Harvard Medical School, Boston, Massachusetts, USA
| | - Shiyu Wang
- Department of Anesthesia, Critical Care and Pain Medicine, Massachusetts General Hospital (MGH), Harvard Medical School, Boston, Massachusetts, USA
| | - Suyun Xia
- Department of Anesthesia, Critical Care and Pain Medicine, Massachusetts General Hospital (MGH), Harvard Medical School, Boston, Massachusetts, USA
| | - Caroline Bao
- McGovern Institute for Brain Research and Department of Brain and Cognitive Sciences, Massachusetts Institute of Technology, Cambridge, Massachusetts, USA
| | - Shengmei Zhu
- Department of Anesthesiology, the First Affiliate Hospital of Zhejiang University, Hangzhou, China
| | - Lucy Chen
- Department of Anesthesia, Critical Care and Pain Medicine, Massachusetts General Hospital (MGH), Harvard Medical School, Boston, Massachusetts, USA
| | - Changning Wang
- MGH/HST Martinos Center for Biomedical Imaging, Department of Radiology, MGH, Harvard Medical School, Boston, Massachusetts, USA
| | - Brian Wainger
- Department of Anesthesia, Critical Care and Pain Medicine, Massachusetts General Hospital (MGH), Harvard Medical School, Boston, Massachusetts, USA
| | - Peng Jin
- Department of Human Genetics, Emory University, Atlanta, Georgia, USA
| | - Jianren Mao
- Department of Anesthesia, Critical Care and Pain Medicine, Massachusetts General Hospital (MGH), Harvard Medical School, Boston, Massachusetts, USA
| | - Guoping Feng
- McGovern Institute for Brain Research and Department of Brain and Cognitive Sciences, Massachusetts Institute of Technology, Cambridge, Massachusetts, USA
| | - Mark T. Harnett
- McGovern Institute for Brain Research and Department of Brain and Cognitive Sciences, Massachusetts Institute of Technology, Cambridge, Massachusetts, USA
| | - Shiqian Shen
- Department of Anesthesia, Critical Care and Pain Medicine, Massachusetts General Hospital (MGH), Harvard Medical School, Boston, Massachusetts, USA
| |
Collapse
|
47
|
de Coo IF, Jesse S, Le TL, Sala C, Bourgeron T. Consensus recommendations on Epilepsy in Phelan-McDermid syndrome. Eur J Med Genet 2023; 66:104746. [PMID: 36967043 DOI: 10.1016/j.ejmg.2023.104746] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2022] [Revised: 03/10/2023] [Accepted: 03/18/2023] [Indexed: 03/28/2023]
Abstract
Phelan-McDermid syndrome (PMS) is a 22q13.3 deletion syndrome that presents with a disturbed development, neurological and psychiatric characteristics, and sometimes other comorbidities like seizures. The epilepsy manifests itself in a variety of seizure semiologies. Further diagnostics using electroencephalogram (EEG) and brain magnetic resonance imaging (MRI) are important in conjunction with the clinical picture of the seizures to decide whether anticonvulsant therapy is necessary. As part of the development of European consensus guidelines we focussed on the prevalence and semiology of epileptic seizures in PMS associated with a pathogenic variant in the SHANK3 gene or the 22q13 deletion involving SHANK3, in order to then be able to make recommendations regarding diagnosis and therapy.
Collapse
|
48
|
Liu JZ, Zhang LM, Zhang DX, Song RX, Lv JM, Wang LY, Jia SY, Shan YD, Shao JJ, Zhang W. NLRP3 in the GABAergic neuron induces cognitive impairments in a mouse model of hemorrhage shock and resuscitation. J Psychiatr Res 2023; 159:213-223. [PMID: 36739849 DOI: 10.1016/j.jpsychires.2023.01.034] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/30/2022] [Revised: 12/28/2022] [Accepted: 01/26/2023] [Indexed: 01/30/2023]
Affiliation(s)
- Ji-Zhen Liu
- Department of Anesthesiology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Li-Min Zhang
- Department of Anesthesiology, Hebei Province Cangzhou Hospital of Integrated Traditional and Western Medicine Cangzhou No.2 Hospital, Cangzhou, China
| | - Dong-Xue Zhang
- Department of Gerontology, Cangzhou Central Hospital, Cangzhou, China
| | - Rong-Xin Song
- Department of Anesthesiology, Cangzhou Central Hospital, Hebei Medical University, Cangzhou, China
| | - Jin-Meng Lv
- Anesthesia and Trauma Research Unit, Hebei Province Cangzhou Hospital of Integrated Traditional and Western Medicine Cangzhou No.2 Hospital, Cangzhou, China
| | - Lu-Ying Wang
- Anesthesia and Trauma Research Unit, Hebei Province Cangzhou Hospital of Integrated Traditional and Western Medicine Cangzhou No.2 Hospital, Cangzhou, China
| | - Shi-Yan Jia
- Anesthesia and Trauma Research Unit, Hebei Province Cangzhou Hospital of Integrated Traditional and Western Medicine Cangzhou No.2 Hospital, Cangzhou, China
| | - Yu-Dong Shan
- Anesthesia and Trauma Research Unit, Hebei Province Cangzhou Hospital of Integrated Traditional and Western Medicine Cangzhou No.2 Hospital, Cangzhou, China
| | - Jing-Jing Shao
- Department of Anesthesiology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Wei Zhang
- Department of Anesthesiology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China.
| |
Collapse
|
49
|
Forrest MP, Dos Santos M, Piguel NH, Wang YZ, Hawkins NA, Bagchi VA, Dionisio LE, Yoon S, Simkin D, Martin-de-Saavedra MD, Gao R, Horan KE, George AL, LeDoux MS, Kearney JA, Savas JN, Penzes P. Rescue of neuropsychiatric phenotypes in a mouse model of 16p11.2 duplication syndrome by genetic correction of an epilepsy network hub. Nat Commun 2023; 14:825. [PMID: 36808153 PMCID: PMC9938216 DOI: 10.1038/s41467-023-36087-x] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2022] [Accepted: 01/16/2023] [Indexed: 02/19/2023] Open
Abstract
Neuropsychiatric disorders (NPDs) are frequently co-morbid with epilepsy, but the biological basis of shared risk remains poorly understood. The 16p11.2 duplication is a copy number variant that confers risk for diverse NPDs including autism spectrum disorder, schizophrenia, intellectual disability and epilepsy. We used a mouse model of the 16p11.2 duplication (16p11.2dup/+) to uncover molecular and circuit properties associated with this broad phenotypic spectrum, and examined genes within the locus capable of phenotype reversal. Quantitative proteomics revealed alterations to synaptic networks and products of NPD risk genes. We identified an epilepsy-associated subnetwork that was dysregulated in 16p11.2dup/+ mice and altered in brain tissue from individuals with NPDs. Cortical circuits from 16p11.2dup/+ mice exhibited hypersynchronous activity and enhanced network glutamate release, which increased susceptibility to seizures. Using gene co-expression and interactome analysis, we show that PRRT2 is a major hub in the epilepsy subnetwork. Remarkably, correcting Prrt2 copy number rescued aberrant circuit properties, seizure susceptibility and social deficits in 16p11.2dup/+ mice. We show that proteomics and network biology can identify important disease hubs in multigenic disorders, and reveal mechanisms relevant to the complex symptomatology of 16p11.2 duplication carriers.
Collapse
Affiliation(s)
- Marc P Forrest
- Department of Neuroscience, Northwestern University Feinberg School of Medicine, Chicago, IL, 60611, USA
- Center for Autism and Neurodevelopment, Northwestern University Feinberg School of Medicine, Chicago, IL, 60611, USA
| | - Marc Dos Santos
- Department of Neuroscience, Northwestern University Feinberg School of Medicine, Chicago, IL, 60611, USA
- Center for Autism and Neurodevelopment, Northwestern University Feinberg School of Medicine, Chicago, IL, 60611, USA
| | - Nicolas H Piguel
- Department of Neuroscience, Northwestern University Feinberg School of Medicine, Chicago, IL, 60611, USA
- Center for Autism and Neurodevelopment, Northwestern University Feinberg School of Medicine, Chicago, IL, 60611, USA
| | - Yi-Zhi Wang
- Department of Neurology, Northwestern University Feinberg School of Medicine, Chicago, IL, 60611, USA
| | - Nicole A Hawkins
- Department of Pharmacology Northwestern University Feinberg School of Medicine, Chicago, IL, 60611, USA
| | - Vikram A Bagchi
- Department of Neuroscience, Northwestern University Feinberg School of Medicine, Chicago, IL, 60611, USA
- Center for Autism and Neurodevelopment, Northwestern University Feinberg School of Medicine, Chicago, IL, 60611, USA
| | - Leonardo E Dionisio
- Department of Neuroscience, Northwestern University Feinberg School of Medicine, Chicago, IL, 60611, USA
- Center for Autism and Neurodevelopment, Northwestern University Feinberg School of Medicine, Chicago, IL, 60611, USA
| | - Sehyoun Yoon
- Department of Neuroscience, Northwestern University Feinberg School of Medicine, Chicago, IL, 60611, USA
- Center for Autism and Neurodevelopment, Northwestern University Feinberg School of Medicine, Chicago, IL, 60611, USA
| | - Dina Simkin
- Department of Neurology, Northwestern University Feinberg School of Medicine, Chicago, IL, 60611, USA
- Department of Pharmacology Northwestern University Feinberg School of Medicine, Chicago, IL, 60611, USA
| | - Maria Dolores Martin-de-Saavedra
- Department of Neuroscience, Northwestern University Feinberg School of Medicine, Chicago, IL, 60611, USA
- Center for Autism and Neurodevelopment, Northwestern University Feinberg School of Medicine, Chicago, IL, 60611, USA
- Instituto Universitario de Investigación en Neuroquímica, Departamento de Bioquímica y Biología Molecular, Facultad de Farmacia, Universidad Complutense, 28040, Madrid, Spain
| | - Ruoqi Gao
- Department of Neuroscience, Northwestern University Feinberg School of Medicine, Chicago, IL, 60611, USA
- Center for Autism and Neurodevelopment, Northwestern University Feinberg School of Medicine, Chicago, IL, 60611, USA
| | - Katherine E Horan
- Department of Neuroscience, Northwestern University Feinberg School of Medicine, Chicago, IL, 60611, USA
- Center for Autism and Neurodevelopment, Northwestern University Feinberg School of Medicine, Chicago, IL, 60611, USA
| | - Alfred L George
- Center for Autism and Neurodevelopment, Northwestern University Feinberg School of Medicine, Chicago, IL, 60611, USA
- Department of Pharmacology Northwestern University Feinberg School of Medicine, Chicago, IL, 60611, USA
| | - Mark S LeDoux
- Department of Psychology, University of Memphis, Memphis, TN, 38152, USA
- Veracity Neuroscience LLC, Memphis, TN, 38157, USA
| | - Jennifer A Kearney
- Center for Autism and Neurodevelopment, Northwestern University Feinberg School of Medicine, Chicago, IL, 60611, USA
- Department of Pharmacology Northwestern University Feinberg School of Medicine, Chicago, IL, 60611, USA
| | - Jeffrey N Savas
- Center for Autism and Neurodevelopment, Northwestern University Feinberg School of Medicine, Chicago, IL, 60611, USA
- Department of Neurology, Northwestern University Feinberg School of Medicine, Chicago, IL, 60611, USA
| | - Peter Penzes
- Department of Neuroscience, Northwestern University Feinberg School of Medicine, Chicago, IL, 60611, USA.
- Center for Autism and Neurodevelopment, Northwestern University Feinberg School of Medicine, Chicago, IL, 60611, USA.
| |
Collapse
|
50
|
Orekhova EV, Manyukhina VO, Galuta IA, Prokofyev AO, Goiaeva DE, Obukhova TS, Fadeev KA, Schneiderman JF, Stroganova TA. Gamma oscillations point to the role of primary visual cortex in atypical motion processing in autism. PLoS One 2023; 18:e0281531. [PMID: 36780507 PMCID: PMC9925089 DOI: 10.1371/journal.pone.0281531] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2022] [Accepted: 01/25/2023] [Indexed: 02/15/2023] Open
Abstract
Neurophysiological studies suggest that abnormal neural inhibition may explain a range of sensory processing differences in autism spectrum disorders (ASD). In particular, the impaired ability of people with ASD to visually discriminate the motion direction of small-size objects and their reduced perceptual suppression of background-like visual motion may stem from deficient surround inhibition within the primary visual cortex (V1) and/or its atypical top-down modulation by higher-tier cortical areas. In this study, we estimate the contribution of abnormal surround inhibition to the motion-processing deficit in ASD. For this purpose, we used a putative correlate of surround inhibition-suppression of the magnetoencephalographic (MEG) gamma response (GR) caused by an increase in the drift rate of a large annular high-contrast grating. The motion direction discrimination thresholds for the gratings of different angular sizes (1° and 12°) were assessed in a separate psychophysical paradigm. The MEG data were collected in 42 boys with ASD and 37 typically developing (TD) boys aged 7-15 years. Psychophysical data were available in 33 and 34 of these participants, respectively. The results showed that the GR suppression in V1 was reduced in boys with ASD, while their ability to detect the direction of motion was compromised only in the case of small stimuli. In TD boys, the GR suppression directly correlated with perceptual suppression caused by increasing stimulus size, thus suggesting the role of the top-down modulations of V1 in surround inhibition. In ASD, weaker GR suppression was associated with the poor directional sensitivity to small stimuli, but not with perceptual suppression. These results strongly suggest that a local inhibitory deficit in V1 plays an important role in the reduction of directional sensitivity in ASD and that this perceptual deficit cannot be explained exclusively by atypical top-down modulation of V1 by higher-tier cortical areas.
Collapse
Affiliation(s)
- Elena V. Orekhova
- Center for Neurocognitive Research (MEG Center), Moscow State University of Psychology and Education, Moscow, Russian Federation
- * E-mail:
| | - Viktoriya O. Manyukhina
- Center for Neurocognitive Research (MEG Center), Moscow State University of Psychology and Education, Moscow, Russian Federation
- National Research University Higher School of Economics, Moscow, Russian Federation
| | - Ilia A. Galuta
- Center for Neurocognitive Research (MEG Center), Moscow State University of Psychology and Education, Moscow, Russian Federation
| | - Andrey O. Prokofyev
- Center for Neurocognitive Research (MEG Center), Moscow State University of Psychology and Education, Moscow, Russian Federation
| | - Dzerassa E. Goiaeva
- Center for Neurocognitive Research (MEG Center), Moscow State University of Psychology and Education, Moscow, Russian Federation
| | - Tatiana S. Obukhova
- Center for Neurocognitive Research (MEG Center), Moscow State University of Psychology and Education, Moscow, Russian Federation
| | - Kirill A. Fadeev
- Center for Neurocognitive Research (MEG Center), Moscow State University of Psychology and Education, Moscow, Russian Federation
| | - Justin F. Schneiderman
- MedTech West and the Institute of Neuroscience and Physiology, Sahlgrenska Academy, The University of Gothenburg, Gothenburg, Sweden
| | - Tatiana A. Stroganova
- Center for Neurocognitive Research (MEG Center), Moscow State University of Psychology and Education, Moscow, Russian Federation
| |
Collapse
|